hammer2 - error handling 2/N (chain_lookup/chain_next)
[dragonfly.git] / sys / vfs / hammer2 / hammer2_freemap.c
blobcd01fb2a7944896b38bbe94bfec6e41c7dce46ce
1 /*
2 * Copyright (c) 2011-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@dragonflybsd.org>
6 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/fcntl.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/namei.h>
42 #include <sys/mount.h>
43 #include <sys/vnode.h>
44 #include <sys/mountctl.h>
46 #include "hammer2.h"
48 #define FREEMAP_DEBUG 0
50 struct hammer2_fiterate {
51 hammer2_off_t bpref;
52 hammer2_off_t bnext;
53 int loops;
56 typedef struct hammer2_fiterate hammer2_fiterate_t;
58 static int hammer2_freemap_try_alloc(hammer2_chain_t **parentp,
59 hammer2_blockref_t *bref, int radix,
60 hammer2_fiterate_t *iter, hammer2_tid_t mtid);
61 static void hammer2_freemap_init(hammer2_dev_t *hmp,
62 hammer2_key_t key, hammer2_chain_t *chain);
63 static int hammer2_bmap_alloc(hammer2_dev_t *hmp,
64 hammer2_bmap_data_t *bmap, uint16_t class,
65 int n, int sub_key, int radix, hammer2_key_t *basep);
66 static int hammer2_freemap_iterate(hammer2_chain_t **parentp,
67 hammer2_chain_t **chainp,
68 hammer2_fiterate_t *iter);
70 static __inline
71 int
72 hammer2_freemapradix(int radix)
74 return(radix);
78 * Calculate the device offset for the specified FREEMAP_NODE or FREEMAP_LEAF
79 * bref. Return a combined media offset and physical size radix. Freemap
80 * chains use fixed storage offsets in the 4MB reserved area at the
81 * beginning of each 2GB zone
83 * Rotate between four possibilities. Theoretically this means we have three
84 * good freemaps in case of a crash which we can use as a base for the fixup
85 * scan at mount-time.
87 #define H2FMBASE(key, radix) ((key) & ~(((hammer2_off_t)1 << (radix)) - 1))
88 #define H2FMSHIFT(radix) ((hammer2_off_t)1 << (radix))
90 static
91 int
92 hammer2_freemap_reserve(hammer2_chain_t *chain, int radix)
94 hammer2_blockref_t *bref = &chain->bref;
95 hammer2_off_t off;
96 int index;
97 int index_inc;
98 size_t bytes;
101 * Physical allocation size.
103 bytes = (size_t)1 << radix;
106 * Calculate block selection index 0..7 of current block. If this
107 * is the first allocation of the block (verses a modification of an
108 * existing block), we use index 0, otherwise we use the next rotating
109 * index.
111 if ((bref->data_off & ~HAMMER2_OFF_MASK_RADIX) == 0) {
112 index = 0;
113 } else {
114 off = bref->data_off & ~HAMMER2_OFF_MASK_RADIX &
115 (((hammer2_off_t)1 <<
116 HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
117 off = off / HAMMER2_PBUFSIZE;
118 KKASSERT(off >= HAMMER2_ZONE_FREEMAP_00 &&
119 off < HAMMER2_ZONE_FREEMAP_END);
120 index = (int)(off - HAMMER2_ZONE_FREEMAP_00) /
121 HAMMER2_ZONE_FREEMAP_INC;
122 KKASSERT(index >= 0 && index < HAMMER2_NFREEMAPS);
123 if (++index == HAMMER2_NFREEMAPS)
124 index = 0;
128 * Calculate the block offset of the reserved block. This will
129 * point into the 4MB reserved area at the base of the appropriate
130 * 2GB zone, once added to the FREEMAP_x selection above.
132 index_inc = index * HAMMER2_ZONE_FREEMAP_INC;
134 switch(bref->keybits) {
135 /* case HAMMER2_FREEMAP_LEVEL6_RADIX: not applicable */
136 case HAMMER2_FREEMAP_LEVEL5_RADIX: /* 2EB */
137 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
138 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
139 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL5_RADIX) +
140 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
141 HAMMER2_ZONEFM_LEVEL5) * HAMMER2_PBUFSIZE;
142 break;
143 case HAMMER2_FREEMAP_LEVEL4_RADIX: /* 2EB */
144 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
145 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
146 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL4_RADIX) +
147 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
148 HAMMER2_ZONEFM_LEVEL4) * HAMMER2_PBUFSIZE;
149 break;
150 case HAMMER2_FREEMAP_LEVEL3_RADIX: /* 2PB */
151 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
152 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
153 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL3_RADIX) +
154 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
155 HAMMER2_ZONEFM_LEVEL3) * HAMMER2_PBUFSIZE;
156 break;
157 case HAMMER2_FREEMAP_LEVEL2_RADIX: /* 2TB */
158 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
159 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
160 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL2_RADIX) +
161 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
162 HAMMER2_ZONEFM_LEVEL2) * HAMMER2_PBUFSIZE;
163 break;
164 case HAMMER2_FREEMAP_LEVEL1_RADIX: /* 2GB */
165 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
166 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
167 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
168 (index_inc + HAMMER2_ZONE_FREEMAP_00 +
169 HAMMER2_ZONEFM_LEVEL1) * HAMMER2_PBUFSIZE;
170 break;
171 default:
172 panic("freemap: bad radix(2) %p %d\n", bref, bref->keybits);
173 /* NOT REACHED */
174 off = (hammer2_off_t)-1;
175 break;
177 bref->data_off = off | radix;
178 #if FREEMAP_DEBUG
179 kprintf("FREEMAP BLOCK TYPE %d %016jx/%d DATA_OFF=%016jx\n",
180 bref->type, bref->key, bref->keybits, bref->data_off);
181 #endif
182 return (0);
186 * Normal freemap allocator
188 * Use available hints to allocate space using the freemap. Create missing
189 * freemap infrastructure on-the-fly as needed (including marking initial
190 * allocations using the iterator as allocated, instantiating new 2GB zones,
191 * and dealing with the end-of-media edge case).
