kernel - Refactor cpu localization for VM page allocations (2)
[dragonfly.git] / sys / vm / vm_object.c
blob6dea0683a30ad94ebfc376d7553badfaad815a00
1 /*
2 * Copyright (c) 1991, 1993, 2013
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 * Carnegie Mellon requests users of this software to return to
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
60 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
64 * Virtual memory object module.
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h> /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
92 #include <vm/vm_page2.h>
94 #include <machine/specialreg.h>
96 #define EASY_SCAN_FACTOR 8
98 static void vm_object_qcollapse(vm_object_t object,
99 vm_object_t backing_object);
100 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 int pagerflags);
102 static void vm_object_lock_init(vm_object_t);
106 * Virtual memory objects maintain the actual data
107 * associated with allocated virtual memory. A given
108 * page of memory exists within exactly one object.
110 * An object is only deallocated when all "references"
111 * are given up. Only one "reference" to a given
112 * region of an object should be writeable.
114 * Associated with each object is a list of all resident
115 * memory pages belonging to that object; this list is
116 * maintained by the "vm_page" module, and locked by the object's
117 * lock.
119 * Each object also records a "pager" routine which is
120 * used to retrieve (and store) pages to the proper backing
121 * storage. In addition, objects may be backed by other
122 * objects from which they were virtual-copied.
124 * The only items within the object structure which are
125 * modified after time of creation are:
126 * reference count locked by object's lock
127 * pager routine locked by object's lock
131 struct vm_object kernel_object;
133 static long vm_object_count;
135 static long object_collapses;
136 static long object_bypasses;
137 static vm_zone_t obj_zone;
138 static struct vm_zone obj_zone_store;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
142 struct object_q vm_object_lists[VMOBJ_HSIZE];
143 struct lwkt_token vmobj_tokens[VMOBJ_HSIZE];
145 #if defined(DEBUG_LOCKS)
147 #define vm_object_vndeallocate(obj, vpp) \
148 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
151 * Debug helper to track hold/drop/ref/deallocate calls.
153 static void
154 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
156 int i;
158 i = atomic_fetchadd_int(&obj->debug_index, 1);
159 i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
160 ksnprintf(obj->debug_hold_thrs[i],
161 sizeof(obj->debug_hold_thrs[i]),
162 "%c%d:(%d):%s",
163 (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
164 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
165 obj->ref_count,
166 curthread->td_comm);
167 obj->debug_hold_file[i] = file;
168 obj->debug_hold_line[i] = line;
169 #if 0
170 /* Uncomment for debugging obj refs/derefs in reproducable cases */
171 if (strcmp(curthread->td_comm, "sshd") == 0) {
172 kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
173 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
174 obj, obj->ref_count, addrem, file, line);
176 #endif
179 #endif
182 * Misc low level routines
184 static void
185 vm_object_lock_init(vm_object_t obj)
187 #if defined(DEBUG_LOCKS)
188 int i;
190 obj->debug_index = 0;
191 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
192 obj->debug_hold_thrs[i][0] = 0;
193 obj->debug_hold_file[i] = NULL;
194 obj->debug_hold_line[i] = 0;
196 #endif
199 void
200 vm_object_lock_swap(void)
202 lwkt_token_swap();
205 void
206 vm_object_lock(vm_object_t obj)
208 lwkt_gettoken(&obj->token);
212 * Returns TRUE on sucesss
214 static int
215 vm_object_lock_try(vm_object_t obj)
217 return(lwkt_trytoken(&obj->token));
220 void
221 vm_object_lock_shared(vm_object_t obj)
223 lwkt_gettoken_shared(&obj->token);
226 void
227 vm_object_unlock(vm_object_t obj)
229 lwkt_reltoken(&obj->token);
232 void
233 vm_object_upgrade(vm_object_t obj)
235 lwkt_reltoken(&obj->token);
236 lwkt_gettoken(&obj->token);
239 void
240 vm_object_downgrade(vm_object_t obj)
242 lwkt_reltoken(&obj->token);
243 lwkt_gettoken_shared(&obj->token);
246 static __inline void
247 vm_object_assert_held(vm_object_t obj)
249 ASSERT_LWKT_TOKEN_HELD(&obj->token);
252 static __inline int
253 vm_quickcolor(void)
255 globaldata_t gd = mycpu;
256 int pg_color;
258 pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
259 pg_color += gd->gd_quick_color;
260 gd->gd_quick_color += PQ_PRIME2;
262 return pg_color;
265 void
266 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
268 KKASSERT(obj != NULL);
271 * Object must be held (object allocation is stable due to callers
272 * context, typically already holding the token on a parent object)
273 * prior to potentially blocking on the lock, otherwise the object
274 * can get ripped away from us.
276 refcount_acquire(&obj->hold_count);
277 vm_object_lock(obj);
279 #if defined(DEBUG_LOCKS)
280 debugvm_object_add(obj, file, line, 1);
281 #endif
285 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
287 KKASSERT(obj != NULL);
290 * Object must be held (object allocation is stable due to callers
291 * context, typically already holding the token on a parent object)
292 * prior to potentially blocking on the lock, otherwise the object
293 * can get ripped away from us.
295 refcount_acquire(&obj->hold_count);
296 if (vm_object_lock_try(obj) == 0) {
297 if (refcount_release(&obj->hold_count)) {
298 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
299 zfree(obj_zone, obj);
301 return(0);
304 #if defined(DEBUG_LOCKS)
305 debugvm_object_add(obj, file, line, 1);
306 #endif
307 return(1);
310 void
311 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
313 KKASSERT(obj != NULL);
316 * Object must be held (object allocation is stable due to callers
317 * context, typically already holding the token on a parent object)
318 * prior to potentially blocking on the lock, otherwise the object
319 * can get ripped away from us.
321 refcount_acquire(&obj->hold_count);
322 vm_object_lock_shared(obj);
324 #if defined(DEBUG_LOCKS)
325 debugvm_object_add(obj, file, line, 1);
326 #endif
330 * Drop the token and hold_count on the object.
332 * WARNING! Token might be shared.
334 void
335 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
337 if (obj == NULL)
338 return;
341 * No new holders should be possible once we drop hold_count 1->0 as
342 * there is no longer any way to reference the object.
344 KKASSERT(obj->hold_count > 0);
345 if (refcount_release(&obj->hold_count)) {
346 #if defined(DEBUG_LOCKS)
347 debugvm_object_add(obj, file, line, -1);
348 #endif
350 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
351 vm_object_unlock(obj);
352 zfree(obj_zone, obj);
353 } else {
354 vm_object_unlock(obj);
356 } else {
357 #if defined(DEBUG_LOCKS)
358 debugvm_object_add(obj, file, line, -1);
359 #endif
360 vm_object_unlock(obj);
365 * Initialize a freshly allocated object, returning a held object.
367 * Used only by vm_object_allocate() and zinitna().
369 * No requirements.
371 void
372 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
374 int n;
376 RB_INIT(&object->rb_memq);
377 LIST_INIT(&object->shadow_head);
378 lwkt_token_init(&object->token, "vmobj");
380 object->type = type;
381 object->size = size;
382 object->ref_count = 1;
383 object->memattr = VM_MEMATTR_DEFAULT;
384 object->hold_count = 0;
385 object->flags = 0;
386 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
387 vm_object_set_flag(object, OBJ_ONEMAPPING);
388 object->paging_in_progress = 0;
389 object->resident_page_count = 0;
390 object->agg_pv_list_count = 0;
391 object->shadow_count = 0;
392 /* cpu localization twist */
393 object->pg_color = vm_quickcolor();
394 object->handle = NULL;
395 object->backing_object = NULL;
396 object->backing_object_offset = (vm_ooffset_t)0;
398 object->generation++;
399 object->swblock_count = 0;
400 RB_INIT(&object->swblock_root);
401 vm_object_lock_init(object);
402 pmap_object_init(object);
404 vm_object_hold(object);
406 n = VMOBJ_HASH(object);
407 atomic_add_long(&vm_object_count, 1);
408 lwkt_gettoken(&vmobj_tokens[n]);
409 TAILQ_INSERT_TAIL(&vm_object_lists[n], object, object_list);
410 lwkt_reltoken(&vmobj_tokens[n]);
414 * Initialize the VM objects module.
416 * Called from the low level boot code only.
418 void
419 vm_object_init(void)
421 int i;
423 for (i = 0; i < VMOBJ_HSIZE; ++i) {
424 TAILQ_INIT(&vm_object_lists[i]);
425 lwkt_token_init(&vmobj_tokens[i], "vmobjlst");
428 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
429 &kernel_object);
430 vm_object_drop(&kernel_object);
432 obj_zone = &obj_zone_store;
433 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
434 vm_objects_init, VM_OBJECTS_INIT);
437 void
438 vm_object_init2(void)
440 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
444 * Allocate and return a new object of the specified type and size.
446 * No requirements.
448 vm_object_t
449 vm_object_allocate(objtype_t type, vm_pindex_t size)
451 vm_object_t result;
453 result = (vm_object_t) zalloc(obj_zone);
455 _vm_object_allocate(type, size, result);
456 vm_object_drop(result);
458 return (result);
462 * This version returns a held object, allowing further atomic initialization
463 * of the object.
465 vm_object_t
466 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
468 vm_object_t result;
470 result = (vm_object_t) zalloc(obj_zone);
472 _vm_object_allocate(type, size, result);
474 return (result);
478 * Add an additional reference to a vm_object. The object must already be
479 * held. The original non-lock version is no longer supported. The object
480 * must NOT be chain locked by anyone at the time the reference is added.
482 * Referencing a chain-locked object can blow up the fairly sensitive
483 * ref_count and shadow_count tests in the deallocator. Most callers
484 * will call vm_object_chain_wait() prior to calling
485 * vm_object_reference_locked() to avoid the case.
487 * The object must be held, but may be held shared if desired (hence why
488 * we use an atomic op).
490 void
491 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
493 KKASSERT(object != NULL);
494 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
495 KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
496 atomic_add_int(&object->ref_count, 1);
497 if (object->type == OBJT_VNODE) {
498 vref(object->handle);
499 /* XXX what if the vnode is being destroyed? */
501 #if defined(DEBUG_LOCKS)
502 debugvm_object_add(object, file, line, 1);
503 #endif
507 * This version is only allowed for vnode objects.
509 void
510 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
512 KKASSERT(object->type == OBJT_VNODE);
513 atomic_add_int(&object->ref_count, 1);
514 vref(object->handle);
515 #if defined(DEBUG_LOCKS)
516 debugvm_object_add(object, file, line, 1);
517 #endif
521 * Object OBJ_CHAINLOCK lock handling.
