dma: rework config parsing
[dragonfly.git] / sys / kern / uipc_syscalls.c
blob295b00c9df7af9b4706836a861b6c5fbaebd1b36
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
5 * sendfile(2) and related extensions:
6 * Copyright (c) 1998, David Greenman. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94
37 * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
38 * $DragonFly: src/sys/kern/uipc_syscalls.c,v 1.92 2008/11/26 13:10:56 sephe Exp $
41 #include "opt_ktrace.h"
42 #include "opt_sctp.h"
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/sysproto.h>
48 #include <sys/malloc.h>
49 #include <sys/filedesc.h>
50 #include <sys/event.h>
51 #include <sys/proc.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/kern_syscall.h>
56 #include <sys/mbuf.h>
57 #include <sys/protosw.h>
58 #include <sys/sfbuf.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/socketops.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 #include <sys/lock.h>
65 #include <sys/mount.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_extern.h>
75 #include <sys/file2.h>
76 #include <sys/signalvar.h>
77 #include <sys/serialize.h>
79 #include <sys/thread2.h>
80 #include <sys/msgport2.h>
81 #include <sys/socketvar2.h>
82 #include <net/netmsg2.h>
84 #ifdef SCTP
85 #include <netinet/sctp_peeloff.h>
86 #endif /* SCTP */
88 struct sfbuf_mref {
89 struct sf_buf *sf;
90 int mref_count;
93 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile sfbuf ref structures");
96 * System call interface to the socket abstraction.
99 extern struct fileops socketops;
102 * socket_args(int domain, int type, int protocol)
105 kern_socket(int domain, int type, int protocol, int *res)
107 struct thread *td = curthread;
108 struct proc *p = td->td_proc;
109 struct socket *so;
110 struct file *fp;
111 int fd, error;
113 KKASSERT(p);
115 error = falloc(p, &fp, &fd);
116 if (error)
117 return (error);
118 error = socreate(domain, &so, type, protocol, td);
119 if (error) {
120 fsetfd(p, NULL, fd);
121 } else {
122 fp->f_type = DTYPE_SOCKET;
123 fp->f_flag = FREAD | FWRITE;
124 fp->f_ops = &socketops;
125 fp->f_data = so;
126 *res = fd;
127 fsetfd(p, fp, fd);
129 fdrop(fp);
130 return (error);
134 sys_socket(struct socket_args *uap)
136 int error;
138 error = kern_socket(uap->domain, uap->type, uap->protocol,
139 &uap->sysmsg_iresult);
141 return (error);
145 kern_bind(int s, struct sockaddr *sa)
147 struct thread *td = curthread;
148 struct proc *p = td->td_proc;
149 struct file *fp;
150 int error;
152 KKASSERT(p);
153 error = holdsock(p->p_fd, s, &fp);
154 if (error)
155 return (error);
156 error = sobind((struct socket *)fp->f_data, sa, td);
157 fdrop(fp);
158 return (error);
162 * bind_args(int s, caddr_t name, int namelen)
165 sys_bind(struct bind_args *uap)
167 struct sockaddr *sa;
168 int error;
170 error = getsockaddr(&sa, uap->name, uap->namelen);
171 if (error)
172 return (error);
173 error = kern_bind(uap->s, sa);
174 FREE(sa, M_SONAME);
176 return (error);
180 kern_listen(int s, int backlog)
182 struct thread *td = curthread;
183 struct proc *p = td->td_proc;
184 struct file *fp;
185 int error;
187 KKASSERT(p);
188 error = holdsock(p->p_fd, s, &fp);
189 if (error)
190 return (error);
191 error = solisten((struct socket *)fp->f_data, backlog, td);
192 fdrop(fp);
193 return(error);
197 * listen_args(int s, int backlog)
200 sys_listen(struct listen_args *uap)
202 int error;
204 error = kern_listen(uap->s, uap->backlog);
205 return (error);
209 * Returns the accepted socket as well.
211 static boolean_t
212 soaccept_predicate(struct netmsg *msg0)
214 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
215 struct socket *head = msg->nm_so;
217 if (head->so_error != 0) {
218 msg->nm_netmsg.nm_lmsg.ms_error = head->so_error;
219 return (TRUE);
221 if (!TAILQ_EMPTY(&head->so_comp)) {
222 /* Abuse nm_so field as copy in/copy out parameter. XXX JH */
223 msg->nm_so = TAILQ_FIRST(&head->so_comp);
224 TAILQ_REMOVE(&head->so_comp, msg->nm_so, so_list);
225 head->so_qlen--;
227 msg->nm_netmsg.nm_lmsg.ms_error = 0;
228 return (TRUE);
230 if (head->so_state & SS_CANTRCVMORE) {
231 msg->nm_netmsg.nm_lmsg.ms_error = ECONNABORTED;
232 return (TRUE);
234 if (msg->nm_fflags & FNONBLOCK) {
235 msg->nm_netmsg.nm_lmsg.ms_error = EWOULDBLOCK;
236 return (TRUE);
239 return (FALSE);
243 * The second argument to kern_accept() is a handle to a struct sockaddr.
244 * This allows kern_accept() to return a pointer to an allocated struct
245 * sockaddr which must be freed later with FREE(). The caller must
246 * initialize *name to NULL.
249 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res)
251 struct thread *td = curthread;
252 struct proc *p = td->td_proc;
253 struct file *lfp = NULL;
254 struct file *nfp = NULL;
255 struct sockaddr *sa;
256 struct socket *head, *so;
257 struct netmsg_so_notify msg;
258 lwkt_port_t port;
259 int fd;
260 u_int fflag; /* type must match fp->f_flag */
261 int error, tmp;
263 *res = -1;
264 if (name && namelen && *namelen < 0)
265 return (EINVAL);
267 error = holdsock(p->p_fd, s, &lfp);
268 if (error)
269 return (error);
271 error = falloc(p, &nfp, &fd);
272 if (error) { /* Probably ran out of file descriptors. */
273 fdrop(lfp);
274 return (error);
276 head = (struct socket *)lfp->f_data;
277 if ((head->so_options & SO_ACCEPTCONN) == 0) {
278 error = EINVAL;
279 goto done;
282 if (fflags & O_FBLOCKING)
283 fflags |= lfp->f_flag & ~FNONBLOCK;
284 else if (fflags & O_FNONBLOCKING)
285 fflags |= lfp->f_flag | FNONBLOCK;
286 else
287 fflags = lfp->f_flag;
289 /* optimize for uniprocessor case later XXX JH */
290 port = head->so_proto->pr_mport(head, NULL, NULL, PRU_PRED);
291 netmsg_init_abortable(&msg.nm_netmsg, &curthread->td_msgport,
293 netmsg_so_notify,
294 netmsg_so_notify_doabort);
295 msg.nm_predicate = soaccept_predicate;
296 msg.nm_fflags = fflags;
297 msg.nm_so = head;
298 msg.nm_etype = NM_REVENT;
299 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, PCATCH);
300 if (error)
301 goto done;
304 * At this point we have the connection that's ready to be accepted.
