hyperv: Implement Hyper-V reference TSC cputimer.
[dragonfly.git] / sys / bus / cam / cam_xpt.c
blobd9271f31d4cfdb1685970b0e8a0b11656c64d82f
1 /*
2 * Implementation of the Common Access Method Transport (XPT) layer.
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
54 #include <machine/clock.h>
55 #include <machine/stdarg.h>
57 #include "cam.h"
58 #include "cam_ccb.h"
59 #include "cam_periph.h"
60 #include "cam_sim.h"
61 #include "cam_xpt.h"
62 #include "cam_xpt_sim.h"
63 #include "cam_xpt_periph.h"
64 #include "cam_debug.h"
66 #include "scsi/scsi_all.h"
67 #include "scsi/scsi_message.h"
68 #include "scsi/scsi_pass.h"
69 #include <sys/kthread.h>
70 #include "opt_cam.h"
72 /* Datastructures internal to the xpt layer */
73 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
75 /* Object for defering XPT actions to a taskqueue */
76 struct xpt_task {
77 struct task task;
78 void *data1;
79 uintptr_t data2;
83 * Definition of an async handler callback block. These are used to add
84 * SIMs and peripherals to the async callback lists.
86 struct async_node {
87 SLIST_ENTRY(async_node) links;
88 u_int32_t event_enable; /* Async Event enables */
89 void (*callback)(void *arg, u_int32_t code,
90 struct cam_path *path, void *args);
91 void *callback_arg;
94 SLIST_HEAD(async_list, async_node);
95 SLIST_HEAD(periph_list, cam_periph);
98 * This is the maximum number of high powered commands (e.g. start unit)
99 * that can be outstanding at a particular time.
101 #ifndef CAM_MAX_HIGHPOWER
102 #define CAM_MAX_HIGHPOWER 4
103 #endif
106 * Structure for queueing a device in a run queue.
107 * There is one run queue for allocating new ccbs,
108 * and another for sending ccbs to the controller.
110 struct cam_ed_qinfo {
111 cam_pinfo pinfo;
112 struct cam_ed *device;
116 * The CAM EDT (Existing Device Table) contains the device information for
117 * all devices for all busses in the system. The table contains a
118 * cam_ed structure for each device on the bus.
120 struct cam_ed {
121 TAILQ_ENTRY(cam_ed) links;
122 struct cam_ed_qinfo alloc_ccb_entry;
123 struct cam_ed_qinfo send_ccb_entry;
124 struct cam_et *target;
125 struct cam_sim *sim;
126 lun_id_t lun_id;
127 struct camq drvq; /*
128 * Queue of type drivers wanting to do
129 * work on this device.
131 struct cam_ccbq ccbq; /* Queue of pending ccbs */
132 struct async_list asyncs; /* Async callback info for this B/T/L */
133 struct periph_list periphs; /* All attached devices */
134 u_int generation; /* Generation number */
135 struct cam_periph *owner; /* Peripheral driver's ownership tag */
136 struct xpt_quirk_entry *quirk; /* Oddities about this device */
137 /* Storage for the inquiry data */
138 cam_proto protocol;
139 u_int protocol_version;
140 cam_xport transport;
141 u_int transport_version;
142 struct scsi_inquiry_data inq_data;
143 u_int8_t inq_flags; /*
144 * Current settings for inquiry flags.
145 * This allows us to override settings
146 * like disconnection and tagged
147 * queuing for a device.
149 u_int8_t queue_flags; /* Queue flags from the control page */
150 u_int8_t serial_num_len;
151 u_int8_t *serial_num;
152 u_int32_t qfrozen_cnt;
153 u_int32_t flags;
154 #define CAM_DEV_UNCONFIGURED 0x01
155 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02
156 #define CAM_DEV_REL_ON_COMPLETE 0x04
157 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08
158 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10
159 #define CAM_DEV_TAG_AFTER_COUNT 0x20
160 #define CAM_DEV_INQUIRY_DATA_VALID 0x40
161 #define CAM_DEV_IN_DV 0x80
162 #define CAM_DEV_DV_HIT_BOTTOM 0x100
163 u_int32_t tag_delay_count;
164 #define CAM_TAG_DELAY_COUNT 5
165 u_int32_t tag_saved_openings;
166 u_int32_t refcount;
167 struct callout callout;
171 * Each target is represented by an ET (Existing Target). These
172 * entries are created when a target is successfully probed with an
173 * identify, and removed when a device fails to respond after a number
174 * of retries, or a bus rescan finds the device missing.
176 struct cam_et {
177 TAILQ_HEAD(, cam_ed) ed_entries;
178 TAILQ_ENTRY(cam_et) links;
179 struct cam_eb *bus;
180 target_id_t target_id;
181 u_int32_t refcount;
182 u_int generation;
183 struct timeval last_reset; /* uptime of last reset */
187 * Each bus is represented by an EB (Existing Bus). These entries
188 * are created by calls to xpt_bus_register and deleted by calls to
189 * xpt_bus_deregister.
191 struct cam_eb {
192 TAILQ_HEAD(, cam_et) et_entries;
193 TAILQ_ENTRY(cam_eb) links;
194 path_id_t path_id;
195 struct cam_sim *sim;
196 struct timeval last_reset; /* uptime of last reset */
197 u_int32_t flags;
198 #define CAM_EB_RUNQ_SCHEDULED 0x01
199 u_int32_t refcount;
200 u_int generation;
201 int counted_to_config; /* busses_to_config */
204 struct cam_path {
205 struct cam_periph *periph;
206 struct cam_eb *bus;
207 struct cam_et *target;
208 struct cam_ed *device;
211 struct xpt_quirk_entry {
212 struct scsi_inquiry_pattern inq_pat;
213 u_int8_t quirks;
214 #define CAM_QUIRK_NOLUNS 0x01
215 #define CAM_QUIRK_NOSERIAL 0x02
216 #define CAM_QUIRK_HILUNS 0x04
217 #define CAM_QUIRK_NOHILUNS 0x08
218 u_int mintags;
219 u_int maxtags;
222 static int cam_srch_hi = 0;
223 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
224 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
226 sysctl_cam_search_luns, "I",
227 "allow search above LUN 7 for SCSI3 and greater devices");
229 #define CAM_SCSI2_MAXLUN 8
231 * If we're not quirked to search <= the first 8 luns
232 * and we are either quirked to search above lun 8,
233 * or we're > SCSI-2 and we've enabled hilun searching,
234 * or we're > SCSI-2 and the last lun was a success,
235 * we can look for luns above lun 8.
237 #define CAN_SRCH_HI_SPARSE(dv) \
238 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
239 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
240 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
242 #define CAN_SRCH_HI_DENSE(dv) \
243 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
244 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
245 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
247 typedef enum {
248 XPT_FLAG_OPEN = 0x01
249 } xpt_flags;
251 struct xpt_softc {
252 xpt_flags flags;
253 u_int32_t xpt_generation;
255 /* number of high powered commands that can go through right now */
256 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
257 int num_highpower;
259 /* queue for handling async rescan requests. */
260 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
261 int ccb_scanq_running;
263 /* Registered busses */
264 TAILQ_HEAD(,cam_eb) xpt_busses;
265 u_int bus_generation;
267 struct intr_config_hook *xpt_config_hook;
269 struct lock xpt_topo_lock;
270 struct lock xpt_lock;
273 static const char quantum[] = "QUANTUM";
274 static const char sony[] = "SONY";
275 static const char west_digital[] = "WDIGTL";
276 static const char samsung[] = "SAMSUNG";
277 static const char seagate[] = "SEAGATE";
278 static const char microp[] = "MICROP";
280 static struct xpt_quirk_entry xpt_quirk_table[] =
283 /* Reports QUEUE FULL for temporary resource shortages */
284 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
285 /*quirks*/0, /*mintags*/24, /*maxtags*/32
288 /* Reports QUEUE FULL for temporary resource shortages */
289 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
290 /*quirks*/0, /*mintags*/24, /*maxtags*/32
293 /* Reports QUEUE FULL for temporary resource shortages */
294 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
295 /*quirks*/0, /*mintags*/24, /*maxtags*/32
298 /* Broken tagged queuing drive */
299 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
300 /*quirks*/0, /*mintags*/0, /*maxtags*/0
303 /* Broken tagged queuing drive */
304 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
305 /*quirks*/0, /*mintags*/0, /*maxtags*/0
308 /* Broken tagged queuing drive */
309 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
310 /*quirks*/0, /*mintags*/0, /*maxtags*/0
314 * Unfortunately, the Quantum Atlas III has the same
315 * problem as the Atlas II drives above.
316 * Reported by: "Johan Granlund" <johan@granlund.nu>
318 * For future reference, the drive with the problem was:
319 * QUANTUM QM39100TD-SW N1B0
321 * It's possible that Quantum will fix the problem in later
322 * firmware revisions. If that happens, the quirk entry
323 * will need to be made specific to the firmware revisions
324 * with the problem.
327 /* Reports QUEUE FULL for temporary resource shortages */
328 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
329 /*quirks*/0, /*mintags*/24, /*maxtags*/32
333 * 18 Gig Atlas III, same problem as the 9G version.
334 * Reported by: Andre Albsmeier
335 * <andre.albsmeier@mchp.siemens.de>
337 * For future reference, the drive with the problem was:
338 * QUANTUM QM318000TD-S N491
340 /* Reports QUEUE FULL for temporary resource shortages */
341 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
342 /*quirks*/0, /*mintags*/24, /*maxtags*/32
346 * Broken tagged queuing drive
347 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
348 * and: Martin Renters <martin@tdc.on.ca>
350 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
351 /*quirks*/0, /*mintags*/0, /*maxtags*/0
354 * The Seagate Medalist Pro drives have very poor write
355 * performance with anything more than 2 tags.
357 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
358 * Drive: <SEAGATE ST36530N 1444>
360 * Reported by: Jeremy Lea <reg@shale.csir.co.za>
361 * Drive: <SEAGATE ST34520W 1281>
363 * No one has actually reported that the 9G version
364 * (ST39140*) of the Medalist Pro has the same problem, but
365 * we're assuming that it does because the 4G and 6.5G
366 * versions of the drive are broken.
369 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
370 /*quirks*/0, /*mintags*/2, /*maxtags*/2
373 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
374 /*quirks*/0, /*mintags*/2, /*maxtags*/2
377 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
378 /*quirks*/0, /*mintags*/2, /*maxtags*/2
382 * Slow when tagged queueing is enabled. Write performance
383 * steadily drops off with more and more concurrent
384 * transactions. Best sequential write performance with
385 * tagged queueing turned off and write caching turned on.
387 * PR: kern/10398
388 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
389 * Drive: DCAS-34330 w/ "S65A" firmware.
391 * The drive with the problem had the "S65A" firmware
392 * revision, and has also been reported (by Stephen J.
393 * Roznowski <sjr@home.net>) for a drive with the "S61A"
394 * firmware revision.
396 * Although no one has reported problems with the 2 gig
397 * version of the DCAS drive, the assumption is that it
398 * has the same problems as the 4 gig version. Therefore
399 * this quirk entries disables tagged queueing for all
400 * DCAS drives.
402 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
403 /*quirks*/0, /*mintags*/0, /*maxtags*/0
406 /* Broken tagged queuing drive */
407 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
408 /*quirks*/0, /*mintags*/0, /*maxtags*/0
411 /* Broken tagged queuing drive */
412 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
413 /*quirks*/0, /*mintags*/0, /*maxtags*/0
416 /* This does not support other than LUN 0 */
417 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
418 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
422 * Broken tagged queuing drive.
423 * Submitted by:
424 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
425 * in PR kern/9535
427 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
428 /*quirks*/0, /*mintags*/0, /*maxtags*/0
432 * Slow when tagged queueing is enabled. (1.5MB/sec versus
433 * 8MB/sec.)
434 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
435 * Best performance with these drives is achieved with
436 * tagged queueing turned off, and write caching turned on.
438 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
439 /*quirks*/0, /*mintags*/0, /*maxtags*/0
443 * Slow when tagged queueing is enabled. (1.5MB/sec versus
444 * 8MB/sec.)
445 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
446 * Best performance with these drives is achieved with
447 * tagged queueing turned off, and write caching turned on.
449 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
450 /*quirks*/0, /*mintags*/0, /*maxtags*/0
454 * Doesn't handle queue full condition correctly,
455 * so we need to limit maxtags to what the device
456 * can handle instead of determining this automatically.
458 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
459 /*quirks*/0, /*mintags*/2, /*maxtags*/32
462 /* Really only one LUN */
463 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
464 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
467 /* I can't believe we need a quirk for DPT volumes. */
468 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
469 CAM_QUIRK_NOLUNS,
470 /*mintags*/0, /*maxtags*/255
474 * Many Sony CDROM drives don't like multi-LUN probing.
476 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
477 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
481 * This drive doesn't like multiple LUN probing.
482 * Submitted by: Parag Patel <parag@cgt.com>
484 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" },
485 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
488 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
489 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
493 * The 8200 doesn't like multi-lun probing, and probably
494 * don't like serial number requests either.
497 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
498 "EXB-8200*", "*"
500 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
504 * Let's try the same as above, but for a drive that says
505 * it's an IPL-6860 but is actually an EXB 8200.
508 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
509 "IPL-6860*", "*"
511 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
515 * These Hitachi drives don't like multi-lun probing.
516 * The PR submitter has a DK319H, but says that the Linux
517 * kernel has a similar work-around for the DK312 and DK314,
518 * so all DK31* drives are quirked here.
519 * PR: misc/18793
520 * Submitted by: Paul Haddad <paul@pth.com>
522 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
523 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
527 * The Hitachi CJ series with J8A8 firmware apparantly has
528 * problems with tagged commands.
529 * PR: 23536
530 * Reported by: amagai@nue.org
532 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
533 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
537 * These are the large storage arrays.
538 * Submitted by: William Carrel <william.carrel@infospace.com>
540 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
541 CAM_QUIRK_HILUNS, 2, 1024
545 * This old revision of the TDC3600 is also SCSI-1, and
546 * hangs upon serial number probing.
549 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
550 " TDC 3600", "U07:"
552 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
556 * Would repond to all LUNs if asked for.
559 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
560 "CP150", "*"
562 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
566 * Would repond to all LUNs if asked for.
569 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
570 "96X2*", "*"
572 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
575 /* Submitted by: Matthew Dodd <winter@jurai.net> */
576 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
577 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
580 /* Submitted by: Matthew Dodd <winter@jurai.net> */
581 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
582 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
585 /* TeraSolutions special settings for TRC-22 RAID */
586 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
587 /*quirks*/0, /*mintags*/55, /*maxtags*/255
590 /* Veritas Storage Appliance */
591 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
592 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
596 * Would respond to all LUNs. Device type and removable
597 * flag are jumper-selectable.
599 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
600 "Tahiti 1", "*"
602 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
605 /* EasyRAID E5A aka. areca ARC-6010 */
606 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
607 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
610 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
611 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
614 /* Default tagged queuing parameters for all devices */
616 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
617 /*vendor*/"*", /*product*/"*", /*revision*/"*"
619 /*quirks*/0, /*mintags*/2, /*maxtags*/255
623 static const int xpt_quirk_table_size = NELEM(xpt_quirk_table);
625 typedef enum {
626 DM_RET_COPY = 0x01,
627 DM_RET_FLAG_MASK = 0x0f,
628 DM_RET_NONE = 0x00,
629 DM_RET_STOP = 0x10,
630 DM_RET_DESCEND = 0x20,
631 DM_RET_ERROR = 0x30,
632 DM_RET_ACTION_MASK = 0xf0
633 } dev_match_ret;
635 typedef enum {
636 XPT_DEPTH_BUS,
637 XPT_DEPTH_TARGET,
638 XPT_DEPTH_DEVICE,
639 XPT_DEPTH_PERIPH
640 } xpt_traverse_depth;
642 struct xpt_traverse_config {
643 xpt_traverse_depth depth;
644 void *tr_func;
645 void *tr_arg;
648 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
649 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
650 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
651 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
652 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
654 /* Transport layer configuration information */
655 static struct xpt_softc xsoftc;
657 /* Queues for our software interrupt handler */
658 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
659 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
660 static cam_simq_t cam_simq;
661 static struct spinlock cam_simq_spin;
663 struct cam_periph *xpt_periph;
665 static periph_init_t xpt_periph_init;
667 static periph_init_t probe_periph_init;
669 static struct periph_driver xpt_driver =
671 xpt_periph_init, "xpt",
672 TAILQ_HEAD_INITIALIZER(xpt_driver.units)
675 static struct periph_driver probe_driver =
677 probe_periph_init, "probe",
678 TAILQ_HEAD_INITIALIZER(probe_driver.units)
681 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
682 PERIPHDRIVER_DECLARE(probe, probe_driver);
684 static d_open_t xptopen;
685 static d_close_t xptclose;
686 static d_ioctl_t xptioctl;
688 static struct dev_ops xpt_ops = {
689 { "xpt", 0, 0 },
690 .d_open = xptopen,
691 .d_close = xptclose,
692 .d_ioctl = xptioctl
695 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
696 static void dead_sim_poll(struct cam_sim *sim);
698 /* Dummy SIM that is used when the real one has gone. */
699 static struct cam_sim cam_dead_sim;
700 static struct lock cam_dead_lock;
702 /* Storage for debugging datastructures */
703 #ifdef CAMDEBUG
704 struct cam_path *cam_dpath;
705 u_int32_t cam_dflags;
706 u_int32_t cam_debug_delay;
707 #endif
709 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
710 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
711 #endif
714 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
715 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS,
716 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
718 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
719 || defined(CAM_DEBUG_LUN)
720 #ifdef CAMDEBUG
721 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
722 || !defined(CAM_DEBUG_LUN)
723 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
724 and CAM_DEBUG_LUN"
725 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
726 #else /* !CAMDEBUG */
727 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
728 #endif /* CAMDEBUG */
729 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
731 /* Our boot-time initialization hook */
732 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
734 static moduledata_t cam_moduledata = {
735 "cam",
736 cam_module_event_handler,
737 NULL
740 static int xpt_init(void *);
742 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
743 MODULE_VERSION(cam, 1);
746 static cam_status xpt_compile_path(struct cam_path *new_path,
747 struct cam_periph *perph,
748 path_id_t path_id,
749 target_id_t target_id,
750 lun_id_t lun_id);
752 static void xpt_release_path(struct cam_path *path);
754 static void xpt_async_bcast(struct async_list *async_head,
755 u_int32_t async_code,
756 struct cam_path *path,
757 void *async_arg);
758 static void xpt_dev_async(u_int32_t async_code,
759 struct cam_eb *bus,
760 struct cam_et *target,
761 struct cam_ed *device,
762 void *async_arg);
763 static path_id_t xptnextfreepathid(void);
764 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
765 static union ccb *xpt_get_ccb(struct cam_ed *device);
766 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
767 u_int32_t new_priority);
768 static void xpt_run_dev_allocq(struct cam_eb *bus);
769 static void xpt_run_dev_sendq(struct cam_eb *bus);
770 static timeout_t xpt_release_devq_timeout;
771 static void xpt_release_bus(struct cam_eb *bus);
772 static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
773 int run_queue);
774 static struct cam_et*
775 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
776 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target);
777 static struct cam_ed*
778 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
779 lun_id_t lun_id);
780 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target,
781 struct cam_ed *device);
782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
783 static struct cam_eb*
784 xpt_find_bus(path_id_t path_id);
785 static struct cam_et*
786 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
787 static struct cam_ed*
788 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
789 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
790 static void xpt_scan_lun(struct cam_periph *periph,
791 struct cam_path *path, cam_flags flags,
792 union ccb *ccb);
793 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb);
794 static xpt_busfunc_t xptconfigbuscountfunc;
795 static xpt_busfunc_t xptconfigfunc;
796 static void xpt_config(void *arg);
797 static xpt_devicefunc_t xptpassannouncefunc;
798 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
799 static void xpt_uncount_bus (struct cam_eb *bus);
800 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
801 static void xptpoll(struct cam_sim *sim);
802 static inthand2_t swi_cambio;
803 static void camisr(void *);
804 static void camisr_runqueue(struct cam_sim *);
805 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
806 u_int num_patterns, struct cam_eb *bus);
807 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
808 u_int num_patterns,
809 struct cam_ed *device);
810 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
811 u_int num_patterns,
812 struct cam_periph *periph);
813 static xpt_busfunc_t xptedtbusfunc;
814 static xpt_targetfunc_t xptedttargetfunc;
815 static xpt_devicefunc_t xptedtdevicefunc;
816 static xpt_periphfunc_t xptedtperiphfunc;
817 static xpt_pdrvfunc_t xptplistpdrvfunc;
818 static xpt_periphfunc_t xptplistperiphfunc;
819 static int xptedtmatch(struct ccb_dev_match *cdm);
820 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
821 static int xptbustraverse(struct cam_eb *start_bus,
822 xpt_busfunc_t *tr_func, void *arg);
823 static int xpttargettraverse(struct cam_eb *bus,
824 struct cam_et *start_target,
825 xpt_targetfunc_t *tr_func, void *arg);
826 static int xptdevicetraverse(struct cam_et *target,
827 struct cam_ed *start_device,
828 xpt_devicefunc_t *tr_func, void *arg);
829 static int xptperiphtraverse(struct cam_ed *device,
830 struct cam_periph *start_periph,
831 xpt_periphfunc_t *tr_func, void *arg);
832 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
833 xpt_pdrvfunc_t *tr_func, void *arg);
834 static int xptpdperiphtraverse(struct periph_driver **pdrv,
835 struct cam_periph *start_periph,
836 xpt_periphfunc_t *tr_func,
837 void *arg);
838 static xpt_busfunc_t xptdefbusfunc;
839 static xpt_targetfunc_t xptdeftargetfunc;
840 static xpt_devicefunc_t xptdefdevicefunc;
841 static xpt_periphfunc_t xptdefperiphfunc;
842 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
843 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
844 void *arg);
845 static xpt_devicefunc_t xptsetasyncfunc;
846 static xpt_busfunc_t xptsetasyncbusfunc;
847 static cam_status xptregister(struct cam_periph *periph,
848 void *arg);
849 static cam_status proberegister(struct cam_periph *periph,
850 void *arg);
851 static void probeschedule(struct cam_periph *probe_periph);
852 static void probestart(struct cam_periph *periph, union ccb *start_ccb);
853 static void proberequestdefaultnegotiation(struct cam_periph *periph);
854 static int proberequestbackoff(struct cam_periph *periph,
855 struct cam_ed *device);
856 static void probedone(struct cam_periph *periph, union ccb *done_ccb);
857 static void probecleanup(struct cam_periph *periph);
858 static void xpt_find_quirk(struct cam_ed *device);
859 static void xpt_devise_transport(struct cam_path *path);
860 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts,
861 struct cam_ed *device,
862 int async_update);
863 static void xpt_toggle_tags(struct cam_path *path);
864 static void xpt_start_tags(struct cam_path *path);
865 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
866 struct cam_ed *dev);
867 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
868 struct cam_ed *dev);
869 static __inline int periph_is_queued(struct cam_periph *periph);
870 static __inline int device_is_alloc_queued(struct cam_ed *device);
871 static __inline int device_is_send_queued(struct cam_ed *device);
872 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
874 static __inline int
875 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
877 int retval;
879 if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
880 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
881 cam_ccbq_resize(&dev->ccbq,
882 dev->ccbq.dev_openings
883 + dev->ccbq.dev_active);
884 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
887 * The priority of a device waiting for CCB resources
888 * is that of the the highest priority peripheral driver
889 * enqueued.