523 * The caller can chain-lock backing objects recursively and then
524 * use vm_object_chain_release_all() to undo the whole chain.
526 * Chain locks are used to prevent collapses and are only applicable
527 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations
528 * on other object types are ignored. This is also important because
529 * it allows e.g. the vnode underlying a memory mapping to take concurrent
530 * faults.
532 * The object must usually be held on entry, though intermediate
533 * objects need not be held on release. The object must be held exclusively,
534 * NOT shared. Note that the prefault path checks the shared state and
535 * avoids using the chain functions.
537 void
538 vm_object_chain_wait(vm_object_t object, int shared)
540 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
541 for (;;) {
542 uint32_t chainlk = object->chainlk;
544 cpu_ccfence();
545 if (shared) {
546 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
547 tsleep_interlock(object, 0);
548 if (atomic_cmpset_int(&object->chainlk,
549 chainlk,
550 chainlk | CHAINLK_WAIT)) {
551 tsleep(object, PINTERLOCKED,
552 "objchns", 0);
554 /* retry */
555 } else {
556 break;
558 /* retry */
559 } else {
560 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
561 tsleep_interlock(object, 0);
562 if (atomic_cmpset_int(&object->chainlk,
563 chainlk,
564 chainlk | CHAINLK_WAIT))
566 tsleep(object, PINTERLOCKED,
567 "objchnx", 0);
569 /* retry */
570 } else {
571 if (atomic_cmpset_int(&object->chainlk,
572 chainlk,
573 chainlk & ~CHAINLK_WAIT))
575 if (chainlk & CHAINLK_WAIT)
576 wakeup(object);
577 break;
579 /* retry */
582 /* retry */
586 void
587 vm_object_chain_acquire(vm_object_t object, int shared)
589 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
590 return;
591 if (vm_shared_fault == 0)
592 shared = 0;
594 for (;;) {
595 uint32_t chainlk = object->chainlk;
597 cpu_ccfence();
598 if (shared) {
599 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
600 tsleep_interlock(object, 0);
601 if (atomic_cmpset_int(&object->chainlk,
602 chainlk,
603 chainlk | CHAINLK_WAIT)) {
604 tsleep(object, PINTERLOCKED,
605 "objchns", 0);
607 /* retry */
608 } else if (atomic_cmpset_int(&object->chainlk,
609 chainlk, chainlk + 1)) {
610 break;
612 /* retry */
613 } else {
614 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
615 tsleep_interlock(object, 0);
616 if (atomic_cmpset_int(&object->chainlk,
617 chainlk,
618 chainlk |
619 CHAINLK_WAIT |
620 CHAINLK_EXCLREQ)) {
621 tsleep(object, PINTERLOCKED,
622 "objchnx", 0);
624 /* retry */
625 } else {
626 if (atomic_cmpset_int(&object->chainlk,
627 chainlk,
628 (chainlk | CHAINLK_EXCL) &
629 ~(CHAINLK_EXCLREQ |
630 CHAINLK_WAIT))) {
631 if (chainlk & CHAINLK_WAIT)
632 wakeup(object);
633 break;
635 /* retry */
638 /* retry */
642 void
643 vm_object_chain_release(vm_object_t object)
645 /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
646 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
647 return;
648 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
649 for (;;) {
650 uint32_t chainlk = object->chainlk;
652 cpu_ccfence();
653 if (chainlk & CHAINLK_MASK) {
654 if ((chainlk & CHAINLK_MASK) == 1 &&
655 atomic_cmpset_int(&object->chainlk,
656 chainlk,
657 (chainlk - 1) & ~CHAINLK_WAIT)) {
658 if (chainlk & CHAINLK_WAIT)
659 wakeup(object);
660 break;
662 if ((chainlk & CHAINLK_MASK) > 1 &&
663 atomic_cmpset_int(&object->chainlk,
664 chainlk, chainlk - 1)) {
665 break;
667 /* retry */
668 } else {
669 KKASSERT(chainlk & CHAINLK_EXCL);
670 if (atomic_cmpset_int(&object->chainlk,
671 chainlk,
672 chainlk & ~(CHAINLK_EXCL |
673 CHAINLK_WAIT))) {
674 if (chainlk & CHAINLK_WAIT)
675 wakeup(object);
676 break;
683 * Release the chain from first_object through and including stopobj.
684 * The caller is typically holding the first and last object locked
685 * (shared or exclusive) to prevent destruction races.
687 * We release stopobj first as an optimization as this object is most
688 * likely to be shared across multiple processes.
690 void
691 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
693 vm_object_t backing_object;
694 vm_object_t object;
696 vm_object_chain_release(stopobj);
697 object = first_object;
699 while (object != stopobj) {
700 KKASSERT(object);
701 backing_object = object->backing_object;
702 vm_object_chain_release(object);
703 object = backing_object;
708 * Dereference an object and its underlying vnode. The object may be
709 * held shared. On return the object will remain held.
711 * This function may return a vnode in *vpp which the caller must release
712 * after the caller drops its own lock. If vpp is NULL, we assume that
713 * the caller was holding an exclusive lock on the object and we vrele()
714 * the vp ourselves.
716 static void
717 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
718 VMOBJDBARGS)
720 struct vnode *vp = (struct vnode *) object->handle;
722 KASSERT(object->type == OBJT_VNODE,
723 ("vm_object_vndeallocate: not a vnode object"));
724 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
725 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
726 #ifdef INVARIANTS
727 if (object->ref_count == 0) {
728 vprint("vm_object_vndeallocate", vp);
729 panic("vm_object_vndeallocate: bad object reference count");
731 #endif
732 for (;;) {
733 int count = object->ref_count;
734 cpu_ccfence();
735 if (count == 1) {
736 vm_object_upgrade(object);
737 if (atomic_cmpset_int(&object->ref_count, count, 0)) {
738 vclrflags(vp, VTEXT);
739 break;
741 } else {
742 if (atomic_cmpset_int(&object->ref_count,
743 count, count - 1)) {
744 break;
747 /* retry */
749 #if defined(DEBUG_LOCKS)
750 debugvm_object_add(object, file, line, -1);
751 #endif
754 * vrele or return the vp to vrele. We can only safely vrele(vp)
755 * if the object was locked exclusively. But there are two races
756 * here.
758 * We had to upgrade the object above to safely clear VTEXT
759 * but the alternative path where the shared lock is retained
760 * can STILL race to 0 in other paths and cause our own vrele()
761 * to terminate the vnode. We can't allow that if the VM object
762 * is still locked shared.
764 if (vpp)
765 *vpp = vp;
766 else
767 vrele(vp);
771 * Release a reference to the specified object, gained either through a
772 * vm_object_allocate or a vm_object_reference call. When all references
773 * are gone, storage associated with this object may be relinquished.
775 * The caller does not have to hold the object locked but must have control
776 * over the reference in question in order to guarantee that the object
777 * does not get ripped out from under us.
779 * XXX Currently all deallocations require an exclusive lock.
781 void
782 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
784 struct vnode *vp;
785 int count;
787 if (object == NULL)
788 return;
790 for (;;) {
791 count = object->ref_count;
792 cpu_ccfence();
795 * If decrementing the count enters into special handling
796 * territory (0, 1, or 2) we have to do it the hard way.
797 * Fortunate though, objects with only a few refs like this
798 * are not likely to be heavily contended anyway.
800 * For vnode objects we only care about 1->0 transitions.
802 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
803 #if defined(DEBUG_LOCKS)
804 debugvm_object_add(object, file, line, 0);
805 #endif
806 vm_object_hold(object);
807 vm_object_deallocate_locked(object);
808 vm_object_drop(object);
809 break;
813 * Try to decrement ref_count without acquiring a hold on
814 * the object. This is particularly important for the exec*()
815 * and exit*() code paths because the program binary may
816 * have a great deal of sharing and an exclusive lock will
817 * crowbar performance in those circumstances.
819 if (object->type == OBJT_VNODE) {
820 vp = (struct vnode *)object->handle;
821 if (atomic_cmpset_int(&object->ref_count,
822 count, count - 1)) {
823 #if defined(DEBUG_LOCKS)
824 debugvm_object_add(object, file, line, -1);
825 #endif
827 vrele(vp);
828 break;
830 /* retry */
831 } else {
832 if (atomic_cmpset_int(&object->ref_count,
833 count, count - 1)) {
834 #if defined(DEBUG_LOCKS)
835 debugvm_object_add(object, file, line, -1);
836 #endif
837 break;
839 /* retry */
841 /* retry */
845 void
846 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
848 struct vm_object_dealloc_list *dlist = NULL;
849 struct vm_object_dealloc_list *dtmp;
850 vm_object_t temp;
851 int must_drop = 0;
854 * We may chain deallocate object, but additional objects may
855 * collect on the dlist which also have to be deallocated. We
856 * must avoid a recursion, vm_object chains can get deep.
859 again:
860 while (object != NULL) {
862 * vnode case, caller either locked the object exclusively
863 * or this is a recursion with must_drop != 0 and the vnode
864 * object will be locked shared.
866 * If locked shared we have to drop the object before we can
867 * call vrele() or risk a shared/exclusive livelock.
869 if (object->type == OBJT_VNODE) {
870 ASSERT_LWKT_TOKEN_HELD(&object->token);
871 if (must_drop) {
872 struct vnode *tmp_vp;
874 vm_object_vndeallocate(object, &tmp_vp);
875 vm_object_drop(object);
876 must_drop = 0;
877 object = NULL;
878 vrele(tmp_vp);
879 } else {
880 vm_object_vndeallocate(object, NULL);
882 break;
884 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
887 * Normal case (object is locked exclusively)
889 if (object->ref_count == 0) {
890 panic("vm_object_deallocate: object deallocated "
891 "too many times: %d", object->type);
893 if (object->ref_count > 2) {
894 atomic_add_int(&object->ref_count, -1);
895 #if defined(DEBUG_LOCKS)
896 debugvm_object_add(object, file, line, -1);
897 #endif
898 break;
902 * Here on ref_count of one or two, which are special cases for
903 * objects.
905 * Nominal ref_count > 1 case if the second ref is not from
906 * a shadow.
908 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
910 if (object->ref_count == 2 && object->shadow_count == 0) {
911 if (object->type == OBJT_DEFAULT ||
912 object->type == OBJT_SWAP) {
913 vm_object_set_flag(object, OBJ_ONEMAPPING);
915 atomic_add_int(&object->ref_count, -1);
916 #if defined(DEBUG_LOCKS)
917 debugvm_object_add(object, file, line, -1);
918 #endif
919 break;
923 * If the second ref is from a shadow we chain along it
924 * upwards if object's handle is exhausted.
