HAMMER 59A/Many: Mirroring related work (and one bug fix).
[dragonfly.git] / sys / vfs / hammer / hammer_object.c
blob66f82064a96a3cdfdcd50df96449909b227dbbc2
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.76 2008/06/26 04:06:23 dillon Exp $
37 #include "hammer.h"
39 static int hammer_mem_add(hammer_record_t record);
40 static int hammer_mem_lookup(hammer_cursor_t cursor);
41 static int hammer_mem_first(hammer_cursor_t cursor);
42 static int hammer_rec_trunc_callback(hammer_record_t record,
43 void *data __unused);
44 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
46 struct rec_trunc_info {
47 u_int16_t rec_type;
48 int64_t trunc_off;
52 * Red-black tree support. Comparison code for insertion.
54 static int
55 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
57 if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
58 return(-1);
59 if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
60 return(1);
62 if (rec1->leaf.base.key < rec2->leaf.base.key)
63 return(-1);
64 if (rec1->leaf.base.key > rec2->leaf.base.key)
65 return(1);
68 * Never match against an item deleted by the front-end.
70 * rec1 is greater then rec2 if rec1 is marked deleted.
71 * rec1 is less then rec2 if rec2 is marked deleted.
73 * Multiple deleted records may be present, do not return 0
74 * if both are marked deleted.
76 if (rec1->flags & HAMMER_RECF_DELETED_FE)
77 return(1);
78 if (rec2->flags & HAMMER_RECF_DELETED_FE)
79 return(-1);
81 return(0);
85 * Basic record comparison code similar to hammer_btree_cmp().
87 static int
88 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
90 if (elm->rec_type < rec->leaf.base.rec_type)
91 return(-3);
92 if (elm->rec_type > rec->leaf.base.rec_type)
93 return(3);
95 if (elm->key < rec->leaf.base.key)
96 return(-2);
97 if (elm->key > rec->leaf.base.key)
98 return(2);
101 * Never match against an item deleted by the front-end.
102 * elm is less then rec if rec is marked deleted.
104 if (rec->flags & HAMMER_RECF_DELETED_FE)
105 return(-1);
106 return(0);
110 * Special LOOKUP_INFO to locate an overlapping record. This used by
111 * the reservation code to implement small-block records (whos keys will
112 * be different depending on data_len, when representing the same base
113 * offset).
115 * NOTE: The base file offset of a data record is (key - data_len), not (key).
117 static int
118 hammer_rec_overlap_compare(hammer_btree_leaf_elm_t leaf, hammer_record_t rec)
120 if (leaf->base.rec_type < rec->leaf.base.rec_type)
121 return(-3);
122 if (leaf->base.rec_type > rec->leaf.base.rec_type)
123 return(3);
126 * Overlap compare
128 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
129 /* leaf_end <= rec_beg */
130 if (leaf->base.key <= rec->leaf.base.key - rec->leaf.data_len)
131 return(-2);
132 /* leaf_beg >= rec_end */
133 if (leaf->base.key - leaf->data_len >= rec->leaf.base.key)
134 return(2);
135 } else {
136 if (leaf->base.key < rec->leaf.base.key)
137 return(-2);
138 if (leaf->base.key > rec->leaf.base.key)
139 return(2);
143 * Never match against an item deleted by the front-end.
144 * leaf is less then rec if rec is marked deleted.
146 * We must still return the proper code for the scan to continue
147 * along the correct branches.
149 if (rec->flags & HAMMER_RECF_DELETED_FE) {
150 if (leaf->base.key < rec->leaf.base.key)
151 return(-2);
152 if (leaf->base.key > rec->leaf.base.key)
153 return(2);
154 return(-1);
156 return(0);
160 * RB_SCAN comparison code for hammer_mem_first(). The argument order
161 * is reversed so the comparison result has to be negated. key_beg and
162 * key_end are both range-inclusive.
164 * Localized deletions are not cached in-memory.
166 static
168 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
170 hammer_cursor_t cursor = data;
171 int r;
173 r = hammer_rec_cmp(&cursor->key_beg, rec);
174 if (r > 1)
175 return(-1);
176 r = hammer_rec_cmp(&cursor->key_end, rec);
177 if (r < -1)
178 return(1);
179 return(0);
183 * This compare function is used when simply looking up key_beg.
185 static
187 hammer_rec_find_cmp(hammer_record_t rec, void *data)
189 hammer_cursor_t cursor = data;
190 int r;
192 r = hammer_rec_cmp(&cursor->key_beg, rec);
193 if (r > 1)
194 return(-1);
195 if (r < -1)
196 return(1);
197 return(0);
201 * Locate blocks within the truncation range. Partial blocks do not count.
203 static
205 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
207 struct rec_trunc_info *info = data;
209 if (rec->leaf.base.rec_type < info->rec_type)
210 return(-1);
211 if (rec->leaf.base.rec_type > info->rec_type)
212 return(1);
214 switch(rec->leaf.base.rec_type) {
215 case HAMMER_RECTYPE_DB:
217 * DB record key is not beyond the truncation point, retain.
219 if (rec->leaf.base.key < info->trunc_off)
220 return(-1);
221 break;
222 case HAMMER_RECTYPE_DATA:
224 * DATA record offset start is not beyond the truncation point,
225 * retain.
227 if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
228 return(-1);
229 break;
230 default:
231 panic("hammer_rec_trunc_cmp: unexpected record type");
235 * The record start is >= the truncation point, return match,
236 * the record should be destroyed.
238 return(0);
241 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
242 RB_GENERATE_XLOOKUP(hammer_rec_rb_tree, INFO, hammer_record, rb_node,
243 hammer_rec_overlap_compare, hammer_btree_leaf_elm_t);
246 * Allocate a record for the caller to finish filling in. The record is
247 * returned referenced.
249 hammer_record_t
250 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
252 hammer_record_t record;
254 ++hammer_count_records;
255 record = kmalloc(sizeof(*record), M_HAMMER, M_WAITOK | M_ZERO);
256 record->flush_state = HAMMER_FST_IDLE;
257 record->ip = ip;
258 record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
259 record->leaf.data_len = data_len;
260 hammer_ref(&record->lock);
262 if (data_len) {
263 record->data = kmalloc(data_len, M_HAMMER, M_WAITOK | M_ZERO);
264 record->flags |= HAMMER_RECF_ALLOCDATA;
265 ++hammer_count_record_datas;
268 return (record);
271 void
272 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
274 while (record->flush_state == HAMMER_FST_FLUSH) {
275 record->flags |= HAMMER_RECF_WANTED;
276 tsleep(record, 0, ident, 0);
281 * Called from the backend, hammer_inode.c, after a record has been
282 * flushed to disk. The record has been exclusively locked by the
283 * caller and interlocked with BE.
285 * We clean up the state, unlock, and release the record (the record
286 * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
288 void
289 hammer_flush_record_done(hammer_record_t record, int error)
291 hammer_inode_t target_ip;
293 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
294 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
296 if (error) {
298 * An error occured, the backend was unable to sync the
299 * record to its media. Leave the record intact.
