HAMMER - Fix lost inode issue (primarily with nohistory mounts)
[dragonfly.git] / sys / vfs / hammer / hammer_object.c
blob530713bd73412a21115e1c1e1eabf256ff165a3b
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.97 2008/09/23 22:28:56 dillon Exp $
37 #include "hammer.h"
39 static int hammer_mem_lookup(hammer_cursor_t cursor);
40 static void hammer_mem_first(hammer_cursor_t cursor);
41 static int hammer_frontend_trunc_callback(hammer_record_t record,
42 void *data __unused);
43 static int hammer_bulk_scan_callback(hammer_record_t record, void *data);
44 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
46 hammer_btree_leaf_elm_t leaf);
48 struct rec_trunc_info {
49 u_int16_t rec_type;
50 int64_t trunc_off;
53 struct hammer_bulk_info {
54 hammer_record_t record;
55 struct hammer_btree_leaf_elm leaf;
59 * Red-black tree support. Comparison code for insertion.
61 static int
62 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
64 if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
65 return(-1);
66 if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
67 return(1);
69 if (rec1->leaf.base.key < rec2->leaf.base.key)
70 return(-1);
71 if (rec1->leaf.base.key > rec2->leaf.base.key)
72 return(1);
75 * For search & insertion purposes records deleted by the
76 * frontend or deleted/committed by the backend are silently
77 * ignored. Otherwise pipelined insertions will get messed
78 * up.
80 * rec1 is greater then rec2 if rec1 is marked deleted.
81 * rec1 is less then rec2 if rec2 is marked deleted.
83 * Multiple deleted records may be present, do not return 0
84 * if both are marked deleted.
86 if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
87 HAMMER_RECF_COMMITTED)) {
88 return(1);
90 if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
91 HAMMER_RECF_COMMITTED)) {
92 return(-1);
95 return(0);
99 * Basic record comparison code similar to hammer_btree_cmp().
101 * obj_id is not compared and may not yet be assigned in the record.
103 static int
104 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
106 if (elm->rec_type < rec->leaf.base.rec_type)
107 return(-3);
108 if (elm->rec_type > rec->leaf.base.rec_type)
109 return(3);
111 if (elm->key < rec->leaf.base.key)
112 return(-2);
113 if (elm->key > rec->leaf.base.key)
114 return(2);
117 * Never match against an item deleted by the frontend
118 * or backend, or committed by the backend.
120 * elm is less then rec if rec is marked deleted.
122 if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
123 HAMMER_RECF_COMMITTED)) {
124 return(-1);
126 return(0);
130 * Ranged scan to locate overlapping record(s). This is used by
131 * hammer_ip_get_bulk() to locate an overlapping record. We have
132 * to use a ranged scan because the keys for data records with the
133 * same file base offset can be different due to differing data_len's.
135 * NOTE: The base file offset of a data record is (key - data_len), not (key).
137 static int
138 hammer_rec_overlap_cmp(hammer_record_t rec, void *data)
140 struct hammer_bulk_info *info = data;
141 hammer_btree_leaf_elm_t leaf = &info->leaf;
143 if (rec->leaf.base.rec_type < leaf->base.rec_type)
144 return(-3);
145 if (rec->leaf.base.rec_type > leaf->base.rec_type)
146 return(3);
149 * Overlap compare
151 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
152 /* rec_beg >= leaf_end */
153 if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key)
154 return(2);
155 /* rec_end <= leaf_beg */
156 if (rec->leaf.base.key <= leaf->base.key - leaf->data_len)
157 return(-2);
158 } else {
159 if (rec->leaf.base.key < leaf->base.key)
160 return(-2);
161 if (rec->leaf.base.key > leaf->base.key)
162 return(2);
166 * We have to return 0 at this point, even if DELETED_FE is set,
167 * because returning anything else will cause the scan to ignore
168 * one of the branches when we really want it to check both.
170 return(0);
174 * RB_SCAN comparison code for hammer_mem_first(). The argument order
175 * is reversed so the comparison result has to be negated. key_beg and
176 * key_end are both range-inclusive.
178 * Localized deletions are not cached in-memory.
180 static
182 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
184 hammer_cursor_t cursor = data;
185 int r;
187 r = hammer_rec_cmp(&cursor->key_beg, rec);
188 if (r > 1)
189 return(-1);
190 r = hammer_rec_cmp(&cursor->key_end, rec);
191 if (r < -1)
192 return(1);
193 return(0);
197 * This compare function is used when simply looking up key_beg.
199 static
201 hammer_rec_find_cmp(hammer_record_t rec, void *data)
203 hammer_cursor_t cursor = data;
204 int r;
206 r = hammer_rec_cmp(&cursor->key_beg, rec);
207 if (r > 1)
208 return(-1);
209 if (r < -1)
210 return(1);
211 return(0);
215 * Locate blocks within the truncation range. Partial blocks do not count.
217 static
219 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
221 struct rec_trunc_info *info = data;
223 if (rec->leaf.base.rec_type < info->rec_type)
224 return(-1);
225 if (rec->leaf.base.rec_type > info->rec_type)
226 return(1);
228 switch(rec->leaf.base.rec_type) {
229 case HAMMER_RECTYPE_DB:
231 * DB record key is not beyond the truncation point, retain.
233 if (rec->leaf.base.key < info->trunc_off)
234 return(-1);
235 break;
236 case HAMMER_RECTYPE_DATA:
238 * DATA record offset start is not beyond the truncation point,
239 * retain.
241 if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
242 return(-1);
243 break;
244 default:
245 panic("hammer_rec_trunc_cmp: unexpected record type");
249 * The record start is >= the truncation point, return match,
250 * the record should be destroyed.
252 return(0);
255 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
258 * Allocate a record for the caller to finish filling in. The record is
259 * returned referenced.
261 hammer_record_t
262 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
264 hammer_record_t record;
265 hammer_mount_t hmp;
267 hmp = ip->hmp;
268 ++hammer_count_records;
269 record = kmalloc(sizeof(*record), hmp->m_misc,
270 M_WAITOK | M_ZERO | M_USE_RESERVE);
271 record->flush_state = HAMMER_FST_IDLE;
272 record->ip = ip;
273 record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
274 record->leaf.data_len = data_len;
275 hammer_ref(&record->lock);
277 if (data_len) {
278 record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO);
279 record->flags |= HAMMER_RECF_ALLOCDATA;
280 ++hammer_count_record_datas;
283 return (record);
286 void
287 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
289 while (record->flush_state == HAMMER_FST_FLUSH) {
290 record->flags |= HAMMER_RECF_WANTED;
291 tsleep(record, 0, ident, 0);
296 * Called from the backend, hammer_inode.c, after a record has been
297 * flushed to disk. The record has been exclusively locked by the
298 * caller and interlocked with BE.
300 * We clean up the state, unlock, and release the record (the record
301 * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
303 void
304 hammer_flush_record_done(hammer_record_t record, int error)
306 hammer_inode_t target_ip;
308 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
309 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
312 * If an error occured, the backend was unable to sync the
313 * record to its media. Leave the record intact.
315 if (error) {
316 hammer_critical_error(record->ip->hmp, record->ip, error,
317 "while flushing record");
320 --record->flush_group->refs;
321 record->flush_group = NULL;
324 * Adjust the flush state and dependancy based on success or
325 * failure.
327 if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
328 if ((target_ip = record->target_ip) != NULL) {
329 TAILQ_REMOVE(&target_ip->target_list, record,
330 target_entry);
331 record->target_ip = NULL;
332 hammer_test_inode(target_ip);
334 record->flush_state = HAMMER_FST_IDLE;
335 } else {
336 if (record->target_ip) {
337 record->flush_state = HAMMER_FST_SETUP;
338 hammer_test_inode(record->ip);
339 hammer_test_inode(record->target_ip);
340 } else {
341 record->flush_state = HAMMER_FST_IDLE;
344 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
347 * Cleanup
349 if (record->flags & HAMMER_RECF_WANTED) {
350 record->flags &= ~HAMMER_RECF_WANTED;
351 wakeup(record);
353 hammer_rel_mem_record(record);
357 * Release a memory record. Records marked for deletion are immediately
358 * removed from the RB-Tree but otherwise left intact until the last ref
359 * goes away.
361 void
362 hammer_rel_mem_record(struct hammer_record *record)
364 hammer_mount_t hmp;
365 hammer_reserve_t resv;
366 hammer_inode_t ip;
367 hammer_inode_t target_ip;
368 int diddrop;
370 hammer_unref(&record->lock);
372 if (record->lock.refs == 0) {
374 * Upon release of the last reference wakeup any waiters.
375 * The record structure may get destroyed so callers will
376 * loop up and do a relookup.
378 * WARNING! Record must be removed from RB-TREE before we
379 * might possibly block. hammer_test_inode() can block!