926 * We have to decrement object->ref_count before potentially
927 * collapsing the first shadow object or the collapse code
928 * will not be able to handle the degenerate case to remove
929 * object. However, if we do it too early the object can
930 * get ripped out from under us.
932 if (object->ref_count == 2 && object->shadow_count == 1 &&
933 object->handle == NULL && (object->type == OBJT_DEFAULT ||
934 object->type == OBJT_SWAP)) {
935 temp = LIST_FIRST(&object->shadow_head);
936 KKASSERT(temp != NULL);
937 vm_object_hold(temp);
940 * Wait for any paging to complete so the collapse
941 * doesn't (or isn't likely to) qcollapse. pip
942 * waiting must occur before we acquire the
943 * chainlock.
945 while (
946 temp->paging_in_progress ||
947 object->paging_in_progress
949 vm_object_pip_wait(temp, "objde1");
950 vm_object_pip_wait(object, "objde2");
954 * If the parent is locked we have to give up, as
955 * otherwise we would be acquiring locks in the
956 * wrong order and potentially deadlock.
958 if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
959 vm_object_drop(temp);
960 goto skip;
962 vm_object_chain_acquire(temp, 0);
965 * Recheck/retry after the hold and the paging
966 * wait, both of which can block us.
968 if (object->ref_count != 2 ||
969 object->shadow_count != 1 ||
970 object->handle ||
971 LIST_FIRST(&object->shadow_head) != temp ||
972 (object->type != OBJT_DEFAULT &&
973 object->type != OBJT_SWAP)) {
974 vm_object_chain_release(temp);
975 vm_object_drop(temp);
976 continue;
980 * We can safely drop object's ref_count now.
982 KKASSERT(object->ref_count == 2);
983 atomic_add_int(&object->ref_count, -1);
984 #if defined(DEBUG_LOCKS)
985 debugvm_object_add(object, file, line, -1);
986 #endif
989 * If our single parent is not collapseable just
990 * decrement ref_count (2->1) and stop.
992 if (temp->handle || (temp->type != OBJT_DEFAULT &&
993 temp->type != OBJT_SWAP)) {
994 vm_object_chain_release(temp);
995 vm_object_drop(temp);
996 break;
1000 * At this point we have already dropped object's
1001 * ref_count so it is possible for a race to
1002 * deallocate obj out from under us. Any collapse
1003 * will re-check the situation. We must not block
1004 * until we are able to collapse.
1006 * Bump temp's ref_count to avoid an unwanted
1007 * degenerate recursion (can't call
1008 * vm_object_reference_locked() because it asserts
1009 * that CHAINLOCK is not set).
1011 atomic_add_int(&temp->ref_count, 1);
1012 KKASSERT(temp->ref_count > 1);
1015 * Collapse temp, then deallocate the extra ref
1016 * formally.
1018 vm_object_collapse(temp, &dlist);
1019 vm_object_chain_release(temp);
1020 if (must_drop) {
1021 vm_object_lock_swap();
1022 vm_object_drop(object);
1024 object = temp;
1025 must_drop = 1;
1026 continue;
1030 * Drop the ref and handle termination on the 1->0 transition.
1031 * We may have blocked above so we have to recheck.
1033 skip:
1034 KKASSERT(object->ref_count != 0);
1035 if (object->ref_count >= 2) {
1036 atomic_add_int(&object->ref_count, -1);
1037 #if defined(DEBUG_LOCKS)
1038 debugvm_object_add(object, file, line, -1);
1039 #endif
1040 break;
1042 KKASSERT(object->ref_count == 1);
1045 * 1->0 transition. Chain through the backing_object.
1046 * Maintain the ref until we've located the backing object,
1047 * then re-check.
1049 while ((temp = object->backing_object) != NULL) {
1050 if (temp->type == OBJT_VNODE)
1051 vm_object_hold_shared(temp);
1052 else
1053 vm_object_hold(temp);
1054 if (temp == object->backing_object)
1055 break;
1056 vm_object_drop(temp);
1060 * 1->0 transition verified, retry if ref_count is no longer
1061 * 1. Otherwise disconnect the backing_object (temp) and
1062 * clean up.
1064 if (object->ref_count != 1) {
1065 vm_object_drop(temp);
1066 continue;
1070 * It shouldn't be possible for the object to be chain locked
1071 * if we're removing the last ref on it.
1073 * Removing object from temp's shadow list requires dropping
1074 * temp, which we will do on loop.
1076 * NOTE! vnodes do not use the shadow list, but still have
1077 * the backing_object reference.
1079 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1081 if (temp) {
1082 if (object->flags & OBJ_ONSHADOW) {
1083 LIST_REMOVE(object, shadow_list);
1084 temp->shadow_count--;
1085 temp->generation++;
1086 vm_object_clear_flag(object, OBJ_ONSHADOW);
1088 object->backing_object = NULL;
1091 atomic_add_int(&object->ref_count, -1);
1092 if ((object->flags & OBJ_DEAD) == 0)
1093 vm_object_terminate(object);
1094 if (must_drop && temp)
1095 vm_object_lock_swap();
1096 if (must_drop)
1097 vm_object_drop(object);
1098 object = temp;
1099 must_drop = 1;
1102 if (must_drop && object)
1103 vm_object_drop(object);
1106 * Additional tail recursion on dlist. Avoid a recursion. Objects
1107 * on the dlist have a hold count but are not locked.
1109 if ((dtmp = dlist) != NULL) {
1110 dlist = dtmp->next;
1111 object = dtmp->object;
1112 kfree(dtmp, M_TEMP);
1114 vm_object_lock(object); /* already held, add lock */
1115 must_drop = 1; /* and we're responsible for it */
1116 goto again;
1121 * Destroy the specified object, freeing up related resources.
1123 * The object must have zero references.
1125 * The object must held. The caller is responsible for dropping the object
1126 * after terminate returns. Terminate does NOT drop the object.
1128 static int vm_object_terminate_callback(vm_page_t p, void *data);
1130 void
1131 vm_object_terminate(vm_object_t object)
1133 struct rb_vm_page_scan_info info;
1134 int n;
1137 * Make sure no one uses us. Once we set OBJ_DEAD we should be
1138 * able to safely block.
1140 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1141 KKASSERT((object->flags & OBJ_DEAD) == 0);
1142 vm_object_set_flag(object, OBJ_DEAD);
1145 * Wait for the pageout daemon to be done with the object
1147 vm_object_pip_wait(object, "objtrm1");
1149 KASSERT(!object->paging_in_progress,
1150 ("vm_object_terminate: pageout in progress"));
1153 * Clean and free the pages, as appropriate. All references to the
1154 * object are gone, so we don't need to lock it.
1156 if (object->type == OBJT_VNODE) {
1157 struct vnode *vp;
1160 * Clean pages and flush buffers.
1162 * NOTE! TMPFS buffer flushes do not typically flush the
1163 * actual page to swap as this would be highly
1164 * inefficient, and normal filesystems usually wrap
1165 * page flushes with buffer cache buffers.
1167 * To deal with this we have to call vinvalbuf() both
1168 * before and after the vm_object_page_clean().
1170 vp = (struct vnode *) object->handle;
1171 vinvalbuf(vp, V_SAVE, 0, 0);
1172 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1173 vinvalbuf(vp, V_SAVE, 0, 0);
1177 * Wait for any I/O to complete, after which there had better not
1178 * be any references left on the object.
1180 vm_object_pip_wait(object, "objtrm2");
1182 if (object->ref_count != 0) {
1183 panic("vm_object_terminate: object with references, "
1184 "ref_count=%d", object->ref_count);
1188 * Cleanup any shared pmaps associated with this object.
1190 pmap_object_free(object);
1193 * Now free any remaining pages. For internal objects, this also
1194 * removes them from paging queues. Don't free wired pages, just
1195 * remove them from the object.
1197 info.count = 0;
1198 info.object = object;
1199 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1200 vm_object_terminate_callback, &info);
1203 * Let the pager know object is dead.
1205 vm_pager_deallocate(object);
1208 * Wait for the object hold count to hit 1, clean out pages as
1209 * we go. vmobj_token interlocks any race conditions that might
1210 * pick the object up from the vm_object_list after we have cleared
1211 * rb_memq.
1213 for (;;) {
1214 if (RB_ROOT(&object->rb_memq) == NULL)
1215 break;
1216 kprintf("vm_object_terminate: Warning, object %p "
1217 "still has %d pages\n",
1218 object, object->resident_page_count);
1219 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1220 vm_object_terminate_callback, &info);
1224 * There had better not be any pages left
1226 KKASSERT(object->resident_page_count == 0);
1229 * Remove the object from the global object list.
1231 n = VMOBJ_HASH(object);
1232 lwkt_gettoken(&vmobj_tokens[n]);
1233 TAILQ_REMOVE(&vm_object_lists[n], object, object_list);
1234 lwkt_reltoken(&vmobj_tokens[n]);
1235 atomic_add_long(&vm_object_count, -1);
1237 if (object->ref_count != 0) {
1238 panic("vm_object_terminate2: object with references, "
1239 "ref_count=%d", object->ref_count);
1243 * NOTE: The object hold_count is at least 1, so we cannot zfree()
1244 * the object here. See vm_object_drop().
1249 * The caller must hold the object.
1251 static int
1252 vm_object_terminate_callback(vm_page_t p, void *data)
1254 struct rb_vm_page_scan_info *info = data;
1255 vm_object_t object;
1257 if ((++info->count & 63) == 0)
1258 lwkt_user_yield();
1259 object = p->object;
1260 if (object != info->object) {
1261 kprintf("vm_object_terminate_callback: obj/pg race %p/%p\n",
1262 info->object, p);
1263 return(0);
1265 vm_page_busy_wait(p, TRUE, "vmpgtrm");
1266 if (object != p->object) {
1267 kprintf("vm_object_terminate: Warning: Encountered "
1268 "busied page %p on queue %d\n", p, p->queue);
1269 vm_page_wakeup(p);
1270 } else if (p->wire_count == 0) {
1272 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1274 vm_page_free(p);
1275 mycpu->gd_cnt.v_pfree++;
1276 } else {
1277 if (p->queue != PQ_NONE)
1278 kprintf("vm_object_terminate: Warning: Encountered "
1279 "wired page %p on queue %d\n", p, p->queue);
1280 vm_page_remove(p);
1281 vm_page_wakeup(p);
1283 return(0);
1287 * Clean all dirty pages in the specified range of object. Leaves page
1288 * on whatever queue it is currently on. If NOSYNC is set then do not
1289 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1290 * leaving the object dirty.
