kernel - Fix longstanding VM long-duration stall issues (2)
[dragonfly.git] / sys / vm / vm_pageout.c
blobb1b0b00b885227c1b018fc87c754ebb0f0a1dbc8
1 /*
2 * (MPSAFE)
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
42 * from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60 * Carnegie Mellon requests users of this software to return to
62 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
63 * School of Computer Science
64 * Carnegie Mellon University
65 * Pittsburgh PA 15213-3890
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
70 * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
71 * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
75 * The proverbial page-out daemon.
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/kthread.h>
84 #include <sys/resourcevar.h>
85 #include <sys/signalvar.h>
86 #include <sys/vnode.h>
87 #include <sys/vmmeter.h>
88 #include <sys/sysctl.h>
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <sys/lock.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/vm_extern.h>
101 #include <sys/thread2.h>
102 #include <sys/mplock2.h>
103 #include <vm/vm_page2.h>
106 * System initialization
109 /* the kernel process "vm_pageout"*/
110 static int vm_pageout_clean (vm_page_t);
111 static int vm_pageout_scan (int pass);
112 static int vm_pageout_free_page_calc (vm_size_t count);
113 struct thread *pagethread;
115 #if !defined(NO_SWAPPING)
116 /* the kernel process "vm_daemon"*/
117 static void vm_daemon (void);
118 static struct thread *vmthread;
120 static struct kproc_desc vm_kp = {
121 "vmdaemon",
122 vm_daemon,
123 &vmthread
125 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
126 #endif
129 int vm_pages_needed=0; /* Event on which pageout daemon sleeps */
130 int vm_pageout_deficit=0; /* Estimated number of pages deficit */
131 int vm_pageout_pages_needed=0; /* flag saying that the pageout daemon needs pages */
133 #if !defined(NO_SWAPPING)
134 static int vm_pageout_req_swapout; /* XXX */
135 static int vm_daemon_needed;
136 #endif
137 static int vm_max_launder = 32;
138 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
139 static int vm_pageout_full_stats_interval = 0;
140 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
141 static int defer_swap_pageouts=0;
142 static int disable_swap_pageouts=0;
144 #if defined(NO_SWAPPING)
145 static int vm_swap_enabled=0;
146 static int vm_swap_idle_enabled=0;
147 #else
148 static int vm_swap_enabled=1;
149 static int vm_swap_idle_enabled=0;
150 #endif
152 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
153 CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
155 SYSCTL_INT(_vm, OID_AUTO, max_launder,
156 CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
158 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
159 CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
161 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
162 CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
165 CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
167 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
168 CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
170 #if defined(NO_SWAPPING)
171 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
172 CTLFLAG_RD, &vm_swap_enabled, 0, "");
173 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
174 CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
175 #else
176 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
177 CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
178 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
179 CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
180 #endif
182 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
183 CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
185 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
186 CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
188 static int pageout_lock_miss;
189 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
190 CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
192 int vm_load;
193 SYSCTL_INT(_vm, OID_AUTO, vm_load,
194 CTLFLAG_RD, &vm_load, 0, "load on the VM system");
195 int vm_load_enable = 1;
196 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
197 CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
198 #ifdef INVARIANTS
199 int vm_load_debug;
200 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
201 CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
202 #endif
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207 int vm_page_max_wired; /* XXX max # of wired pages system-wide */
209 #if !defined(NO_SWAPPING)
210 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
211 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
212 static freeer_fcn_t vm_pageout_object_deactivate_pages;
213 static void vm_req_vmdaemon (void);
214 #endif
215 static void vm_pageout_page_stats(void);
218 * Update vm_load to slow down faulting processes.
220 * SMP races ok.
221 * No requirements.
223 void
224 vm_fault_ratecheck(void)
226 if (vm_pages_needed) {
227 if (vm_load < 1000)
228 ++vm_load;
229 } else {
230 if (vm_load > 0)
231 --vm_load;
236 * vm_pageout_clean:
238 * Clean the page and remove it from the laundry. The page must not be
239 * busy on-call.
241 * We set the busy bit to cause potential page faults on this page to
242 * block. Note the careful timing, however, the busy bit isn't set till
243 * late and we cannot do anything that will mess with the page.
245 * The caller must hold vm_token.
247 static int
248 vm_pageout_clean(vm_page_t m)
250 vm_object_t object;
251 vm_page_t mc[2*vm_pageout_page_count];
252 int pageout_count;
253 int ib, is, page_base;
254 vm_pindex_t pindex = m->pindex;
256 object = m->object;
259 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
260 * with the new swapper, but we could have serious problems paging
261 * out other object types if there is insufficient memory.
263 * Unfortunately, checking free memory here is far too late, so the
264 * check has been moved up a procedural level.
268 * Don't mess with the page if it's busy, held, or special
270 if ((m->hold_count != 0) ||
271 ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
272 return 0;
275 mc[vm_pageout_page_count] = m;
276 pageout_count = 1;
277 page_base = vm_pageout_page_count;
278 ib = 1;
279 is = 1;
282 * Scan object for clusterable pages.
284 * We can cluster ONLY if: ->> the page is NOT
285 * clean, wired, busy, held, or mapped into a
286 * buffer, and one of the following:
287 * 1) The page is inactive, or a seldom used
288 * active page.
289 * -or-
290 * 2) we force the issue.
292 * During heavy mmap/modification loads the pageout
293 * daemon can really fragment the underlying file
294 * due to flushing pages out of order and not trying
295 * align the clusters (which leave sporatic out-of-order
296 * holes). To solve this problem we do the reverse scan
297 * first and attempt to align our cluster, then do a
298 * forward scan if room remains.