193 * ip and bpref are only used as a heuristic to determine locality of
194 * reference. bref->key may also be used heuristically.
196 * This function is a NOP if bytes is 0.
199 hammer2_freemap_alloc(hammer2_chain_t *chain, size_t bytes)
201 hammer2_dev_t *hmp = chain->hmp;
202 hammer2_blockref_t *bref = &chain->bref;
203 hammer2_chain_t *parent;
204 hammer2_tid_t mtid;
205 int radix;
206 int error;
207 unsigned int hindex;
208 hammer2_fiterate_t iter;
211 * If allocating or downsizing to zero we just get rid of whatever
212 * data_off we had.
214 if (bytes == 0) {
215 chain->bref.data_off = 0;
216 return 0;
219 mtid = hammer2_trans_sub(hmp->spmp);
222 * Validate the allocation size. It must be a power of 2.
224 * For now require that the caller be aware of the minimum
225 * allocation (1K).
227 radix = hammer2_getradix(bytes);
228 KKASSERT((size_t)1 << radix == bytes);
230 if (bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
231 bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
233 * Freemap blocks themselves are assigned from the reserve
234 * area, not allocated from the freemap.
236 error = hammer2_freemap_reserve(chain, radix);
237 KKASSERT(error == 0);
239 return error;
242 KKASSERT(bytes >= HAMMER2_ALLOC_MIN && bytes <= HAMMER2_ALLOC_MAX);
245 * Calculate the starting point for our allocation search.
247 * Each freemap leaf is dedicated to a specific freemap_radix.
248 * The freemap_radix can be more fine-grained than the device buffer
249 * radix which results in inodes being grouped together in their
250 * own segment, terminal-data (16K or less) and initial indirect
251 * block being grouped together, and then full-indirect and full-data
252 * blocks (64K) being grouped together.
254 * The single most important aspect of this is the inode grouping
255 * because that is what allows 'find' and 'ls' and other filesystem
256 * topology operations to run fast.
258 #if 0
259 if (bref->data_off & ~HAMMER2_OFF_MASK_RADIX)
260 bpref = bref->data_off & ~HAMMER2_OFF_MASK_RADIX;
261 else if (trans->tmp_bpref)
262 bpref = trans->tmp_bpref;
263 else if (trans->tmp_ip)
264 bpref = trans->tmp_ip->chain->bref.data_off;
265 else
266 #endif
268 * Heuristic tracking index. We would like one for each distinct
269 * bref type if possible. heur_freemap[] has room for two classes
270 * for each type. At a minimum we have to break-up our heuristic
271 * by device block sizes.
273 hindex = hammer2_devblkradix(radix) - HAMMER2_MINIORADIX;
274 KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_NRADIX);
275 hindex += bref->type * HAMMER2_FREEMAP_HEUR_NRADIX;
276 hindex &= HAMMER2_FREEMAP_HEUR_TYPES * HAMMER2_FREEMAP_HEUR_NRADIX - 1;
277 KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_SIZE);
279 iter.bpref = hmp->heur_freemap[hindex];
282 * Make sure bpref is in-bounds. It's ok if bpref covers a zone's
283 * reserved area, the try code will iterate past it.
285 if (iter.bpref > hmp->voldata.volu_size)
286 iter.bpref = hmp->voldata.volu_size - 1;
289 * Iterate the freemap looking for free space before and after.
291 parent = &hmp->fchain;
292 hammer2_chain_ref(parent);
293 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
294 error = EAGAIN;
295 iter.bnext = iter.bpref;
296 iter.loops = 0;
298 while (error == EAGAIN) {
299 error = hammer2_freemap_try_alloc(&parent, bref, radix,
300 &iter, mtid);
302 hmp->heur_freemap[hindex] = iter.bnext;
303 hammer2_chain_unlock(parent);
304 hammer2_chain_drop(parent);
306 KKASSERT(error == 0);
308 return (error);
311 static int
312 hammer2_freemap_try_alloc(hammer2_chain_t **parentp,
313 hammer2_blockref_t *bref, int radix,
314 hammer2_fiterate_t *iter, hammer2_tid_t mtid)
316 hammer2_dev_t *hmp = (*parentp)->hmp;
317 hammer2_off_t l0size;
318 hammer2_off_t l1size;
319 hammer2_off_t l1mask;
320 hammer2_key_t key_dummy;
321 hammer2_chain_t *chain;
322 hammer2_off_t key;
323 size_t bytes;
324 uint16_t class;
325 int error;
328 * Calculate the number of bytes being allocated, the number
329 * of contiguous bits of bitmap being allocated, and the bitmap
330 * mask.
