Nuke ARCnet support.
[dragonfly.git] / sys / netinet6 / nd6.c
blob64b18fb31c530e844bef9fb78f25705677c4e32c
1 /* $FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $ */
2 /* $DragonFly: src/sys/netinet6/nd6.c,v 1.24 2007/08/27 13:15:14 hasso Exp $ */
3 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * XXX
36 * KAME 970409 note:
37 * BSD/OS version heavily modifies this code, related to llinfo.
38 * Since we don't have BSD/OS version of net/route.c in our hand,
39 * I left the code mostly as it was in 970310. -- itojun
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <sys/protosw.h>
55 #include <sys/errno.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/sysctl.h>
59 #include <sys/thread2.h>
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_types.h>
64 #include <net/if_atm.h>
65 #include <net/route.h>
67 #include <netinet/in.h>
68 #include <netinet/if_ether.h>
69 #include <netinet/if_fddi.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/nd6.h>
74 #include <netinet6/in6_prefix.h>
75 #include <netinet/icmp6.h>
77 #include "use_loop.h"
79 #include <net/net_osdep.h>
81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
84 #define SIN6(s) ((struct sockaddr_in6 *)s)
85 #define SDL(s) ((struct sockaddr_dl *)s)
87 /* timer values */
88 int nd6_prune = 1; /* walk list every 1 seconds */
89 int nd6_delay = 5; /* delay first probe time 5 second */
90 int nd6_umaxtries = 3; /* maximum unicast query */
91 int nd6_mmaxtries = 3; /* maximum multicast query */
92 int nd6_useloopback = 1; /* use loopback interface for local traffic */
93 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
95 /* preventing too many loops in ND option parsing */
96 int nd6_maxndopt = 10; /* max # of ND options allowed */
98 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
100 #ifdef ND6_DEBUG
101 int nd6_debug = 1;
102 #else
103 int nd6_debug = 0;
104 #endif
106 /* for debugging? */
107 static int nd6_inuse, nd6_allocated;
109 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
110 struct nd_drhead nd_defrouter;
111 struct nd_prhead nd_prefix = { 0 };
113 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
114 static struct sockaddr_in6 all1_sa;
116 static void nd6_setmtu0 (struct ifnet *, struct nd_ifinfo *);
117 static void nd6_slowtimo (void *);
118 static int regen_tmpaddr (struct in6_ifaddr *);
120 struct callout nd6_slowtimo_ch;
121 struct callout nd6_timer_ch;
122 extern struct callout in6_tmpaddrtimer_ch;
124 void
125 nd6_init(void)
127 static int nd6_init_done = 0;
128 int i;
130 if (nd6_init_done) {
131 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
132 return;
135 all1_sa.sin6_family = AF_INET6;
136 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
137 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
138 all1_sa.sin6_addr.s6_addr[i] = 0xff;
140 /* initialization of the default router list */
141 TAILQ_INIT(&nd_defrouter);
143 nd6_init_done = 1;
145 /* start timer */
146 callout_init(&nd6_slowtimo_ch);
147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
148 nd6_slowtimo, NULL);
151 struct nd_ifinfo *
152 nd6_ifattach(struct ifnet *ifp)
154 struct nd_ifinfo *nd;
156 nd = (struct nd_ifinfo *)kmalloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
157 bzero(nd, sizeof(*nd));
159 nd->initialized = 1;
161 nd->linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu;
162 nd->chlim = IPV6_DEFHLIM;
163 nd->basereachable = REACHABLE_TIME;
164 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
165 nd->retrans = RETRANS_TIMER;
166 nd->receivedra = 0;
169 * Note that the default value of ip6_accept_rtadv is 0, which means
170 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
171 * here.
173 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
175 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
176 nd6_setmtu0(ifp, nd);
177 return nd;
180 void
181 nd6_ifdetach(struct nd_ifinfo *nd)
183 kfree(nd, M_IP6NDP);
187 * Reset ND level link MTU. This function is called when the physical MTU
188 * changes, which means we might have to adjust the ND level MTU.
190 void
191 nd6_setmtu(struct ifnet *ifp)
193 nd6_setmtu0(ifp, ND_IFINFO(ifp));
196 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
197 void
198 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
200 u_long oldmaxmtu;
201 u_long oldlinkmtu;
203 oldmaxmtu = ndi->maxmtu;
204 oldlinkmtu = ndi->linkmtu;
206 switch (ifp->if_type) {
207 case IFT_ETHER:
208 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
209 break;
210 case IFT_FDDI:
211 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
212 break;
213 case IFT_ATM:
214 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
215 break;
216 case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */
217 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
218 break;
219 #ifdef IFT_IEEE80211
220 case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */
221 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
222 break;
223 #endif
224 default:
225 ndi->maxmtu = ifp->if_mtu;
226 break;
229 if (oldmaxmtu != ndi->maxmtu) {
231 * If the ND level MTU is not set yet, or if the maxmtu
232 * is reset to a smaller value than the ND level MTU,
233 * also reset the ND level MTU.
235 if (ndi->linkmtu == 0 ||
236 ndi->maxmtu < ndi->linkmtu) {
237 ndi->linkmtu = ndi->maxmtu;
238 /* also adjust in6_maxmtu if necessary. */
239 if (oldlinkmtu == 0) {
241 * XXX: the case analysis is grotty, but
242 * it is not efficient to call in6_setmaxmtu()
243 * here when we are during the initialization
244 * procedure.
246 if (in6_maxmtu < ndi->linkmtu)
247 in6_maxmtu = ndi->linkmtu;
248 } else
249 in6_setmaxmtu();
252 #undef MIN
255 void
256 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
258 bzero(ndopts, sizeof(*ndopts));
259 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
260 ndopts->nd_opts_last
261 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
263 if (icmp6len == 0) {
264 ndopts->nd_opts_done = 1;
265 ndopts->nd_opts_search = NULL;
270 * Take one ND option.
272 struct nd_opt_hdr *
273 nd6_option(union nd_opts *ndopts)
275 struct nd_opt_hdr *nd_opt;
276 int olen;
278 if (!ndopts)
279 panic("ndopts == NULL in nd6_option");
280 if (!ndopts->nd_opts_last)
281 panic("uninitialized ndopts in nd6_option");
282 if (!ndopts->nd_opts_search)
283 return NULL;
284 if (ndopts->nd_opts_done)
285 return NULL;
287 nd_opt = ndopts->nd_opts_search;
289 /* make sure nd_opt_len is inside the buffer */
290 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
291 bzero(ndopts, sizeof(*ndopts));
292 return NULL;
295 olen = nd_opt->nd_opt_len << 3;
296 if (olen == 0) {
298 * Message validation requires that all included
299 * options have a length that is greater than zero.
301 bzero(ndopts, sizeof(*ndopts));
302 return NULL;
305 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
306 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
307 /* option overruns the end of buffer, invalid */
308 bzero(ndopts, sizeof(*ndopts));
309 return NULL;
310 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
311 /* reached the end of options chain */
312 ndopts->nd_opts_done = 1;
313 ndopts->nd_opts_search = NULL;
315 return nd_opt;
319 * Parse multiple ND options.
320 * This function is much easier to use, for ND routines that do not need
321 * multiple options of the same type.
324 nd6_options(union nd_opts *ndopts)
326 struct nd_opt_hdr *nd_opt;
327 int i = 0;
329 if (!ndopts)
330 panic("ndopts == NULL in nd6_options");
331 if (!ndopts->nd_opts_last)
332 panic("uninitialized ndopts in nd6_options");
333 if (!ndopts->nd_opts_search)
334 return 0;
336 while (1) {
337 nd_opt = nd6_option(ndopts);
338 if (!nd_opt && !ndopts->nd_opts_last) {
340 * Message validation requires that all included
341 * options have a length that is greater than zero.