381 ip = record->ip;
382 hmp = ip->hmp;
385 * Upon release of the last reference a record marked deleted
386 * by the front or backend, or committed by the backend,
387 * is destroyed.
389 if (record->flags & (HAMMER_RECF_DELETED_FE |
390 HAMMER_RECF_DELETED_BE |
391 HAMMER_RECF_COMMITTED)) {
392 KKASSERT(ip->lock.refs > 0);
393 KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
396 * target_ip may have zero refs, we have to ref it
397 * to prevent it from being ripped out from under
398 * us.
400 if ((target_ip = record->target_ip) != NULL) {
401 TAILQ_REMOVE(&target_ip->target_list,
402 record, target_entry);
403 record->target_ip = NULL;
404 hammer_ref(&target_ip->lock);
408 * Remove the record from the B-Tree
410 if (record->flags & HAMMER_RECF_ONRBTREE) {
411 RB_REMOVE(hammer_rec_rb_tree,
412 &record->ip->rec_tree,
413 record);
414 record->flags &= ~HAMMER_RECF_ONRBTREE;
415 KKASSERT(ip->rsv_recs > 0);
416 diddrop = 1;
417 } else {
418 diddrop = 0;
422 * We must wait for any direct-IO to complete before
423 * we can destroy the record because the bio may
424 * have a reference to it.
426 if (record->flags &
427 (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) {
428 hammer_io_direct_wait(record);
432 * Account for the completion after the direct IO
433 * has completed.
435 if (diddrop) {
436 --hmp->rsv_recs;
437 --ip->rsv_recs;
438 hmp->rsv_databytes -= record->leaf.data_len;
440 if (RB_EMPTY(&record->ip->rec_tree)) {
441 record->ip->flags &= ~HAMMER_INODE_XDIRTY;
442 record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
443 hammer_test_inode(record->ip);
445 if (ip->rsv_recs == hammer_limit_inode_recs - 1)
446 wakeup(&ip->rsv_recs);
450 * Do this test after removing record from the B-Tree.
452 if (target_ip) {
453 hammer_test_inode(target_ip);
454 hammer_rel_inode(target_ip, 0);
457 if (record->flags & HAMMER_RECF_ALLOCDATA) {
458 --hammer_count_record_datas;
459 kfree(record->data, hmp->m_misc);
460 record->flags &= ~HAMMER_RECF_ALLOCDATA;
464 * Release the reservation.
466 * If the record was not committed we can theoretically
467 * undo the reservation. However, doing so might
468 * create weird edge cases with the ordering of
469 * direct writes because the related buffer cache
470 * elements are per-vnode. So we don't try.
472 if ((resv = record->resv) != NULL) {
473 /* XXX undo leaf.data_offset,leaf.data_len */
474 hammer_blockmap_reserve_complete(hmp, resv);
475 record->resv = NULL;
477 record->data = NULL;
478 --hammer_count_records;
479 kfree(record, hmp->m_misc);
485 * Record visibility depends on whether the record is being accessed by
486 * the backend or the frontend. Backend tests ignore the frontend delete
487 * flag. Frontend tests do NOT ignore the backend delete/commit flags and
488 * must also check for commit races.
490 * Return non-zero if the record is visible, zero if it isn't or if it is
491 * deleted. Returns 0 if the record has been comitted (unless the special
492 * delete-visibility flag is set). A committed record must be located
493 * via the media B-Tree. Returns non-zero if the record is good.
495 * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory
496 * records to be returned. This is so pending deletions are detected
497 * when using an iterator to locate an unused hash key, or when we need
498 * to locate historical records on-disk to destroy.
500 static __inline
502 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
504 if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY)
505 return(1);
506 if (cursor->flags & HAMMER_CURSOR_BACKEND) {
507 if (record->flags & (HAMMER_RECF_DELETED_BE |
508 HAMMER_RECF_COMMITTED)) {
509 return(0);
511 } else {
512 if (record->flags & (HAMMER_RECF_DELETED_FE |
513 HAMMER_RECF_DELETED_BE |
514 HAMMER_RECF_COMMITTED)) {
515 return(0);
518 return(1);
522 * This callback is used as part of the RB_SCAN function for in-memory
523 * records. We terminate it (return -1) as soon as we get a match.
525 * This routine is used by frontend code.
527 * The primary compare code does not account for ASOF lookups. This
528 * code handles that case as well as a few others.
530 static
532 hammer_rec_scan_callback(hammer_record_t rec, void *data)
534 hammer_cursor_t cursor = data;
537 * We terminate on success, so this should be NULL on entry.
539 KKASSERT(cursor->iprec == NULL);
542 * Skip if the record was marked deleted or committed.
544 if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
545 return(0);
548 * Skip if not visible due to our as-of TID
550 if (cursor->flags & HAMMER_CURSOR_ASOF) {
551 if (cursor->asof < rec->leaf.base.create_tid)
552 return(0);
553 if (rec->leaf.base.delete_tid &&
554 cursor->asof >= rec->leaf.base.delete_tid) {
555 return(0);
560 * ref the record. The record is protected from backend B-Tree
561 * interactions by virtue of the cursor's IP lock.
563 hammer_ref(&rec->lock);
566 * The record may have been deleted or committed while we
567 * were blocked. XXX remove?
569 if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
570 hammer_rel_mem_record(rec);
571 return(0);
575 * Set the matching record and stop the scan.
577 cursor->iprec = rec;
578 return(-1);
583 * Lookup an in-memory record given the key specified in the cursor. Works
584 * just like hammer_btree_lookup() but operates on an inode's in-memory
585 * record list.
587 * The lookup must fail if the record is marked for deferred deletion.
589 * The API for mem/btree_lookup() does not mess with the ATE/EOF bits.
591 static
593 hammer_mem_lookup(hammer_cursor_t cursor)
595 KKASSERT(cursor->ip);
596 if (cursor->iprec) {
597 hammer_rel_mem_record(cursor->iprec);
598 cursor->iprec = NULL;
600 hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
601 hammer_rec_scan_callback, cursor);
603 return (cursor->iprec ? 0 : ENOENT);
607 * hammer_mem_first() - locate the first in-memory record matching the
608 * cursor within the bounds of the key range.
610 * WARNING! API is slightly different from btree_first(). hammer_mem_first()
611 * will set ATEMEM the same as MEMEOF, and does not return any error.
613 static
614 void
615 hammer_mem_first(hammer_cursor_t cursor)
617 hammer_inode_t ip;
619 ip = cursor->ip;
620 KKASSERT(ip != NULL);
622 if (cursor->iprec) {
623 hammer_rel_mem_record(cursor->iprec);
624 cursor->iprec = NULL;
626 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
627 hammer_rec_scan_callback, cursor);
629 if (cursor->iprec)
630 cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM);
631 else
632 cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM;
635 /************************************************************************
636 * HAMMER IN-MEMORY RECORD FUNCTIONS *
637 ************************************************************************
639 * These functions manipulate in-memory records. Such records typically
640 * exist prior to being committed to disk or indexed via the on-disk B-Tree.
644 * Add a directory entry (dip,ncp) which references inode (ip).
646 * Note that the low 32 bits of the namekey are set temporarily to create
647 * a unique in-memory record, and may be modified a second time when the
648 * record is synchronized to disk. In particular, the low 32 bits cannot be
649 * all 0's when synching to disk, which is not handled here.
651 * NOTE: bytes does not include any terminating \0 on name, and name might
652 * not be terminated.
655 hammer_ip_add_directory(struct hammer_transaction *trans,
656 struct hammer_inode *dip, const char *name, int bytes,
657 struct hammer_inode *ip)
659 struct hammer_cursor cursor;
660 hammer_record_t record;
661 int error;
662 u_int32_t max_iterations;
664 record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
666 record->type = HAMMER_MEM_RECORD_ADD;
667 record->leaf.base.localization = dip->obj_localization +
668 hammer_dir_localization(dip);
669 record->leaf.base.obj_id = dip->obj_id;
670 record->leaf.base.key = hammer_directory_namekey(dip, name, bytes,
671 &max_iterations);
672 record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
673 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
674 record->data->entry.obj_id = ip->obj_id;
675 record->data->entry.localization = ip->obj_localization;
676 bcopy(name, record->data->entry.name, bytes);
678 ++ip->ino_data.nlinks;
679 ip->ino_data.ctime = trans->time;
680 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
683 * Find an unused namekey. Both the in-memory record tree and
684 * the B-Tree are checked. We do not want historically deleted
685 * names to create a collision as our iteration space may be limited,
686 * and since create_tid wouldn't match anyway an ASOF search
687 * must be used to locate collisions.
689 * delete-visibility is set so pending deletions do not give us
690 * a false-negative on our ability to use an iterator.