332 * WARNING! cpu hardware may mask bits == 64 -> 0 and blow up the
333 * mask calculation.
335 bytes = (size_t)1 << radix;
336 class = (bref->type << 8) | hammer2_devblkradix(radix);
339 * Lookup the level1 freemap chain, creating and initializing one
340 * if necessary. Intermediate levels will be created automatically
341 * when necessary by hammer2_chain_create().
343 key = H2FMBASE(iter->bnext, HAMMER2_FREEMAP_LEVEL1_RADIX);
344 l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
345 l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
346 l1mask = l1size - 1;
348 chain = hammer2_chain_lookup(parentp, &key_dummy, key, key + l1mask,
349 &error,
350 HAMMER2_LOOKUP_ALWAYS |
351 HAMMER2_LOOKUP_MATCHIND);
352 error = hammer2_error_to_errno(error);
354 if (chain == NULL) {
356 * Create the missing leaf, be sure to initialize
357 * the auxillary freemap tracking information in
358 * the bref.check.freemap structure.
360 #if 0
361 kprintf("freemap create L1 @ %016jx bpref %016jx\n",
362 key, iter->bpref);
363 #endif
364 error = hammer2_chain_create(parentp, &chain,
365 hmp->spmp, HAMMER2_METH_DEFAULT,
366 key, HAMMER2_FREEMAP_LEVEL1_RADIX,
367 HAMMER2_BREF_TYPE_FREEMAP_LEAF,
368 HAMMER2_FREEMAP_LEVELN_PSIZE,
369 mtid, 0, 0);
370 KKASSERT(error == 0);
371 if (error == 0) {
372 hammer2_chain_modify(chain, mtid, 0, 0);
373 bzero(&chain->data->bmdata[0],
374 HAMMER2_FREEMAP_LEVELN_PSIZE);
375 chain->bref.check.freemap.bigmask = (uint32_t)-1;
376 chain->bref.check.freemap.avail = l1size;
377 /* bref.methods should already be inherited */
379 hammer2_freemap_init(hmp, key, chain);
381 } else if (chain->error) {
383 * Error during lookup.
385 kprintf("hammer2_freemap_try_alloc: %016jx: error %s\n",
386 (intmax_t)bref->data_off,
387 hammer2_error_str(chain->error));
388 error = EIO;
389 } else if ((chain->bref.check.freemap.bigmask &
390 ((size_t)1 << radix)) == 0) {
392 * Already flagged as not having enough space
394 error = ENOSPC;
395 } else {
397 * Modify existing chain to setup for adjustment.
399 hammer2_chain_modify(chain, mtid, 0, 0);
403 * Scan 4MB entries.
405 if (error == 0) {
406 hammer2_bmap_data_t *bmap;
407 hammer2_key_t base_key;
408 int count;
409 int start;
410 int n;
412 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
413 start = (int)((iter->bnext - key) >>
414 HAMMER2_FREEMAP_LEVEL0_RADIX);
415 KKASSERT(start >= 0 && start < HAMMER2_FREEMAP_COUNT);
416 hammer2_chain_modify(chain, mtid, 0, 0);
418 error = ENOSPC;
419 for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
420 int availchk;
422 if (start + count >= HAMMER2_FREEMAP_COUNT &&
423 start - count < 0) {
424 break;
428 * Calculate bmap pointer
430 * NOTE: bmap pointer is invalid if n >= FREEMAP_COUNT.
432 n = start + count;
433 bmap = &chain->data->bmdata[n];
435 if (n >= HAMMER2_FREEMAP_COUNT) {
436 availchk = 0;
437 } else if (bmap->avail) {
438 availchk = 1;
439 } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
440 (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
441 availchk = 1;
442 } else {
443 availchk = 0;
446 if (availchk &&
447 (bmap->class == 0 || bmap->class == class)) {
448 base_key = key + n * l0size;
449 error = hammer2_bmap_alloc(hmp, bmap,
450 class, n,
451 (int)bref->key,
452 radix,
453 &base_key);
454 if (error != ENOSPC) {
455 key = base_key;
456 break;
461 * Must recalculate after potentially having called
462 * hammer2_bmap_alloc() above in case chain was
463 * reallocated.
465 * NOTE: bmap pointer is invalid if n < 0.
467 n = start - count;
468 bmap = &chain->data->bmdata[n];
469 if (n < 0) {
470 availchk = 0;
471 } else if (bmap->avail) {
472 availchk = 1;
473 } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
474 (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
475 availchk = 1;
476 } else {
477 availchk = 0;
480 if (availchk &&
481 (bmap->class == 0 || bmap->class == class)) {
482 base_key = key + n * l0size;
483 error = hammer2_bmap_alloc(hmp, bmap,
484 class, n,
485 (int)bref->key,
486 radix,
487 &base_key);
488 if (error != ENOSPC) {
489 key = base_key;
490 break;
494 if (error == ENOSPC) {
495 chain->bref.check.freemap.bigmask &=
496 (uint32_t)~((size_t)1 << radix);
498 /* XXX also scan down from original count */
501 if (error == 0) {
503 * Assert validity. Must be beyond the static allocator used
504 * by newfs_hammer2 (and thus also beyond the aux area),
505 * not go past the volume size, and must not be in the
506 * reserved segment area for a zone.