343 icmp6stat.icp6s_nd_badopt++;
344 bzero(ndopts, sizeof(*ndopts));
345 return -1;
348 if (!nd_opt)
349 goto skip1;
351 switch (nd_opt->nd_opt_type) {
352 case ND_OPT_SOURCE_LINKADDR:
353 case ND_OPT_TARGET_LINKADDR:
354 case ND_OPT_MTU:
355 case ND_OPT_REDIRECTED_HEADER:
356 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
357 nd6log((LOG_INFO,
358 "duplicated ND6 option found (type=%d)\n",
359 nd_opt->nd_opt_type));
360 /* XXX bark? */
361 } else {
362 ndopts->nd_opt_array[nd_opt->nd_opt_type]
363 = nd_opt;
365 break;
366 case ND_OPT_PREFIX_INFORMATION:
367 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
368 ndopts->nd_opt_array[nd_opt->nd_opt_type]
369 = nd_opt;
371 ndopts->nd_opts_pi_end =
372 (struct nd_opt_prefix_info *)nd_opt;
373 break;
374 default:
376 * Unknown options must be silently ignored,
377 * to accomodate future extension to the protocol.
379 nd6log((LOG_DEBUG,
380 "nd6_options: unsupported option %d - "
381 "option ignored\n", nd_opt->nd_opt_type));
384 skip1:
385 i++;
386 if (i > nd6_maxndopt) {
387 icmp6stat.icp6s_nd_toomanyopt++;
388 nd6log((LOG_INFO, "too many loop in nd opt\n"));
389 break;
392 if (ndopts->nd_opts_done)
393 break;
396 return 0;
400 * ND6 timer routine to expire default route list and prefix list
402 void
403 nd6_timer(void *ignored_arg)
405 struct llinfo_nd6 *ln;
406 struct nd_defrouter *dr;
407 struct nd_prefix *pr;
408 struct ifnet *ifp;
409 struct in6_ifaddr *ia6, *nia6;
410 struct in6_addrlifetime *lt6;
412 crit_enter();
413 callout_reset(&nd6_timer_ch, nd6_prune * hz,
414 nd6_timer, NULL);
416 ln = llinfo_nd6.ln_next;
417 while (ln && ln != &llinfo_nd6) {
418 struct rtentry *rt;
419 struct sockaddr_in6 *dst;
420 struct llinfo_nd6 *next = ln->ln_next;
421 /* XXX: used for the DELAY case only: */
422 struct nd_ifinfo *ndi = NULL;
424 if ((rt = ln->ln_rt) == NULL) {
425 ln = next;
426 continue;
428 if ((ifp = rt->rt_ifp) == NULL) {
429 ln = next;
430 continue;
432 ndi = ND_IFINFO(ifp);
433 dst = (struct sockaddr_in6 *)rt_key(rt);
435 if (ln->ln_expire > time_second) {
436 ln = next;
437 continue;
440 /* sanity check */
441 if (!rt)
442 panic("rt=0 in nd6_timer(ln=%p)", ln);
443 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
444 panic("rt_llinfo(%p) is not equal to ln(%p)",
445 rt->rt_llinfo, ln);
446 if (!dst)
447 panic("dst=0 in nd6_timer(ln=%p)", ln);
449 switch (ln->ln_state) {
450 case ND6_LLINFO_INCOMPLETE:
451 if (ln->ln_asked < nd6_mmaxtries) {
452 ln->ln_asked++;
453 ln->ln_expire = time_second +
454 ND_IFINFO(ifp)->retrans / 1000;
455 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
456 ln, 0);
457 } else {
458 struct mbuf *m = ln->ln_hold;
459 if (m) {
460 if (rt->rt_ifp) {
462 * Fake rcvif to make ICMP error
463 * more helpful in diagnosing
464 * for the receiver.
465 * XXX: should we consider
466 * older rcvif?
468 m->m_pkthdr.rcvif = rt->rt_ifp;
470 icmp6_error(m, ICMP6_DST_UNREACH,
471 ICMP6_DST_UNREACH_ADDR, 0);
472 ln->ln_hold = NULL;
474 next = nd6_free(rt);
476 break;
477 case ND6_LLINFO_REACHABLE:
478 if (ln->ln_expire) {
479 ln->ln_state = ND6_LLINFO_STALE;
480 ln->ln_expire = time_second + nd6_gctimer;
482 break;
484 case ND6_LLINFO_STALE:
485 /* Garbage Collection(RFC 2461 5.3) */
486 if (ln->ln_expire)
487 next = nd6_free(rt);
488 break;
490 case ND6_LLINFO_DELAY:
491 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD)) {
492 /* We need NUD */
493 ln->ln_asked = 1;
494 ln->ln_state = ND6_LLINFO_PROBE;
495 ln->ln_expire = time_second +
496 ndi->retrans / 1000;
497 nd6_ns_output(ifp, &dst->sin6_addr,
498 &dst->sin6_addr,
499 ln, 0);
500 } else {
501 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
502 ln->ln_expire = time_second + nd6_gctimer;
504 break;
505 case ND6_LLINFO_PROBE:
506 if (ln->ln_asked < nd6_umaxtries) {
507 ln->ln_asked++;
508 ln->ln_expire = time_second +
509 ND_IFINFO(ifp)->retrans / 1000;
510 nd6_ns_output(ifp, &dst->sin6_addr,
511 &dst->sin6_addr, ln, 0);
512 } else {
513 next = nd6_free(rt);
515 break;
517 ln = next;
520 /* expire default router list */
521 dr = TAILQ_FIRST(&nd_defrouter);
522 while (dr) {
523 if (dr->expire && dr->expire < time_second) {
524 struct nd_defrouter *t;
525 t = TAILQ_NEXT(dr, dr_entry);
526 defrtrlist_del(dr);
527 dr = t;
528 } else {
529 dr = TAILQ_NEXT(dr, dr_entry);
534 * expire interface addresses.
535 * in the past the loop was inside prefix expiry processing.
536 * However, from a stricter speci-confrmance standpoint, we should
537 * rather separate address lifetimes and prefix lifetimes.
539 addrloop:
540 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
541 nia6 = ia6->ia_next;
542 /* check address lifetime */
543 lt6 = &ia6->ia6_lifetime;
544 if (IFA6_IS_INVALID(ia6)) {
545 int regen = 0;
548 * If the expiring address is temporary, try
549 * regenerating a new one. This would be useful when
550 * we suspended a laptop PC, then turned it on after a
551 * period that could invalidate all temporary
552 * addresses. Although we may have to restart the
553 * loop (see below), it must be after purging the
554 * address. Otherwise, we'd see an infinite loop of
555 * regeneration.
557 if (ip6_use_tempaddr &&
558 (ia6->ia6_flags & IN6_IFF_TEMPORARY)) {
559 if (regen_tmpaddr(ia6) == 0)
560 regen = 1;
563 in6_purgeaddr(&ia6->ia_ifa);
565 if (regen)
566 goto addrloop; /* XXX: see below */
568 if (IFA6_IS_DEPRECATED(ia6)) {
569 int oldflags = ia6->ia6_flags;
571 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
574 * If a temporary address has just become deprecated,
575 * regenerate a new one if possible.
577 if (ip6_use_tempaddr &&
578 (ia6->ia6_flags & IN6_IFF_TEMPORARY) &&
579 !(oldflags & IN6_IFF_DEPRECATED)) {
581 if (regen_tmpaddr(ia6) == 0) {
583 * A new temporary address is
584 * generated.
585 * XXX: this means the address chain
586 * has changed while we are still in
587 * the loop. Although the change
588 * would not cause disaster (because
589 * it's not a deletion, but an
590 * addition,) we'd rather restart the
591 * loop just for safety. Or does this
592 * significantly reduce performance??
594 goto addrloop;
597 } else {
599 * A new RA might have made a deprecated address
600 * preferred.
602 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
606 /* expire prefix list */
607 pr = nd_prefix.lh_first;
608 while (pr) {
610 * check prefix lifetime.