692 * The iterator must not rollover the key. Directory keys only
693 * use the positive key space.
695 hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
696 cursor.key_beg = record->leaf.base;
697 cursor.flags |= HAMMER_CURSOR_ASOF;
698 cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
699 cursor.asof = ip->obj_asof;
701 while (hammer_ip_lookup(&cursor) == 0) {
702 ++record->leaf.base.key;
703 KKASSERT(record->leaf.base.key > 0);
704 cursor.key_beg.key = record->leaf.base.key;
705 if (--max_iterations == 0) {
706 hammer_rel_mem_record(record);
707 error = ENOSPC;
708 goto failed;
713 * The target inode and the directory entry are bound together.
715 record->target_ip = ip;
716 record->flush_state = HAMMER_FST_SETUP;
717 TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
720 * The inode now has a dependancy and must be taken out of the idle
721 * state. An inode not in an idle state is given an extra reference.
723 * When transitioning to a SETUP state flag for an automatic reflush
724 * when the dependancies are disposed of if someone is waiting on
725 * the inode.
727 if (ip->flush_state == HAMMER_FST_IDLE) {
728 hammer_ref(&ip->lock);
729 ip->flush_state = HAMMER_FST_SETUP;
730 if (ip->flags & HAMMER_INODE_FLUSHW)
731 ip->flags |= HAMMER_INODE_REFLUSH;
733 error = hammer_mem_add(record);
734 if (error == 0) {
735 dip->ino_data.mtime = trans->time;
736 hammer_modify_inode(dip, HAMMER_INODE_MTIME);
738 failed:
739 hammer_done_cursor(&cursor);
740 return(error);
744 * Delete the directory entry and update the inode link count. The
745 * cursor must be seeked to the directory entry record being deleted.
747 * The related inode should be share-locked by the caller. The caller is
748 * on the frontend. It could also be NULL indicating that the directory
749 * entry being removed has no related inode.
751 * This function can return EDEADLK requiring the caller to terminate
752 * the cursor, any locks, wait on the returned record, and retry.
755 hammer_ip_del_directory(struct hammer_transaction *trans,
756 hammer_cursor_t cursor, struct hammer_inode *dip,
757 struct hammer_inode *ip)
759 hammer_record_t record;
760 int error;
762 if (hammer_cursor_inmem(cursor)) {
764 * In-memory (unsynchronized) records can simply be freed.
766 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
767 * by the backend, we must still avoid races against the
768 * backend potentially syncing the record to the media.
770 * We cannot call hammer_ip_delete_record(), that routine may
771 * only be called from the backend.
773 record = cursor->iprec;
774 if (record->flags & (HAMMER_RECF_INTERLOCK_BE |
775 HAMMER_RECF_DELETED_BE |
776 HAMMER_RECF_COMMITTED)) {
777 KKASSERT(cursor->deadlk_rec == NULL);
778 hammer_ref(&record->lock);
779 cursor->deadlk_rec = record;
780 error = EDEADLK;
781 } else {
782 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
783 record->flags |= HAMMER_RECF_DELETED_FE;
784 error = 0;
786 } else {
788 * If the record is on-disk we have to queue the deletion by
789 * the record's key. This also causes lookups to skip the
790 * record (lookups for the purposes of finding an unused
791 * directory key do not skip the record).
793 KKASSERT(dip->flags &
794 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
795 record = hammer_alloc_mem_record(dip, 0);
796 record->type = HAMMER_MEM_RECORD_DEL;
797 record->leaf.base = cursor->leaf->base;
798 KKASSERT(dip->obj_id == record->leaf.base.obj_id);
801 * ip may be NULL, indicating the deletion of a directory
802 * entry which has no related inode.
804 record->target_ip = ip;
805 if (ip) {
806 record->flush_state = HAMMER_FST_SETUP;
807 TAILQ_INSERT_TAIL(&ip->target_list, record,
808 target_entry);
809 } else {
810 record->flush_state = HAMMER_FST_IDLE;
814 * The inode now has a dependancy and must be taken out of
815 * the idle state. An inode not in an idle state is given
816 * an extra reference.
818 * When transitioning to a SETUP state flag for an automatic
819 * reflush when the dependancies are disposed of if someone
820 * is waiting on the inode.
822 if (ip && ip->flush_state == HAMMER_FST_IDLE) {
823 hammer_ref(&ip->lock);
824 ip->flush_state = HAMMER_FST_SETUP;
825 if (ip->flags & HAMMER_INODE_FLUSHW)
826 ip->flags |= HAMMER_INODE_REFLUSH;
829 error = hammer_mem_add(record);
833 * One less link. The file may still be open in the OS even after
834 * all links have gone away.
836 * We have to terminate the cursor before syncing the inode to
837 * avoid deadlocking against ourselves. XXX this may no longer
838 * be true.
840 * If nlinks drops to zero and the vnode is inactive (or there is
841 * no vnode), call hammer_inode_unloadable_check() to zonk the
842 * inode. If we don't do this here the inode will not be destroyed
843 * on-media until we unmount.
845 if (error == 0) {
846 if (ip) {
847 --ip->ino_data.nlinks; /* do before we might block */
848 ip->ino_data.ctime = trans->time;
850 dip->ino_data.mtime = trans->time;
851 hammer_modify_inode(dip, HAMMER_INODE_MTIME);
852 if (ip) {
853 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
854 if (ip->ino_data.nlinks == 0 &&
855 (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
856 hammer_done_cursor(cursor);
857 hammer_inode_unloadable_check(ip, 1);
858 hammer_flush_inode(ip, 0);
863 return(error);
867 * Add a record to an inode.
869 * The caller must allocate the record with hammer_alloc_mem_record(ip) and
870 * initialize the following additional fields:
872 * The related inode should be share-locked by the caller. The caller is
873 * on the frontend.
875 * record->rec.entry.base.base.key
876 * record->rec.entry.base.base.rec_type
877 * record->rec.entry.base.base.data_len
878 * record->data (a copy will be kmalloc'd if it cannot be embedded)
881 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
883 hammer_inode_t ip = record->ip;
884 int error;
886 KKASSERT(record->leaf.base.localization != 0);
887 record->leaf.base.obj_id = ip->obj_id;
888 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
889 error = hammer_mem_add(record);
890 return(error);
894 * Locate a bulk record in-memory. Bulk records allow disk space to be
895 * reserved so the front-end can flush large data writes without having
896 * to queue the BIO to the flusher. Only the related record gets queued
897 * to the flusher.
900 static hammer_record_t
901 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes)
903 struct hammer_bulk_info info;
905 bzero(&info, sizeof(info));
906 info.leaf.base.obj_id = ip->obj_id;
907 info.leaf.base.key = file_offset + bytes;
908 info.leaf.base.create_tid = 0;
909 info.leaf.base.delete_tid = 0;
910 info.leaf.base.rec_type = HAMMER_RECTYPE_DATA;
911 info.leaf.base.obj_type = 0; /* unused */
912 info.leaf.base.btype = HAMMER_BTREE_TYPE_RECORD; /* unused */
913 info.leaf.base.localization = ip->obj_localization + /* unused */
914 HAMMER_LOCALIZE_MISC;
915 info.leaf.data_len = bytes;
917 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp,
918 hammer_bulk_scan_callback, &info);
920 return(info.record); /* may be NULL */
924 * Take records vetted by overlap_cmp. The first non-deleted record
925 * (if any) stops the scan.
927 static int
928 hammer_bulk_scan_callback(hammer_record_t record, void *data)
930 struct hammer_bulk_info *info = data;
932 if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
933 HAMMER_RECF_COMMITTED)) {
934 return(0);
936 hammer_ref(&record->lock);
937 info->record = record;
938 return(-1); /* stop scan */
942 * Reserve blockmap space placemarked with an in-memory record.
944 * This routine is called by the frontend in order to be able to directly
945 * flush a buffer cache buffer. The frontend has locked the related buffer
946 * cache buffers and we should be able to manipulate any overlapping
947 * in-memory records.
949 * The caller is responsible for adding the returned record.
951 hammer_record_t
952 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
953 int *errorp)
955 hammer_record_t record;
956 hammer_record_t conflict;
957 int zone;
960 * Deal with conflicting in-memory records. We cannot have multiple
961 * in-memory records for the same base offset without seriously
962 * confusing the backend, including but not limited to the backend
963 * issuing delete-create-delete or create-delete-create sequences
964 * and asserting on the delete_tid being the same as the create_tid.
966 * If we encounter a record with the backend interlock set we cannot
967 * immediately delete it without confusing the backend.