301 Debugger("flush_record_done error");
304 if (record->flags & HAMMER_RECF_DELETED_BE) {
305 if ((target_ip = record->target_ip) != NULL) {
306 TAILQ_REMOVE(&target_ip->target_list, record,
307 target_entry);
308 record->target_ip = NULL;
309 hammer_test_inode(target_ip);
311 record->flush_state = HAMMER_FST_IDLE;
312 } else {
313 if (record->target_ip) {
314 record->flush_state = HAMMER_FST_SETUP;
315 hammer_test_inode(record->ip);
316 hammer_test_inode(record->target_ip);
317 } else {
318 record->flush_state = HAMMER_FST_IDLE;
321 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
322 if (record->flags & HAMMER_RECF_WANTED) {
323 record->flags &= ~HAMMER_RECF_WANTED;
324 wakeup(record);
326 hammer_rel_mem_record(record);
330 * Release a memory record. Records marked for deletion are immediately
331 * removed from the RB-Tree but otherwise left intact until the last ref
332 * goes away.
334 void
335 hammer_rel_mem_record(struct hammer_record *record)
337 hammer_inode_t ip, target_ip;
339 hammer_unref(&record->lock);
341 if (record->lock.refs == 0) {
343 * Upon release of the last reference wakeup any waiters.
344 * The record structure may get destroyed so callers will
345 * loop up and do a relookup.
347 * WARNING! Record must be removed from RB-TREE before we
348 * might possibly block. hammer_test_inode() can block!
350 ip = record->ip;
353 * Upon release of the last reference a record marked deleted
354 * is destroyed.
356 if (record->flags & HAMMER_RECF_DELETED_FE) {
357 KKASSERT(ip->lock.refs > 0);
358 KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
361 * target_ip may have zero refs, we have to ref it
362 * to prevent it from being ripped out from under
363 * us.
365 if ((target_ip = record->target_ip) != NULL) {
366 TAILQ_REMOVE(&target_ip->target_list,
367 record, target_entry);
368 record->target_ip = NULL;
369 hammer_ref(&target_ip->lock);
372 if (record->flags & HAMMER_RECF_ONRBTREE) {
373 RB_REMOVE(hammer_rec_rb_tree,
374 &record->ip->rec_tree,
375 record);
376 KKASSERT(ip->rsv_recs > 0);
377 --ip->hmp->rsv_recs;
378 --ip->rsv_recs;
379 ip->hmp->rsv_databytes -= record->leaf.data_len;
380 record->flags &= ~HAMMER_RECF_ONRBTREE;
382 if (RB_EMPTY(&record->ip->rec_tree)) {
383 record->ip->flags &= ~HAMMER_INODE_XDIRTY;
384 record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
385 hammer_test_inode(record->ip);
390 * Do this test after removing record from the B-Tree.
392 if (target_ip) {
393 hammer_test_inode(target_ip);
394 hammer_rel_inode(target_ip, 0);
397 if (record->flags & HAMMER_RECF_ALLOCDATA) {
398 --hammer_count_record_datas;
399 kfree(record->data, M_HAMMER);
400 record->flags &= ~HAMMER_RECF_ALLOCDATA;
402 if (record->resv) {
403 hammer_blockmap_reserve_complete(ip->hmp,
404 record->resv);
405 record->resv = NULL;
407 record->data = NULL;
408 --hammer_count_records;
409 kfree(record, M_HAMMER);
415 * Record visibility depends on whether the record is being accessed by
416 * the backend or the frontend.
418 * Return non-zero if the record is visible, zero if it isn't or if it is
419 * deleted.
421 static __inline
423 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
425 if (cursor->flags & HAMMER_CURSOR_BACKEND) {
426 if (record->flags & HAMMER_RECF_DELETED_BE)
427 return(0);
428 } else {
429 if (record->flags & HAMMER_RECF_DELETED_FE)
430 return(0);
432 return(1);
436 * This callback is used as part of the RB_SCAN function for in-memory
437 * records. We terminate it (return -1) as soon as we get a match.
439 * This routine is used by frontend code.
441 * The primary compare code does not account for ASOF lookups. This
442 * code handles that case as well as a few others.
444 static
446 hammer_rec_scan_callback(hammer_record_t rec, void *data)
448 hammer_cursor_t cursor = data;
451 * We terminate on success, so this should be NULL on entry.
453 KKASSERT(cursor->iprec == NULL);
456 * Skip if the record was marked deleted.
458 if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
459 return(0);
462 * Skip if not visible due to our as-of TID
464 if (cursor->flags & HAMMER_CURSOR_ASOF) {
465 if (cursor->asof < rec->leaf.base.create_tid)
466 return(0);
467 if (rec->leaf.base.delete_tid &&
468 cursor->asof >= rec->leaf.base.delete_tid) {
469 return(0);
474 * If the record is queued to the flusher we have to block until
475 * it isn't. Otherwise we may see duplication between our memory
476 * cache and the media.
478 hammer_ref(&rec->lock);
480 #warning "This deadlocks"
481 #if 0
482 if (rec->flush_state == HAMMER_FST_FLUSH)
483 hammer_wait_mem_record(rec);
484 #endif
487 * The record may have been deleted while we were blocked.
489 if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
490 hammer_rel_mem_record(rec);
491 return(0);
495 * Set the matching record and stop the scan.
497 cursor->iprec = rec;
498 return(-1);
503 * Lookup an in-memory record given the key specified in the cursor. Works
504 * just like hammer_btree_lookup() but operates on an inode's in-memory
505 * record list.
507 * The lookup must fail if the record is marked for deferred deletion.
509 static
511 hammer_mem_lookup(hammer_cursor_t cursor)
513 int error;
515 KKASSERT(cursor->ip);
516 if (cursor->iprec) {
517 hammer_rel_mem_record(cursor->iprec);
518 cursor->iprec = NULL;
520 hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
521 hammer_rec_scan_callback, cursor);
523 if (cursor->iprec == NULL)
524 error = ENOENT;
525 else
526 error = 0;
527 return(error);
531 * hammer_mem_first() - locate the first in-memory record matching the
532 * cursor within the bounds of the key range.
534 static
536 hammer_mem_first(hammer_cursor_t cursor)
538 hammer_inode_t ip;
540 ip = cursor->ip;
541 KKASSERT(ip != NULL);
543 if (cursor->iprec) {
544 hammer_rel_mem_record(cursor->iprec);
545 cursor->iprec = NULL;
548 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
549 hammer_rec_scan_callback, cursor);
552 * Adjust scan.node and keep it linked into the RB-tree so we can
553 * hold the cursor through third party modifications of the RB-tree.
555 if (cursor->iprec)
556 return(0);
557 return(ENOENT);
560 void
561 hammer_mem_done(hammer_cursor_t cursor)
563 if (cursor->iprec) {
564 hammer_rel_mem_record(cursor->iprec);
565 cursor->iprec = NULL;
569 /************************************************************************
570 * HAMMER IN-MEMORY RECORD FUNCTIONS *
571 ************************************************************************
573 * These functions manipulate in-memory records. Such records typically
574 * exist prior to being committed to disk or indexed via the on-disk B-Tree.
578 * Add a directory entry (dip,ncp) which references inode (ip).