611 * since pltime is just for autoconf, pltime processing for
612 * prefix is not necessary.
614 if (pr->ndpr_expire && pr->ndpr_expire < time_second) {
615 struct nd_prefix *t;
616 t = pr->ndpr_next;
619 * address expiration and prefix expiration are
620 * separate. NEVER perform in6_purgeaddr here.
623 prelist_remove(pr);
624 pr = t;
625 } else
626 pr = pr->ndpr_next;
628 crit_exit();
631 static int
632 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary
633 address */
635 struct ifaddr *ifa;
636 struct ifnet *ifp;
637 struct in6_ifaddr *public_ifa6 = NULL;
639 ifp = ia6->ia_ifa.ifa_ifp;
640 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_list) {
641 struct in6_ifaddr *it6;
643 if (ifa->ifa_addr->sa_family != AF_INET6)
644 continue;
646 it6 = (struct in6_ifaddr *)ifa;
648 /* ignore no autoconf addresses. */
649 if (!(it6->ia6_flags & IN6_IFF_AUTOCONF))
650 continue;
652 /* ignore autoconf addresses with different prefixes. */
653 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
654 continue;
657 * Now we are looking at an autoconf address with the same
658 * prefix as ours. If the address is temporary and is still
659 * preferred, do not create another one. It would be rare, but
660 * could happen, for example, when we resume a laptop PC after
661 * a long period.
663 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) &&
664 !IFA6_IS_DEPRECATED(it6)) {
665 public_ifa6 = NULL;
666 break;
670 * This is a public autoconf address that has the same prefix
671 * as ours. If it is preferred, keep it. We can't break the
672 * loop here, because there may be a still-preferred temporary
673 * address with the prefix.
675 if (!IFA6_IS_DEPRECATED(it6))
676 public_ifa6 = it6;
679 if (public_ifa6 != NULL) {
680 int e;
682 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
683 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
684 " tmp addr,errno=%d\n", e);
685 return (-1);
687 return (0);
690 return (-1);
694 * Nuke neighbor cache/prefix/default router management table, right before
695 * ifp goes away.
697 void
698 nd6_purge(struct ifnet *ifp)
700 struct llinfo_nd6 *ln, *nln;
701 struct nd_defrouter *dr, *ndr, drany;
702 struct nd_prefix *pr, *npr;
704 /* Nuke default router list entries toward ifp */
705 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
707 * The first entry of the list may be stored in
708 * the routing table, so we'll delete it later.
710 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
711 ndr = TAILQ_NEXT(dr, dr_entry);
712 if (dr->ifp == ifp)
713 defrtrlist_del(dr);
715 dr = TAILQ_FIRST(&nd_defrouter);
716 if (dr->ifp == ifp)
717 defrtrlist_del(dr);
720 /* Nuke prefix list entries toward ifp */
721 for (pr = nd_prefix.lh_first; pr; pr = npr) {
722 npr = pr->ndpr_next;
723 if (pr->ndpr_ifp == ifp) {
725 * Previously, pr->ndpr_addr is removed as well,
726 * but I strongly believe we don't have to do it.
727 * nd6_purge() is only called from in6_ifdetach(),
728 * which removes all the associated interface addresses
729 * by itself.
730 * (jinmei@kame.net 20010129)
732 prelist_remove(pr);
736 /* cancel default outgoing interface setting */
737 if (nd6_defifindex == ifp->if_index)
738 nd6_setdefaultiface(0);
740 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
741 /* refresh default router list */
742 bzero(&drany, sizeof(drany));
743 defrouter_delreq(&drany, 0);
744 defrouter_select();
748 * Nuke neighbor cache entries for the ifp.
749 * Note that rt->rt_ifp may not be the same as ifp,
750 * due to KAME goto ours hack. See RTM_RESOLVE case in
751 * nd6_rtrequest(), and ip6_input().
753 ln = llinfo_nd6.ln_next;
754 while (ln && ln != &llinfo_nd6) {
755 struct rtentry *rt;
756 struct sockaddr_dl *sdl;
758 nln = ln->ln_next;
759 rt = ln->ln_rt;
760 if (rt && rt->rt_gateway &&
761 rt->rt_gateway->sa_family == AF_LINK) {
762 sdl = (struct sockaddr_dl *)rt->rt_gateway;
763 if (sdl->sdl_index == ifp->if_index)
764 nln = nd6_free(rt);
766 ln = nln;
770 struct rtentry *
771 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
773 struct rtentry *rt;
774 struct sockaddr_in6 sin6;
776 bzero(&sin6, sizeof(sin6));
777 sin6.sin6_len = sizeof(struct sockaddr_in6);
778 sin6.sin6_family = AF_INET6;
779 sin6.sin6_addr = *addr6;
781 if (create)
782 rt = rtlookup((struct sockaddr *)&sin6);
783 else
784 rt = rtpurelookup((struct sockaddr *)&sin6);
785 if (rt && !(rt->rt_flags & RTF_LLINFO)) {
787 * This is the case for the default route.
788 * If we want to create a neighbor cache for the address, we
789 * should free the route for the destination and allocate an
790 * interface route.
792 if (create) {
793 --rt->rt_refcnt;
794 rt = NULL;
797 if (!rt) {
798 if (create && ifp) {
799 int e;
802 * If no route is available and create is set,
803 * we allocate a host route for the destination
804 * and treat it like an interface route.
805 * This hack is necessary for a neighbor which can't
806 * be covered by our own prefix.
808 struct ifaddr *ifa =
809 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
810 if (ifa == NULL)
811 return (NULL);
814 * Create a new route. RTF_LLINFO is necessary
815 * to create a Neighbor Cache entry for the
816 * destination in nd6_rtrequest which will be
817 * called in rtrequest via ifa->ifa_rtrequest.
819 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
820 ifa->ifa_addr,
821 (struct sockaddr *)&all1_sa,
822 (ifa->ifa_flags |
823 RTF_HOST | RTF_LLINFO) &
824 ~RTF_CLONING,
825 &rt)) != 0)
826 log(LOG_ERR,
827 "nd6_lookup: failed to add route for a "
828 "neighbor(%s), errno=%d\n",
829 ip6_sprintf(addr6), e);
830 if (rt == NULL)
831 return (NULL);
832 if (rt->rt_llinfo) {
833 struct llinfo_nd6 *ln =
834 (struct llinfo_nd6 *)rt->rt_llinfo;
835 ln->ln_state = ND6_LLINFO_NOSTATE;
837 } else
838 return (NULL);
840 rt->rt_refcnt--;
842 * Validation for the entry.
843 * Note that the check for rt_llinfo is necessary because a cloned
844 * route from a parent route that has the L flag (e.g. the default
845 * route to a p2p interface) may have the flag, too, while the
846 * destination is not actually a neighbor.
847 * XXX: we can't use rt->rt_ifp to check for the interface, since
848 * it might be the loopback interface if the entry is for our
849 * own address on a non-loopback interface. Instead, we should
850 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
851 * interface.
853 if ((rt->rt_flags & RTF_GATEWAY) || !(rt->rt_flags & RTF_LLINFO) ||
854 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
855 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
856 if (create) {
857 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
858 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
859 /* xxx more logs... kazu */
861 return (NULL);
863 return (rt);
867 * Detect if a given IPv6 address identifies a neighbor on a given link.
868 * XXX: should take care of the destination of a p2p link?
871 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
873 struct ifaddr *ifa;
874 int i;
876 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
877 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
880 * A link-local address is always a neighbor.
881 * XXX: we should use the sin6_scope_id field rather than the embedded
882 * interface index.
884 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
885 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
886 return (1);
889 * If the address matches one of our addresses,
890 * it should be a neighbor.