301 more:
302 while (ib && pageout_count < vm_pageout_page_count) {
303 vm_page_t p;
305 if (ib > pindex) {
306 ib = 0;
307 break;
310 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
311 ib = 0;
312 break;
314 if (((p->queue - p->pc) == PQ_CACHE) ||
315 (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
316 ib = 0;
317 break;
319 vm_page_test_dirty(p);
320 if ((p->dirty & p->valid) == 0 ||
321 p->queue != PQ_INACTIVE ||
322 p->wire_count != 0 || /* may be held by buf cache */
323 p->hold_count != 0) { /* may be undergoing I/O */
324 ib = 0;
325 break;
327 mc[--page_base] = p;
328 ++pageout_count;
329 ++ib;
331 * alignment boundry, stop here and switch directions. Do
332 * not clear ib.
334 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
335 break;
338 while (pageout_count < vm_pageout_page_count &&
339 pindex + is < object->size) {
340 vm_page_t p;
342 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
343 break;
344 if (((p->queue - p->pc) == PQ_CACHE) ||
345 (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
346 break;
348 vm_page_test_dirty(p);
349 if ((p->dirty & p->valid) == 0 ||
350 p->queue != PQ_INACTIVE ||
351 p->wire_count != 0 || /* may be held by buf cache */
352 p->hold_count != 0) { /* may be undergoing I/O */
353 break;
355 mc[page_base + pageout_count] = p;
356 ++pageout_count;
357 ++is;
361 * If we exhausted our forward scan, continue with the reverse scan
362 * when possible, even past a page boundry. This catches boundry
363 * conditions.
365 if (ib && pageout_count < vm_pageout_page_count)
366 goto more;
369 * we allow reads during pageouts...
371 return vm_pageout_flush(&mc[page_base], pageout_count, 0);
375 * vm_pageout_flush() - launder the given pages
377 * The given pages are laundered. Note that we setup for the start of
378 * I/O ( i.e. busy the page ), mark it read-only, and bump the object
379 * reference count all in here rather then in the parent. If we want
380 * the parent to do more sophisticated things we may have to change
381 * the ordering.
383 * The caller must hold vm_token.
386 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 vm_object_t object;
389 int pageout_status[count];
390 int numpagedout = 0;
391 int i;
393 ASSERT_LWKT_TOKEN_HELD(&vm_token);
396 * Initiate I/O. Bump the vm_page_t->busy counter.
398 for (i = 0; i < count; i++) {
399 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
400 vm_page_io_start(mc[i]);
404 * We must make the pages read-only. This will also force the
405 * modified bit in the related pmaps to be cleared. The pager
406 * cannot clear the bit for us since the I/O completion code
407 * typically runs from an interrupt. The act of making the page
408 * read-only handles the case for us.
410 for (i = 0; i < count; i++) {
411 vm_page_protect(mc[i], VM_PROT_READ);
414 object = mc[0]->object;
415 vm_object_pip_add(object, count);
417 vm_pager_put_pages(object, mc, count,
418 (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
419 pageout_status);
421 for (i = 0; i < count; i++) {
422 vm_page_t mt = mc[i];
424 switch (pageout_status[i]) {
425 case VM_PAGER_OK:
426 numpagedout++;
427 break;
428 case VM_PAGER_PEND:
429 numpagedout++;
430 break;
431 case VM_PAGER_BAD:
433 * Page outside of range of object. Right now we
434 * essentially lose the changes by pretending it
435 * worked.
437 pmap_clear_modify(mt);
438 vm_page_undirty(mt);
439 break;
440 case VM_PAGER_ERROR:
441 case VM_PAGER_FAIL:
443 * A page typically cannot be paged out when we
444 * have run out of swap. We leave the page
445 * marked inactive and will try to page it out
446 * again later.
448 * Starvation of the active page list is used to
449 * determine when the system is massively memory
450 * starved.
452 break;
453 case VM_PAGER_AGAIN:
454 break;
458 * If the operation is still going, leave the page busy to
459 * block all other accesses. Also, leave the paging in
460 * progress indicator set so that we don't attempt an object
461 * collapse.
463 * For any pages which have completed synchronously,
464 * deactivate the page if we are under a severe deficit.
465 * Do not try to enter them into the cache, though, they
466 * might still be read-heavy.
468 if (pageout_status[i] != VM_PAGER_PEND) {
469 vm_object_pip_wakeup(object);
470 vm_page_io_finish(mt);
471 if (vm_page_count_severe())
472 vm_page_deactivate(mt);
473 #if 0
474 if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
475 vm_page_protect(mt, VM_PROT_READ);
476 #endif
479 return numpagedout;
482 #if !defined(NO_SWAPPING)
484 * vm_pageout_object_deactivate_pages
486 * deactivate enough pages to satisfy the inactive target
487 * requirements or if vm_page_proc_limit is set, then
488 * deactivate all of the pages in the object and its
489 * backing_objects.
491 * The map must be locked.
492 * The caller must hold vm_token.
494 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
496 static void
497 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
498 vm_pindex_t desired, int map_remove_only)
500 struct rb_vm_page_scan_info info;
501 int remove_mode;
503 if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
504 return;
506 while (object) {
507 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
508 return;
509 if (object->paging_in_progress)
510 return;
512 remove_mode = map_remove_only;
513 if (object->shadow_count > 1)
514 remove_mode = 1;
517 * scan the objects entire memory queue. spl protection is
518 * required to avoid an interrupt unbusy/free race against
519 * our busy check.
521 crit_enter();
522 info.limit = remove_mode;
523 info.map = map;
524 info.desired = desired;
525 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
526 vm_pageout_object_deactivate_pages_callback,
527 &info
529 crit_exit();
530 object = object->backing_object;
535 * The caller must hold vm_token.
