msk(4): Recognize 88E8402
[dragonfly.git] / sys / dev / netif / msk / if_msk.c
blob3c80ef4a4f9fd0a746c38be96802f9a493e00789
1 /******************************************************************************
3 * Name : sky2.c
4 * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5 * Version: $Revision: 1.23 $
6 * Date : $Date: 2005/12/22 09:04:11 $
7 * Purpose: Main driver source file
9 *****************************************************************************/
11 /******************************************************************************
13 * LICENSE:
14 * Copyright (C) Marvell International Ltd. and/or its affiliates
16 * The computer program files contained in this folder ("Files")
17 * are provided to you under the BSD-type license terms provided
18 * below, and any use of such Files and any derivative works
19 * thereof created by you shall be governed by the following terms
20 * and conditions:
22 * - Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials provided
27 * with the distribution.
28 * - Neither the name of Marvell nor the names of its contributors
29 * may be used to endorse or promote products derived from this
30 * software without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
39 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43 * OF THE POSSIBILITY OF SUCH DAMAGE.
44 * /LICENSE
46 *****************************************************************************/
48 /*-
49 * Copyright (c) 1997, 1998, 1999, 2000
50 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
52 * Redistribution and use in source and binary forms, with or without
53 * modification, are permitted provided that the following conditions
54 * are met:
55 * 1. Redistributions of source code must retain the above copyright
56 * notice, this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright
58 * notice, this list of conditions and the following disclaimer in the
59 * documentation and/or other materials provided with the distribution.
60 * 3. All advertising materials mentioning features or use of this software
61 * must display the following acknowledgement:
62 * This product includes software developed by Bill Paul.
63 * 4. Neither the name of the author nor the names of any co-contributors
64 * may be used to endorse or promote products derived from this software
65 * without specific prior written permission.
67 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77 * THE POSSIBILITY OF SUCH DAMAGE.
79 /*-
80 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
82 * Permission to use, copy, modify, and distribute this software for any
83 * purpose with or without fee is hereby granted, provided that the above
84 * copyright notice and this permission notice appear in all copies.
86 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
98 * Device driver for the Marvell Yukon II Ethernet controller.
99 * Due to lack of documentation, this driver is based on the code from
100 * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
103 #include <sys/param.h>
104 #include <sys/endian.h>
105 #include <sys/kernel.h>
106 #include <sys/bus.h>
107 #include <sys/in_cksum.h>
108 #include <sys/interrupt.h>
109 #include <sys/malloc.h>
110 #include <sys/proc.h>
111 #include <sys/rman.h>
112 #include <sys/serialize.h>
113 #include <sys/socket.h>
114 #include <sys/sockio.h>
115 #include <sys/sysctl.h>
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/bpf.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/ifq_var.h>
124 #include <net/vlan/if_vlan_var.h>
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
129 #include <dev/netif/mii_layer/miivar.h>
131 #include <bus/pci/pcireg.h>
132 #include <bus/pci/pcivar.h>
134 #include "if_mskreg.h"
136 /* "device miibus" required. See GENERIC if you get errors here. */
137 #include "miibus_if.h"
139 #define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
142 * Devices supported by this driver.
144 static const struct msk_product {
145 uint16_t msk_vendorid;
146 uint16_t msk_deviceid;
147 const char *msk_name;
148 } msk_products[] = {
149 { VENDORID_SK, DEVICEID_SK_YUKON2,
150 "SK-9Sxx Gigabit Ethernet" },
151 { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
152 "SK-9Exx Gigabit Ethernet"},
153 { VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
154 "Marvell Yukon 88E8021CU Gigabit Ethernet" },
155 { VENDORID_MARVELL, DEVICEID_MRVL_8021X,
156 "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
157 { VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
158 "Marvell Yukon 88E8022CU Gigabit Ethernet" },
159 { VENDORID_MARVELL, DEVICEID_MRVL_8022X,
160 "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
161 { VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
162 "Marvell Yukon 88E8061CU Gigabit Ethernet" },
163 { VENDORID_MARVELL, DEVICEID_MRVL_8061X,
164 "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
165 { VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
166 "Marvell Yukon 88E8062CU Gigabit Ethernet" },
167 { VENDORID_MARVELL, DEVICEID_MRVL_8062X,
168 "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
169 { VENDORID_MARVELL, DEVICEID_MRVL_8035,
170 "Marvell Yukon 88E8035 Fast Ethernet" },
171 { VENDORID_MARVELL, DEVICEID_MRVL_8036,
172 "Marvell Yukon 88E8036 Fast Ethernet" },
173 { VENDORID_MARVELL, DEVICEID_MRVL_8038,
174 "Marvell Yukon 88E8038 Fast Ethernet" },
175 { VENDORID_MARVELL, DEVICEID_MRVL_8039,
176 "Marvell Yukon 88E8039 Fast Ethernet" },
177 { VENDORID_MARVELL, DEVICEID_MRVL_8040,
178 "Marvell Yukon 88E8040 Fast Ethernet" },
179 { VENDORID_MARVELL, DEVICEID_MRVL_8040T,
180 "Marvell Yukon 88E8040T Fast Ethernet" },
181 { VENDORID_MARVELL, DEVICEID_MRVL_8042,
182 "Marvell Yukon 88E8042 Fast Ethernet" },
183 { VENDORID_MARVELL, DEVICEID_MRVL_8048,
184 "Marvell Yukon 88E8048 Fast Ethernet" },
185 { VENDORID_MARVELL, DEVICEID_MRVL_4361,
186 "Marvell Yukon 88E8050 Gigabit Ethernet" },
187 { VENDORID_MARVELL, DEVICEID_MRVL_4360,
188 "Marvell Yukon 88E8052 Gigabit Ethernet" },
189 { VENDORID_MARVELL, DEVICEID_MRVL_4362,
190 "Marvell Yukon 88E8053 Gigabit Ethernet" },
191 { VENDORID_MARVELL, DEVICEID_MRVL_4363,
192 "Marvell Yukon 88E8055 Gigabit Ethernet" },
193 { VENDORID_MARVELL, DEVICEID_MRVL_4364,
194 "Marvell Yukon 88E8056 Gigabit Ethernet" },
195 { VENDORID_MARVELL, DEVICEID_MRVL_4365,
196 "Marvell Yukon 88E8070 Gigabit Ethernet" },
197 { VENDORID_MARVELL, DEVICEID_MRVL_436A,
198 "Marvell Yukon 88E8058 Gigabit Ethernet" },
199 { VENDORID_MARVELL, DEVICEID_MRVL_436B,
200 "Marvell Yukon 88E8071 Gigabit Ethernet" },
201 { VENDORID_MARVELL, DEVICEID_MRVL_436C,
202 "Marvell Yukon 88E8072 Gigabit Ethernet" },
203 { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
204 "D-Link 550SX Gigabit Ethernet" },
205 { VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
206 "D-Link 560T Gigabit Ethernet" },
207 { 0, 0, NULL }
210 static const char *model_name[] = {
211 "Yukon XL",
212 "Yukon EC Ultra",
213 "Yukon EX",
214 "Yukon EC",
215 "Yukon FE",
216 "Yukon FE+"
219 static int mskc_probe(device_t);
220 static int mskc_attach(device_t);
221 static int mskc_detach(device_t);
222 static int mskc_shutdown(device_t);
223 static int mskc_suspend(device_t);
224 static int mskc_resume(device_t);
225 static void mskc_intr(void *);
227 static void mskc_reset(struct msk_softc *);
228 static void mskc_set_imtimer(struct msk_softc *);
229 static void mskc_intr_hwerr(struct msk_softc *);
230 static int mskc_handle_events(struct msk_softc *);
231 static void mskc_phy_power(struct msk_softc *, int);
232 static int mskc_setup_rambuffer(struct msk_softc *);
233 static int mskc_status_dma_alloc(struct msk_softc *);
234 static void mskc_status_dma_free(struct msk_softc *);
235 static int mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
236 static int mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
238 static int msk_probe(device_t);
239 static int msk_attach(device_t);
240 static int msk_detach(device_t);
241 static int msk_miibus_readreg(device_t, int, int);
242 static int msk_miibus_writereg(device_t, int, int, int);
243 static void msk_miibus_statchg(device_t);
245 static void msk_init(void *);
246 static int msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
247 static void msk_start(struct ifnet *);
248 static void msk_watchdog(struct ifnet *);
249 static int msk_mediachange(struct ifnet *);
250 static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
252 static void msk_tick(void *);
253 static void msk_intr_phy(struct msk_if_softc *);
254 static void msk_intr_gmac(struct msk_if_softc *);
255 static __inline void
256 msk_rxput(struct msk_if_softc *);
257 static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
258 static void msk_rxeof(struct msk_if_softc *, uint32_t, int,
259 struct mbuf_chain *);
260 static void msk_txeof(struct msk_if_softc *, int);
261 static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
262 static void msk_set_rambuffer(struct msk_if_softc *);
263 static void msk_stop(struct msk_if_softc *);
265 static int msk_txrx_dma_alloc(struct msk_if_softc *);
266 static void msk_txrx_dma_free(struct msk_if_softc *);
267 static int msk_init_rx_ring(struct msk_if_softc *);
268 static void msk_init_tx_ring(struct msk_if_softc *);
269 static __inline void
270 msk_discard_rxbuf(struct msk_if_softc *, int);
271 static int msk_newbuf(struct msk_if_softc *, int, int);
272 static int msk_encap(struct msk_if_softc *, struct mbuf **);
274 #ifdef MSK_JUMBO
275 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
276 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
277 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
278 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
279 static void *msk_jalloc(struct msk_if_softc *);
280 static void msk_jfree(void *, void *);
281 #endif
283 static int msk_phy_readreg(struct msk_if_softc *, int, int);
284 static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
286 static void msk_rxfilter(struct msk_if_softc *);
287 static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
288 static void msk_set_tx_stfwd(struct msk_if_softc *);
290 static int msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
291 void **, bus_addr_t *, bus_dmamap_t *);
292 static void msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
294 static device_method_t mskc_methods[] = {
295 /* Device interface */
296 DEVMETHOD(device_probe, mskc_probe),
297 DEVMETHOD(device_attach, mskc_attach),
298 DEVMETHOD(device_detach, mskc_detach),
299 DEVMETHOD(device_suspend, mskc_suspend),
300 DEVMETHOD(device_resume, mskc_resume),
301 DEVMETHOD(device_shutdown, mskc_shutdown),
303 /* bus interface */
304 DEVMETHOD(bus_print_child, bus_generic_print_child),
305 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
307 { NULL, NULL }
310 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
311 static devclass_t mskc_devclass;
313 static device_method_t msk_methods[] = {
314 /* Device interface */
315 DEVMETHOD(device_probe, msk_probe),
316 DEVMETHOD(device_attach, msk_attach),
317 DEVMETHOD(device_detach, msk_detach),
318 DEVMETHOD(device_shutdown, bus_generic_shutdown),
320 /* bus interface */
321 DEVMETHOD(bus_print_child, bus_generic_print_child),
322 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
324 /* MII interface */
325 DEVMETHOD(miibus_readreg, msk_miibus_readreg),
326 DEVMETHOD(miibus_writereg, msk_miibus_writereg),
327 DEVMETHOD(miibus_statchg, msk_miibus_statchg),
329 { NULL, NULL }
332 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
333 static devclass_t msk_devclass;
335 DECLARE_DUMMY_MODULE(if_msk);
336 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, NULL, NULL);
337 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, NULL, NULL);
338 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL);
340 static int mskc_intr_rate = 0;
341 static int mskc_process_limit = MSK_PROC_DEFAULT;
343 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
344 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
346 static int
347 msk_miibus_readreg(device_t dev, int phy, int reg)
349 struct msk_if_softc *sc_if;
351 if (phy != PHY_ADDR_MARV)
352 return (0);
354 sc_if = device_get_softc(dev);
356 return (msk_phy_readreg(sc_if, phy, reg));
359 static int
360 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
362 struct msk_softc *sc;
363 int i, val;
365 sc = sc_if->msk_softc;
367 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
368 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
370 for (i = 0; i < MSK_TIMEOUT; i++) {
371 DELAY(1);
372 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
373 if ((val & GM_SMI_CT_RD_VAL) != 0) {
374 val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
375 break;
379 if (i == MSK_TIMEOUT) {
380 if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
381 val = 0;
384 return (val);
387 static int
388 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
390 struct msk_if_softc *sc_if;
392 if (phy != PHY_ADDR_MARV)
393 return (0);
395 sc_if = device_get_softc(dev);
397 return (msk_phy_writereg(sc_if, phy, reg, val));
400 static int
401 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
403 struct msk_softc *sc;
404 int i;
406 sc = sc_if->msk_softc;
408 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
409 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
410 GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
411 for (i = 0; i < MSK_TIMEOUT; i++) {
412 DELAY(1);
413 if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
414 GM_SMI_CT_BUSY) == 0)
415 break;
417 if (i == MSK_TIMEOUT)
418 if_printf(sc_if->msk_ifp, "phy write timeout\n");
420 return (0);
423 static void
424 msk_miibus_statchg(device_t dev)
426 struct msk_if_softc *sc_if;
427 struct msk_softc *sc;
428 struct mii_data *mii;
429 struct ifnet *ifp;
430 uint32_t gmac;
432 sc_if = device_get_softc(dev);
433 sc = sc_if->msk_softc;
435 mii = device_get_softc(sc_if->msk_miibus);
436 ifp = sc_if->msk_ifp;
438 sc_if->msk_link = 0;
439 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
440 (IFM_AVALID | IFM_ACTIVE)) {
441 switch (IFM_SUBTYPE(mii->mii_media_active)) {
442 case IFM_10_T:
443 case IFM_100_TX:
444 sc_if->msk_link = 1;
445 break;
446 case IFM_1000_T:
447 case IFM_1000_SX:
448 case IFM_1000_LX:
449 case IFM_1000_CX:
450 if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
451 sc_if->msk_link = 1;
452 break;
456 if (sc_if->msk_link != 0) {
457 /* Enable Tx FIFO Underrun. */
458 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
459 GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
461 * Because mii(4) notify msk(4) that it detected link status
462 * change, there is no need to enable automatic
463 * speed/flow-control/duplex updates.