580 * Note that the low 32 bits of the namekey are set temporarily to create
581 * a unique in-memory record, and may be modified a second time when the
582 * record is synchronized to disk. In particular, the low 32 bits cannot be
583 * all 0's when synching to disk, which is not handled here.
585 * NOTE: bytes does not include any terminating \0 on name, and name might
586 * not be terminated.
589 hammer_ip_add_directory(struct hammer_transaction *trans,
590 struct hammer_inode *dip, const char *name, int bytes,
591 struct hammer_inode *ip)
593 struct hammer_cursor cursor;
594 hammer_record_t record;
595 int error;
596 int count;
597 u_int32_t iterator;
599 record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
600 if (++trans->hmp->namekey_iterator == 0)
601 ++trans->hmp->namekey_iterator;
603 record->type = HAMMER_MEM_RECORD_ADD;
604 record->leaf.base.localization = dip->obj_localization +
605 HAMMER_LOCALIZE_MISC;
606 record->leaf.base.obj_id = dip->obj_id;
607 record->leaf.base.key = hammer_directory_namekey(name, bytes);
608 record->leaf.base.key += trans->hmp->namekey_iterator;
609 record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
610 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
611 record->data->entry.obj_id = ip->obj_id;
612 record->data->entry.localization = ip->obj_localization;
613 bcopy(name, record->data->entry.name, bytes);
615 ++ip->ino_data.nlinks;
616 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
619 * Find an unused namekey. Both the in-memory record tree and
620 * the B-Tree are checked. Exact matches also match create_tid
621 * so use an ASOF search to (mostly) ignore it.
623 hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
624 cursor.key_beg = record->leaf.base;
625 cursor.flags |= HAMMER_CURSOR_ASOF;
626 cursor.asof = ip->obj_asof;
628 count = 0;
629 while (hammer_ip_lookup(&cursor) == 0) {
630 iterator = (u_int32_t)record->leaf.base.key + 1;
631 if (iterator == 0)
632 iterator = 1;
633 record->leaf.base.key &= ~0xFFFFFFFFLL;
634 record->leaf.base.key |= iterator;
635 cursor.key_beg.key = record->leaf.base.key;
636 if (++count == 1000000000) {
637 hammer_rel_mem_record(record);
638 error = ENOSPC;
639 goto failed;
644 * The target inode and the directory entry are bound together.
646 record->target_ip = ip;
647 record->flush_state = HAMMER_FST_SETUP;
648 TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
651 * The inode now has a dependancy and must be taken out of the idle
652 * state. An inode not in an idle state is given an extra reference.
654 if (ip->flush_state == HAMMER_FST_IDLE) {
655 hammer_ref(&ip->lock);
656 ip->flush_state = HAMMER_FST_SETUP;
658 error = hammer_mem_add(record);
659 failed:
660 hammer_done_cursor(&cursor);
661 return(error);
665 * Delete the directory entry and update the inode link count. The
666 * cursor must be seeked to the directory entry record being deleted.
668 * The related inode should be share-locked by the caller. The caller is
669 * on the frontend.
671 * This function can return EDEADLK requiring the caller to terminate
672 * the cursor, any locks, wait on the returned record, and retry.
675 hammer_ip_del_directory(struct hammer_transaction *trans,
676 hammer_cursor_t cursor, struct hammer_inode *dip,
677 struct hammer_inode *ip)
679 hammer_record_t record;
680 int error;
682 if (hammer_cursor_inmem(cursor)) {
684 * In-memory (unsynchronized) records can simply be freed.
685 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
686 * by the backend, we must still avoid races against the
687 * backend potentially syncing the record to the media.
689 * We cannot call hammer_ip_delete_record(), that routine may
690 * only be called from the backend.
692 record = cursor->iprec;
693 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
694 KKASSERT(cursor->deadlk_rec == NULL);
695 hammer_ref(&record->lock);
696 cursor->deadlk_rec = record;
697 error = EDEADLK;
698 } else {
699 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
700 record->flags |= HAMMER_RECF_DELETED_FE;
701 error = 0;
703 } else {
705 * If the record is on-disk we have to queue the deletion by
706 * the record's key. This also causes lookups to skip the
707 * record.
709 KKASSERT(dip->flags &
710 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
711 record = hammer_alloc_mem_record(dip, 0);
712 record->type = HAMMER_MEM_RECORD_DEL;
713 record->leaf.base = cursor->leaf->base;
715 record->target_ip = ip;
716 record->flush_state = HAMMER_FST_SETUP;
717 TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
720 * The inode now has a dependancy and must be taken out of
721 * the idle state. An inode not in an idle state is given
722 * an extra reference.
724 if (ip->flush_state == HAMMER_FST_IDLE) {
725 hammer_ref(&ip->lock);
726 ip->flush_state = HAMMER_FST_SETUP;
729 error = hammer_mem_add(record);
733 * One less link. The file may still be open in the OS even after
734 * all links have gone away.
736 * We have to terminate the cursor before syncing the inode to
737 * avoid deadlocking against ourselves. XXX this may no longer
738 * be true.
740 * If nlinks drops to zero and the vnode is inactive (or there is
741 * no vnode), call hammer_inode_unloadable_check() to zonk the
742 * inode. If we don't do this here the inode will not be destroyed
743 * on-media until we unmount.
745 if (error == 0) {
746 --ip->ino_data.nlinks;
747 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
748 if (ip->ino_data.nlinks == 0 &&
749 (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
750 hammer_done_cursor(cursor);
751 hammer_inode_unloadable_check(ip, 1);
752 hammer_flush_inode(ip, 0);
756 return(error);
760 * Add a record to an inode.
762 * The caller must allocate the record with hammer_alloc_mem_record(ip) and
763 * initialize the following additional fields:
765 * The related inode should be share-locked by the caller. The caller is
766 * on the frontend.
768 * record->rec.entry.base.base.key
769 * record->rec.entry.base.base.rec_type
770 * record->rec.entry.base.base.data_len
771 * record->data (a copy will be kmalloc'd if it cannot be embedded)
774 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
776 hammer_inode_t ip = record->ip;
777 int error;
779 KKASSERT(record->leaf.base.localization != 0);
780 record->leaf.base.obj_id = ip->obj_id;
781 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
782 error = hammer_mem_add(record);
783 return(error);
787 * Locate a bulk record in-memory. Bulk records allow disk space to be
788 * reserved so the front-end can flush large data writes without having
789 * to queue the BIO to the flusher. Only the related record gets queued
790 * to the flusher.
792 static hammer_record_t
793 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes)
795 hammer_record_t record;
796 struct hammer_btree_leaf_elm leaf;
798 bzero(&leaf, sizeof(leaf));
799 leaf.base.obj_id = ip->obj_id;
800 leaf.base.key = file_offset + bytes;
801 leaf.base.create_tid = 0;
802 leaf.base.delete_tid = 0;
803 leaf.base.rec_type = HAMMER_RECTYPE_DATA;
804 leaf.base.obj_type = 0; /* unused */
805 leaf.base.btype = HAMMER_BTREE_TYPE_RECORD; /* unused */
806 leaf.base.localization = ip->obj_localization + HAMMER_LOCALIZE_MISC;
807 leaf.data_len = bytes;
809 record = hammer_rec_rb_tree_RB_LOOKUP_INFO(&ip->rec_tree, &leaf);
810 if (record)
811 hammer_ref(&record->lock);
812 return(record);
816 * Reserve blockmap space placemarked with an in-memory record.