306 so = msg.nm_so;
308 fflag = lfp->f_flag;
310 /* connection has been removed from the listen queue */
311 KNOTE(&head->so_rcv.ssb_sel.si_note, 0);
313 so->so_state &= ~SS_COMP;
314 so->so_head = NULL;
315 if (head->so_sigio != NULL)
316 fsetown(fgetown(head->so_sigio), &so->so_sigio);
318 nfp->f_type = DTYPE_SOCKET;
319 nfp->f_flag = fflag;
320 nfp->f_ops = &socketops;
321 nfp->f_data = so;
322 /* Sync socket nonblocking/async state with file flags */
323 tmp = fflag & FNONBLOCK;
324 fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, p->p_ucred, NULL);
325 tmp = fflag & FASYNC;
326 fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, p->p_ucred, NULL);
328 sa = NULL;
329 error = soaccept(so, &sa);
332 * Set the returned name and namelen as applicable. Set the returned
333 * namelen to 0 for older code which might ignore the return value
334 * from accept.
336 if (error == 0) {
337 if (sa && name && namelen) {
338 if (*namelen > sa->sa_len)
339 *namelen = sa->sa_len;
340 *name = sa;
341 } else {
342 if (sa)
343 FREE(sa, M_SONAME);
347 done:
349 * If an error occured clear the reserved descriptor, else associate
350 * nfp with it.
352 * Note that *res is normally ignored if an error is returned but
353 * a syscall message will still have access to the result code.
355 if (error) {
356 fsetfd(p, NULL, fd);
357 } else {
358 *res = fd;
359 fsetfd(p, nfp, fd);
361 fdrop(nfp);
362 fdrop(lfp);
363 return (error);
367 * accept(int s, caddr_t name, int *anamelen)
370 sys_accept(struct accept_args *uap)
372 struct sockaddr *sa = NULL;
373 int sa_len;
374 int error;
376 if (uap->name) {
377 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
378 if (error)
379 return (error);
381 error = kern_accept(uap->s, 0, &sa, &sa_len,
382 &uap->sysmsg_iresult);
384 if (error == 0)
385 error = copyout(sa, uap->name, sa_len);
386 if (error == 0) {
387 error = copyout(&sa_len, uap->anamelen,
388 sizeof(*uap->anamelen));
390 if (sa)
391 FREE(sa, M_SONAME);
392 } else {
393 error = kern_accept(uap->s, 0, NULL, 0,
394 &uap->sysmsg_iresult);
396 return (error);
400 * extaccept(int s, int fflags, caddr_t name, int *anamelen)
403 sys_extaccept(struct extaccept_args *uap)
405 struct sockaddr *sa = NULL;
406 int sa_len;
407 int error;
408 int fflags = uap->flags & O_FMASK;
410 if (uap->name) {
411 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
412 if (error)
413 return (error);
415 error = kern_accept(uap->s, fflags, &sa, &sa_len,
416 &uap->sysmsg_iresult);
418 if (error == 0)
419 error = copyout(sa, uap->name, sa_len);
420 if (error == 0) {
421 error = copyout(&sa_len, uap->anamelen,
422 sizeof(*uap->anamelen));
424 if (sa)
425 FREE(sa, M_SONAME);
426 } else {
427 error = kern_accept(uap->s, fflags, NULL, 0,
428 &uap->sysmsg_iresult);
430 return (error);
435 * Returns TRUE if predicate satisfied.
437 static boolean_t
438 soconnected_predicate(struct netmsg *msg0)
440 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
441 struct socket *so = msg->nm_so;
443 /* check predicate */
444 if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
445 msg->nm_netmsg.nm_lmsg.ms_error = so->so_error;
446 return (TRUE);
449 return (FALSE);
453 kern_connect(int s, int fflags, struct sockaddr *sa)
455 struct thread *td = curthread;
456 struct proc *p = td->td_proc;
457 struct file *fp;
458 struct socket *so;
459 int error, interrupted = 0;
461 error = holdsock(p->p_fd, s, &fp);
462 if (error)
463 return (error);
464 so = (struct socket *)fp->f_data;
466 if (fflags & O_FBLOCKING)
467 /* fflags &= ~FNONBLOCK; */;
468 else if (fflags & O_FNONBLOCKING)
469 fflags |= FNONBLOCK;
470 else
471 fflags = fp->f_flag;
473 if (so->so_state & SS_ISCONNECTING) {
474 error = EALREADY;
475 goto done;
477 error = soconnect(so, sa, td);
478 if (error)
479 goto bad;
480 if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
481 error = EINPROGRESS;
482 goto done;
484 if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
485 struct netmsg_so_notify msg;
486 lwkt_port_t port;
488 port = so->so_proto->pr_mport(so, sa, NULL, PRU_PRED);
489 netmsg_init_abortable(&msg.nm_netmsg,
490 &curthread->td_msgport,
492 netmsg_so_notify,
493 netmsg_so_notify_doabort);
494 msg.nm_predicate = soconnected_predicate;
495 msg.nm_so = so;
496 msg.nm_etype = NM_REVENT;
497 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg, PCATCH);
498 if (error == EINTR || error == ERESTART)
499 interrupted = 1;
501 if (error == 0) {
502 error = so->so_error;
503 so->so_error = 0;
505 bad:
506 if (!interrupted)
507 so->so_state &= ~SS_ISCONNECTING;
508 if (error == ERESTART)
509 error = EINTR;
510 done:
511 fdrop(fp);
512 return (error);
516 * connect_args(int s, caddr_t name, int namelen)
519 sys_connect(struct connect_args *uap)
521 struct sockaddr *sa;
522 int error;
524 error = getsockaddr(&sa, uap->name, uap->namelen);
525 if (error)
526 return (error);
527 error = kern_connect(uap->s, 0, sa);
528 FREE(sa, M_SONAME);
530 return (error);
534 * connect_args(int s, int fflags, caddr_t name, int namelen)
537 sys_extconnect(struct extconnect_args *uap)
539 struct sockaddr *sa;
540 int error;
541 int fflags = uap->flags & O_FMASK;
543 error = getsockaddr(&sa, uap->name, uap->namelen);
544 if (error)
545 return (error);
546 error = kern_connect(uap->s, fflags, sa);
547 FREE(sa, M_SONAME);
549 return (error);
553 kern_socketpair(int domain, int type, int protocol, int *sv)
555 struct thread *td = curthread;
556 struct proc *p = td->td_proc;
557 struct file *fp1, *fp2;
558 struct socket *so1, *so2;
559 int fd1, fd2, error;
561 KKASSERT(p);
562 error = socreate(domain, &so1, type, protocol, td);
563 if (error)
564 return (error);
565 error = socreate(domain, &so2, type, protocol, td);
566 if (error)
567 goto free1;
568 error = falloc(p, &fp1, &fd1);
569 if (error)
570 goto free2;
571 sv[0] = fd1;
572 fp1->f_data = so1;
573 error = falloc(p, &fp2, &fd2);
574 if (error)
575 goto free3;
576 fp2->f_data = so2;
577 sv[1] = fd2;
578 error = soconnect2(so1, so2);
579 if (error)
580 goto free4;
581 if (type == SOCK_DGRAM) {
583 * Datagram socket connection is asymmetric.