508 KKASSERT(key >= hmp->voldata.allocator_beg &&
509 key + bytes <= hmp->voldata.volu_size);
510 KKASSERT((key & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
511 bref->data_off = key | radix;
514 * Record dedupability. The dedup bits are cleared
515 * when bulkfree transitions the freemap from 11->10,
516 * and asserted to be clear on the 10->00 transition.
518 * We must record the bitmask with the chain locked
519 * at the time we set the allocation bits to avoid
520 * racing a bulkfree.
522 if (bref->type == HAMMER2_BREF_TYPE_DATA)
523 hammer2_io_dedup_set(hmp, bref);
524 #if 0
525 kprintf("alloc cp=%p %016jx %016jx using %016jx\n",
526 chain,
527 bref->key, bref->data_off, chain->bref.data_off);
528 #endif
529 } else if (error == ENOSPC) {
531 * Return EAGAIN with next iteration in iter->bnext, or
532 * return ENOSPC if the allocation map has been exhausted.
534 error = hammer2_freemap_iterate(parentp, &chain, iter);
538 * Cleanup
540 if (chain) {
541 hammer2_chain_unlock(chain);
542 hammer2_chain_drop(chain);
544 return (error);
548 * Allocate (1<<radix) bytes from the bmap whos base data offset is (*basep).
550 * If the linear iterator is mid-block we use it directly (the bitmap should
551 * already be marked allocated), otherwise we search for a block in the
552 * bitmap that fits the allocation request.
554 * A partial bitmap allocation sets the minimum bitmap granularity (16KB)
555 * to fully allocated and adjusts the linear allocator to allow the
556 * remaining space to be allocated.
558 * sub_key is the lower 32 bits of the chain->bref.key for the chain whos
559 * bref is being allocated. If the radix represents an allocation >= 16KB
560 * (aka HAMMER2_FREEMAP_BLOCK_RADIX) we try to use this key to select the
561 * blocks directly out of the bmap.
563 static
565 hammer2_bmap_alloc(hammer2_dev_t *hmp, hammer2_bmap_data_t *bmap,
566 uint16_t class, int n, int sub_key,
567 int radix, hammer2_key_t *basep)
569 size_t size;
570 size_t bgsize;
571 int bmradix;
572 hammer2_bitmap_t bmmask;
573 int offset;
574 int i;
575 int j;
578 * Take into account 2-bits per block when calculating bmradix.
580 size = (size_t)1 << radix;
582 if (radix <= HAMMER2_FREEMAP_BLOCK_RADIX) {
583 bmradix = 2;
584 /* (16K) 2 bits per allocation block */
585 } else {
586 bmradix = (hammer2_bitmap_t)2 <<
587 (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
588 /* (32K-256K) 4, 8, 16, 32 bits per allocation block */
592 * Use the linear iterator to pack small allocations, otherwise
593 * fall-back to finding a free 16KB chunk. The linear iterator
594 * is only valid when *NOT* on a freemap chunking boundary (16KB).
595 * If it is the bitmap must be scanned. It can become invalid
596 * once we pack to the boundary. We adjust it after a bitmap
597 * allocation only for sub-16KB allocations (so the perfectly good
598 * previous value can still be used for fragments when 16KB+
599 * allocations are made inbetween fragmentary allocations).
601 * Beware of hardware artifacts when bmradix == 64 (intermediate
602 * result can wind up being '1' instead of '0' if hardware masks
603 * bit-count & 63).
605 * NOTE: j needs to be even in the j= calculation. As an artifact
606 * of the /2 division, our bitmask has to clear bit 0.
608 * NOTE: TODO this can leave little unallocatable fragments lying
609 * around.
611 if (((uint32_t)bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) + size <=
612 HAMMER2_FREEMAP_BLOCK_SIZE &&
613 (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) &&
614 bmap->linear < HAMMER2_SEGSIZE) {
616 * Use linear iterator if it is not block-aligned to avoid
617 * wasting space.
619 KKASSERT(bmap->linear >= 0 &&
620 bmap->linear + size <= HAMMER2_SEGSIZE &&
621 (bmap->linear & (HAMMER2_ALLOC_MIN - 1)) == 0);
622 offset = bmap->linear;
623 i = offset / (HAMMER2_SEGSIZE / 8);
624 j = (offset / (HAMMER2_FREEMAP_BLOCK_SIZE / 2)) & 30;
625 bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
626 HAMMER2_BMAP_ALLONES :
627 ((hammer2_bitmap_t)1 << bmradix) - 1;
628 bmmask <<= j;
629 bmap->linear = offset + size;
630 } else {
632 * Try to index a starting point based on sub_key. This
633 * attempts to restore sequential block ordering on-disk
634 * whenever possible, even if data is committed out of
635 * order.
637 * i - Index bitmapq[], full data range represented is
638 * HAMMER2_BMAP_SIZE.
640 * j - Index within bitmapq[i], full data range represented is
641 * HAMMER2_BMAP_INDEX_SIZE.
643 * WARNING!