537 static int
538 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
540 struct rb_vm_page_scan_info *info = data;
541 int actcount;
543 if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
544 return(-1);
546 mycpu->gd_cnt.v_pdpages++;
547 if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
548 (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
549 !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
550 return(0);
553 actcount = pmap_ts_referenced(p);
554 if (actcount) {
555 vm_page_flag_set(p, PG_REFERENCED);
556 } else if (p->flags & PG_REFERENCED) {
557 actcount = 1;
560 if ((p->queue != PQ_ACTIVE) &&
561 (p->flags & PG_REFERENCED)) {
562 vm_page_activate(p);
563 p->act_count += actcount;
564 vm_page_flag_clear(p, PG_REFERENCED);
565 } else if (p->queue == PQ_ACTIVE) {
566 if ((p->flags & PG_REFERENCED) == 0) {
567 p->act_count -= min(p->act_count, ACT_DECLINE);
568 if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
569 vm_page_busy(p);
570 vm_page_protect(p, VM_PROT_NONE);
571 vm_page_wakeup(p);
572 vm_page_deactivate(p);
573 } else {
574 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
575 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
577 } else {
578 vm_page_activate(p);
579 vm_page_flag_clear(p, PG_REFERENCED);
580 if (p->act_count < (ACT_MAX - ACT_ADVANCE))
581 p->act_count += ACT_ADVANCE;
582 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
583 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
585 } else if (p->queue == PQ_INACTIVE) {
586 vm_page_busy(p);
587 vm_page_protect(p, VM_PROT_NONE);
588 vm_page_wakeup(p);
590 return(0);
594 * Deactivate some number of pages in a map, try to do it fairly, but
595 * that is really hard to do.
597 * The caller must hold vm_token.
599 static void
600 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
602 vm_map_entry_t tmpe;
603 vm_object_t obj, bigobj;
604 int nothingwired;
606 if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
607 return;
610 bigobj = NULL;
611 nothingwired = TRUE;
614 * first, search out the biggest object, and try to free pages from
615 * that.
617 tmpe = map->header.next;
618 while (tmpe != &map->header) {
619 switch(tmpe->maptype) {
620 case VM_MAPTYPE_NORMAL:
621 case VM_MAPTYPE_VPAGETABLE:
622 obj = tmpe->object.vm_object;
623 if ((obj != NULL) && (obj->shadow_count <= 1) &&
624 ((bigobj == NULL) ||
625 (bigobj->resident_page_count < obj->resident_page_count))) {
626 bigobj = obj;
628 break;
629 default:
630 break;
632 if (tmpe->wired_count > 0)
633 nothingwired = FALSE;
634 tmpe = tmpe->next;
637 if (bigobj)
638 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
641 * Next, hunt around for other pages to deactivate. We actually
642 * do this search sort of wrong -- .text first is not the best idea.
644 tmpe = map->header.next;
645 while (tmpe != &map->header) {
646 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
647 break;
648 switch(tmpe->maptype) {
649 case VM_MAPTYPE_NORMAL:
650 case VM_MAPTYPE_VPAGETABLE:
651 obj = tmpe->object.vm_object;
652 if (obj)
653 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
654 break;
655 default:
656 break;
658 tmpe = tmpe->next;
662 * Remove all mappings if a process is swapped out, this will free page
663 * table pages.
665 if (desired == 0 && nothingwired)
666 pmap_remove(vm_map_pmap(map),
667 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
668 vm_map_unlock(map);
670 #endif
673 * Don't try to be fancy - being fancy can lead to vnode deadlocks. We
674 * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
675 * be trivially freed.
677 * The caller must hold vm_token.
679 static void
680 vm_pageout_page_free(vm_page_t m)
682 vm_object_t object = m->object;
683 int type = object->type;
685 if (type == OBJT_SWAP || type == OBJT_DEFAULT)
686 vm_object_reference(object);
687 vm_page_busy(m);
688 vm_page_protect(m, VM_PROT_NONE);
689 vm_page_free(m);
690 if (type == OBJT_SWAP || type == OBJT_DEFAULT)
691 vm_object_deallocate(object);
695 * vm_pageout_scan does the dirty work for the pageout daemon.
697 struct vm_pageout_scan_info {
698 struct proc *bigproc;
699 vm_offset_t bigsize;
702 static int vm_pageout_scan_callback(struct proc *p, void *data);
705 * The caller must hold vm_token.
707 static int
708 vm_pageout_scan(int pass)
710 struct vm_pageout_scan_info info;
711 vm_page_t m, next;
712 struct vm_page marker;
713 struct vnode *vpfailed; /* warning, allowed to be stale */
714 int maxscan, pcount;
715 int recycle_count;
716 int inactive_shortage, active_shortage;
717 int inactive_original_shortage;
718 vm_object_t object;
719 int actcount;
720 int vnodes_skipped = 0;
721 int maxlaunder;
724 * Do whatever cleanup that the pmap code can.
726 pmap_collect();
729 * Calculate our target for the number of free+cache pages we
730 * want to get to. This is higher then the number that causes
731 * allocations to stall (severe) in order to provide hysteresis,
732 * and if we don't make it all the way but get to the minimum
733 * we're happy.
735 inactive_shortage = vm_paging_target() + vm_pageout_deficit;
736 inactive_original_shortage = inactive_shortage;
737 vm_pageout_deficit = 0;
740 * Initialize our marker
742 bzero(&marker, sizeof(marker));
743 marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
744 marker.queue = PQ_INACTIVE;
745 marker.wire_count = 1;
748 * Start scanning the inactive queue for pages we can move to the
749 * cache or free. The scan will stop when the target is reached or
750 * we have scanned the entire inactive queue. Note that m->act_count
751 * is not used to form decisions for the inactive queue, only for the
752 * active queue.
754 * maxlaunder limits the number of dirty pages we flush per scan.
755 * For most systems a smaller value (16 or 32) is more robust under
756 * extreme memory and disk pressure because any unnecessary writes
757 * to disk can result in extreme performance degredation. However,
758 * systems with excessive dirty pages (especially when MAP_NOSYNC is
759 * used) will die horribly with limited laundering. If the pageout
760 * daemon cannot clean enough pages in the first pass, we let it go
761 * all out in succeeding passes.