892 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
893 if (ifa->ifa_addr->sa_family != AF_INET6)
894 next: continue;
896 for (i = 0; i < 4; i++) {
897 if ((IFADDR6(ifa).s6_addr32[i] ^
898 addr->sin6_addr.s6_addr32[i]) &
899 IFMASK6(ifa).s6_addr32[i])
900 goto next;
902 return (1);
906 * Even if the address matches none of our addresses, it might be
907 * in the neighbor cache.
909 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
910 return (1);
912 return (0);
913 #undef IFADDR6
914 #undef IFMASK6
918 * Free an nd6 llinfo entry.
920 struct llinfo_nd6 *
921 nd6_free(struct rtentry *rt)
923 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
924 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
925 struct nd_defrouter *dr;
928 * we used to have pfctlinput(PRC_HOSTDEAD) here.
929 * even though it is not harmful, it was not really necessary.
932 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
933 crit_enter();
934 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
935 rt->rt_ifp);
937 if (ln->ln_router || dr) {
939 * rt6_flush must be called whether or not the neighbor
940 * is in the Default Router List.
941 * See a corresponding comment in nd6_na_input().
943 rt6_flush(&in6, rt->rt_ifp);
946 if (dr) {
948 * Unreachablity of a router might affect the default
949 * router selection and on-link detection of advertised
950 * prefixes.
954 * Temporarily fake the state to choose a new default
955 * router and to perform on-link determination of
956 * prefixes correctly.
957 * Below the state will be set correctly,
958 * or the entry itself will be deleted.
960 ln->ln_state = ND6_LLINFO_INCOMPLETE;
963 * Since defrouter_select() does not affect the
964 * on-link determination and MIP6 needs the check
965 * before the default router selection, we perform
966 * the check now.
968 pfxlist_onlink_check();
970 if (dr == TAILQ_FIRST(&nd_defrouter)) {
972 * It is used as the current default router,
973 * so we have to move it to the end of the
974 * list and choose a new one.
975 * XXX: it is not very efficient if this is
976 * the only router.
978 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
979 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
981 defrouter_select();
984 crit_exit();
988 * Before deleting the entry, remember the next entry as the
989 * return value. We need this because pfxlist_onlink_check() above
990 * might have freed other entries (particularly the old next entry) as
991 * a side effect (XXX).
993 next = ln->ln_next;
996 * Detach the route from the routing tree and the list of neighbor
997 * caches, and disable the route entry not to be used in already
998 * cached routes.
1000 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1001 rt_mask(rt), 0, (struct rtentry **)0);
1003 return (next);
1007 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1009 * XXX cost-effective metods?
1011 void
1012 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1014 struct llinfo_nd6 *ln;
1017 * If the caller specified "rt", use that. Otherwise, resolve the
1018 * routing table by supplied "dst6".
1020 if (!rt) {
1021 if (!dst6)
1022 return;
1023 if (!(rt = nd6_lookup(dst6, 0, NULL)))
1024 return;
1027 if ((rt->rt_flags & RTF_GATEWAY) ||
1028 !(rt->rt_flags & RTF_LLINFO) ||
1029 rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1030 rt->rt_gateway->sa_family != AF_LINK) {
1031 /* This is not a host route. */
1032 return;
1035 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1036 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1037 return;
1040 * if we get upper-layer reachability confirmation many times,
1041 * it is possible we have false information.
1043 if (!force) {
1044 ln->ln_byhint++;
1045 if (ln->ln_byhint > nd6_maxnudhint)
1046 return;
1049 ln->ln_state = ND6_LLINFO_REACHABLE;
1050 if (ln->ln_expire)
1051 ln->ln_expire = time_second +
1052 ND_IFINFO(rt->rt_ifp)->reachable;
1055 void
1056 nd6_rtrequest(int req, struct rtentry *rt,
1057 struct rt_addrinfo *info) /* xxx unused */
1059 struct sockaddr *gate = rt->rt_gateway;
1060 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1061 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1062 struct ifnet *ifp = rt->rt_ifp;
1063 struct ifaddr *ifa;
1065 if ((rt->rt_flags & RTF_GATEWAY))
1066 return;
1068 if (nd6_need_cache(ifp) == 0 && !(rt->rt_flags & RTF_HOST)) {
1070 * This is probably an interface direct route for a link
1071 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1072 * We do not need special treatment below for such a route.
1073 * Moreover, the RTF_LLINFO flag which would be set below
1074 * would annoy the ndp(8) command.
1076 return;
1079 if (req == RTM_RESOLVE &&
1080 (nd6_need_cache(ifp) == 0 || /* stf case */
1081 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1083 * FreeBSD and BSD/OS often make a cloned host route based
1084 * on a less-specific route (e.g. the default route).
1085 * If the less specific route does not have a "gateway"
1086 * (this is the case when the route just goes to a p2p or an
1087 * stf interface), we'll mistakenly make a neighbor cache for
1088 * the host route, and will see strange neighbor solicitation
1089 * for the corresponding destination. In order to avoid the
1090 * confusion, we check if the destination of the route is
1091 * a neighbor in terms of neighbor discovery, and stop the
1092 * process if not. Additionally, we remove the LLINFO flag
1093 * so that ndp(8) will not try to get the neighbor information
1094 * of the destination.
1096 rt->rt_flags &= ~RTF_LLINFO;
1097 return;
1100 switch (req) {
1101 case RTM_ADD:
1103 * There is no backward compatibility :)
1105 * if (!(rt->rt_flags & RTF_HOST) &&
1106 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1107 * rt->rt_flags |= RTF_CLONING;
1109 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1111 * Case 1: This route should come from
1112 * a route to interface. RTF_LLINFO flag is set
1113 * for a host route whose destination should be
1114 * treated as on-link.
1116 rt_setgate(rt, rt_key(rt),
1117 (struct sockaddr *)&null_sdl);
1118 gate = rt->rt_gateway;
1119 SDL(gate)->sdl_type = ifp->if_type;
1120 SDL(gate)->sdl_index = ifp->if_index;
1121 if (ln)
1122 ln->ln_expire = time_second;
1123 #if 1
1124 if (ln && ln->ln_expire == 0) {
1125 /* kludge for desktops */
1126 #if 0
1127 kprintf("nd6_rtequest: time.tv_sec is zero; "
1128 "treat it as 1\n");
1129 #endif
1130 ln->ln_expire = 1;
1132 #endif
1133 if ((rt->rt_flags & RTF_CLONING))
1134 break;
1137 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1138 * We don't do that here since llinfo is not ready yet.
1140 * There are also couple of other things to be discussed:
1141 * - unsolicited NA code needs improvement beforehand
1142 * - RFC2461 says we MAY send multicast unsolicited NA
1143 * (7.2.6 paragraph 4), however, it also says that we
1144 * SHOULD provide a mechanism to prevent multicast NA storm.
1145 * we don't have anything like it right now.
1146 * note that the mechanism needs a mutual agreement
1147 * between proxies, which means that we need to implement
1148 * a new protocol, or a new kludge.
1149 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1150 * we need to check ip6forwarding before sending it.
1151 * (or should we allow proxy ND configuration only for
1152 * routers? there's no mention about proxy ND from hosts)
1154 #if 0
1155 /* XXX it does not work */
1156 if (rt->rt_flags & RTF_ANNOUNCE)
1157 nd6_na_output(ifp,
1158 &SIN6(rt_key(rt))->sin6_addr,
1159 &SIN6(rt_key(rt))->sin6_addr,
1160 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1161 1, NULL);
1162 #endif
1163 /* FALLTHROUGH */
1164 case RTM_RESOLVE:
1165 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1167 * Address resolution isn't necessary for a point to
1168 * point link, so we can skip this test for a p2p link.
1170 if (gate->sa_family != AF_LINK ||
1171 gate->sa_len < sizeof(null_sdl)) {
1172 log(LOG_DEBUG,
1173 "nd6_rtrequest: bad gateway value: %s\n",
1174 if_name(ifp));
1175 break;
1177 SDL(gate)->sdl_type = ifp->if_type;
1178 SDL(gate)->sdl_index = ifp->if_index;
1180 if (ln != NULL)
1181 break; /* This happens on a route change */
1183 * Case 2: This route may come from cloning, or a manual route
1184 * add with a LL address.