465 gmac = GM_GPCR_AU_ALL_DIS;
466 switch (IFM_SUBTYPE(mii->mii_media_active)) {
467 case IFM_1000_SX:
468 case IFM_1000_T:
469 gmac |= GM_GPCR_SPEED_1000;
470 break;
471 case IFM_100_TX:
472 gmac |= GM_GPCR_SPEED_100;
473 break;
474 case IFM_10_T:
475 break;
478 if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
479 gmac |= GM_GPCR_DUP_FULL;
480 /* Disable Rx flow control. */
481 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
482 gmac |= GM_GPCR_FC_RX_DIS;
483 /* Disable Tx flow control. */
484 if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
485 gmac |= GM_GPCR_FC_TX_DIS;
486 gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
487 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
488 /* Read again to ensure writing. */
489 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
491 gmac = GMC_PAUSE_ON;
492 if (((mii->mii_media_active & IFM_GMASK) &
493 (IFM_FLAG0 | IFM_FLAG1)) == 0)
494 gmac = GMC_PAUSE_OFF;
495 /* Diable pause for 10/100 Mbps in half-duplex mode. */
496 if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
497 (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
498 IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
499 gmac = GMC_PAUSE_OFF;
500 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
502 /* Enable PHY interrupt for FIFO underrun/overflow. */
503 msk_phy_writereg(sc_if, PHY_ADDR_MARV,
504 PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
505 } else {
507 * Link state changed to down.
508 * Disable PHY interrupts.
510 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
511 /* Disable Rx/Tx MAC. */
512 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
513 if (gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) {
514 gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
515 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
516 /* Read again to ensure writing. */
517 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
522 static void
523 msk_rxfilter(struct msk_if_softc *sc_if)
525 struct msk_softc *sc;
526 struct ifnet *ifp;
527 struct ifmultiaddr *ifma;
528 uint32_t mchash[2];
529 uint32_t crc;
530 uint16_t mode;
532 sc = sc_if->msk_softc;
533 ifp = sc_if->msk_ifp;
535 bzero(mchash, sizeof(mchash));
536 mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
537 if ((ifp->if_flags & IFF_PROMISC) != 0) {
538 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
539 } else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
540 mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
541 mchash[0] = 0xffff;
542 mchash[1] = 0xffff;
543 } else {
544 mode |= GM_RXCR_UCF_ENA;
545 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
546 if (ifma->ifma_addr->sa_family != AF_LINK)
547 continue;
548 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
549 ifma->ifma_addr), ETHER_ADDR_LEN);
550 /* Just want the 6 least significant bits. */
551 crc &= 0x3f;
552 /* Set the corresponding bit in the hash table. */
553 mchash[crc >> 5] |= 1 << (crc & 0x1f);
555 if (mchash[0] != 0 || mchash[1] != 0)
556 mode |= GM_RXCR_MCF_ENA;
559 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
560 mchash[0] & 0xffff);
561 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
562 (mchash[0] >> 16) & 0xffff);
563 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
564 mchash[1] & 0xffff);
565 GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
566 (mchash[1] >> 16) & 0xffff);
567 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
570 static void
571 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
573 struct msk_softc *sc;
575 sc = sc_if->msk_softc;
576 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
577 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
578 RX_VLAN_STRIP_ON);
579 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
580 TX_VLAN_TAG_ON);
581 } else {
582 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
583 RX_VLAN_STRIP_OFF);
584 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
585 TX_VLAN_TAG_OFF);
589 static int
590 msk_init_rx_ring(struct msk_if_softc *sc_if)
592 struct msk_ring_data *rd;
593 struct msk_rxdesc *rxd;
594 int i, prod;
596 sc_if->msk_cdata.msk_rx_cons = 0;
597 sc_if->msk_cdata.msk_rx_prod = 0;
598 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
600 rd = &sc_if->msk_rdata;
601 bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
602 prod = sc_if->msk_cdata.msk_rx_prod;
603 for (i = 0; i < MSK_RX_RING_CNT; i++) {
604 rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
605 rxd->rx_m = NULL;
606 rxd->rx_le = &rd->msk_rx_ring[prod];
607 if (msk_newbuf(sc_if, prod, 1) != 0)
608 return (ENOBUFS);
609 MSK_INC(prod, MSK_RX_RING_CNT);
612 /* Update prefetch unit. */
613 sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
614 CSR_WRITE_2(sc_if->msk_softc,
615 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
616 sc_if->msk_cdata.msk_rx_prod);
618 return (0);
621 #ifdef MSK_JUMBO
622 static int
623 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
625 struct msk_ring_data *rd;
626 struct msk_rxdesc *rxd;
627 int i, prod;
629 MSK_IF_LOCK_ASSERT(sc_if);
631 sc_if->msk_cdata.msk_rx_cons = 0;
632 sc_if->msk_cdata.msk_rx_prod = 0;
633 sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
635 rd = &sc_if->msk_rdata;
636 bzero(rd->msk_jumbo_rx_ring,
637 sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
638 prod = sc_if->msk_cdata.msk_rx_prod;
639 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
640 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
641 rxd->rx_m = NULL;
642 rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
643 if (msk_jumbo_newbuf(sc_if, prod) != 0)
644 return (ENOBUFS);
645 MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
648 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
649 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
650 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
652 sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
653 CSR_WRITE_2(sc_if->msk_softc,
654 Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
655 sc_if->msk_cdata.msk_rx_prod);
657 return (0);
659 #endif
661 static void
662 msk_init_tx_ring(struct msk_if_softc *sc_if)
664 struct msk_ring_data *rd;
665 struct msk_txdesc *txd;
666 int i;
668 sc_if->msk_cdata.msk_tx_prod = 0;
669 sc_if->msk_cdata.msk_tx_cons = 0;
670 sc_if->msk_cdata.msk_tx_cnt = 0;
672 rd = &sc_if->msk_rdata;
673 bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
674 for (i = 0; i < MSK_TX_RING_CNT; i++) {
675 txd = &sc_if->msk_cdata.msk_txdesc[i];
676 txd->tx_m = NULL;
677 txd->tx_le = &rd->msk_tx_ring[i];
681 static __inline void
682 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
684 struct msk_rx_desc *rx_le;
685 struct msk_rxdesc *rxd;
686 struct mbuf *m;
688 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
689 m = rxd->rx_m;
690 rx_le = rxd->rx_le;
691 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
694 #ifdef MSK_JUMBO
695 static __inline void
696 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx)
698 struct msk_rx_desc *rx_le;
699 struct msk_rxdesc *rxd;
700 struct mbuf *m;
702 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
703 m = rxd->rx_m;
704 rx_le = rxd->rx_le;
705 rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
707 #endif
709 static int
710 msk_newbuf(struct msk_if_softc *sc_if, int idx, int init)
712 struct msk_rx_desc *rx_le;
713 struct msk_rxdesc *rxd;
714 struct mbuf *m;
715 bus_dma_segment_t seg;
716 bus_dmamap_t map;
717 int error, nseg;
719 m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
720 if (m == NULL)
721 return (ENOBUFS);
723 m->m_len = m->m_pkthdr.len = MCLBYTES;
724 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
725 m_adj(m, ETHER_ALIGN);
727 error = bus_dmamap_load_mbuf_segment(sc_if->msk_cdata.msk_rx_tag,
728 sc_if->msk_cdata.msk_rx_sparemap,
729 m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
730 if (error) {
731 m_freem(m);
732 if (init)
733 if_printf(&sc_if->arpcom.ac_if, "can't load RX mbuf\n");
734 return (error);
737 rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
738 if (rxd->rx_m != NULL) {
739 bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
740 BUS_DMASYNC_POSTREAD);
741 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
744 map = rxd->rx_dmamap;
745 rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
746 sc_if->msk_cdata.msk_rx_sparemap = map;
748 rxd->rx_m = m;
749 rx_le = rxd->rx_le;
750 rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
751 rx_le->msk_control = htole32(seg.ds_len | OP_PACKET | HW_OWNER);
753 return (0);
756 #ifdef MSK_JUMBO
757 static int
758 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
760 struct msk_rx_desc *rx_le;
761 struct msk_rxdesc *rxd;
762 struct mbuf *m;
763 bus_dma_segment_t segs[1];
764 bus_dmamap_t map;
765 int nsegs;
766 void *buf;
768 MGETHDR(m, M_DONTWAIT, MT_DATA);
769 if (m == NULL)
770 return (ENOBUFS);
771 buf = msk_jalloc(sc_if);
772 if (buf == NULL) {
773 m_freem(m);
774 return (ENOBUFS);
776 /* Attach the buffer to the mbuf. */
777 MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
778 EXT_NET_DRV);
779 if ((m->m_flags & M_EXT) == 0) {
780 m_freem(m);
781 return (ENOBUFS);
783 m->m_pkthdr.len = m->m_len = MSK_JLEN;
784 m_adj(m, ETHER_ALIGN);
786 if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
787 sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
788 BUS_DMA_NOWAIT) != 0) {
789 m_freem(m);
790 return (ENOBUFS);
792 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
794 rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
795 if (rxd->rx_m != NULL) {
796 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
797 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
798 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
799 rxd->rx_dmamap);
801 map = rxd->rx_dmamap;
802 rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
803 sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
804 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
805 BUS_DMASYNC_PREREAD);
806 rxd->rx_m = m;
807 rx_le = rxd->rx_le;
808 rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
809 rx_le->msk_control =
810 htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
812 return (0);
814 #endif
817 * Set media options.
819 static int
820 msk_mediachange(struct ifnet *ifp)
822 struct msk_if_softc *sc_if = ifp->if_softc;
823 struct mii_data *mii;
824 int error;
826 mii = device_get_softc(sc_if->msk_miibus);
827 error = mii_mediachg(mii);
829 return (error);
833 * Report current media status.
835 static void
836 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
838 struct msk_if_softc *sc_if = ifp->if_softc;
839 struct mii_data *mii;
841 mii = device_get_softc(sc_if->msk_miibus);
842 mii_pollstat(mii);
844 ifmr->ifm_active = mii->mii_media_active;
845 ifmr->ifm_status = mii->mii_media_status;
848 static int
849 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
851 struct msk_if_softc *sc_if;
852 struct ifreq *ifr;
853 struct mii_data *mii;
854 int error, mask;
856 sc_if = ifp->if_softc;
857 ifr = (struct ifreq *)data;
858 error = 0;
860 switch(command) {
861 case SIOCSIFMTU:
862 #ifdef MSK_JUMBO
863 if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
864 error = EINVAL;
865 break;
867 if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
868 ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
869 error = EINVAL;
870 break;
872 ifp->if_mtu = ifr->ifr_mtu;
873 if ((ifp->if_flags & IFF_RUNNING) != 0)
874 msk_init(sc_if);
875 #else
876 error = EOPNOTSUPP;
877 #endif
878 break;
880 case SIOCSIFFLAGS:
881 if (ifp->if_flags & IFF_UP) {
882 if (ifp->if_flags & IFF_RUNNING) {
883 if (((ifp->if_flags ^ sc_if->msk_if_flags)
884 & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
885 msk_rxfilter(sc_if);
886 } else {
887 if (sc_if->msk_detach == 0)
888 msk_init(sc_if);
890 } else {
891 if (ifp->if_flags & IFF_RUNNING)
892 msk_stop(sc_if);
894 sc_if->msk_if_flags = ifp->if_flags;
895 break;
897 case SIOCADDMULTI:
898 case SIOCDELMULTI:
899 if (ifp->if_flags & IFF_RUNNING)
900 msk_rxfilter(sc_if);
901 break;
903 case SIOCGIFMEDIA:
904 case SIOCSIFMEDIA:
905 mii = device_get_softc(sc_if->msk_miibus);
906 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
907 break;
909 case SIOCSIFCAP:
910 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
911 if ((mask & IFCAP_TXCSUM) != 0) {
912 ifp->if_capenable ^= IFCAP_TXCSUM;
913 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
914 (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
915 ifp->if_hwassist |= MSK_CSUM_FEATURES;
916 else
917 ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
919 #ifdef notyet
920 if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
921 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
922 msk_setvlan(sc_if, ifp);
924 #endif
926 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
927 sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
929 * In Yukon EC Ultra, TSO & checksum offload is not
930 * supported for jumbo frame.
932 ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
933 ifp->if_capenable &= ~IFCAP_TXCSUM;
935 break;
937 default:
938 error = ether_ioctl(ifp, command, data);
939 break;
942 return (error);
945 static int
946 mskc_probe(device_t dev)
948 const struct msk_product *mp;
949 uint16_t vendor, devid;
951 vendor = pci_get_vendor(dev);
952 devid = pci_get_device(dev);
953 for (mp = msk_products; mp->msk_name != NULL; ++mp) {
954 if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
955 device_set_desc(dev, mp->msk_name);
956 return (0);
959 return (ENXIO);
962 static int
963 mskc_setup_rambuffer(struct msk_softc *sc)
965 int next;
966 int i;
968 /* Get adapter SRAM size. */
969 sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
970 if (bootverbose) {
971 device_printf(sc->msk_dev,
972 "RAM buffer size : %dKB\n", sc->msk_ramsize);
974 if (sc->msk_ramsize == 0)
975 return (0);
976 sc->msk_pflags |= MSK_FLAG_RAMBUF;
979 * Give receiver 2/3 of memory and round down to the multiple
980 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
981 * of 1024.