969 while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) {
970 if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) {
971 conflict->flags |= HAMMER_RECF_WANTED;
972 tsleep(conflict, 0, "hmrrc3", 0);
973 } else {
974 conflict->flags |= HAMMER_RECF_DELETED_FE;
976 hammer_rel_mem_record(conflict);
980 * Create a record to cover the direct write. This is called with
981 * the related BIO locked so there should be no possible conflict.
983 * The backend is responsible for finalizing the space reserved in
984 * this record.
986 * XXX bytes not aligned, depend on the reservation code to
987 * align the reservation.
989 record = hammer_alloc_mem_record(ip, 0);
990 zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
991 HAMMER_ZONE_SMALL_DATA_INDEX;
992 record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
993 &record->leaf.data_offset,
994 errorp);
995 if (record->resv == NULL) {
996 kprintf("hammer_ip_add_bulk: reservation failed\n");
997 hammer_rel_mem_record(record);
998 return(NULL);
1000 record->type = HAMMER_MEM_RECORD_DATA;
1001 record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
1002 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
1003 record->leaf.base.obj_id = ip->obj_id;
1004 record->leaf.base.key = file_offset + bytes;
1005 record->leaf.base.localization = ip->obj_localization +
1006 HAMMER_LOCALIZE_MISC;
1007 record->leaf.data_len = bytes;
1008 hammer_crc_set_leaf(data, &record->leaf);
1009 KKASSERT(*errorp == 0);
1010 return(record);
1014 * Frontend truncation code. Scan in-memory records only. On-disk records
1015 * and records in a flushing state are handled by the backend. The vnops
1016 * setattr code will handle the block containing the truncation point.
1018 * Partial blocks are not deleted.
1021 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
1023 struct rec_trunc_info info;
1025 switch(ip->ino_data.obj_type) {
1026 case HAMMER_OBJTYPE_REGFILE:
1027 info.rec_type = HAMMER_RECTYPE_DATA;
1028 break;
1029 case HAMMER_OBJTYPE_DBFILE:
1030 info.rec_type = HAMMER_RECTYPE_DB;
1031 break;
1032 default:
1033 return(EINVAL);
1035 info.trunc_off = file_size;
1036 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
1037 hammer_frontend_trunc_callback, &info);
1038 return(0);
1041 static int
1042 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
1044 if (record->flags & HAMMER_RECF_DELETED_FE)
1045 return(0);
1046 if (record->flush_state == HAMMER_FST_FLUSH)
1047 return(0);
1048 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1049 hammer_ref(&record->lock);
1050 record->flags |= HAMMER_RECF_DELETED_FE;
1051 hammer_rel_mem_record(record);
1052 return(0);
1056 * Return 1 if the caller must check for and delete existing records
1057 * before writing out a new data record.
1059 * Return 0 if the caller can just insert the record into the B-Tree without
1060 * checking.
1062 static int
1063 hammer_record_needs_overwrite_delete(hammer_record_t record)
1065 hammer_inode_t ip = record->ip;
1066 int64_t file_offset;
1067 int r;
1069 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
1070 file_offset = record->leaf.base.key;
1071 else
1072 file_offset = record->leaf.base.key - record->leaf.data_len;
1073 r = (file_offset < ip->save_trunc_off);
1074 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1075 if (ip->save_trunc_off <= record->leaf.base.key)
1076 ip->save_trunc_off = record->leaf.base.key + 1;
1077 } else {
1078 if (ip->save_trunc_off < record->leaf.base.key)
1079 ip->save_trunc_off = record->leaf.base.key;
1081 return(r);
1085 * Backend code. Sync a record to the media.
1088 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
1090 hammer_transaction_t trans = cursor->trans;
1091 int64_t file_offset;
1092 int bytes;
1093 void *bdata;
1094 int error;
1095 int doprop;
1097 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1098 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
1099 KKASSERT(record->leaf.base.localization != 0);
1102 * Any direct-write related to the record must complete before we
1103 * can sync the record to the on-disk media.
1105 if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL))
1106 hammer_io_direct_wait(record);
1109 * If this is a bulk-data record placemarker there may be an existing
1110 * record on-disk, indicating a data overwrite. If there is the
1111 * on-disk record must be deleted before we can insert our new record.
1113 * We've synthesized this record and do not know what the create_tid
1114 * on-disk is, nor how much data it represents.
1116 * Keep in mind that (key) for data records is (base_offset + len),
1117 * not (base_offset). Also, we only want to get rid of on-disk
1118 * records since we are trying to sync our in-memory record, call
1119 * hammer_ip_delete_range() with truncating set to 1 to make sure
1120 * it skips in-memory records.
1122 * It is ok for the lookup to return ENOENT.
1124 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1125 * to call hammer_ip_delete_range() or not. This also means we must
1126 * update sync_trunc_off() as we write.
1128 if (record->type == HAMMER_MEM_RECORD_DATA &&
1129 hammer_record_needs_overwrite_delete(record)) {
1130 file_offset = record->leaf.base.key - record->leaf.data_len;
1131 bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1132 ~HAMMER_BUFMASK;
1133 KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1134 error = hammer_ip_delete_range(
1135 cursor, record->ip,
1136 file_offset, file_offset + bytes - 1,
1138 if (error && error != ENOENT)
1139 goto done;
1143 * If this is a general record there may be an on-disk version
1144 * that must be deleted before we can insert the new record.
1146 if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1147 error = hammer_delete_general(cursor, record->ip,
1148 &record->leaf);
1149 if (error && error != ENOENT)
1150 goto done;
1154 * Setup the cursor.
1156 hammer_normalize_cursor(cursor);
1157 cursor->key_beg = record->leaf.base;
1158 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1159 cursor->flags |= HAMMER_CURSOR_BACKEND;
1160 cursor->flags &= ~HAMMER_CURSOR_INSERT;
1163 * Records can wind up on-media before the inode itself is on-media.
1164 * Flag the case.
1166 record->ip->flags |= HAMMER_INODE_DONDISK;
1169 * If we are deleting a directory entry an exact match must be
1170 * found on-disk.
1172 if (record->type == HAMMER_MEM_RECORD_DEL) {
1173 error = hammer_btree_lookup(cursor);
1174 if (error == 0) {
1175 KKASSERT(cursor->iprec == NULL);
1176 error = hammer_ip_delete_record(cursor, record->ip,
1177 trans->tid);
1178 if (error == 0) {
1179 record->flags |= HAMMER_RECF_DELETED_BE |
1180 HAMMER_RECF_COMMITTED;
1181 ++record->ip->rec_generation;
1184 goto done;
1188 * We are inserting.
1190 * Issue a lookup to position the cursor and locate the insertion
1191 * point. The target key should not exist. If we are creating a
1192 * directory entry we may have to iterate the low 32 bits of the
1193 * key to find an unused key.
1195 hammer_sync_lock_sh(trans);
1196 cursor->flags |= HAMMER_CURSOR_INSERT;
1197 error = hammer_btree_lookup(cursor);
1198 if (hammer_debug_inode)
1199 kprintf("DOINSERT LOOKUP %d\n", error);
1200 if (error == 0) {
1201 kprintf("hammer_ip_sync_record: duplicate rec "
1202 "at (%016llx)\n", (long long)record->leaf.base.key);
1203 Debugger("duplicate record1");
1204 error = EIO;
1206 #if 0
1207 if (record->type == HAMMER_MEM_RECORD_DATA)
1208 kprintf("sync_record %016llx ---------------- %016llx %d\n",
1209 record->leaf.base.key - record->leaf.data_len,
1210 record->leaf.data_offset, error);
1211 #endif
1213 if (error != ENOENT)
1214 goto done_unlock;
1217 * Allocate the record and data. The result buffers will be
1218 * marked as being modified and further calls to
1219 * hammer_modify_buffer() will result in unneeded UNDO records.
1221 * Support zero-fill records (data == NULL and data_len != 0)
1223 if (record->type == HAMMER_MEM_RECORD_DATA) {
1225 * The data portion of a bulk-data record has already been
1226 * committed to disk, we need only adjust the layer2
1227 * statistics in the same transaction as our B-Tree insert.
1229 KKASSERT(record->leaf.data_offset != 0);
1230 error = hammer_blockmap_finalize(trans,
1231 record->resv,
1232 record->leaf.data_offset,
1233 record->leaf.data_len);
1234 } else if (record->data && record->leaf.data_len) {
1236 * Wholely cached record, with data. Allocate the data.
1238 bdata = hammer_alloc_data(trans, record->leaf.data_len,
1239 record->leaf.base.rec_type,
1240 &record->leaf.data_offset,
1241 &cursor->data_buffer,
1242 0, &error);
1243 if (bdata == NULL)
1244 goto done_unlock;
1245 hammer_crc_set_leaf(record->data, &record->leaf);
1246 hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1247 bcopy(record->data, bdata, record->leaf.data_len);
1248 hammer_modify_buffer_done(cursor->data_buffer);
1249 } else {
1251 * Wholely cached record, without data.