891 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
892 &dev->alloc_ccb_entry.pinfo,
893 CAMQ_GET_HEAD(&dev->drvq)->priority);
894 } else {
895 retval = 0;
898 return (retval);
901 static __inline int
902 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
904 int retval;
906 if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
908 * The priority of a device waiting for controller
909 * resources is that of the the highest priority CCB
910 * enqueued.
912 retval =
913 xpt_schedule_dev(&bus->sim->devq->send_queue,
914 &dev->send_ccb_entry.pinfo,
915 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
916 } else {
917 retval = 0;
919 return (retval);
922 static __inline int
923 periph_is_queued(struct cam_periph *periph)
925 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
928 static __inline int
929 device_is_alloc_queued(struct cam_ed *device)
931 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
934 static __inline int
935 device_is_send_queued(struct cam_ed *device)
937 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
940 static __inline int
941 dev_allocq_is_runnable(struct cam_devq *devq)
944 * Have work to do.
945 * Have space to do more work.
946 * Allowed to do work.
948 return ((devq->alloc_queue.qfrozen_cnt == 0)
949 && (devq->alloc_queue.entries > 0)
950 && (devq->alloc_openings > 0));
953 static void
954 xpt_periph_init(void)
956 make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
959 static void
960 probe_periph_init(void)
965 static void
966 xptdone(struct cam_periph *periph, union ccb *done_ccb)
968 /* Caller will release the CCB */
969 wakeup(&done_ccb->ccb_h.cbfcnp);
972 static int
973 xptopen(struct dev_open_args *ap)
975 cdev_t dev = ap->a_head.a_dev;
978 * Only allow read-write access.
980 if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
981 return(EPERM);
984 * We don't allow nonblocking access.
986 if ((ap->a_oflags & O_NONBLOCK) != 0) {
987 kprintf("%s: can't do nonblocking access\n", devtoname(dev));
988 return(ENODEV);
991 /* Mark ourselves open */
992 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
993 xsoftc.flags |= XPT_FLAG_OPEN;
994 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
996 return(0);
999 static int
1000 xptclose(struct dev_close_args *ap)
1003 /* Mark ourselves closed */
1004 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1005 xsoftc.flags &= ~XPT_FLAG_OPEN;
1006 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1008 return(0);
1012 * Don't automatically grab the xpt softc lock here even though this is going
1013 * through the xpt device. The xpt device is really just a back door for
1014 * accessing other devices and SIMs, so the right thing to do is to grab
1015 * the appropriate SIM lock once the bus/SIM is located.
1017 static int
1018 xptioctl(struct dev_ioctl_args *ap)
1020 int error;
1022 error = 0;
1024 switch(ap->a_cmd) {
1026 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1027 * to accept CCB types that don't quite make sense to send through a
1028 * passthrough driver.
1030 case CAMIOCOMMAND: {
1031 union ccb *ccb;
1032 union ccb *inccb;
1033 struct cam_eb *bus;
1035 inccb = (union ccb *)ap->a_data;
1037 bus = xpt_find_bus(inccb->ccb_h.path_id);
1038 if (bus == NULL) {
1039 error = EINVAL;
1040 break;
1043 switch(inccb->ccb_h.func_code) {
1044 case XPT_SCAN_BUS:
1045 case XPT_RESET_BUS:
1046 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1047 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1048 error = EINVAL;
1049 break;
1051 /* FALLTHROUGH */
1052 case XPT_PATH_INQ:
1053 case XPT_ENG_INQ:
1054 case XPT_SCAN_LUN:
1056 ccb = xpt_alloc_ccb();
1058 CAM_SIM_LOCK(bus->sim);
1061 * Create a path using the bus, target, and lun the
1062 * user passed in.
1064 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1065 inccb->ccb_h.path_id,
1066 inccb->ccb_h.target_id,
1067 inccb->ccb_h.target_lun) !=
1068 CAM_REQ_CMP){
1069 error = EINVAL;
1070 CAM_SIM_UNLOCK(bus->sim);
1071 xpt_free_ccb(ccb);
1072 break;
1074 /* Ensure all of our fields are correct */
1075 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1076 inccb->ccb_h.pinfo.priority);
1077 xpt_merge_ccb(ccb, inccb);
1078 ccb->ccb_h.cbfcnp = xptdone;
1079 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1080 bcopy(ccb, inccb, sizeof(union ccb));
1081 xpt_free_path(ccb->ccb_h.path);
1082 xpt_free_ccb(ccb);
1083 CAM_SIM_UNLOCK(bus->sim);
1084 break;
1086 case XPT_DEBUG: {
1087 union ccb ccb;
1090 * This is an immediate CCB, so it's okay to
1091 * allocate it on the stack.
1094 CAM_SIM_LOCK(bus->sim);
1097 * Create a path using the bus, target, and lun the
1098 * user passed in.
1100 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1101 inccb->ccb_h.path_id,
1102 inccb->ccb_h.target_id,
1103 inccb->ccb_h.target_lun) !=
1104 CAM_REQ_CMP){
1105 error = EINVAL;
1106 CAM_SIM_UNLOCK(bus->sim);
1107 break;
1109 /* Ensure all of our fields are correct */
1110 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1111 inccb->ccb_h.pinfo.priority);
1112 xpt_merge_ccb(&ccb, inccb);
1113 ccb.ccb_h.cbfcnp = xptdone;
1114 xpt_action(&ccb);
1115 CAM_SIM_UNLOCK(bus->sim);
1116 bcopy(&ccb, inccb, sizeof(union ccb));
1117 xpt_free_path(ccb.ccb_h.path);
1118 break;
1121 case XPT_DEV_MATCH: {
1122 struct cam_periph_map_info mapinfo;
1123 struct cam_path *old_path;
1126 * We can't deal with physical addresses for this
1127 * type of transaction.
1129 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1130 error = EINVAL;
1131 break;
1135 * Save this in case the caller had it set to
1136 * something in particular.
1138 old_path = inccb->ccb_h.path;
1141 * We really don't need a path for the matching
1142 * code. The path is needed because of the
1143 * debugging statements in xpt_action(). They
1144 * assume that the CCB has a valid path.
1146 inccb->ccb_h.path = xpt_periph->path;
1148 bzero(&mapinfo, sizeof(mapinfo));
1151 * Map the pattern and match buffers into kernel
1152 * virtual address space.
1154 error = cam_periph_mapmem(inccb, &mapinfo);
1156 if (error) {
1157 inccb->ccb_h.path = old_path;
1158 break;
1162 * This is an immediate CCB, we can send it on directly.
1164 xpt_action(inccb);
1167 * Map the buffers back into user space.
1169 cam_periph_unmapmem(inccb, &mapinfo);
1171 inccb->ccb_h.path = old_path;
1173 error = 0;
1174 break;
1176 default:
1177 error = ENOTSUP;
1178 break;
1180 xpt_release_bus(bus);
1181 break;
1184 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1185 * with the periphal driver name and unit name filled in. The other
1186 * fields don't really matter as input. The passthrough driver name
1187 * ("pass"), and unit number are passed back in the ccb. The current
1188 * device generation number, and the index into the device peripheral
1189 * driver list, and the status are also passed back. Note that
1190 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1191 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
1192 * (or rather should be) impossible for the device peripheral driver
1193 * list to change since we look at the whole thing in one pass, and
1194 * we do it with lock protection.
1197 case CAMGETPASSTHRU: {
1198 union ccb *ccb;
1199 struct cam_periph *periph;
1200 struct periph_driver **p_drv;
1201 char *name;
1202 u_int unit;
1203 u_int cur_generation;
1204 int base_periph_found;
1205 int splbreaknum;
1207 ccb = (union ccb *)ap->a_data;
1208 unit = ccb->cgdl.unit_number;
1209 name = ccb->cgdl.periph_name;
1211 * Every 100 devices, we want to drop our lock protection to
1212 * give the software interrupt handler a chance to run.
1213 * Most systems won't run into this check, but this should
1214 * avoid starvation in the software interrupt handler in
1215 * large systems.
1217 splbreaknum = 100;
1219 ccb = (union ccb *)ap->a_data;
1221 base_periph_found = 0;
1224 * Sanity check -- make sure we don't get a null peripheral
1225 * driver name.
1227 if (*ccb->cgdl.periph_name == '\0') {
1228 error = EINVAL;
1229 break;
1232 /* Keep the list from changing while we traverse it */
1233 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1234 ptstartover:
1235 cur_generation = xsoftc.xpt_generation;
1237 /* first find our driver in the list of drivers */
1238 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1239 if (strcmp((*p_drv)->driver_name, name) == 0)
1240 break;
1243 if (*p_drv == NULL) {
1244 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1245 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1246 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1247 *ccb->cgdl.periph_name = '\0';
1248 ccb->cgdl.unit_number = 0;
1249 error = ENOENT;
1250 break;
1254 * Run through every peripheral instance of this driver
1255 * and check to see whether it matches the unit passed
1256 * in by the user. If it does, get out of the loops and
1257 * find the passthrough driver associated with that
1258 * peripheral driver.
1260 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1262 if (periph->unit_number == unit) {
1263 break;
1264 } else if (--splbreaknum == 0) {
1265 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1266 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1267 splbreaknum = 100;
1268 if (cur_generation != xsoftc.xpt_generation)
1269 goto ptstartover;
1273 * If we found the peripheral driver that the user passed
1274 * in, go through all of the peripheral drivers for that
1275 * particular device and look for a passthrough driver.
1277 if (periph != NULL) {
1278 struct cam_ed *device;
1279 int i;
1281 base_periph_found = 1;
1282 device = periph->path->device;
1283 for (i = 0, periph = SLIST_FIRST(&device->periphs);
1284 periph != NULL;
1285 periph = SLIST_NEXT(periph, periph_links), i++) {
1287 * Check to see whether we have a
1288 * passthrough device or not.
1290 if (strcmp(periph->periph_name, "pass") == 0) {
1292 * Fill in the getdevlist fields.
1294 strcpy(ccb->cgdl.periph_name,
1295 periph->periph_name);
1296 ccb->cgdl.unit_number =
1297 periph->unit_number;
1298 if (SLIST_NEXT(periph, periph_links))
1299 ccb->cgdl.status =
1300 CAM_GDEVLIST_MORE_DEVS;
1301 else
1302 ccb->cgdl.status =
1303 CAM_GDEVLIST_LAST_DEVICE;
1304 ccb->cgdl.generation =
1305 device->generation;
1306 ccb->cgdl.index = i;
1308 * Fill in some CCB header fields
1309 * that the user may want.
1311 ccb->ccb_h.path_id =
1312 periph->path->bus->path_id;
1313 ccb->ccb_h.target_id =
1314 periph->path->target->target_id;
1315 ccb->ccb_h.target_lun =
1316 periph->path->device->lun_id;
1317 ccb->ccb_h.status = CAM_REQ_CMP;
1318 break;
1324 * If the periph is null here, one of two things has
1325 * happened. The first possibility is that we couldn't
1326 * find the unit number of the particular peripheral driver
1327 * that the user is asking about. e.g. the user asks for
1328 * the passthrough driver for "da11". We find the list of
1329 * "da" peripherals all right, but there is no unit 11.
1330 * The other possibility is that we went through the list
1331 * of peripheral drivers attached to the device structure,
1332 * but didn't find one with the name "pass". Either way,
1333 * we return ENOENT, since we couldn't find something.
1335 if (periph == NULL) {
1336 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1337 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1338 *ccb->cgdl.periph_name = '\0';
1339 ccb->cgdl.unit_number = 0;
1340 error = ENOENT;
1342 * It is unfortunate that this is even necessary,
1343 * but there are many, many clueless users out there.
1344 * If this is true, the user is looking for the
1345 * passthrough driver, but doesn't have one in his
1346 * kernel.
1348 if (base_periph_found == 1) {
1349 kprintf("xptioctl: pass driver is not in the "
1350 "kernel\n");
1351 kprintf("xptioctl: put \"device pass\" in "
1352 "your kernel config file\n");
1355 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1356 break;
1358 default:
1359 error = ENOTTY;
1360 break;
1363 return(error);
1366 static int
1367 cam_module_event_handler(module_t mod, int what, void *arg)
1369 int error;
1371 switch (what) {
1372 case MOD_LOAD:
1373 if ((error = xpt_init(NULL)) != 0)
1374 return (error);
1375 break;
1376 case MOD_UNLOAD:
1377 return EBUSY;
1378 default:
1379 return EOPNOTSUPP;
1382 return 0;
1386 * Thread to handle asynchronous main-context requests.
1388 * This function is typically used by drivers to perform complex actions
1389 * such as bus scans and engineering requests in a main context instead
1390 * of an interrupt context.
1392 static void
1393 xpt_scanner_thread(void *dummy)
1395 union ccb *ccb;
1396 struct cam_sim *sim;
1398 get_mplock();
1400 for (;;) {
1401 xpt_lock_buses();
1402 xsoftc.ccb_scanq_running = 1;
1403 while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1404 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1405 sim_links.tqe);
1406 xpt_unlock_buses();
1408 sim = ccb->ccb_h.path->bus->sim;
1409 CAM_SIM_LOCK(sim);
1410 xpt_action(ccb);
1411 CAM_SIM_UNLOCK(sim);
1413 xpt_lock_buses();
1415 xsoftc.ccb_scanq_running = 0;
1416 tsleep_interlock(&xsoftc.ccb_scanq, 0);
1417 xpt_unlock_buses();
1418 tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1421 rel_mplock(); /* not reached */
1425 * Issue an asynchronous asction
1427 void
1428 xpt_action_async(union ccb *ccb)
1430 xpt_lock_buses();
1431 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1432 if (xsoftc.ccb_scanq_running == 0) {
1433 xsoftc.ccb_scanq_running = 1;
1434 wakeup(&xsoftc.ccb_scanq);
1436 xpt_unlock_buses();
1440 /* Functions accessed by the peripheral drivers */
1441 static int
1442 xpt_init(void *dummy)
1444 struct cam_sim *xpt_sim;
1445 struct cam_path *path;
1446 struct cam_devq *devq;
1447 cam_status status;
1449 TAILQ_INIT(&xsoftc.xpt_busses);
1450 TAILQ_INIT(&cam_simq);
1451 TAILQ_INIT(&xsoftc.ccb_scanq);
1452 STAILQ_INIT(&xsoftc.highpowerq);
1453 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1455 spin_init(&cam_simq_spin, "cam_simq_spin");
1456 lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1457 lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1459 SLIST_INIT(&cam_dead_sim.ccb_freeq);
1460 TAILQ_INIT(&cam_dead_sim.sim_doneq);
1461 spin_init(&cam_dead_sim.sim_spin, "cam_dead_sim");
1462 cam_dead_sim.sim_action = dead_sim_action;
1463 cam_dead_sim.sim_poll = dead_sim_poll;
1464 cam_dead_sim.sim_name = "dead_sim";
1465 cam_dead_sim.lock = &cam_dead_lock;
1466 lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1467 cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1470 * The xpt layer is, itself, the equivelent of a SIM.
1471 * Allow 16 ccbs in the ccb pool for it. This should
1472 * give decent parallelism when we probe busses and
1473 * perform other XPT functions.
1475 devq = cam_simq_alloc(16);
1476 xpt_sim = cam_sim_alloc(xptaction,
1477 xptpoll,
1478 "xpt",
1479 /*softc*/NULL,
1480 /*unit*/0,
1481 /*lock*/&xsoftc.xpt_lock,
1482 /*max_dev_transactions*/0,
1483 /*max_tagged_dev_transactions*/0,
1484 devq);
1485 cam_simq_release(devq);
1486 if (xpt_sim == NULL)
1487 return (ENOMEM);
1489 xpt_sim->max_ccbs = 16;
1491 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1492 if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1493 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1494 kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495 " failing attach\n", status);
1496 return (EINVAL);
1500 * Looking at the XPT from the SIM layer, the XPT is
1501 * the equivelent of a peripheral driver. Allocate
1502 * a peripheral driver entry for us.
1504 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505 CAM_TARGET_WILDCARD,
1506 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1508 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1509 " failing attach\n", status);
1510 return (EINVAL);
1513 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1514 path, NULL, 0, xpt_sim);
1515 xpt_free_path(path);
1517 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1520 * Register a callback for when interrupts are enabled.