818 * This routine is called by the frontend in order to be able to directly
819 * flush a buffer cache buffer. The frontend has locked the related buffer
820 * cache buffers and we should be able to manipulate any overlapping
821 * in-memory records.
823 hammer_record_t
824 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
825 int *errorp)
827 hammer_record_t record;
828 hammer_record_t conflict;
829 int zone;
830 int flags;
833 * Deal with conflicting in-memory records. We cannot have multiple
834 * in-memory records for the same offset without seriously confusing
835 * the backend, including but not limited to the backend issuing
836 * delete-create-delete sequences and asserting on the delete_tid
837 * being the same as the create_tid.
839 * If we encounter a record with the backend interlock set we cannot
840 * immediately delete it without confusing the backend.
842 while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) {
843 if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) {
844 conflict->flags |= HAMMER_RECF_WANTED;
845 tsleep(conflict, 0, "hmrrc3", 0);
846 } else {
847 conflict->flags |= HAMMER_RECF_DELETED_FE;
849 hammer_rel_mem_record(conflict);
853 * Create a record to cover the direct write. This is called with
854 * the related BIO locked so there should be no possible conflict.
856 * The backend is responsible for finalizing the space reserved in
857 * this record.
859 * XXX bytes not aligned, depend on the reservation code to
860 * align the reservation.
862 record = hammer_alloc_mem_record(ip, 0);
863 zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
864 HAMMER_ZONE_SMALL_DATA_INDEX;
865 record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
866 &record->leaf.data_offset,
867 errorp);
868 if (record->resv == NULL) {
869 kprintf("hammer_ip_add_bulk: reservation failed\n");
870 hammer_rel_mem_record(record);
871 return(NULL);
873 record->type = HAMMER_MEM_RECORD_DATA;
874 record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
875 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
876 record->leaf.base.obj_id = ip->obj_id;
877 record->leaf.base.key = file_offset + bytes;
878 record->leaf.base.localization = ip->obj_localization +
879 HAMMER_LOCALIZE_MISC;
880 record->leaf.data_len = bytes;
881 hammer_crc_set_leaf(data, &record->leaf);
882 flags = record->flags;
884 hammer_ref(&record->lock); /* mem_add eats a reference */
885 *errorp = hammer_mem_add(record);
886 if (*errorp) {
887 conflict = hammer_ip_get_bulk(ip, file_offset, bytes);
888 kprintf("hammer_ip_add_bulk: error %d conflict %p file_offset %lld bytes %d\n",
889 *errorp, conflict, file_offset, bytes);
890 if (conflict)
891 kprintf("conflict %lld %d\n", conflict->leaf.base.key, conflict->leaf.data_len);
892 if (conflict)
893 hammer_rel_mem_record(conflict);
895 KKASSERT(*errorp == 0);
896 conflict = hammer_ip_get_bulk(ip, file_offset, bytes);
897 if (conflict != record) {
898 kprintf("conflict mismatch %p %p %08x\n", conflict, record, record->flags);
899 if (conflict)
900 kprintf("conflict mismatch %lld/%d %lld/%d\n", conflict->leaf.base.key, conflict->leaf.data_len, record->leaf.base.key, record->leaf.data_len);
902 KKASSERT(conflict == record);
903 hammer_rel_mem_record(conflict);
905 return (record);
909 * Frontend truncation code. Scan in-memory records only. On-disk records
910 * and records in a flushing state are handled by the backend. The vnops
911 * setattr code will handle the block containing the truncation point.
913 * Partial blocks are not deleted.
916 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
918 struct rec_trunc_info info;
920 switch(ip->ino_data.obj_type) {
921 case HAMMER_OBJTYPE_REGFILE:
922 info.rec_type = HAMMER_RECTYPE_DATA;
923 break;
924 case HAMMER_OBJTYPE_DBFILE:
925 info.rec_type = HAMMER_RECTYPE_DB;
926 break;
927 default:
928 return(EINVAL);
930 info.trunc_off = file_size;
931 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
932 hammer_rec_trunc_callback, &info);
933 return(0);
936 static int
937 hammer_rec_trunc_callback(hammer_record_t record, void *data __unused)
939 if (record->flags & HAMMER_RECF_DELETED_FE)
940 return(0);
941 if (record->flush_state == HAMMER_FST_FLUSH)
942 return(0);
943 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
944 hammer_ref(&record->lock);
945 record->flags |= HAMMER_RECF_DELETED_FE;
946 hammer_rel_mem_record(record);
947 return(0);
951 * Return 1 if the caller must check for and delete existing records
952 * before writing out a new data record.
954 * Return 0 if the caller can just insert the record into the B-Tree without
955 * checking.
957 static int
958 hammer_record_needs_overwrite_delete(hammer_record_t record)
960 hammer_inode_t ip = record->ip;
961 int64_t file_offset;
962 int r;
964 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
965 file_offset = record->leaf.base.key;
966 else
967 file_offset = record->leaf.base.key - record->leaf.data_len;
968 r = (file_offset < ip->sync_trunc_off);
969 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
970 if (ip->sync_trunc_off <= record->leaf.base.key)
971 ip->sync_trunc_off = record->leaf.base.key + 1;
972 } else {
973 if (ip->sync_trunc_off < record->leaf.base.key)
974 ip->sync_trunc_off = record->leaf.base.key;
976 return(r);
980 * Backend code. Sync a record to the media.
983 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
985 hammer_transaction_t trans = cursor->trans;
986 int64_t file_offset;
987 int bytes;
988 void *bdata;
989 int error;
991 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
992 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
993 KKASSERT(record->leaf.base.localization != 0);
996 * If this is a bulk-data record placemarker there may be an existing
997 * record on-disk, indicating a data overwrite. If there is the
998 * on-disk record must be deleted before we can insert our new record.
1000 * We've synthesized this record and do not know what the create_tid
1001 * on-disk is, nor how much data it represents.
1003 * Keep in mind that (key) for data records is (base_offset + len),
1004 * not (base_offset). Also, we only want to get rid of on-disk
1005 * records since we are trying to sync our in-memory record, call
1006 * hammer_ip_delete_range() with truncating set to 1 to make sure
1007 * it skips in-memory records.
1009 * It is ok for the lookup to return ENOENT.
1011 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1012 * to call hammer_ip_delete_range() or not. This also means we must
1013 * update sync_trunc_off() as we write.
1015 if (record->type == HAMMER_MEM_RECORD_DATA &&
1016 hammer_record_needs_overwrite_delete(record)) {
1017 file_offset = record->leaf.base.key - record->leaf.data_len;
1018 bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1019 ~HAMMER_BUFMASK;
1020 KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1021 error = hammer_ip_delete_range(
1022 cursor, record->ip,
1023 file_offset, file_offset + bytes - 1,
1025 if (error && error != ENOENT)
1026 goto done;
1030 * Setup the cursor.
1032 hammer_normalize_cursor(cursor);
1033 cursor->key_beg = record->leaf.base;
1034 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1035 cursor->flags |= HAMMER_CURSOR_BACKEND;
1036 cursor->flags &= ~HAMMER_CURSOR_INSERT;
1039 * Records can wind up on-media before the inode itself is on-media.