983 sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
984 sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
985 for (i = 0, next = 0; i < sc->msk_num_port; i++) {
986 sc->msk_rxqstart[i] = next;
987 sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
988 next = sc->msk_rxqend[i] + 1;
989 sc->msk_txqstart[i] = next;
990 sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
991 next = sc->msk_txqend[i] + 1;
992 if (bootverbose) {
993 device_printf(sc->msk_dev,
994 "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
995 sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
996 sc->msk_rxqend[i]);
997 device_printf(sc->msk_dev,
998 "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
999 sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1000 sc->msk_txqend[i]);
1004 return (0);
1007 static void
1008 mskc_phy_power(struct msk_softc *sc, int mode)
1010 uint32_t val, our;
1011 int i;
1013 switch (mode) {
1014 case MSK_PHY_POWERUP:
1015 /* Switch power to VCC (WA for VAUX problem). */
1016 CSR_WRITE_1(sc, B0_POWER_CTRL,
1017 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1018 /* Disable Core Clock Division, set Clock Select to 0. */
1019 CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1021 val = 0;
1022 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1023 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1024 /* Enable bits are inverted. */
1025 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1026 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1027 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1030 * Enable PCI & Core Clock, enable clock gating for both Links.
1032 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1034 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1035 val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1036 if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1037 if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1038 /* Deassert Low Power for 1st PHY. */
1039 val |= PCI_Y2_PHY1_COMA;
1040 if (sc->msk_num_port > 1)
1041 val |= PCI_Y2_PHY2_COMA;
1044 /* Release PHY from PowerDown/COMA mode. */
1045 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1046 switch (sc->msk_hw_id) {
1047 case CHIP_ID_YUKON_EC_U:
1048 case CHIP_ID_YUKON_EX:
1049 case CHIP_ID_YUKON_FE_P:
1050 CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_OFF);
1052 /* Enable all clocks. */
1053 pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1054 our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1055 our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1056 PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1057 /* Set all bits to 0 except bits 15..12. */
1058 pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1059 our = pci_read_config(sc->msk_dev, PCI_OUR_REG_5, 4);
1060 our &= PCI_CTL_TIM_VMAIN_AV_MSK;
1061 pci_write_config(sc->msk_dev, PCI_OUR_REG_5, our, 4);
1062 pci_write_config(sc->msk_dev, PCI_CFG_REG_1, 0, 4);
1064 * Disable status race, workaround for
1065 * Yukon EC Ultra & Yukon EX.
1067 val = CSR_READ_4(sc, B2_GP_IO);
1068 val |= GLB_GPIO_STAT_RACE_DIS;
1069 CSR_WRITE_4(sc, B2_GP_IO, val);
1070 CSR_READ_4(sc, B2_GP_IO);
1071 break;
1073 for (i = 0; i < sc->msk_num_port; i++) {
1074 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1075 GMLC_RST_SET);
1076 CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1077 GMLC_RST_CLR);
1079 break;
1080 case MSK_PHY_POWERDOWN:
1081 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1082 val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1083 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1084 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1085 val &= ~PCI_Y2_PHY1_COMA;
1086 if (sc->msk_num_port > 1)
1087 val &= ~PCI_Y2_PHY2_COMA;
1089 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1091 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1092 Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1093 Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1094 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1095 sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1096 /* Enable bits are inverted. */
1097 val = 0;
1100 * Disable PCI & Core Clock, disable clock gating for
1101 * both Links.
1103 CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1104 CSR_WRITE_1(sc, B0_POWER_CTRL,
1105 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1106 break;
1107 default:
1108 break;
1112 static void
1113 mskc_reset(struct msk_softc *sc)
1115 bus_addr_t addr;
1116 uint16_t status;
1117 uint32_t val;
1118 int i;
1120 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1122 /* Disable ASF. */
1123 if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
1124 status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1125 /* Clear AHB bridge & microcontroller reset. */
1126 status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1127 Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1128 /* Clear ASF microcontroller state. */
1129 status &= ~ Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1130 CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1131 } else {
1132 CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1134 CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1137 * Since we disabled ASF, S/W reset is required for Power Management.
1139 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1140 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1142 /* Clear all error bits in the PCI status register. */
1143 status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1144 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1146 pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1147 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1148 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1149 CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1151 switch (sc->msk_bustype) {
1152 case MSK_PEX_BUS:
1153 /* Clear all PEX errors. */
1154 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1155 val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1156 if ((val & PEX_RX_OV) != 0) {
1157 sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1158 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1160 break;
1161 case MSK_PCI_BUS:
1162 case MSK_PCIX_BUS:
1163 /* Set Cache Line Size to 2(8bytes) if configured to 0. */
1164 val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1165 if (val == 0)
1166 pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1167 if (sc->msk_bustype == MSK_PCIX_BUS) {
1168 /* Set Cache Line Size opt. */
1169 val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1170 val |= PCI_CLS_OPT;
1171 pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1173 break;
1175 /* Set PHY power state. */
1176 mskc_phy_power(sc, MSK_PHY_POWERUP);
1178 /* Reset GPHY/GMAC Control */
1179 for (i = 0; i < sc->msk_num_port; i++) {
1180 /* GPHY Control reset. */
1181 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1182 CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1183 /* GMAC Control reset. */
1184 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1185 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1186 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1187 if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
1188 CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1189 GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1190 GMC_BYP_RETR_ON);
1193 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1195 /* LED On. */
1196 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1198 /* Clear TWSI IRQ. */
1199 CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1201 /* Turn off hardware timer. */
1202 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1203 CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1205 /* Turn off descriptor polling. */
1206 CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1208 /* Turn off time stamps. */
1209 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1210 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1212 /* Configure timeout values. */
1213 for (i = 0; i < sc->msk_num_port; i++) {
1214 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1215 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1216 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1217 MSK_RI_TO_53);
1218 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1219 MSK_RI_TO_53);
1220 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1221 MSK_RI_TO_53);
1222 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1223 MSK_RI_TO_53);
1224 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1225 MSK_RI_TO_53);
1226 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1227 MSK_RI_TO_53);
1228 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1229 MSK_RI_TO_53);
1230 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1231 MSK_RI_TO_53);
1232 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1233 MSK_RI_TO_53);
1234 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1235 MSK_RI_TO_53);
1236 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1237 MSK_RI_TO_53);
1238 CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1239 MSK_RI_TO_53);
1242 /* Disable all interrupts. */
1243 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1244 CSR_READ_4(sc, B0_HWE_IMSK);
1245 CSR_WRITE_4(sc, B0_IMSK, 0);
1246 CSR_READ_4(sc, B0_IMSK);
1249 * On dual port PCI-X card, there is an problem where status
1250 * can be received out of order due to split transactions.
1252 if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1253 uint16_t pcix_cmd;
1254 uint8_t pcix;
1256 pcix = pci_get_pcixcap_ptr(sc->msk_dev);
1258 pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1259 /* Clear Max Outstanding Split Transactions. */
1260 pcix_cmd &= ~0x70;
1261 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1262 pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1263 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1265 if (sc->msk_bustype == MSK_PEX_BUS) {
1266 uint16_t v, width;
1268 v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1269 /* Change Max. Read Request Size to 4096 bytes. */
1270 v &= ~PEX_DC_MAX_RRS_MSK;
1271 v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1272 pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1273 width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1274 width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1275 v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1276 v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1277 if (v != width) {
1278 device_printf(sc->msk_dev,
1279 "negotiated width of link(x%d) != "
1280 "max. width of link(x%d)\n", width, v);
1284 /* Clear status list. */
1285 bzero(sc->msk_stat_ring,
1286 sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1287 sc->msk_stat_cons = 0;
1288 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1289 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1290 /* Set the status list base address. */
1291 addr = sc->msk_stat_ring_paddr;
1292 CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1293 CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1294 /* Set the status list last index. */
1295 CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1296 if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1297 sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1298 /* WA for dev. #4.3 */
1299 CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1300 /* WA for dev. #4.18 */
1301 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1302 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1303 } else {
1304 CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1305 CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1306 if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1307 sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1308 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1309 else
1310 CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1311 CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1314 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1316 CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1318 /* Enable status unit. */
1319 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1321 CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1322 CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1323 CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1326 static int
1327 msk_probe(device_t dev)
1329 struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1330 char desc[100];
1333 * Not much to do here. We always know there will be
1334 * at least one GMAC present, and if there are two,
1335 * mskc_attach() will create a second device instance
1336 * for us.
1338 ksnprintf(desc, sizeof(desc),
1339 "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1340 model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1341 sc->msk_hw_rev);
1342 device_set_desc_copy(dev, desc);
1344 return (0);
1347 static int
1348 msk_attach(device_t dev)
1350 struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1351 struct msk_if_softc *sc_if = device_get_softc(dev);
1352 struct ifnet *ifp = &sc_if->arpcom.ac_if;
1353 int i, port, error;
1354 uint8_t eaddr[ETHER_ADDR_LEN];
1356 port = *(int *)device_get_ivars(dev);
1357 KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1359 kfree(device_get_ivars(dev), M_DEVBUF);
1360 device_set_ivars(dev, NULL);
1362 callout_init(&sc_if->msk_tick_ch);
1363 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1365 sc_if->msk_if_dev = dev;
1366 sc_if->msk_port = port;
1367 sc_if->msk_softc = sc;
1368 sc_if->msk_ifp = ifp;
1369 sc_if->msk_flags = sc->msk_pflags;
1370 sc->msk_if[port] = sc_if;
1372 /* Setup Tx/Rx queue register offsets. */
1373 if (port == MSK_PORT_A) {
1374 sc_if->msk_txq = Q_XA1;
1375 sc_if->msk_txsq = Q_XS1;
1376 sc_if->msk_rxq = Q_R1;
1377 } else {
1378 sc_if->msk_txq = Q_XA2;
1379 sc_if->msk_txsq = Q_XS2;
1380 sc_if->msk_rxq = Q_R2;
1383 error = msk_txrx_dma_alloc(sc_if);
1384 if (error)
1385 goto fail;
1387 ifp->if_softc = sc_if;
1388 ifp->if_mtu = ETHERMTU;
1389 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1390 ifp->if_init = msk_init;
1391 ifp->if_ioctl = msk_ioctl;
1392 ifp->if_start = msk_start;
1393 ifp->if_watchdog = msk_watchdog;
1394 ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1395 ifq_set_ready(&ifp->if_snd);
1397 #ifdef notyet
1399 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1400 * has serious bug in Rx checksum offload for all Yukon II family
1401 * hardware. It seems there is a workaround to make it work somtimes.
1402 * However, the workaround also have to check OP code sequences to
1403 * verify whether the OP code is correct. Sometimes it should compute
1404 * IP/TCP/UDP checksum in driver in order to verify correctness of
1405 * checksum computed by hardware. If you have to compute checksum
1406 * with software to verify the hardware's checksum why have hardware
1407 * compute the checksum? I think there is no reason to spend time to
1408 * make Rx checksum offload work on Yukon II hardware.
1410 ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1411 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1412 ifp->if_hwassist = MSK_CSUM_FEATURES;
1413 ifp->if_capenable = ifp->if_capabilities;
1414 #endif
1417 * Get station address for this interface. Note that
1418 * dual port cards actually come with three station
1419 * addresses: one for each port, plus an extra. The
1420 * extra one is used by the SysKonnect driver software
1421 * as a 'virtual' station address for when both ports
1422 * are operating in failover mode. Currently we don't
1423 * use this extra address.
1425 for (i = 0; i < ETHER_ADDR_LEN; i++)
1426 eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1428 sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1431 * Do miibus setup.
1433 error = mii_phy_probe(dev, &sc_if->msk_miibus,
1434 msk_mediachange, msk_mediastatus);
1435 if (error) {
1436 device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1437 goto fail;
1441 * Call MI attach routine. Can't hold locks when calling into ether_*.
1443 ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1444 #if 0
1446 * Tell the upper layer(s) we support long frames.
1447 * Must appear after the call to ether_ifattach() because
1448 * ether_ifattach() sets ifi_hdrlen to the default value.
1450 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1451 #endif
1453 return 0;
1454 fail:
1455 msk_detach(dev);
1456 sc->msk_if[port] = NULL;
1457 return (error);
1461 * Attach the interface. Allocate softc structures, do ifmedia
1462 * setup and ethernet/BPF attach.
1464 static int
1465 mskc_attach(device_t dev)
1467 struct msk_softc *sc;
1468 int error, *port, cpuid;
1470 sc = device_get_softc(dev);
1471 sc->msk_dev = dev;
1472 lwkt_serialize_init(&sc->msk_serializer);
1475 * Initailize sysctl variables
1477 sc->msk_process_limit = mskc_process_limit;
1478 sc->msk_intr_rate = mskc_intr_rate;
1480 #ifndef BURN_BRIDGES
1482 * Handle power management nonsense.
1484 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1485 uint32_t irq, bar0, bar1;
1487 /* Save important PCI config data. */
1488 bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1489 bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1490 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1492 /* Reset the power state. */
1493 device_printf(dev, "chip is in D%d power mode "
1494 "-- setting to D0\n", pci_get_powerstate(dev));
1496 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1498 /* Restore PCI config data. */
1499 pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1500 pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1501 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1503 #endif /* BURN_BRIDGES */
1506 * Map control/status registers.
