kernel - Refactor Xinvltlb (3)
[dragonfly.git] / sys / platform / vkernel64 / platform / pmap_inval.c
blob85a325c2dfb7c04a9756afb2b087168428db74e5
1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/platform/vkernel/platform/pmap_inval.c,v 1.4 2007/07/02 02:22:58 dillon Exp $
38 * pmap invalidation support code. Certain hardware requirements must
39 * be dealt with when manipulating page table entries and page directory
40 * entries within a pmap. In particular, we cannot safely manipulate
41 * page tables which are in active use by another cpu (even if it is
42 * running in userland) for two reasons: First, TLB writebacks will
43 * race against our own modifications and tests. Second, even if we
44 * were to use bus-locked instruction we can still screw up the
45 * target cpu's instruction pipeline due to Intel cpu errata.
47 * For our virtual page tables, the real kernel will handle SMP interactions
48 * with pmaps that may be active on other cpus. Even so, we have to be
49 * careful about bit setting races particularly when we are trying to clean
50 * a page and test the modified bit to avoid races where the modified bit
51 * might get set after our poll but before we clear the field.
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/vmmeter.h>
58 #include <sys/thread2.h>
59 #include <sys/cdefs.h>
60 #include <sys/mman.h>
61 #include <sys/vmspace.h>
62 #include <sys/vmm.h>
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_object.h>
68 #include <machine/cputypes.h>
69 #include <machine/md_var.h>
70 #include <machine/specialreg.h>
71 #include <machine/smp.h>
72 #include <machine/globaldata.h>
73 #include <machine/pmap.h>
74 #include <machine/pmap_inval.h>
76 #include <unistd.h>
77 #include <pthread.h>
79 extern int vmm_enabled;
81 static __inline
82 void
83 vmm_cpu_invltlb(void)
85 /* For VMM mode forces vmmexit/resume */
86 uint64_t rax = -1;
87 __asm __volatile("syscall;"
89 : "a" (rax)
90 :);
94 * Invalidate va in the TLB on the current cpu
96 static __inline
97 void
98 pmap_inval_cpu(struct pmap *pmap, vm_offset_t va, size_t bytes)
100 if (pmap == &kernel_pmap) {
101 madvise((void *)va, bytes, MADV_INVAL);
102 } else {
103 vmspace_mcontrol(pmap, (void *)va, bytes, MADV_INVAL, 0);
108 * This is a bit of a mess because we don't know what virtual cpus are
109 * mapped to real cpus. Basically try to optimize the degenerate cases
110 * (primarily related to user processes with only one thread or only one
111 * running thread), and shunt all the rest to the host cpu. The host cpu
112 * will invalidate all real cpu's the vkernel is running on.
114 * This can't optimize situations where a pmap is only mapped to some of
115 * the virtual cpus, though shunting to the real host will still be faster
116 * if the virtual kernel processes are running on fewer real-host cpus.
117 * (And probably will be faster anyway since there's no round-trip signaling
118 * overhead).
120 * NOTE: The critical section protects against preemption while the pmap
121 * is locked, which could otherwise result in a deadlock.
123 static __inline
124 void
125 guest_sync_addr(struct pmap *pmap,
126 volatile vpte_t *dst_ptep, volatile vpte_t *src_ptep)
128 globaldata_t gd = mycpu;
129 cpulock_t olock;
130 cpulock_t nlock;
133 * Lock the pmap
135 crit_enter();
136 for (;;) {
137 olock = pmap->pm_active_lock;
138 cpu_ccfence();
139 if ((olock & CPULOCK_EXCL) == 0) {
140 nlock = olock | CPULOCK_EXCL;
141 if (atomic_cmpset_int(&pmap->pm_active_lock,
142 olock, nlock)) {
143 break;
146 cpu_pause();
147 lwkt_process_ipiq();
148 pthread_yield();
152 * Update the pte and synchronize with other cpus. If we can update
153 * it trivially, do so.
155 if (CPUMASK_TESTZERO(pmap->pm_active) ||
156 CPUMASK_CMPMASKEQ(pmap->pm_active, gd->gd_cpumask)) {
157 if (src_ptep)
158 *dst_ptep = *src_ptep;
159 vmm_cpu_invltlb();
160 } else {
161 vmm_guest_sync_addr(__DEVOLATILE(void *, dst_ptep),
162 __DEVOLATILE(void *, src_ptep));
166 * Unlock the pmap
168 atomic_clear_int(&pmap->pm_active_lock, CPULOCK_EXCL);
169 crit_exit();
173 * Invalidate a pte in a pmap and synchronize with target cpus
174 * as required. Throw away the modified and access bits. Use
175 * pmap_clean_pte() to do the same thing but also get an interlocked
176 * modified/access status.
178 * Clearing the field first (basically clearing VPTE_V) prevents any
179 * new races from occuring while we invalidate the TLB (i.e. the pmap
180 * on the real cpu), then clear it again to clean out any race that
181 * might have occured before the invalidation completed.
183 void
184 pmap_inval_pte(volatile vpte_t *ptep, struct pmap *pmap, vm_offset_t va)
186 vpte_t pte;
188 if (vmm_enabled == 0) {
189 *ptep = 0;
190 pmap_inval_cpu(pmap, va, PAGE_SIZE);
191 } else {
192 pte = 0;
193 guest_sync_addr(pmap, ptep, &pte);
198 * Invalidate the tlb for a range of virtual addresses across all cpus
199 * belonging to the pmap.
201 void
202 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
204 if (vmm_enabled == 0) {
205 pmap_inval_cpu(pmap, sva, eva - sva);
206 } else {
207 guest_sync_addr(pmap, NULL, NULL);
212 * Same as pmap_inval_pte() but only synchronize with the current
213 * cpu. For the moment its the same as the non-quick version.