763 if ((maxlaunder = vm_max_launder) <= 1)
764 maxlaunder = 1;
765 if (pass)
766 maxlaunder = 10000;
769 * We will generally be in a critical section throughout the
770 * scan, but we can release it temporarily when we are sitting on a
771 * non-busy page without fear. this is required to prevent an
772 * interrupt from unbusying or freeing a page prior to our busy
773 * check, leaving us on the wrong queue or checking the wrong
774 * page.
776 crit_enter();
777 rescan0:
778 vpfailed = NULL;
779 maxscan = vmstats.v_inactive_count;
780 for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
781 m != NULL && maxscan-- > 0 && inactive_shortage > 0;
782 m = next
784 mycpu->gd_cnt.v_pdpages++;
787 * Give interrupts a chance
789 crit_exit();
790 crit_enter();
793 * It's easier for some of the conditions below to just loop
794 * and catch queue changes here rather then check everywhere
795 * else.
797 if (m->queue != PQ_INACTIVE)
798 goto rescan0;
799 next = TAILQ_NEXT(m, pageq);
802 * skip marker pages
804 if (m->flags & PG_MARKER)
805 continue;
808 * A held page may be undergoing I/O, so skip it.
810 if (m->hold_count) {
811 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
812 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
813 ++vm_swapcache_inactive_heuristic;
814 continue;
818 * Dont mess with busy pages, keep in the front of the
819 * queue, most likely are being paged out.
821 if (m->busy || (m->flags & PG_BUSY)) {
822 continue;
825 if (m->object->ref_count == 0) {
827 * If the object is not being used, we ignore previous
828 * references.
830 vm_page_flag_clear(m, PG_REFERENCED);
831 pmap_clear_reference(m);
833 } else if (((m->flags & PG_REFERENCED) == 0) &&
834 (actcount = pmap_ts_referenced(m))) {
836 * Otherwise, if the page has been referenced while
837 * in the inactive queue, we bump the "activation
838 * count" upwards, making it less likely that the
839 * page will be added back to the inactive queue
840 * prematurely again. Here we check the page tables
841 * (or emulated bits, if any), given the upper level
842 * VM system not knowing anything about existing
843 * references.
845 vm_page_activate(m);
846 m->act_count += (actcount + ACT_ADVANCE);
847 continue;
851 * If the upper level VM system knows about any page
852 * references, we activate the page. We also set the
853 * "activation count" higher than normal so that we will less
854 * likely place pages back onto the inactive queue again.
856 if ((m->flags & PG_REFERENCED) != 0) {
857 vm_page_flag_clear(m, PG_REFERENCED);
858 actcount = pmap_ts_referenced(m);
859 vm_page_activate(m);
860 m->act_count += (actcount + ACT_ADVANCE + 1);
861 continue;
865 * If the upper level VM system doesn't know anything about
866 * the page being dirty, we have to check for it again. As
867 * far as the VM code knows, any partially dirty pages are
868 * fully dirty.
870 * Pages marked PG_WRITEABLE may be mapped into the user
871 * address space of a process running on another cpu. A
872 * user process (without holding the MP lock) running on
873 * another cpu may be able to touch the page while we are
874 * trying to remove it. vm_page_cache() will handle this
875 * case for us.
877 if (m->dirty == 0) {
878 vm_page_test_dirty(m);
879 } else {
880 vm_page_dirty(m);
883 if (m->valid == 0) {
885 * Invalid pages can be easily freed
887 vm_pageout_page_free(m);
888 mycpu->gd_cnt.v_dfree++;
889 --inactive_shortage;
890 } else if (m->dirty == 0) {
892 * Clean pages can be placed onto the cache queue.
893 * This effectively frees them.
895 vm_page_cache(m);
896 --inactive_shortage;
897 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
899 * Dirty pages need to be paged out, but flushing
900 * a page is extremely expensive verses freeing
901 * a clean page. Rather then artificially limiting
902 * the number of pages we can flush, we instead give
903 * dirty pages extra priority on the inactive queue
904 * by forcing them to be cycled through the queue
905 * twice before being flushed, after which the
906 * (now clean) page will cycle through once more
907 * before being freed. This significantly extends
908 * the thrash point for a heavily loaded machine.
910 vm_page_flag_set(m, PG_WINATCFLS);
911 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
912 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
913 ++vm_swapcache_inactive_heuristic;
914 } else if (maxlaunder > 0) {
916 * We always want to try to flush some dirty pages if
917 * we encounter them, to keep the system stable.
918 * Normally this number is small, but under extreme
919 * pressure where there are insufficient clean pages
920 * on the inactive queue, we may have to go all out.
922 int swap_pageouts_ok;
923 struct vnode *vp = NULL;
925 object = m->object;
927 if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
928 swap_pageouts_ok = 1;
929 } else {
930 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
931 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
932 vm_page_count_min(0));
937 * We don't bother paging objects that are "dead".
938 * Those objects are in a "rundown" state.
940 if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
941 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
942 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
943 ++vm_swapcache_inactive_heuristic;
944 continue;
948 * The object is already known NOT to be dead. It
949 * is possible for the vget() to block the whole
950 * pageout daemon, but the new low-memory handling
951 * code should prevent it.
953 * The previous code skipped locked vnodes and, worse,
954 * reordered pages in the queue. This results in
955 * completely non-deterministic operation because,
956 * quite often, a vm_fault has initiated an I/O and
957 * is holding a locked vnode at just the point where
958 * the pageout daemon is woken up.
960 * We can't wait forever for the vnode lock, we might
961 * deadlock due to a vn_read() getting stuck in
962 * vm_wait while holding this vnode. We skip the
963 * vnode if we can't get it in a reasonable amount
964 * of time.
966 * vpfailed is used to (try to) avoid the case where
967 * a large number of pages are associated with a
968 * locked vnode, which could cause the pageout daemon
969 * to stall for an excessive amount of time.