1292 * When stuffing pages asynchronously, allow clustering. XXX we need a
1293 * synchronous clustering mode implementation.
1295 * Odd semantics: if start == end, we clean everything.
1297 * The object must be locked? XXX
1299 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1300 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1302 void
1303 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1304 int flags)
1306 struct rb_vm_page_scan_info info;
1307 struct vnode *vp;
1308 int wholescan;
1309 int pagerflags;
1310 int generation;
1312 vm_object_hold(object);
1313 if (object->type != OBJT_VNODE ||
1314 (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1315 vm_object_drop(object);
1316 return;
1319 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1320 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1321 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1323 vp = object->handle;
1326 * Interlock other major object operations. This allows us to
1327 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1329 vm_object_set_flag(object, OBJ_CLEANING);
1332 * Handle 'entire object' case
1334 info.start_pindex = start;
1335 if (end == 0) {
1336 info.end_pindex = object->size - 1;
1337 } else {
1338 info.end_pindex = end - 1;
1340 wholescan = (start == 0 && info.end_pindex == object->size - 1);
1341 info.limit = flags;
1342 info.pagerflags = pagerflags;
1343 info.object = object;
1344 info.count = 0;
1347 * If cleaning the entire object do a pass to mark the pages read-only.
1348 * If everything worked out ok, clear OBJ_WRITEABLE and
1349 * OBJ_MIGHTBEDIRTY.
1351 if (wholescan) {
1352 info.error = 0;
1353 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1354 vm_object_page_clean_pass1, &info);
1355 if (info.error == 0) {
1356 vm_object_clear_flag(object,
1357 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1358 if (object->type == OBJT_VNODE &&
1359 (vp = (struct vnode *)object->handle) != NULL) {
1361 * Use new-style interface to clear VISDIRTY
1362 * because the vnode is not necessarily removed
1363 * from the syncer list(s) as often as it was
1364 * under the old interface, which can leave
1365 * the vnode on the syncer list after reclaim.
1367 vclrobjdirty(vp);
1373 * Do a pass to clean all the dirty pages we find.
1375 do {
1376 info.error = 0;
1377 generation = object->generation;
1378 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1379 vm_object_page_clean_pass2, &info);
1380 } while (info.error || generation != object->generation);
1382 vm_object_clear_flag(object, OBJ_CLEANING);
1383 vm_object_drop(object);
1387 * The caller must hold the object.
1389 static
1391 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1393 struct rb_vm_page_scan_info *info = data;
1395 if ((++info->count & 63) == 0)
1396 lwkt_user_yield();
1397 if (p->object != info->object ||
1398 p->pindex < info->start_pindex ||
1399 p->pindex > info->end_pindex) {
1400 kprintf("vm_object_page_clean_pass1: obj/pg race %p/%p\n",
1401 info->object, p);
1402 return(0);
1404 vm_page_flag_set(p, PG_CLEANCHK);
1405 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1406 info->error = 1;
1407 } else if (vm_page_busy_try(p, FALSE) == 0) {
1408 if (p->object == info->object)
1409 vm_page_protect(p, VM_PROT_READ);
1410 vm_page_wakeup(p);
1411 } else {
1412 info->error = 1;
1414 return(0);
1418 * The caller must hold the object
1420 static
1422 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1424 struct rb_vm_page_scan_info *info = data;
1425 int generation;
1427 if (p->object != info->object ||
1428 p->pindex < info->start_pindex ||
1429 p->pindex > info->end_pindex) {
1430 kprintf("vm_object_page_clean_pass2: obj/pg race %p/%p\n",
1431 info->object, p);
1432 return(0);
1436 * Do not mess with pages that were inserted after we started
1437 * the cleaning pass.
1439 if ((p->flags & PG_CLEANCHK) == 0)
1440 goto done;
1442 generation = info->object->generation;
1443 vm_page_busy_wait(p, TRUE, "vpcwai");
1445 if (p->object != info->object ||
1446 p->pindex < info->start_pindex ||
1447 p->pindex > info->end_pindex ||
1448 info->object->generation != generation) {
1449 info->error = 1;
1450 vm_page_wakeup(p);
1451 goto done;
1455 * Before wasting time traversing the pmaps, check for trivial
1456 * cases where the page cannot be dirty.
1458 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1459 KKASSERT((p->dirty & p->valid) == 0 &&
1460 (p->flags & PG_NEED_COMMIT) == 0);
1461 vm_page_wakeup(p);
1462 goto done;
1466 * Check whether the page is dirty or not. The page has been set
1467 * to be read-only so the check will not race a user dirtying the
1468 * page.
1470 vm_page_test_dirty(p);
1471 if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1472 vm_page_flag_clear(p, PG_CLEANCHK);
1473 vm_page_wakeup(p);
1474 goto done;
1478 * If we have been asked to skip nosync pages and this is a
1479 * nosync page, skip it. Note that the object flags were
1480 * not cleared in this case (because pass1 will have returned an
1481 * error), so we do not have to set them.
1483 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1484 vm_page_flag_clear(p, PG_CLEANCHK);
1485 vm_page_wakeup(p);
1486 goto done;
1490 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
1491 * the pages that get successfully flushed. Set info->error if
1492 * we raced an object modification.
1494 vm_object_page_collect_flush(info->object, p, info->pagerflags);
1495 /* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1496 done:
1497 if ((++info->count & 63) == 0)
1498 lwkt_user_yield();
1500 return(0);
1504 * Collect the specified page and nearby pages and flush them out.
1505 * The number of pages flushed is returned. The passed page is busied
1506 * by the caller and we are responsible for its disposition.
1508 * The caller must hold the object.
1510 static void
1511 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1513 int error;
1514 int is;
1515 int ib;
1516 int i;
1517 int page_base;
1518 vm_pindex_t pi;
1519 vm_page_t ma[BLIST_MAX_ALLOC];
1521 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1523 pi = p->pindex;
1524 page_base = pi % BLIST_MAX_ALLOC;
1525 ma[page_base] = p;
1526 ib = page_base - 1;
1527 is = page_base + 1;
1529 while (ib >= 0) {
1530 vm_page_t tp;
1532 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1533 TRUE, &error);
1534 if (error)
1535 break;
1536 if (tp == NULL)
1537 break;
1538 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1539 (tp->flags & PG_CLEANCHK) == 0) {
1540 vm_page_wakeup(tp);
1541 break;
1543 if ((tp->queue - tp->pc) == PQ_CACHE) {
1544 vm_page_flag_clear(tp, PG_CLEANCHK);
1545 vm_page_wakeup(tp);
1546 break;
1548 vm_page_test_dirty(tp);
1549 if ((tp->dirty & tp->valid) == 0 &&
1550 (tp->flags & PG_NEED_COMMIT) == 0) {
1551 vm_page_flag_clear(tp, PG_CLEANCHK);
1552 vm_page_wakeup(tp);
1553 break;
1555 ma[ib] = tp;
1556 --ib;
1558 ++ib; /* fixup */
1560 while (is < BLIST_MAX_ALLOC &&
1561 pi - page_base + is < object->size) {
1562 vm_page_t tp;
1564 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1565 TRUE, &error);
1566 if (error)
1567 break;
1568 if (tp == NULL)
1569 break;
1570 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1571 (tp->flags & PG_CLEANCHK) == 0) {
1572 vm_page_wakeup(tp);
1573 break;
1575 if ((tp->queue - tp->pc) == PQ_CACHE) {
1576 vm_page_flag_clear(tp, PG_CLEANCHK);
1577 vm_page_wakeup(tp);
1578 break;
1580 vm_page_test_dirty(tp);
1581 if ((tp->dirty & tp->valid) == 0 &&
1582 (tp->flags & PG_NEED_COMMIT) == 0) {
1583 vm_page_flag_clear(tp, PG_CLEANCHK);
1584 vm_page_wakeup(tp);
1585 break;
1587 ma[is] = tp;
1588 ++is;
1592 * All pages in the ma[] array are busied now
1594 for (i = ib; i < is; ++i) {
1595 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1596 vm_page_hold(ma[i]); /* XXX need this any more? */
1598 vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1599 for (i = ib; i < is; ++i) /* XXX need this any more? */
1600 vm_page_unhold(ma[i]);
1604 * Same as vm_object_pmap_copy, except range checking really
1605 * works, and is meant for small sections of an object.
1607 * This code protects resident pages by making them read-only
1608 * and is typically called on a fork or split when a page
1609 * is converted to copy-on-write.
1611 * NOTE: If the page is already at VM_PROT_NONE, calling
1612 * vm_page_protect will have no effect.
1614 void
1615 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1617 vm_pindex_t idx;
1618 vm_page_t p;
1620 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1621 return;
1623 vm_object_hold(object);
1624 for (idx = start; idx < end; idx++) {
1625 p = vm_page_lookup(object, idx);
1626 if (p == NULL)
1627 continue;
1628 vm_page_protect(p, VM_PROT_READ);
1630 vm_object_drop(object);
1634 * Removes all physical pages in the specified object range from all
1635 * physical maps.
1637 * The object must *not* be locked.
1640 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1642 void
1643 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1645 struct rb_vm_page_scan_info info;
1647 if (object == NULL)
1648 return;
1649 info.start_pindex = start;
1650 info.end_pindex = end - 1;
1651 info.count = 0;
1652 info.object = object;
1654 vm_object_hold(object);
1655 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1656 vm_object_pmap_remove_callback, &info);
1657 if (start == 0 && end == object->size)
1658 vm_object_clear_flag(object, OBJ_WRITEABLE);
1659 vm_object_drop(object);
1663 * The caller must hold the object
1665 static int
1666 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1668 struct rb_vm_page_scan_info *info = data;
1670 if ((++info->count & 63) == 0)
1671 lwkt_user_yield();
1673 if (info->object != p->object ||
1674 p->pindex < info->start_pindex ||
1675 p->pindex > info->end_pindex) {
1676 kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1677 info->object, p);
1678 return(0);
1681 vm_page_protect(p, VM_PROT_NONE);
1683 return(0);
1687 * Implements the madvise function at the object/page level.
1689 * MADV_WILLNEED (any object)
1691 * Activate the specified pages if they are resident.
1693 * MADV_DONTNEED (any object)
1695 * Deactivate the specified pages if they are resident.
1697 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1699 * Deactivate and clean the specified pages if they are
1700 * resident. This permits the process to reuse the pages
1701 * without faulting or the kernel to reclaim the pages
1702 * without I/O.
1704 * No requirements.