585 error = soconnect2(so2, so1);
586 if (error)
587 goto free4;
589 fp1->f_type = fp2->f_type = DTYPE_SOCKET;
590 fp1->f_flag = fp2->f_flag = FREAD|FWRITE;
591 fp1->f_ops = fp2->f_ops = &socketops;
592 fsetfd(p, fp1, fd1);
593 fsetfd(p, fp2, fd2);
594 fdrop(fp1);
595 fdrop(fp2);
596 return (error);
597 free4:
598 fsetfd(p, NULL, fd2);
599 fdrop(fp2);
600 free3:
601 fsetfd(p, NULL, fd1);
602 fdrop(fp1);
603 free2:
604 (void)soclose(so2, 0);
605 free1:
606 (void)soclose(so1, 0);
607 return (error);
611 * socketpair(int domain, int type, int protocol, int *rsv)
614 sys_socketpair(struct socketpair_args *uap)
616 int error, sockv[2];
618 error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
620 if (error == 0)
621 error = copyout(sockv, uap->rsv, sizeof(sockv));
622 return (error);
626 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
627 struct mbuf *control, int flags, size_t *res)
629 struct thread *td = curthread;
630 struct lwp *lp = td->td_lwp;
631 struct proc *p = td->td_proc;
632 struct file *fp;
633 size_t len;
634 int error;
635 struct socket *so;
636 #ifdef KTRACE
637 struct iovec *ktriov = NULL;
638 struct uio ktruio;
639 #endif
641 error = holdsock(p->p_fd, s, &fp);
642 if (error)
643 return (error);
644 #ifdef KTRACE
645 if (KTRPOINT(td, KTR_GENIO)) {
646 int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
648 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
649 bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
650 ktruio = *auio;
652 #endif
653 len = auio->uio_resid;
654 so = (struct socket *)fp->f_data;
655 if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
656 if (fp->f_flag & FNONBLOCK)
657 flags |= MSG_FNONBLOCKING;
659 error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
660 if (error) {
661 if (auio->uio_resid != len && (error == ERESTART ||
662 error == EINTR || error == EWOULDBLOCK))
663 error = 0;
664 if (error == EPIPE)
665 lwpsignal(p, lp, SIGPIPE);
667 #ifdef KTRACE
668 if (ktriov != NULL) {
669 if (error == 0) {
670 ktruio.uio_iov = ktriov;
671 ktruio.uio_resid = len - auio->uio_resid;
672 ktrgenio(lp, s, UIO_WRITE, &ktruio, error);
674 FREE(ktriov, M_TEMP);
676 #endif
677 if (error == 0)
678 *res = len - auio->uio_resid;
679 fdrop(fp);
680 return (error);
684 * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
687 sys_sendto(struct sendto_args *uap)
689 struct thread *td = curthread;
690 struct uio auio;
691 struct iovec aiov;
692 struct sockaddr *sa = NULL;
693 int error;
695 if (uap->to) {
696 error = getsockaddr(&sa, uap->to, uap->tolen);
697 if (error)
698 return (error);
700 aiov.iov_base = uap->buf;
701 aiov.iov_len = uap->len;
702 auio.uio_iov = &aiov;
703 auio.uio_iovcnt = 1;
704 auio.uio_offset = 0;
705 auio.uio_resid = uap->len;
706 auio.uio_segflg = UIO_USERSPACE;
707 auio.uio_rw = UIO_WRITE;
708 auio.uio_td = td;
710 error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
711 &uap->sysmsg_szresult);
713 if (sa)
714 FREE(sa, M_SONAME);
715 return (error);
719 * sendmsg_args(int s, caddr_t msg, int flags)
722 sys_sendmsg(struct sendmsg_args *uap)
724 struct thread *td = curthread;
725 struct msghdr msg;
726 struct uio auio;
727 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
728 struct sockaddr *sa = NULL;
729 struct mbuf *control = NULL;
730 int error;
732 error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
733 if (error)
734 return (error);
737 * Conditionally copyin msg.msg_name.
739 if (msg.msg_name) {
740 error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
741 if (error)
742 return (error);
746 * Populate auio.
748 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
749 &auio.uio_resid);
750 if (error)
751 goto cleanup2;
752 auio.uio_iov = iov;
753 auio.uio_iovcnt = msg.msg_iovlen;
754 auio.uio_offset = 0;
755 auio.uio_segflg = UIO_USERSPACE;
756 auio.uio_rw = UIO_WRITE;
757 auio.uio_td = td;
760 * Conditionally copyin msg.msg_control.