1508 pci_enable_busmaster(dev);
1511 * Allocate I/O resource
1513 #ifdef MSK_USEIOSPACE
1514 sc->msk_res_type = SYS_RES_IOPORT;
1515 sc->msk_res_rid = PCIR_BAR(1);
1516 #else
1517 sc->msk_res_type = SYS_RES_MEMORY;
1518 sc->msk_res_rid = PCIR_BAR(0);
1519 #endif
1520 sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1521 &sc->msk_res_rid, RF_ACTIVE);
1522 if (sc->msk_res == NULL) {
1523 if (sc->msk_res_type == SYS_RES_MEMORY) {
1524 sc->msk_res_type = SYS_RES_IOPORT;
1525 sc->msk_res_rid = PCIR_BAR(1);
1526 } else {
1527 sc->msk_res_type = SYS_RES_MEMORY;
1528 sc->msk_res_rid = PCIR_BAR(0);
1530 sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1531 &sc->msk_res_rid,
1532 RF_ACTIVE);
1533 if (sc->msk_res == NULL) {
1534 device_printf(dev, "couldn't allocate %s resources\n",
1535 sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1536 return (ENXIO);
1539 sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1540 sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1543 * Allocate IRQ
1545 sc->msk_irq_rid = 0;
1546 sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1547 &sc->msk_irq_rid,
1548 RF_SHAREABLE | RF_ACTIVE);
1549 if (sc->msk_irq == NULL) {
1550 device_printf(dev, "couldn't allocate IRQ resources\n");
1551 error = ENXIO;
1552 goto fail;
1555 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1556 sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1557 sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1558 /* Bail out if chip is not recognized. */
1559 if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1560 sc->msk_hw_id > CHIP_ID_YUKON_FE_P) {
1561 device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1562 sc->msk_hw_id, sc->msk_hw_rev);
1563 error = ENXIO;
1564 goto fail;
1568 * Create sysctl tree
1570 sysctl_ctx_init(&sc->msk_sysctl_ctx);
1571 sc->msk_sysctl_tree = SYSCTL_ADD_NODE(&sc->msk_sysctl_ctx,
1572 SYSCTL_STATIC_CHILDREN(_hw),
1573 OID_AUTO,
1574 device_get_nameunit(dev),
1575 CTLFLAG_RD, 0, "");
1576 if (sc->msk_sysctl_tree == NULL) {
1577 device_printf(dev, "can't add sysctl node\n");
1578 error = ENXIO;
1579 goto fail;
1582 SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1583 SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1584 OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1585 &sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1586 "I", "max number of Rx events to process");
1587 SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1588 SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1589 OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1590 sc, 0, mskc_sysctl_intr_rate,
1591 "I", "max number of interrupt per second");
1592 SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1593 SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1594 "defrag_avoided", CTLFLAG_RW, &sc->msk_defrag_avoided,
1595 0, "# of avoided m_defrag on TX path");
1596 SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1597 SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1598 "leading_copied", CTLFLAG_RW, &sc->msk_leading_copied,
1599 0, "# of leading copies on TX path");
1600 SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1601 SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1602 "trailing_copied", CTLFLAG_RW, &sc->msk_trailing_copied,
1603 0, "# of trailing copies on TX path");
1605 /* Soft reset. */
1606 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1607 CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1608 sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1609 if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1610 sc->msk_coppertype = 0;
1611 else
1612 sc->msk_coppertype = 1;
1613 /* Check number of MACs. */
1614 sc->msk_num_port = 1;
1615 if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1616 CFG_DUAL_MAC_MSK) {
1617 if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1618 sc->msk_num_port++;
1621 /* Check bus type. */
1622 if (pci_is_pcie(sc->msk_dev) == 0)
1623 sc->msk_bustype = MSK_PEX_BUS;
1624 else if (pci_is_pcix(sc->msk_dev) == 0)
1625 sc->msk_bustype = MSK_PCIX_BUS;
1626 else
1627 sc->msk_bustype = MSK_PCI_BUS;
1629 switch (sc->msk_hw_id) {
1630 case CHIP_ID_YUKON_EC:
1631 case CHIP_ID_YUKON_EC_U:
1632 sc->msk_clock = 125; /* 125 Mhz */
1633 break;
1634 case CHIP_ID_YUKON_EX:
1635 sc->msk_clock = 125; /* 125 Mhz */
1636 break;
1637 case CHIP_ID_YUKON_FE:
1638 sc->msk_clock = 100; /* 100 Mhz */
1639 sc->msk_pflags |= MSK_FLAG_FASTETHER;
1640 break;
1641 case CHIP_ID_YUKON_FE_P:
1642 sc->msk_clock = 50; /* 50 Mhz */
1643 /* DESCV2 */
1644 sc->msk_pflags |= MSK_FLAG_FASTETHER;
1645 if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1647 * XXX
1648 * FE+ A0 has status LE writeback bug so msk(4)
1649 * does not rely on status word of received frame
1650 * in msk_rxeof() which in turn disables all
1651 * hardware assistance bits reported by the status
1652 * word as well as validity of the recevied frame.
1653 * Just pass received frames to upper stack with
1654 * minimal test and let upper stack handle them.
1656 sc->msk_pflags |= MSK_FLAG_NORXCHK;
1658 break;
1659 case CHIP_ID_YUKON_XL:
1660 sc->msk_clock = 156; /* 156 Mhz */
1661 break;
1662 default:
1663 sc->msk_clock = 156; /* 156 Mhz */
1664 break;
1667 error = mskc_status_dma_alloc(sc);
1668 if (error)
1669 goto fail;
1671 /* Set base interrupt mask. */
1672 sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1673 sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1674 Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1676 /* Reset the adapter. */
1677 mskc_reset(sc);
1679 error = mskc_setup_rambuffer(sc);
1680 if (error)
1681 goto fail;
1683 sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1684 if (sc->msk_devs[MSK_PORT_A] == NULL) {
1685 device_printf(dev, "failed to add child for PORT_A\n");
1686 error = ENXIO;
1687 goto fail;
1689 port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1690 *port = MSK_PORT_A;
1691 device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1693 if (sc->msk_num_port > 1) {
1694 sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1695 if (sc->msk_devs[MSK_PORT_B] == NULL) {
1696 device_printf(dev, "failed to add child for PORT_B\n");
1697 error = ENXIO;
1698 goto fail;
1700 port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1701 *port = MSK_PORT_B;
1702 device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1705 bus_generic_attach(dev);
1707 error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1708 mskc_intr, sc, &sc->msk_intrhand,
1709 &sc->msk_serializer);
1710 if (error) {
1711 device_printf(dev, "couldn't set up interrupt handler\n");
1712 goto fail;
1715 cpuid = ithread_cpuid(rman_get_start(sc->msk_irq));
1716 KKASSERT(cpuid >= 0 && cpuid < ncpus);
1718 if (sc->msk_if[0] != NULL)
1719 sc->msk_if[0]->msk_ifp->if_cpuid = cpuid;
1720 if (sc->msk_if[1] != NULL)
1721 sc->msk_if[1]->msk_ifp->if_cpuid = cpuid;
1722 return 0;
1723 fail:
1724 mskc_detach(dev);
1725 return (error);
1729 * Shutdown hardware and free up resources. This can be called any
1730 * time after the mutex has been initialized. It is called in both
1731 * the error case in attach and the normal detach case so it needs
1732 * to be careful about only freeing resources that have actually been
1733 * allocated.
1735 static int
1736 msk_detach(device_t dev)
1738 struct msk_if_softc *sc_if = device_get_softc(dev);
1740 if (device_is_attached(dev)) {
1741 struct msk_softc *sc = sc_if->msk_softc;
1742 struct ifnet *ifp = &sc_if->arpcom.ac_if;
1744 lwkt_serialize_enter(ifp->if_serializer);
1746 if (sc->msk_intrhand != NULL) {
1747 if (sc->msk_if[MSK_PORT_A] != NULL)
1748 msk_stop(sc->msk_if[MSK_PORT_A]);
1749 if (sc->msk_if[MSK_PORT_B] != NULL)
1750 msk_stop(sc->msk_if[MSK_PORT_B]);
1752 bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1753 sc->msk_intrhand);
1754 sc->msk_intrhand = NULL;
1757 lwkt_serialize_exit(ifp->if_serializer);
1759 ether_ifdetach(ifp);
1762 if (sc_if->msk_miibus != NULL)
1763 device_delete_child(dev, sc_if->msk_miibus);
1765 msk_txrx_dma_free(sc_if);
1766 return (0);
1769 static int
1770 mskc_detach(device_t dev)
1772 struct msk_softc *sc = device_get_softc(dev);
1773 int *port, i;
1775 #ifdef INVARIANTS
1776 if (device_is_attached(dev)) {
1777 KASSERT(sc->msk_intrhand == NULL,
1778 ("intr is not torn down yet\n"));
1780 #endif
1782 for (i = 0; i < sc->msk_num_port; ++i) {
1783 if (sc->msk_devs[i] != NULL) {
1784 port = device_get_ivars(sc->msk_devs[i]);
1785 if (port != NULL) {
1786 kfree(port, M_DEVBUF);
1787 device_set_ivars(sc->msk_devs[i], NULL);
1789 device_delete_child(dev, sc->msk_devs[i]);
1793 /* Disable all interrupts. */
1794 CSR_WRITE_4(sc, B0_IMSK, 0);
1795 CSR_READ_4(sc, B0_IMSK);
1796 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1797 CSR_READ_4(sc, B0_HWE_IMSK);
1799 /* LED Off. */
1800 CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1802 /* Put hardware reset. */
1803 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1805 mskc_status_dma_free(sc);
1807 if (sc->msk_irq != NULL) {
1808 bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1809 sc->msk_irq);
1811 if (sc->msk_res != NULL) {
1812 bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1813 sc->msk_res);
1816 if (sc->msk_sysctl_tree != NULL)
1817 sysctl_ctx_free(&sc->msk_sysctl_ctx);
1819 return (0);
1822 /* Create status DMA region. */
1823 static int
1824 mskc_status_dma_alloc(struct msk_softc *sc)
1826 bus_dmamem_t dmem;
1827 int error;
1829 error = bus_dmamem_coherent(NULL/* XXX parent */, MSK_STAT_ALIGN, 0,
1830 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1831 MSK_STAT_RING_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1832 if (error) {
1833 device_printf(sc->msk_dev,
1834 "failed to create status coherent DMA memory\n");
1835 return error;
1837 sc->msk_stat_tag = dmem.dmem_tag;
1838 sc->msk_stat_map = dmem.dmem_map;
1839 sc->msk_stat_ring = dmem.dmem_addr;
1840 sc->msk_stat_ring_paddr = dmem.dmem_busaddr;
1842 return (0);
1845 static void
1846 mskc_status_dma_free(struct msk_softc *sc)
1848 /* Destroy status block. */
1849 if (sc->msk_stat_tag) {
1850 bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1851 bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1852 sc->msk_stat_map);
1853 bus_dma_tag_destroy(sc->msk_stat_tag);
1854 sc->msk_stat_tag = NULL;
1858 static int
1859 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1861 int error, i, j;
1862 #ifdef MSK_JUMBO
1863 struct msk_rxdesc *jrxd;
1864 struct msk_jpool_entry *entry;
1865 uint8_t *ptr;
1866 #endif
1867 bus_size_t rxalign;
1869 /* Create parent DMA tag. */
1871 * XXX
1872 * It seems that Yukon II supports full 64bits DMA operations. But
1873 * it needs two descriptors(list elements) for 64bits DMA operations.
1874 * Since we don't know what DMA address mappings(32bits or 64bits)
1875 * would be used in advance for each mbufs, we limits its DMA space
1876 * to be in range of 32bits address space. Otherwise, we should check
1877 * what DMA address is used and chain another descriptor for the
1878 * 64bits DMA operation. This also means descriptor ring size is
1879 * variable. Limiting DMA address to be in 32bit address space greatly
1880 * simplyfies descriptor handling and possibly would increase
1881 * performance a bit due to efficient handling of descriptors.
1882 * Apart from harassing checksum offloading mechanisms, it seems
1883 * it's really bad idea to use a seperate descriptor for 64bit
1884 * DMA operation to save small descriptor memory. Anyway, I've
1885 * never seen these exotic scheme on ethernet interface hardware.
1887 error = bus_dma_tag_create(
1888 NULL, /* parent */
1889 1, 0, /* alignment, boundary */
1890 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1891 BUS_SPACE_MAXADDR, /* highaddr */
1892 NULL, NULL, /* filter, filterarg */
1893 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1894 0, /* nsegments */
1895 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1896 0, /* flags */
1897 &sc_if->msk_cdata.msk_parent_tag);
1898 if (error) {
1899 device_printf(sc_if->msk_if_dev,
1900 "failed to create parent DMA tag\n");
1901 return error;
1904 /* Create DMA stuffs for Tx ring. */
1905 error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1906 &sc_if->msk_cdata.msk_tx_ring_tag,
1907 (void *)&sc_if->msk_rdata.msk_tx_ring,
1908 &sc_if->msk_rdata.msk_tx_ring_paddr,
1909 &sc_if->msk_cdata.msk_tx_ring_map);
1910 if (error) {
1911 device_printf(sc_if->msk_if_dev,
1912 "failed to create TX ring DMA stuffs\n");
1913 return error;
1916 /* Create DMA stuffs for Rx ring. */
1917 error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1918 &sc_if->msk_cdata.msk_rx_ring_tag,
1919 (void *)&sc_if->msk_rdata.msk_rx_ring,
1920 &sc_if->msk_rdata.msk_rx_ring_paddr,
1921 &sc_if->msk_cdata.msk_rx_ring_map);
1922 if (error) {
1923 device_printf(sc_if->msk_if_dev,
1924 "failed to create RX ring DMA stuffs\n");
1925 return error;
1928 /* Create tag for Tx buffers. */
1929 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1930 1, 0, /* alignment, boundary */
1931 BUS_SPACE_MAXADDR, /* lowaddr */
1932 BUS_SPACE_MAXADDR, /* highaddr */
1933 NULL, NULL, /* filter, filterarg */
1934 MSK_JUMBO_FRAMELEN, /* maxsize */
1935 MSK_MAXTXSEGS, /* nsegments */
1936 MSK_MAXSGSIZE, /* maxsegsize */
1937 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
1938 BUS_DMA_ONEBPAGE, /* flags */
1939 &sc_if->msk_cdata.msk_tx_tag);
1940 if (error) {
1941 device_printf(sc_if->msk_if_dev,
1942 "failed to create Tx DMA tag\n");
1943 return error;
1946 /* Create DMA maps for Tx buffers. */
1947 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1948 struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1950 error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag,
1951 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1952 &txd->tx_dmamap);
1953 if (error) {
1954 device_printf(sc_if->msk_if_dev,
1955 "failed to create %dth Tx dmamap\n", i);
1957 for (j = 0; j < i; ++j) {
1958 txd = &sc_if->msk_cdata.msk_txdesc[j];
1959 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1960 txd->tx_dmamap);
1962 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1963 sc_if->msk_cdata.msk_tx_tag = NULL;
1965 return error;
1970 * Workaround hardware hang which seems to happen when Rx buffer
1971 * is not aligned on multiple of FIFO word(8 bytes).