1706 void
1707 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1709 vm_pindex_t end, tpindex;
1710 vm_object_t tobject;
1711 vm_object_t xobj;
1712 vm_page_t m;
1713 int error;
1715 if (object == NULL)
1716 return;
1718 end = pindex + count;
1720 vm_object_hold(object);
1721 tobject = object;
1724 * Locate and adjust resident pages
1726 for (; pindex < end; pindex += 1) {
1727 relookup:
1728 if (tobject != object)
1729 vm_object_drop(tobject);
1730 tobject = object;
1731 tpindex = pindex;
1732 shadowlookup:
1734 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1735 * and those pages must be OBJ_ONEMAPPING.
1737 if (advise == MADV_FREE) {
1738 if ((tobject->type != OBJT_DEFAULT &&
1739 tobject->type != OBJT_SWAP) ||
1740 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1741 continue;
1745 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1747 if (error) {
1748 vm_page_sleep_busy(m, TRUE, "madvpo");
1749 goto relookup;
1751 if (m == NULL) {
1753 * There may be swap even if there is no backing page
1755 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1756 swap_pager_freespace(tobject, tpindex, 1);
1759 * next object
1761 while ((xobj = tobject->backing_object) != NULL) {
1762 KKASSERT(xobj != object);
1763 vm_object_hold(xobj);
1764 if (xobj == tobject->backing_object)
1765 break;
1766 vm_object_drop(xobj);
1768 if (xobj == NULL)
1769 continue;
1770 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1771 if (tobject != object) {
1772 vm_object_lock_swap();
1773 vm_object_drop(tobject);
1775 tobject = xobj;
1776 goto shadowlookup;
1780 * If the page is not in a normal active state, we skip it.
1781 * If the page is not managed there are no page queues to
1782 * mess with. Things can break if we mess with pages in
1783 * any of the below states.
1785 if (m->wire_count ||
1786 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1787 m->valid != VM_PAGE_BITS_ALL
1789 vm_page_wakeup(m);
1790 continue;
1794 * Theoretically once a page is known not to be busy, an
1795 * interrupt cannot come along and rip it out from under us.
1798 if (advise == MADV_WILLNEED) {
1799 vm_page_activate(m);
1800 } else if (advise == MADV_DONTNEED) {
1801 vm_page_dontneed(m);
1802 } else if (advise == MADV_FREE) {
1804 * Mark the page clean. This will allow the page
1805 * to be freed up by the system. However, such pages
1806 * are often reused quickly by malloc()/free()
1807 * so we do not do anything that would cause
1808 * a page fault if we can help it.
1810 * Specifically, we do not try to actually free
1811 * the page now nor do we try to put it in the
1812 * cache (which would cause a page fault on reuse).
1814 * But we do make the page is freeable as we
1815 * can without actually taking the step of unmapping
1816 * it.
1818 pmap_clear_modify(m);
1819 m->dirty = 0;
1820 m->act_count = 0;
1821 vm_page_dontneed(m);
1822 if (tobject->type == OBJT_SWAP)
1823 swap_pager_freespace(tobject, tpindex, 1);
1825 vm_page_wakeup(m);
1827 if (tobject != object)
1828 vm_object_drop(tobject);
1829 vm_object_drop(object);
1833 * Create a new object which is backed by the specified existing object
1834 * range. Replace the pointer and offset that was pointing at the existing
1835 * object with the pointer/offset for the new object.
1837 * If addref is non-zero the returned object is given an additional reference.
1838 * This mechanic exists to avoid the situation where refs might be 1 and
1839 * race against a collapse when the caller intends to bump it. So the
1840 * caller cannot add the ref after the fact. Used when the caller is
1841 * duplicating a vm_map_entry.
1843 * No other requirements.
1845 void
1846 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1847 int addref)
1849 vm_object_t source;
1850 vm_object_t result;
1851 int useshadowlist;
1853 source = *objectp;
1856 * Don't create the new object if the old object isn't shared.
1857 * We have to chain wait before adding the reference to avoid
1858 * racing a collapse or deallocation.
1860 * Clear OBJ_ONEMAPPING flag when shadowing.
1862 * The caller owns a ref on source via *objectp which we are going
1863 * to replace. This ref is inherited by the backing_object assignment.
1864 * from nobject and does not need to be incremented here.
1866 * However, we add a temporary extra reference to the original source
1867 * prior to holding nobject in case we block, to avoid races where
1868 * someone else might believe that the source can be collapsed.
1870 useshadowlist = 0;
1871 if (source) {
1872 if (source->type != OBJT_VNODE) {
1873 useshadowlist = 1;
1874 vm_object_hold(source);
1875 vm_object_chain_wait(source, 0);
1876 if (source->ref_count == 1 &&
1877 source->handle == NULL &&
1878 (source->type == OBJT_DEFAULT ||
1879 source->type == OBJT_SWAP)) {
1880 if (addref) {
1881 vm_object_reference_locked(source);
1882 vm_object_clear_flag(source,
1883 OBJ_ONEMAPPING);
1885 vm_object_drop(source);
1886 return;
1888 vm_object_reference_locked(source);
1889 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1890 } else {
1891 vm_object_reference_quick(source);
1892 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1897 * Allocate a new object with the given length. The new object
1898 * is returned referenced but we may have to add another one.
1899 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1900 * (typically because the caller is about to clone a vm_map_entry).
1902 * The source object currently has an extra reference to prevent
1903 * collapses into it while we mess with its shadow list, which
1904 * we will remove later in this routine.
1906 * The target object may require a second reference if asked for one
1907 * by the caller.
1909 result = vm_object_allocate(OBJT_DEFAULT, length);
1910 if (result == NULL)
1911 panic("vm_object_shadow: no object for shadowing");
1912 vm_object_hold(result);
1913 if (addref) {
1914 vm_object_reference_locked(result);
1915 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1919 * The new object shadows the source object. Chain wait before
1920 * adjusting shadow_count or the shadow list to avoid races.
1922 * Try to optimize the result object's page color when shadowing
1923 * in order to maintain page coloring consistency in the combined
1924 * shadowed object.
1926 * The backing_object reference to source requires adding a ref to
1927 * source. We simply inherit the ref from the original *objectp
1928 * (which we are replacing) so no additional refs need to be added.
1929 * (we must still clean up the extra ref we had to prevent collapse
1930 * races).
1932 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1934 KKASSERT(result->backing_object == NULL);
1935 result->backing_object = source;
1936 if (source) {
1937 if (useshadowlist) {
1938 vm_object_chain_wait(source, 0);
1939 LIST_INSERT_HEAD(&source->shadow_head,
1940 result, shadow_list);
1941 source->shadow_count++;
1942 source->generation++;
1943 vm_object_set_flag(result, OBJ_ONSHADOW);
1945 /* cpu localization twist */
1946 result->pg_color = vm_quickcolor();
1950 * Adjust the return storage. Drop the ref on source before
1951 * returning.
1953 result->backing_object_offset = *offset;
1954 vm_object_drop(result);
1955 *offset = 0;
1956 if (source) {
1957 if (useshadowlist) {
1958 vm_object_deallocate_locked(source);
1959 vm_object_drop(source);
1960 } else {
1961 vm_object_deallocate(source);
1966 * Return the new things
1968 *objectp = result;
1971 #define OBSC_TEST_ALL_SHADOWED 0x0001
1972 #define OBSC_COLLAPSE_NOWAIT 0x0002
1973 #define OBSC_COLLAPSE_WAIT 0x0004
1975 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1978 * The caller must hold the object.
1980 static __inline int
1981 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1983 struct rb_vm_page_scan_info info;
1984 int n;
1986 vm_object_assert_held(object);
1987 vm_object_assert_held(backing_object);
1989 KKASSERT(backing_object == object->backing_object);
1990 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1993 * Initial conditions
1995 if (op & OBSC_TEST_ALL_SHADOWED) {
1997 * We do not want to have to test for the existence of
1998 * swap pages in the backing object. XXX but with the
1999 * new swapper this would be pretty easy to do.
2001 * XXX what about anonymous MAP_SHARED memory that hasn't
2002 * been ZFOD faulted yet? If we do not test for this, the
2003 * shadow test may succeed! XXX
2005 if (backing_object->type != OBJT_DEFAULT)
2006 return(0);
2008 if (op & OBSC_COLLAPSE_WAIT) {
2009 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
2010 vm_object_set_flag(backing_object, OBJ_DEAD);
2012 n = VMOBJ_HASH(backing_object);
2013 lwkt_gettoken(&vmobj_tokens[n]);
2014 TAILQ_REMOVE(&vm_object_lists[n], backing_object, object_list);
2015 lwkt_reltoken(&vmobj_tokens[n]);
2016 atomic_add_long(&vm_object_count, -1);
2020 * Our scan. We have to retry if a negative error code is returned,
2021 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
2022 * the scan had to be stopped because the parent does not completely
2023 * shadow the child.
2025 info.object = object;
2026 info.backing_object = backing_object;
2027 info.limit = op;
2028 do {
2029 info.error = 1;
2030 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2031 vm_object_backing_scan_callback,
2032 &info);
2033 } while (info.error < 0);
2035 return(info.error);
2039 * The caller must hold the object.
2041 static int
2042 vm_object_backing_scan_callback(vm_page_t p, void *data)
2044 struct rb_vm_page_scan_info *info = data;
2045 vm_object_t backing_object;
2046 vm_object_t object;
2047 vm_pindex_t pindex;
2048 vm_pindex_t new_pindex;
2049 vm_pindex_t backing_offset_index;
2050 int op;
2052 pindex = p->pindex;
2053 new_pindex = pindex - info->backing_offset_index;
2054 op = info->limit;
2055 object = info->object;
2056 backing_object = info->backing_object;
2057 backing_offset_index = info->backing_offset_index;
2059 if (op & OBSC_TEST_ALL_SHADOWED) {
2060 vm_page_t pp;
2063 * Ignore pages outside the parent object's range
2064 * and outside the parent object's mapping of the
2065 * backing object.
2067 * note that we do not busy the backing object's
2068 * page.
2070 if (pindex < backing_offset_index ||
2071 new_pindex >= object->size
2073 return(0);
2077 * See if the parent has the page or if the parent's
2078 * object pager has the page. If the parent has the
2079 * page but the page is not valid, the parent's
2080 * object pager must have the page.
2082 * If this fails, the parent does not completely shadow
2083 * the object and we might as well give up now.
2085 pp = vm_page_lookup(object, new_pindex);
2086 if ((pp == NULL || pp->valid == 0) &&
2087 !vm_pager_has_page(object, new_pindex)
2089 info->error = 0; /* problemo */
2090 return(-1); /* stop the scan */
2095 * Check for busy page. Note that we may have lost (p) when we
2096 * possibly blocked above.