762 if (msg.msg_control) {
763 if (msg.msg_controllen < sizeof(struct cmsghdr) ||
764 msg.msg_controllen > MLEN) {
765 error = EINVAL;
766 goto cleanup;
768 control = m_get(MB_WAIT, MT_CONTROL);
769 if (control == NULL) {
770 error = ENOBUFS;
771 goto cleanup;
773 control->m_len = msg.msg_controllen;
774 error = copyin(msg.msg_control, mtod(control, caddr_t),
775 msg.msg_controllen);
776 if (error) {
777 m_free(control);
778 goto cleanup;
782 error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
783 &uap->sysmsg_szresult);
785 cleanup:
786 iovec_free(&iov, aiov);
787 cleanup2:
788 if (sa)
789 FREE(sa, M_SONAME);
790 return (error);
794 * kern_recvmsg() takes a handle to sa and control. If the handle is non-
795 * null, it returns a dynamically allocated struct sockaddr and an mbuf.
796 * Don't forget to FREE() and m_free() these if they are returned.
799 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
800 struct mbuf **control, int *flags, size_t *res)
802 struct thread *td = curthread;
803 struct proc *p = td->td_proc;
804 struct file *fp;
805 size_t len;
806 int error;
807 int lflags;
808 struct socket *so;
809 #ifdef KTRACE
810 struct iovec *ktriov = NULL;
811 struct uio ktruio;
812 #endif
814 error = holdsock(p->p_fd, s, &fp);
815 if (error)
816 return (error);
817 #ifdef KTRACE
818 if (KTRPOINT(td, KTR_GENIO)) {
819 int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
821 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
822 bcopy(auio->uio_iov, ktriov, iovlen);
823 ktruio = *auio;
825 #endif
826 len = auio->uio_resid;
827 so = (struct socket *)fp->f_data;
829 if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
830 if (fp->f_flag & FNONBLOCK) {
831 if (flags) {
832 *flags |= MSG_FNONBLOCKING;
833 } else {
834 lflags = MSG_FNONBLOCKING;
835 flags = &lflags;
840 error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
841 if (error) {
842 if (auio->uio_resid != len && (error == ERESTART ||
843 error == EINTR || error == EWOULDBLOCK))
844 error = 0;
846 #ifdef KTRACE
847 if (ktriov != NULL) {
848 if (error == 0) {
849 ktruio.uio_iov = ktriov;
850 ktruio.uio_resid = len - auio->uio_resid;
851 ktrgenio(td->td_lwp, s, UIO_READ, &ktruio, error);
853 FREE(ktriov, M_TEMP);
855 #endif
856 if (error == 0)
857 *res = len - auio->uio_resid;
858 fdrop(fp);
859 return (error);
863 * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
864 * caddr_t from, int *fromlenaddr)
867 sys_recvfrom(struct recvfrom_args *uap)
869 struct thread *td = curthread;
870 struct uio auio;
871 struct iovec aiov;
872 struct sockaddr *sa = NULL;
873 int error, fromlen;
875 if (uap->from && uap->fromlenaddr) {
876 error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
877 if (error)
878 return (error);
879 if (fromlen < 0)
880 return (EINVAL);
881 } else {
882 fromlen = 0;
884 aiov.iov_base = uap->buf;
885 aiov.iov_len = uap->len;
886 auio.uio_iov = &aiov;
887 auio.uio_iovcnt = 1;
888 auio.uio_offset = 0;
889 auio.uio_resid = uap->len;
890 auio.uio_segflg = UIO_USERSPACE;
891 auio.uio_rw = UIO_READ;
892 auio.uio_td = td;
894 error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
895 &uap->flags, &uap->sysmsg_szresult);
897 if (error == 0 && uap->from) {
898 /* note: sa may still be NULL */
899 if (sa) {
900 fromlen = MIN(fromlen, sa->sa_len);
901 error = copyout(sa, uap->from, fromlen);
902 } else {
903 fromlen = 0;
905 if (error == 0) {
906 error = copyout(&fromlen, uap->fromlenaddr,
907 sizeof(fromlen));
910 if (sa)
911 FREE(sa, M_SONAME);
913 return (error);
917 * recvmsg_args(int s, struct msghdr *msg, int flags)
920 sys_recvmsg(struct recvmsg_args *uap)
922 struct thread *td = curthread;
923 struct msghdr msg;
924 struct uio auio;
925 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
926 struct mbuf *m, *control = NULL;
927 struct sockaddr *sa = NULL;
928 caddr_t ctlbuf;
929 socklen_t *ufromlenp, *ucontrollenp;
930 int error, fromlen, controllen, len, flags, *uflagsp;
933 * This copyin handles everything except the iovec.
935 error = copyin(uap->msg, &msg, sizeof(msg));
936 if (error)
937 return (error);
939 if (msg.msg_name && msg.msg_namelen < 0)
940 return (EINVAL);
941 if (msg.msg_control && msg.msg_controllen < 0)
942 return (EINVAL);
944 ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
945 msg_namelen));
946 ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
947 msg_controllen));
948 uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
949 msg_flags));
952 * Populate auio.
954 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
955 &auio.uio_resid);
956 if (error)
957 return (error);
958 auio.uio_iov = iov;
959 auio.uio_iovcnt = msg.msg_iovlen;
960 auio.uio_offset = 0;
961 auio.uio_segflg = UIO_USERSPACE;
962 auio.uio_rw = UIO_READ;
963 auio.uio_td = td;
965 flags = uap->flags;
967 error = kern_recvmsg(uap->s,
968 (msg.msg_name ? &sa : NULL), &auio,
969 (msg.msg_control ? &control : NULL), &flags,
970 &uap->sysmsg_szresult);
973 * Conditionally copyout the name and populate the namelen field.
975 if (error == 0 && msg.msg_name) {
976 /* note: sa may still be NULL */
977 if (sa != NULL) {
978 fromlen = MIN(msg.msg_namelen, sa->sa_len);
979 error = copyout(sa, msg.msg_name, fromlen);
980 } else {
981 fromlen = 0;
983 if (error == 0)
984 error = copyout(&fromlen, ufromlenp,
985 sizeof(*ufromlenp));
989 * Copyout msg.msg_control and msg.msg_controllen.