1973 if (sc_if->msk_flags & MSK_FLAG_RAMBUF)
1974 rxalign = MSK_RX_BUF_ALIGN;
1975 else
1976 rxalign = 1;
1978 /* Create tag for Rx buffers. */
1979 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1980 rxalign, 0, /* alignment, boundary */
1981 BUS_SPACE_MAXADDR, /* lowaddr */
1982 BUS_SPACE_MAXADDR, /* highaddr */
1983 NULL, NULL, /* filter, filterarg */
1984 MCLBYTES, /* maxsize */
1985 1, /* nsegments */
1986 MCLBYTES, /* maxsegsize */
1987 BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
1988 BUS_DMA_WAITOK, /* flags */
1989 &sc_if->msk_cdata.msk_rx_tag);
1990 if (error) {
1991 device_printf(sc_if->msk_if_dev,
1992 "failed to create Rx DMA tag\n");
1993 return error;
1996 /* Create DMA maps for Rx buffers. */
1997 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, BUS_DMA_WAITOK,
1998 &sc_if->msk_cdata.msk_rx_sparemap);
1999 if (error) {
2000 device_printf(sc_if->msk_if_dev,
2001 "failed to create spare Rx dmamap\n");
2002 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2003 sc_if->msk_cdata.msk_rx_tag = NULL;
2004 return error;
2006 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2007 struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2009 error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag,
2010 BUS_DMA_WAITOK, &rxd->rx_dmamap);
2011 if (error) {
2012 device_printf(sc_if->msk_if_dev,
2013 "failed to create %dth Rx dmamap\n", i);
2015 for (j = 0; j < i; ++j) {
2016 rxd = &sc_if->msk_cdata.msk_rxdesc[j];
2017 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2018 rxd->rx_dmamap);
2020 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2021 sc_if->msk_cdata.msk_rx_sparemap);
2022 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2023 sc_if->msk_cdata.msk_rx_tag = NULL;
2025 return error;
2029 #ifdef MSK_JUMBO
2030 SLIST_INIT(&sc_if->msk_jfree_listhead);
2031 SLIST_INIT(&sc_if->msk_jinuse_listhead);
2033 /* Create tag for jumbo Rx ring. */
2034 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2035 MSK_RING_ALIGN, 0, /* alignment, boundary */
2036 BUS_SPACE_MAXADDR, /* lowaddr */
2037 BUS_SPACE_MAXADDR, /* highaddr */
2038 NULL, NULL, /* filter, filterarg */
2039 MSK_JUMBO_RX_RING_SZ, /* maxsize */
2040 1, /* nsegments */
2041 MSK_JUMBO_RX_RING_SZ, /* maxsegsize */
2042 0, /* flags */
2043 NULL, NULL, /* lockfunc, lockarg */
2044 &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2045 if (error != 0) {
2046 device_printf(sc_if->msk_if_dev,
2047 "failed to create jumbo Rx ring DMA tag\n");
2048 goto fail;
2051 /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2052 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2053 (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2054 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2055 &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2056 if (error != 0) {
2057 device_printf(sc_if->msk_if_dev,
2058 "failed to allocate DMA'able memory for jumbo Rx ring\n");
2059 goto fail;
2062 ctx.msk_busaddr = 0;
2063 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2064 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2065 sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2066 msk_dmamap_cb, &ctx, 0);
2067 if (error != 0) {
2068 device_printf(sc_if->msk_if_dev,
2069 "failed to load DMA'able memory for jumbo Rx ring\n");
2070 goto fail;
2072 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2074 /* Create tag for jumbo buffer blocks. */
2075 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2076 PAGE_SIZE, 0, /* alignment, boundary */
2077 BUS_SPACE_MAXADDR, /* lowaddr */
2078 BUS_SPACE_MAXADDR, /* highaddr */
2079 NULL, NULL, /* filter, filterarg */
2080 MSK_JMEM, /* maxsize */
2081 1, /* nsegments */
2082 MSK_JMEM, /* maxsegsize */
2083 0, /* flags */
2084 NULL, NULL, /* lockfunc, lockarg */
2085 &sc_if->msk_cdata.msk_jumbo_tag);
2086 if (error != 0) {
2087 device_printf(sc_if->msk_if_dev,
2088 "failed to create jumbo Rx buffer block DMA tag\n");
2089 goto fail;
2092 /* Create tag for jumbo Rx buffers. */
2093 error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2094 PAGE_SIZE, 0, /* alignment, boundary */
2095 BUS_SPACE_MAXADDR, /* lowaddr */
2096 BUS_SPACE_MAXADDR, /* highaddr */
2097 NULL, NULL, /* filter, filterarg */
2098 MCLBYTES * MSK_MAXRXSEGS, /* maxsize */
2099 MSK_MAXRXSEGS, /* nsegments */
2100 MSK_JLEN, /* maxsegsize */
2101 0, /* flags */
2102 NULL, NULL, /* lockfunc, lockarg */
2103 &sc_if->msk_cdata.msk_jumbo_rx_tag);
2104 if (error != 0) {
2105 device_printf(sc_if->msk_if_dev,
2106 "failed to create jumbo Rx DMA tag\n");
2107 goto fail;
2110 /* Create DMA maps for jumbo Rx buffers. */
2111 if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2112 &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2113 device_printf(sc_if->msk_if_dev,
2114 "failed to create spare jumbo Rx dmamap\n");
2115 goto fail;
2117 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2118 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2119 jrxd->rx_m = NULL;
2120 jrxd->rx_dmamap = NULL;
2121 error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2122 &jrxd->rx_dmamap);
2123 if (error != 0) {
2124 device_printf(sc_if->msk_if_dev,
2125 "failed to create jumbo Rx dmamap\n");
2126 goto fail;
2130 /* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2131 error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2132 (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2133 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2134 &sc_if->msk_cdata.msk_jumbo_map);
2135 if (error != 0) {
2136 device_printf(sc_if->msk_if_dev,
2137 "failed to allocate DMA'able memory for jumbo buf\n");
2138 goto fail;
2141 ctx.msk_busaddr = 0;
2142 error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2143 sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2144 MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2145 if (error != 0) {
2146 device_printf(sc_if->msk_if_dev,
2147 "failed to load DMA'able memory for jumbobuf\n");
2148 goto fail;
2150 sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2153 * Now divide it up into 9K pieces and save the addresses
2154 * in an array.
2156 ptr = sc_if->msk_rdata.msk_jumbo_buf;
2157 for (i = 0; i < MSK_JSLOTS; i++) {
2158 sc_if->msk_cdata.msk_jslots[i] = ptr;
2159 ptr += MSK_JLEN;
2160 entry = malloc(sizeof(struct msk_jpool_entry),
2161 M_DEVBUF, M_WAITOK);
2162 if (entry == NULL) {
2163 device_printf(sc_if->msk_if_dev,
2164 "no memory for jumbo buffers!\n");
2165 error = ENOMEM;
2166 goto fail;
2168 entry->slot = i;
2169 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2170 jpool_entries);
2172 #endif
2173 return 0;
2176 static void
2177 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2179 struct msk_txdesc *txd;
2180 struct msk_rxdesc *rxd;
2181 #ifdef MSK_JUMBO
2182 struct msk_rxdesc *jrxd;
2183 struct msk_jpool_entry *entry;
2184 #endif
2185 int i;
2187 #ifdef MSK_JUMBO
2188 MSK_JLIST_LOCK(sc_if);
2189 while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2190 device_printf(sc_if->msk_if_dev,
2191 "asked to free buffer that is in use!\n");
2192 SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2193 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2194 jpool_entries);
2197 while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2198 entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2199 SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2200 free(entry, M_DEVBUF);
2202 MSK_JLIST_UNLOCK(sc_if);
2204 /* Destroy jumbo buffer block. */
2205 if (sc_if->msk_cdata.msk_jumbo_map)
2206 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2207 sc_if->msk_cdata.msk_jumbo_map);
2209 if (sc_if->msk_rdata.msk_jumbo_buf) {
2210 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2211 sc_if->msk_rdata.msk_jumbo_buf,
2212 sc_if->msk_cdata.msk_jumbo_map);
2213 sc_if->msk_rdata.msk_jumbo_buf = NULL;
2214 sc_if->msk_cdata.msk_jumbo_map = NULL;
2217 /* Jumbo Rx ring. */
2218 if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2219 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2220 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2221 sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2222 if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2223 sc_if->msk_rdata.msk_jumbo_rx_ring)
2224 bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2225 sc_if->msk_rdata.msk_jumbo_rx_ring,
2226 sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2227 sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2228 sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2229 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2230 sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2233 /* Jumbo Rx buffers. */
2234 if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2235 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2236 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2237 if (jrxd->rx_dmamap) {
2238 bus_dmamap_destroy(
2239 sc_if->msk_cdata.msk_jumbo_rx_tag,
2240 jrxd->rx_dmamap);
2241 jrxd->rx_dmamap = NULL;
2244 if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2245 bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2246 sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2247 sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2249 bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2250 sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2252 #endif
2254 /* Tx ring. */
2255 msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2256 sc_if->msk_rdata.msk_tx_ring,
2257 sc_if->msk_cdata.msk_tx_ring_map);
2259 /* Rx ring. */
2260 msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2261 sc_if->msk_rdata.msk_rx_ring,
2262 sc_if->msk_cdata.msk_rx_ring_map);
2264 /* Tx buffers. */
2265 if (sc_if->msk_cdata.msk_tx_tag) {
2266 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2267 txd = &sc_if->msk_cdata.msk_txdesc[i];
2268 bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2269 txd->tx_dmamap);
2271 bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2272 sc_if->msk_cdata.msk_tx_tag = NULL;
2275 /* Rx buffers. */
2276 if (sc_if->msk_cdata.msk_rx_tag) {
2277 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2278 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2279 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2280 rxd->rx_dmamap);
2282 bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2283 sc_if->msk_cdata.msk_rx_sparemap);
2284 bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2285 sc_if->msk_cdata.msk_rx_tag = NULL;
2288 if (sc_if->msk_cdata.msk_parent_tag) {
2289 bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2290 sc_if->msk_cdata.msk_parent_tag = NULL;
2294 #ifdef MSK_JUMBO
2296 * Allocate a jumbo buffer.
2298 static void *
2299 msk_jalloc(struct msk_if_softc *sc_if)
2301 struct msk_jpool_entry *entry;
2303 MSK_JLIST_LOCK(sc_if);
2305 entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2307 if (entry == NULL) {
2308 MSK_JLIST_UNLOCK(sc_if);
2309 return (NULL);
2312 SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2313 SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2315 MSK_JLIST_UNLOCK(sc_if);
2317 return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2321 * Release a jumbo buffer.
2323 static void
2324 msk_jfree(void *buf, void *args)
2326 struct msk_if_softc *sc_if;
2327 struct msk_jpool_entry *entry;
2328 int i;
2330 /* Extract the softc struct pointer. */
2331 sc_if = (struct msk_if_softc *)args;
2332 KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2334 MSK_JLIST_LOCK(sc_if);
2335 /* Calculate the slot this buffer belongs to. */
2336 i = ((vm_offset_t)buf
2337 - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2338 KASSERT(i >= 0 && i < MSK_JSLOTS,
2339 ("%s: asked to free buffer that we don't manage!", __func__));
2341 entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2342 KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2343 entry->slot = i;
2344 SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2345 SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2346 if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2347 wakeup(sc_if);
2349 MSK_JLIST_UNLOCK(sc_if);
2351 #endif
2353 static int
2354 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2356 struct msk_txdesc *txd, *txd_last;
2357 struct msk_tx_desc *tx_le;
2358 struct mbuf *m;
2359 bus_dmamap_t map;
2360 bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2361 uint32_t control, prod, si;
2362 uint16_t offset, tcp_offset;
2363 int error, i, nsegs, maxsegs, defrag;
2365 maxsegs = MSK_TX_RING_CNT - sc_if->msk_cdata.msk_tx_cnt -
2366 MSK_RESERVED_TX_DESC_CNT;
2367 KASSERT(maxsegs >= MSK_SPARE_TX_DESC_CNT,
2368 ("not enough spare TX desc\n"));
2369 if (maxsegs > MSK_MAXTXSEGS)
2370 maxsegs = MSK_MAXTXSEGS;
2373 * Align TX buffer to 64bytes boundary. This greately improves
2374 * bulk data TX performance on my 88E8053 (+100Mbps) at least.
2375 * Try avoiding m_defrag(), if the mbufs are not chained together
2376 * by m_next (i.e. m->m_len == m->m_pkthdr.len).
2379 #define MSK_TXBUF_ALIGN 64
2380 #define MSK_TXBUF_MASK (MSK_TXBUF_ALIGN - 1)
2382 defrag = 1;
2383 m = *m_head;
2384 if (m->m_len == m->m_pkthdr.len) {
2385 int space;
2387 space = ((uintptr_t)m->m_data & MSK_TXBUF_MASK);
2388 if (space) {
2389 if (M_WRITABLE(m)) {
2390 if (M_TRAILINGSPACE(m) >= space) {
2391 /* e.g. TCP ACKs */
2392 bcopy(m->m_data, m->m_data + space,
2393 m->m_len);
2394 m->m_data += space;
2395 defrag = 0;
2396 sc_if->msk_softc->msk_trailing_copied++;
2397 } else {
2398 space = MSK_TXBUF_ALIGN - space;
2399 if (M_LEADINGSPACE(m) >= space) {
2400 /* e.g. Small UDP datagrams */
2401 bcopy(m->m_data,
2402 m->m_data - space,
2403 m->m_len);
2404 m->m_data -= space;
2405 defrag = 0;
2406 sc_if->msk_softc->
2407 msk_leading_copied++;
2411 } else {
2412 /* e.g. on forwarding path */
2413 defrag = 0;
2416 if (defrag) {
2417 m = m_defrag(*m_head, MB_DONTWAIT);
2418 if (m == NULL) {
2419 m_freem(*m_head);
2420 *m_head = NULL;
2421 return ENOBUFS;
2423 *m_head = m;
2424 } else {
2425 sc_if->msk_softc->msk_defrag_avoided++;
2428 #undef MSK_TXBUF_MASK
2429 #undef MSK_TXBUF_ALIGN
2431 tcp_offset = offset = 0;
2432 if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2434 * Since mbuf has no protocol specific structure information
2435 * in it we have to inspect protocol information here to
2436 * setup TSO and checksum offload. I don't know why Marvell
2437 * made a such decision in chip design because other GigE
2438 * hardwares normally takes care of all these chores in
2439 * hardware. However, TSO performance of Yukon II is very
2440 * good such that it's worth to implement it.