1186 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1187 rt->rt_llinfo = (caddr_t)ln;
1188 if (!ln) {
1189 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1190 break;
1192 nd6_inuse++;
1193 nd6_allocated++;
1194 bzero(ln, sizeof(*ln));
1195 ln->ln_rt = rt;
1196 /* this is required for "ndp" command. - shin */
1197 if (req == RTM_ADD) {
1199 * gate should have some valid AF_LINK entry,
1200 * and ln->ln_expire should have some lifetime
1201 * which is specified by ndp command.
1203 ln->ln_state = ND6_LLINFO_REACHABLE;
1204 ln->ln_byhint = 0;
1205 } else {
1207 * When req == RTM_RESOLVE, rt is created and
1208 * initialized in rtrequest(), so rt_expire is 0.
1210 ln->ln_state = ND6_LLINFO_NOSTATE;
1211 ln->ln_expire = time_second;
1213 rt->rt_flags |= RTF_LLINFO;
1214 ln->ln_next = llinfo_nd6.ln_next;
1215 llinfo_nd6.ln_next = ln;
1216 ln->ln_prev = &llinfo_nd6;
1217 ln->ln_next->ln_prev = ln;
1220 * check if rt_key(rt) is one of my address assigned
1221 * to the interface.
1223 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1224 &SIN6(rt_key(rt))->sin6_addr);
1225 if (ifa) {
1226 caddr_t macp = nd6_ifptomac(ifp);
1227 ln->ln_expire = 0;
1228 ln->ln_state = ND6_LLINFO_REACHABLE;
1229 ln->ln_byhint = 0;
1230 if (macp) {
1231 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1232 SDL(gate)->sdl_alen = ifp->if_addrlen;
1234 if (nd6_useloopback) {
1235 rt->rt_ifp = &loif[0]; /* XXX */
1237 * Make sure rt_ifa be equal to the ifaddr
1238 * corresponding to the address.
1239 * We need this because when we refer
1240 * rt_ifa->ia6_flags in ip6_input, we assume
1241 * that the rt_ifa points to the address instead
1242 * of the loopback address.
1244 if (ifa != rt->rt_ifa) {
1245 IFAFREE(rt->rt_ifa);
1246 IFAREF(ifa);
1247 rt->rt_ifa = ifa;
1250 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1251 ln->ln_expire = 0;
1252 ln->ln_state = ND6_LLINFO_REACHABLE;
1253 ln->ln_byhint = 0;
1255 /* join solicited node multicast for proxy ND */
1256 if (ifp->if_flags & IFF_MULTICAST) {
1257 struct in6_addr llsol;
1258 int error;
1260 llsol = SIN6(rt_key(rt))->sin6_addr;
1261 llsol.s6_addr16[0] = htons(0xff02);
1262 llsol.s6_addr16[1] = htons(ifp->if_index);
1263 llsol.s6_addr32[1] = 0;
1264 llsol.s6_addr32[2] = htonl(1);
1265 llsol.s6_addr8[12] = 0xff;
1267 if (!in6_addmulti(&llsol, ifp, &error)) {
1268 nd6log((LOG_ERR, "%s: failed to join "
1269 "%s (errno=%d)\n", if_name(ifp),
1270 ip6_sprintf(&llsol), error));
1274 break;
1276 case RTM_DELETE:
1277 if (!ln)
1278 break;
1279 /* leave from solicited node multicast for proxy ND */
1280 if ((rt->rt_flags & RTF_ANNOUNCE) &&
1281 (ifp->if_flags & IFF_MULTICAST)) {
1282 struct in6_addr llsol;
1283 struct in6_multi *in6m;
1285 llsol = SIN6(rt_key(rt))->sin6_addr;
1286 llsol.s6_addr16[0] = htons(0xff02);
1287 llsol.s6_addr16[1] = htons(ifp->if_index);
1288 llsol.s6_addr32[1] = 0;
1289 llsol.s6_addr32[2] = htonl(1);
1290 llsol.s6_addr8[12] = 0xff;
1292 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1293 if (in6m)
1294 in6_delmulti(in6m);
1296 nd6_inuse--;
1297 ln->ln_next->ln_prev = ln->ln_prev;
1298 ln->ln_prev->ln_next = ln->ln_next;
1299 ln->ln_prev = NULL;
1300 rt->rt_llinfo = 0;
1301 rt->rt_flags &= ~RTF_LLINFO;
1302 if (ln->ln_hold)
1303 m_freem(ln->ln_hold);
1304 Free((caddr_t)ln);
1309 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1311 struct in6_drlist *drl = (struct in6_drlist *)data;
1312 struct in6_prlist *prl = (struct in6_prlist *)data;
1313 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1314 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1315 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1316 struct nd_defrouter *dr, any;
1317 struct nd_prefix *pr;
1318 struct rtentry *rt;
1319 int i = 0, error = 0;
1321 switch (cmd) {
1322 case SIOCGDRLST_IN6:
1324 * obsolete API, use sysctl under net.inet6.icmp6
1326 bzero(drl, sizeof(*drl));
1327 crit_enter();
1328 dr = TAILQ_FIRST(&nd_defrouter);
1329 while (dr && i < DRLSTSIZ) {
1330 drl->defrouter[i].rtaddr = dr->rtaddr;
1331 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1332 /* XXX: need to this hack for KAME stack */
1333 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1334 } else
1335 log(LOG_ERR,
1336 "default router list contains a "
1337 "non-linklocal address(%s)\n",
1338 ip6_sprintf(&drl->defrouter[i].rtaddr));
1340 drl->defrouter[i].flags = dr->flags;
1341 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1342 drl->defrouter[i].expire = dr->expire;
1343 drl->defrouter[i].if_index = dr->ifp->if_index;
1344 i++;
1345 dr = TAILQ_NEXT(dr, dr_entry);
1347 crit_exit();
1348 break;
1349 case SIOCGPRLST_IN6:
1351 * obsolete API, use sysctl under net.inet6.icmp6
1354 * XXX meaning of fields, especialy "raflags", is very
1355 * differnet between RA prefix list and RR/static prefix list.
1356 * how about separating ioctls into two?