1522 xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1523 M_CAMXPT, M_INTWAIT | M_ZERO);
1524 xsoftc.xpt_config_hook->ich_func = xpt_config;
1525 xsoftc.xpt_config_hook->ich_desc = "xpt";
1526 xsoftc.xpt_config_hook->ich_order = 1000;
1527 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1528 kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1529 kprintf("xpt_init: config_intrhook_establish failed "
1530 "- failing attach\n");
1533 /* fire up rescan thread */
1534 if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1535 kprintf("xpt_init: failed to create rescan thread\n");
1537 /* Install our software interrupt handlers */
1538 register_swi_mp(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1540 return (0);
1543 static cam_status
1544 xptregister(struct cam_periph *periph, void *arg)
1546 struct cam_sim *xpt_sim;
1548 if (periph == NULL) {
1549 kprintf("xptregister: periph was NULL!!\n");
1550 return(CAM_REQ_CMP_ERR);
1553 xpt_sim = (struct cam_sim *)arg;
1554 xpt_sim->softc = periph;
1555 xpt_periph = periph;
1556 periph->softc = NULL;
1558 return(CAM_REQ_CMP);
1561 int32_t
1562 xpt_add_periph(struct cam_periph *periph)
1564 struct cam_ed *device;
1565 int32_t status;
1566 struct periph_list *periph_head;
1568 sim_lock_assert_owned(periph->sim->lock);
1570 device = periph->path->device;
1572 periph_head = &device->periphs;
1574 status = CAM_REQ_CMP;
1576 if (device != NULL) {
1578 * Make room for this peripheral
1579 * so it will fit in the queue
1580 * when it's scheduled to run
1582 status = camq_resize(&device->drvq,
1583 device->drvq.array_size + 1);
1585 device->generation++;
1587 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1590 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1591 xsoftc.xpt_generation++;
1592 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1594 return (status);
1597 void
1598 xpt_remove_periph(struct cam_periph *periph)
1600 struct cam_ed *device;
1602 sim_lock_assert_owned(periph->sim->lock);
1604 device = periph->path->device;
1606 if (device != NULL) {
1607 struct periph_list *periph_head;
1609 periph_head = &device->periphs;
1611 /* Release the slot for this peripheral */
1612 camq_resize(&device->drvq, device->drvq.array_size - 1);
1614 device->generation++;
1616 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1619 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1620 xsoftc.xpt_generation++;
1621 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1624 void
1625 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1627 struct ccb_pathinq cpi;
1628 struct ccb_trans_settings cts;
1629 struct cam_path *path;
1630 u_int speed;
1631 u_int freq;
1632 u_int mb;
1634 sim_lock_assert_owned(periph->sim->lock);
1636 path = periph->path;
1638 /* Report basic attachment and inquiry data */
1639 kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1640 periph->periph_name, periph->unit_number,
1641 path->bus->sim->sim_name,
1642 path->bus->sim->unit_number,
1643 path->bus->sim->bus_id,
1644 path->target->target_id,
1645 path->device->lun_id);
1646 kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1647 scsi_print_inquiry(&path->device->inq_data);
1649 /* Report serial number */
1650 if (path->device->serial_num_len > 0) {
1651 /* Don't wrap the screen - print only the first 60 chars */
1652 kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1653 periph->unit_number, path->device->serial_num);
1656 /* Acquire and report transfer speed */
1657 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1658 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1659 cts.type = CTS_TYPE_CURRENT_SETTINGS;
1660 xpt_action((union ccb*)&cts);
1661 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1662 return;
1665 /* Ask the SIM for its base transfer speed */
1666 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1667 cpi.ccb_h.func_code = XPT_PATH_INQ;
1668 xpt_action((union ccb *)&cpi);
1670 speed = cpi.base_transfer_speed;
1671 freq = 0;
1672 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1673 struct ccb_trans_settings_spi *spi;
1675 spi = &cts.xport_specific.spi;
1676 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1677 && spi->sync_offset != 0) {
1678 freq = scsi_calc_syncsrate(spi->sync_period);
1679 speed = freq;
1682 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1683 speed *= (0x01 << spi->bus_width);
1685 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1686 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1687 if (fc->valid & CTS_FC_VALID_SPEED) {
1688 speed = fc->bitrate;
1692 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1693 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1694 if (sas->valid & CTS_SAS_VALID_SPEED) {
1695 speed = sas->bitrate;
1699 mb = speed / 1000;
1700 if (mb > 0)
1701 kprintf("%s%d: %d.%03dMB/s transfers",
1702 periph->periph_name, periph->unit_number,
1703 mb, speed % 1000);
1704 else
1705 kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1706 periph->unit_number, speed);
1708 /* Report additional information about SPI connections */
1709 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1710 struct ccb_trans_settings_spi *spi;
1712 spi = &cts.xport_specific.spi;
1713 if (freq != 0) {
1714 kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1715 freq % 1000,
1716 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1717 ? " DT" : "",
1718 spi->sync_offset);
1720 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1721 && spi->bus_width > 0) {
1722 if (freq != 0) {
1723 kprintf(", ");
1724 } else {
1725 kprintf(" (");
1727 kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1728 } else if (freq != 0) {
1729 kprintf(")");
1732 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1733 struct ccb_trans_settings_fc *fc;
1735 fc = &cts.xport_specific.fc;
1736 if (fc->valid & CTS_FC_VALID_WWNN)
1737 kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1738 if (fc->valid & CTS_FC_VALID_WWPN)
1739 kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1740 if (fc->valid & CTS_FC_VALID_PORT)
1741 kprintf(" PortID 0x%x", fc->port);
1744 if (path->device->inq_flags & SID_CmdQue
1745 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1746 kprintf("\n%s%d: Command Queueing Enabled",
1747 periph->periph_name, periph->unit_number);
1749 kprintf("\n");
1752 * We only want to print the caller's announce string if they've
1753 * passed one in..
1755 if (announce_string != NULL)
1756 kprintf("%s%d: %s\n", periph->periph_name,
1757 periph->unit_number, announce_string);
1760 static dev_match_ret
1761 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1762 struct cam_eb *bus)
1764 dev_match_ret retval;
1765 int i;
1767 retval = DM_RET_NONE;
1770 * If we aren't given something to match against, that's an error.
1772 if (bus == NULL)
1773 return(DM_RET_ERROR);
1776 * If there are no match entries, then this bus matches no
1777 * matter what.
1779 if ((patterns == NULL) || (num_patterns == 0))
1780 return(DM_RET_DESCEND | DM_RET_COPY);
1782 for (i = 0; i < num_patterns; i++) {
1783 struct bus_match_pattern *cur_pattern;
1786 * If the pattern in question isn't for a bus node, we
1787 * aren't interested. However, we do indicate to the
1788 * calling routine that we should continue descending the
1789 * tree, since the user wants to match against lower-level
1790 * EDT elements.
1792 if (patterns[i].type != DEV_MATCH_BUS) {
1793 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1794 retval |= DM_RET_DESCEND;
1795 continue;
1798 cur_pattern = &patterns[i].pattern.bus_pattern;
1801 * If they want to match any bus node, we give them any
1802 * device node.
1804 if (cur_pattern->flags == BUS_MATCH_ANY) {
1805 /* set the copy flag */
1806 retval |= DM_RET_COPY;
1809 * If we've already decided on an action, go ahead
1810 * and return.
1812 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1813 return(retval);
1817 * Not sure why someone would do this...
1819 if (cur_pattern->flags == BUS_MATCH_NONE)
1820 continue;
1822 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1823 && (cur_pattern->path_id != bus->path_id))
1824 continue;
1826 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1827 && (cur_pattern->bus_id != bus->sim->bus_id))
1828 continue;
1830 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1831 && (cur_pattern->unit_number != bus->sim->unit_number))
1832 continue;
1834 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1835 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1836 DEV_IDLEN) != 0))
1837 continue;
1840 * If we get to this point, the user definitely wants
1841 * information on this bus. So tell the caller to copy the
1842 * data out.
1844 retval |= DM_RET_COPY;
1847 * If the return action has been set to descend, then we
1848 * know that we've already seen a non-bus matching
1849 * expression, therefore we need to further descend the tree.
1850 * This won't change by continuing around the loop, so we
1851 * go ahead and return. If we haven't seen a non-bus
1852 * matching expression, we keep going around the loop until
1853 * we exhaust the matching expressions. We'll set the stop
1854 * flag once we fall out of the loop.
1856 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1857 return(retval);
1861 * If the return action hasn't been set to descend yet, that means
1862 * we haven't seen anything other than bus matching patterns. So
1863 * tell the caller to stop descending the tree -- the user doesn't
1864 * want to match against lower level tree elements.
1866 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1867 retval |= DM_RET_STOP;
1869 return(retval);
1872 static dev_match_ret
1873 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1874 struct cam_ed *device)
1876 dev_match_ret retval;
1877 int i;
1879 retval = DM_RET_NONE;
1882 * If we aren't given something to match against, that's an error.
1884 if (device == NULL)
1885 return(DM_RET_ERROR);
1888 * If there are no match entries, then this device matches no
1889 * matter what.
1891 if ((patterns == NULL) || (num_patterns == 0))
1892 return(DM_RET_DESCEND | DM_RET_COPY);
1894 for (i = 0; i < num_patterns; i++) {
1895 struct device_match_pattern *cur_pattern;
1898 * If the pattern in question isn't for a device node, we
1899 * aren't interested.
1901 if (patterns[i].type != DEV_MATCH_DEVICE) {
1902 if ((patterns[i].type == DEV_MATCH_PERIPH)
1903 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1904 retval |= DM_RET_DESCEND;
1905 continue;
1908 cur_pattern = &patterns[i].pattern.device_pattern;
1911 * If they want to match any device node, we give them any
1912 * device node.
1914 if (cur_pattern->flags == DEV_MATCH_ANY) {
1915 /* set the copy flag */
1916 retval |= DM_RET_COPY;
1920 * If we've already decided on an action, go ahead
1921 * and return.
1923 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1924 return(retval);
1928 * Not sure why someone would do this...
1930 if (cur_pattern->flags == DEV_MATCH_NONE)
1931 continue;
1933 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1934 && (cur_pattern->path_id != device->target->bus->path_id))
1935 continue;
1937 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1938 && (cur_pattern->target_id != device->target->target_id))
1939 continue;
1941 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1942 && (cur_pattern->target_lun != device->lun_id))
1943 continue;
1945 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1946 && (cam_quirkmatch((caddr_t)&device->inq_data,
1947 (caddr_t)&cur_pattern->inq_pat,
1948 1, sizeof(cur_pattern->inq_pat),
1949 scsi_static_inquiry_match) == NULL))
1950 continue;
1953 * If we get to this point, the user definitely wants
1954 * information on this device. So tell the caller to copy
1955 * the data out.
1957 retval |= DM_RET_COPY;
1960 * If the return action has been set to descend, then we
1961 * know that we've already seen a peripheral matching
1962 * expression, therefore we need to further descend the tree.
1963 * This won't change by continuing around the loop, so we
1964 * go ahead and return. If we haven't seen a peripheral
1965 * matching expression, we keep going around the loop until
1966 * we exhaust the matching expressions. We'll set the stop
1967 * flag once we fall out of the loop.
1969 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1970 return(retval);
1974 * If the return action hasn't been set to descend yet, that means
1975 * we haven't seen any peripheral matching patterns. So tell the
1976 * caller to stop descending the tree -- the user doesn't want to
1977 * match against lower level tree elements.
1979 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1980 retval |= DM_RET_STOP;
1982 return(retval);
1986 * Match a single peripheral against any number of match patterns.
1988 static dev_match_ret
1989 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1990 struct cam_periph *periph)
1992 dev_match_ret retval;
1993 int i;
1996 * If we aren't given something to match against, that's an error.
1998 if (periph == NULL)
1999 return(DM_RET_ERROR);
2002 * If there are no match entries, then this peripheral matches no
2003 * matter what.
2005 if ((patterns == NULL) || (num_patterns == 0))
2006 return(DM_RET_STOP | DM_RET_COPY);
2009 * There aren't any nodes below a peripheral node, so there's no
2010 * reason to descend the tree any further.
2012 retval = DM_RET_STOP;
2014 for (i = 0; i < num_patterns; i++) {
2015 struct periph_match_pattern *cur_pattern;
2018 * If the pattern in question isn't for a peripheral, we
2019 * aren't interested.
2021 if (patterns[i].type != DEV_MATCH_PERIPH)
2022 continue;
2024 cur_pattern = &patterns[i].pattern.periph_pattern;
2027 * If they want to match on anything, then we will do so.
2029 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2030 /* set the copy flag */
2031 retval |= DM_RET_COPY;
2034 * We've already set the return action to stop,
2035 * since there are no nodes below peripherals in
2036 * the tree.
2038 return(retval);
2042 * Not sure why someone would do this...
2044 if (cur_pattern->flags == PERIPH_MATCH_NONE)
2045 continue;
2047 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2048 && (cur_pattern->path_id != periph->path->bus->path_id))
2049 continue;
2052 * For the target and lun id's, we have to make sure the
2053 * target and lun pointers aren't NULL. The xpt peripheral
2054 * has a wildcard target and device.
2056 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2057 && ((periph->path->target == NULL)
2058 ||(cur_pattern->target_id != periph->path->target->target_id)))
2059 continue;
2061 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2062 && ((periph->path->device == NULL)
2063 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2064 continue;
2066 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2067 && (cur_pattern->unit_number != periph->unit_number))
2068 continue;
2070 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2071 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2072 DEV_IDLEN) != 0))
2073 continue;
2076 * If we get to this point, the user definitely wants
2077 * information on this peripheral. So tell the caller to
2078 * copy the data out.
2080 retval |= DM_RET_COPY;
2083 * The return action has already been set to stop, since
2084 * peripherals don't have any nodes below them in the EDT.
2086 return(retval);
2090 * If we get to this point, the peripheral that was passed in
2091 * doesn't match any of the patterns.
2093 return(retval);
2096 static int
2097 xptedtbusfunc(struct cam_eb *bus, void *arg)
2099 struct ccb_dev_match *cdm;
2100 dev_match_ret retval;
2102 cdm = (struct ccb_dev_match *)arg;
2105 * If our position is for something deeper in the tree, that means
2106 * that we've already seen this node. So, we keep going down.
2108 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2109 && (cdm->pos.cookie.bus == bus)
2110 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2111 && (cdm->pos.cookie.target != NULL))
2112 retval = DM_RET_DESCEND;
2113 else
2114 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2117 * If we got an error, bail out of the search.
2119 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2120 cdm->status = CAM_DEV_MATCH_ERROR;
2121 return(0);
2125 * If the copy flag is set, copy this bus out.
2127 if (retval & DM_RET_COPY) {
2128 int spaceleft, j;
2130 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2131 sizeof(struct dev_match_result));
2134 * If we don't have enough space to put in another
2135 * match result, save our position and tell the
2136 * user there are more devices to check.
2138 if (spaceleft < sizeof(struct dev_match_result)) {
2139 bzero(&cdm->pos, sizeof(cdm->pos));
2140 cdm->pos.position_type =
2141 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2143 cdm->pos.cookie.bus = bus;
2144 cdm->pos.generations[CAM_BUS_GENERATION]=
2145 xsoftc.bus_generation;
2146 cdm->status = CAM_DEV_MATCH_MORE;
2147 return(0);
2149 j = cdm->num_matches;
2150 cdm->num_matches++;
2151 cdm->matches[j].type = DEV_MATCH_BUS;
2152 cdm->matches[j].result.bus_result.path_id = bus->path_id;
2153 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2154 cdm->matches[j].result.bus_result.unit_number =
2155 bus->sim->unit_number;
2156 strncpy(cdm->matches[j].result.bus_result.dev_name,
2157 bus->sim->sim_name, DEV_IDLEN);
2161 * If the user is only interested in busses, there's no
2162 * reason to descend to the next level in the tree.
2164 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2165 return(1);
2168 * If there is a target generation recorded, check it to
2169 * make sure the target list hasn't changed.
2171 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2172 && (bus == cdm->pos.cookie.bus)
2173 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2174 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2175 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2176 bus->generation)) {
2177 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2178 return(0);
2181 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2182 && (cdm->pos.cookie.bus == bus)
2183 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2184 && (cdm->pos.cookie.target != NULL))
2185 return(xpttargettraverse(bus,
2186 (struct cam_et *)cdm->pos.cookie.target,
2187 xptedttargetfunc, arg));
2188 else
2189 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2192 static int
2193 xptedttargetfunc(struct cam_et *target, void *arg)
2195 struct ccb_dev_match *cdm;
2197 cdm = (struct ccb_dev_match *)arg;
2200 * If there is a device list generation recorded, check it to
2201 * make sure the device list hasn't changed.
2203 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2204 && (cdm->pos.cookie.bus == target->bus)
2205 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2206 && (cdm->pos.cookie.target == target)
2207 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2208 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2209 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2210 target->generation)) {
2211 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2212 return(0);
2215 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2216 && (cdm->pos.cookie.bus == target->bus)
2217 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2218 && (cdm->pos.cookie.target == target)
2219 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2220 && (cdm->pos.cookie.device != NULL))
2221 return(xptdevicetraverse(target,
2222 (struct cam_ed *)cdm->pos.cookie.device,
2223 xptedtdevicefunc, arg));
2224 else
2225 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2228 static int
2229 xptedtdevicefunc(struct cam_ed *device, void *arg)
2232 struct ccb_dev_match *cdm;
2233 dev_match_ret retval;
2235 cdm = (struct ccb_dev_match *)arg;
2238 * If our position is for something deeper in the tree, that means
2239 * that we've already seen this node. So, we keep going down.
2241 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2242 && (cdm->pos.cookie.device == device)
2243 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2244 && (cdm->pos.cookie.periph != NULL))
2245 retval = DM_RET_DESCEND;
2246 else
2247 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2248 device);
2250 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2251 cdm->status = CAM_DEV_MATCH_ERROR;
2252 return(0);
2256 * If the copy flag is set, copy this device out.
2258 if (retval & DM_RET_COPY) {
2259 int spaceleft, j;
2261 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2262 sizeof(struct dev_match_result));
2265 * If we don't have enough space to put in another
2266 * match result, save our position and tell the
2267 * user there are more devices to check.
2269 if (spaceleft < sizeof(struct dev_match_result)) {
2270 bzero(&cdm->pos, sizeof(cdm->pos));
2271 cdm->pos.position_type =
2272 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2273 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2275 cdm->pos.cookie.bus = device->target->bus;
2276 cdm->pos.generations[CAM_BUS_GENERATION]=
2277 xsoftc.bus_generation;
2278 cdm->pos.cookie.target = device->target;
2279 cdm->pos.generations[CAM_TARGET_GENERATION] =
2280 device->target->bus->generation;
2281 cdm->pos.cookie.device = device;
2282 cdm->pos.generations[CAM_DEV_GENERATION] =
2283 device->target->generation;
2284 cdm->status = CAM_DEV_MATCH_MORE;
2285 return(0);
2287 j = cdm->num_matches;
2288 cdm->num_matches++;
2289 cdm->matches[j].type = DEV_MATCH_DEVICE;
2290 cdm->matches[j].result.device_result.path_id =
2291 device->target->bus->path_id;
2292 cdm->matches[j].result.device_result.target_id =
2293 device->target->target_id;
2294 cdm->matches[j].result.device_result.target_lun =
2295 device->lun_id;
2296 bcopy(&device->inq_data,
2297 &cdm->matches[j].result.device_result.inq_data,
2298 sizeof(struct scsi_inquiry_data));
2300 /* Let the user know whether this device is unconfigured */
2301 if (device->flags & CAM_DEV_UNCONFIGURED)
2302 cdm->matches[j].result.device_result.flags =
2303 DEV_RESULT_UNCONFIGURED;
2304 else
2305 cdm->matches[j].result.device_result.flags =
2306 DEV_RESULT_NOFLAG;
2310 * If the user isn't interested in peripherals, don't descend
2311 * the tree any further.
2313 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2314 return(1);
2317 * If there is a peripheral list generation recorded, make sure
2318 * it hasn't changed.
2320 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2321 && (device->target->bus == cdm->pos.cookie.bus)
2322 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2323 && (device->target == cdm->pos.cookie.target)
2324 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2325 && (device == cdm->pos.cookie.device)
2326 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2327 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2328 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2329 device->generation)){
2330 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2331 return(0);
2334 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2335 && (cdm->pos.cookie.bus == device->target->bus)
2336 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2337 && (cdm->pos.cookie.target == device->target)
2338 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2339 && (cdm->pos.cookie.device == device)
2340 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2341 && (cdm->pos.cookie.periph != NULL))
2342 return(xptperiphtraverse(device,
2343 (struct cam_periph *)cdm->pos.cookie.periph,
2344 xptedtperiphfunc, arg));
2345 else
2346 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2349 static int
2350 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2352 struct ccb_dev_match *cdm;
2353 dev_match_ret retval;
2355 cdm = (struct ccb_dev_match *)arg;
2357 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2359 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2360 cdm->status = CAM_DEV_MATCH_ERROR;
2361 return(0);
2365 * If the copy flag is set, copy this peripheral out.