2442 struct ether_header *eh;
2443 struct ip *ip;
2445 /* TODO check for M_WRITABLE(m) */
2447 offset = sizeof(struct ether_header);
2448 m = m_pullup(m, offset);
2449 if (m == NULL) {
2450 *m_head = NULL;
2451 return (ENOBUFS);
2453 eh = mtod(m, struct ether_header *);
2454 /* Check if hardware VLAN insertion is off. */
2455 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2456 offset = sizeof(struct ether_vlan_header);
2457 m = m_pullup(m, offset);
2458 if (m == NULL) {
2459 *m_head = NULL;
2460 return (ENOBUFS);
2463 m = m_pullup(m, offset + sizeof(struct ip));
2464 if (m == NULL) {
2465 *m_head = NULL;
2466 return (ENOBUFS);
2468 ip = (struct ip *)(mtod(m, char *) + offset);
2469 offset += (ip->ip_hl << 2);
2470 tcp_offset = offset;
2472 * It seems that Yukon II has Tx checksum offload bug for
2473 * small TCP packets that's less than 60 bytes in size
2474 * (e.g. TCP window probe packet, pure ACK packet).
2475 * Common work around like padding with zeros to make the
2476 * frame minimum ethernet frame size didn't work at all.
2477 * Instead of disabling checksum offload completely we
2478 * resort to S/W checksum routine when we encounter short
2479 * TCP frames.
2480 * Short UDP packets appear to be handled correctly by
2481 * Yukon II.
2483 if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2484 (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2485 uint16_t csum;
2487 csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2488 (ip->ip_hl << 2), offset);
2489 *(uint16_t *)(m->m_data + offset +
2490 m->m_pkthdr.csum_data) = csum;
2491 m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2493 *m_head = m;
2496 prod = sc_if->msk_cdata.msk_tx_prod;
2497 txd = &sc_if->msk_cdata.msk_txdesc[prod];
2498 txd_last = txd;
2499 map = txd->tx_dmamap;
2501 error = bus_dmamap_load_mbuf_defrag(sc_if->msk_cdata.msk_tx_tag, map,
2502 m_head, txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2503 if (error) {
2504 m_freem(*m_head);
2505 *m_head = NULL;
2506 return error;
2508 bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2510 m = *m_head;
2511 control = 0;
2512 tx_le = NULL;
2514 #ifdef notyet
2515 /* Check if we have a VLAN tag to insert. */
2516 if ((m->m_flags & M_VLANTAG) != 0) {
2517 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2518 tx_le->msk_addr = htole32(0);
2519 tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2520 htons(m->m_pkthdr.ether_vtag));
2521 sc_if->msk_cdata.msk_tx_cnt++;
2522 MSK_INC(prod, MSK_TX_RING_CNT);
2523 control |= INS_VLAN;
2525 #endif
2526 /* Check if we have to handle checksum offload. */
2527 if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2528 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2529 tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2530 & 0xffff) | ((uint32_t)tcp_offset << 16));
2531 tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2532 control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2533 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2534 control |= UDPTCP;
2535 sc_if->msk_cdata.msk_tx_cnt++;
2536 MSK_INC(prod, MSK_TX_RING_CNT);
2539 si = prod;
2540 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2541 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2542 tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2543 OP_PACKET);
2544 sc_if->msk_cdata.msk_tx_cnt++;
2545 MSK_INC(prod, MSK_TX_RING_CNT);
2547 for (i = 1; i < nsegs; i++) {
2548 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2549 tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2550 tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2551 OP_BUFFER | HW_OWNER);
2552 sc_if->msk_cdata.msk_tx_cnt++;
2553 MSK_INC(prod, MSK_TX_RING_CNT);
2555 /* Update producer index. */
2556 sc_if->msk_cdata.msk_tx_prod = prod;
2558 /* Set EOP on the last desciptor. */
2559 prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2560 tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2561 tx_le->msk_control |= htole32(EOP);
2563 /* Turn the first descriptor ownership to hardware. */
2564 tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2565 tx_le->msk_control |= htole32(HW_OWNER);
2567 txd = &sc_if->msk_cdata.msk_txdesc[prod];
2568 map = txd_last->tx_dmamap;
2569 txd_last->tx_dmamap = txd->tx_dmamap;
2570 txd->tx_dmamap = map;
2571 txd->tx_m = m;
2573 return (0);
2576 static void
2577 msk_start(struct ifnet *ifp)
2579 struct msk_if_softc *sc_if;
2580 struct mbuf *m_head;
2581 int enq;
2583 sc_if = ifp->if_softc;
2585 ASSERT_SERIALIZED(ifp->if_serializer);
2587 if (!sc_if->msk_link) {
2588 ifq_purge(&ifp->if_snd);
2589 return;
2592 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2593 return;
2595 enq = 0;
2596 while (!ifq_is_empty(&ifp->if_snd)) {
2597 if (MSK_IS_OACTIVE(sc_if)) {
2598 ifp->if_flags |= IFF_OACTIVE;
2599 break;
2602 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2603 if (m_head == NULL)
2604 break;
2607 * Pack the data into the transmit ring. If we
2608 * don't have room, set the OACTIVE flag and wait
2609 * for the NIC to drain the ring.
2611 if (msk_encap(sc_if, &m_head) != 0) {
2612 ifp->if_oerrors++;
2613 if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2614 continue;
2615 } else {
2616 ifp->if_flags |= IFF_OACTIVE;
2617 break;
2620 enq = 1;
2623 * If there's a BPF listener, bounce a copy of this frame
2624 * to him.
2626 BPF_MTAP(ifp, m_head);
2629 if (enq) {
2630 /* Transmit */
2631 CSR_WRITE_2(sc_if->msk_softc,
2632 Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2633 sc_if->msk_cdata.msk_tx_prod);
2635 /* Set a timeout in case the chip goes out to lunch. */
2636 ifp->if_timer = MSK_TX_TIMEOUT;
2640 static void
2641 msk_watchdog(struct ifnet *ifp)
2643 struct msk_if_softc *sc_if = ifp->if_softc;
2644 uint32_t ridx;
2645 int idx;
2647 ASSERT_SERIALIZED(ifp->if_serializer);
2649 if (sc_if->msk_link == 0) {
2650 if (bootverbose)
2651 if_printf(sc_if->msk_ifp, "watchdog timeout "
2652 "(missed link)\n");
2653 ifp->if_oerrors++;
2654 msk_init(sc_if);
2655 return;
2659 * Reclaim first as there is a possibility of losing Tx completion
2660 * interrupts.
2662 ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2663 idx = CSR_READ_2(sc_if->msk_softc, ridx);
2664 if (sc_if->msk_cdata.msk_tx_cons != idx) {
2665 msk_txeof(sc_if, idx);
2666 if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2667 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2668 "-- recovering\n");
2669 if (!ifq_is_empty(&ifp->if_snd))
2670 if_devstart(ifp);
2671 return;
2675 if_printf(ifp, "watchdog timeout\n");
2676 ifp->if_oerrors++;
2677 msk_init(sc_if);
2678 if (!ifq_is_empty(&ifp->if_snd))
2679 if_devstart(ifp);
2682 static int
2683 mskc_shutdown(device_t dev)
2685 struct msk_softc *sc = device_get_softc(dev);
2686 int i;
2688 lwkt_serialize_enter(&sc->msk_serializer);
2690 for (i = 0; i < sc->msk_num_port; i++) {
2691 if (sc->msk_if[i] != NULL)
2692 msk_stop(sc->msk_if[i]);
2695 /* Disable all interrupts. */
2696 CSR_WRITE_4(sc, B0_IMSK, 0);
2697 CSR_READ_4(sc, B0_IMSK);
2698 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2699 CSR_READ_4(sc, B0_HWE_IMSK);
2701 /* Put hardware reset. */
2702 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2704 lwkt_serialize_exit(&sc->msk_serializer);
2705 return (0);
2708 static int
2709 mskc_suspend(device_t dev)
2711 struct msk_softc *sc = device_get_softc(dev);
2712 int i;
2714 lwkt_serialize_enter(&sc->msk_serializer);
2716 for (i = 0; i < sc->msk_num_port; i++) {
2717 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2718 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2719 msk_stop(sc->msk_if[i]);
2722 /* Disable all interrupts. */
2723 CSR_WRITE_4(sc, B0_IMSK, 0);
2724 CSR_READ_4(sc, B0_IMSK);
2725 CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2726 CSR_READ_4(sc, B0_HWE_IMSK);
2728 mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2730 /* Put hardware reset. */
2731 CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2732 sc->msk_suspended = 1;
2734 lwkt_serialize_exit(&sc->msk_serializer);
2736 return (0);
2739 static int
2740 mskc_resume(device_t dev)
2742 struct msk_softc *sc = device_get_softc(dev);
2743 int i;
2745 lwkt_serialize_enter(&sc->msk_serializer);
2747 mskc_reset(sc);
2748 for (i = 0; i < sc->msk_num_port; i++) {
2749 if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2750 ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2751 msk_init(sc->msk_if[i]);
2753 sc->msk_suspended = 0;
2755 lwkt_serialize_exit(&sc->msk_serializer);
2757 return (0);
2760 static void
2761 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len,
2762 struct mbuf_chain *chain)
2764 struct mbuf *m;
2765 struct ifnet *ifp;
2766 struct msk_rxdesc *rxd;
2767 int cons, rxlen;
2769 ifp = sc_if->msk_ifp;
2771 cons = sc_if->msk_cdata.msk_rx_cons;
2772 do {
2773 rxlen = status >> 16;
2774 if ((status & GMR_FS_VLAN) != 0 &&
2775 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2776 rxlen -= EVL_ENCAPLEN;
2777 if (sc_if->msk_flags & MSK_FLAG_NORXCHK) {
2779 * For controllers that returns bogus status code
2780 * just do minimal check and let upper stack
2781 * handle this frame.
2783 if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
2784 ifp->if_ierrors++;
2785 msk_discard_rxbuf(sc_if, cons);
2786 break;
2788 } else if (len > sc_if->msk_framesize ||
2789 ((status & GMR_FS_ANY_ERR) != 0) ||
2790 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2791 /* Don't count flow-control packet as errors. */
2792 if ((status & GMR_FS_GOOD_FC) == 0)
2793 ifp->if_ierrors++;
2794 msk_discard_rxbuf(sc_if, cons);
2795 break;
2797 rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2798 m = rxd->rx_m;
2799 if (msk_newbuf(sc_if, cons, 0) != 0) {
2800 ifp->if_iqdrops++;
2801 /* Reuse old buffer. */
2802 msk_discard_rxbuf(sc_if, cons);
2803 break;
2805 m->m_pkthdr.rcvif = ifp;
2806 m->m_pkthdr.len = m->m_len = len;
2807 ifp->if_ipackets++;
2808 #ifdef notyet
2809 /* Check for VLAN tagged packets. */
2810 if ((status & GMR_FS_VLAN) != 0 &&
2811 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2812 m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2813 m->m_flags |= M_VLANTAG;
2815 #endif
2817 ether_input_chain(ifp, m, NULL, chain);
2818 } while (0);
2820 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2821 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2824 #ifdef MSK_JUMBO
2825 static void
2826 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2828 struct mbuf *m;
2829 struct ifnet *ifp;
2830 struct msk_rxdesc *jrxd;
2831 int cons, rxlen;
2833 ifp = sc_if->msk_ifp;
2835 MSK_IF_LOCK_ASSERT(sc_if);
2837 cons = sc_if->msk_cdata.msk_rx_cons;
2838 do {
2839 rxlen = status >> 16;
2840 if ((status & GMR_FS_VLAN) != 0 &&
2841 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2842 rxlen -= ETHER_VLAN_ENCAP_LEN;
2843 if (len > sc_if->msk_framesize ||
2844 ((status & GMR_FS_ANY_ERR) != 0) ||
2845 ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2846 /* Don't count flow-control packet as errors. */
2847 if ((status & GMR_FS_GOOD_FC) == 0)
2848 ifp->if_ierrors++;
2849 msk_discard_jumbo_rxbuf(sc_if, cons);
2850 break;
2852 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2853 m = jrxd->rx_m;
2854 if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2855 ifp->if_iqdrops++;
2856 /* Reuse old buffer. */
2857 msk_discard_jumbo_rxbuf(sc_if, cons);
2858 break;
2860 m->m_pkthdr.rcvif = ifp;
2861 m->m_pkthdr.len = m->m_len = len;
2862 ifp->if_ipackets++;
2863 /* Check for VLAN tagged packets. */
2864 if ((status & GMR_FS_VLAN) != 0 &&
2865 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2866 m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2867 m->m_flags |= M_VLANTAG;
2869 MSK_IF_UNLOCK(sc_if);
2870 (*ifp->if_input)(ifp, m);
2871 MSK_IF_LOCK(sc_if);
2872 } while (0);
2874 MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2875 MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2877 #endif
2879 static void
2880 msk_txeof(struct msk_if_softc *sc_if, int idx)
2882 struct msk_txdesc *txd;
2883 struct msk_tx_desc *cur_tx;
2884 struct ifnet *ifp;
2885 uint32_t control;
2886 int cons, prog;
2888 ifp = sc_if->msk_ifp;
2891 * Go through our tx ring and free mbufs for those
2892 * frames that have been sent.