645 i = -1;
646 j = -1;
648 switch(class >> 8) {
649 case HAMMER2_BREF_TYPE_DATA:
650 if (radix >= HAMMER2_FREEMAP_BLOCK_RADIX) {
651 i = (sub_key & HAMMER2_BMAP_MASK) /
652 (HAMMER2_BMAP_SIZE / HAMMER2_BMAP_ELEMENTS);
653 j = (sub_key & HAMMER2_BMAP_INDEX_MASK) /
654 (HAMMER2_BMAP_INDEX_SIZE /
655 HAMMER2_BMAP_BLOCKS_PER_ELEMENT);
656 j = j * 2;
658 break;
659 case HAMMER2_BREF_TYPE_INODE:
660 break;
661 default:
662 break;
664 if (i >= 0) {
665 KKASSERT(i < HAMMER2_BMAP_ELEMENTS &&
666 j < 2 * HAMMER2_BMAP_BLOCKS_PER_ELEMENT);
667 KKASSERT(j + bmradix <= HAMMER2_BMAP_BITS_PER_ELEMENT);
668 bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
669 HAMMER2_BMAP_ALLONES :
670 ((hammer2_bitmap_t)1 << bmradix) - 1;
671 bmmask <<= j;
673 if ((bmap->bitmapq[i] & bmmask) == 0)
674 goto success;
678 * General element scan.
680 * WARNING: (j) is iterating a bit index (by 2's)
682 for (i = 0; i < HAMMER2_BMAP_ELEMENTS; ++i) {
683 bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
684 HAMMER2_BMAP_ALLONES :
685 ((hammer2_bitmap_t)1 << bmradix) - 1;
686 for (j = 0;
687 j < HAMMER2_BMAP_BITS_PER_ELEMENT;
688 j += bmradix) {
689 if ((bmap->bitmapq[i] & bmmask) == 0)
690 goto success;
691 bmmask <<= bmradix;
694 /*fragments might remain*/
695 /*KKASSERT(bmap->avail == 0);*/
696 return (ENOSPC);
697 success:
698 offset = i * (HAMMER2_SEGSIZE / HAMMER2_BMAP_ELEMENTS) +
699 (j * (HAMMER2_FREEMAP_BLOCK_SIZE / 2));
700 if (size & HAMMER2_FREEMAP_BLOCK_MASK)
701 bmap->linear = offset + size;
704 /* 8 x (64/2) -> 256 x 16K -> 4MB */
705 KKASSERT(i >= 0 && i < HAMMER2_BMAP_ELEMENTS);
708 * Optimize the buffer cache to avoid unnecessary read-before-write
709 * operations.
711 * The device block size could be larger than the allocation size
712 * so the actual bitmap test is somewhat more involved. We have
713 * to use a compatible buffer size for this operation.
715 if ((bmap->bitmapq[i] & bmmask) == 0 &&
716 hammer2_devblksize(size) != size) {
717 size_t psize = hammer2_devblksize(size);
718 hammer2_off_t pmask = (hammer2_off_t)psize - 1;
719 int pbmradix = (hammer2_bitmap_t)2 <<
720 (hammer2_devblkradix(radix) -
721 HAMMER2_FREEMAP_BLOCK_RADIX);
722 hammer2_bitmap_t pbmmask;
723 int pradix = hammer2_getradix(psize);
725 pbmmask = (pbmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
726 HAMMER2_BMAP_ALLONES :
727 ((hammer2_bitmap_t)1 << pbmradix) - 1;
728 while ((pbmmask & bmmask) == 0)
729 pbmmask <<= pbmradix;
731 #if 0
732 kprintf("%016jx mask %016jx %016jx %016jx (%zd/%zd)\n",
733 *basep + offset, bmap->bitmapq[i],
734 pbmmask, bmmask, size, psize);
735 #endif
737 if ((bmap->bitmapq[i] & pbmmask) == 0) {
738 hammer2_io_t *dio;
740 hammer2_io_newnz(hmp, class >> 8,
741 (*basep + (offset & ~pmask)) |
742 pradix, psize, &dio);
743 hammer2_io_putblk(&dio);
747 #if 0
749 * When initializing a new inode segment also attempt to initialize
750 * an adjacent segment. Be careful not to index beyond the array
751 * bounds.
753 * We do this to try to localize inode accesses to improve
754 * directory scan rates. XXX doesn't improve scan rates.
756 if (size == HAMMER2_INODE_BYTES) {
757 if (n & 1) {
758 if (bmap[-1].radix == 0 && bmap[-1].avail)
759 bmap[-1].radix = radix;
760 } else {
761 if (bmap[1].radix == 0 && bmap[1].avail)
762 bmap[1].radix = radix;
765 #endif
767 * Calculate the bitmap-granular change in bgsize for the volume
768 * header. We cannot use the fine-grained change here because
769 * the bulkfree code can't undo it. If the bitmap element is already
770 * marked allocated it has already been accounted for.
772 if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
773 if (bmap->bitmapq[i] & bmmask)
774 bgsize = 0;
775 else
776 bgsize = HAMMER2_FREEMAP_BLOCK_SIZE;
777 } else {
778 bgsize = size;
782 * Adjust the bitmap, set the class (it might have been 0),
783 * and available bytes, update the allocation offset (*basep)
784 * from the L0 base to the actual offset.
786 * avail must reflect the bitmap-granular availability. The allocator
787 * tests will also check the linear iterator.