2367 if (retval & DM_RET_COPY) {
2368 int spaceleft, j;
2370 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2371 sizeof(struct dev_match_result));
2374 * If we don't have enough space to put in another
2375 * match result, save our position and tell the
2376 * user there are more devices to check.
2378 if (spaceleft < sizeof(struct dev_match_result)) {
2379 bzero(&cdm->pos, sizeof(cdm->pos));
2380 cdm->pos.position_type =
2381 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2382 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2383 CAM_DEV_POS_PERIPH;
2385 cdm->pos.cookie.bus = periph->path->bus;
2386 cdm->pos.generations[CAM_BUS_GENERATION]=
2387 xsoftc.bus_generation;
2388 cdm->pos.cookie.target = periph->path->target;
2389 cdm->pos.generations[CAM_TARGET_GENERATION] =
2390 periph->path->bus->generation;
2391 cdm->pos.cookie.device = periph->path->device;
2392 cdm->pos.generations[CAM_DEV_GENERATION] =
2393 periph->path->target->generation;
2394 cdm->pos.cookie.periph = periph;
2395 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2396 periph->path->device->generation;
2397 cdm->status = CAM_DEV_MATCH_MORE;
2398 return(0);
2401 j = cdm->num_matches;
2402 cdm->num_matches++;
2403 cdm->matches[j].type = DEV_MATCH_PERIPH;
2404 cdm->matches[j].result.periph_result.path_id =
2405 periph->path->bus->path_id;
2406 cdm->matches[j].result.periph_result.target_id =
2407 periph->path->target->target_id;
2408 cdm->matches[j].result.periph_result.target_lun =
2409 periph->path->device->lun_id;
2410 cdm->matches[j].result.periph_result.unit_number =
2411 periph->unit_number;
2412 strncpy(cdm->matches[j].result.periph_result.periph_name,
2413 periph->periph_name, DEV_IDLEN);
2416 return(1);
2419 static int
2420 xptedtmatch(struct ccb_dev_match *cdm)
2422 int ret;
2424 cdm->num_matches = 0;
2427 * Check the bus list generation. If it has changed, the user
2428 * needs to reset everything and start over.
2430 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2431 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2432 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2433 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2434 return(0);
2437 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2438 && (cdm->pos.cookie.bus != NULL))
2439 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2440 xptedtbusfunc, cdm);
2441 else
2442 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2445 * If we get back 0, that means that we had to stop before fully
2446 * traversing the EDT. It also means that one of the subroutines
2447 * has set the status field to the proper value. If we get back 1,
2448 * we've fully traversed the EDT and copied out any matching entries.
2450 if (ret == 1)
2451 cdm->status = CAM_DEV_MATCH_LAST;
2453 return(ret);
2456 static int
2457 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2459 struct ccb_dev_match *cdm;
2461 cdm = (struct ccb_dev_match *)arg;
2463 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2464 && (cdm->pos.cookie.pdrv == pdrv)
2465 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2466 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2467 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2468 (*pdrv)->generation)) {
2469 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2470 return(0);
2473 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2474 && (cdm->pos.cookie.pdrv == pdrv)
2475 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2476 && (cdm->pos.cookie.periph != NULL))
2477 return(xptpdperiphtraverse(pdrv,
2478 (struct cam_periph *)cdm->pos.cookie.periph,
2479 xptplistperiphfunc, arg));
2480 else
2481 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2484 static int
2485 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2487 struct ccb_dev_match *cdm;
2488 dev_match_ret retval;
2490 cdm = (struct ccb_dev_match *)arg;
2492 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2494 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2495 cdm->status = CAM_DEV_MATCH_ERROR;
2496 return(0);
2500 * If the copy flag is set, copy this peripheral out.
2502 if (retval & DM_RET_COPY) {
2503 int spaceleft, j;
2505 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2506 sizeof(struct dev_match_result));
2509 * If we don't have enough space to put in another
2510 * match result, save our position and tell the
2511 * user there are more devices to check.
2513 if (spaceleft < sizeof(struct dev_match_result)) {
2514 struct periph_driver **pdrv;
2516 pdrv = NULL;
2517 bzero(&cdm->pos, sizeof(cdm->pos));
2518 cdm->pos.position_type =
2519 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2520 CAM_DEV_POS_PERIPH;
2523 * This may look a bit non-sensical, but it is
2524 * actually quite logical. There are very few
2525 * peripheral drivers, and bloating every peripheral
2526 * structure with a pointer back to its parent
2527 * peripheral driver linker set entry would cost
2528 * more in the long run than doing this quick lookup.
2530 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2531 if (strcmp((*pdrv)->driver_name,
2532 periph->periph_name) == 0)
2533 break;
2536 if (*pdrv == NULL) {
2537 cdm->status = CAM_DEV_MATCH_ERROR;
2538 return(0);
2541 cdm->pos.cookie.pdrv = pdrv;
2543 * The periph generation slot does double duty, as
2544 * does the periph pointer slot. They are used for
2545 * both edt and pdrv lookups and positioning.
2547 cdm->pos.cookie.periph = periph;
2548 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2549 (*pdrv)->generation;
2550 cdm->status = CAM_DEV_MATCH_MORE;
2551 return(0);
2554 j = cdm->num_matches;
2555 cdm->num_matches++;
2556 cdm->matches[j].type = DEV_MATCH_PERIPH;
2557 cdm->matches[j].result.periph_result.path_id =
2558 periph->path->bus->path_id;
2561 * The transport layer peripheral doesn't have a target or
2562 * lun.
2564 if (periph->path->target)
2565 cdm->matches[j].result.periph_result.target_id =
2566 periph->path->target->target_id;
2567 else
2568 cdm->matches[j].result.periph_result.target_id = -1;
2570 if (periph->path->device)
2571 cdm->matches[j].result.periph_result.target_lun =
2572 periph->path->device->lun_id;
2573 else
2574 cdm->matches[j].result.periph_result.target_lun = -1;
2576 cdm->matches[j].result.periph_result.unit_number =
2577 periph->unit_number;
2578 strncpy(cdm->matches[j].result.periph_result.periph_name,
2579 periph->periph_name, DEV_IDLEN);
2582 return(1);
2585 static int
2586 xptperiphlistmatch(struct ccb_dev_match *cdm)
2588 int ret;
2590 cdm->num_matches = 0;
2593 * At this point in the edt traversal function, we check the bus
2594 * list generation to make sure that no busses have been added or
2595 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2596 * For the peripheral driver list traversal function, however, we
2597 * don't have to worry about new peripheral driver types coming or
2598 * going; they're in a linker set, and therefore can't change
2599 * without a recompile.
2602 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2603 && (cdm->pos.cookie.pdrv != NULL))
2604 ret = xptpdrvtraverse(
2605 (struct periph_driver **)cdm->pos.cookie.pdrv,
2606 xptplistpdrvfunc, cdm);
2607 else
2608 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2611 * If we get back 0, that means that we had to stop before fully
2612 * traversing the peripheral driver tree. It also means that one of
2613 * the subroutines has set the status field to the proper value. If
2614 * we get back 1, we've fully traversed the EDT and copied out any
2615 * matching entries.
2617 if (ret == 1)
2618 cdm->status = CAM_DEV_MATCH_LAST;
2620 return(ret);
2623 static int
2624 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2626 struct cam_eb *bus, *next_bus;
2627 int retval;
2629 retval = 1;
2631 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2632 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2633 bus != NULL;
2634 bus = next_bus) {
2635 next_bus = TAILQ_NEXT(bus, links);
2637 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2638 CAM_SIM_LOCK(bus->sim);
2639 retval = tr_func(bus, arg);
2640 CAM_SIM_UNLOCK(bus->sim);
2641 if (retval == 0)
2642 return(retval);
2643 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2645 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2647 return(retval);
2650 static int
2651 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2652 xpt_targetfunc_t *tr_func, void *arg)
2654 struct cam_et *target, *next_target;
2655 int retval;
2657 retval = 1;
2658 for (target = (start_target ? start_target :
2659 TAILQ_FIRST(&bus->et_entries));
2660 target != NULL; target = next_target) {
2662 next_target = TAILQ_NEXT(target, links);
2664 retval = tr_func(target, arg);
2666 if (retval == 0)
2667 return(retval);
2670 return(retval);
2673 static int
2674 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2675 xpt_devicefunc_t *tr_func, void *arg)
2677 struct cam_ed *device, *next_device;
2678 int retval;
2680 retval = 1;
2681 for (device = (start_device ? start_device :
2682 TAILQ_FIRST(&target->ed_entries));
2683 device != NULL;
2684 device = next_device) {
2686 next_device = TAILQ_NEXT(device, links);
2688 retval = tr_func(device, arg);
2690 if (retval == 0)
2691 return(retval);
2694 return(retval);
2697 static int
2698 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2699 xpt_periphfunc_t *tr_func, void *arg)
2701 struct cam_periph *periph, *next_periph;
2702 int retval;
2704 retval = 1;
2706 for (periph = (start_periph ? start_periph :
2707 SLIST_FIRST(&device->periphs));
2708 periph != NULL;
2709 periph = next_periph) {
2711 next_periph = SLIST_NEXT(periph, periph_links);
2713 retval = tr_func(periph, arg);
2714 if (retval == 0)
2715 return(retval);
2718 return(retval);
2721 static int
2722 xptpdrvtraverse(struct periph_driver **start_pdrv,
2723 xpt_pdrvfunc_t *tr_func, void *arg)
2725 struct periph_driver **pdrv;
2726 int retval;
2728 retval = 1;
2731 * We don't traverse the peripheral driver list like we do the
2732 * other lists, because it is a linker set, and therefore cannot be
2733 * changed during runtime. If the peripheral driver list is ever
2734 * re-done to be something other than a linker set (i.e. it can
2735 * change while the system is running), the list traversal should
2736 * be modified to work like the other traversal functions.
2738 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2739 *pdrv != NULL; pdrv++) {
2740 retval = tr_func(pdrv, arg);
2742 if (retval == 0)
2743 return(retval);
2746 return(retval);
2749 static int
2750 xptpdperiphtraverse(struct periph_driver **pdrv,
2751 struct cam_periph *start_periph,
2752 xpt_periphfunc_t *tr_func, void *arg)
2754 struct cam_periph *periph, *next_periph;
2755 int retval;
2757 retval = 1;
2759 for (periph = (start_periph ? start_periph :
2760 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2761 periph = next_periph) {
2763 next_periph = TAILQ_NEXT(periph, unit_links);
2765 retval = tr_func(periph, arg);
2766 if (retval == 0)
2767 return(retval);
2769 return(retval);
2772 static int
2773 xptdefbusfunc(struct cam_eb *bus, void *arg)
2775 struct xpt_traverse_config *tr_config;
2777 tr_config = (struct xpt_traverse_config *)arg;
2779 if (tr_config->depth == XPT_DEPTH_BUS) {
2780 xpt_busfunc_t *tr_func;
2782 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2784 return(tr_func(bus, tr_config->tr_arg));
2785 } else
2786 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2789 static int
2790 xptdeftargetfunc(struct cam_et *target, void *arg)
2792 struct xpt_traverse_config *tr_config;
2794 tr_config = (struct xpt_traverse_config *)arg;
2796 if (tr_config->depth == XPT_DEPTH_TARGET) {
2797 xpt_targetfunc_t *tr_func;
2799 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2801 return(tr_func(target, tr_config->tr_arg));
2802 } else
2803 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2806 static int
2807 xptdefdevicefunc(struct cam_ed *device, void *arg)
2809 struct xpt_traverse_config *tr_config;
2811 tr_config = (struct xpt_traverse_config *)arg;
2813 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2814 xpt_devicefunc_t *tr_func;
2816 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2818 return(tr_func(device, tr_config->tr_arg));
2819 } else
2820 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2823 static int
2824 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2826 struct xpt_traverse_config *tr_config;
2827 xpt_periphfunc_t *tr_func;
2829 tr_config = (struct xpt_traverse_config *)arg;
2831 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2834 * Unlike the other default functions, we don't check for depth
2835 * here. The peripheral driver level is the last level in the EDT,
2836 * so if we're here, we should execute the function in question.
2838 return(tr_func(periph, tr_config->tr_arg));
2842 * Execute the given function for every bus in the EDT.
2844 static int
2845 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2847 struct xpt_traverse_config tr_config;
2849 tr_config.depth = XPT_DEPTH_BUS;
2850 tr_config.tr_func = tr_func;
2851 tr_config.tr_arg = arg;
2853 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2857 * Execute the given function for every device in the EDT.
2859 static int
2860 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2862 struct xpt_traverse_config tr_config;
2864 tr_config.depth = XPT_DEPTH_DEVICE;
2865 tr_config.tr_func = tr_func;
2866 tr_config.tr_arg = arg;
2868 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2871 static int
2872 xptsetasyncfunc(struct cam_ed *device, void *arg)
2874 struct cam_path path;
2875 struct ccb_getdev cgd;
2876 struct async_node *cur_entry;
2878 cur_entry = (struct async_node *)arg;
2881 * Don't report unconfigured devices (Wildcard devs,
2882 * devices only for target mode, device instances
2883 * that have been invalidated but are waiting for
2884 * their last reference count to be released).
2886 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2887 return (1);
2889 xpt_compile_path(&path,
2890 NULL,
2891 device->target->bus->path_id,
2892 device->target->target_id,
2893 device->lun_id);
2894 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2895 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2896 xpt_action((union ccb *)&cgd);
2897 cur_entry->callback(cur_entry->callback_arg,
2898 AC_FOUND_DEVICE,
2899 &path, &cgd);
2900 xpt_release_path(&path);
2902 return(1);
2905 static int
2906 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2908 struct cam_path path;
2909 struct ccb_pathinq cpi;
2910 struct async_node *cur_entry;
2912 cur_entry = (struct async_node *)arg;
2914 xpt_compile_path(&path, /*periph*/NULL,
2915 bus->sim->path_id,
2916 CAM_TARGET_WILDCARD,
2917 CAM_LUN_WILDCARD);
2918 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2919 cpi.ccb_h.func_code = XPT_PATH_INQ;
2920 xpt_action((union ccb *)&cpi);
2921 cur_entry->callback(cur_entry->callback_arg,
2922 AC_PATH_REGISTERED,
2923 &path, &cpi);
2924 xpt_release_path(&path);
2926 return(1);
2929 static void
2930 xpt_action_sasync_cb(void *context, int pending)
2932 struct async_node *cur_entry;
2933 struct xpt_task *task;
2934 uint32_t added;
2936 task = (struct xpt_task *)context;
2937 cur_entry = (struct async_node *)task->data1;
2938 added = task->data2;
2940 if ((added & AC_FOUND_DEVICE) != 0) {
2942 * Get this peripheral up to date with all
2943 * the currently existing devices.
2945 xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2947 if ((added & AC_PATH_REGISTERED) != 0) {
2949 * Get this peripheral up to date with all
2950 * the currently existing busses.
2952 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2954 kfree(task, M_CAMXPT);
2957 void
2958 xpt_action(union ccb *start_ccb)
2960 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2962 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2964 switch (start_ccb->ccb_h.func_code) {
2965 case XPT_SCSI_IO:
2966 case XPT_TRIM:
2968 struct cam_ed *device;
2969 #ifdef CAMDEBUG
2970 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2971 struct cam_path *path;
2973 path = start_ccb->ccb_h.path;
2974 #endif
2977 * For the sake of compatibility with SCSI-1
2978 * devices that may not understand the identify
2979 * message, we include lun information in the
2980 * second byte of all commands. SCSI-1 specifies
2981 * that luns are a 3 bit value and reserves only 3
2982 * bits for lun information in the CDB. Later
2983 * revisions of the SCSI spec allow for more than 8
2984 * luns, but have deprecated lun information in the
2985 * CDB. So, if the lun won't fit, we must omit.
2987 * Also be aware that during initial probing for devices,
2988 * the inquiry information is unknown but initialized to 0.
2989 * This means that this code will be exercised while probing
2990 * devices with an ANSI revision greater than 2.
2992 device = start_ccb->ccb_h.path->device;
2993 if (device->protocol_version <= SCSI_REV_2
2994 && start_ccb->ccb_h.target_lun < 8
2995 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2997 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2998 start_ccb->ccb_h.target_lun << 5;
3000 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3001 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3002 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3003 &path->device->inq_data),
3004 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3005 cdb_str, sizeof(cdb_str))));
3006 /* FALLTHROUGH */
3008 case XPT_TARGET_IO:
3009 case XPT_CONT_TARGET_IO:
3010 start_ccb->csio.sense_resid = 0;
3011 start_ccb->csio.resid = 0;
3012 /* FALLTHROUGH */
3013 case XPT_RESET_DEV:
3014 case XPT_ENG_EXEC:
3016 struct cam_path *path;
3017 struct cam_sim *sim;
3018 int runq;
3020 path = start_ccb->ccb_h.path;
3022 sim = path->bus->sim;
3023 if (sim == &cam_dead_sim) {
3024 /* The SIM has gone; just execute the CCB directly. */
3025 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3026 (*(sim->sim_action))(sim, start_ccb);
3027 break;
3030 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3031 if (path->device->qfrozen_cnt == 0)
3032 runq = xpt_schedule_dev_sendq(path->bus, path->device);
3033 else
3034 runq = 0;
3035 if (runq != 0)
3036 xpt_run_dev_sendq(path->bus);
3037 break;
3039 case XPT_SET_TRAN_SETTINGS:
3041 xpt_set_transfer_settings(&start_ccb->cts,
3042 start_ccb->ccb_h.path->device,
3043 /*async_update*/FALSE);
3044 break;
3046 case XPT_CALC_GEOMETRY:
3048 struct cam_sim *sim;
3050 /* Filter out garbage */
3051 if (start_ccb->ccg.block_size == 0
3052 || start_ccb->ccg.volume_size == 0) {
3053 start_ccb->ccg.cylinders = 0;
3054 start_ccb->ccg.heads = 0;
3055 start_ccb->ccg.secs_per_track = 0;
3056 start_ccb->ccb_h.status = CAM_REQ_CMP;
3057 break;
3059 sim = start_ccb->ccb_h.path->bus->sim;
3060 (*(sim->sim_action))(sim, start_ccb);
3061 break;
3063 case XPT_ABORT:
3065 union ccb* abort_ccb;
3067 abort_ccb = start_ccb->cab.abort_ccb;
3068 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3070 if (abort_ccb->ccb_h.pinfo.index >= 0) {
3071 struct cam_ccbq *ccbq;
3073 ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3074 cam_ccbq_remove_ccb(ccbq, abort_ccb);
3075 abort_ccb->ccb_h.status =
3076 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3077 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3078 xpt_done(abort_ccb);
3079 start_ccb->ccb_h.status = CAM_REQ_CMP;
3080 break;
3082 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3083 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3085 * We've caught this ccb en route to
3086 * the SIM. Flag it for abort and the
3087 * SIM will do so just before starting
3088 * real work on the CCB.
3090 abort_ccb->ccb_h.status =
3091 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3092 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3093 start_ccb->ccb_h.status = CAM_REQ_CMP;
3094 break;
3097 if (XPT_FC_IS_QUEUED(abort_ccb)
3098 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3100 * It's already completed but waiting
3101 * for our SWI to get to it.
3103 start_ccb->ccb_h.status = CAM_UA_ABORT;
3104 break;
3107 * If we weren't able to take care of the abort request
3108 * in the XPT, pass the request down to the SIM for processing.