971 if (object->type == OBJT_VNODE) {
972 int flags;
974 vp = object->handle;
975 flags = LK_EXCLUSIVE | LK_NOOBJ;
976 if (vp == vpfailed)
977 flags |= LK_NOWAIT;
978 else
979 flags |= LK_TIMELOCK;
980 if (vget(vp, flags) != 0) {
981 vpfailed = vp;
982 ++pageout_lock_miss;
983 if (object->flags & OBJ_MIGHTBEDIRTY)
984 vnodes_skipped++;
985 continue;
989 * The page might have been moved to another
990 * queue during potential blocking in vget()
991 * above. The page might have been freed and
992 * reused for another vnode. The object might
993 * have been reused for another vnode.
995 if (m->queue != PQ_INACTIVE ||
996 m->object != object ||
997 object->handle != vp) {
998 if (object->flags & OBJ_MIGHTBEDIRTY)
999 vnodes_skipped++;
1000 vput(vp);
1001 continue;
1005 * The page may have been busied during the
1006 * blocking in vput(); We don't move the
1007 * page back onto the end of the queue so that
1008 * statistics are more correct if we don't.
1010 if (m->busy || (m->flags & PG_BUSY)) {
1011 vput(vp);
1012 continue;
1016 * If the page has become held it might
1017 * be undergoing I/O, so skip it
1019 if (m->hold_count) {
1020 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1021 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1022 ++vm_swapcache_inactive_heuristic;
1023 if (object->flags & OBJ_MIGHTBEDIRTY)
1024 vnodes_skipped++;
1025 vput(vp);
1026 continue;
1031 * If a page is dirty, then it is either being washed
1032 * (but not yet cleaned) or it is still in the
1033 * laundry. If it is still in the laundry, then we
1034 * start the cleaning operation.
1036 * This operation may cluster, invalidating the 'next'
1037 * pointer. To prevent an inordinate number of
1038 * restarts we use our marker to remember our place.
1040 * decrement inactive_shortage on success to account
1041 * for the (future) cleaned page. Otherwise we
1042 * could wind up laundering or cleaning too many
1043 * pages.
1045 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1046 if (vm_pageout_clean(m) != 0) {
1047 --inactive_shortage;
1048 --maxlaunder;
1050 next = TAILQ_NEXT(&marker, pageq);
1051 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1052 if (vp != NULL)
1053 vput(vp);
1058 * We want to move pages from the active queue to the inactive
1059 * queue to get the inactive queue to the inactive target. If
1060 * we still have a page shortage from above we try to directly free
1061 * clean pages instead of moving them.
1063 * If we do still have a shortage we keep track of the number of
1064 * pages we free or cache (recycle_count) as a measure of thrashing
1065 * between the active and inactive queues.
1067 * If we were able to completely satisfy the free+cache targets
1068 * from the inactive pool we limit the number of pages we move
1069 * from the active pool to the inactive pool to 2x the pages we
1070 * had removed from the inactive pool (with a minimum of 1/5 the
1071 * inactive target). If we were not able to completely satisfy
1072 * the free+cache targets we go for the whole target aggressively.
1074 * NOTE: Both variables can end up negative.
1075 * NOTE: We are still in a critical section.
1077 active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1078 if (inactive_original_shortage < vmstats.v_inactive_target / 10)
1079 inactive_original_shortage = vmstats.v_inactive_target / 10;
1080 if (inactive_shortage <= 0 &&
1081 active_shortage > inactive_original_shortage * 2) {
1082 active_shortage = inactive_original_shortage * 2;
1085 pcount = vmstats.v_active_count;
1086 recycle_count = 0;
1087 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1089 while ((m != NULL) && (pcount-- > 0) &&
1090 (inactive_shortage > 0 || active_shortage > 0)
1093 * Give interrupts a chance.
1095 crit_exit();
1096 crit_enter();
1099 * If the page was ripped out from under us, just stop.
1101 if (m->queue != PQ_ACTIVE)
1102 break;
1103 next = TAILQ_NEXT(m, pageq);
1106 * Don't deactivate pages that are busy.
1108 if ((m->busy != 0) ||
1109 (m->flags & PG_BUSY) ||
1110 (m->hold_count != 0)) {
1111 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1112 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1113 m = next;
1114 continue;
1118 * The count for pagedaemon pages is done after checking the
1119 * page for eligibility...
1121 mycpu->gd_cnt.v_pdpages++;
1124 * Check to see "how much" the page has been used and clear
1125 * the tracking access bits. If the object has no references
1126 * don't bother paying the expense.
1128 actcount = 0;
1129 if (m->object->ref_count != 0) {
1130 if (m->flags & PG_REFERENCED)
1131 ++actcount;
1132 actcount += pmap_ts_referenced(m);
1133 if (actcount) {
1134 m->act_count += ACT_ADVANCE + actcount;
1135 if (m->act_count > ACT_MAX)
1136 m->act_count = ACT_MAX;
1139 vm_page_flag_clear(m, PG_REFERENCED);
1142 * actcount is only valid if the object ref_count is non-zero.
1144 if (actcount && m->object->ref_count != 0) {
1145 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1146 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1147 } else {
1148 m->act_count -= min(m->act_count, ACT_DECLINE);
1149 if (vm_pageout_algorithm ||
1150 m->object->ref_count == 0 ||
1151 m->act_count < pass + 1
1154 * Deactivate the page. If we had a
1155 * shortage from our inactive scan try to
1156 * free (cache) the page instead.
1158 * Don't just blindly cache the page if
1159 * we do not have a shortage from the
1160 * inactive scan, that could lead to
1161 * gigabytes being moved.