789 bmap->bitmapq[i] |= bmmask;
790 bmap->class = class;
791 bmap->avail -= bgsize;
792 *basep += offset;
795 * Adjust the volume header's allocator_free parameter. This
796 * parameter has to be fixed up by bulkfree which has no way to
797 * figure out sub-16K chunking, so it must be adjusted by the
798 * bitmap-granular size.
800 if (bgsize) {
801 hammer2_voldata_lock(hmp);
802 hammer2_voldata_modify(hmp);
803 hmp->voldata.allocator_free -= bgsize;
804 hammer2_voldata_unlock(hmp);
807 return(0);
810 static
811 void
812 hammer2_freemap_init(hammer2_dev_t *hmp, hammer2_key_t key,
813 hammer2_chain_t *chain)
815 hammer2_off_t l1size;
816 hammer2_off_t lokey;
817 hammer2_off_t hikey;
818 hammer2_bmap_data_t *bmap;
819 int count;
821 l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
824 * Calculate the portion of the 2GB map that should be initialized
825 * as free. Portions below or after will be initialized as allocated.
826 * SEGMASK-align the areas so we don't have to worry about sub-scans
827 * or endianess when using memset.
829 * (1) Ensure that all statically allocated space from newfs_hammer2
830 * is marked allocated.
832 * (2) Ensure that the reserved area is marked allocated (typically
833 * the first 4MB of the 2GB area being represented).
835 * (3) Ensure that any trailing space at the end-of-volume is marked
836 * allocated.
838 * WARNING! It is possible for lokey to be larger than hikey if the
839 * entire 2GB segment is within the static allocation.
841 lokey = (hmp->voldata.allocator_beg + HAMMER2_SEGMASK64) &
842 ~HAMMER2_SEGMASK64;
844 if (lokey < H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
845 HAMMER2_ZONE_SEG64) {
846 lokey = H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
847 HAMMER2_ZONE_SEG64;
850 hikey = key + H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
851 if (hikey > hmp->voldata.volu_size) {
852 hikey = hmp->voldata.volu_size & ~HAMMER2_SEGMASK64;
855 chain->bref.check.freemap.avail =
856 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
857 bmap = &chain->data->bmdata[0];
859 for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
860 if (key < lokey || key >= hikey) {
861 memset(bmap->bitmapq, -1,
862 sizeof(bmap->bitmapq));
863 bmap->avail = 0;
864 bmap->linear = HAMMER2_SEGSIZE;
865 chain->bref.check.freemap.avail -=
866 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
867 } else {
868 bmap->avail = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
870 key += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
871 ++bmap;
876 * The current Level 1 freemap has been exhausted, iterate to the next
877 * one, return ENOSPC if no freemaps remain.
879 * XXX this should rotate back to the beginning to handle freed-up space
880 * XXX or use intermediate entries to locate free space. TODO
882 static int
883 hammer2_freemap_iterate(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
884 hammer2_fiterate_t *iter)
886 hammer2_dev_t *hmp = (*parentp)->hmp;
888 iter->bnext &= ~(H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
889 iter->bnext += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
890 if (iter->bnext >= hmp->voldata.volu_size) {
891 iter->bnext = 0;
892 if (++iter->loops == 2)
893 return (ENOSPC);
895 return(EAGAIN);
899 * Adjust the bit-pattern for data in the freemap bitmap according to
900 * (how). This code is called from on-mount recovery to fixup (mark
901 * as allocated) blocks whos freemap upates might not have been committed
902 * in the last crash and is used by the bulk freemap scan to stage frees.
904 * WARNING! Cannot be called with a empty-data bref (radix == 0).
906 * XXX currently disabled when how == 0 (the normal real-time case). At
907 * the moment we depend on the bulk freescan to actually free blocks. It
908 * will still call this routine with a non-zero how to stage possible frees
909 * and to do the actual free.
911 void
912 hammer2_freemap_adjust(hammer2_dev_t *hmp, hammer2_blockref_t *bref,
913 int how)
915 hammer2_off_t data_off = bref->data_off;
916 hammer2_chain_t *chain;
917 hammer2_chain_t *parent;
918 hammer2_bmap_data_t *bmap;
919 hammer2_key_t key;
920 hammer2_key_t key_dummy;
921 hammer2_off_t l0size;
922 hammer2_off_t l1size;
923 hammer2_off_t l1mask;
924 hammer2_tid_t mtid;
925 hammer2_bitmap_t *bitmap;
926 const hammer2_bitmap_t bmmask00 = 0;
927 hammer2_bitmap_t bmmask01;
928 hammer2_bitmap_t bmmask10;
929 hammer2_bitmap_t bmmask11;
930 size_t bytes;
931 uint16_t class;
932 int radix;
933 int start;
934 int count;
935 int modified = 0;
936 int error;
937 size_t bgsize = 0;
939 KKASSERT(how == HAMMER2_FREEMAP_DORECOVER);
941 mtid = hammer2_trans_sub(hmp->spmp);
943 radix = (int)data_off & HAMMER2_OFF_MASK_RADIX;
944 KKASSERT(radix != 0);
945 data_off &= ~HAMMER2_OFF_MASK_RADIX;
946 KKASSERT(radix <= HAMMER2_RADIX_MAX);
948 if (radix)
949 bytes = (size_t)1 << radix;
950 else
951 bytes = 0;
952 class = (bref->type << 8) | hammer2_devblkradix(radix);
955 * We can't adjust the freemap for data allocations made by
956 * newfs_hammer2.