3110 /* FALLTHROUGH */
3112 case XPT_ACCEPT_TARGET_IO:
3113 case XPT_EN_LUN:
3114 case XPT_IMMED_NOTIFY:
3115 case XPT_NOTIFY_ACK:
3116 case XPT_GET_TRAN_SETTINGS:
3117 case XPT_RESET_BUS:
3119 struct cam_sim *sim;
3121 sim = start_ccb->ccb_h.path->bus->sim;
3122 (*(sim->sim_action))(sim, start_ccb);
3123 break;
3125 case XPT_PATH_INQ:
3127 struct cam_sim *sim;
3129 sim = start_ccb->ccb_h.path->bus->sim;
3130 (*(sim->sim_action))(sim, start_ccb);
3131 break;
3133 case XPT_PATH_STATS:
3134 start_ccb->cpis.last_reset =
3135 start_ccb->ccb_h.path->bus->last_reset;
3136 start_ccb->ccb_h.status = CAM_REQ_CMP;
3137 break;
3138 case XPT_GDEV_TYPE:
3140 struct cam_ed *dev;
3142 dev = start_ccb->ccb_h.path->device;
3143 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3144 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3145 } else {
3146 struct ccb_getdev *cgd;
3148 cgd = &start_ccb->cgd;
3149 cgd->inq_data = dev->inq_data;
3150 cgd->ccb_h.status = CAM_REQ_CMP;
3151 cgd->serial_num_len = dev->serial_num_len;
3152 if ((dev->serial_num_len > 0)
3153 && (dev->serial_num != NULL))
3154 bcopy(dev->serial_num, cgd->serial_num,
3155 dev->serial_num_len);
3157 break;
3159 case XPT_GDEV_STATS:
3161 struct cam_ed *dev;
3163 dev = start_ccb->ccb_h.path->device;
3164 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3165 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3166 } else {
3167 struct ccb_getdevstats *cgds;
3168 struct cam_eb *bus;
3169 struct cam_et *tar;
3171 cgds = &start_ccb->cgds;
3172 bus = cgds->ccb_h.path->bus;
3173 tar = cgds->ccb_h.path->target;
3174 cgds->dev_openings = dev->ccbq.dev_openings;
3175 cgds->dev_active = dev->ccbq.dev_active;
3176 cgds->devq_openings = dev->ccbq.devq_openings;
3177 cgds->devq_queued = dev->ccbq.queue.entries;
3178 cgds->held = dev->ccbq.held;
3179 cgds->last_reset = tar->last_reset;
3180 cgds->maxtags = dev->quirk->maxtags;
3181 cgds->mintags = dev->quirk->mintags;
3182 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3183 cgds->last_reset = bus->last_reset;
3184 cgds->ccb_h.status = CAM_REQ_CMP;
3186 break;
3188 case XPT_GDEVLIST:
3190 struct cam_periph *nperiph;
3191 struct periph_list *periph_head;
3192 struct ccb_getdevlist *cgdl;
3193 u_int i;
3194 struct cam_ed *device;
3195 int found;
3198 found = 0;
3201 * Don't want anyone mucking with our data.
3203 device = start_ccb->ccb_h.path->device;
3204 periph_head = &device->periphs;
3205 cgdl = &start_ccb->cgdl;
3208 * Check and see if the list has changed since the user
3209 * last requested a list member. If so, tell them that the
3210 * list has changed, and therefore they need to start over
3211 * from the beginning.
3213 if ((cgdl->index != 0) &&
3214 (cgdl->generation != device->generation)) {
3215 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3216 break;
3220 * Traverse the list of peripherals and attempt to find
3221 * the requested peripheral.
3223 for (nperiph = SLIST_FIRST(periph_head), i = 0;
3224 (nperiph != NULL) && (i <= cgdl->index);
3225 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3226 if (i == cgdl->index) {
3227 strncpy(cgdl->periph_name,
3228 nperiph->periph_name,
3229 DEV_IDLEN);
3230 cgdl->unit_number = nperiph->unit_number;
3231 found = 1;
3234 if (found == 0) {
3235 cgdl->status = CAM_GDEVLIST_ERROR;
3236 break;
3239 if (nperiph == NULL)
3240 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3241 else
3242 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3244 cgdl->index++;
3245 cgdl->generation = device->generation;
3247 cgdl->ccb_h.status = CAM_REQ_CMP;
3248 break;
3250 case XPT_DEV_MATCH:
3252 dev_pos_type position_type;
3253 struct ccb_dev_match *cdm;
3254 int ret;
3256 cdm = &start_ccb->cdm;
3259 * There are two ways of getting at information in the EDT.
3260 * The first way is via the primary EDT tree. It starts
3261 * with a list of busses, then a list of targets on a bus,
3262 * then devices/luns on a target, and then peripherals on a
3263 * device/lun. The "other" way is by the peripheral driver
3264 * lists. The peripheral driver lists are organized by
3265 * peripheral driver. (obviously) So it makes sense to
3266 * use the peripheral driver list if the user is looking
3267 * for something like "da1", or all "da" devices. If the
3268 * user is looking for something on a particular bus/target
3269 * or lun, it's generally better to go through the EDT tree.
3272 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3273 position_type = cdm->pos.position_type;
3274 else {
3275 u_int i;
3277 position_type = CAM_DEV_POS_NONE;
3279 for (i = 0; i < cdm->num_patterns; i++) {
3280 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3281 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3282 position_type = CAM_DEV_POS_EDT;
3283 break;
3287 if (cdm->num_patterns == 0)
3288 position_type = CAM_DEV_POS_EDT;
3289 else if (position_type == CAM_DEV_POS_NONE)
3290 position_type = CAM_DEV_POS_PDRV;
3293 switch(position_type & CAM_DEV_POS_TYPEMASK) {
3294 case CAM_DEV_POS_EDT:
3295 ret = xptedtmatch(cdm);
3296 break;
3297 case CAM_DEV_POS_PDRV:
3298 ret = xptperiphlistmatch(cdm);
3299 break;
3300 default:
3301 cdm->status = CAM_DEV_MATCH_ERROR;
3302 break;
3305 if (cdm->status == CAM_DEV_MATCH_ERROR)
3306 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3307 else
3308 start_ccb->ccb_h.status = CAM_REQ_CMP;
3310 break;
3312 case XPT_SASYNC_CB:
3314 struct ccb_setasync *csa;
3315 struct async_node *cur_entry;
3316 struct async_list *async_head;
3317 u_int32_t added;
3319 csa = &start_ccb->csa;
3320 added = csa->event_enable;
3321 async_head = &csa->ccb_h.path->device->asyncs;
3324 * If there is already an entry for us, simply
3325 * update it.
3327 cur_entry = SLIST_FIRST(async_head);
3328 while (cur_entry != NULL) {
3329 if ((cur_entry->callback_arg == csa->callback_arg)
3330 && (cur_entry->callback == csa->callback))
3331 break;
3332 cur_entry = SLIST_NEXT(cur_entry, links);
3335 if (cur_entry != NULL) {
3337 * If the request has no flags set,
3338 * remove the entry.
3340 added &= ~cur_entry->event_enable;
3341 if (csa->event_enable == 0) {
3342 SLIST_REMOVE(async_head, cur_entry,
3343 async_node, links);
3344 csa->ccb_h.path->device->refcount--;
3345 kfree(cur_entry, M_CAMXPT);
3346 } else {
3347 cur_entry->event_enable = csa->event_enable;
3349 } else {
3350 cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3351 M_INTWAIT);
3352 cur_entry->event_enable = csa->event_enable;
3353 cur_entry->callback_arg = csa->callback_arg;
3354 cur_entry->callback = csa->callback;
3355 SLIST_INSERT_HEAD(async_head, cur_entry, links);
3356 csa->ccb_h.path->device->refcount++;
3360 * Need to decouple this operation via a taskqueue so that
3361 * the locking doesn't become a mess.
3363 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3364 struct xpt_task *task;
3366 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3367 M_INTWAIT);
3369 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3370 task->data1 = cur_entry;
3371 task->data2 = added;
3372 taskqueue_enqueue(taskqueue_thread[mycpuid],
3373 &task->task);
3376 start_ccb->ccb_h.status = CAM_REQ_CMP;
3377 break;
3379 case XPT_REL_SIMQ:
3381 struct ccb_relsim *crs;
3382 struct cam_ed *dev;
3384 crs = &start_ccb->crs;
3385 dev = crs->ccb_h.path->device;
3386 if (dev == NULL) {
3388 crs->ccb_h.status = CAM_DEV_NOT_THERE;
3389 break;
3392 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3394 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3395 /* Don't ever go below one opening */
3396 if (crs->openings > 0) {
3397 xpt_dev_ccbq_resize(crs->ccb_h.path,
3398 crs->openings);
3400 if (bootverbose) {
3401 xpt_print(crs->ccb_h.path,
3402 "tagged openings now %d\n",
3403 crs->openings);
3409 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3411 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3414 * Just extend the old timeout and decrement
3415 * the freeze count so that a single timeout
3416 * is sufficient for releasing the queue.
3418 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3419 callout_stop(&dev->callout);
3420 } else {
3422 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3425 callout_reset(&dev->callout,
3426 (crs->release_timeout * hz) / 1000,
3427 xpt_release_devq_timeout, dev);
3429 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3433 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3435 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3437 * Decrement the freeze count so that a single
3438 * completion is still sufficient to unfreeze
3439 * the queue.
3441 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3442 } else {
3444 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3445 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3449 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3451 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3452 || (dev->ccbq.dev_active == 0)) {
3454 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3455 } else {
3457 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3458 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3462 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3464 xpt_release_devq(crs->ccb_h.path, /*count*/1,
3465 /*run_queue*/TRUE);
3467 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3468 start_ccb->ccb_h.status = CAM_REQ_CMP;
3469 break;
3471 case XPT_SCAN_BUS:
3472 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3473 break;
3474 case XPT_SCAN_LUN:
3475 xpt_scan_lun(start_ccb->ccb_h.path->periph,
3476 start_ccb->ccb_h.path, start_ccb->crcn.flags,
3477 start_ccb);
3478 break;
3479 case XPT_DEBUG: {
3480 #ifdef CAMDEBUG
3481 #ifdef CAM_DEBUG_DELAY
3482 cam_debug_delay = CAM_DEBUG_DELAY;
3483 #endif
3484 cam_dflags = start_ccb->cdbg.flags;
3485 if (cam_dpath != NULL) {
3486 xpt_free_path(cam_dpath);
3487 cam_dpath = NULL;
3490 if (cam_dflags != CAM_DEBUG_NONE) {
3491 if (xpt_create_path(&cam_dpath, xpt_periph,
3492 start_ccb->ccb_h.path_id,
3493 start_ccb->ccb_h.target_id,
3494 start_ccb->ccb_h.target_lun) !=
3495 CAM_REQ_CMP) {
3496 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3497 cam_dflags = CAM_DEBUG_NONE;
3498 } else {
3499 start_ccb->ccb_h.status = CAM_REQ_CMP;
3500 xpt_print(cam_dpath, "debugging flags now %x\n",
3501 cam_dflags);
3503 } else {
3504 cam_dpath = NULL;
3505 start_ccb->ccb_h.status = CAM_REQ_CMP;
3507 #else /* !CAMDEBUG */
3508 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3509 #endif /* CAMDEBUG */
3510 break;
3512 case XPT_NOOP:
3513 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3514 xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3515 start_ccb->ccb_h.status = CAM_REQ_CMP;
3516 break;
3517 default:
3518 case XPT_SDEV_TYPE:
3519 case XPT_TERM_IO:
3520 case XPT_ENG_INQ:
3521 /* XXX Implement */
3522 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3523 break;
3527 void
3528 xpt_polled_action(union ccb *start_ccb)
3530 u_int32_t timeout;
3531 struct cam_sim *sim;
3532 struct cam_devq *devq;
3533 struct cam_ed *dev;
3535 timeout = start_ccb->ccb_h.timeout;
3536 sim = start_ccb->ccb_h.path->bus->sim;
3537 devq = sim->devq;
3538 dev = start_ccb->ccb_h.path->device;
3540 sim_lock_assert_owned(sim->lock);
3543 * Steal an opening so that no other queued requests
3544 * can get it before us while we simulate interrupts.
3546 dev->ccbq.devq_openings--;
3547 dev->ccbq.dev_openings--;
3549 while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3550 && (--timeout > 0)) {
3551 DELAY(1000);
3552 (*(sim->sim_poll))(sim);
3553 camisr_runqueue(sim);
3556 dev->ccbq.devq_openings++;
3557 dev->ccbq.dev_openings++;
3559 if (timeout != 0) {
3560 xpt_action(start_ccb);
3561 while(--timeout > 0) {
3562 (*(sim->sim_poll))(sim);
3563 camisr_runqueue(sim);
3564 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3565 != CAM_REQ_INPROG)
3566 break;
3567 DELAY(1000);
3569 if (timeout == 0) {
3571 * XXX Is it worth adding a sim_timeout entry
3572 * point so we can attempt recovery? If
3573 * this is only used for dumps, I don't think
3574 * it is.
3576 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3578 } else {
3579 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3584 * Schedule a peripheral driver to receive a ccb when it's
3585 * target device has space for more transactions.
3587 void
3588 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3590 struct cam_ed *device;
3591 union ccb *work_ccb;
3592 int runq;
3594 sim_lock_assert_owned(perph->sim->lock);
3596 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3597 device = perph->path->device;
3598 if (periph_is_queued(perph)) {
3599 /* Simply reorder based on new priority */
3600 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3601 (" change priority to %d\n", new_priority));
3602 if (new_priority < perph->pinfo.priority) {
3603 camq_change_priority(&device->drvq,
3604 perph->pinfo.index,
3605 new_priority);
3607 runq = 0;
3608 } else if (perph->path->bus->sim == &cam_dead_sim) {
3609 /* The SIM is gone so just call periph_start directly. */
3610 work_ccb = xpt_get_ccb(perph->path->device);
3611 if (work_ccb == NULL)
3612 return; /* XXX */
3613 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3614 perph->pinfo.priority = new_priority;
3615 perph->periph_start(perph, work_ccb);
3616 return;
3617 } else {
3618 /* New entry on the queue */
3619 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3620 (" added periph to queue\n"));
3621 perph->pinfo.priority = new_priority;
3622 perph->pinfo.generation = ++device->drvq.generation;
3623 camq_insert(&device->drvq, &perph->pinfo);
3624 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3626 if (runq != 0) {
3627 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3628 (" calling xpt_run_devq\n"));
3629 xpt_run_dev_allocq(perph->path->bus);
3635 * Schedule a device to run on a given queue.
3636 * If the device was inserted as a new entry on the queue,
3637 * return 1 meaning the device queue should be run. If we
3638 * were already queued, implying someone else has already
3639 * started the queue, return 0 so the caller doesn't attempt
3640 * to run the queue.
3642 static int
3643 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3644 u_int32_t new_priority)
3646 int retval;
3647 u_int32_t old_priority;
3649 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3651 old_priority = pinfo->priority;
3654 * Are we already queued?
3656 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3657 /* Simply reorder based on new priority */
3658 if (new_priority < old_priority) {
3659 camq_change_priority(queue, pinfo->index,
3660 new_priority);
3661 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3662 ("changed priority to %d\n",
3663 new_priority));
3665 retval = 0;
3666 } else {
3667 /* New entry on the queue */
3668 if (new_priority < old_priority)
3669 pinfo->priority = new_priority;
3671 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3672 ("Inserting onto queue\n"));
3673 pinfo->generation = ++queue->generation;
3674 camq_insert(queue, pinfo);
3675 retval = 1;
3677 return (retval);
3680 static void
3681 xpt_run_dev_allocq(struct cam_eb *bus)
3683 struct cam_devq *devq;
3685 if ((devq = bus->sim->devq) == NULL) {
3686 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3687 return;
3689 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3691 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3692 (" qfrozen_cnt == 0x%x, entries == %d, "
3693 "openings == %d, active == %d\n",
3694 devq->alloc_queue.qfrozen_cnt,
3695 devq->alloc_queue.entries,
3696 devq->alloc_openings,
3697 devq->alloc_active));
3699 devq->alloc_queue.qfrozen_cnt++;
3700 while ((devq->alloc_queue.entries > 0)
3701 && (devq->alloc_openings > 0)
3702 && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3703 struct cam_ed_qinfo *qinfo;
3704 struct cam_ed *device;
3705 union ccb *work_ccb;
3706 struct cam_periph *drv;
3707 struct camq *drvq;
3709 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3710 CAMQ_HEAD);
3711 device = qinfo->device;
3713 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3714 ("running device %p\n", device));
3716 drvq = &device->drvq;
3718 #ifdef CAMDEBUG
3719 if (drvq->entries <= 0) {
3720 panic("xpt_run_dev_allocq: "
3721 "Device on queue without any work to do");
3723 #endif
3724 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3725 devq->alloc_openings--;
3726 devq->alloc_active++;
3727 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3728 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3729 drv->pinfo.priority);
3730 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3731 ("calling periph start\n"));
3732 drv->periph_start(drv, work_ccb);
3733 } else {
3735 * Malloc failure in alloc_ccb
3738 * XXX add us to a list to be run from free_ccb
3739 * if we don't have any ccbs active on this
3740 * device queue otherwise we may never get run
3741 * again.
3743 break;
3746 if (drvq->entries > 0) {
3747 /* We have more work. Attempt to reschedule */
3748 xpt_schedule_dev_allocq(bus, device);
3751 devq->alloc_queue.qfrozen_cnt--;
3754 static void
3755 xpt_run_dev_sendq(struct cam_eb *bus)
3757 struct cam_devq *devq;
3759 if ((devq = bus->sim->devq) == NULL) {
3760 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3761 return;
3763 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3765 devq->send_queue.qfrozen_cnt++;
3766 while ((devq->send_queue.entries > 0)
3767 && (devq->send_openings > 0)) {
3768 struct cam_ed_qinfo *qinfo;
3769 struct cam_ed *device;
3770 union ccb *work_ccb;
3771 struct cam_sim *sim;
3773 if (devq->send_queue.qfrozen_cnt > 1) {
3774 break;
3777 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3778 CAMQ_HEAD);
3779 device = qinfo->device;
3782 * If the device has been "frozen", don't attempt
3783 * to run it.
3785 if (device->qfrozen_cnt > 0) {
3786 continue;
3789 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3790 ("running device %p\n", device));
3792 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3793 if (work_ccb == NULL) {
3794 kprintf("device on run queue with no ccbs???\n");
3795 continue;
3798 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3800 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3801 if (xsoftc.num_highpower <= 0) {
3803 * We got a high power command, but we
3804 * don't have any available slots. Freeze
3805 * the device queue until we have a slot
3806 * available.
3808 device->qfrozen_cnt++;
3809 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3810 &work_ccb->ccb_h,
3811 xpt_links.stqe);
3813 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3814 continue;
3815 } else {
3817 * Consume a high power slot while
3818 * this ccb runs.
3820 xsoftc.num_highpower--;
3822 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3824 devq->active_dev = device;
3825 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3827 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3829 devq->send_openings--;
3830 devq->send_active++;
3832 if (device->ccbq.queue.entries > 0)
3833 xpt_schedule_dev_sendq(bus, device);
3835 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3837 * The client wants to freeze the queue
3838 * after this CCB is sent.
3840 device->qfrozen_cnt++;
3843 /* In Target mode, the peripheral driver knows best... */
3844 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3845 if ((device->inq_flags & SID_CmdQue) != 0
3846 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3847 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3848 else
3850 * Clear this in case of a retried CCB that
3851 * failed due to a rejected tag.
3853 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3857 * Device queues can be shared among multiple sim instances
3858 * that reside on different busses. Use the SIM in the queue
3859 * CCB's path, rather than the one in the bus that was passed
3860 * into this function.
3862 sim = work_ccb->ccb_h.path->bus->sim;
3863 (*(sim->sim_action))(sim, work_ccb);
3865 devq->active_dev = NULL;
3867 devq->send_queue.qfrozen_cnt--;
3871 * This function merges stuff from the slave ccb into the master ccb, while
3872 * keeping important fields in the master ccb constant.
3874 void
3875 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3878 * Pull fields that are valid for peripheral drivers to set
3879 * into the master CCB along with the CCB "payload".