1040 * Flag the case.
1042 record->ip->flags |= HAMMER_INODE_DONDISK;
1045 * If we are deleting a directory entry an exact match must be
1046 * found on-disk.
1048 if (record->type == HAMMER_MEM_RECORD_DEL) {
1049 error = hammer_btree_lookup(cursor);
1050 if (error == 0) {
1051 error = hammer_ip_delete_record(cursor, record->ip,
1052 trans->tid);
1053 if (error == 0) {
1054 record->flags |= HAMMER_RECF_DELETED_FE;
1055 record->flags |= HAMMER_RECF_DELETED_BE;
1058 goto done;
1062 * We are inserting.
1064 * Issue a lookup to position the cursor and locate the cluster. The
1065 * target key should not exist. If we are creating a directory entry
1066 * we may have to iterate the low 32 bits of the key to find an unused
1067 * key.
1069 cursor->flags |= HAMMER_CURSOR_INSERT;
1071 error = hammer_btree_lookup(cursor);
1072 if (hammer_debug_inode)
1073 kprintf("DOINSERT LOOKUP %d\n", error);
1074 if (error == 0) {
1075 kprintf("hammer_ip_sync_record: duplicate rec "
1076 "at (%016llx)\n", record->leaf.base.key);
1077 Debugger("duplicate record1");
1078 error = EIO;
1080 #if 0
1081 if (record->type == HAMMER_MEM_RECORD_DATA)
1082 kprintf("sync_record %016llx ---------------- %016llx %d\n",
1083 record->leaf.base.key - record->leaf.data_len,
1084 record->leaf.data_offset, error);
1085 #endif
1087 if (error != ENOENT)
1088 goto done;
1091 * Allocate the record and data. The result buffers will be
1092 * marked as being modified and further calls to
1093 * hammer_modify_buffer() will result in unneeded UNDO records.
1095 * Support zero-fill records (data == NULL and data_len != 0)
1097 if (record->type == HAMMER_MEM_RECORD_DATA) {
1099 * The data portion of a bulk-data record has already been
1100 * committed to disk, we need only adjust the layer2
1101 * statistics in the same transaction as our B-Tree insert.
1103 KKASSERT(record->leaf.data_offset != 0);
1104 hammer_blockmap_finalize(trans, record->leaf.data_offset,
1105 record->leaf.data_len);
1106 error = 0;
1107 } else if (record->data && record->leaf.data_len) {
1109 * Wholely cached record, with data. Allocate the data.
1111 bdata = hammer_alloc_data(trans, record->leaf.data_len,
1112 record->leaf.base.rec_type,
1113 &record->leaf.data_offset,
1114 &cursor->data_buffer, &error);
1115 if (bdata == NULL)
1116 goto done;
1117 hammer_crc_set_leaf(record->data, &record->leaf);
1118 hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1119 bcopy(record->data, bdata, record->leaf.data_len);
1120 hammer_modify_buffer_done(cursor->data_buffer);
1121 } else {
1123 * Wholely cached record, without data.
1125 record->leaf.data_offset = 0;
1126 record->leaf.data_crc = 0;
1129 error = hammer_btree_insert(cursor, &record->leaf);
1130 if (hammer_debug_inode && error)
1131 kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n", error, cursor->node->node_offset, cursor->index, record->leaf.base.key);
1134 * Our record is on-disk, normally mark the in-memory version as
1135 * deleted. If the record represented a directory deletion but
1136 * we had to sync a valid directory entry to disk we must convert
1137 * the record to a covering delete so the frontend does not have
1138 * visibility on the synced entry.
1140 if (error == 0) {
1141 if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1142 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1143 record->flags &= ~HAMMER_RECF_DELETED_FE;
1144 record->type = HAMMER_MEM_RECORD_DEL;
1145 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1146 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1147 /* hammer_flush_record_done takes care of the rest */
1148 } else {
1149 record->flags |= HAMMER_RECF_DELETED_FE;
1150 record->flags |= HAMMER_RECF_DELETED_BE;
1152 } else {
1153 if (record->leaf.data_offset) {
1154 hammer_blockmap_free(trans, record->leaf.data_offset,
1155 record->leaf.data_len);
1159 done:
1160 return(error);
1164 * Add the record to the inode's rec_tree. The low 32 bits of a directory
1165 * entry's key is used to deal with hash collisions in the upper 32 bits.
1166 * A unique 64 bit key is generated in-memory and may be regenerated a
1167 * second time when the directory record is flushed to the on-disk B-Tree.
1169 * A referenced record is passed to this function. This function
1170 * eats the reference. If an error occurs the record will be deleted.
1172 * A copy of the temporary record->data pointer provided by the caller
1173 * will be made.
1175 static
1177 hammer_mem_add(hammer_record_t record)
1179 hammer_mount_t hmp = record->ip->hmp;
1182 * Make a private copy of record->data
1184 if (record->data)
1185 KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1188 * Insert into the RB tree. A unique key should have already
1189 * been selected if this is a directory entry.
1191 if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1192 record->flags |= HAMMER_RECF_DELETED_FE;
1193 hammer_rel_mem_record(record);
1194 return (EEXIST);
1196 ++hmp->count_newrecords;
1197 ++hmp->rsv_recs;
1198 ++record->ip->rsv_recs;
1199 record->ip->hmp->rsv_databytes += record->leaf.data_len;
1200 record->flags |= HAMMER_RECF_ONRBTREE;
1201 hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY);
1202 hammer_rel_mem_record(record);
1203 return(0);
1206 /************************************************************************
1207 * HAMMER INODE MERGED-RECORD FUNCTIONS *
1208 ************************************************************************
1210 * These functions augment the B-Tree scanning functions in hammer_btree.c
1211 * by merging in-memory records with on-disk records.
1215 * Locate a particular record either in-memory or on-disk.
1217 * NOTE: This is basically a standalone routine, hammer_ip_next() may
1218 * NOT be called to iterate results.
1221 hammer_ip_lookup(hammer_cursor_t cursor)
1223 int error;
1226 * If the element is in-memory return it without searching the
1227 * on-disk B-Tree
1229 KKASSERT(cursor->ip);
1230 error = hammer_mem_lookup(cursor);
1231 if (error == 0) {
1232 cursor->leaf = &cursor->iprec->leaf;
1233 return(error);
1235 if (error != ENOENT)
1236 return(error);
1239 * If the inode has on-disk components search the on-disk B-Tree.
1241 if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1242 return(error);
1243 error = hammer_btree_lookup(cursor);
1244 if (error == 0)
1245 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1246 return(error);
1250 * Locate the first record within the cursor's key_beg/key_end range,
1251 * restricted to a particular inode. 0 is returned on success, ENOENT
1252 * if no records matched the requested range, or some other error.
1254 * When 0 is returned hammer_ip_next() may be used to iterate additional
1255 * records within the requested range.
1257 * This function can return EDEADLK, requiring the caller to terminate
1258 * the cursor and try again.