1358 bzero(prl, sizeof(*prl));
1359 crit_enter();
1360 pr = nd_prefix.lh_first;
1361 while (pr && i < PRLSTSIZ) {
1362 struct nd_pfxrouter *pfr;
1363 int j;
1365 in6_embedscope(&prl->prefix[i].prefix,
1366 &pr->ndpr_prefix, NULL, NULL);
1367 prl->prefix[i].raflags = pr->ndpr_raf;
1368 prl->prefix[i].prefixlen = pr->ndpr_plen;
1369 prl->prefix[i].vltime = pr->ndpr_vltime;
1370 prl->prefix[i].pltime = pr->ndpr_pltime;
1371 prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1372 prl->prefix[i].expire = pr->ndpr_expire;
1374 pfr = pr->ndpr_advrtrs.lh_first;
1375 j = 0;
1376 while (pfr) {
1377 if (j < DRLSTSIZ) {
1378 #define RTRADDR prl->prefix[i].advrtr[j]
1379 RTRADDR = pfr->router->rtaddr;
1380 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1381 /* XXX: hack for KAME */
1382 RTRADDR.s6_addr16[1] = 0;
1383 } else
1384 log(LOG_ERR,
1385 "a router(%s) advertises "
1386 "a prefix with "
1387 "non-link local address\n",
1388 ip6_sprintf(&RTRADDR));
1389 #undef RTRADDR
1391 j++;
1392 pfr = pfr->pfr_next;
1394 prl->prefix[i].advrtrs = j;
1395 prl->prefix[i].origin = PR_ORIG_RA;
1397 i++;
1398 pr = pr->ndpr_next;
1401 struct rr_prefix *rpp;
1403 for (rpp = LIST_FIRST(&rr_prefix); rpp;
1404 rpp = LIST_NEXT(rpp, rp_entry)) {
1405 if (i >= PRLSTSIZ)
1406 break;
1407 in6_embedscope(&prl->prefix[i].prefix,
1408 &pr->ndpr_prefix, NULL, NULL);
1409 prl->prefix[i].raflags = rpp->rp_raf;
1410 prl->prefix[i].prefixlen = rpp->rp_plen;
1411 prl->prefix[i].vltime = rpp->rp_vltime;
1412 prl->prefix[i].pltime = rpp->rp_pltime;
1413 prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1414 prl->prefix[i].expire = rpp->rp_expire;
1415 prl->prefix[i].advrtrs = 0;
1416 prl->prefix[i].origin = rpp->rp_origin;
1417 i++;
1420 crit_exit();
1422 break;
1423 case OSIOCGIFINFO_IN6:
1424 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1425 bzero(&ndi->ndi, sizeof(ndi->ndi));
1426 ndi->ndi.linkmtu = ND_IFINFO(ifp)->linkmtu;
1427 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1428 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1429 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1430 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1431 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1432 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1433 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1434 ndi->ndi.receivedra = ND_IFINFO(ifp)->receivedra;
1435 break;
1436 case SIOCGIFINFO_IN6:
1437 ndi->ndi = *ND_IFINFO(ifp);
1438 break;
1439 case SIOCSIFINFO_FLAGS:
1440 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1441 break;
1442 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1443 /* flush default router list */
1445 * xxx sumikawa: should not delete route if default
1446 * route equals to the top of default router list
1448 bzero(&any, sizeof(any));
1449 defrouter_delreq(&any, 0);
1450 defrouter_select();
1451 /* xxx sumikawa: flush prefix list */
1452 break;
1453 case SIOCSPFXFLUSH_IN6:
1455 /* flush all the prefix advertised by routers */
1456 struct nd_prefix *pr, *next;
1458 crit_enter();
1459 for (pr = nd_prefix.lh_first; pr; pr = next) {
1460 struct in6_ifaddr *ia, *ia_next;
1462 next = pr->ndpr_next;
1464 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1465 continue; /* XXX */
1467 /* do we really have to remove addresses as well? */
1468 for (ia = in6_ifaddr; ia; ia = ia_next) {
1469 /* ia might be removed. keep the next ptr. */
1470 ia_next = ia->ia_next;
1472 if (!(ia->ia6_flags & IN6_IFF_AUTOCONF))
1473 continue;
1475 if (ia->ia6_ndpr == pr)
1476 in6_purgeaddr(&ia->ia_ifa);
1478 prelist_remove(pr);
1480 crit_exit();
1481 break;
1483 case SIOCSRTRFLUSH_IN6:
1485 /* flush all the default routers */
1486 struct nd_defrouter *dr, *next;
1488 crit_enter();
1489 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1491 * The first entry of the list may be stored in
1492 * the routing table, so we'll delete it later.
1494 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1495 next = TAILQ_NEXT(dr, dr_entry);
1496 defrtrlist_del(dr);
1498 defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1500 crit_exit();
1501 break;
1503 case SIOCGNBRINFO_IN6:
1505 struct llinfo_nd6 *ln;
1506 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1509 * XXX: KAME specific hack for scoped addresses
1510 * XXXX: for other scopes than link-local?
1512 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1513 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1514 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1516 if (*idp == 0)
1517 *idp = htons(ifp->if_index);
1520 crit_enter();
1521 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1522 error = EINVAL;
1523 crit_exit();
1524 break;
1526 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1527 nbi->state = ln->ln_state;
1528 nbi->asked = ln->ln_asked;
1529 nbi->isrouter = ln->ln_router;
1530 nbi->expire = ln->ln_expire;
1531 crit_exit();
1533 break;
1535 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1536 ndif->ifindex = nd6_defifindex;
1537 break;
1538 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1539 return (nd6_setdefaultiface(ndif->ifindex));
1540 break;
1542 return (error);
1546 * Create neighbor cache entry and cache link-layer address,
1547 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1549 struct rtentry *
1550 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1551 int lladdrlen,
1552 int type, /* ICMP6 type */
1553 int code /* type dependent information */)
1555 struct rtentry *rt = NULL;
1556 struct llinfo_nd6 *ln = NULL;
1557 int is_newentry;
1558 struct sockaddr_dl *sdl = NULL;
1559 int do_update;
1560 int olladdr;
1561 int llchange;
1562 int newstate = 0;
1564 if (!ifp)
1565 panic("ifp == NULL in nd6_cache_lladdr");
1566 if (!from)
1567 panic("from == NULL in nd6_cache_lladdr");
1569 /* nothing must be updated for unspecified address */
1570 if (IN6_IS_ADDR_UNSPECIFIED(from))
1571 return NULL;
1574 * Validation about ifp->if_addrlen and lladdrlen must be done in
1575 * the caller.
1577 * XXX If the link does not have link-layer adderss, what should
1578 * we do? (ifp->if_addrlen == 0)
1579 * Spec says nothing in sections for RA, RS and NA. There's small
1580 * description on it in NS section (RFC 2461 7.2.3).
1583 rt = nd6_lookup(from, 0, ifp);
1584 if (!rt) {
1585 #if 0
1586 /* nothing must be done if there's no lladdr */
1587 if (!lladdr || !lladdrlen)
1588 return NULL;
1589 #endif
1591 rt = nd6_lookup(from, 1, ifp);
1592 is_newentry = 1;
1593 } else {
1594 /* do nothing if static ndp is set */
1595 if (rt->rt_flags & RTF_STATIC)
1596 return NULL;
1597 is_newentry = 0;
1600 if (!rt)
1601 return NULL;
1602 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1603 fail:
1604 nd6_free(rt);
1605 return NULL;
1607 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1608 if (!ln)
1609 goto fail;
1610 if (!rt->rt_gateway)
1611 goto fail;
1612 if (rt->rt_gateway->sa_family != AF_LINK)
1613 goto fail;
1614 sdl = SDL(rt->rt_gateway);
1616 olladdr = (sdl->sdl_alen) ? 1 : 0;
1617 if (olladdr && lladdr) {
1618 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1619 llchange = 1;
1620 else
1621 llchange = 0;
1622 } else
1623 llchange = 0;
1626 * newentry olladdr lladdr llchange (*=record)
1627 * 0 n n -- (1)
1628 * 0 y n -- (2)
1629 * 0 n y -- (3) * STALE
1630 * 0 y y n (4) *
1631 * 0 y y y (5) * STALE
1632 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1633 * 1 -- y -- (7) * STALE
1636 if (lladdr) { /* (3-5) and (7) */
1638 * Record source link-layer address
1639 * XXX is it dependent to ifp->if_type?
1641 sdl->sdl_alen = ifp->if_addrlen;
1642 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1645 if (!is_newentry) {
1646 if ((!olladdr && lladdr) /* (3) */
1647 || (olladdr && lladdr && llchange)) { /* (5) */
1648 do_update = 1;
1649 newstate = ND6_LLINFO_STALE;
1650 } else /* (1-2,4) */
1651 do_update = 0;
1652 } else {
1653 do_update = 1;
1654 if (!lladdr) /* (6) */
1655 newstate = ND6_LLINFO_NOSTATE;
1656 else /* (7) */
1657 newstate = ND6_LLINFO_STALE;
1660 if (do_update) {
1662 * Update the state of the neighbor cache.
1664 ln->ln_state = newstate;
1666 if (ln->ln_state == ND6_LLINFO_STALE) {
1668 * XXX: since nd6_output() below will cause
1669 * state tansition to DELAY and reset the timer,
1670 * we must set the timer now, although it is actually
1671 * meaningless.