3881 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3882 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3883 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3884 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3885 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3886 sizeof(union ccb) - sizeof(struct ccb_hdr));
3889 void
3890 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3892 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3893 callout_init(&ccb_h->timeout_ch);
3894 ccb_h->pinfo.priority = priority;
3895 ccb_h->path = path;
3896 ccb_h->path_id = path->bus->path_id;
3897 if (path->target)
3898 ccb_h->target_id = path->target->target_id;
3899 else
3900 ccb_h->target_id = CAM_TARGET_WILDCARD;
3901 if (path->device) {
3902 ccb_h->target_lun = path->device->lun_id;
3903 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3904 } else {
3905 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3907 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3908 ccb_h->flags = 0;
3911 /* Path manipulation functions */
3912 cam_status
3913 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3914 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3916 struct cam_path *path;
3917 cam_status status;
3919 path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3920 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3921 if (status != CAM_REQ_CMP) {
3922 kfree(path, M_CAMXPT);
3923 path = NULL;
3925 *new_path_ptr = path;
3926 return (status);
3929 cam_status
3930 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3931 struct cam_periph *periph, path_id_t path_id,
3932 target_id_t target_id, lun_id_t lun_id)
3934 struct cam_path *path;
3935 struct cam_eb *bus = NULL;
3936 cam_status status;
3937 int need_unlock = 0;
3939 path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3941 if (path_id != CAM_BUS_WILDCARD) {
3942 bus = xpt_find_bus(path_id);
3943 if (bus != NULL) {
3944 need_unlock = 1;
3945 CAM_SIM_LOCK(bus->sim);
3948 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3949 if (need_unlock)
3950 CAM_SIM_UNLOCK(bus->sim);
3951 if (status != CAM_REQ_CMP) {
3952 kfree(path, M_CAMXPT);
3953 path = NULL;
3955 *new_path_ptr = path;
3956 return (status);
3959 static cam_status
3960 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3961 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3963 struct cam_eb *bus;
3964 struct cam_et *target;
3965 struct cam_ed *device;
3966 cam_status status;
3968 status = CAM_REQ_CMP; /* Completed without error */
3969 target = NULL; /* Wildcarded */
3970 device = NULL; /* Wildcarded */
3973 * We will potentially modify the EDT, so block interrupts
3974 * that may attempt to create cam paths.
3976 bus = xpt_find_bus(path_id);
3977 if (bus == NULL) {
3978 status = CAM_PATH_INVALID;
3979 } else {
3980 target = xpt_find_target(bus, target_id);
3981 if (target == NULL) {
3982 /* Create one */
3983 struct cam_et *new_target;
3985 new_target = xpt_alloc_target(bus, target_id);
3986 if (new_target == NULL) {
3987 status = CAM_RESRC_UNAVAIL;
3988 } else {
3989 target = new_target;
3992 if (target != NULL) {
3993 device = xpt_find_device(target, lun_id);
3994 if (device == NULL) {
3995 /* Create one */
3996 struct cam_ed *new_device;
3998 new_device = xpt_alloc_device(bus,
3999 target,
4000 lun_id);
4001 if (new_device == NULL) {
4002 status = CAM_RESRC_UNAVAIL;
4003 } else {
4004 device = new_device;
4011 * Only touch the user's data if we are successful.
4013 if (status == CAM_REQ_CMP) {
4014 new_path->periph = perph;
4015 new_path->bus = bus;
4016 new_path->target = target;
4017 new_path->device = device;
4018 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4019 } else {
4020 if (device != NULL)
4021 xpt_release_device(bus, target, device);
4022 if (target != NULL)
4023 xpt_release_target(bus, target);
4024 if (bus != NULL)
4025 xpt_release_bus(bus);
4027 return (status);
4030 static void
4031 xpt_release_path(struct cam_path *path)
4033 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4034 if (path->device != NULL) {
4035 xpt_release_device(path->bus, path->target, path->device);
4036 path->device = NULL;
4038 if (path->target != NULL) {
4039 xpt_release_target(path->bus, path->target);
4040 path->target = NULL;
4042 if (path->bus != NULL) {
4043 xpt_release_bus(path->bus);
4044 path->bus = NULL;
4048 void
4049 xpt_free_path(struct cam_path *path)
4051 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4052 xpt_release_path(path);
4053 kfree(path, M_CAMXPT);
4058 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4059 * in path1, 2 for match with wildcards in path2.
4062 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4064 int retval = 0;
4066 if (path1->bus != path2->bus) {
4067 if (path1->bus->path_id == CAM_BUS_WILDCARD)
4068 retval = 1;
4069 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4070 retval = 2;
4071 else
4072 return (-1);
4074 if (path1->target != path2->target) {
4075 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4076 if (retval == 0)
4077 retval = 1;
4078 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4079 retval = 2;
4080 else
4081 return (-1);
4083 if (path1->device != path2->device) {
4084 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4085 if (retval == 0)
4086 retval = 1;
4087 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4088 retval = 2;
4089 else
4090 return (-1);
4092 return (retval);
4095 void
4096 xpt_print_path(struct cam_path *path)
4099 if (path == NULL)
4100 kprintf("(nopath): ");
4101 else {
4102 if (path->periph != NULL)
4103 kprintf("(%s%d:", path->periph->periph_name,
4104 path->periph->unit_number);
4105 else
4106 kprintf("(noperiph:");
4108 if (path->bus != NULL)
4109 kprintf("%s%d:%d:", path->bus->sim->sim_name,
4110 path->bus->sim->unit_number,
4111 path->bus->sim->bus_id);
4112 else
4113 kprintf("nobus:");
4115 if (path->target != NULL)
4116 kprintf("%d:", path->target->target_id);
4117 else
4118 kprintf("X:");
4120 if (path->device != NULL)
4121 kprintf("%d): ", path->device->lun_id);
4122 else
4123 kprintf("X): ");
4127 void
4128 xpt_print(struct cam_path *path, const char *fmt, ...)
4130 __va_list ap;
4131 xpt_print_path(path);
4132 __va_start(ap, fmt);
4133 kvprintf(fmt, ap);
4134 __va_end(ap);
4138 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4140 struct sbuf sb;
4142 sim_lock_assert_owned(path->bus->sim->lock);
4144 sbuf_new(&sb, str, str_len, 0);
4146 if (path == NULL)
4147 sbuf_printf(&sb, "(nopath): ");
4148 else {
4149 if (path->periph != NULL)
4150 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4151 path->periph->unit_number);
4152 else
4153 sbuf_printf(&sb, "(noperiph:");
4155 if (path->bus != NULL)
4156 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4157 path->bus->sim->unit_number,
4158 path->bus->sim->bus_id);
4159 else
4160 sbuf_printf(&sb, "nobus:");
4162 if (path->target != NULL)
4163 sbuf_printf(&sb, "%d:", path->target->target_id);
4164 else
4165 sbuf_printf(&sb, "X:");
4167 if (path->device != NULL)
4168 sbuf_printf(&sb, "%d): ", path->device->lun_id);
4169 else
4170 sbuf_printf(&sb, "X): ");
4172 sbuf_finish(&sb);
4174 return(sbuf_len(&sb));
4177 path_id_t
4178 xpt_path_path_id(struct cam_path *path)
4180 sim_lock_assert_owned(path->bus->sim->lock);
4182 return(path->bus->path_id);
4185 target_id_t
4186 xpt_path_target_id(struct cam_path *path)
4188 sim_lock_assert_owned(path->bus->sim->lock);
4190 if (path->target != NULL)
4191 return (path->target->target_id);
4192 else
4193 return (CAM_TARGET_WILDCARD);
4196 lun_id_t
4197 xpt_path_lun_id(struct cam_path *path)
4199 sim_lock_assert_owned(path->bus->sim->lock);
4201 if (path->device != NULL)
4202 return (path->device->lun_id);
4203 else
4204 return (CAM_LUN_WILDCARD);
4207 struct cam_sim *
4208 xpt_path_sim(struct cam_path *path)
4210 return (path->bus->sim);
4213 struct cam_periph*
4214 xpt_path_periph(struct cam_path *path)
4216 sim_lock_assert_owned(path->bus->sim->lock);
4218 return (path->periph);
4221 char *
4222 xpt_path_serialno(struct cam_path *path)
4224 return (path->device->serial_num);
4228 * Release a CAM control block for the caller. Remit the cost of the structure
4229 * to the device referenced by the path. If the this device had no 'credits'
4230 * and peripheral drivers have registered async callbacks for this notification
4231 * call them now.
4233 void
4234 xpt_release_ccb(union ccb *free_ccb)
4236 struct cam_path *path;
4237 struct cam_ed *device;
4238 struct cam_eb *bus;
4239 struct cam_sim *sim;
4241 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4242 path = free_ccb->ccb_h.path;
4243 device = path->device;
4244 bus = path->bus;
4245 sim = bus->sim;
4247 sim_lock_assert_owned(sim->lock);
4249 cam_ccbq_release_opening(&device->ccbq);
4250 if (sim->ccb_count > sim->max_ccbs) {
4251 xpt_free_ccb(free_ccb);
4252 sim->ccb_count--;
4253 } else if (sim == &cam_dead_sim) {
4254 xpt_free_ccb(free_ccb);
4255 } else {
4256 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4257 xpt_links.sle);
4259 if (sim->devq == NULL) {
4260 return;
4262 sim->devq->alloc_openings++;
4263 sim->devq->alloc_active--;
4264 /* XXX Turn this into an inline function - xpt_run_device?? */
4265 if ((device_is_alloc_queued(device) == 0)
4266 && (device->drvq.entries > 0)) {
4267 xpt_schedule_dev_allocq(bus, device);
4269 if (dev_allocq_is_runnable(sim->devq))
4270 xpt_run_dev_allocq(bus);
4273 /* Functions accessed by SIM drivers */
4276 * A sim structure, listing the SIM entry points and instance
4277 * identification info is passed to xpt_bus_register to hook the SIM
4278 * into the CAM framework. xpt_bus_register creates a cam_eb entry
4279 * for this new bus and places it in the array of busses and assigns
4280 * it a path_id. The path_id may be influenced by "hard wiring"
4281 * information specified by the user. Once interrupt services are
4282 * availible, the bus will be probed.
4284 int32_t
4285 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4287 struct cam_eb *new_bus;
4288 struct cam_eb *old_bus;
4289 struct ccb_pathinq cpi;
4291 sim_lock_assert_owned(sim->lock);
4293 sim->bus_id = bus;
4294 new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4296 if (strcmp(sim->sim_name, "xpt") != 0) {
4297 sim->path_id =
4298 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4301 TAILQ_INIT(&new_bus->et_entries);
4302 new_bus->path_id = sim->path_id;
4303 new_bus->sim = sim;
4304 ++sim->refcount;
4305 timevalclear(&new_bus->last_reset);
4306 new_bus->flags = 0;
4307 new_bus->refcount = 1; /* Held until a bus_deregister event */
4308 new_bus->generation = 0;
4309 new_bus->counted_to_config = 0;
4310 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4311 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4312 while (old_bus != NULL
4313 && old_bus->path_id < new_bus->path_id)
4314 old_bus = TAILQ_NEXT(old_bus, links);
4315 if (old_bus != NULL)
4316 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4317 else
4318 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4319 xsoftc.bus_generation++;
4320 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4322 /* Notify interested parties */
4323 if (sim->path_id != CAM_XPT_PATH_ID) {
4324 struct cam_path path;
4326 xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4327 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4328 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4329 cpi.ccb_h.func_code = XPT_PATH_INQ;
4330 xpt_action((union ccb *)&cpi);
4331 xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4332 xpt_release_path(&path);
4334 return (CAM_SUCCESS);
4338 * Deregister a bus. We must clean out all transactions pending on the bus.
4339 * This routine is typically called prior to cam_sim_free() (e.g. see
4340 * dev/usbmisc/umass/umass.c)
4342 int32_t
4343 xpt_bus_deregister(path_id_t pathid)
4345 struct cam_path bus_path;
4346 struct cam_et *target;
4347 struct cam_ed *device;
4348 struct cam_ed_qinfo *qinfo;
4349 struct cam_devq *devq;
4350 struct cam_periph *periph;
4351 struct cam_sim *ccbsim;
4352 union ccb *work_ccb;
4353 cam_status status;
4354 int retries = 0;
4356 status = xpt_compile_path(&bus_path, NULL, pathid,
4357 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4358 if (status != CAM_REQ_CMP)
4359 return (status);
4362 * This should clear out all pending requests and timeouts, but
4363 * the ccb's may be queued to a software interrupt.
4365 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4366 * and it really ought to.
4368 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4369 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4372 * Mark the SIM as having been deregistered. This prevents
4373 * certain operations from re-queueing to it, stops new devices
4374 * from being added, etc.
4376 devq = bus_path.bus->sim->devq;
4377 ccbsim = bus_path.bus->sim;
4378 ccbsim->flags |= CAM_SIM_DEREGISTERED;
4380 again:
4382 * Execute any pending operations now.
4384 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4385 CAMQ_HEAD)) != NULL ||
4386 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4387 CAMQ_HEAD)) != NULL) {
4388 do {
4389 device = qinfo->device;
4390 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4391 if (work_ccb != NULL) {
4392 devq->active_dev = device;
4393 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4394 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4395 (*(ccbsim->sim_action))(ccbsim, work_ccb);
4398 periph = (struct cam_periph *)camq_remove(&device->drvq,
4399 CAMQ_HEAD);
4400 if (periph != NULL)
4401 xpt_schedule(periph, periph->pinfo.priority);
4402 } while (work_ccb != NULL || periph != NULL);
4406 * Make sure all completed CCBs are processed.
4408 while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4409 camisr_runqueue(ccbsim);
4413 * Check for requeues, reissues asyncs if necessary
4415 if (CAMQ_GET_HEAD(&devq->send_queue))
4416 kprintf("camq: devq send_queue still in use (%d entries)\n",
4417 devq->send_queue.entries);
4418 if (CAMQ_GET_HEAD(&devq->alloc_queue))
4419 kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4420 devq->alloc_queue.entries);
4421 if (CAMQ_GET_HEAD(&devq->send_queue) ||
4422 CAMQ_GET_HEAD(&devq->alloc_queue)) {
4423 if (++retries < 5) {
4424 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4425 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4426 goto again;
4431 * Retarget the bus and all cached sim pointers to dead_sim.
4433 * Various CAM subsystems may be holding on to targets, devices,
4434 * and/or peripherals and may attempt to use the sim pointer cached
4435 * in some of these structures during close.
4437 bus_path.bus->sim = &cam_dead_sim;
4438 TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4439 TAILQ_FOREACH(device, &target->ed_entries, links) {
4440 device->sim = &cam_dead_sim;
4441 SLIST_FOREACH(periph, &device->periphs, periph_links) {
4442 periph->sim = &cam_dead_sim;
4448 * Repeat the async's for the benefit of any new devices, such as
4449 * might be created from completed probes. Any new device
4450 * ops will run on dead_sim.
4452 * XXX There are probably races :-(
4454 CAM_SIM_LOCK(&cam_dead_sim);
4455 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4456 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4457 CAM_SIM_UNLOCK(&cam_dead_sim);
4459 /* Release the reference count held while registered. */
4460 xpt_release_bus(bus_path.bus);
4461 xpt_release_path(&bus_path);
4463 /* Release the ref we got when the bus was registered */
4464 cam_sim_release(ccbsim, 0);
4466 return (CAM_REQ_CMP);
4469 static path_id_t
4470 xptnextfreepathid(void)
4472 struct cam_eb *bus;
4473 path_id_t pathid;
4474 const char *strval;
4476 pathid = 0;
4477 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4478 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4479 retry:
4480 /* Find an unoccupied pathid */
4481 while (bus != NULL && bus->path_id <= pathid) {
4482 if (bus->path_id == pathid)
4483 pathid++;
4484 bus = TAILQ_NEXT(bus, links);
4486 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4489 * Ensure that this pathid is not reserved for
4490 * a bus that may be registered in the future.
4492 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4493 ++pathid;
4494 /* Start the search over */
4495 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4496 goto retry;
4498 return (pathid);
4501 static path_id_t
4502 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4504 path_id_t pathid;
4505 int i, dunit, val;
4506 char buf[32];
4508 pathid = CAM_XPT_PATH_ID;
4509 ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4510 i = -1;
4511 while ((i = resource_query_string(i, "at", buf)) != -1) {
4512 if (strcmp(resource_query_name(i), "scbus")) {
4513 /* Avoid a bit of foot shooting. */
4514 continue;
4516 dunit = resource_query_unit(i);
4517 if (dunit < 0) /* unwired?! */
4518 continue;
4519 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4520 if (sim_bus == val) {
4521 pathid = dunit;
4522 break;
4524 } else if (sim_bus == 0) {
4525 /* Unspecified matches bus 0 */
4526 pathid = dunit;
4527 break;
4528 } else {
4529 kprintf("Ambiguous scbus configuration for %s%d "
4530 "bus %d, cannot wire down. The kernel "
4531 "config entry for scbus%d should "
4532 "specify a controller bus.\n"
4533 "Scbus will be assigned dynamically.\n",
4534 sim_name, sim_unit, sim_bus, dunit);
4535 break;
4539 if (pathid == CAM_XPT_PATH_ID)
4540 pathid = xptnextfreepathid();
4541 return (pathid);
4544 void
4545 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4547 struct cam_eb *bus;
4548 struct cam_et *target, *next_target;
4549 struct cam_ed *device, *next_device;
4551 sim_lock_assert_owned(path->bus->sim->lock);
4553 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4556 * Most async events come from a CAM interrupt context. In
4557 * a few cases, the error recovery code at the peripheral layer,
4558 * which may run from our SWI or a process context, may signal
4559 * deferred events with a call to xpt_async.
4562 bus = path->bus;
4564 if (async_code == AC_BUS_RESET) {
4565 /* Update our notion of when the last reset occurred */
4566 microuptime(&bus->last_reset);
4569 for (target = TAILQ_FIRST(&bus->et_entries);
4570 target != NULL;
4571 target = next_target) {
4573 next_target = TAILQ_NEXT(target, links);
4575 if (path->target != target
4576 && path->target->target_id != CAM_TARGET_WILDCARD
4577 && target->target_id != CAM_TARGET_WILDCARD)
4578 continue;
4580 if (async_code == AC_SENT_BDR) {
4581 /* Update our notion of when the last reset occurred */
4582 microuptime(&path->target->last_reset);
4585 for (device = TAILQ_FIRST(&target->ed_entries);
4586 device != NULL;
4587 device = next_device) {
4589 next_device = TAILQ_NEXT(device, links);
4591 if (path->device != device
4592 && path->device->lun_id != CAM_LUN_WILDCARD
4593 && device->lun_id != CAM_LUN_WILDCARD)
4594 continue;
4596 xpt_dev_async(async_code, bus, target,
4597 device, async_arg);
4599 xpt_async_bcast(&device->asyncs, async_code,
4600 path, async_arg);
4605 * If this wasn't a fully wildcarded async, tell all
4606 * clients that want all async events.
4608 if (bus != xpt_periph->path->bus)
4609 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4610 path, async_arg);
4613 static void
4614 xpt_async_bcast(struct async_list *async_head,
4615 u_int32_t async_code,
4616 struct cam_path *path, void *async_arg)
4618 struct async_node *cur_entry;
4620 cur_entry = SLIST_FIRST(async_head);
4621 while (cur_entry != NULL) {
4622 struct async_node *next_entry;
4624 * Grab the next list entry before we call the current
4625 * entry's callback. This is because the callback function
4626 * can delete its async callback entry.
4628 next_entry = SLIST_NEXT(cur_entry, links);
4629 if ((cur_entry->event_enable & async_code) != 0)
4630 cur_entry->callback(cur_entry->callback_arg,
4631 async_code, path,
4632 async_arg);
4633 cur_entry = next_entry;
4638 * Handle any per-device event notifications that require action by the XPT.
4640 static void
4641 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4642 struct cam_ed *device, void *async_arg)
4644 cam_status status;
4645 struct cam_path newpath;
4648 * We only need to handle events for real devices.
4650 if (target->target_id == CAM_TARGET_WILDCARD
4651 || device->lun_id == CAM_LUN_WILDCARD)
4652 return;
4655 * We need our own path with wildcards expanded to
4656 * handle certain types of events.
4658 if ((async_code == AC_SENT_BDR)
4659 || (async_code == AC_BUS_RESET)
4660 || (async_code == AC_INQ_CHANGED))
4661 status = xpt_compile_path(&newpath, NULL,
4662 bus->path_id,
4663 target->target_id,
4664 device->lun_id);
4665 else
4666 status = CAM_REQ_CMP_ERR;
4668 if (status == CAM_REQ_CMP) {
4671 * Allow transfer negotiation to occur in a
4672 * tag free environment.
4674 if (async_code == AC_SENT_BDR
4675 || async_code == AC_BUS_RESET)
4676 xpt_toggle_tags(&newpath);
4678 if (async_code == AC_INQ_CHANGED) {
4680 * We've sent a start unit command, or
4681 * something similar to a device that
4682 * may have caused its inquiry data to
4683 * change. So we re-scan the device to
4684 * refresh the inquiry data for it.