2098 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2099 vm_page_t pp;
2101 if (vm_page_busy_try(p, TRUE)) {
2102 if (op & OBSC_COLLAPSE_NOWAIT) {
2103 return(0);
2104 } else {
2106 * If we slept, anything could have
2107 * happened. Ask that the scan be restarted.
2109 * Since the object is marked dead, the
2110 * backing offset should not have changed.
2112 vm_page_sleep_busy(p, TRUE, "vmocol");
2113 info->error = -1;
2114 return(-1);
2119 * If (p) is no longer valid restart the scan.
2121 if (p->object != backing_object || p->pindex != pindex) {
2122 kprintf("vm_object_backing_scan: Warning: page "
2123 "%p ripped out from under us\n", p);
2124 vm_page_wakeup(p);
2125 info->error = -1;
2126 return(-1);
2129 if (op & OBSC_COLLAPSE_NOWAIT) {
2130 if (p->valid == 0 ||
2131 p->wire_count ||
2132 (p->flags & PG_NEED_COMMIT)) {
2133 vm_page_wakeup(p);
2134 return(0);
2136 } else {
2137 /* XXX what if p->valid == 0 , hold_count, etc? */
2140 KASSERT(
2141 p->object == backing_object,
2142 ("vm_object_qcollapse(): object mismatch")
2146 * Destroy any associated swap
2148 if (backing_object->type == OBJT_SWAP)
2149 swap_pager_freespace(backing_object, p->pindex, 1);
2151 if (
2152 p->pindex < backing_offset_index ||
2153 new_pindex >= object->size
2156 * Page is out of the parent object's range, we
2157 * can simply destroy it.
2159 vm_page_protect(p, VM_PROT_NONE);
2160 vm_page_free(p);
2161 return(0);
2164 pp = vm_page_lookup(object, new_pindex);
2165 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2167 * page already exists in parent OR swap exists
2168 * for this location in the parent. Destroy
2169 * the original page from the backing object.
2171 * Leave the parent's page alone
2173 vm_page_protect(p, VM_PROT_NONE);
2174 vm_page_free(p);
2175 return(0);
2179 * Page does not exist in parent, rename the
2180 * page from the backing object to the main object.
2182 * If the page was mapped to a process, it can remain
2183 * mapped through the rename.
2185 if ((p->queue - p->pc) == PQ_CACHE)
2186 vm_page_deactivate(p);
2188 vm_page_rename(p, object, new_pindex);
2189 vm_page_wakeup(p);
2190 /* page automatically made dirty by rename */
2192 return(0);
2196 * This version of collapse allows the operation to occur earlier and
2197 * when paging_in_progress is true for an object... This is not a complete
2198 * operation, but should plug 99.9% of the rest of the leaks.
2200 * The caller must hold the object and backing_object and both must be
2201 * chainlocked.
2203 * (only called from vm_object_collapse)
2205 static void
2206 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2208 if (backing_object->ref_count == 1) {
2209 atomic_add_int(&backing_object->ref_count, 2);
2210 #if defined(DEBUG_LOCKS)
2211 debugvm_object_add(backing_object, "qcollapse", 1, 2);
2212 #endif
2213 vm_object_backing_scan(object, backing_object,
2214 OBSC_COLLAPSE_NOWAIT);
2215 atomic_add_int(&backing_object->ref_count, -2);
2216 #if defined(DEBUG_LOCKS)
2217 debugvm_object_add(backing_object, "qcollapse", 2, -2);
2218 #endif
2223 * Collapse an object with the object backing it. Pages in the backing
2224 * object are moved into the parent, and the backing object is deallocated.
2225 * Any conflict is resolved in favor of the parent's existing pages.
2227 * object must be held and chain-locked on call.
2229 * The caller must have an extra ref on object to prevent a race from
2230 * destroying it during the collapse.
2232 void
2233 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2235 struct vm_object_dealloc_list *dlist = NULL;
2236 vm_object_t backing_object;
2239 * Only one thread is attempting a collapse at any given moment.
2240 * There are few restrictions for (object) that callers of this
2241 * function check so reentrancy is likely.
2243 KKASSERT(object != NULL);
2244 vm_object_assert_held(object);
2245 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2247 for (;;) {
2248 vm_object_t bbobj;
2249 int dodealloc;
2252 * We can only collapse a DEFAULT/SWAP object with a
2253 * DEFAULT/SWAP object.
2255 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2256 backing_object = NULL;
2257 break;
2260 backing_object = object->backing_object;
2261 if (backing_object == NULL)
2262 break;
2263 if (backing_object->type != OBJT_DEFAULT &&
2264 backing_object->type != OBJT_SWAP) {
2265 backing_object = NULL;
2266 break;
2270 * Hold the backing_object and check for races
2272 vm_object_hold(backing_object);
2273 if (backing_object != object->backing_object ||
2274 (backing_object->type != OBJT_DEFAULT &&
2275 backing_object->type != OBJT_SWAP)) {
2276 vm_object_drop(backing_object);
2277 continue;
2281 * Chain-lock the backing object too because if we
2282 * successfully merge its pages into the top object we
2283 * will collapse backing_object->backing_object as the
2284 * new backing_object. Re-check that it is still our
2285 * backing object.
2287 vm_object_chain_acquire(backing_object, 0);
2288 if (backing_object != object->backing_object) {
2289 vm_object_chain_release(backing_object);
2290 vm_object_drop(backing_object);
2291 continue;
2295 * we check the backing object first, because it is most likely
2296 * not collapsable.
2298 if (backing_object->handle != NULL ||
2299 (backing_object->type != OBJT_DEFAULT &&
2300 backing_object->type != OBJT_SWAP) ||
2301 (backing_object->flags & OBJ_DEAD) ||
2302 object->handle != NULL ||
2303 (object->type != OBJT_DEFAULT &&
2304 object->type != OBJT_SWAP) ||
2305 (object->flags & OBJ_DEAD)) {
2306 break;
2310 * If paging is in progress we can't do a normal collapse.
2312 if (
2313 object->paging_in_progress != 0 ||
2314 backing_object->paging_in_progress != 0
2316 vm_object_qcollapse(object, backing_object);
2317 break;
2321 * We know that we can either collapse the backing object (if
2322 * the parent is the only reference to it) or (perhaps) have
2323 * the parent bypass the object if the parent happens to shadow
2324 * all the resident pages in the entire backing object.
2326 * This is ignoring pager-backed pages such as swap pages.
2327 * vm_object_backing_scan fails the shadowing test in this
2328 * case.
2330 if (backing_object->ref_count == 1) {
2332 * If there is exactly one reference to the backing
2333 * object, we can collapse it into the parent.
2335 KKASSERT(object->backing_object == backing_object);
2336 vm_object_backing_scan(object, backing_object,
2337 OBSC_COLLAPSE_WAIT);
2340 * Move the pager from backing_object to object.
2342 if (backing_object->type == OBJT_SWAP) {
2343 vm_object_pip_add(backing_object, 1);
2346 * scrap the paging_offset junk and do a
2347 * discrete copy. This also removes major
2348 * assumptions about how the swap-pager
2349 * works from where it doesn't belong. The
2350 * new swapper is able to optimize the
2351 * destroy-source case.
2353 vm_object_pip_add(object, 1);
2354 swap_pager_copy(backing_object, object,
2355 OFF_TO_IDX(object->backing_object_offset),
2356 TRUE);
2357 vm_object_pip_wakeup(object);
2358 vm_object_pip_wakeup(backing_object);
2362 * Object now shadows whatever backing_object did.
2363 * Remove object from backing_object's shadow_list.
2365 * Removing object from backing_objects shadow list
2366 * requires releasing object, which we will do below.
2368 KKASSERT(object->backing_object == backing_object);
2369 if (object->flags & OBJ_ONSHADOW) {
2370 LIST_REMOVE(object, shadow_list);
2371 backing_object->shadow_count--;
2372 backing_object->generation++;
2373 vm_object_clear_flag(object, OBJ_ONSHADOW);
2377 * backing_object->backing_object moves from within
2378 * backing_object to within object.
2380 * OBJT_VNODE bbobj's should have empty shadow lists.
2382 while ((bbobj = backing_object->backing_object) != NULL) {
2383 if (bbobj->type == OBJT_VNODE)
2384 vm_object_hold_shared(bbobj);
2385 else
2386 vm_object_hold(bbobj);
2387 if (bbobj == backing_object->backing_object)
2388 break;
2389 vm_object_drop(bbobj);
2393 * We are removing backing_object from bbobj's
2394 * shadow list and adding object to bbobj's shadow
2395 * list, so the ref_count on bbobj is unchanged.
2397 if (bbobj) {
2398 if (backing_object->flags & OBJ_ONSHADOW) {
2399 /* not locked exclusively if vnode */
2400 KKASSERT(bbobj->type != OBJT_VNODE);
2401 LIST_REMOVE(backing_object,
2402 shadow_list);
2403 bbobj->shadow_count--;
2404 bbobj->generation++;
2405 vm_object_clear_flag(backing_object,
2406 OBJ_ONSHADOW);
2408 backing_object->backing_object = NULL;
2410 object->backing_object = bbobj;
2411 if (bbobj) {
2412 if (bbobj->type != OBJT_VNODE) {
2413 LIST_INSERT_HEAD(&bbobj->shadow_head,
2414 object, shadow_list);
2415 bbobj->shadow_count++;
2416 bbobj->generation++;
2417 vm_object_set_flag(object,
2418 OBJ_ONSHADOW);
2422 object->backing_object_offset +=
2423 backing_object->backing_object_offset;
2425 vm_object_drop(bbobj);
2428 * Discard the old backing_object. Nothing should be
2429 * able to ref it, other than a vm_map_split(),
2430 * and vm_map_split() will stall on our chain lock.
2431 * And we control the parent so it shouldn't be
2432 * possible for it to go away either.
2434 * Since the backing object has no pages, no pager
2435 * left, and no object references within it, all
2436 * that is necessary is to dispose of it.
2438 KASSERT(backing_object->ref_count == 1,
2439 ("backing_object %p was somehow "
2440 "re-referenced during collapse!",
2441 backing_object));
2442 KASSERT(RB_EMPTY(&backing_object->rb_memq),
2443 ("backing_object %p somehow has left "
2444 "over pages during collapse!",
2445 backing_object));
2448 * The object can be destroyed.
2450 * XXX just fall through and dodealloc instead
2451 * of forcing destruction?
2453 atomic_add_int(&backing_object->ref_count, -1);
2454 #if defined(DEBUG_LOCKS)
2455 debugvm_object_add(backing_object, "collapse", 1, -1);
2456 #endif
2457 if ((backing_object->flags & OBJ_DEAD) == 0)
2458 vm_object_terminate(backing_object);
2459 object_collapses++;
2460 dodealloc = 0;
2461 } else {
2463 * If we do not entirely shadow the backing object,
2464 * there is nothing we can do so we give up.