2894 cons = sc_if->msk_cdata.msk_tx_cons;
2895 prog = 0;
2896 for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2897 if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2898 break;
2899 prog++;
2900 cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2901 control = le32toh(cur_tx->msk_control);
2902 sc_if->msk_cdata.msk_tx_cnt--;
2903 if ((control & EOP) == 0)
2904 continue;
2905 txd = &sc_if->msk_cdata.msk_txdesc[cons];
2906 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2908 ifp->if_opackets++;
2909 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2910 __func__));
2911 m_freem(txd->tx_m);
2912 txd->tx_m = NULL;
2915 if (prog > 0) {
2916 sc_if->msk_cdata.msk_tx_cons = cons;
2917 if (!MSK_IS_OACTIVE(sc_if))
2918 ifp->if_flags &= ~IFF_OACTIVE;
2919 if (sc_if->msk_cdata.msk_tx_cnt == 0)
2920 ifp->if_timer = 0;
2921 /* No need to sync LEs as we didn't update LEs. */
2925 static void
2926 msk_tick(void *xsc_if)
2928 struct msk_if_softc *sc_if = xsc_if;
2929 struct ifnet *ifp = &sc_if->arpcom.ac_if;
2930 struct mii_data *mii;
2932 lwkt_serialize_enter(ifp->if_serializer);
2934 mii = device_get_softc(sc_if->msk_miibus);
2936 mii_tick(mii);
2937 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2939 lwkt_serialize_exit(ifp->if_serializer);
2942 static void
2943 msk_intr_phy(struct msk_if_softc *sc_if)
2945 uint16_t status;
2947 msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2948 status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2949 /* Handle FIFO Underrun/Overflow? */
2950 if (status & PHY_M_IS_FIFO_ERROR) {
2951 device_printf(sc_if->msk_if_dev,
2952 "PHY FIFO underrun/overflow.\n");
2956 static void
2957 msk_intr_gmac(struct msk_if_softc *sc_if)
2959 struct msk_softc *sc;
2960 uint8_t status;
2962 sc = sc_if->msk_softc;
2963 status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
2965 /* GMAC Rx FIFO overrun. */
2966 if ((status & GM_IS_RX_FF_OR) != 0) {
2967 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
2968 GMF_CLI_RX_FO);
2970 /* GMAC Tx FIFO underrun. */
2971 if ((status & GM_IS_TX_FF_UR) != 0) {
2972 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
2973 GMF_CLI_TX_FU);
2974 device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
2976 * XXX
2977 * In case of Tx underrun, we may need to flush/reset
2978 * Tx MAC but that would also require resynchronization
2979 * with status LEs. Reintializing status LEs would
2980 * affect other port in dual MAC configuration so it
2981 * should be avoided as possible as we can.
2982 * Due to lack of documentation it's all vague guess but
2983 * it needs more investigation.
2988 static void
2989 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
2991 struct msk_softc *sc;
2993 sc = sc_if->msk_softc;
2994 if ((status & Y2_IS_PAR_RD1) != 0) {
2995 device_printf(sc_if->msk_if_dev,
2996 "RAM buffer read parity error\n");
2997 /* Clear IRQ. */
2998 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
2999 RI_CLR_RD_PERR);
3001 if ((status & Y2_IS_PAR_WR1) != 0) {
3002 device_printf(sc_if->msk_if_dev,
3003 "RAM buffer write parity error\n");
3004 /* Clear IRQ. */
3005 CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3006 RI_CLR_WR_PERR);
3008 if ((status & Y2_IS_PAR_MAC1) != 0) {
3009 device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3010 /* Clear IRQ. */
3011 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3012 GMF_CLI_TX_PE);
3014 if ((status & Y2_IS_PAR_RX1) != 0) {
3015 device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3016 /* Clear IRQ. */
3017 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3019 if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3020 device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3021 /* Clear IRQ. */
3022 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3026 static void
3027 mskc_intr_hwerr(struct msk_softc *sc)
3029 uint32_t status;
3030 uint32_t tlphead[4];
3032 status = CSR_READ_4(sc, B0_HWE_ISRC);
3033 /* Time Stamp timer overflow. */
3034 if ((status & Y2_IS_TIST_OV) != 0)
3035 CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3036 if ((status & Y2_IS_PCI_NEXP) != 0) {
3038 * PCI Express Error occured which is not described in PEX
3039 * spec.
3040 * This error is also mapped either to Master Abort(
3041 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3042 * can only be cleared there.
3044 device_printf(sc->msk_dev,
3045 "PCI Express protocol violation error\n");
3048 if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3049 uint16_t v16;
3051 if ((status & Y2_IS_MST_ERR) != 0)
3052 device_printf(sc->msk_dev,
3053 "unexpected IRQ Status error\n");
3054 else
3055 device_printf(sc->msk_dev,
3056 "unexpected IRQ Master error\n");
3057 /* Reset all bits in the PCI status register. */
3058 v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3059 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3060 pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3061 PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3062 PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3063 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3066 /* Check for PCI Express Uncorrectable Error. */
3067 if ((status & Y2_IS_PCI_EXP) != 0) {
3068 uint32_t v32;
3071 * On PCI Express bus bridges are called root complexes (RC).
3072 * PCI Express errors are recognized by the root complex too,
3073 * which requests the system to handle the problem. After
3074 * error occurence it may be that no access to the adapter
3075 * may be performed any longer.
3078 v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3079 if ((v32 & PEX_UNSUP_REQ) != 0) {
3080 /* Ignore unsupported request error. */
3081 if (bootverbose) {
3082 device_printf(sc->msk_dev,
3083 "Uncorrectable PCI Express error\n");
3086 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3087 int i;
3089 /* Get TLP header form Log Registers. */
3090 for (i = 0; i < 4; i++)
3091 tlphead[i] = CSR_PCI_READ_4(sc,
3092 PEX_HEADER_LOG + i * 4);
3093 /* Check for vendor defined broadcast message. */
3094 if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3095 sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3096 CSR_WRITE_4(sc, B0_HWE_IMSK,
3097 sc->msk_intrhwemask);
3098 CSR_READ_4(sc, B0_HWE_IMSK);
3101 /* Clear the interrupt. */
3102 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3103 CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3104 CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3107 if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3108 msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3109 if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3110 msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3113 static __inline void
3114 msk_rxput(struct msk_if_softc *sc_if)
3116 struct msk_softc *sc;
3118 sc = sc_if->msk_softc;
3119 #ifdef MSK_JUMBO
3120 if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3121 bus_dmamap_sync(
3122 sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3123 sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3124 BUS_DMASYNC_PREWRITE);
3126 #endif
3127 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3128 PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3131 static int
3132 mskc_handle_events(struct msk_softc *sc)
3134 struct msk_if_softc *sc_if;
3135 int rxput[2];
3136 struct msk_stat_desc *sd;
3137 uint32_t control, status;
3138 int cons, idx, len, port, rxprog;
3139 struct mbuf_chain chain[MAXCPU];
3141 idx = CSR_READ_2(sc, STAT_PUT_IDX);
3142 if (idx == sc->msk_stat_cons)
3143 return (0);
3145 ether_input_chain_init(chain);
3147 rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3149 rxprog = 0;
3150 for (cons = sc->msk_stat_cons; cons != idx;) {
3151 sd = &sc->msk_stat_ring[cons];
3152 control = le32toh(sd->msk_control);
3153 if ((control & HW_OWNER) == 0)
3154 break;
3156 * Marvell's FreeBSD driver updates status LE after clearing
3157 * HW_OWNER. However we don't have a way to sync single LE
3158 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3159 * an entire DMA map. So don't sync LE until we have a better
3160 * way to sync LEs.
3162 control &= ~HW_OWNER;
3163 sd->msk_control = htole32(control);
3164 status = le32toh(sd->msk_status);
3165 len = control & STLE_LEN_MASK;
3166 port = (control >> 16) & 0x01;
3167 sc_if = sc->msk_if[port];
3168 if (sc_if == NULL) {
3169 device_printf(sc->msk_dev, "invalid port opcode "
3170 "0x%08x\n", control & STLE_OP_MASK);
3171 continue;
3174 switch (control & STLE_OP_MASK) {
3175 case OP_RXVLAN:
3176 sc_if->msk_vtag = ntohs(len);
3177 break;
3178 case OP_RXCHKSVLAN:
3179 sc_if->msk_vtag = ntohs(len);
3180 break;
3181 case OP_RXSTAT:
3182 #ifdef MSK_JUMBO
3183 if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3184 msk_jumbo_rxeof(sc_if, status, len);
3185 else
3186 #endif
3187 msk_rxeof(sc_if, status, len, chain);
3188 rxprog++;
3190 * Because there is no way to sync single Rx LE
3191 * put the DMA sync operation off until the end of
3192 * event processing.
3194 rxput[port]++;
3195 /* Update prefetch unit if we've passed water mark. */
3196 if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3197 msk_rxput(sc_if);
3198 rxput[port] = 0;
3200 break;
3201 case OP_TXINDEXLE:
3202 if (sc->msk_if[MSK_PORT_A] != NULL) {
3203 msk_txeof(sc->msk_if[MSK_PORT_A],
3204 status & STLE_TXA1_MSKL);
3206 if (sc->msk_if[MSK_PORT_B] != NULL) {
3207 msk_txeof(sc->msk_if[MSK_PORT_B],
3208 ((status & STLE_TXA2_MSKL) >>
3209 STLE_TXA2_SHIFTL) |
3210 ((len & STLE_TXA2_MSKH) <<
3211 STLE_TXA2_SHIFTH));
3213 break;
3214 default:
3215 device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3216 control & STLE_OP_MASK);
3217 break;
3219 MSK_INC(cons, MSK_STAT_RING_CNT);
3220 if (rxprog > sc->msk_process_limit)
3221 break;
3224 if (rxprog > 0)
3225 ether_input_dispatch(chain);
3227 sc->msk_stat_cons = cons;
3228 /* XXX We should sync status LEs here. See above notes. */
3230 if (rxput[MSK_PORT_A] > 0)
3231 msk_rxput(sc->msk_if[MSK_PORT_A]);
3232 if (rxput[MSK_PORT_B] > 0)
3233 msk_rxput(sc->msk_if[MSK_PORT_B]);
3235 return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3238 /* Legacy interrupt handler for shared interrupt. */
3239 static void
3240 mskc_intr(void *xsc)
3242 struct msk_softc *sc;
3243 struct msk_if_softc *sc_if0, *sc_if1;
3244 struct ifnet *ifp0, *ifp1;
3245 uint32_t status;
3247 sc = xsc;
3248 ASSERT_SERIALIZED(&sc->msk_serializer);
3250 /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3251 status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3252 if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3253 (status & sc->msk_intrmask) == 0) {
3254 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3255 return;
3258 sc_if0 = sc->msk_if[MSK_PORT_A];
3259 sc_if1 = sc->msk_if[MSK_PORT_B];
3260 ifp0 = ifp1 = NULL;
3261 if (sc_if0 != NULL)
3262 ifp0 = sc_if0->msk_ifp;
3263 if (sc_if1 != NULL)
3264 ifp1 = sc_if1->msk_ifp;
3266 if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3267 msk_intr_phy(sc_if0);
3268 if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3269 msk_intr_phy(sc_if1);
3270 if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3271 msk_intr_gmac(sc_if0);
3272 if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3273 msk_intr_gmac(sc_if1);
3274 if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3275 device_printf(sc->msk_dev, "Rx descriptor error\n");
3276 sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3277 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3278 CSR_READ_4(sc, B0_IMSK);
3280 if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3281 device_printf(sc->msk_dev, "Tx descriptor error\n");
3282 sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3283 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3284 CSR_READ_4(sc, B0_IMSK);
3286 if ((status & Y2_IS_HW_ERR) != 0)
3287 mskc_intr_hwerr(sc);
3289 while (mskc_handle_events(sc) != 0)
3291 if ((status & Y2_IS_STAT_BMU) != 0)
3292 CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3294 /* Reenable interrupts. */
3295 CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3297 if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3298 !ifq_is_empty(&ifp0->if_snd))
3299 if_devstart(ifp0);
3300 if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3301 !ifq_is_empty(&ifp1->if_snd))
3302 if_devstart(ifp1);
3305 static void
3306 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3308 struct msk_softc *sc = sc_if->msk_softc;
3309 struct ifnet *ifp = sc_if->msk_ifp;
3311 switch (sc->msk_hw_id) {
3312 case CHIP_ID_YUKON_EX:
3313 if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0)
3314 goto yukon_ex_workaround;
3315 if (ifp->if_mtu > ETHERMTU) {
3316 CSR_WRITE_4(sc,
3317 MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3318 TX_JUMBO_ENA | TX_STFW_ENA);
3319 } else {
3320 CSR_WRITE_4(sc,
3321 MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3322 TX_JUMBO_DIS | TX_STFW_ENA);
3324 break;
3325 default:
3326 yukon_ex_workaround:
3327 if (ifp->if_mtu > ETHERMTU) {
3328 /* Set Tx GMAC FIFO Almost Empty Threshold. */
3329 CSR_WRITE_4(sc,
3330 MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3331 MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3332 /* Disable Store & Forward mode for Tx. */
3333 CSR_WRITE_4(sc,
3334 MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3335 TX_JUMBO_ENA | TX_STFW_DIS);
3336 } else {
3337 /* Enable Store & Forward mode for Tx. */
3338 CSR_WRITE_4(sc,
3339 MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3340 TX_JUMBO_DIS | TX_STFW_ENA);
3342 break;
3346 static void
3347 msk_init(void *xsc)
3349 struct msk_if_softc *sc_if = xsc;
3350 struct msk_softc *sc = sc_if->msk_softc;
3351 struct ifnet *ifp = sc_if->msk_ifp;
3352 struct mii_data *mii;
3353 uint16_t eaddr[ETHER_ADDR_LEN / 2];
3354 uint16_t gmac;
3355 uint32_t reg;
3356 int error, i;
3358 ASSERT_SERIALIZED(ifp->if_serializer);
3360 mii = device_get_softc(sc_if->msk_miibus);
3362 error = 0;
3363 /* Cancel pending I/O and free all Rx/Tx buffers. */
3364 msk_stop(sc_if);
3366 sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3367 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3368 sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3370 * In Yukon EC Ultra, TSO & checksum offload is not
3371 * supported for jumbo frame.