1163 --active_shortage;
1164 if (inactive_shortage > 0 ||
1165 m->object->ref_count == 0) {
1166 if (inactive_shortage > 0)
1167 ++recycle_count;
1168 vm_page_busy(m);
1169 vm_page_protect(m, VM_PROT_NONE);
1170 vm_page_wakeup(m);
1171 if (m->dirty == 0 &&
1172 inactive_shortage > 0) {
1173 --inactive_shortage;
1174 vm_page_cache(m);
1175 } else {
1176 vm_page_deactivate(m);
1178 } else {
1179 vm_page_deactivate(m);
1181 } else {
1182 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1183 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1186 m = next;
1190 * The number of actually free pages can drop down to v_free_reserved,
1191 * we try to build the free count back above v_free_min. Note that
1192 * vm_paging_needed() also returns TRUE if v_free_count is not at
1193 * least v_free_min so that is the minimum we must build the free
1194 * count to.
1196 * We use a slightly higher target to improve hysteresis,
1197 * ((v_free_target + v_free_min) / 2). Since v_free_target
1198 * is usually the same as v_cache_min this maintains about
1199 * half the pages in the free queue as are in the cache queue,
1200 * providing pretty good pipelining for pageout operation.
1202 * The system operator can manipulate vm.v_cache_min and
1203 * vm.v_free_target to tune the pageout demon. Be sure
1204 * to keep vm.v_free_min < vm.v_free_target.
1206 * Note that the original paging target is to get at least
1207 * (free_min + cache_min) into (free + cache). The slightly
1208 * higher target will shift additional pages from cache to free
1209 * without effecting the original paging target in order to
1210 * maintain better hysteresis and not have the free count always
1211 * be dead-on v_free_min.
1213 * NOTE: we are still in a critical section.
1215 * Pages moved from PQ_CACHE to totally free are not counted in the
1216 * pages_freed counter.
1218 while (vmstats.v_free_count <
1219 (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1223 static int cache_rover = 0;
1224 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1225 if (m == NULL)
1226 break;
1227 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1228 m->busy ||
1229 m->hold_count ||
1230 m->wire_count) {
1231 #ifdef INVARIANTS
1232 kprintf("Warning: busy page %p found in cache\n", m);
1233 #endif
1234 vm_page_deactivate(m);
1235 continue;
1237 KKASSERT((m->flags & PG_MAPPED) == 0);
1238 KKASSERT(m->dirty == 0);
1239 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1240 vm_pageout_page_free(m);
1241 mycpu->gd_cnt.v_dfree++;
1244 crit_exit();
1246 #if !defined(NO_SWAPPING)
1248 * Idle process swapout -- run once per second.
1250 if (vm_swap_idle_enabled) {
1251 static long lsec;
1252 if (time_second != lsec) {
1253 vm_pageout_req_swapout |= VM_SWAP_IDLE;
1254 vm_req_vmdaemon();
1255 lsec = time_second;
1258 #endif
1261 * If we didn't get enough free pages, and we have skipped a vnode
1262 * in a writeable object, wakeup the sync daemon. And kick swapout
1263 * if we did not get enough free pages.
1265 if (vm_paging_target() > 0) {
1266 if (vnodes_skipped && vm_page_count_min(0))
1267 speedup_syncer();
1268 #if !defined(NO_SWAPPING)
1269 if (vm_swap_enabled && vm_page_count_target()) {
1270 vm_req_vmdaemon();
1271 vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1273 #endif
1277 * Handle catastrophic conditions. Under good conditions we should
1278 * be at the target, well beyond our minimum. If we could not even
1279 * reach our minimum the system is under heavy stress.
1281 * Determine whether we have run out of memory. This occurs when
1282 * swap_pager_full is TRUE and the only pages left in the page
1283 * queues are dirty. We will still likely have page shortages.
1285 * - swap_pager_full is set if insufficient swap was
1286 * available to satisfy a requested pageout.
1288 * - the inactive queue is bloated (4 x size of active queue),
1289 * meaning it is unable to get rid of dirty pages and.
1291 * - vm_page_count_min() without counting pages recycled from the
1292 * active queue (recycle_count) means we could not recover
1293 * enough pages to meet bare minimum needs. This test only
1294 * works if the inactive queue is bloated.
1296 * - due to a positive inactive_shortage we shifted the remaining
1297 * dirty pages from the active queue to the inactive queue
1298 * trying to find clean ones to free.
1300 if (swap_pager_full && vm_page_count_min(recycle_count))
1301 kprintf("Warning: system low on memory+swap!\n");
1302 if (swap_pager_full && vm_page_count_min(recycle_count) &&
1303 vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1304 inactive_shortage > 0) {
1306 * Kill something.
1308 info.bigproc = NULL;
1309 info.bigsize = 0;
1310 allproc_scan(vm_pageout_scan_callback, &info);
1311 if (info.bigproc != NULL) {
1312 killproc(info.bigproc, "out of swap space");
1313 info.bigproc->p_nice = PRIO_MIN;
1314 info.bigproc->p_usched->resetpriority(
1315 FIRST_LWP_IN_PROC(info.bigproc));
1316 wakeup(&vmstats.v_free_count);
1317 PRELE(info.bigproc);
1320 return(inactive_shortage);
1324 * The caller must hold vm_token and proc_token.
1326 static int
1327 vm_pageout_scan_callback(struct proc *p, void *data)
1329 struct vm_pageout_scan_info *info = data;
1330 vm_offset_t size;
1333 * Never kill system processes or init. If we have configured swap
1334 * then try to avoid killing low-numbered pids.
1336 if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1337 ((p->p_pid < 48) && (vm_swap_size != 0))) {
1338 return (0);
1342 * if the process is in a non-running type state,
1343 * don't touch it.
1345 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1346 return (0);
1349 * Get the approximate process size. Note that anonymous pages
1350 * with backing swap will be counted twice, but there should not
1351 * be too many such pages due to the stress the VM system is
1352 * under at this point.