1261 hammer_ip_first(hammer_cursor_t cursor)
1263 hammer_inode_t ip = cursor->ip;
1264 int error;
1266 KKASSERT(ip != NULL);
1269 * Clean up fields and setup for merged scan
1271 cursor->flags &= ~HAMMER_CURSOR_DELBTREE;
1272 cursor->flags |= HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM;
1273 cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_MEMEOF;
1274 if (cursor->iprec) {
1275 hammer_rel_mem_record(cursor->iprec);
1276 cursor->iprec = NULL;
1280 * Search the on-disk B-Tree. hammer_btree_lookup() only does an
1281 * exact lookup so if we get ENOENT we have to call the iterate
1282 * function to validate the first record after the begin key.
1284 * The ATEDISK flag is used by hammer_btree_iterate to determine
1285 * whether it must index forwards or not. It is also used here
1286 * to select the next record from in-memory or on-disk.
1288 * EDEADLK can only occur if the lookup hit an empty internal
1289 * element and couldn't delete it. Since this could only occur
1290 * in-range, we can just iterate from the failure point.
1292 if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1293 error = hammer_btree_lookup(cursor);
1294 if (error == ENOENT || error == EDEADLK) {
1295 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1296 if (hammer_debug_general & 0x2000)
1297 kprintf("error %d node %p %016llx index %d\n", error, cursor->node, cursor->node->node_offset, cursor->index);
1298 error = hammer_btree_iterate(cursor);
1300 if (error && error != ENOENT)
1301 return(error);
1302 if (error == 0) {
1303 cursor->flags &= ~HAMMER_CURSOR_DISKEOF;
1304 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1305 } else {
1306 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1311 * Search the in-memory record list (Red-Black tree). Unlike the
1312 * B-Tree search, mem_first checks for records in the range.
1314 error = hammer_mem_first(cursor);
1315 if (error && error != ENOENT)
1316 return(error);
1317 if (error == 0) {
1318 cursor->flags &= ~HAMMER_CURSOR_MEMEOF;
1319 cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1320 if (hammer_ip_iterate_mem_good(cursor, cursor->iprec) == 0)
1321 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1325 * This will return the first matching record.
1327 return(hammer_ip_next(cursor));
1331 * Retrieve the next record in a merged iteration within the bounds of the
1332 * cursor. This call may be made multiple times after the cursor has been
1333 * initially searched with hammer_ip_first().
1335 * 0 is returned on success, ENOENT if no further records match the
1336 * requested range, or some other error code is returned.
1339 hammer_ip_next(hammer_cursor_t cursor)
1341 hammer_btree_elm_t elm;
1342 hammer_record_t rec, save;
1343 int error;
1344 int r;
1346 next_btree:
1348 * Load the current on-disk and in-memory record. If we ate any
1349 * records we have to get the next one.
1351 * If we deleted the last on-disk record we had scanned ATEDISK will
1352 * be clear and DELBTREE will be set, forcing a call to iterate. The
1353 * fact that ATEDISK is clear causes iterate to re-test the 'current'
1354 * element. If ATEDISK is set, iterate will skip the 'current'
1355 * element.
1357 * Get the next on-disk record
1359 if (cursor->flags & (HAMMER_CURSOR_ATEDISK|HAMMER_CURSOR_DELBTREE)) {
1360 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1361 error = hammer_btree_iterate(cursor);
1362 cursor->flags &= ~HAMMER_CURSOR_DELBTREE;
1363 if (error == 0) {
1364 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1365 hammer_cache_node(&cursor->ip->cache[1],
1366 cursor->node);
1367 } else {
1368 cursor->flags |= HAMMER_CURSOR_DISKEOF |
1369 HAMMER_CURSOR_ATEDISK;
1374 next_memory:
1376 * Get the next in-memory record. The record can be ripped out
1377 * of the RB tree so we maintain a scan_info structure to track
1378 * the next node.
1380 * hammer_rec_scan_cmp: Is the record still in our general range,
1381 * (non-inclusive of snapshot exclusions)?
1382 * hammer_rec_scan_callback: Is the record in our snapshot?
1384 if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1385 if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1386 save = cursor->iprec;
1387 cursor->iprec = NULL;
1388 rec = save ? hammer_rec_rb_tree_RB_NEXT(save) : NULL;
1389 while (rec) {
1390 if (hammer_rec_scan_cmp(rec, cursor) != 0)
1391 break;
1392 if (hammer_rec_scan_callback(rec, cursor) != 0)
1393 break;
1394 rec = hammer_rec_rb_tree_RB_NEXT(rec);
1396 if (save)
1397 hammer_rel_mem_record(save);
1398 if (cursor->iprec) {
1399 KKASSERT(cursor->iprec == rec);
1400 cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1401 } else {
1402 cursor->flags |= HAMMER_CURSOR_MEMEOF;
1408 * The memory record may have become stale while being held in
1409 * cursor->iprec. We are interlocked against the backend on
1410 * with regards to B-Tree entries.
1412 if ((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0) {
1413 if (hammer_ip_iterate_mem_good(cursor, cursor->iprec) == 0) {
1414 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1415 goto next_memory;
1420 * Extract either the disk or memory record depending on their
1421 * relative position.
1423 error = 0;
1424 switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1425 case 0:
1427 * Both entries valid. Compare the entries and nominally
1428 * return the first one in the sort order. Numerous cases
1429 * require special attention, however.
1431 elm = &cursor->node->ondisk->elms[cursor->index];
1432 r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1435 * If the two entries differ only by their key (-2/2) or
1436 * create_tid (-1/1), and are DATA records, we may have a
1437 * nominal match. We have to calculate the base file
1438 * offset of the data.
1440 if (r <= 2 && r >= -2 && r != 0 &&
1441 cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1442 cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1443 int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1444 int64_t base2 = cursor->iprec->leaf.base.key -
1445 cursor->iprec->leaf.data_len;
1446 if (base1 == base2)
1447 r = 0;
1450 if (r < 0) {
1451 error = hammer_btree_extract(cursor,
1452 HAMMER_CURSOR_GET_LEAF);
1453 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1454 break;
1458 * If the entries match exactly the memory entry is either
1459 * an on-disk directory entry deletion or a bulk data
1460 * overwrite. If it is a directory entry deletion we eat
1461 * both entries.
1463 * For the bulk-data overwrite case it is possible to have
1464 * visibility into both, which simply means the syncer
1465 * hasn't gotten around to doing the delete+insert sequence
1466 * on the B-Tree. Use the memory entry and throw away the
1467 * on-disk entry.
1469 * If the in-memory record is not either of these we
1470 * probably caught the syncer while it was syncing it to
1471 * the media. Since we hold a shared lock on the cursor,
1472 * the in-memory record had better be marked deleted at
1473 * this point.
1475 if (r == 0) {
1476 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1477 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1478 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1479 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1480 goto next_btree;
1482 } else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1483 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1484 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1486 /* fall through to memory entry */
1487 } else {
1488 panic("hammer_ip_next: duplicate mem/b-tree entry");
1489 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1490 goto next_memory;
1493 /* fall through to the memory entry */
1494 case HAMMER_CURSOR_ATEDISK:
1496 * Only the memory entry is valid.