2466 if (vm_object_backing_scan(object, backing_object,
2467 OBSC_TEST_ALL_SHADOWED) == 0) {
2468 break;
2472 * bbobj is backing_object->backing_object. Since
2473 * object completely shadows backing_object we can
2474 * bypass it and become backed by bbobj instead.
2476 * The shadow list for vnode backing objects is not
2477 * used and a shared hold is allowed.
2479 while ((bbobj = backing_object->backing_object) != NULL) {
2480 if (bbobj->type == OBJT_VNODE)
2481 vm_object_hold_shared(bbobj);
2482 else
2483 vm_object_hold(bbobj);
2484 if (bbobj == backing_object->backing_object)
2485 break;
2486 vm_object_drop(bbobj);
2490 * Make object shadow bbobj instead of backing_object.
2491 * Remove object from backing_object's shadow list.
2493 * Deallocating backing_object will not remove
2494 * it, since its reference count is at least 2.
2496 * Removing object from backing_object's shadow
2497 * list requires releasing a ref, which we do
2498 * below by setting dodealloc to 1.
2500 KKASSERT(object->backing_object == backing_object);
2501 if (object->flags & OBJ_ONSHADOW) {
2502 LIST_REMOVE(object, shadow_list);
2503 backing_object->shadow_count--;
2504 backing_object->generation++;
2505 vm_object_clear_flag(object, OBJ_ONSHADOW);
2509 * Add a ref to bbobj, bbobj now shadows object.
2511 * NOTE: backing_object->backing_object still points
2512 * to bbobj. That relationship remains intact
2513 * because backing_object has > 1 ref, so
2514 * someone else is pointing to it (hence why
2515 * we can't collapse it into object and can
2516 * only handle the all-shadowed bypass case).
2518 if (bbobj) {
2519 if (bbobj->type != OBJT_VNODE) {
2520 vm_object_chain_wait(bbobj, 0);
2521 vm_object_reference_locked(bbobj);
2522 LIST_INSERT_HEAD(&bbobj->shadow_head,
2523 object, shadow_list);
2524 bbobj->shadow_count++;
2525 bbobj->generation++;
2526 vm_object_set_flag(object,
2527 OBJ_ONSHADOW);
2528 } else {
2529 vm_object_reference_quick(bbobj);
2531 object->backing_object_offset +=
2532 backing_object->backing_object_offset;
2533 object->backing_object = bbobj;
2534 vm_object_drop(bbobj);
2535 } else {
2536 object->backing_object = NULL;
2540 * Drop the reference count on backing_object. To
2541 * handle ref_count races properly we can't assume
2542 * that the ref_count is still at least 2 so we
2543 * have to actually call vm_object_deallocate()
2544 * (after clearing the chainlock).
2546 object_bypasses++;
2547 dodealloc = 1;
2551 * Ok, we want to loop on the new object->bbobj association,
2552 * possibly collapsing it further. However if dodealloc is
2553 * non-zero we have to deallocate the backing_object which
2554 * itself can potentially undergo a collapse, creating a
2555 * recursion depth issue with the LWKT token subsystem.
2557 * In the case where we must deallocate the backing_object
2558 * it is possible now that the backing_object has a single
2559 * shadow count on some other object (not represented here
2560 * as yet), since it no longer shadows us. Thus when we
2561 * call vm_object_deallocate() it may attempt to collapse
2562 * itself into its remaining parent.
2564 if (dodealloc) {
2565 struct vm_object_dealloc_list *dtmp;
2567 vm_object_chain_release(backing_object);
2568 vm_object_unlock(backing_object);
2569 /* backing_object remains held */
2572 * Auto-deallocation list for caller convenience.
2574 if (dlistp == NULL)
2575 dlistp = &dlist;
2577 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2578 dtmp->object = backing_object;
2579 dtmp->next = *dlistp;
2580 *dlistp = dtmp;
2581 } else {
2582 vm_object_chain_release(backing_object);
2583 vm_object_drop(backing_object);
2585 /* backing_object = NULL; not needed */
2586 /* loop */
2590 * Clean up any left over backing_object
2592 if (backing_object) {
2593 vm_object_chain_release(backing_object);
2594 vm_object_drop(backing_object);
2598 * Clean up any auto-deallocation list. This is a convenience
2599 * for top-level callers so they don't have to pass &dlist.
2600 * Do not clean up any caller-passed dlistp, the caller will
2601 * do that.
2603 if (dlist)
2604 vm_object_deallocate_list(&dlist);
2609 * vm_object_collapse() may collect additional objects in need of
2610 * deallocation. This routine deallocates these objects. The
2611 * deallocation itself can trigger additional collapses (which the
2612 * deallocate function takes care of). This procedure is used to
2613 * reduce procedural recursion since these vm_object shadow chains
2614 * can become quite long.
2616 void
2617 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2619 struct vm_object_dealloc_list *dlist;
2621 while ((dlist = *dlistp) != NULL) {
2622 *dlistp = dlist->next;
2623 vm_object_lock(dlist->object);
2624 vm_object_deallocate_locked(dlist->object);
2625 vm_object_drop(dlist->object);
2626 kfree(dlist, M_TEMP);
2631 * Removes all physical pages in the specified object range from the
2632 * object's list of pages.
2634 * No requirements.
2636 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2638 void
2639 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2640 boolean_t clean_only)
2642 struct rb_vm_page_scan_info info;
2643 int all;
2646 * Degenerate cases and assertions
2648 vm_object_hold(object);
2649 if (object == NULL ||
2650 (object->resident_page_count == 0 && object->swblock_count == 0)) {
2651 vm_object_drop(object);
2652 return;
2654 KASSERT(object->type != OBJT_PHYS,
2655 ("attempt to remove pages from a physical object"));
2658 * Indicate that paging is occuring on the object
2660 vm_object_pip_add(object, 1);
2663 * Figure out the actual removal range and whether we are removing
2664 * the entire contents of the object or not. If removing the entire
2665 * contents, be sure to get all pages, even those that might be
2666 * beyond the end of the object.
2668 info.object = object;
2669 info.start_pindex = start;
2670 if (end == 0)
2671 info.end_pindex = (vm_pindex_t)-1;
2672 else
2673 info.end_pindex = end - 1;
2674 info.limit = clean_only;
2675 all = (start == 0 && info.end_pindex >= object->size - 1);
2678 * Loop until we are sure we have gotten them all.
2680 do {
2681 info.error = 0;
2682 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2683 vm_object_page_remove_callback, &info);
2684 } while (info.error);
2687 * Remove any related swap if throwing away pages, or for
2688 * non-swap objects (the swap is a clean copy in that case).
2690 if (object->type != OBJT_SWAP || clean_only == FALSE) {
2691 if (all)
2692 swap_pager_freespace_all(object);
2693 else
2694 swap_pager_freespace(object, info.start_pindex,
2695 info.end_pindex - info.start_pindex + 1);
2699 * Cleanup
2701 vm_object_pip_wakeup(object);
2702 vm_object_drop(object);
2706 * The caller must hold the object
2708 static int
2709 vm_object_page_remove_callback(vm_page_t p, void *data)
2711 struct rb_vm_page_scan_info *info = data;
2713 if ((++info->count & 63) == 0)
2714 lwkt_user_yield();
2716 if (info->object != p->object ||
2717 p->pindex < info->start_pindex ||
2718 p->pindex > info->end_pindex) {
2719 kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2720 info->object, p);
2721 return(0);
2723 if (vm_page_busy_try(p, TRUE)) {
2724 vm_page_sleep_busy(p, TRUE, "vmopar");
2725 info->error = 1;
2726 return(0);
2728 if (info->object != p->object) {
2729 /* this should never happen */
2730 kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2731 info->object, p);
2732 vm_page_wakeup(p);
2733 return(0);
2737 * Wired pages cannot be destroyed, but they can be invalidated
2738 * and we do so if clean_only (limit) is not set.
2740 * WARNING! The page may be wired due to being part of a buffer
2741 * cache buffer, and the buffer might be marked B_CACHE.
2742 * This is fine as part of a truncation but VFSs must be
2743 * sure to fix the buffer up when re-extending the file.
2745 * NOTE! PG_NEED_COMMIT is ignored.
2747 if (p->wire_count != 0) {
2748 vm_page_protect(p, VM_PROT_NONE);
2749 if (info->limit == 0)
2750 p->valid = 0;
2751 vm_page_wakeup(p);
2752 return(0);
2756 * limit is our clean_only flag. If set and the page is dirty or
2757 * requires a commit, do not free it. If set and the page is being
2758 * held by someone, do not free it.
2760 if (info->limit && p->valid) {
2761 vm_page_test_dirty(p);
2762 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2763 vm_page_wakeup(p);
2764 return(0);
2769 * Destroy the page
2771 vm_page_protect(p, VM_PROT_NONE);
2772 vm_page_free(p);
2774 return(0);
2778 * Coalesces two objects backing up adjoining regions of memory into a
2779 * single object.
2781 * returns TRUE if objects were combined.
2783 * NOTE: Only works at the moment if the second object is NULL -
2784 * if it's not, which object do we lock first?
2786 * Parameters:
2787 * prev_object First object to coalesce
2788 * prev_offset Offset into prev_object
2789 * next_object Second object into coalesce
2790 * next_offset Offset into next_object
2792 * prev_size Size of reference to prev_object
2793 * next_size Size of reference to next_object
2795 * The caller does not need to hold (prev_object) but must have a stable
2796 * pointer to it (typically by holding the vm_map locked).
2798 boolean_t
2799 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2800 vm_size_t prev_size, vm_size_t next_size)
2802 vm_pindex_t next_pindex;
2804 if (prev_object == NULL)
2805 return (TRUE);
2807 vm_object_hold(prev_object);
2809 if (prev_object->type != OBJT_DEFAULT &&
2810 prev_object->type != OBJT_SWAP) {
2811 vm_object_drop(prev_object);
2812 return (FALSE);
2816 * Try to collapse the object first
2818 vm_object_chain_acquire(prev_object, 0);
2819 vm_object_collapse(prev_object, NULL);
2822 * Can't coalesce if: . more than one reference . paged out . shadows
2823 * another object . has a copy elsewhere (any of which mean that the
2824 * pages not mapped to prev_entry may be in use anyway)
2827 if (prev_object->backing_object != NULL) {
2828 vm_object_chain_release(prev_object);
2829 vm_object_drop(prev_object);
2830 return (FALSE);
2833 prev_size >>= PAGE_SHIFT;
2834 next_size >>= PAGE_SHIFT;
2835 next_pindex = prev_pindex + prev_size;
2837 if ((prev_object->ref_count > 1) &&
2838 (prev_object->size != next_pindex)) {
2839 vm_object_chain_release(prev_object);
2840 vm_object_drop(prev_object);
2841 return (FALSE);
2845 * Remove any pages that may still be in the object from a previous
2846 * deallocation.