215 void
216 pmap_inval_pte_quick(volatile vpte_t *ptep, struct pmap *pmap, vm_offset_t va)
218 *ptep = 0;
219 if (vmm_enabled)
220 vmm_cpu_invltlb();
221 else
222 pmap_inval_cpu(pmap, va, PAGE_SIZE);
226 * Invalidating page directory entries requires some additional
227 * sophistication. The cachemask must be cleared so the kernel
228 * resynchronizes its temporary page table mappings cache.
230 void
231 pmap_inval_pde(volatile vpte_t *ptep, struct pmap *pmap, vm_offset_t va)
233 vpte_t pte;
235 if (vmm_enabled == 0) {
236 *ptep = 0;
237 pmap_inval_cpu(pmap, va, SEG_SIZE);
238 } else if (CPUMASK_TESTMASK(pmap->pm_active,
239 mycpu->gd_other_cpus) == 0) {
240 *ptep = 0;
241 vmm_cpu_invltlb();
242 } else {
243 pte = 0;
244 guest_sync_addr(pmap, ptep, &pte);
248 void
249 pmap_inval_pde_quick(volatile vpte_t *ptep, struct pmap *pmap, vm_offset_t va)
251 pmap_inval_pde(ptep, pmap, va);
255 * These carefully handle interactions with other cpus and return
256 * the original vpte. Clearing VPTE_RW prevents us from racing the
257 * setting of VPTE_M, allowing us to invalidate the tlb (the real cpu's
258 * pmap) and get good status for VPTE_M.
260 * When messing with page directory entries we have to clear the cpu
261 * mask to force a reload of the kernel's page table mapping cache.
263 * clean: clear VPTE_M and VPTE_RW
264 * setro: clear VPTE_RW
265 * load&clear: clear entire field
267 #include<stdio.h>
268 vpte_t
269 pmap_clean_pte(volatile vpte_t *ptep, struct pmap *pmap, vm_offset_t va)
271 vpte_t pte;
273 pte = *ptep;
274 if (pte & VPTE_V) {
275 atomic_clear_long(ptep, VPTE_RW); /* XXX */
276 if (vmm_enabled == 0) {
277 pmap_inval_cpu(pmap, va, PAGE_SIZE);
278 pte = *ptep;
279 } else {
280 guest_sync_addr(pmap, &pte, ptep);
282 atomic_clear_long(ptep, VPTE_RW|VPTE_M);
284 return(pte);
287 vpte_t
288 pmap_clean_pde(volatile vpte_t *ptep, struct pmap *pmap, vm_offset_t va)
290 vpte_t pte;
292 pte = *ptep;
293 if (pte & VPTE_V) {
294 atomic_clear_long(ptep, VPTE_RW);
295 if (vmm_enabled == 0) {
296 pmap_inval_cpu(pmap, va, SEG_SIZE);
297 pte = *ptep;
298 } else {
299 guest_sync_addr(pmap, &pte, ptep);
301 atomic_clear_long(ptep, VPTE_RW|VPTE_M);
303 return(pte);
307 * This is an odd case and I'm not sure whether it even occurs in normal
308 * operation. Turn off write access to the page, clean out the tlb
309 * (the real cpu's pmap), and deal with any VPTE_M race that may have
310 * occured. VPTE_M is not cleared.
312 vpte_t
313 pmap_setro_pte(volatile vpte_t *ptep, struct pmap *pmap, vm_offset_t va)
315 vpte_t pte;
316 vpte_t npte;
318 pte = *ptep;
319 if (pte & VPTE_V) {
320 atomic_clear_long(ptep, VPTE_RW);
321 if (vmm_enabled == 0) {
322 pmap_inval_cpu(pmap, va, PAGE_SIZE);
323 pte |= *ptep & VPTE_M;
324 } else {
325 guest_sync_addr(pmap, &npte, ptep);
326 pte |= npte & VPTE_M;
329 return(pte);
333 * This is a combination of pmap_inval_pte() and pmap_clean_pte().
334 * Firts prevent races with the 'A' and 'M' bits, then clean out
335 * the tlb (the real cpu's pmap), then incorporate any races that
336 * may have occured in the mean time, and finally zero out the pte.
338 vpte_t
339 pmap_inval_loadandclear(volatile vpte_t *ptep, struct pmap *pmap,
340 vm_offset_t va)
342 vpte_t pte;
343 vpte_t npte;
345 pte = *ptep;
346 if (pte & VPTE_V) {
347 pte = *ptep;
348 atomic_clear_long(ptep, VPTE_RW);
349 if (vmm_enabled == 0) {
350 pmap_inval_cpu(pmap, va, PAGE_SIZE);
351 pte |= *ptep & (VPTE_A | VPTE_M);
352 } else {
353 guest_sync_addr(pmap, &npte, ptep);
354 pte |= npte & (VPTE_A | VPTE_M);
357 *ptep = 0;
358 return(pte);
361 void
362 cpu_invlpg(void *addr)
364 if (vmm_enabled)
365 vmm_cpu_invltlb(); /* For VMM mode forces vmmexit/resume */
366 else
367 madvise(addr, PAGE_SIZE, MADV_INVAL);
370 void
371 cpu_invltlb(void)
373 if (vmm_enabled)
374 vmm_cpu_invltlb(); /* For VMM mode forces vmmexit/resume */
375 else
376 madvise((void *)KvaStart, KvaEnd - KvaStart, MADV_INVAL);
379 void
380 smp_invltlb(void)
382 /* XXX must invalidate the tlb on all cpus */
383 /* at the moment pmap_inval_pte_quick */
384 /* do nothing */