1354 size = vmspace_anonymous_count(p->p_vmspace) +
1355 vmspace_swap_count(p->p_vmspace);
1358 * If the this process is bigger than the biggest one
1359 * remember it.
1361 if (info->bigsize < size) {
1362 if (info->bigproc)
1363 PRELE(info->bigproc);
1364 PHOLD(p);
1365 info->bigproc = p;
1366 info->bigsize = size;
1368 return(0);
1372 * This routine tries to maintain the pseudo LRU active queue,
1373 * so that during long periods of time where there is no paging,
1374 * that some statistic accumulation still occurs. This code
1375 * helps the situation where paging just starts to occur.
1377 * The caller must hold vm_token.
1379 static void
1380 vm_pageout_page_stats(void)
1382 vm_page_t m,next;
1383 int pcount,tpcount; /* Number of pages to check */
1384 static int fullintervalcount = 0;
1385 int page_shortage;
1387 page_shortage =
1388 (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1389 (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1391 if (page_shortage <= 0)
1392 return;
1394 crit_enter();
1396 pcount = vmstats.v_active_count;
1397 fullintervalcount += vm_pageout_stats_interval;
1398 if (fullintervalcount < vm_pageout_full_stats_interval) {
1399 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1400 if (pcount > tpcount)
1401 pcount = tpcount;
1402 } else {
1403 fullintervalcount = 0;
1406 m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1407 while ((m != NULL) && (pcount-- > 0)) {
1408 int actcount;
1410 if (m->queue != PQ_ACTIVE) {
1411 break;
1414 next = TAILQ_NEXT(m, pageq);
1416 * Don't deactivate pages that are busy.
1418 if ((m->busy != 0) ||
1419 (m->flags & PG_BUSY) ||
1420 (m->hold_count != 0)) {
1421 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1422 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1423 m = next;
1424 continue;
1427 actcount = 0;
1428 if (m->flags & PG_REFERENCED) {
1429 vm_page_flag_clear(m, PG_REFERENCED);
1430 actcount += 1;
1433 actcount += pmap_ts_referenced(m);
1434 if (actcount) {
1435 m->act_count += ACT_ADVANCE + actcount;
1436 if (m->act_count > ACT_MAX)
1437 m->act_count = ACT_MAX;
1438 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1439 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1440 } else {
1441 if (m->act_count == 0) {
1443 * We turn off page access, so that we have
1444 * more accurate RSS stats. We don't do this
1445 * in the normal page deactivation when the
1446 * system is loaded VM wise, because the
1447 * cost of the large number of page protect
1448 * operations would be higher than the value
1449 * of doing the operation.
1451 vm_page_busy(m);
1452 vm_page_protect(m, VM_PROT_NONE);
1453 vm_page_wakeup(m);
1454 vm_page_deactivate(m);
1455 } else {
1456 m->act_count -= min(m->act_count, ACT_DECLINE);
1457 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1458 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1462 m = next;
1464 crit_exit();
1468 * The caller must hold vm_token.
1470 static int
1471 vm_pageout_free_page_calc(vm_size_t count)
1473 if (count < vmstats.v_page_count)
1474 return 0;
1476 * free_reserved needs to include enough for the largest swap pager
1477 * structures plus enough for any pv_entry structs when paging.
1479 if (vmstats.v_page_count > 1024)
1480 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1481 else
1482 vmstats.v_free_min = 4;
1483 vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1484 vmstats.v_interrupt_free_min;
1485 vmstats.v_free_reserved = vm_pageout_page_count +
1486 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1487 vmstats.v_free_severe = vmstats.v_free_min / 2;
1488 vmstats.v_free_min += vmstats.v_free_reserved;
1489 vmstats.v_free_severe += vmstats.v_free_reserved;
1490 return 1;
1495 * vm_pageout is the high level pageout daemon.
1497 * No requirements.
1499 static void
1500 vm_pageout_thread(void)
1502 int pass;
1503 int inactive_shortage;
1506 * Permanently hold vm_token.
1508 lwkt_gettoken(&vm_token);
1511 * Initialize some paging parameters.
1513 curthread->td_flags |= TDF_SYSTHREAD;
1515 vmstats.v_interrupt_free_min = 2;
1516 if (vmstats.v_page_count < 2000)
1517 vm_pageout_page_count = 8;
1519 vm_pageout_free_page_calc(vmstats.v_page_count);
1522 * v_free_target and v_cache_min control pageout hysteresis. Note
1523 * that these are more a measure of the VM cache queue hysteresis
1524 * then the VM free queue. Specifically, v_free_target is the
1525 * high water mark (free+cache pages).
1527 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1528 * low water mark, while v_free_min is the stop. v_cache_min must
1529 * be big enough to handle memory needs while the pageout daemon
1530 * is signalled and run to free more pages.
1532 if (vmstats.v_free_count > 6144)
1533 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1534 else
1535 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1538 * NOTE: With the new buffer cache b_act_count we want the default
1539 * inactive target to be a percentage of available memory.
1541 * The inactive target essentially determines the minimum
1542 * number of 'temporary' pages capable of caching one-time-use
1543 * files when the VM system is otherwise full of pages
1544 * belonging to multi-time-use files or active program data.
1546 * NOTE: The inactive target is aggressively persued only if the
1547 * inactive queue becomes too small. If the inactive queue
1548 * is large enough to satisfy page movement to free+cache
1549 * then it is repopulated more slowly from the active queue.
1550 * This allows a general inactive_target default to be set.
1552 * There is an issue here for processes which sit mostly idle
1553 * 'overnight', such as sshd, tcsh, and X. Any movement from
1554 * the active queue will eventually cause such pages to
1555 * recycle eventually causing a lot of paging in the morning.
1556 * To reduce the incidence of this pages cycled out of the
1557 * buffer cache are moved directly to the inactive queue if
1558 * they were only used once or twice.
1560 * The vfs.vm_cycle_point sysctl can be used to adjust this.