3373 ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3374 ifp->if_capenable &= ~IFCAP_TXCSUM;
3377 /* GMAC Control reset. */
3378 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3379 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3380 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3381 if (sc->msk_hw_id == CHIP_ID_YUKON_EX) {
3382 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3383 GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3384 GMC_BYP_RETR_ON);
3388 * Initialize GMAC first such that speed/duplex/flow-control
3389 * parameters are renegotiated when interface is brought up.
3391 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3393 /* Dummy read the Interrupt Source Register. */
3394 CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3396 /* Set MIB Clear Counter Mode. */
3397 gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3398 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3399 /* Read all MIB Counters with Clear Mode set. */
3400 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3401 GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3402 /* Clear MIB Clear Counter Mode. */
3403 gmac &= ~GM_PAR_MIB_CLR;
3404 GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3406 /* Disable FCS. */
3407 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3409 /* Setup Transmit Control Register. */
3410 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3412 /* Setup Transmit Flow Control Register. */
3413 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3415 /* Setup Transmit Parameter Register. */
3416 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3417 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3418 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3420 gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3421 GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3423 if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3424 gmac |= GM_SMOD_JUMBO_ENA;
3425 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3427 /* Set station address. */
3428 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3429 for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3430 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3431 eaddr[i]);
3432 for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3433 GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3434 eaddr[i]);
3436 /* Disable interrupts for counter overflows. */
3437 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3438 GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3439 GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3441 /* Configure Rx MAC FIFO. */
3442 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3443 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3444 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3445 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3446 sc->msk_hw_id == CHIP_ID_YUKON_EX)
3447 reg |= GMF_RX_OVER_ON;
3448 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3450 /* Set receive filter. */
3451 msk_rxfilter(sc_if);
3453 if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3454 /* Clear flush mask - HW bug. */
3455 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3456 } else {
3457 /* Flush Rx MAC FIFO on any flow control or error. */
3458 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3459 GMR_FS_ANY_ERR);
3463 * Set Rx FIFO flush threshold to 64 bytes 1 FIFO word
3464 * due to hardware hang on receipt of pause frames.
3466 reg = RX_GMF_FL_THR_DEF + 1;
3467 /* Another magic for Yukon FE+ - From Linux. */
3468 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3469 sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3470 reg = 0x178;
3471 CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3474 /* Configure Tx MAC FIFO. */
3475 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3476 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3477 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3479 /* Configure hardware VLAN tag insertion/stripping. */
3480 msk_setvlan(sc_if, ifp);
3482 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3483 /* Set Rx Pause threshould. */
3484 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3485 MSK_ECU_LLPP);
3486 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3487 MSK_ECU_ULPP);
3488 /* Configure store-and-forward for Tx. */
3489 msk_set_tx_stfwd(sc_if);
3492 if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3493 sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3494 /* Disable dynamic watermark - from Linux. */
3495 reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3496 reg &= ~0x03;
3497 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3501 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3502 * arbiter as we don't use Sync Tx queue.
3504 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3505 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3506 /* Enable the RAM Interface Arbiter. */
3507 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3509 /* Setup RAM buffer. */
3510 msk_set_rambuffer(sc_if);
3512 /* Disable Tx sync Queue. */
3513 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3515 /* Setup Tx Queue Bus Memory Interface. */
3516 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3517 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3518 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3519 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3520 switch (sc->msk_hw_id) {
3521 case CHIP_ID_YUKON_EC_U:
3522 if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3523 /* Fix for Yukon-EC Ultra: set BMU FIFO level */
3524 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3525 MSK_ECU_TXFF_LEV);
3527 break;
3528 case CHIP_ID_YUKON_EX:
3530 * Yukon Extreme seems to have silicon bug for
3531 * automatic Tx checksum calculation capability.
3533 if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) {
3534 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3535 F_TX_CHK_AUTO_OFF);
3537 break;
3540 /* Setup Rx Queue Bus Memory Interface. */
3541 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3542 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3543 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3544 CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3545 if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3546 sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3547 /* MAC Rx RAM Read is controlled by hardware. */
3548 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3551 msk_set_prefetch(sc, sc_if->msk_txq,
3552 sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3553 msk_init_tx_ring(sc_if);
3555 /* Disable Rx checksum offload and RSS hash. */
3556 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3557 BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3558 #ifdef MSK_JUMBO
3559 if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3560 msk_set_prefetch(sc, sc_if->msk_rxq,
3561 sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3562 MSK_JUMBO_RX_RING_CNT - 1);
3563 error = msk_init_jumbo_rx_ring(sc_if);
3564 } else
3565 #endif
3567 msk_set_prefetch(sc, sc_if->msk_rxq,
3568 sc_if->msk_rdata.msk_rx_ring_paddr,
3569 MSK_RX_RING_CNT - 1);
3570 error = msk_init_rx_ring(sc_if);
3572 if (error != 0) {
3573 device_printf(sc_if->msk_if_dev,
3574 "initialization failed: no memory for Rx buffers\n");
3575 msk_stop(sc_if);
3576 return;
3579 /* Configure interrupt handling. */
3580 if (sc_if->msk_port == MSK_PORT_A) {
3581 sc->msk_intrmask |= Y2_IS_PORT_A;
3582 sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3583 } else {
3584 sc->msk_intrmask |= Y2_IS_PORT_B;
3585 sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3587 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3588 CSR_READ_4(sc, B0_HWE_IMSK);
3589 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3590 CSR_READ_4(sc, B0_IMSK);
3592 sc_if->msk_link = 0;
3593 mii_mediachg(mii);
3595 mskc_set_imtimer(sc);
3597 ifp->if_flags |= IFF_RUNNING;
3598 ifp->if_flags &= ~IFF_OACTIVE;
3600 callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3603 static void
3604 msk_set_rambuffer(struct msk_if_softc *sc_if)
3606 struct msk_softc *sc;
3607 int ltpp, utpp;
3609 if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3610 return;
3612 sc = sc_if->msk_softc;
3614 /* Setup Rx Queue. */
3615 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3616 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3617 sc->msk_rxqstart[sc_if->msk_port] / 8);
3618 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3619 sc->msk_rxqend[sc_if->msk_port] / 8);
3620 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3621 sc->msk_rxqstart[sc_if->msk_port] / 8);
3622 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3623 sc->msk_rxqstart[sc_if->msk_port] / 8);
3625 utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3626 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3627 ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3628 sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3629 if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3630 ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3631 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3632 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3633 /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3635 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3636 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3638 /* Setup Tx Queue. */
3639 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3640 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3641 sc->msk_txqstart[sc_if->msk_port] / 8);
3642 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3643 sc->msk_txqend[sc_if->msk_port] / 8);
3644 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3645 sc->msk_txqstart[sc_if->msk_port] / 8);
3646 CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3647 sc->msk_txqstart[sc_if->msk_port] / 8);
3648 /* Enable Store & Forward for Tx side. */
3649 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3650 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3651 CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3654 static void
3655 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3656 uint32_t count)
3659 /* Reset the prefetch unit. */
3660 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3661 PREF_UNIT_RST_SET);
3662 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3663 PREF_UNIT_RST_CLR);
3664 /* Set LE base address. */
3665 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3666 MSK_ADDR_LO(addr));
3667 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3668 MSK_ADDR_HI(addr));
3669 /* Set the list last index. */
3670 CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3671 count);
3672 /* Turn on prefetch unit. */
3673 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3674 PREF_UNIT_OP_ON);
3675 /* Dummy read to ensure write. */
3676 CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3679 static void
3680 msk_stop(struct msk_if_softc *sc_if)
3682 struct msk_softc *sc = sc_if->msk_softc;
3683 struct ifnet *ifp = sc_if->msk_ifp;
3684 struct msk_txdesc *txd;
3685 struct msk_rxdesc *rxd;
3686 #ifdef MSK_JUMBO
3687 struct msk_rxdesc *jrxd;
3688 #endif
3689 uint32_t val;
3690 int i;
3692 ASSERT_SERIALIZED(ifp->if_serializer);
3694 callout_stop(&sc_if->msk_tick_ch);
3695 ifp->if_timer = 0;
3697 /* Disable interrupts. */
3698 if (sc_if->msk_port == MSK_PORT_A) {
3699 sc->msk_intrmask &= ~Y2_IS_PORT_A;
3700 sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3701 } else {
3702 sc->msk_intrmask &= ~Y2_IS_PORT_B;
3703 sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3705 CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3706 CSR_READ_4(sc, B0_HWE_IMSK);
3707 CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3708 CSR_READ_4(sc, B0_IMSK);
3710 /* Disable Tx/Rx MAC. */
3711 val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3712 val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3713 GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3714 /* Read again to ensure writing. */
3715 GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3717 /* Stop Tx BMU. */
3718 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3719 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3720 for (i = 0; i < MSK_TIMEOUT; i++) {
3721 if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3722 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3723 BMU_STOP);
3724 val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3725 } else
3726 break;
3727 DELAY(1);
3729 if (i == MSK_TIMEOUT)
3730 device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3731 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3732 RB_RST_SET | RB_DIS_OP_MD);
3734 /* Disable all GMAC interrupt. */
3735 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3736 /* Disable PHY interrupt. */
3737 msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3739 /* Disable the RAM Interface Arbiter. */
3740 CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3742 /* Reset the PCI FIFO of the async Tx queue */
3743 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3744 BMU_RST_SET | BMU_FIFO_RST);
3746 /* Reset the Tx prefetch units. */
3747 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3748 PREF_UNIT_RST_SET);
3750 /* Reset the RAM Buffer async Tx queue. */
3751 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3753 /* Reset Tx MAC FIFO. */
3754 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3755 /* Set Pause Off. */
3756 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3759 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3760 * reach the end of packet and since we can't make sure that we have
3761 * incoming data, we must reset the BMU while it is not during a DMA
3762 * transfer. Since it is possible that the Rx path is still active,
3763 * the Rx RAM buffer will be stopped first, so any possible incoming
3764 * data will not trigger a DMA. After the RAM buffer is stopped, the
3765 * BMU is polled until any DMA in progress is ended and only then it
3766 * will be reset.
3769 /* Disable the RAM Buffer receive queue. */
3770 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3771 for (i = 0; i < MSK_TIMEOUT; i++) {
3772 if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3773 CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3774 break;
3775 DELAY(1);
3777 if (i == MSK_TIMEOUT)
3778 device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3779 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3780 BMU_RST_SET | BMU_FIFO_RST);
3781 /* Reset the Rx prefetch unit. */
3782 CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3783 PREF_UNIT_RST_SET);
3784 /* Reset the RAM Buffer receive queue. */
3785 CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3786 /* Reset Rx MAC FIFO. */
3787 CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3789 /* Free Rx and Tx mbufs still in the queues. */
3790 for (i = 0; i < MSK_RX_RING_CNT; i++) {
3791 rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3792 if (rxd->rx_m != NULL) {
3793 bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3794 rxd->rx_dmamap);
3795 m_freem(rxd->rx_m);
3796 rxd->rx_m = NULL;
3799 #ifdef MSK_JUMBO
3800 for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3801 jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3802 if (jrxd->rx_m != NULL) {
3803 bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3804 jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3805 bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3806 jrxd->rx_dmamap);
3807 m_freem(jrxd->rx_m);
3808 jrxd->rx_m = NULL;
3811 #endif
3812 for (i = 0; i < MSK_TX_RING_CNT; i++) {
3813 txd = &sc_if->msk_cdata.msk_txdesc[i];
3814 if (txd->tx_m != NULL) {
3815 bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3816 txd->tx_dmamap);
3817 m_freem(txd->tx_m);
3818 txd->tx_m = NULL;
3823 * Mark the interface down.
3825 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3826 sc_if->msk_link = 0;
3829 static int
3830 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3832 return sysctl_int_range(oidp, arg1, arg2, req,
3833 MSK_PROC_MIN, MSK_PROC_MAX);
3836 static int
3837 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3839 struct msk_softc *sc = arg1;
3840 struct lwkt_serialize *serializer = &sc->msk_serializer;
3841 int error = 0, v;
3843 lwkt_serialize_enter(serializer);
3845 v = sc->msk_intr_rate;
3846 error = sysctl_handle_int(oidp, &v, 0, req);
3847 if (error || req->newptr == NULL)
3848 goto back;
3849 if (v < 0) {
3850 error = EINVAL;
3851 goto back;
3854 if (sc->msk_intr_rate != v) {
3855 int flag = 0, i;
3857 sc->msk_intr_rate = v;
3858 for (i = 0; i < 2; ++i) {
3859 if (sc->msk_if[i] != NULL) {
3860 flag |= sc->msk_if[i]->
3861 arpcom.ac_if.if_flags & IFF_RUNNING;
3864 if (flag)
3865 mskc_set_imtimer(sc);
3867 back:
3868 lwkt_serialize_exit(serializer);
3869 return error;
3872 static int
3873 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3874 void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3876 struct msk_if_softc *sc_if = device_get_softc(dev);
3877 bus_dmamem_t dmem;
3878 int error;
3880 error = bus_dmamem_coherent(sc_if->msk_cdata.msk_parent_tag,
3881 MSK_RING_ALIGN, 0,
3882 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3883 size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3884 if (error) {
3885 device_printf(dev, "can't create coherent DMA memory\n");
3886 return error;
3889 *dtag = dmem.dmem_tag;
3890 *dmap = dmem.dmem_map;
3891 *addr = dmem.dmem_addr;
3892 *paddr = dmem.dmem_busaddr;
3894 return 0;
3897 static void
3898 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3900 if (dtag != NULL) {
3901 bus_dmamap_unload(dtag, dmap);
3902 bus_dmamem_free(dtag, addr, dmap);
3903 bus_dma_tag_destroy(dtag);
3907 static void
3908 mskc_set_imtimer(struct msk_softc *sc)
3910 if (sc->msk_intr_rate > 0) {
3912 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3913 * and 78.125MHz for rest of chip types
3915 CSR_WRITE_4(sc, B2_IRQM_INI,
3916 MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3917 CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3918 CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3919 } else {
3920 CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);