991 if (error == 0 && msg.msg_control) {
992 len = msg.msg_controllen;
993 m = control;
994 ctlbuf = (caddr_t)msg.msg_control;
996 while(m && len > 0) {
997 unsigned int tocopy;
999 if (len >= m->m_len) {
1000 tocopy = m->m_len;
1001 } else {
1002 msg.msg_flags |= MSG_CTRUNC;
1003 tocopy = len;
1006 error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
1007 if (error)
1008 goto cleanup;
1010 ctlbuf += tocopy;
1011 len -= tocopy;
1012 m = m->m_next;
1014 controllen = ctlbuf - (caddr_t)msg.msg_control;
1015 error = copyout(&controllen, ucontrollenp,
1016 sizeof(*ucontrollenp));
1019 if (error == 0)
1020 error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1022 cleanup:
1023 if (sa)
1024 FREE(sa, M_SONAME);
1025 iovec_free(&iov, aiov);
1026 if (control)
1027 m_freem(control);
1028 return (error);
1032 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1033 * in kernel pointer instead of a userland pointer. This allows us
1034 * to manipulate socket options in the emulation code.
1037 kern_setsockopt(int s, struct sockopt *sopt)
1039 struct thread *td = curthread;
1040 struct proc *p = td->td_proc;
1041 struct file *fp;
1042 int error;
1044 if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1045 return (EFAULT);
1046 if (sopt->sopt_valsize < 0)
1047 return (EINVAL);
1049 error = holdsock(p->p_fd, s, &fp);
1050 if (error)
1051 return (error);
1053 error = sosetopt((struct socket *)fp->f_data, sopt);
1054 fdrop(fp);
1055 return (error);
1059 * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1062 sys_setsockopt(struct setsockopt_args *uap)
1064 struct thread *td = curthread;
1065 struct sockopt sopt;
1066 int error;
1068 sopt.sopt_level = uap->level;
1069 sopt.sopt_name = uap->name;
1070 sopt.sopt_valsize = uap->valsize;
1071 sopt.sopt_td = td;
1072 sopt.sopt_val = NULL;
1074 if (sopt.sopt_valsize < 0 || sopt.sopt_valsize > SOMAXOPT_SIZE)
1075 return (EINVAL);
1076 if (uap->val) {
1077 sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1078 error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1079 if (error)
1080 goto out;
1083 error = kern_setsockopt(uap->s, &sopt);
1084 out:
1085 if (uap->val)
1086 kfree(sopt.sopt_val, M_TEMP);
1087 return(error);
1091 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1092 * in kernel pointer instead of a userland pointer. This allows us
1093 * to manipulate socket options in the emulation code.
1096 kern_getsockopt(int s, struct sockopt *sopt)
1098 struct thread *td = curthread;
1099 struct proc *p = td->td_proc;
1100 struct file *fp;
1101 int error;
1103 if (sopt->sopt_val == NULL && sopt->sopt_valsize != 0)
1104 return (EFAULT);
1105 if (sopt->sopt_valsize < 0 || sopt->sopt_valsize > SOMAXOPT_SIZE)
1106 return (EINVAL);
1108 error = holdsock(p->p_fd, s, &fp);
1109 if (error)
1110 return (error);
1112 error = sogetopt((struct socket *)fp->f_data, sopt);
1113 fdrop(fp);
1114 return (error);
1118 * getsockopt_Args(int s, int level, int name, caddr_t val, int *avalsize)
1121 sys_getsockopt(struct getsockopt_args *uap)
1123 struct thread *td = curthread;
1124 struct sockopt sopt;
1125 int error, valsize;
1127 if (uap->val) {
1128 error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1129 if (error)
1130 return (error);
1131 } else {
1132 valsize = 0;
1135 sopt.sopt_level = uap->level;
1136 sopt.sopt_name = uap->name;
1137 sopt.sopt_valsize = valsize;
1138 sopt.sopt_td = td;
1139 sopt.sopt_val = NULL;
1141 if (sopt.sopt_valsize < 0 || sopt.sopt_valsize > SOMAXOPT_SIZE)
1142 return (EINVAL);
1143 if (uap->val) {
1144 sopt.sopt_val = kmalloc(sopt.sopt_valsize, M_TEMP, M_WAITOK);
1145 error = copyin(uap->val, sopt.sopt_val, sopt.sopt_valsize);
1146 if (error)
1147 goto out;
1150 error = kern_getsockopt(uap->s, &sopt);
1151 if (error)
1152 goto out;
1153 valsize = sopt.sopt_valsize;
1154 error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1155 if (error)
1156 goto out;
1157 if (uap->val)
1158 error = copyout(sopt.sopt_val, uap->val, sopt.sopt_valsize);
1159 out:
1160 if (uap->val)
1161 kfree(sopt.sopt_val, M_TEMP);
1162 return (error);
1166 * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1167 * This allows kern_getsockname() to return a pointer to an allocated struct
1168 * sockaddr which must be freed later with FREE(). The caller must
1169 * initialize *name to NULL.
1172 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1174 struct thread *td = curthread;
1175 struct proc *p = td->td_proc;
1176 struct file *fp;
1177 struct socket *so;
1178 struct sockaddr *sa = NULL;
1179 int error;
1181 error = holdsock(p->p_fd, s, &fp);
1182 if (error)
1183 return (error);
1184 if (*namelen < 0) {
1185 fdrop(fp);
1186 return (EINVAL);
1188 so = (struct socket *)fp->f_data;
1189 error = so_pru_sockaddr(so, &sa);
1190 if (error == 0) {
1191 if (sa == NULL) {
1192 *namelen = 0;
1193 } else {
1194 *namelen = MIN(*namelen, sa->sa_len);
1195 *name = sa;
1199 fdrop(fp);
1200 return (error);
1204 * getsockname_args(int fdes, caddr_t asa, int *alen)
1206 * Get socket name.
1209 sys_getsockname(struct getsockname_args *uap)
1211 struct sockaddr *sa = NULL;
1212 int error, sa_len;
1214 error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1215 if (error)
1216 return (error);
1218 error = kern_getsockname(uap->fdes, &sa, &sa_len);
1220 if (error == 0)
1221 error = copyout(sa, uap->asa, sa_len);
1222 if (error == 0)
1223 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1224 if (sa)
1225 FREE(sa, M_SONAME);
1226 return (error);
1230 * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1231 * This allows kern_getpeername() to return a pointer to an allocated struct
1232 * sockaddr which must be freed later with FREE(). The caller must
1233 * initialize *name to NULL.