1253 record->leaf.data_offset = 0;
1254 record->leaf.data_crc = 0;
1257 error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1258 if (hammer_debug_inode && error) {
1259 kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n",
1260 error,
1261 (long long)cursor->node->node_offset,
1262 cursor->index,
1263 (long long)record->leaf.base.key);
1267 * Our record is on-disk and we normally mark the in-memory version
1268 * as having been committed (and not BE-deleted).
1270 * If the record represented a directory deletion but we had to
1271 * sync a valid directory entry to disk due to dependancies,
1272 * we must convert the record to a covering delete so the
1273 * frontend does not have visibility on the synced entry.
1275 * WARNING: cursor's leaf pointer may have changed after do_propagation
1276 * returns!
1278 if (error == 0) {
1279 if (doprop) {
1280 hammer_btree_do_propagation(cursor,
1281 record->ip->pfsm,
1282 &record->leaf);
1284 if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1286 * Must convert deleted directory entry add
1287 * to a directory entry delete.
1289 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1290 record->flags &= ~HAMMER_RECF_DELETED_FE;
1291 record->type = HAMMER_MEM_RECORD_DEL;
1292 KKASSERT(record->ip->obj_id == record->leaf.base.obj_id);
1293 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1294 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1295 KKASSERT((record->flags & (HAMMER_RECF_COMMITTED |
1296 HAMMER_RECF_DELETED_BE)) == 0);
1297 /* converted record is not yet committed */
1298 /* hammer_flush_record_done takes care of the rest */
1299 } else {
1301 * Everything went fine and we are now done with
1302 * this record.
1304 record->flags |= HAMMER_RECF_COMMITTED;
1305 ++record->ip->rec_generation;
1307 } else {
1308 if (record->leaf.data_offset) {
1309 hammer_blockmap_free(trans, record->leaf.data_offset,
1310 record->leaf.data_len);
1313 done_unlock:
1314 hammer_sync_unlock(trans);
1315 done:
1316 return(error);
1320 * Add the record to the inode's rec_tree. The low 32 bits of a directory
1321 * entry's key is used to deal with hash collisions in the upper 32 bits.
1322 * A unique 64 bit key is generated in-memory and may be regenerated a
1323 * second time when the directory record is flushed to the on-disk B-Tree.
1325 * A referenced record is passed to this function. This function
1326 * eats the reference. If an error occurs the record will be deleted.
1328 * A copy of the temporary record->data pointer provided by the caller
1329 * will be made.
1332 hammer_mem_add(hammer_record_t record)
1334 hammer_mount_t hmp = record->ip->hmp;
1337 * Make a private copy of record->data
1339 if (record->data)
1340 KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1343 * Insert into the RB tree. A unique key should have already
1344 * been selected if this is a directory entry.
1346 if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1347 record->flags |= HAMMER_RECF_DELETED_FE;
1348 hammer_rel_mem_record(record);
1349 return (EEXIST);
1351 ++hmp->count_newrecords;
1352 ++hmp->rsv_recs;
1353 ++record->ip->rsv_recs;
1354 record->ip->hmp->rsv_databytes += record->leaf.data_len;
1355 record->flags |= HAMMER_RECF_ONRBTREE;
1356 hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY);
1357 hammer_rel_mem_record(record);
1358 return(0);
1361 /************************************************************************
1362 * HAMMER INODE MERGED-RECORD FUNCTIONS *
1363 ************************************************************************
1365 * These functions augment the B-Tree scanning functions in hammer_btree.c
1366 * by merging in-memory records with on-disk records.
1370 * Locate a particular record either in-memory or on-disk.
1372 * NOTE: This is basically a standalone routine, hammer_ip_next() may
1373 * NOT be called to iterate results.
1376 hammer_ip_lookup(hammer_cursor_t cursor)
1378 int error;
1381 * If the element is in-memory return it without searching the
1382 * on-disk B-Tree
1384 KKASSERT(cursor->ip);
1385 error = hammer_mem_lookup(cursor);
1386 if (error == 0) {
1387 cursor->leaf = &cursor->iprec->leaf;
1388 return(error);
1390 if (error != ENOENT)
1391 return(error);
1394 * If the inode has on-disk components search the on-disk B-Tree.
1396 if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1397 return(error);
1398 error = hammer_btree_lookup(cursor);
1399 if (error == 0)
1400 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1401 return(error);
1405 * Helper for hammer_ip_first()/hammer_ip_next()
1407 * NOTE: Both ATEDISK and DISKEOF will be set the same. This sets up
1408 * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek
1409 * state if hammer_ip_next() needs to re-seek.
1411 static __inline
1413 _hammer_ip_seek_btree(hammer_cursor_t cursor)
1415 hammer_inode_t ip = cursor->ip;
1416 int error;
1418 if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1419 error = hammer_btree_lookup(cursor);
1420 if (error == ENOENT || error == EDEADLK) {
1421 if (hammer_debug_general & 0x2000) {
1422 kprintf("error %d node %p %016llx index %d\n",
1423 error, cursor->node,
1424 (long long)cursor->node->node_offset,
1425 cursor->index);
1427 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1428 error = hammer_btree_iterate(cursor);
1430 if (error == 0) {
1431 cursor->flags &= ~(HAMMER_CURSOR_DISKEOF |
1432 HAMMER_CURSOR_ATEDISK);
1433 } else {
1434 cursor->flags |= HAMMER_CURSOR_DISKEOF |
1435 HAMMER_CURSOR_ATEDISK;
1436 if (error == ENOENT)
1437 error = 0;
1439 } else {
1440 cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK;
1441 error = 0;
1443 return(error);
1447 * Helper for hammer_ip_next()
1449 * The caller has determined that the media cursor is further along than the
1450 * memory cursor and must be reseeked after a generation number change.
1452 static
1454 _hammer_ip_reseek(hammer_cursor_t cursor)
1456 struct hammer_base_elm save;
1457 hammer_btree_elm_t elm;
1458 int error;
1459 int r;
1460 int again = 0;
1463 * Do the re-seek.
1465 kprintf("HAMMER: Debug: re-seeked during scan @ino=%016llx\n",
1466 (long long)cursor->ip->obj_id);
1467 save = cursor->key_beg;
1468 cursor->key_beg = cursor->iprec->leaf.base;
1469 error = _hammer_ip_seek_btree(cursor);
1470 KKASSERT(error == 0);
1471 cursor->key_beg = save;
1474 * If the memory record was previous returned to
1475 * the caller and the media record matches
1476 * (-1/+1: only create_tid differs), then iterate
1477 * the media record to avoid a double result.
1479 if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 &&
1480 (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) {
1481 elm = &cursor->node->ondisk->elms[cursor->index];
1482 r = hammer_btree_cmp(&elm->base,
1483 &cursor->iprec->leaf.base);
1484 if (cursor->flags & HAMMER_CURSOR_ASOF) {
1485 if (r >= -1 && r <= 1) {
1486 kprintf("HAMMER: Debug: iterated after "
1487 "re-seek (asof r=%d)\n", r);
1488 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1489 again = 1;
1491 } else {
1492 if (r == 0) {
1493 kprintf("HAMMER: Debug: iterated after "
1494 "re-seek\n");
1495 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1496 again = 1;
1500 return(again);
1504 * Locate the first record within the cursor's key_beg/key_end range,
1505 * restricted to a particular inode. 0 is returned on success, ENOENT
1506 * if no records matched the requested range, or some other error.
1508 * When 0 is returned hammer_ip_next() may be used to iterate additional
1509 * records within the requested range.
1511 * This function can return EDEADLK, requiring the caller to terminate
1512 * the cursor and try again.
1516 hammer_ip_first(hammer_cursor_t cursor)
1518 hammer_inode_t ip = cursor->ip;
1519 int error;
1521 KKASSERT(ip != NULL);
1524 * Clean up fields and setup for merged scan
1526 cursor->flags &= ~HAMMER_CURSOR_RETEST;
1529 * Search the in-memory record list (Red-Black tree). Unlike the
1530 * B-Tree search, mem_first checks for records in the range.
1532 * This function will setup both ATEMEM and MEMEOF properly for
1533 * the ip iteration. ATEMEM will be set if MEMEOF is set.
1535 hammer_mem_first(cursor);
1538 * Detect generation changes during blockages, including
1539 * blockages which occur on the initial btree search.
1541 cursor->rec_generation = cursor->ip->rec_generation;
1544 * Initial search and result
1546 error = _hammer_ip_seek_btree(cursor);
1547 if (error == 0)
1548 error = hammer_ip_next(cursor);
1550 return (error);
1554 * Retrieve the next record in a merged iteration within the bounds of the
1555 * cursor. This call may be made multiple times after the cursor has been
1556 * initially searched with hammer_ip_first().