1498 cursor->leaf = &cursor->iprec->leaf;
1499 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1502 * If the memory entry is an on-disk deletion we should have
1503 * also had found a B-Tree record. If the backend beat us
1504 * to it it would have interlocked the cursor and we should
1505 * have seen the in-memory record marked DELETED_FE.
1507 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1508 (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1509 panic("hammer_ip_next: del-on-disk with no b-tree entry");
1511 break;
1512 case HAMMER_CURSOR_ATEMEM:
1514 * Only the disk entry is valid
1516 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1517 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1518 break;
1519 default:
1521 * Neither entry is valid
1523 * XXX error not set properly
1525 cursor->leaf = NULL;
1526 error = ENOENT;
1527 break;
1529 return(error);
1533 * Resolve the cursor->data pointer for the current cursor position in
1534 * a merged iteration.
1537 hammer_ip_resolve_data(hammer_cursor_t cursor)
1539 hammer_record_t record;
1540 int error;
1542 if (hammer_cursor_inmem(cursor)) {
1544 * The data associated with an in-memory record is usually
1545 * kmalloced, but reserve-ahead data records will have an
1546 * on-disk reference.
1548 * NOTE: Reserve-ahead data records must be handled in the
1549 * context of the related high level buffer cache buffer
1550 * to interlock against async writes.
1552 record = cursor->iprec;
1553 cursor->data = record->data;
1554 error = 0;
1555 if (cursor->data == NULL) {
1556 KKASSERT(record->leaf.base.rec_type ==
1557 HAMMER_RECTYPE_DATA);
1558 cursor->data = hammer_bread_ext(cursor->trans->hmp,
1559 record->leaf.data_offset,
1560 record->leaf.data_len,
1561 &error,
1562 &cursor->data_buffer);
1564 } else {
1565 cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1566 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1568 return(error);
1572 * Backend truncation / record replacement - delete records in range.
1574 * Delete all records within the specified range for inode ip. In-memory
1575 * records still associated with the frontend are ignored.
1577 * NOTE: An unaligned range will cause new records to be added to cover
1578 * the edge cases. (XXX not implemented yet).
1580 * NOTE: Replacement via reservations (see hammer_ip_sync_record_cursor())
1581 * also do not deal with unaligned ranges.
1583 * NOTE: ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1585 * NOTE: Record keys for regular file data have to be special-cased since
1586 * they indicate the end of the range (key = base + bytes).
1589 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1590 int64_t ran_beg, int64_t ran_end, int truncating)
1592 hammer_transaction_t trans = cursor->trans;
1593 hammer_btree_leaf_elm_t leaf;
1594 int error;
1595 int64_t off;
1597 #if 0
1598 kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1599 #endif
1601 KKASSERT(trans->type == HAMMER_TRANS_FLS);
1602 retry:
1603 hammer_normalize_cursor(cursor);
1604 cursor->key_beg.localization = ip->obj_localization +
1605 HAMMER_LOCALIZE_MISC;
1606 cursor->key_beg.obj_id = ip->obj_id;
1607 cursor->key_beg.create_tid = 0;
1608 cursor->key_beg.delete_tid = 0;
1609 cursor->key_beg.obj_type = 0;
1610 cursor->asof = ip->obj_asof;
1611 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1612 cursor->flags |= HAMMER_CURSOR_ASOF;
1613 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1614 cursor->flags |= HAMMER_CURSOR_BACKEND;
1616 cursor->key_end = cursor->key_beg;
1617 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1618 cursor->key_beg.key = ran_beg;
1619 cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1620 cursor->key_end.rec_type = HAMMER_RECTYPE_DB;
1621 cursor->key_end.key = ran_end;
1622 } else {
1624 * The key in the B-Tree is (base+bytes), so the first possible
1625 * matching key is ran_beg + 1.
1627 int64_t tmp64;
1629 cursor->key_beg.key = ran_beg + 1;
1630 cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1631 cursor->key_end.rec_type = HAMMER_RECTYPE_DATA;
1633 tmp64 = ran_end + MAXPHYS + 1; /* work around GCC-4 bug */
1634 if (tmp64 < ran_end)
1635 cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1636 else
1637 cursor->key_end.key = ran_end + MAXPHYS + 1;
1639 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1641 error = hammer_ip_first(cursor);
1644 * Iterate through matching records and mark them as deleted.
1646 while (error == 0) {
1647 leaf = cursor->leaf;
1649 KKASSERT(leaf->base.delete_tid == 0);
1652 * There may be overlap cases for regular file data. Also
1653 * remember the key for a regular file record is (base + len),
1654 * NOT (base).
1656 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1657 off = leaf->base.key - leaf->data_len;
1659 * Check the left edge case. We currently do not
1660 * split existing records.
1662 if (off < ran_beg) {
1663 panic("hammer left edge case %016llx %d\n",
1664 leaf->base.key, leaf->data_len);
1668 * Check the right edge case. Note that the
1669 * record can be completely out of bounds, which
1670 * terminates the search.
1672 * base->key is exclusive of the right edge while
1673 * ran_end is inclusive of the right edge. The
1674 * (key - data_len) left boundary is inclusive.
1676 * XXX theory-check this test at some point, are
1677 * we missing a + 1 somewhere? Note that ran_end
1678 * could overflow.
1680 if (leaf->base.key - 1 > ran_end) {
1681 if (leaf->base.key - leaf->data_len > ran_end)
1682 break;
1683 panic("hammer right edge case\n");
1688 * Delete the record. When truncating we do not delete
1689 * in-memory (data) records because they represent data
1690 * written after the truncation.
1692 * This will also physically destroy the B-Tree entry and
1693 * data if the retention policy dictates. The function
1694 * will set HAMMER_CURSOR_DELBTREE which hammer_ip_next()
1695 * uses to perform a fixup.
1697 if (truncating == 0 || hammer_cursor_ondisk(cursor))
1698 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1699 if (error)
1700 break;
1701 error = hammer_ip_next(cursor);
1703 if (cursor->node)
1704 hammer_cache_node(&ip->cache[1], cursor->node);
1706 if (error == EDEADLK) {
1707 hammer_done_cursor(cursor);
1708 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
1709 if (error == 0)
1710 goto retry;
1712 if (error == ENOENT)
1713 error = 0;
1714 return(error);
1718 * Backend truncation - delete all records.
1720 * Delete all user records associated with an inode except the inode record
1721 * itself. Directory entries are not deleted (they must be properly disposed
1722 * of or nlinks would get upset).
1725 hammer_ip_delete_range_all(hammer_cursor_t cursor, hammer_inode_t ip,
1726 int *countp)
1728 hammer_transaction_t trans = cursor->trans;
1729 hammer_btree_leaf_elm_t leaf;
1730 int error;
1732 KKASSERT(trans->type == HAMMER_TRANS_FLS);
1733 retry:
1734 hammer_normalize_cursor(cursor);
1735 cursor->key_beg.localization = ip->obj_localization +
1736 HAMMER_LOCALIZE_MISC;
1737 cursor->key_beg.obj_id = ip->obj_id;
1738 cursor->key_beg.create_tid = 0;
1739 cursor->key_beg.delete_tid = 0;
1740 cursor->key_beg.obj_type = 0;
1741 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
1742 cursor->key_beg.key = HAMMER_MIN_KEY;
1744 cursor->key_end = cursor->key_beg;
1745 cursor->key_end.rec_type = 0xFFFF;
1746 cursor->key_end.key = HAMMER_MAX_KEY;
1748 cursor->asof = ip->obj_asof;
1749 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1750 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1751 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1752 cursor->flags |= HAMMER_CURSOR_BACKEND;
1754 error = hammer_ip_first(cursor);
1757 * Iterate through matching records and mark them as deleted.