1236 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1238 struct thread *td = curthread;
1239 struct proc *p = td->td_proc;
1240 struct file *fp;
1241 struct socket *so;
1242 struct sockaddr *sa = NULL;
1243 int error;
1245 error = holdsock(p->p_fd, s, &fp);
1246 if (error)
1247 return (error);
1248 if (*namelen < 0) {
1249 fdrop(fp);
1250 return (EINVAL);
1252 so = (struct socket *)fp->f_data;
1253 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1254 fdrop(fp);
1255 return (ENOTCONN);
1257 error = so_pru_peeraddr(so, &sa);
1258 if (error == 0) {
1259 if (sa == NULL) {
1260 *namelen = 0;
1261 } else {
1262 *namelen = MIN(*namelen, sa->sa_len);
1263 *name = sa;
1267 fdrop(fp);
1268 return (error);
1272 * getpeername_args(int fdes, caddr_t asa, int *alen)
1274 * Get name of peer for connected socket.
1277 sys_getpeername(struct getpeername_args *uap)
1279 struct sockaddr *sa = NULL;
1280 int error, sa_len;
1282 error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1283 if (error)
1284 return (error);
1286 error = kern_getpeername(uap->fdes, &sa, &sa_len);
1288 if (error == 0)
1289 error = copyout(sa, uap->asa, sa_len);
1290 if (error == 0)
1291 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1292 if (sa)
1293 FREE(sa, M_SONAME);
1294 return (error);
1298 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1300 struct sockaddr *sa;
1301 int error;
1303 *namp = NULL;
1304 if (len > SOCK_MAXADDRLEN)
1305 return ENAMETOOLONG;
1306 if (len < offsetof(struct sockaddr, sa_data[0]))
1307 return EDOM;
1308 MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK);
1309 error = copyin(uaddr, sa, len);
1310 if (error) {
1311 FREE(sa, M_SONAME);
1312 } else {
1313 #if BYTE_ORDER != BIG_ENDIAN
1315 * The bind(), connect(), and sendto() syscalls were not
1316 * versioned for COMPAT_43. Thus, this check must stay.
1318 if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1319 sa->sa_family = sa->sa_len;
1320 #endif
1321 sa->sa_len = len;
1322 *namp = sa;
1324 return error;
1328 * Detach a mapped page and release resources back to the system.
1329 * We must release our wiring and if the object is ripped out
1330 * from under the vm_page we become responsible for freeing the
1331 * page. These routines must be MPSAFE.
1333 * XXX HACK XXX TEMPORARY UNTIL WE IMPLEMENT EXT MBUF REFERENCE COUNTING
1335 * XXX vm_page_*() routines are not MPSAFE yet, the MP lock is required.
1337 static void
1338 sf_buf_mref(void *arg)
1340 struct sfbuf_mref *sfm = arg;
1343 * We must already hold a ref so there is no race to 0, just
1344 * atomically increment the count.
1346 atomic_add_int(&sfm->mref_count, 1);
1349 static void
1350 sf_buf_mfree(void *arg)
1352 struct sfbuf_mref *sfm = arg;
1353 vm_page_t m;
1355 KKASSERT(sfm->mref_count > 0);
1356 if (atomic_fetchadd_int(&sfm->mref_count, -1) == 1) {
1358 * XXX vm_page_*() and SFBUF routines not MPSAFE yet.
1360 get_mplock();
1361 crit_enter();
1362 m = sf_buf_page(sfm->sf);
1363 sf_buf_free(sfm->sf);
1364 vm_page_unwire(m, 0);
1365 if (m->wire_count == 0 && m->object == NULL)
1366 vm_page_try_to_free(m);
1367 crit_exit();
1368 rel_mplock();
1369 kfree(sfm, M_SENDFILE);
1374 * sendfile(2).
1375 * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1376 * struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1378 * Send a file specified by 'fd' and starting at 'offset' to a socket
1379 * specified by 's'. Send only 'nbytes' of the file or until EOF if
1380 * nbytes == 0. Optionally add a header and/or trailer to the socket
1381 * output. If specified, write the total number of bytes sent into *sbytes.
1383 * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1384 * the headers to count against the remaining bytes to be sent from
1385 * the file descriptor. We may wish to implement a compatibility syscall
1386 * in the future.
1389 sys_sendfile(struct sendfile_args *uap)
1391 struct thread *td = curthread;
1392 struct proc *p = td->td_proc;
1393 struct file *fp;
1394 struct vnode *vp = NULL;
1395 struct sf_hdtr hdtr;
1396 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1397 struct uio auio;
1398 struct mbuf *mheader = NULL;
1399 size_t hbytes = 0;
1400 size_t tbytes;
1401 off_t hdtr_size = 0;
1402 off_t sbytes;
1403 int error;
1405 KKASSERT(p);
1408 * Do argument checking. Must be a regular file in, stream
1409 * type and connected socket out, positive offset.
1411 fp = holdfp(p->p_fd, uap->fd, FREAD);
1412 if (fp == NULL) {
1413 return (EBADF);
1415 if (fp->f_type != DTYPE_VNODE) {
1416 fdrop(fp);
1417 return (EINVAL);
1419 vp = (struct vnode *)fp->f_data;
1420 vref(vp);
1421 fdrop(fp);
1424 * If specified, get the pointer to the sf_hdtr struct for
1425 * any headers/trailers.
1427 if (uap->hdtr) {
1428 error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1429 if (error)
1430 goto done;
1432 * Send any headers.
1434 if (hdtr.headers) {
1435 error = iovec_copyin(hdtr.headers, &iov, aiov,
1436 hdtr.hdr_cnt, &hbytes);
1437 if (error)
1438 goto done;
1439 auio.uio_iov = iov;
1440 auio.uio_iovcnt = hdtr.hdr_cnt;
1441 auio.uio_offset = 0;
1442 auio.uio_segflg = UIO_USERSPACE;
1443 auio.uio_rw = UIO_WRITE;
1444 auio.uio_td = td;
1445 auio.uio_resid = hbytes;
1447 mheader = m_uiomove(&auio);
1449 iovec_free(&iov, aiov);
1450 if (mheader == NULL)
1451 goto done;
1455 error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1456 &sbytes, uap->flags);
1457 if (error)
1458 goto done;
1461 * Send trailers. Wimp out and use writev(2).