1558 * There are numerous special cases in this code to deal with races between
1559 * in-memory records and on-media records.
1561 * 0 is returned on success, ENOENT if no further records match the
1562 * requested range, or some other error code is returned.
1565 hammer_ip_next(hammer_cursor_t cursor)
1567 hammer_btree_elm_t elm;
1568 hammer_record_t rec;
1569 hammer_record_t tmprec;
1570 int error;
1571 int r;
1573 again:
1575 * Get the next on-disk record
1577 * NOTE: If we deleted the last on-disk record we had scanned
1578 * ATEDISK will be clear and RETEST will be set, forcing
1579 * a call to iterate. The fact that ATEDISK is clear causes
1580 * iterate to re-test the 'current' element. If ATEDISK is
1581 * set, iterate will skip the 'current' element.
1583 error = 0;
1584 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1585 if (cursor->flags & (HAMMER_CURSOR_ATEDISK |
1586 HAMMER_CURSOR_RETEST)) {
1587 error = hammer_btree_iterate(cursor);
1588 cursor->flags &= ~HAMMER_CURSOR_RETEST;
1589 if (error == 0) {
1590 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1591 hammer_cache_node(&cursor->ip->cache[1],
1592 cursor->node);
1593 } else if (error == ENOENT) {
1594 cursor->flags |= HAMMER_CURSOR_DISKEOF |
1595 HAMMER_CURSOR_ATEDISK;
1596 error = 0;
1602 * If the generation changed the backend has deleted or committed
1603 * one or more memory records since our last check.
1605 * When this case occurs if the disk cursor is > current memory record
1606 * or the disk cursor is at EOF, we must re-seek the disk-cursor.
1607 * Since the cursor is ahead it must have not yet been eaten (if
1608 * not at eof anyway). (XXX data offset case?)
1610 * NOTE: we are not doing a full check here. That will be handled
1611 * later on.
1613 * If we have exhausted all memory records we do not have to do any
1614 * further seeks.
1616 while (cursor->rec_generation != cursor->ip->rec_generation &&
1617 error == 0
1619 kprintf("HAMMER: Debug: generation changed during scan @ino=%016llx\n", (long long)cursor->ip->obj_id);
1620 cursor->rec_generation = cursor->ip->rec_generation;
1621 if (cursor->flags & HAMMER_CURSOR_MEMEOF)
1622 break;
1623 if (cursor->flags & HAMMER_CURSOR_DISKEOF) {
1624 r = 1;
1625 } else {
1626 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0);
1627 elm = &cursor->node->ondisk->elms[cursor->index];
1628 r = hammer_btree_cmp(&elm->base,
1629 &cursor->iprec->leaf.base);
1633 * Do we re-seek the media cursor?
1635 if (r > 0) {
1636 if (_hammer_ip_reseek(cursor))
1637 goto again;
1642 * We can now safely get the next in-memory record. We cannot
1643 * block here.
1645 * hammer_rec_scan_cmp: Is the record still in our general range,
1646 * (non-inclusive of snapshot exclusions)?
1647 * hammer_rec_scan_callback: Is the record in our snapshot?
1649 tmprec = NULL;
1650 if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1652 * If the current memory record was eaten then get the next
1653 * one. Stale records are skipped.
1655 if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1656 tmprec = cursor->iprec;
1657 cursor->iprec = NULL;
1658 rec = hammer_rec_rb_tree_RB_NEXT(tmprec);
1659 while (rec) {
1660 if (hammer_rec_scan_cmp(rec, cursor) != 0)
1661 break;
1662 if (hammer_rec_scan_callback(rec, cursor) != 0)
1663 break;
1664 rec = hammer_rec_rb_tree_RB_NEXT(rec);
1666 if (cursor->iprec) {
1667 KKASSERT(cursor->iprec == rec);
1668 cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1669 } else {
1670 cursor->flags |= HAMMER_CURSOR_MEMEOF;
1672 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1677 * MEMORY RECORD VALIDITY TEST
1679 * (We still can't block, which is why tmprec is being held so
1680 * long).
1682 * If the memory record is no longer valid we skip it. It may
1683 * have been deleted by the frontend. If it was deleted or
1684 * committed by the backend the generation change re-seeked the
1685 * disk cursor and the record will be present there.
1687 if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1688 KKASSERT(cursor->iprec);
1689 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0);
1690 if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) {
1691 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1692 if (tmprec)
1693 hammer_rel_mem_record(tmprec);
1694 goto again;
1697 if (tmprec)
1698 hammer_rel_mem_record(tmprec);
1701 * Extract either the disk or memory record depending on their
1702 * relative position.
1704 error = 0;
1705 switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1706 case 0:
1708 * Both entries valid. Compare the entries and nominally
1709 * return the first one in the sort order. Numerous cases
1710 * require special attention, however.
1712 elm = &cursor->node->ondisk->elms[cursor->index];
1713 r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1716 * If the two entries differ only by their key (-2/2) or
1717 * create_tid (-1/1), and are DATA records, we may have a
1718 * nominal match. We have to calculate the base file
1719 * offset of the data.
1721 if (r <= 2 && r >= -2 && r != 0 &&
1722 cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1723 cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1724 int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1725 int64_t base2 = cursor->iprec->leaf.base.key -
1726 cursor->iprec->leaf.data_len;
1727 if (base1 == base2)
1728 r = 0;
1731 if (r < 0) {
1732 error = hammer_btree_extract(cursor,
1733 HAMMER_CURSOR_GET_LEAF);
1734 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1735 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1736 break;
1740 * If the entries match exactly the memory entry is either
1741 * an on-disk directory entry deletion or a bulk data
1742 * overwrite. If it is a directory entry deletion we eat
1743 * both entries.
1745 * For the bulk-data overwrite case it is possible to have
1746 * visibility into both, which simply means the syncer
1747 * hasn't gotten around to doing the delete+insert sequence
1748 * on the B-Tree. Use the memory entry and throw away the
1749 * on-disk entry.
1751 * If the in-memory record is not either of these we
1752 * probably caught the syncer while it was syncing it to
1753 * the media. Since we hold a shared lock on the cursor,
1754 * the in-memory record had better be marked deleted at
1755 * this point.
1757 if (r == 0) {
1758 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1759 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1760 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1761 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1762 goto again;
1764 } else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1765 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1766 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1768 /* fall through to memory entry */
1769 } else {
1770 panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags);
1771 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1772 goto again;
1775 /* fall through to the memory entry */
1776 case HAMMER_CURSOR_ATEDISK:
1778 * Only the memory entry is valid.
1780 cursor->leaf = &cursor->iprec->leaf;
1781 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1782 cursor->flags |= HAMMER_CURSOR_LASTWASMEM;
1785 * If the memory entry is an on-disk deletion we should have
1786 * also had found a B-Tree record. If the backend beat us
1787 * to it it would have interlocked the cursor and we should
1788 * have seen the in-memory record marked DELETED_FE.
1790 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1791 (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1792 panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags);
1794 break;
1795 case HAMMER_CURSOR_ATEMEM:
1797 * Only the disk entry is valid
1799 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1800 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1801 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1802 break;
1803 default:
1805 * Neither entry is valid
1807 * XXX error not set properly
1809 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1810 cursor->leaf = NULL;
1811 error = ENOENT;
1812 break;
1814 return(error);
1818 * Resolve the cursor->data pointer for the current cursor position in
1819 * a merged iteration.
1822 hammer_ip_resolve_data(hammer_cursor_t cursor)
1824 hammer_record_t record;
1825 int error;
1827 if (hammer_cursor_inmem(cursor)) {
1829 * The data associated with an in-memory record is usually
1830 * kmalloced, but reserve-ahead data records will have an
1831 * on-disk reference.
1833 * NOTE: Reserve-ahead data records must be handled in the
1834 * context of the related high level buffer cache buffer
1835 * to interlock against async writes.
1837 record = cursor->iprec;
1838 cursor->data = record->data;
1839 error = 0;
1840 if (cursor->data == NULL) {
1841 KKASSERT(record->leaf.base.rec_type ==
1842 HAMMER_RECTYPE_DATA);
1843 cursor->data = hammer_bread_ext(cursor->trans->hmp,
1844 record->leaf.data_offset,
1845 record->leaf.data_len,
1846 &error,
1847 &cursor->data_buffer);
1849 } else {
1850 cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1851 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1853 return(error);
1857 * Backend truncation / record replacement - delete records in range.
1859 * Delete all records within the specified range for inode ip. In-memory
1860 * records still associated with the frontend are ignored.
1862 * If truncating is non-zero in-memory records associated with the back-end
1863 * are ignored. If truncating is > 1 we can return EWOULDBLOCK.