958 if (data_off < hmp->voldata.allocator_beg)
959 return;
961 KKASSERT((data_off & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
964 * Lookup the level1 freemap chain. The chain must exist.
966 key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL1_RADIX);
967 l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
968 l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
969 l1mask = l1size - 1;
971 parent = &hmp->fchain;
972 hammer2_chain_ref(parent);
973 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
975 chain = hammer2_chain_lookup(&parent, &key_dummy, key, key + l1mask,
976 &error,
977 HAMMER2_LOOKUP_ALWAYS |
978 HAMMER2_LOOKUP_MATCHIND);
979 error = hammer2_error_to_errno(error);
982 * Stop early if we are trying to free something but no leaf exists.
984 if (chain == NULL && how != HAMMER2_FREEMAP_DORECOVER) {
985 kprintf("hammer2_freemap_adjust: %016jx: no chain\n",
986 (intmax_t)bref->data_off);
987 goto done;
989 if (chain->error) {
990 kprintf("hammer2_freemap_adjust: %016jx: error %s\n",
991 (intmax_t)bref->data_off,
992 hammer2_error_str(chain->error));
993 hammer2_chain_unlock(chain);
994 hammer2_chain_drop(chain);
995 chain = NULL;
996 goto done;
1000 * Create any missing leaf(s) if we are doing a recovery (marking
1001 * the block(s) as being allocated instead of being freed). Be sure
1002 * to initialize the auxillary freemap tracking info in the
1003 * bref.check.freemap structure.
1005 if (chain == NULL && how == HAMMER2_FREEMAP_DORECOVER) {
1006 error = hammer2_chain_create(&parent, &chain,
1007 hmp->spmp, HAMMER2_METH_DEFAULT,
1008 key, HAMMER2_FREEMAP_LEVEL1_RADIX,
1009 HAMMER2_BREF_TYPE_FREEMAP_LEAF,
1010 HAMMER2_FREEMAP_LEVELN_PSIZE,
1011 mtid, 0, 0);
1013 if (hammer2_debug & 0x0040) {
1014 kprintf("fixup create chain %p %016jx:%d\n",
1015 chain, chain->bref.key, chain->bref.keybits);
1018 if (error == 0) {
1019 hammer2_chain_modify(chain, mtid, 0, 0);
1020 bzero(&chain->data->bmdata[0],
1021 HAMMER2_FREEMAP_LEVELN_PSIZE);
1022 chain->bref.check.freemap.bigmask = (uint32_t)-1;
1023 chain->bref.check.freemap.avail = l1size;
1024 /* bref.methods should already be inherited */
1026 hammer2_freemap_init(hmp, key, chain);
1028 /* XXX handle error */
1031 #if FREEMAP_DEBUG
1032 kprintf("FREEMAP ADJUST TYPE %d %016jx/%d DATA_OFF=%016jx\n",
1033 chain->bref.type, chain->bref.key,
1034 chain->bref.keybits, chain->bref.data_off);
1035 #endif
1038 * Calculate the bitmask (runs in 2-bit pairs).
1040 start = ((int)(data_off >> HAMMER2_FREEMAP_BLOCK_RADIX) & 15) * 2;
1041 bmmask01 = (hammer2_bitmap_t)1 << start;
1042 bmmask10 = (hammer2_bitmap_t)2 << start;
1043 bmmask11 = (hammer2_bitmap_t)3 << start;
1046 * Fixup the bitmap. Partial blocks cannot be fully freed unless
1047 * a bulk scan is able to roll them up.
1049 if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
1050 count = 1;
1051 if (how == HAMMER2_FREEMAP_DOREALFREE)
1052 how = HAMMER2_FREEMAP_DOMAYFREE;
1053 } else {
1054 count = 1 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
1058 * [re]load the bmap and bitmap pointers. Each bmap entry covers
1059 * a 4MB swath. The bmap itself (LEVEL1) covers 2GB.
1061 * Be sure to reset the linear iterator to ensure that the adjustment
1062 * is not ignored.
1064 again:
1065 bmap = &chain->data->bmdata[(int)(data_off >> HAMMER2_SEGRADIX) &
1066 (HAMMER2_FREEMAP_COUNT - 1)];
1067 bitmap = &bmap->bitmapq[(int)(data_off >> (HAMMER2_SEGRADIX - 3)) & 7];
1069 if (modified)
1070 bmap->linear = 0;
1072 while (count) {
1073 KKASSERT(bmmask11);
1074 if (how == HAMMER2_FREEMAP_DORECOVER) {
1076 * Recovery request, mark as allocated.
1078 if ((*bitmap & bmmask11) != bmmask11) {
1079 if (modified == 0) {
1080 hammer2_chain_modify(chain, mtid, 0, 0);
1081 modified = 1;
1082 goto again;
1084 if ((*bitmap & bmmask11) == bmmask00) {
1085 bmap->avail -=
1086 HAMMER2_FREEMAP_BLOCK_SIZE;
1087 bgsize += HAMMER2_FREEMAP_BLOCK_SIZE;
1089 if (bmap->class == 0)
1090 bmap->class = class;
1091 *bitmap |= bmmask11;
1092 if (hammer2_debug & 0x0040) {
1093 kprintf("hammer2_freemap_recover: "
1094 "fixup type=%02x "
1095 "block=%016jx/%zd\n",
1096 bref->type, data_off, bytes);
1098 } else {
1100 kprintf("hammer2_freemap_recover: good "
1101 "type=%02x block=%016jx/%zd\n",
1102 bref->type, data_off, bytes);
1106 #if 0
1108 * XXX this stuff doesn't work, avail is miscalculated and
1109 * code 10 means something else now.