1463 if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1464 error = iovec_copyin(hdtr.trailers, &iov, aiov,
1465 hdtr.trl_cnt, &auio.uio_resid);
1466 if (error)
1467 goto done;
1468 auio.uio_iov = iov;
1469 auio.uio_iovcnt = hdtr.trl_cnt;
1470 auio.uio_offset = 0;
1471 auio.uio_segflg = UIO_USERSPACE;
1472 auio.uio_rw = UIO_WRITE;
1473 auio.uio_td = td;
1475 error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1477 iovec_free(&iov, aiov);
1478 if (error)
1479 goto done;
1480 hdtr_size += tbytes; /* trailer bytes successfully sent */
1483 done:
1484 if (uap->sbytes != NULL) {
1485 sbytes += hdtr_size;
1486 copyout(&sbytes, uap->sbytes, sizeof(off_t));
1488 if (vp)
1489 vrele(vp);
1490 return (error);
1494 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1495 struct mbuf *mheader, off_t *sbytes, int flags)
1497 struct thread *td = curthread;
1498 struct proc *p = td->td_proc;
1499 struct vm_object *obj;
1500 struct socket *so;
1501 struct file *fp;
1502 struct mbuf *m;
1503 struct sf_buf *sf;
1504 struct sfbuf_mref *sfm;
1505 struct vm_page *pg;
1506 off_t off, xfsize;
1507 off_t hbytes = 0;
1508 int error = 0;
1510 if (vp->v_type != VREG) {
1511 error = EINVAL;
1512 goto done0;
1514 if ((obj = vp->v_object) == NULL) {
1515 error = EINVAL;
1516 goto done0;
1518 error = holdsock(p->p_fd, sfd, &fp);
1519 if (error)
1520 goto done0;
1521 so = (struct socket *)fp->f_data;
1522 if (so->so_type != SOCK_STREAM) {
1523 error = EINVAL;
1524 goto done;
1526 if ((so->so_state & SS_ISCONNECTED) == 0) {
1527 error = ENOTCONN;
1528 goto done;
1530 if (offset < 0) {
1531 error = EINVAL;
1532 goto done;
1535 *sbytes = 0;
1537 * Protect against multiple writers to the socket.
1539 ssb_lock(&so->so_snd, M_WAITOK);
1542 * Loop through the pages in the file, starting with the requested
1543 * offset. Get a file page (do I/O if necessary), map the file page
1544 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1545 * it on the socket.
1547 for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes) {
1548 vm_pindex_t pindex;
1549 vm_offset_t pgoff;
1551 pindex = OFF_TO_IDX(off);
1552 retry_lookup:
1554 * Calculate the amount to transfer. Not to exceed a page,
1555 * the EOF, or the passed in nbytes.
1557 xfsize = vp->v_filesize - off;
1558 if (xfsize > PAGE_SIZE)
1559 xfsize = PAGE_SIZE;
1560 pgoff = (vm_offset_t)(off & PAGE_MASK);
1561 if (PAGE_SIZE - pgoff < xfsize)
1562 xfsize = PAGE_SIZE - pgoff;
1563 if (nbytes && xfsize > (nbytes - *sbytes))
1564 xfsize = nbytes - *sbytes;
1565 if (xfsize <= 0)
1566 break;
1568 * Optimize the non-blocking case by looking at the socket space
1569 * before going to the extra work of constituting the sf_buf.
1571 if ((fp->f_flag & FNONBLOCK) && ssb_space(&so->so_snd) <= 0) {
1572 if (so->so_state & SS_CANTSENDMORE)
1573 error = EPIPE;
1574 else
1575 error = EAGAIN;
1576 ssb_unlock(&so->so_snd);
1577 goto done;
1580 * Attempt to look up the page.
1582 * Allocate if not found, wait and loop if busy, then
1583 * wire the page. critical section protection is
1584 * required to maintain the object association (an
1585 * interrupt can free the page) through to the
1586 * vm_page_wire() call.
1588 crit_enter();
1589 pg = vm_page_lookup(obj, pindex);
1590 if (pg == NULL) {
1591 pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL);
1592 if (pg == NULL) {
1593 vm_wait(0);
1594 crit_exit();
1595 goto retry_lookup;
1597 vm_page_wakeup(pg);
1598 } else if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) {
1599 crit_exit();
1600 goto retry_lookup;
1602 vm_page_wire(pg);
1603 crit_exit();
1606 * If page is not valid for what we need, initiate I/O
1609 if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1610 struct uio auio;
1611 struct iovec aiov;
1612 int bsize;
1615 * Ensure that our page is still around when the I/O
1616 * completes.
1618 vm_page_io_start(pg);
1621 * Get the page from backing store.
1623 bsize = vp->v_mount->mnt_stat.f_iosize;
1624 auio.uio_iov = &aiov;
1625 auio.uio_iovcnt = 1;
1626 aiov.iov_base = 0;
1627 aiov.iov_len = MAXBSIZE;
1628 auio.uio_resid = MAXBSIZE;
1629 auio.uio_offset = trunc_page(off);
1630 auio.uio_segflg = UIO_NOCOPY;
1631 auio.uio_rw = UIO_READ;
1632 auio.uio_td = td;
1633 vn_lock(vp, LK_SHARED | LK_RETRY);
1634 error = VOP_READ(vp, &auio,
1635 IO_VMIO | ((MAXBSIZE / bsize) << 16),
1636 p->p_ucred);
1637 vn_unlock(vp);
1638 vm_page_flag_clear(pg, PG_ZERO);
1639 vm_page_io_finish(pg);
1640 if (error) {
1641 crit_enter();
1642 vm_page_unwire(pg, 0);
1643 vm_page_try_to_free(pg);
1644 crit_exit();
1645 ssb_unlock(&so->so_snd);
1646 goto done;
1652 * Get a sendfile buf. We usually wait as long as necessary,
1653 * but this wait can be interrupted.