4686 xpt_scan_lun(newpath.periph, &newpath,
4687 CAM_EXPECT_INQ_CHANGE, NULL);
4689 xpt_release_path(&newpath);
4690 } else if (async_code == AC_LOST_DEVICE) {
4692 * When we lose a device the device may be about to detach
4693 * the sim, we have to clear out all pending timeouts and
4694 * requests before that happens.
4696 * This typically happens most often with USB/UMASS devices.
4698 * XXX it would be nice if we could abort the requests
4699 * pertaining to the device.
4701 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4702 if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4703 device->flags |= CAM_DEV_UNCONFIGURED;
4704 xpt_release_device(bus, target, device);
4706 } else if (async_code == AC_TRANSFER_NEG) {
4707 struct ccb_trans_settings *settings;
4709 settings = (struct ccb_trans_settings *)async_arg;
4710 xpt_set_transfer_settings(settings, device,
4711 /*async_update*/TRUE);
4715 u_int32_t
4716 xpt_freeze_devq(struct cam_path *path, u_int count)
4718 struct ccb_hdr *ccbh;
4720 sim_lock_assert_owned(path->bus->sim->lock);
4722 path->device->qfrozen_cnt += count;
4725 * Mark the last CCB in the queue as needing
4726 * to be requeued if the driver hasn't
4727 * changed it's state yet. This fixes a race
4728 * where a ccb is just about to be queued to
4729 * a controller driver when it's interrupt routine
4730 * freezes the queue. To completly close the
4731 * hole, controller drives must check to see
4732 * if a ccb's status is still CAM_REQ_INPROG
4733 * just before they queue
4734 * the CCB. See ahc_action/ahc_freeze_devq for
4735 * an example.
4737 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4738 if (ccbh && ccbh->status == CAM_REQ_INPROG)
4739 ccbh->status = CAM_REQUEUE_REQ;
4740 return (path->device->qfrozen_cnt);
4743 u_int32_t
4744 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4746 sim_lock_assert_owned(sim->lock);
4748 if (sim->devq == NULL)
4749 return(count);
4750 sim->devq->send_queue.qfrozen_cnt += count;
4751 if (sim->devq->active_dev != NULL) {
4752 struct ccb_hdr *ccbh;
4754 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4755 ccb_hdr_tailq);
4756 if (ccbh && ccbh->status == CAM_REQ_INPROG)
4757 ccbh->status = CAM_REQUEUE_REQ;
4759 return (sim->devq->send_queue.qfrozen_cnt);
4763 * Release the device queue after a timeout has expired, typically used to
4764 * introduce a delay before retrying after an I/O error or other problem.
4766 static void
4767 xpt_release_devq_timeout(void *arg)
4769 struct cam_ed *device;
4771 device = (struct cam_ed *)arg;
4772 CAM_SIM_LOCK(device->sim);
4773 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4774 CAM_SIM_UNLOCK(device->sim);
4777 void
4778 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4780 sim_lock_assert_owned(path->bus->sim->lock);
4782 xpt_release_devq_device(path->device, count, run_queue);
4785 static void
4786 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4788 int rundevq;
4790 rundevq = 0;
4792 if (dev->qfrozen_cnt > 0) {
4794 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4795 dev->qfrozen_cnt -= count;
4796 if (dev->qfrozen_cnt == 0) {
4799 * No longer need to wait for a successful
4800 * command completion.
4802 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4805 * Remove any timeouts that might be scheduled
4806 * to release this queue.
4808 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4809 callout_stop(&dev->callout);
4810 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4814 * Now that we are unfrozen schedule the
4815 * device so any pending transactions are
4816 * run.
4818 if ((dev->ccbq.queue.entries > 0)
4819 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4820 && (run_queue != 0)) {
4821 rundevq = 1;
4825 if (rundevq != 0)
4826 xpt_run_dev_sendq(dev->target->bus);
4829 void
4830 xpt_release_simq(struct cam_sim *sim, int run_queue)
4832 struct camq *sendq;
4834 sim_lock_assert_owned(sim->lock);
4836 if (sim->devq == NULL)
4837 return;
4839 sendq = &(sim->devq->send_queue);
4840 if (sendq->qfrozen_cnt > 0) {
4841 sendq->qfrozen_cnt--;
4842 if (sendq->qfrozen_cnt == 0) {
4843 struct cam_eb *bus;
4846 * If there is a timeout scheduled to release this
4847 * sim queue, remove it. The queue frozen count is
4848 * already at 0.
4850 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4851 callout_stop(&sim->callout);
4852 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4854 bus = xpt_find_bus(sim->path_id);
4856 if (run_queue) {
4858 * Now that we are unfrozen run the send queue.
4860 xpt_run_dev_sendq(bus);
4862 xpt_release_bus(bus);
4867 void
4868 xpt_done(union ccb *done_ccb)
4870 struct cam_sim *sim;
4872 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4873 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4875 * Queue up the request for handling by our SWI handler
4876 * any of the "non-immediate" type of ccbs.
4878 sim = done_ccb->ccb_h.path->bus->sim;
4879 switch (done_ccb->ccb_h.path->periph->type) {
4880 case CAM_PERIPH_BIO:
4881 spin_lock(&sim->sim_spin);
4882 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4883 sim_links.tqe);
4884 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4885 spin_unlock(&sim->sim_spin);
4886 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4887 spin_lock(&cam_simq_spin);
4888 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4889 TAILQ_INSERT_TAIL(&cam_simq, sim,
4890 links);
4891 sim->flags |= CAM_SIM_ON_DONEQ;
4893 spin_unlock(&cam_simq_spin);
4895 if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4896 setsoftcambio();
4897 break;
4898 default:
4899 panic("unknown periph type %d",
4900 done_ccb->ccb_h.path->periph->type);
4905 union ccb *
4906 xpt_alloc_ccb(void)
4908 union ccb *new_ccb;
4910 new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4911 return (new_ccb);
4914 void
4915 xpt_free_ccb(union ccb *free_ccb)
4917 kfree(free_ccb, M_CAMXPT);
4922 /* Private XPT functions */
4925 * Get a CAM control block for the caller. Charge the structure to the device
4926 * referenced by the path. If the this device has no 'credits' then the
4927 * device already has the maximum number of outstanding operations under way
4928 * and we return NULL. If we don't have sufficient resources to allocate more
4929 * ccbs, we also return NULL.
4931 static union ccb *
4932 xpt_get_ccb(struct cam_ed *device)
4934 union ccb *new_ccb;
4935 struct cam_sim *sim;
4937 sim = device->sim;
4938 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4939 new_ccb = xpt_alloc_ccb();
4940 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4941 callout_init(&new_ccb->ccb_h.timeout_ch);
4942 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4943 xpt_links.sle);
4944 sim->ccb_count++;
4946 cam_ccbq_take_opening(&device->ccbq);
4947 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4948 return (new_ccb);
4951 static void
4952 xpt_release_bus(struct cam_eb *bus)
4955 if ((--bus->refcount == 0)
4956 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4957 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4958 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4959 xsoftc.bus_generation++;
4960 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4961 kfree(bus, M_CAMXPT);
4965 static struct cam_et *
4966 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4968 struct cam_et *target;
4969 struct cam_et *cur_target;
4971 target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4973 TAILQ_INIT(&target->ed_entries);
4974 target->bus = bus;
4975 target->target_id = target_id;
4976 target->refcount = 1;
4977 target->generation = 0;
4978 timevalclear(&target->last_reset);
4980 * Hold a reference to our parent bus so it
4981 * will not go away before we do.
4983 bus->refcount++;
4985 /* Insertion sort into our bus's target list */
4986 cur_target = TAILQ_FIRST(&bus->et_entries);
4987 while (cur_target != NULL && cur_target->target_id < target_id)
4988 cur_target = TAILQ_NEXT(cur_target, links);
4990 if (cur_target != NULL) {
4991 TAILQ_INSERT_BEFORE(cur_target, target, links);
4992 } else {
4993 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4995 bus->generation++;
4996 return (target);
4999 static void
5000 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5002 if (target->refcount == 1) {
5003 KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
5004 TAILQ_REMOVE(&bus->et_entries, target, links);
5005 bus->generation++;
5006 xpt_release_bus(bus);
5007 KKASSERT(target->refcount == 1);
5008 kfree(target, M_CAMXPT);
5009 } else {
5010 --target->refcount;
5014 static struct cam_ed *
5015 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5017 struct cam_path path;
5018 struct cam_ed *device;
5019 struct cam_devq *devq;
5020 cam_status status;
5023 * Disallow new devices while trying to deregister a sim
5025 if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5026 return (NULL);
5029 * Make space for us in the device queue on our bus
5031 devq = bus->sim->devq;
5032 if (devq == NULL)
5033 return(NULL);
5034 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5036 if (status != CAM_REQ_CMP) {
5037 device = NULL;
5038 } else {
5039 device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5042 if (device != NULL) {
5043 struct cam_ed *cur_device;
5045 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5046 device->alloc_ccb_entry.device = device;
5047 cam_init_pinfo(&device->send_ccb_entry.pinfo);
5048 device->send_ccb_entry.device = device;
5049 device->target = target;
5050 device->lun_id = lun_id;
5051 device->sim = bus->sim;
5052 /* Initialize our queues */
5053 if (camq_init(&device->drvq, 0) != 0) {
5054 kfree(device, M_CAMXPT);
5055 return (NULL);
5057 if (cam_ccbq_init(&device->ccbq,
5058 bus->sim->max_dev_openings) != 0) {
5059 camq_fini(&device->drvq);
5060 kfree(device, M_CAMXPT);
5061 return (NULL);
5063 SLIST_INIT(&device->asyncs);
5064 SLIST_INIT(&device->periphs);
5065 device->generation = 0;
5066 device->owner = NULL;
5068 * Take the default quirk entry until we have inquiry
5069 * data and can determine a better quirk to use.
5071 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5072 bzero(&device->inq_data, sizeof(device->inq_data));
5073 device->inq_flags = 0;
5074 device->queue_flags = 0;
5075 device->serial_num = NULL;
5076 device->serial_num_len = 0;
5077 device->qfrozen_cnt = 0;
5078 device->flags = CAM_DEV_UNCONFIGURED;
5079 device->tag_delay_count = 0;
5080 device->tag_saved_openings = 0;
5081 device->refcount = 1;
5082 callout_init(&device->callout);
5085 * Hold a reference to our parent target so it
5086 * will not go away before we do.
5088 target->refcount++;
5091 * XXX should be limited by number of CCBs this bus can
5092 * do.
5094 bus->sim->max_ccbs += device->ccbq.devq_openings;
5095 /* Insertion sort into our target's device list */
5096 cur_device = TAILQ_FIRST(&target->ed_entries);
5097 while (cur_device != NULL && cur_device->lun_id < lun_id)
5098 cur_device = TAILQ_NEXT(cur_device, links);
5099 if (cur_device != NULL) {
5100 TAILQ_INSERT_BEFORE(cur_device, device, links);
5101 } else {
5102 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5104 target->generation++;
5105 if (lun_id != CAM_LUN_WILDCARD) {
5106 xpt_compile_path(&path,
5107 NULL,
5108 bus->path_id,
5109 target->target_id,
5110 lun_id);
5111 xpt_devise_transport(&path);
5112 xpt_release_path(&path);
5115 return (device);
5118 static void
5119 xpt_reference_device(struct cam_ed *device)
5121 ++device->refcount;
5124 static void
5125 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5126 struct cam_ed *device)
5128 struct cam_devq *devq;
5130 if (device->refcount == 1) {
5131 KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5133 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5134 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5135 panic("Removing device while still queued for ccbs");
5137 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5138 device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5139 callout_stop(&device->callout);
5142 TAILQ_REMOVE(&target->ed_entries, device,links);
5143 target->generation++;
5144 bus->sim->max_ccbs -= device->ccbq.devq_openings;
5145 if ((devq = bus->sim->devq) != NULL) {
5146 /* Release our slot in the devq */
5147 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5149 camq_fini(&device->drvq);
5150 camq_fini(&device->ccbq.queue);
5151 xpt_release_target(bus, target);
5152 KKASSERT(device->refcount == 1);
5153 kfree(device, M_CAMXPT);
5154 } else {
5155 --device->refcount;
5159 static u_int32_t
5160 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5162 int diff;
5163 int result;
5164 struct cam_ed *dev;
5166 dev = path->device;
5168 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5169 result = cam_ccbq_resize(&dev->ccbq, newopenings);
5170 if (result == CAM_REQ_CMP && (diff < 0)) {
5171 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5173 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5174 || (dev->inq_flags & SID_CmdQue) != 0)
5175 dev->tag_saved_openings = newopenings;
5176 /* Adjust the global limit */
5177 dev->sim->max_ccbs += diff;
5178 return (result);
5181 static struct cam_eb *
5182 xpt_find_bus(path_id_t path_id)
5184 struct cam_eb *bus;
5186 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5187 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5188 if (bus->path_id == path_id) {
5189 bus->refcount++;
5190 break;
5193 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5194 return (bus);
5197 static struct cam_et *
5198 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
5200 struct cam_et *target;
5202 TAILQ_FOREACH(target, &bus->et_entries, links) {
5203 if (target->target_id == target_id) {
5204 target->refcount++;
5205 break;
5208 return (target);
5211 static struct cam_ed *
5212 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5214 struct cam_ed *device;
5216 TAILQ_FOREACH(device, &target->ed_entries, links) {
5217 if (device->lun_id == lun_id) {
5218 device->refcount++;
5219 break;
5222 return (device);
5225 typedef struct {
5226 union ccb *request_ccb;
5227 struct ccb_pathinq *cpi;
5228 int counter;
5229 } xpt_scan_bus_info;
5232 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5233 * As the scan progresses, xpt_scan_bus is used as the
5234 * callback on completion function.
5236 static void
5237 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5239 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5240 ("xpt_scan_bus\n"));
5241 switch (request_ccb->ccb_h.func_code) {
5242 case XPT_SCAN_BUS:
5244 xpt_scan_bus_info *scan_info;
5245 union ccb *work_ccb;
5246 struct cam_path *path;
5247 u_int i;
5248 u_int max_target;
5249 u_int initiator_id;
5251 /* Find out the characteristics of the bus */
5252 work_ccb = xpt_alloc_ccb();
5253 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5254 request_ccb->ccb_h.pinfo.priority);
5255 work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5256 xpt_action(work_ccb);
5257 if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5258 request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5259 xpt_free_ccb(work_ccb);
5260 xpt_done(request_ccb);
5261 return;
5264 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5266 * Can't scan the bus on an adapter that
5267 * cannot perform the initiator role.
5269 request_ccb->ccb_h.status = CAM_REQ_CMP;
5270 xpt_free_ccb(work_ccb);
5271 xpt_done(request_ccb);
5272 return;
5275 /* Save some state for use while we probe for devices */
5276 scan_info = (xpt_scan_bus_info *)
5277 kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5278 scan_info->request_ccb = request_ccb;
5279 scan_info->cpi = &work_ccb->cpi;
5281 /* Cache on our stack so we can work asynchronously */
5282 max_target = scan_info->cpi->max_target;
5283 initiator_id = scan_info->cpi->initiator_id;
5287 * We can scan all targets in parallel, or do it sequentially.
5289 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5290 max_target = 0;
5291 scan_info->counter = 0;
5292 } else {
5293 scan_info->counter = scan_info->cpi->max_target + 1;
5294 if (scan_info->cpi->initiator_id < scan_info->counter) {
5295 scan_info->counter--;
5299 for (i = 0; i <= max_target; i++) {
5300 cam_status status;
5301 if (i == initiator_id)
5302 continue;
5304 status = xpt_create_path(&path, xpt_periph,
5305 request_ccb->ccb_h.path_id,
5306 i, 0);
5307 if (status != CAM_REQ_CMP) {
5308 kprintf("xpt_scan_bus: xpt_create_path failed"
5309 " with status %#x, bus scan halted\n",
5310 status);
5311 kfree(scan_info, M_CAMXPT);
5312 request_ccb->ccb_h.status = status;
5313 xpt_free_ccb(work_ccb);
5314 xpt_done(request_ccb);
5315 break;
5317 work_ccb = xpt_alloc_ccb();
5318 xpt_setup_ccb(&work_ccb->ccb_h, path,
5319 request_ccb->ccb_h.pinfo.priority);
5320 work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5321 work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5322 work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5323 work_ccb->crcn.flags = request_ccb->crcn.flags;
5324 xpt_action(work_ccb);
5326 break;
5328 case XPT_SCAN_LUN:
5330 cam_status status;
5331 struct cam_path *path;
5332 xpt_scan_bus_info *scan_info;
5333 path_id_t path_id;
5334 target_id_t target_id;
5335 lun_id_t lun_id;
5337 /* Reuse the same CCB to query if a device was really found */
5338 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5339 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5340 request_ccb->ccb_h.pinfo.priority);
5341 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5343 path_id = request_ccb->ccb_h.path_id;
5344 target_id = request_ccb->ccb_h.target_id;
5345 lun_id = request_ccb->ccb_h.target_lun;
5346 xpt_action(request_ccb);
5348 if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5349 struct cam_ed *device;
5350 struct cam_et *target;
5351 int phl;
5354 * If we already probed lun 0 successfully, or
5355 * we have additional configured luns on this
5356 * target that might have "gone away", go onto
5357 * the next lun.
5359 target = request_ccb->ccb_h.path->target;
5361 * We may touch devices that we don't
5362 * hold references too, so ensure they
5363 * don't disappear out from under us.
5364 * The target above is referenced by the
5365 * path in the request ccb.
5367 phl = 0;
5368 device = TAILQ_FIRST(&target->ed_entries);
5369 if (device != NULL) {
5370 phl = CAN_SRCH_HI_SPARSE(device);
5371 if (device->lun_id == 0)
5372 device = TAILQ_NEXT(device, links);
5374 if ((lun_id != 0) || (device != NULL)) {
5375 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5376 lun_id++;
5378 } else {
5379 struct cam_ed *device;
5381 device = request_ccb->ccb_h.path->device;
5383 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5384 /* Try the next lun */
5385 if (lun_id < (CAM_SCSI2_MAXLUN-1)
5386 || CAN_SRCH_HI_DENSE(device))
5387 lun_id++;
5392 * Free the current request path- we're done with it.
5394 xpt_free_path(request_ccb->ccb_h.path);
5397 * Check to see if we scan any further luns.