1111 else if ((*bitmap & bmmask11) == bmmask11) {
1113 * Mayfree/Realfree request and bitmap is currently
1114 * marked as being fully allocated.
1116 if (!modified) {
1117 hammer2_chain_modify(chain, 0);
1118 modified = 1;
1119 goto again;
1121 if (how == HAMMER2_FREEMAP_DOREALFREE)
1122 *bitmap &= ~bmmask11;
1123 else
1124 *bitmap = (*bitmap & ~bmmask11) | bmmask10;
1125 } else if ((*bitmap & bmmask11) == bmmask10) {
1127 * Mayfree/Realfree request and bitmap is currently
1128 * marked as being possibly freeable.
1130 if (how == HAMMER2_FREEMAP_DOREALFREE) {
1131 if (!modified) {
1132 hammer2_chain_modify(chain, 0);
1133 modified = 1;
1134 goto again;
1136 *bitmap &= ~bmmask11;
1138 } else {
1140 * 01 - Not implemented, currently illegal state
1141 * 00 - Not allocated at all, illegal free.
1143 panic("hammer2_freemap_adjust: "
1144 "Illegal state %08x(%08x)",
1145 *bitmap, *bitmap & bmmask11);
1147 #endif
1148 --count;
1149 bmmask01 <<= 2;
1150 bmmask10 <<= 2;
1151 bmmask11 <<= 2;
1153 #if HAMMER2_BMAP_ELEMENTS != 8
1154 #error "hammer2_freemap.c: HAMMER2_BMAP_ELEMENTS expected to be 8"
1155 #endif
1156 if (how == HAMMER2_FREEMAP_DOREALFREE && modified) {
1157 bmap->avail += 1 << radix;
1158 KKASSERT(bmap->avail <= HAMMER2_SEGSIZE);
1159 if (bmap->avail == HAMMER2_SEGSIZE &&
1160 bmap->bitmapq[0] == 0 &&
1161 bmap->bitmapq[1] == 0 &&
1162 bmap->bitmapq[2] == 0 &&
1163 bmap->bitmapq[3] == 0 &&
1164 bmap->bitmapq[4] == 0 &&
1165 bmap->bitmapq[5] == 0 &&
1166 bmap->bitmapq[6] == 0 &&
1167 bmap->bitmapq[7] == 0) {
1168 key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL0_RADIX);
1169 kprintf("Freeseg %016jx\n", (intmax_t)key);
1170 bmap->class = 0;
1175 * chain->bref.check.freemap.bigmask (XXX)
1177 * Setting bigmask is a hint to the allocation code that there might
1178 * be something allocatable. We also set this in recovery... it
1179 * doesn't hurt and we might want to use the hint for other validation
1180 * operations later on.
1182 if (modified)
1183 chain->bref.check.freemap.bigmask |= 1 << radix;
1185 hammer2_chain_unlock(chain);
1186 hammer2_chain_drop(chain);
1187 done:
1188 hammer2_chain_unlock(parent);
1189 hammer2_chain_drop(parent);
1191 if (bgsize) {
1192 hammer2_voldata_lock(hmp);
1193 hammer2_voldata_modify(hmp);
1194 hmp->voldata.allocator_free -= bgsize;
1195 hammer2_voldata_unlock(hmp);
1200 * Validate the freemap, in three stages.
1202 * stage-1 ALLOCATED -> POSSIBLY FREE
1203 * POSSIBLY FREE -> POSSIBLY FREE (type corrected)
1205 * This transitions bitmap entries from ALLOCATED to POSSIBLY FREE.
1206 * The POSSIBLY FREE state does not mean that a block is actually free
1207 * and may be transitioned back to ALLOCATED in stage-2.
1209 * This is typically done during normal filesystem operations when
1210 * something is deleted or a block is replaced.
1212 * This is done by bulkfree in-bulk after a memory-bounded meta-data
1213 * scan to try to determine what might be freeable.
1215 * This can be done unconditionally through a freemap scan when the
1216 * intention is to brute-force recover the proper state of the freemap.
1218 * stage-2 POSSIBLY FREE -> ALLOCATED (scan metadata topology)
1220 * This is done by bulkfree during a meta-data scan to ensure that
1221 * all blocks still actually allocated by the filesystem are marked
1222 * as such.
1224 * NOTE! Live filesystem transitions to POSSIBLY FREE can occur while
1225 * the bulkfree stage-2 and stage-3 is running. The live filesystem
1226 * will use the alternative POSSIBLY FREE type (2) to prevent
1227 * stage-3 from improperly transitioning unvetted possibly-free
1228 * blocks to FREE.
1230 * stage-3 POSSIBLY FREE (type 1) -> FREE (scan freemap)
1232 * This is done by bulkfree to finalize POSSIBLY FREE states.