1655 if ((sf = sf_buf_alloc(pg, SFB_CATCH)) == NULL) {
1656 crit_enter();
1657 vm_page_unwire(pg, 0);
1658 vm_page_try_to_free(pg);
1659 crit_exit();
1660 ssb_unlock(&so->so_snd);
1661 error = EINTR;
1662 goto done;
1666 * Get an mbuf header and set it up as having external storage.
1668 MGETHDR(m, MB_WAIT, MT_DATA);
1669 if (m == NULL) {
1670 error = ENOBUFS;
1671 sf_buf_free(sf);
1672 ssb_unlock(&so->so_snd);
1673 goto done;
1677 * sfm is a temporary hack, use a per-cpu cache for this.
1679 sfm = kmalloc(sizeof(struct sfbuf_mref), M_SENDFILE, M_WAITOK);
1680 sfm->sf = sf;
1681 sfm->mref_count = 1;
1683 m->m_ext.ext_free = sf_buf_mfree;
1684 m->m_ext.ext_ref = sf_buf_mref;
1685 m->m_ext.ext_arg = sfm;
1686 m->m_ext.ext_buf = (void *)sf->kva;
1687 m->m_ext.ext_size = PAGE_SIZE;
1688 m->m_data = (char *) sf->kva + pgoff;
1689 m->m_flags |= M_EXT;
1690 m->m_pkthdr.len = m->m_len = xfsize;
1691 KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1693 if (mheader != NULL) {
1694 hbytes = mheader->m_pkthdr.len;
1695 mheader->m_pkthdr.len += m->m_pkthdr.len;
1696 m_cat(mheader, m);
1697 m = mheader;
1698 mheader = NULL;
1699 } else
1700 hbytes = 0;
1703 * Add the buffer to the socket buffer chain.
1705 crit_enter();
1706 retry_space:
1708 * Make sure that the socket is still able to take more data.
1709 * CANTSENDMORE being true usually means that the connection
1710 * was closed. so_error is true when an error was sensed after
1711 * a previous send.
1712 * The state is checked after the page mapping and buffer
1713 * allocation above since those operations may block and make
1714 * any socket checks stale. From this point forward, nothing
1715 * blocks before the pru_send (or more accurately, any blocking
1716 * results in a loop back to here to re-check).
1718 if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1719 if (so->so_state & SS_CANTSENDMORE) {
1720 error = EPIPE;
1721 } else {
1722 error = so->so_error;
1723 so->so_error = 0;
1725 m_freem(m);
1726 ssb_unlock(&so->so_snd);
1727 crit_exit();
1728 goto done;
1731 * Wait for socket space to become available. We do this just
1732 * after checking the connection state above in order to avoid
1733 * a race condition with ssb_wait().
1735 if (ssb_space(&so->so_snd) < so->so_snd.ssb_lowat) {
1736 if (fp->f_flag & FNONBLOCK) {
1737 m_freem(m);
1738 ssb_unlock(&so->so_snd);
1739 crit_exit();
1740 error = EAGAIN;
1741 goto done;
1743 error = ssb_wait(&so->so_snd);
1745 * An error from ssb_wait usually indicates that we've
1746 * been interrupted by a signal. If we've sent anything
1747 * then return bytes sent, otherwise return the error.
1749 if (error) {
1750 m_freem(m);
1751 ssb_unlock(&so->so_snd);
1752 crit_exit();
1753 goto done;
1755 goto retry_space;
1757 error = so_pru_send(so, 0, m, NULL, NULL, td);
1758 crit_exit();
1759 if (error) {
1760 ssb_unlock(&so->so_snd);
1761 goto done;
1764 if (mheader != NULL) {
1765 *sbytes += mheader->m_pkthdr.len;
1766 error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1767 mheader = NULL;
1769 ssb_unlock(&so->so_snd);
1771 done:
1772 fdrop(fp);
1773 done0:
1774 if (mheader != NULL)
1775 m_freem(mheader);
1776 return (error);
1780 sys_sctp_peeloff(struct sctp_peeloff_args *uap)
1782 #ifdef SCTP
1783 struct thread *td = curthread;
1784 struct proc *p = td->td_proc;
1785 struct file *lfp = NULL;
1786 struct file *nfp = NULL;
1787 int error;
1788 struct socket *head, *so;
1789 caddr_t assoc_id;
1790 int fd;
1791 short fflag; /* type must match fp->f_flag */
1793 assoc_id = uap->name;
1794 error = holdsock(p->p_fd, uap->sd, &lfp);
1795 if (error) {
1796 return (error);
1798 crit_enter();
1799 head = (struct socket *)lfp->f_data;
1800 error = sctp_can_peel_off(head, assoc_id);
1801 if (error) {
1802 crit_exit();
1803 goto done;
1806 * At this point we know we do have a assoc to pull
1807 * we proceed to get the fd setup. This may block
1808 * but that is ok.
1811 fflag = lfp->f_flag;
1812 error = falloc(p, &nfp, &fd);
1813 if (error) {
1815 * Probably ran out of file descriptors. Put the
1816 * unaccepted connection back onto the queue and
1817 * do another wakeup so some other process might
1818 * have a chance at it.
1820 crit_exit();
1821 goto done;
1823 uap->sysmsg_iresult = fd;
1825 so = sctp_get_peeloff(head, assoc_id, &error);
1826 if (so == NULL) {
1828 * Either someone else peeled it off OR
1829 * we can't get a socket.
1831 goto noconnection;
1833 so->so_state &= ~SS_COMP;
1834 so->so_state &= ~SS_NOFDREF;
1835 so->so_head = NULL;
1836 if (head->so_sigio != NULL)
1837 fsetown(fgetown(head->so_sigio), &so->so_sigio);
1839 nfp->f_type = DTYPE_SOCKET;
1840 nfp->f_flag = fflag;
1841 nfp->f_ops = &socketops;
1842 nfp->f_data = so;
1844 noconnection:
1846 * Assign the file pointer to the reserved descriptor, or clear
1847 * the reserved descriptor if an error occured.
1849 if (error)
1850 fsetfd(p, NULL, fd);
1851 else
1852 fsetfd(p, nfp, fd);
1853 crit_exit();
1855 * Release explicitly held references before returning.
1857 done:
1858 if (nfp != NULL)
1859 fdrop(nfp);
1860 fdrop(lfp);
1861 return (error);
1862 #else /* SCTP */
1863 return(EOPNOTSUPP);
1864 #endif /* SCTP */