1673 ln->ln_expire = time_second + nd6_gctimer;
1675 if (ln->ln_hold) {
1677 * we assume ifp is not a p2p here, so just
1678 * set the 2nd argument as the 1st one.
1680 nd6_output(ifp, ifp, ln->ln_hold,
1681 (struct sockaddr_in6 *)rt_key(rt),
1682 rt);
1683 ln->ln_hold = NULL;
1685 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1686 /* probe right away */
1687 ln->ln_expire = time_second;
1692 * ICMP6 type dependent behavior.
1694 * NS: clear IsRouter if new entry
1695 * RS: clear IsRouter
1696 * RA: set IsRouter if there's lladdr
1697 * redir: clear IsRouter if new entry
1699 * RA case, (1):
1700 * The spec says that we must set IsRouter in the following cases:
1701 * - If lladdr exist, set IsRouter. This means (1-5).
1702 * - If it is old entry (!newentry), set IsRouter. This means (7).
1703 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1704 * A quetion arises for (1) case. (1) case has no lladdr in the
1705 * neighbor cache, this is similar to (6).
1706 * This case is rare but we figured that we MUST NOT set IsRouter.
1708 * newentry olladdr lladdr llchange NS RS RA redir
1709 * D R
1710 * 0 n n -- (1) c ? s
1711 * 0 y n -- (2) c s s
1712 * 0 n y -- (3) c s s
1713 * 0 y y n (4) c s s
1714 * 0 y y y (5) c s s
1715 * 1 -- n -- (6) c c c s
1716 * 1 -- y -- (7) c c s c s
1718 * (c=clear s=set)
1720 switch (type & 0xff) {
1721 case ND_NEIGHBOR_SOLICIT:
1723 * New entry must have is_router flag cleared.
1725 if (is_newentry) /* (6-7) */
1726 ln->ln_router = 0;
1727 break;
1728 case ND_REDIRECT:
1730 * If the icmp is a redirect to a better router, always set the
1731 * is_router flag. Otherwise, if the entry is newly created,
1732 * clear the flag. [RFC 2461, sec 8.3]
1734 if (code == ND_REDIRECT_ROUTER)
1735 ln->ln_router = 1;
1736 else if (is_newentry) /* (6-7) */
1737 ln->ln_router = 0;
1738 break;
1739 case ND_ROUTER_SOLICIT:
1741 * is_router flag must always be cleared.
1743 ln->ln_router = 0;
1744 break;
1745 case ND_ROUTER_ADVERT:
1747 * Mark an entry with lladdr as a router.
1749 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */
1750 || (is_newentry && lladdr)) { /* (7) */
1751 ln->ln_router = 1;
1753 break;
1757 * When the link-layer address of a router changes, select the
1758 * best router again. In particular, when the neighbor entry is newly
1759 * created, it might affect the selection policy.
1760 * Question: can we restrict the first condition to the "is_newentry"
1761 * case?
1762 * XXX: when we hear an RA from a new router with the link-layer
1763 * address option, defrouter_select() is called twice, since
1764 * defrtrlist_update called the function as well. However, I believe
1765 * we can compromise the overhead, since it only happens the first
1766 * time.
1767 * XXX: although defrouter_select() should not have a bad effect
1768 * for those are not autoconfigured hosts, we explicitly avoid such
1769 * cases for safety.
1771 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1772 defrouter_select();
1774 return rt;
1777 static void
1778 nd6_slowtimo(void *ignored_arg)
1780 struct nd_ifinfo *nd6if;
1781 struct ifnet *ifp;
1783 crit_enter();
1784 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1785 nd6_slowtimo, NULL);
1786 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1787 nd6if = ND_IFINFO(ifp);
1788 if (nd6if->basereachable && /* already initialized */
1789 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1791 * Since reachable time rarely changes by router
1792 * advertisements, we SHOULD insure that a new random
1793 * value gets recomputed at least once every few hours.
1794 * (RFC 2461, 6.3.4)
1796 nd6if->recalctm = nd6_recalc_reachtm_interval;
1797 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1800 crit_exit();
1803 #define gotoerr(e) { error = (e); goto bad;}
1806 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1807 struct sockaddr_in6 *dst, struct rtentry *rt)
1809 struct llinfo_nd6 *ln = NULL;
1810 int error = 0;
1812 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1813 goto sendpkt;
1815 if (nd6_need_cache(ifp) == 0)
1816 goto sendpkt;
1819 * next hop determination. This routine is derived from ether_outpout.
1821 if (rt != NULL) {
1822 if (!(rt->rt_flags & RTF_UP)) {
1823 rt = rtlookup((struct sockaddr *)dst);
1824 if (rt == NULL)
1825 gotoerr(EHOSTUNREACH);
1826 rt->rt_refcnt--;
1827 if (rt->rt_ifp != ifp) {
1828 /* XXX: loop care? */
1829 return nd6_output(ifp, origifp, m, dst, rt);
1832 if (rt->rt_flags & RTF_GATEWAY) {
1833 struct sockaddr_in6 *gw6;
1836 * We skip link-layer address resolution and NUD
1837 * if the gateway is not a neighbor from ND point
1838 * of view, regardless of the value of nd_ifinfo.flags.
1839 * The second condition is a bit tricky; we skip
1840 * if the gateway is our own address, which is
1841 * sometimes used to install a route to a p2p link.
1843 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1844 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1845 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1847 * We allow this kind of tricky route only
1848 * when the outgoing interface is p2p.
1849 * XXX: we may need a more generic rule here.
1851 if (!(ifp->if_flags & IFF_POINTOPOINT))
1852 gotoerr(EHOSTUNREACH);
1854 goto sendpkt;
1857 if (rt->rt_gwroute == NULL) {
1858 rt->rt_gwroute = rtlookup(rt->rt_gateway);
1859 if (rt->rt_gwroute == NULL)
1860 gotoerr(EHOSTUNREACH);
1861 } else if (!(rt->rt_gwroute->rt_flags & RTF_UP)) {
1862 rtfree(rt->rt_gwroute);
1863 rt->rt_gwroute = rtlookup(rt->rt_gateway);
1864 if (rt->rt_gwroute == NULL)
1865 gotoerr(EHOSTUNREACH);
1871 * Address resolution or Neighbor Unreachability Detection
1872 * for the next hop.
1873 * At this point, the destination of the packet must be a unicast
1874 * or an anycast address(i.e. not a multicast).
1877 /* Look up the neighbor cache for the nexthop */
1878 if (rt && (rt->rt_flags & RTF_LLINFO))
1879 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1880 else {
1882 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1883 * the condition below is not very efficient. But we believe
1884 * it is tolerable, because this should be a rare case.
1886 if (nd6_is_addr_neighbor(dst, ifp) &&
1887 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1888 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1890 if (!ln || !rt) {
1891 if (!(ifp->if_flags & IFF_POINTOPOINT) &&
1892 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1893 log(LOG_DEBUG,
1894 "nd6_output: can't allocate llinfo for %s "
1895 "(ln=%p, rt=%p)\n",
1896 ip6_sprintf(&dst->sin6_addr), ln, rt);
1897 gotoerr(EIO); /* XXX: good error? */
1900 goto sendpkt; /* send anyway */
1903 /* We don't have to do link-layer address resolution on a p2p link. */
1904 if ((ifp->if_flags & IFF_POINTOPOINT) &&
1905 ln->ln_state < ND6_LLINFO_REACHABLE) {
1906 ln->ln_state = ND6_LLINFO_STALE;
1907 ln->ln_expire = time_second + nd6_gctimer;
1911 * The first time we send a packet to a neighbor whose entry is
1912 * STALE, we have to change the state to DELAY and a sets a timer to
1913 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1914 * neighbor unreachability detection on expiration.