1865 * NOTES:
1867 * * An unaligned range will cause new records to be added to cover
1868 * the edge cases. (XXX not implemented yet).
1870 * * Replacement via reservations (see hammer_ip_sync_record_cursor())
1871 * also do not deal with unaligned ranges.
1873 * * ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1875 * * Record keys for regular file data have to be special-cased since
1876 * they indicate the end of the range (key = base + bytes).
1878 * * This function may be asked to delete ridiculously huge ranges, for
1879 * example if someone truncates or removes a 1TB regular file. We
1880 * must be very careful on restarts and we may have to stop w/
1881 * EWOULDBLOCK to avoid blowing out the buffer cache.
1884 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1885 int64_t ran_beg, int64_t ran_end, int truncating)
1887 hammer_transaction_t trans = cursor->trans;
1888 hammer_btree_leaf_elm_t leaf;
1889 int error;
1890 int64_t off;
1891 int64_t tmp64;
1893 #if 0
1894 kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1895 #endif
1897 KKASSERT(trans->type == HAMMER_TRANS_FLS);
1898 retry:
1899 hammer_normalize_cursor(cursor);
1900 cursor->key_beg.localization = ip->obj_localization +
1901 HAMMER_LOCALIZE_MISC;
1902 cursor->key_beg.obj_id = ip->obj_id;
1903 cursor->key_beg.create_tid = 0;
1904 cursor->key_beg.delete_tid = 0;
1905 cursor->key_beg.obj_type = 0;
1907 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1908 cursor->key_beg.key = ran_beg;
1909 cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1910 } else {
1912 * The key in the B-Tree is (base+bytes), so the first possible
1913 * matching key is ran_beg + 1.
1915 cursor->key_beg.key = ran_beg + 1;
1916 cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1919 cursor->key_end = cursor->key_beg;
1920 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1921 cursor->key_end.key = ran_end;
1922 } else {
1923 tmp64 = ran_end + MAXPHYS + 1; /* work around GCC-4 bug */
1924 if (tmp64 < ran_end)
1925 cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1926 else
1927 cursor->key_end.key = ran_end + MAXPHYS + 1;
1930 cursor->asof = ip->obj_asof;
1931 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1932 cursor->flags |= HAMMER_CURSOR_ASOF;
1933 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1934 cursor->flags |= HAMMER_CURSOR_BACKEND;
1935 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1937 error = hammer_ip_first(cursor);
1940 * Iterate through matching records and mark them as deleted.
1942 while (error == 0) {
1943 leaf = cursor->leaf;
1945 KKASSERT(leaf->base.delete_tid == 0);
1946 KKASSERT(leaf->base.obj_id == ip->obj_id);
1949 * There may be overlap cases for regular file data. Also
1950 * remember the key for a regular file record is (base + len),
1951 * NOT (base).
1953 * Note that do to duplicates (mem & media) allowed by
1954 * DELETE_VISIBILITY, off can wind up less then ran_beg.
1956 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1957 off = leaf->base.key - leaf->data_len;
1959 * Check the left edge case. We currently do not
1960 * split existing records.
1962 if (off < ran_beg && leaf->base.key > ran_beg) {
1963 panic("hammer left edge case %016llx %d\n",
1964 (long long)leaf->base.key,
1965 leaf->data_len);
1969 * Check the right edge case. Note that the
1970 * record can be completely out of bounds, which
1971 * terminates the search.
1973 * base->key is exclusive of the right edge while
1974 * ran_end is inclusive of the right edge. The
1975 * (key - data_len) left boundary is inclusive.
1977 * XXX theory-check this test at some point, are
1978 * we missing a + 1 somewhere? Note that ran_end
1979 * could overflow.
1981 if (leaf->base.key - 1 > ran_end) {
1982 if (leaf->base.key - leaf->data_len > ran_end)
1983 break;
1984 panic("hammer right edge case\n");
1986 } else {
1987 off = leaf->base.key;
1991 * Delete the record. When truncating we do not delete
1992 * in-memory (data) records because they represent data
1993 * written after the truncation.
1995 * This will also physically destroy the B-Tree entry and
1996 * data if the retention policy dictates. The function
1997 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
1998 * to retest the new 'current' element.
2000 if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
2001 error = hammer_ip_delete_record(cursor, ip, trans->tid);
2003 * If we have built up too many meta-buffers we risk
2004 * deadlocking the kernel and must stop. This can
2005 * occur when deleting ridiculously huge files.
2006 * sync_trunc_off is updated so the next cycle does
2007 * not re-iterate records we have already deleted.
2009 * This is only done with formal truncations.
2011 if (truncating > 1 && error == 0 &&
2012 hammer_flusher_meta_limit(ip->hmp)) {
2013 ip->sync_trunc_off = off;
2014 error = EWOULDBLOCK;
2017 if (error)
2018 break;
2019 ran_beg = off; /* for restart */
2020 error = hammer_ip_next(cursor);
2022 if (cursor->node)
2023 hammer_cache_node(&ip->cache[1], cursor->node);
2025 if (error == EDEADLK) {
2026 hammer_done_cursor(cursor);
2027 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2028 if (error == 0)
2029 goto retry;
2031 if (error == ENOENT)
2032 error = 0;
2033 return(error);
2037 * This backend function deletes the specified record on-disk, similar to
2038 * delete_range but for a specific record. Unlike the exact deletions
2039 * used when deleting a directory entry this function uses an ASOF search
2040 * like delete_range.
2042 * This function may be called with ip->obj_asof set for a slave snapshot,
2043 * so don't use it. We always delete non-historical records only.
2045 static int
2046 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
2047 hammer_btree_leaf_elm_t leaf)
2049 hammer_transaction_t trans = cursor->trans;
2050 int error;
2052 KKASSERT(trans->type == HAMMER_TRANS_FLS);
2053 retry:
2054 hammer_normalize_cursor(cursor);
2055 cursor->key_beg = leaf->base;
2056 cursor->asof = HAMMER_MAX_TID;
2057 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2058 cursor->flags |= HAMMER_CURSOR_ASOF;
2059 cursor->flags |= HAMMER_CURSOR_BACKEND;
2060 cursor->flags &= ~HAMMER_CURSOR_INSERT;
2062 error = hammer_btree_lookup(cursor);
2063 if (error == 0) {
2064 error = hammer_ip_delete_record(cursor, ip, trans->tid);
2066 if (error == EDEADLK) {
2067 hammer_done_cursor(cursor);
2068 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2069 if (error == 0)
2070 goto retry;
2072 return(error);
2076 * This function deletes remaining auxillary records when an inode is
2077 * being deleted. This function explicitly does not delete the
2078 * inode record, directory entry, data, or db records. Those must be
2079 * properly disposed of prior to this call.
2082 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
2084 hammer_transaction_t trans = cursor->trans;
2085 hammer_btree_leaf_elm_t leaf;
2086 int error;
2088 KKASSERT(trans->type == HAMMER_TRANS_FLS);
2089 retry:
2090 hammer_normalize_cursor(cursor);
2091 cursor->key_beg.localization = ip->obj_localization +
2092 HAMMER_LOCALIZE_MISC;
2093 cursor->key_beg.obj_id = ip->obj_id;
2094 cursor->key_beg.create_tid = 0;
2095 cursor->key_beg.delete_tid = 0;
2096 cursor->key_beg.obj_type = 0;
2097 cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
2098 cursor->key_beg.key = HAMMER_MIN_KEY;
2100 cursor->key_end = cursor->key_beg;
2101 cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
2102 cursor->key_end.key = HAMMER_MAX_KEY;
2104 cursor->asof = ip->obj_asof;
2105 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2106 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2107 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
2108 cursor->flags |= HAMMER_CURSOR_BACKEND;
2110 error = hammer_ip_first(cursor);
2113 * Iterate through matching records and mark them as deleted.
2115 while (error == 0) {
2116 leaf = cursor->leaf;
2118 KKASSERT(leaf->base.delete_tid == 0);
2121 * Mark the record and B-Tree entry as deleted. This will
2122 * also physically delete the B-Tree entry, record, and
2123 * data if the retention policy dictates. The function
2124 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2125 * to retest the new 'current' element.
2127 * Directory entries (and delete-on-disk directory entries)
2128 * must be synced and cannot be deleted.
2130 error = hammer_ip_delete_record(cursor, ip, trans->tid);
2131 ++*countp;
2132 if (error)
2133 break;
2134 error = hammer_ip_next(cursor);
2136 if (cursor->node)
2137 hammer_cache_node(&ip->cache[1], cursor->node);
2138 if (error == EDEADLK) {
2139 hammer_done_cursor(cursor);
2140 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2141 if (error == 0)
2142 goto retry;
2144 if (error == ENOENT)
2145 error = 0;
2146 return(error);
2150 * Delete the record at the current cursor. On success the cursor will
2151 * be positioned appropriately for an iteration but may no longer be at
2152 * a leaf node.