2848 if (next_pindex < prev_object->size) {
2849 vm_object_page_remove(prev_object,
2850 next_pindex,
2851 next_pindex + next_size, FALSE);
2852 if (prev_object->type == OBJT_SWAP)
2853 swap_pager_freespace(prev_object,
2854 next_pindex, next_size);
2858 * Extend the object if necessary.
2860 if (next_pindex + next_size > prev_object->size)
2861 prev_object->size = next_pindex + next_size;
2863 vm_object_chain_release(prev_object);
2864 vm_object_drop(prev_object);
2865 return (TRUE);
2869 * Make the object writable and flag is being possibly dirty.
2871 * The object might not be held (or might be held but held shared),
2872 * the related vnode is probably not held either. Object and vnode are
2873 * stable by virtue of the vm_page busied by the caller preventing
2874 * destruction.
2876 * If the related mount is flagged MNTK_THR_SYNC we need to call
2877 * vsetobjdirty(). Filesystems using this option usually shortcut
2878 * synchronization by only scanning the syncer list.
2880 void
2881 vm_object_set_writeable_dirty(vm_object_t object)
2883 struct vnode *vp;
2885 /*vm_object_assert_held(object);*/
2887 * Avoid contention in vm fault path by checking the state before
2888 * issuing an atomic op on it.
2890 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2891 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2892 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2894 if (object->type == OBJT_VNODE &&
2895 (vp = (struct vnode *)object->handle) != NULL) {
2896 if ((vp->v_flag & VOBJDIRTY) == 0) {
2897 if (vp->v_mount &&
2898 (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2900 * New style THR_SYNC places vnodes on the
2901 * syncer list more deterministically.
2903 vsetobjdirty(vp);
2904 } else {
2906 * Old style scan would not necessarily place
2907 * a vnode on the syncer list when possibly
2908 * modified via mmap.
2910 vsetflags(vp, VOBJDIRTY);
2916 #include "opt_ddb.h"
2917 #ifdef DDB
2918 #include <sys/kernel.h>
2920 #include <sys/cons.h>
2922 #include <ddb/ddb.h>
2924 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
2925 vm_map_entry_t entry);
2926 static int vm_object_in_map (vm_object_t object);
2929 * The caller must hold the object.
2931 static int
2932 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2934 vm_map_t tmpm;
2935 vm_map_entry_t tmpe;
2936 vm_object_t obj, nobj;
2937 int entcount;
2939 if (map == 0)
2940 return 0;
2941 if (entry == 0) {
2942 tmpe = map->header.next;
2943 entcount = map->nentries;
2944 while (entcount-- && (tmpe != &map->header)) {
2945 if( _vm_object_in_map(map, object, tmpe)) {
2946 return 1;
2948 tmpe = tmpe->next;
2950 return (0);
2952 switch(entry->maptype) {
2953 case VM_MAPTYPE_SUBMAP:
2954 tmpm = entry->object.sub_map;
2955 tmpe = tmpm->header.next;
2956 entcount = tmpm->nentries;
2957 while (entcount-- && tmpe != &tmpm->header) {
2958 if( _vm_object_in_map(tmpm, object, tmpe)) {
2959 return 1;
2961 tmpe = tmpe->next;
2963 break;
2964 case VM_MAPTYPE_NORMAL:
2965 case VM_MAPTYPE_VPAGETABLE:
2966 obj = entry->object.vm_object;
2967 while (obj) {
2968 if (obj == object) {
2969 if (obj != entry->object.vm_object)
2970 vm_object_drop(obj);
2971 return 1;
2973 while ((nobj = obj->backing_object) != NULL) {
2974 vm_object_hold(nobj);
2975 if (nobj == obj->backing_object)
2976 break;
2977 vm_object_drop(nobj);
2979 if (obj != entry->object.vm_object) {
2980 if (nobj)
2981 vm_object_lock_swap();
2982 vm_object_drop(obj);
2984 obj = nobj;
2986 break;
2987 default:
2988 break;
2990 return 0;
2993 static int vm_object_in_map_callback(struct proc *p, void *data);
2995 struct vm_object_in_map_info {
2996 vm_object_t object;
2997 int rv;
3001 * Debugging only
3003 static int
3004 vm_object_in_map(vm_object_t object)
3006 struct vm_object_in_map_info info;
3008 info.rv = 0;
3009 info.object = object;
3011 allproc_scan(vm_object_in_map_callback, &info);
3012 if (info.rv)
3013 return 1;
3014 if( _vm_object_in_map(&kernel_map, object, 0))
3015 return 1;
3016 if( _vm_object_in_map(&pager_map, object, 0))
3017 return 1;
3018 if( _vm_object_in_map(&buffer_map, object, 0))
3019 return 1;
3020 return 0;
3024 * Debugging only
3026 static int
3027 vm_object_in_map_callback(struct proc *p, void *data)
3029 struct vm_object_in_map_info *info = data;
3031 if (p->p_vmspace) {
3032 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3033 info->rv = 1;
3034 return -1;
3037 return (0);
3040 DB_SHOW_COMMAND(vmochk, vm_object_check)
3042 vm_object_t object;
3043 int n;
3046 * make sure that internal objs are in a map somewhere
3047 * and none have zero ref counts.
3049 for (n = 0; n < VMOBJ_HSIZE; ++n) {
3050 for (object = TAILQ_FIRST(&vm_object_lists[n]);
3051 object != NULL;
3052 object = TAILQ_NEXT(object, object_list)) {
3053 if (object->type == OBJT_MARKER)
3054 continue;
3055 if (object->handle != NULL ||
3056 (object->type != OBJT_DEFAULT &&
3057 object->type != OBJT_SWAP)) {
3058 continue;
3060 if (object->ref_count == 0) {
3061 db_printf("vmochk: internal obj has "
3062 "zero ref count: %ld\n",
3063 (long)object->size);
3065 if (vm_object_in_map(object))
3066 continue;
3067 db_printf("vmochk: internal obj is not in a map: "
3068 "ref: %d, size: %lu: 0x%lx, "
3069 "backing_object: %p\n",
3070 object->ref_count, (u_long)object->size,
3071 (u_long)object->size,
3072 (void *)object->backing_object);
3078 * Debugging only
3080 DB_SHOW_COMMAND(object, vm_object_print_static)
3082 /* XXX convert args. */
3083 vm_object_t object = (vm_object_t)addr;
3084 boolean_t full = have_addr;
3086 vm_page_t p;
3088 /* XXX count is an (unused) arg. Avoid shadowing it. */
3089 #define count was_count
3091 int count;
3093 if (object == NULL)
3094 return;
3096 db_iprintf(
3097 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
3098 object, (int)object->type, (u_long)object->size,
3099 object->resident_page_count, object->ref_count, object->flags);
3101 * XXX no %qd in kernel. Truncate object->backing_object_offset.
3103 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3104 object->shadow_count,
3105 object->backing_object ? object->backing_object->ref_count : 0,
3106 object->backing_object, (long)object->backing_object_offset);
3108 if (!full)
3109 return;
3111 db_indent += 2;
3112 count = 0;
3113 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3114 if (count == 0)
3115 db_iprintf("memory:=");
3116 else if (count == 6) {
3117 db_printf("\n");
3118 db_iprintf(" ...");
3119 count = 0;
3120 } else
3121 db_printf(",");
3122 count++;
3124 db_printf("(off=0x%lx,page=0x%lx)",
3125 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3127 if (count != 0)
3128 db_printf("\n");
3129 db_indent -= 2;
3132 /* XXX. */
3133 #undef count
3136 * XXX need this non-static entry for calling from vm_map_print.
3138 * Debugging only
3140 void
3141 vm_object_print(/* db_expr_t */ long addr,
3142 boolean_t have_addr,
3143 /* db_expr_t */ long count,
3144 char *modif)
3146 vm_object_print_static(addr, have_addr, count, modif);
3150 * Debugging only
3152 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3154 vm_object_t object;
3155 int nl = 0;
3156 int c;
3157 int n;
3159 for (n = 0; n < VMOBJ_HSIZE; ++n) {
3160 for (object = TAILQ_FIRST(&vm_object_lists[n]);
3161 object != NULL;
3162 object = TAILQ_NEXT(object, object_list)) {
3163 vm_pindex_t idx, fidx;
3164 vm_pindex_t osize;
3165 vm_paddr_t pa = -1, padiff;
3166 int rcount;
3167 vm_page_t m;
3169 if (object->type == OBJT_MARKER)
3170 continue;
3171 db_printf("new object: %p\n", (void *)object);
3172 if ( nl > 18) {
3173 c = cngetc();
3174 if (c != ' ')
3175 return;
3176 nl = 0;
3178 nl++;
3179 rcount = 0;
3180 fidx = 0;
3181 osize = object->size;
3182 if (osize > 128)
3183 osize = 128;
3184 for (idx = 0; idx < osize; idx++) {
3185 m = vm_page_lookup(object, idx);
3186 if (m == NULL) {
3187 if (rcount) {
3188 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3189 (long)fidx, rcount, (long)pa);
3190 if ( nl > 18) {
3191 c = cngetc();
3192 if (c != ' ')
3193 return;
3194 nl = 0;
3196 nl++;
3197 rcount = 0;
3199 continue;
3202 if (rcount &&
3203 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3204 ++rcount;
3205 continue;
3207 if (rcount) {
3208 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3209 padiff >>= PAGE_SHIFT;
3210 padiff &= PQ_L2_MASK;
3211 if (padiff == 0) {
3212 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3213 ++rcount;
3214 continue;
3216 db_printf(" index(%ld)run(%d)pa(0x%lx)",
3217 (long)fidx, rcount, (long)pa);
3218 db_printf("pd(%ld)\n", (long)padiff);
3219 if ( nl > 18) {
3220 c = cngetc();
3221 if (c != ' ')
3222 return;
3223 nl = 0;
3225 nl++;
3227 fidx = idx;
3228 pa = VM_PAGE_TO_PHYS(m);
3229 rcount = 1;
3231 if (rcount) {
3232 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3233 (long)fidx, rcount, (long)pa);
3234 if ( nl > 18) {
3235 c = cngetc();
3236 if (c != ' ')
3237 return;
3238 nl = 0;
3240 nl++;
3245 #endif /* DDB */