1915 * (RFC 2461 7.3.3)
1917 if (ln->ln_state == ND6_LLINFO_STALE) {
1918 ln->ln_asked = 0;
1919 ln->ln_state = ND6_LLINFO_DELAY;
1920 ln->ln_expire = time_second + nd6_delay;
1924 * If the neighbor cache entry has a state other than INCOMPLETE
1925 * (i.e. its link-layer address is already resolved), just
1926 * send the packet.
1928 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1929 goto sendpkt;
1932 * There is a neighbor cache entry, but no ethernet address
1933 * response yet. Replace the held mbuf (if any) with this
1934 * latest one.
1936 * This code conforms to the rate-limiting rule described in Section
1937 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1938 * an NS below.
1940 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1941 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1942 if (ln->ln_hold)
1943 m_freem(ln->ln_hold);
1944 ln->ln_hold = m;
1945 if (ln->ln_expire) {
1946 if (ln->ln_asked < nd6_mmaxtries &&
1947 ln->ln_expire < time_second) {
1948 ln->ln_asked++;
1949 ln->ln_expire = time_second +
1950 ND_IFINFO(ifp)->retrans / 1000;
1951 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1954 return (0);
1956 sendpkt:
1957 lwkt_serialize_enter(ifp->if_serializer);
1958 if (ifp->if_flags & IFF_LOOPBACK) {
1959 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1960 rt);
1961 } else {
1962 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt);
1964 lwkt_serialize_exit(ifp->if_serializer);
1965 return (error);
1967 bad:
1968 m_freem(m);
1969 return (error);
1971 #undef gotoerr
1974 nd6_need_cache(struct ifnet *ifp)
1977 * XXX: we currently do not make neighbor cache on any interface
1978 * other than Ethernet, FDDI and GIF.
1980 * RFC2893 says:
1981 * - unidirectional tunnels needs no ND
1983 switch (ifp->if_type) {
1984 case IFT_ETHER:
1985 case IFT_FDDI:
1986 case IFT_IEEE1394:
1987 #ifdef IFT_L2VLAN
1988 case IFT_L2VLAN:
1989 #endif
1990 #ifdef IFT_IEEE80211
1991 case IFT_IEEE80211:
1992 #endif
1993 #ifdef IFT_CARP
1994 case IFT_CARP:
1995 #endif
1996 case IFT_GIF: /* XXX need more cases? */
1997 return (1);
1998 default:
1999 return (0);
2004 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2005 struct sockaddr *dst, u_char *desten)
2007 struct sockaddr_dl *sdl;
2008 struct rtentry *rt;
2011 if (m->m_flags & M_MCAST) {
2012 switch (ifp->if_type) {
2013 case IFT_ETHER:
2014 case IFT_FDDI:
2015 #ifdef IFT_L2VLAN
2016 case IFT_L2VLAN:
2017 #endif
2018 #ifdef IFT_IEEE80211
2019 case IFT_IEEE80211:
2020 #endif
2021 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2022 desten);
2023 return (1);
2024 case IFT_IEEE1394:
2025 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
2026 return (1);
2027 default:
2028 m_freem(m);
2029 return (0);
2032 if (rt0 == NULL) {
2033 /* this could happen, if we could not allocate memory */
2034 m_freem(m);
2035 return (0);
2037 if (rt_llroute(dst, rt0, &rt) != 0) {
2038 m_freem(m);
2039 return (0);
2041 if (rt->rt_gateway->sa_family != AF_LINK) {
2042 kprintf("nd6_storelladdr: something odd happens\n");
2043 m_freem(m);
2044 return (0);
2046 sdl = SDL(rt->rt_gateway);
2047 if (sdl->sdl_alen == 0) {
2048 /* this should be impossible, but we bark here for debugging */
2049 kprintf("nd6_storelladdr: sdl_alen == 0\n");
2050 m_freem(m);
2051 return (0);
2054 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2055 return (1);
2058 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2059 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2060 #ifdef SYSCTL_DECL
2061 SYSCTL_DECL(_net_inet6_icmp6);
2062 #endif
2063 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2064 CTLFLAG_RD, nd6_sysctl_drlist, "");
2065 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2066 CTLFLAG_RD, nd6_sysctl_prlist, "");
2068 static int
2069 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2071 int error;
2072 char buf[1024];
2073 struct in6_defrouter *d, *de;
2074 struct nd_defrouter *dr;
2076 if (req->newptr)
2077 return EPERM;
2078 error = 0;
2080 for (dr = TAILQ_FIRST(&nd_defrouter);
2082 dr = TAILQ_NEXT(dr, dr_entry)) {
2083 d = (struct in6_defrouter *)buf;
2084 de = (struct in6_defrouter *)(buf + sizeof(buf));
2086 if (d + 1 <= de) {
2087 bzero(d, sizeof(*d));
2088 d->rtaddr.sin6_family = AF_INET6;
2089 d->rtaddr.sin6_len = sizeof(d->rtaddr);
2090 if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2091 dr->ifp) != 0)
2092 log(LOG_ERR,
2093 "scope error in "
2094 "default router list (%s)\n",
2095 ip6_sprintf(&dr->rtaddr));
2096 d->flags = dr->flags;
2097 d->rtlifetime = dr->rtlifetime;
2098 d->expire = dr->expire;
2099 d->if_index = dr->ifp->if_index;
2100 } else
2101 panic("buffer too short");
2103 error = SYSCTL_OUT(req, buf, sizeof(*d));
2104 if (error)
2105 break;
2107 return error;
2110 static int
2111 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2113 int error;
2114 char buf[1024];
2115 struct in6_prefix *p, *pe;
2116 struct nd_prefix *pr;
2118 if (req->newptr)
2119 return EPERM;
2120 error = 0;
2122 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2123 u_short advrtrs;
2124 size_t advance;
2125 struct sockaddr_in6 *sin6, *s6;
2126 struct nd_pfxrouter *pfr;
2128 p = (struct in6_prefix *)buf;
2129 pe = (struct in6_prefix *)(buf + sizeof(buf));
2131 if (p + 1 <= pe) {
2132 bzero(p, sizeof(*p));
2133 sin6 = (struct sockaddr_in6 *)(p + 1);
2135 p->prefix = pr->ndpr_prefix;
2136 if (in6_recoverscope(&p->prefix,
2137 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2138 log(LOG_ERR,
2139 "scope error in prefix list (%s)\n",
2140 ip6_sprintf(&p->prefix.sin6_addr));
2141 p->raflags = pr->ndpr_raf;
2142 p->prefixlen = pr->ndpr_plen;
2143 p->vltime = pr->ndpr_vltime;
2144 p->pltime = pr->ndpr_pltime;
2145 p->if_index = pr->ndpr_ifp->if_index;
2146 p->expire = pr->ndpr_expire;
2147 p->refcnt = pr->ndpr_refcnt;
2148 p->flags = pr->ndpr_stateflags;
2149 p->origin = PR_ORIG_RA;
2150 advrtrs = 0;
2151 for (pfr = pr->ndpr_advrtrs.lh_first;
2152 pfr;
2153 pfr = pfr->pfr_next) {
2154 if ((void *)&sin6[advrtrs + 1] >
2155 (void *)pe) {
2156 advrtrs++;
2157 continue;
2159 s6 = &sin6[advrtrs];
2160 bzero(s6, sizeof(*s6));
2161 s6->sin6_family = AF_INET6;
2162 s6->sin6_len = sizeof(*sin6);
2163 if (in6_recoverscope(s6, &pfr->router->rtaddr,
2164 pfr->router->ifp) != 0)
2165 log(LOG_ERR,
2166 "scope error in "
2167 "prefix list (%s)\n",
2168 ip6_sprintf(&pfr->router->rtaddr));
2169 advrtrs++;
2171 p->advrtrs = advrtrs;
2172 } else
2173 panic("buffer too short");
2175 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2176 error = SYSCTL_OUT(req, buf, advance);
2177 if (error)
2178 break;
2180 return error;