2154 * This routine is only called from the backend.
2156 * NOTE: This can return EDEADLK, requiring the caller to terminate the
2157 * cursor and retry.
2160 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
2161 hammer_tid_t tid)
2163 hammer_record_t iprec;
2164 hammer_mount_t hmp;
2165 int error;
2167 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
2168 KKASSERT(tid != 0);
2169 hmp = cursor->node->hmp;
2172 * In-memory (unsynchronized) records can simply be freed. This
2173 * only occurs in range iterations since all other records are
2174 * individually synchronized. Thus there should be no confusion with
2175 * the interlock.
2177 * An in-memory record may be deleted before being committed to disk,
2178 * but could have been accessed in the mean time. The reservation
2179 * code will deal with the case.
2181 if (hammer_cursor_inmem(cursor)) {
2182 iprec = cursor->iprec;
2183 KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
2184 iprec->flags |= HAMMER_RECF_DELETED_FE;
2185 iprec->flags |= HAMMER_RECF_DELETED_BE;
2186 KKASSERT(iprec->ip == ip);
2187 ++ip->rec_generation;
2188 return(0);
2192 * On-disk records are marked as deleted by updating their delete_tid.
2193 * This does not effect their position in the B-Tree (which is based
2194 * on their create_tid).
2196 * Frontend B-Tree operations track inodes so we tell
2197 * hammer_delete_at_cursor() not to.
2199 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
2201 if (error == 0) {
2202 error = hammer_delete_at_cursor(
2203 cursor,
2204 HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
2205 cursor->trans->tid,
2206 cursor->trans->time32,
2207 0, NULL);
2209 return(error);
2213 * Delete the B-Tree element at the current cursor and do any necessary
2214 * mirror propagation.
2216 * The cursor must be properly positioned for an iteration on return but
2217 * may be pointing at an internal element.
2219 * An element can be un-deleted by passing a delete_tid of 0 with
2220 * HAMMER_DELETE_ADJUST.
2223 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
2224 hammer_tid_t delete_tid, u_int32_t delete_ts,
2225 int track, int64_t *stat_bytes)
2227 struct hammer_btree_leaf_elm save_leaf;
2228 hammer_transaction_t trans;
2229 hammer_btree_leaf_elm_t leaf;
2230 hammer_node_t node;
2231 hammer_btree_elm_t elm;
2232 hammer_off_t data_offset;
2233 int32_t data_len;
2234 u_int16_t rec_type;
2235 int error;
2236 int icount;
2237 int doprop;
2239 error = hammer_cursor_upgrade(cursor);
2240 if (error)
2241 return(error);
2243 trans = cursor->trans;
2244 node = cursor->node;
2245 elm = &node->ondisk->elms[cursor->index];
2246 leaf = &elm->leaf;
2247 KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
2249 hammer_sync_lock_sh(trans);
2250 doprop = 0;
2251 icount = 0;
2254 * Adjust the delete_tid. Update the mirror_tid propagation field
2255 * as well. delete_tid can be 0 (undelete -- used by mirroring).
2257 if (delete_flags & HAMMER_DELETE_ADJUST) {
2258 if (elm->base.rec_type == HAMMER_RECTYPE_INODE) {
2259 if (elm->leaf.base.delete_tid == 0 && delete_tid)
2260 icount = -1;
2261 if (elm->leaf.base.delete_tid && delete_tid == 0)
2262 icount = 1;
2265 hammer_modify_node(trans, node, elm, sizeof(*elm));
2266 elm->leaf.base.delete_tid = delete_tid;
2267 elm->leaf.delete_ts = delete_ts;
2268 hammer_modify_node_done(node);
2270 if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
2271 hammer_modify_node_field(trans, node, mirror_tid);
2272 node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
2273 hammer_modify_node_done(node);
2274 doprop = 1;
2275 if (hammer_debug_general & 0x0002) {
2276 kprintf("delete_at_cursor: propagate %016llx"
2277 " @%016llx\n",
2278 (long long)elm->leaf.base.delete_tid,
2279 (long long)node->node_offset);
2284 * Adjust for the iteration. We have deleted the current
2285 * element and want to clear ATEDISK so the iteration does
2286 * not skip the element after, which now becomes the current
2287 * element. This element must be re-tested if doing an
2288 * iteration, which is handled by the RETEST flag.
2290 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2291 cursor->flags |= HAMMER_CURSOR_RETEST;
2292 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2296 * An on-disk record cannot have the same delete_tid
2297 * as its create_tid. In a chain of record updates
2298 * this could result in a duplicate record.
2300 KKASSERT(elm->leaf.base.delete_tid !=
2301 elm->leaf.base.create_tid);
2305 * Destroy the B-Tree element if asked (typically if a nohistory
2306 * file or mount, or when called by the pruning code).
2308 * Adjust the ATEDISK flag to properly support iterations.
2310 if (delete_flags & HAMMER_DELETE_DESTROY) {
2311 data_offset = elm->leaf.data_offset;
2312 data_len = elm->leaf.data_len;
2313 rec_type = elm->leaf.base.rec_type;
2314 if (doprop) {
2315 save_leaf = elm->leaf;
2316 leaf = &save_leaf;
2318 if (elm->base.rec_type == HAMMER_RECTYPE_INODE &&
2319 elm->leaf.base.delete_tid == 0) {
2320 icount = -1;
2323 error = hammer_btree_delete(cursor);
2324 if (error == 0) {
2326 * The deletion moves the next element (if any) to
2327 * the current element position. We must clear
2328 * ATEDISK so this element is not skipped and we
2329 * must set RETEST to force any iteration to re-test
2330 * the element.
2332 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2333 cursor->flags |= HAMMER_CURSOR_RETEST;
2334 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2337 if (error == 0) {
2338 switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2339 case HAMMER_ZONE_LARGE_DATA:
2340 case HAMMER_ZONE_SMALL_DATA:
2341 case HAMMER_ZONE_META:
2342 hammer_blockmap_free(trans,
2343 data_offset, data_len);
2344 break;
2345 default:
2346 break;
2352 * Track inode count and next_tid. This is used by the mirroring
2353 * and PFS code. icount can be negative, zero, or positive.
2355 if (error == 0 && track) {
2356 if (icount) {
2357 hammer_modify_volume_field(trans, trans->rootvol,
2358 vol0_stat_inodes);
2359 trans->rootvol->ondisk->vol0_stat_inodes += icount;
2360 hammer_modify_volume_done(trans->rootvol);
2362 if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) {
2363 hammer_modify_volume(trans, trans->rootvol, NULL, 0);
2364 trans->rootvol->ondisk->vol0_next_tid = delete_tid;
2365 hammer_modify_volume_done(trans->rootvol);
2370 * mirror_tid propagation occurs if the node's mirror_tid had to be
2371 * updated while adjusting the delete_tid.
2373 * This occurs when deleting even in nohistory mode, but does not
2374 * occur when pruning an already-deleted node.
2376 * cursor->ip is NULL when called from the pruning, mirroring,
2377 * and pfs code. If non-NULL propagation will be conditionalized
2378 * on whether the PFS is in no-history mode or not.
2380 * WARNING: cursor's leaf pointer may have changed after do_propagation
2381 * returns!
2383 if (doprop) {
2384 if (cursor->ip)
2385 hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2386 else
2387 hammer_btree_do_propagation(cursor, NULL, leaf);
2389 hammer_sync_unlock(trans);
2390 return (error);
2394 * Determine whether we can remove a directory. This routine checks whether
2395 * a directory is empty or not and enforces flush connectivity.
2397 * Flush connectivity requires that we block if the target directory is
2398 * currently flushing, otherwise it may not end up in the same flush group.
2400 * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2403 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2405 struct hammer_cursor cursor;
2406 int error;
2409 * Check directory empty
2411 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2413 cursor.key_beg.localization = ip->obj_localization +
2414 hammer_dir_localization(ip);
2415 cursor.key_beg.obj_id = ip->obj_id;
2416 cursor.key_beg.create_tid = 0;
2417 cursor.key_beg.delete_tid = 0;
2418 cursor.key_beg.obj_type = 0;
2419 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
2420 cursor.key_beg.key = HAMMER_MIN_KEY;
2422 cursor.key_end = cursor.key_beg;
2423 cursor.key_end.rec_type = 0xFFFF;
2424 cursor.key_end.key = HAMMER_MAX_KEY;
2426 cursor.asof = ip->obj_asof;
2427 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2429 error = hammer_ip_first(&cursor);
2430 if (error == ENOENT)
2431 error = 0;
2432 else if (error == 0)
2433 error = ENOTEMPTY;
2434 hammer_done_cursor(&cursor);
2435 return(error);