1561 * Increasing the value (up to 64) increases the number of
1562 * buffer recyclements which go directly to the inactive queue.
1564 if (vmstats.v_free_count > 2048) {
1565 vmstats.v_cache_min = vmstats.v_free_target;
1566 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1567 } else {
1568 vmstats.v_cache_min = 0;
1569 vmstats.v_cache_max = 0;
1571 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1573 /* XXX does not really belong here */
1574 if (vm_page_max_wired == 0)
1575 vm_page_max_wired = vmstats.v_free_count / 3;
1577 if (vm_pageout_stats_max == 0)
1578 vm_pageout_stats_max = vmstats.v_free_target;
1581 * Set interval in seconds for stats scan.
1583 if (vm_pageout_stats_interval == 0)
1584 vm_pageout_stats_interval = 5;
1585 if (vm_pageout_full_stats_interval == 0)
1586 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1590 * Set maximum free per pass
1592 if (vm_pageout_stats_free_max == 0)
1593 vm_pageout_stats_free_max = 5;
1595 swap_pager_swap_init();
1596 pass = 0;
1599 * The pageout daemon is never done, so loop forever.
1601 while (TRUE) {
1602 int error;
1605 * Wait for an action request. If we timeout check to
1606 * see if paging is needed (in case the normal wakeup
1607 * code raced us).
1609 if (vm_pages_needed == 0) {
1610 error = tsleep(&vm_pages_needed,
1611 0, "psleep",
1612 vm_pageout_stats_interval * hz);
1613 if (error &&
1614 vm_paging_needed() == 0 &&
1615 vm_pages_needed == 0) {
1616 vm_pageout_page_stats();
1617 continue;
1619 vm_pages_needed = 1;
1622 mycpu->gd_cnt.v_pdwakeups++;
1625 * Scan for pageout. Try to avoid thrashing the system
1626 * with activity.
1628 inactive_shortage = vm_pageout_scan(pass);
1629 if (inactive_shortage > 0) {
1630 ++pass;
1631 if (swap_pager_full) {
1633 * Running out of memory, catastrophic back-off
1634 * to one-second intervals.
1636 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1637 } else if (pass < 10 && vm_pages_needed > 1) {
1639 * Normal operation, additional processes
1640 * have already kicked us. Retry immediately.
1642 } else if (pass < 10) {
1644 * Normal operation, fewer processes. Delay
1645 * a bit but allow wakeups.
1647 vm_pages_needed = 0;
1648 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1649 vm_pages_needed = 1;
1650 } else {
1652 * We've taken too many passes, forced delay.
1654 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1656 } else {
1658 * Interlocked wakeup of waiters (non-optional)
1660 pass = 0;
1661 if (vm_pages_needed && !vm_page_count_min(0)) {
1662 wakeup(&vmstats.v_free_count);
1663 vm_pages_needed = 0;
1669 static struct kproc_desc page_kp = {
1670 "pagedaemon",
1671 vm_pageout_thread,
1672 &pagethread
1674 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
1678 * Called after allocating a page out of the cache or free queue
1679 * to possibly wake the pagedaemon up to replentish our supply.
1681 * We try to generate some hysteresis by waking the pagedaemon up
1682 * when our free+cache pages go below the free_min+cache_min level.
1683 * The pagedaemon tries to get the count back up to at least the
1684 * minimum, and through to the target level if possible.
1686 * If the pagedaemon is already active bump vm_pages_needed as a hint
1687 * that there are even more requests pending.
1689 * SMP races ok?
1690 * No requirements.
1692 void
1693 pagedaemon_wakeup(void)
1695 if (vm_paging_needed() && curthread != pagethread) {
1696 if (vm_pages_needed == 0) {
1697 vm_pages_needed = 1; /* SMP race ok */
1698 wakeup(&vm_pages_needed);
1699 } else if (vm_page_count_min(0)) {
1700 ++vm_pages_needed; /* SMP race ok */
1705 #if !defined(NO_SWAPPING)
1708 * SMP races ok?
1709 * No requirements.
1711 static void
1712 vm_req_vmdaemon(void)
1714 static int lastrun = 0;
1716 if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1717 wakeup(&vm_daemon_needed);
1718 lastrun = ticks;
1722 static int vm_daemon_callback(struct proc *p, void *data __unused);
1725 * No requirements.
1727 static void
1728 vm_daemon(void)
1731 * Permanently hold vm_token.
1733 lwkt_gettoken(&vm_token);
1735 while (TRUE) {
1736 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1737 if (vm_pageout_req_swapout) {
1738 swapout_procs(vm_pageout_req_swapout);
1739 vm_pageout_req_swapout = 0;
1742 * scan the processes for exceeding their rlimits or if
1743 * process is swapped out -- deactivate pages
1745 allproc_scan(vm_daemon_callback, NULL);
1750 * Caller must hold vm_token and proc_token.
1752 static int
1753 vm_daemon_callback(struct proc *p, void *data __unused)
1755 vm_pindex_t limit, size;
1758 * if this is a system process or if we have already
1759 * looked at this process, skip it.
1761 if (p->p_flag & (P_SYSTEM | P_WEXIT))
1762 return (0);
1765 * if the process is in a non-running type state,
1766 * don't touch it.
1768 if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1769 return (0);
1772 * get a limit
1774 limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1775 p->p_rlimit[RLIMIT_RSS].rlim_max));
1778 * let processes that are swapped out really be
1779 * swapped out. Set the limit to nothing to get as
1780 * many pages out to swap as possible.
1782 if (p->p_flag & P_SWAPPEDOUT)
1783 limit = 0;
1785 size = vmspace_resident_count(p->p_vmspace);
1786 if (limit >= 0 && size >= limit) {
1787 vm_pageout_map_deactivate_pages(
1788 &p->p_vmspace->vm_map, limit);
1790 return (0);
1793 #endif