1759 while (error == 0) {
1760 leaf = cursor->leaf;
1762 KKASSERT(leaf->base.delete_tid == 0);
1765 * Mark the record and B-Tree entry as deleted. This will
1766 * also physically delete the B-Tree entry, record, and
1767 * data if the retention policy dictates. The function
1768 * will set HAMMER_CURSOR_DELBTREE which hammer_ip_next()
1769 * uses to perform a fixup.
1771 * Directory entries (and delete-on-disk directory entries)
1772 * must be synced and cannot be deleted.
1774 if (leaf->base.rec_type != HAMMER_RECTYPE_DIRENTRY) {
1775 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1776 ++*countp;
1778 if (error)
1779 break;
1780 error = hammer_ip_next(cursor);
1782 if (cursor->node)
1783 hammer_cache_node(&ip->cache[1], cursor->node);
1784 if (error == EDEADLK) {
1785 hammer_done_cursor(cursor);
1786 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
1787 if (error == 0)
1788 goto retry;
1790 if (error == ENOENT)
1791 error = 0;
1792 return(error);
1796 * Delete the record at the current cursor. On success the cursor will
1797 * be positioned appropriately for an iteration but may no longer be at
1798 * a leaf node.
1800 * This routine is only called from the backend.
1802 * NOTE: This can return EDEADLK, requiring the caller to terminate the
1803 * cursor and retry.
1806 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
1807 hammer_tid_t tid)
1809 hammer_off_t zone2_offset;
1810 hammer_record_t iprec;
1811 hammer_btree_elm_t elm;
1812 hammer_mount_t hmp;
1813 int error;
1814 int dodelete;
1816 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1817 KKASSERT(tid != 0);
1818 hmp = cursor->node->hmp;
1821 * In-memory (unsynchronized) records can simply be freed. This
1822 * only occurs in range iterations since all other records are
1823 * individually synchronized. Thus there should be no confusion with
1824 * the interlock.
1826 * An in-memory record may be deleted before being committed to disk,
1827 * but could have been accessed in the mean time. The backing store
1828 * may never been marked allocated and so hammer_blockmap_free() may
1829 * never get called on it. Because of this we have to make sure that
1830 * we've gotten rid of any related hammer_buffer or buffer cache
1831 * buffer.
1833 if (hammer_cursor_inmem(cursor)) {
1834 iprec = cursor->iprec;
1835 KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
1836 iprec->flags |= HAMMER_RECF_DELETED_FE;
1837 iprec->flags |= HAMMER_RECF_DELETED_BE;
1839 if (iprec->leaf.data_offset && iprec->leaf.data_len) {
1840 zone2_offset = hammer_blockmap_lookup(hmp, iprec->leaf.data_offset, &error);
1841 KKASSERT(error == 0);
1842 hammer_del_buffers(hmp,
1843 iprec->leaf.data_offset,
1844 zone2_offset,
1845 iprec->leaf.data_len);
1847 return(0);
1851 * On-disk records are marked as deleted by updating their delete_tid.
1852 * This does not effect their position in the B-Tree (which is based
1853 * on their create_tid).
1855 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1856 elm = NULL;
1859 * If we were mounted with the nohistory option, we physically
1860 * delete the record.
1862 dodelete = hammer_nohistory(ip);
1864 if (error == 0) {
1865 error = hammer_cursor_upgrade(cursor);
1866 if (error == 0) {
1867 elm = &cursor->node->ondisk->elms[cursor->index];
1868 hammer_modify_node(cursor->trans, cursor->node,
1869 elm, sizeof(*elm));
1870 elm->leaf.base.delete_tid = tid;
1871 elm->leaf.delete_ts = cursor->trans->time32;
1872 hammer_modify_node_done(cursor->node);
1875 * An on-disk record cannot have the same delete_tid
1876 * as its create_tid. In a chain of record updates
1877 * this could result in a duplicate record.
1879 KKASSERT(elm->leaf.base.delete_tid != elm->leaf.base.create_tid);
1883 if (error == 0 && dodelete) {
1884 error = hammer_delete_at_cursor(cursor, NULL);
1885 if (error) {
1886 panic("hammer_ip_delete_record: unable to physically delete the record!\n");
1887 error = 0;
1890 return(error);
1894 hammer_delete_at_cursor(hammer_cursor_t cursor, int64_t *stat_bytes)
1896 hammer_btree_elm_t elm;
1897 hammer_off_t data_offset;
1898 int32_t data_len;
1899 u_int16_t rec_type;
1900 int error;
1902 elm = &cursor->node->ondisk->elms[cursor->index];
1903 KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
1905 data_offset = elm->leaf.data_offset;
1906 data_len = elm->leaf.data_len;
1907 rec_type = elm->leaf.base.rec_type;
1909 error = hammer_btree_delete(cursor);
1910 if (error == 0) {
1912 * This forces a fixup for the iteration because
1913 * the cursor is now either sitting at the 'next'
1914 * element or sitting at the end of a leaf.
1916 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1917 cursor->flags |= HAMMER_CURSOR_DELBTREE;
1918 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1921 if (error == 0) {
1922 switch(data_offset & HAMMER_OFF_ZONE_MASK) {
1923 case HAMMER_ZONE_LARGE_DATA:
1924 case HAMMER_ZONE_SMALL_DATA:
1925 case HAMMER_ZONE_META:
1926 hammer_blockmap_free(cursor->trans,
1927 data_offset, data_len);
1928 break;
1929 default:
1930 break;
1933 return (error);
1937 * Determine whether we can remove a directory. This routine checks whether
1938 * a directory is empty or not and enforces flush connectivity.
1940 * Flush connectivity requires that we block if the target directory is
1941 * currently flushing, otherwise it may not end up in the same flush group.
1943 * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
1946 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
1948 struct hammer_cursor cursor;
1949 int error;
1952 * Check directory empty
1954 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
1956 cursor.key_beg.localization = ip->obj_localization +
1957 HAMMER_LOCALIZE_MISC;
1958 cursor.key_beg.obj_id = ip->obj_id;
1959 cursor.key_beg.create_tid = 0;
1960 cursor.key_beg.delete_tid = 0;
1961 cursor.key_beg.obj_type = 0;
1962 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
1963 cursor.key_beg.key = HAMMER_MIN_KEY;
1965 cursor.key_end = cursor.key_beg;
1966 cursor.key_end.rec_type = 0xFFFF;
1967 cursor.key_end.key = HAMMER_MAX_KEY;
1969 cursor.asof = ip->obj_asof;
1970 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1972 error = hammer_ip_first(&cursor);
1973 if (error == ENOENT)
1974 error = 0;
1975 else if (error == 0)
1976 error = ENOTEMPTY;
1977 hammer_done_cursor(&cursor);
1978 return(error);