5399 if (lun_id == request_ccb->ccb_h.target_lun
5400 || lun_id > scan_info->cpi->max_lun) {
5401 int done;
5403 hop_again:
5404 done = 0;
5405 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5406 scan_info->counter++;
5407 if (scan_info->counter ==
5408 scan_info->cpi->initiator_id) {
5409 scan_info->counter++;
5411 if (scan_info->counter >=
5412 scan_info->cpi->max_target+1) {
5413 done = 1;
5415 } else {
5416 scan_info->counter--;
5417 if (scan_info->counter == 0) {
5418 done = 1;
5421 if (done) {
5422 xpt_free_ccb(request_ccb);
5423 xpt_free_ccb((union ccb *)scan_info->cpi);
5424 request_ccb = scan_info->request_ccb;
5425 kfree(scan_info, M_CAMXPT);
5426 request_ccb->ccb_h.status = CAM_REQ_CMP;
5427 xpt_done(request_ccb);
5428 break;
5431 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5432 break;
5434 status = xpt_create_path(&path, xpt_periph,
5435 scan_info->request_ccb->ccb_h.path_id,
5436 scan_info->counter, 0);
5437 if (status != CAM_REQ_CMP) {
5438 kprintf("xpt_scan_bus: xpt_create_path failed"
5439 " with status %#x, bus scan halted\n",
5440 status);
5441 xpt_free_ccb(request_ccb);
5442 xpt_free_ccb((union ccb *)scan_info->cpi);
5443 request_ccb = scan_info->request_ccb;
5444 kfree(scan_info, M_CAMXPT);
5445 request_ccb->ccb_h.status = status;
5446 xpt_done(request_ccb);
5447 break;
5449 xpt_setup_ccb(&request_ccb->ccb_h, path,
5450 request_ccb->ccb_h.pinfo.priority);
5451 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5452 request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5453 request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5454 request_ccb->crcn.flags =
5455 scan_info->request_ccb->crcn.flags;
5456 } else {
5457 status = xpt_create_path(&path, xpt_periph,
5458 path_id, target_id, lun_id);
5459 if (status != CAM_REQ_CMP) {
5460 kprintf("xpt_scan_bus: xpt_create_path failed "
5461 "with status %#x, halting LUN scan\n",
5462 status);
5463 goto hop_again;
5465 xpt_setup_ccb(&request_ccb->ccb_h, path,
5466 request_ccb->ccb_h.pinfo.priority);
5467 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5468 request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5469 request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5470 request_ccb->crcn.flags =
5471 scan_info->request_ccb->crcn.flags;
5473 xpt_action(request_ccb);
5474 break;
5476 default:
5477 break;
5481 typedef enum {
5482 PROBE_TUR,
5483 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */
5484 PROBE_FULL_INQUIRY,
5485 PROBE_MODE_SENSE,
5486 PROBE_SERIAL_NUM_0,
5487 PROBE_SERIAL_NUM_1,
5488 PROBE_TUR_FOR_NEGOTIATION,
5489 PROBE_INQUIRY_BASIC_DV1,
5490 PROBE_INQUIRY_BASIC_DV2,
5491 PROBE_DV_EXIT,
5492 PROBE_INVALID
5493 } probe_action;
5495 static char *probe_action_text[] = {
5496 "PROBE_TUR",
5497 "PROBE_INQUIRY",
5498 "PROBE_FULL_INQUIRY",
5499 "PROBE_MODE_SENSE",
5500 "PROBE_SERIAL_NUM_0",
5501 "PROBE_SERIAL_NUM_1",
5502 "PROBE_TUR_FOR_NEGOTIATION",
5503 "PROBE_INQUIRY_BASIC_DV1",
5504 "PROBE_INQUIRY_BASIC_DV2",
5505 "PROBE_DV_EXIT",
5506 "PROBE_INVALID"
5509 #define PROBE_SET_ACTION(softc, newaction) \
5510 do { \
5511 char **text; \
5512 text = probe_action_text; \
5513 CAM_DEBUG((softc)->periph->path, CAM_DEBUG_INFO, \
5514 ("Probe %s to %s\n", text[(softc)->action], \
5515 text[(newaction)])); \
5516 (softc)->action = (newaction); \
5517 } while(0)
5519 typedef enum {
5520 PROBE_INQUIRY_CKSUM = 0x01,
5521 PROBE_SERIAL_CKSUM = 0x02,
5522 PROBE_NO_ANNOUNCE = 0x04
5523 } probe_flags;
5525 typedef struct {
5526 TAILQ_HEAD(, ccb_hdr) request_ccbs;
5527 probe_action action;
5528 union ccb saved_ccb;
5529 probe_flags flags;
5530 MD5_CTX context;
5531 u_int8_t digest[16];
5532 struct cam_periph *periph;
5533 } probe_softc;
5535 static void
5536 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5537 cam_flags flags, union ccb *request_ccb)
5539 struct ccb_pathinq cpi;
5540 cam_status status;
5541 struct cam_path *new_path;
5542 struct cam_periph *old_periph;
5544 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5545 ("xpt_scan_lun\n"));
5547 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5548 cpi.ccb_h.func_code = XPT_PATH_INQ;
5549 xpt_action((union ccb *)&cpi);
5551 if (cpi.ccb_h.status != CAM_REQ_CMP) {
5552 if (request_ccb != NULL) {
5553 request_ccb->ccb_h.status = cpi.ccb_h.status;
5554 xpt_done(request_ccb);
5556 return;
5559 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5561 * Can't scan the bus on an adapter that
5562 * cannot perform the initiator role.
5564 if (request_ccb != NULL) {
5565 request_ccb->ccb_h.status = CAM_REQ_CMP;
5566 xpt_done(request_ccb);
5568 return;
5571 if (request_ccb == NULL) {
5572 request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5573 new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5574 status = xpt_compile_path(new_path, xpt_periph,
5575 path->bus->path_id,
5576 path->target->target_id,
5577 path->device->lun_id);
5579 if (status != CAM_REQ_CMP) {
5580 xpt_print(path, "xpt_scan_lun: can't compile path, "
5581 "can't continue\n");
5582 kfree(request_ccb, M_CAMXPT);
5583 kfree(new_path, M_CAMXPT);
5584 return;
5586 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5587 request_ccb->ccb_h.cbfcnp = xptscandone;
5588 request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5589 request_ccb->crcn.flags = flags;
5592 if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5593 probe_softc *softc;
5595 softc = (probe_softc *)old_periph->softc;
5596 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5597 periph_links.tqe);
5598 } else {
5599 status = cam_periph_alloc(proberegister, NULL, probecleanup,
5600 probestart, "probe",
5601 CAM_PERIPH_BIO,
5602 request_ccb->ccb_h.path, NULL, 0,
5603 request_ccb);
5605 if (status != CAM_REQ_CMP) {
5606 xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5607 "returned an error, can't continue probe\n");
5608 request_ccb->ccb_h.status = status;
5609 xpt_done(request_ccb);
5614 static void
5615 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5617 xpt_release_path(done_ccb->ccb_h.path);
5618 kfree(done_ccb->ccb_h.path, M_CAMXPT);
5619 kfree(done_ccb, M_CAMXPT);
5622 static cam_status
5623 proberegister(struct cam_periph *periph, void *arg)
5625 union ccb *request_ccb; /* CCB representing the probe request */
5626 cam_status status;
5627 probe_softc *softc;
5629 request_ccb = (union ccb *)arg;
5630 if (periph == NULL) {
5631 kprintf("proberegister: periph was NULL!!\n");
5632 return(CAM_REQ_CMP_ERR);
5635 if (request_ccb == NULL) {
5636 kprintf("proberegister: no probe CCB, "
5637 "can't register device\n");
5638 return(CAM_REQ_CMP_ERR);
5641 softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5642 TAILQ_INIT(&softc->request_ccbs);
5643 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5644 periph_links.tqe);
5645 softc->flags = 0;
5646 periph->softc = softc;
5647 softc->periph = periph;
5648 softc->action = PROBE_INVALID;
5649 status = cam_periph_acquire(periph);
5650 if (status != CAM_REQ_CMP) {
5651 return (status);
5656 * Ensure we've waited at least a bus settle
5657 * delay before attempting to probe the device.
5658 * For HBAs that don't do bus resets, this won't make a difference.
5660 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5661 scsi_delay);
5662 probeschedule(periph);
5663 return(CAM_REQ_CMP);
5666 static void
5667 probeschedule(struct cam_periph *periph)
5669 struct ccb_pathinq cpi;
5670 union ccb *ccb;
5671 probe_softc *softc;
5673 softc = (probe_softc *)periph->softc;
5674 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5676 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5677 cpi.ccb_h.func_code = XPT_PATH_INQ;
5678 xpt_action((union ccb *)&cpi);
5681 * If a device has gone away and another device, or the same one,
5682 * is back in the same place, it should have a unit attention
5683 * condition pending. It will not report the unit attention in
5684 * response to an inquiry, which may leave invalid transfer
5685 * negotiations in effect. The TUR will reveal the unit attention
5686 * condition. Only send the TUR for lun 0, since some devices
5687 * will get confused by commands other than inquiry to non-existent
5688 * luns. If you think a device has gone away start your scan from
5689 * lun 0. This will insure that any bogus transfer settings are
5690 * invalidated.
5692 * If we haven't seen the device before and the controller supports
5693 * some kind of transfer negotiation, negotiate with the first
5694 * sent command if no bus reset was performed at startup. This
5695 * ensures that the device is not confused by transfer negotiation
5696 * settings left over by loader or BIOS action.
5698 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5699 && (ccb->ccb_h.target_lun == 0)) {
5700 PROBE_SET_ACTION(softc, PROBE_TUR);
5701 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5702 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5703 proberequestdefaultnegotiation(periph);
5704 PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5705 } else {
5706 PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5709 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5710 softc->flags |= PROBE_NO_ANNOUNCE;
5711 else
5712 softc->flags &= ~PROBE_NO_ANNOUNCE;
5714 xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5717 static void
5718 probestart(struct cam_periph *periph, union ccb *start_ccb)
5720 /* Probe the device that our peripheral driver points to */
5721 struct ccb_scsiio *csio;
5722 probe_softc *softc;
5724 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5726 softc = (probe_softc *)periph->softc;
5727 csio = &start_ccb->csio;
5729 switch (softc->action) {
5730 case PROBE_TUR:
5731 case PROBE_TUR_FOR_NEGOTIATION:
5732 case PROBE_DV_EXIT:
5734 scsi_test_unit_ready(csio,
5735 /*retries*/4,
5736 probedone,
5737 MSG_SIMPLE_Q_TAG,
5738 SSD_FULL_SIZE,
5739 /*timeout*/60000);
5740 break;
5742 case PROBE_INQUIRY:
5743 case PROBE_FULL_INQUIRY:
5744 case PROBE_INQUIRY_BASIC_DV1:
5745 case PROBE_INQUIRY_BASIC_DV2:
5747 u_int inquiry_len;
5748 struct scsi_inquiry_data *inq_buf;
5750 inq_buf = &periph->path->device->inq_data;
5753 * If the device is currently configured, we calculate an
5754 * MD5 checksum of the inquiry data, and if the serial number
5755 * length is greater than 0, add the serial number data
5756 * into the checksum as well. Once the inquiry and the
5757 * serial number check finish, we attempt to figure out
5758 * whether we still have the same device.
5760 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5762 MD5Init(&softc->context);
5763 MD5Update(&softc->context, (unsigned char *)inq_buf,
5764 sizeof(struct scsi_inquiry_data));
5765 softc->flags |= PROBE_INQUIRY_CKSUM;
5766 if (periph->path->device->serial_num_len > 0) {
5767 MD5Update(&softc->context,
5768 periph->path->device->serial_num,
5769 periph->path->device->serial_num_len);
5770 softc->flags |= PROBE_SERIAL_CKSUM;
5772 MD5Final(softc->digest, &softc->context);
5775 if (softc->action == PROBE_INQUIRY)
5776 inquiry_len = SHORT_INQUIRY_LENGTH;
5777 else
5778 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5781 * Some parallel SCSI devices fail to send an
5782 * ignore wide residue message when dealing with
5783 * odd length inquiry requests. Round up to be
5784 * safe.
5786 inquiry_len = roundup2(inquiry_len, 2);
5788 if (softc->action == PROBE_INQUIRY_BASIC_DV1
5789 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5790 inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5792 scsi_inquiry(csio,
5793 /*retries*/4,
5794 probedone,
5795 MSG_SIMPLE_Q_TAG,
5796 (u_int8_t *)inq_buf,
5797 inquiry_len,
5798 /*evpd*/FALSE,
5799 /*page_code*/0,
5800 SSD_MIN_SIZE,
5801 /*timeout*/60 * 1000);
5802 break;
5804 case PROBE_MODE_SENSE:
5806 void *mode_buf;
5807 int mode_buf_len;
5809 mode_buf_len = sizeof(struct scsi_mode_header_6)
5810 + sizeof(struct scsi_mode_blk_desc)
5811 + sizeof(struct scsi_control_page);
5812 mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5813 scsi_mode_sense(csio,
5814 /*retries*/4,
5815 probedone,
5816 MSG_SIMPLE_Q_TAG,
5817 /*dbd*/FALSE,
5818 SMS_PAGE_CTRL_CURRENT,
5819 SMS_CONTROL_MODE_PAGE,
5820 mode_buf,
5821 mode_buf_len,
5822 SSD_FULL_SIZE,
5823 /*timeout*/60000);
5824 break;
5826 case PROBE_SERIAL_NUM_0:
5828 struct scsi_vpd_supported_page_list *vpd_list = NULL;
5829 struct cam_ed *device;
5831 device = periph->path->device;
5832 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5833 vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5834 M_INTWAIT | M_ZERO);
5837 if (vpd_list != NULL) {
5838 scsi_inquiry(csio,
5839 /*retries*/4,
5840 probedone,
5841 MSG_SIMPLE_Q_TAG,
5842 (u_int8_t *)vpd_list,
5843 sizeof(*vpd_list),
5844 /*evpd*/TRUE,
5845 SVPD_SUPPORTED_PAGE_LIST,
5846 SSD_MIN_SIZE,
5847 /*timeout*/60 * 1000);
5848 break;
5851 * We'll have to do without, let our probedone
5852 * routine finish up for us.
5854 start_ccb->csio.data_ptr = NULL;
5855 probedone(periph, start_ccb);
5856 return;
5858 case PROBE_SERIAL_NUM_1:
5860 struct scsi_vpd_unit_serial_number *serial_buf;
5861 struct cam_ed* device;
5863 serial_buf = NULL;
5864 device = periph->path->device;
5865 device->serial_num = NULL;
5866 device->serial_num_len = 0;
5868 serial_buf = (struct scsi_vpd_unit_serial_number *)
5869 kmalloc(sizeof(*serial_buf), M_CAMXPT,
5870 M_INTWAIT | M_ZERO);
5871 scsi_inquiry(csio,
5872 /*retries*/4,
5873 probedone,
5874 MSG_SIMPLE_Q_TAG,
5875 (u_int8_t *)serial_buf,
5876 sizeof(*serial_buf),
5877 /*evpd*/TRUE,
5878 SVPD_UNIT_SERIAL_NUMBER,
5879 SSD_MIN_SIZE,
5880 /*timeout*/60 * 1000);
5881 break;
5883 case PROBE_INVALID:
5884 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO,
5885 ("probestart: invalid action state\n"));
5886 default:
5887 break;
5889 xpt_action(start_ccb);
5892 static void
5893 proberequestdefaultnegotiation(struct cam_periph *periph)
5895 struct ccb_trans_settings cts;
5897 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5898 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5899 cts.type = CTS_TYPE_USER_SETTINGS;
5900 xpt_action((union ccb *)&cts);
5901 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5902 return;
5904 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5905 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5906 xpt_action((union ccb *)&cts);
5910 * Backoff Negotiation Code- only pertinent for SPI devices.
5912 static int
5913 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5915 struct ccb_trans_settings cts;
5916 struct ccb_trans_settings_spi *spi;
5918 memset(&cts, 0, sizeof (cts));
5919 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5920 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5921 cts.type = CTS_TYPE_CURRENT_SETTINGS;
5922 xpt_action((union ccb *)&cts);
5923 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5924 if (bootverbose) {
5925 xpt_print(periph->path,
5926 "failed to get current device settings\n");
5928 return (0);
5930 if (cts.transport != XPORT_SPI) {
5931 if (bootverbose) {
5932 xpt_print(periph->path, "not SPI transport\n");
5934 return (0);
5936 spi = &cts.xport_specific.spi;
5939 * We cannot renegotiate sync rate if we don't have one.
5941 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5942 if (bootverbose) {
5943 xpt_print(periph->path, "no sync rate known\n");
5945 return (0);
5949 * We'll assert that we don't have to touch PPR options- the
5950 * SIM will see what we do with period and offset and adjust
5951 * the PPR options as appropriate.
5955 * A sync rate with unknown or zero offset is nonsensical.
5956 * A sync period of zero means Async.
5958 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5959 || spi->sync_offset == 0 || spi->sync_period == 0) {
5960 if (bootverbose) {
5961 xpt_print(periph->path, "no sync rate available\n");
5963 return (0);
5966 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5967 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5968 ("hit async: giving up on DV\n"));
5969 return (0);
5974 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5975 * We don't try to remember 'last' settings to see if the SIM actually
5976 * gets into the speed we want to set. We check on the SIM telling
5977 * us that a requested speed is bad, but otherwise don't try and
5978 * check the speed due to the asynchronous and handshake nature
5979 * of speed setting.
5981 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5982 for (;;) {
5983 spi->sync_period++;
5984 if (spi->sync_period >= 0xf) {
5985 spi->sync_period = 0;
5986 spi->sync_offset = 0;
5987 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5988 ("setting to async for DV\n"));
5990 * Once we hit async, we don't want to try
5991 * any more settings.
5993 device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5994 } else if (bootverbose) {
5995 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5996 ("DV: period 0x%x\n", spi->sync_period));
5997 kprintf("setting period to 0x%x\n", spi->sync_period);
5999 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6000 cts.type = CTS_TYPE_CURRENT_SETTINGS;
6001 xpt_action((union ccb *)&cts);
6002 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6003 break;
6005 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6006 ("DV: failed to set period 0x%x\n", spi->sync_period));
6007 if (spi->sync_period == 0) {
6008 return (0);
6011 return (1);
6014 static void
6015 probedone(struct cam_periph *periph, union ccb *done_ccb)
6017 probe_softc *softc;
6018 struct cam_path *path;
6019 u_int32_t priority;
6021 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
6023 softc = (probe_softc *)periph->softc;
6024 path = done_ccb->ccb_h.path;
6025 priority = done_ccb->ccb_h.pinfo.priority;
6027 switch (softc->action) {
6028 case PROBE_TUR:
6030 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6032 if (cam_periph_error(done_ccb, 0,
6033 SF_NO_PRINT, NULL) == ERESTART)
6034 return;
6035 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6036 /* Don't wedge the queue */
6037 xpt_release_devq(done_ccb->ccb_h.path,
6038 /*count*/1,
6039 /*run_queue*/TRUE);
6041 PROBE_SET_ACTION(softc, PROBE_INQUIRY);
6042 xpt_release_ccb(done_ccb);
6043 xpt_schedule(periph, priority);
6044 return;
6046 case PROBE_INQUIRY:
6047 case PROBE_FULL_INQUIRY:
6049 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6050 struct scsi_inquiry_data *inq_buf;
6051 u_int8_t periph_qual;
6053 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6054 inq_buf = &path->device->inq_data;
6056 periph_qual = SID_QUAL(inq_buf);
6058 switch(periph_qual) {
6059 case SID_QUAL_LU_CONNECTED:
6061 u_int8_t len;
6064 * We conservatively request only
6065 * SHORT_INQUIRY_LEN bytes of inquiry
6066 * information during our first try
6067 * at sending an INQUIRY. If the device
6068 * has more information to give,
6069 * perform a second request specifying
6070 * the amount of information the device
6071 * is willing to give.
6073 len = inq_buf->additional_length
6074 + offsetof(struct scsi_inquiry_data,
6075 additional_length) + 1;
6076 if (softc->action == PROBE_INQUIRY
6077 && len > SHORT_INQUIRY_LENGTH) {
6078 PROBE_SET_ACTION(softc,
6079 PROBE_FULL_INQUIRY);
6080 xpt_release_ccb(done_ccb);
6081 xpt_schedule(periph, priority);
6082 return;
6085 xpt_find_quirk(path->device);
6087 xpt_devise_transport(path);
6088 if (INQ_DATA_TQ_ENABLED(inq_buf))
6089 PROBE_SET_ACTION(softc, PROBE_MODE_SENSE);
6090 else
6091 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6093 path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6094 xpt_reference_device(path->device);
6096 xpt_release_ccb(done_ccb);
6097 xpt_schedule(periph, priority);
6098 return;
6100 default:
6101 break;
6103 } else if (cam_periph_error(done_ccb, 0,
6104 done_ccb->ccb_h.target_lun > 0
6105 ? SF_RETRY_UA|SF_QUIET_IR|SF_NO_PRINT
6106 : SF_RETRY_UA|SF_NO_PRINT,
6107 &softc->saved_ccb) == ERESTART) {
6108 return;
6109 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6110 /* Don't wedge the queue */
6111 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6112 /*run_queue*/TRUE);
6115 * If we get to this point, we got an error status back
6116 * from the inquiry and the error status doesn't require
6117 * automatically retrying the command. Therefore, the
6118 * inquiry failed. If we had inquiry information before
6119 * for this device, but this latest inquiry command failed,
6120 * the device has probably gone away. If this device isn't
6121 * already marked unconfigured, notify the peripheral
6122 * drivers that this device is no more.
6124 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6125 /* Send the async notification. */
6126 xpt_async(AC_LOST_DEVICE, path, NULL);
6129 xpt_release_ccb(done_ccb);
6130 break;
6132 case PROBE_MODE_SENSE:
6134 struct ccb_scsiio *csio;
6135 struct scsi_mode_header_6 *mode_hdr;
6137 csio = &done_ccb->csio;
6138 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6139 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6140 struct scsi_control_page *page;
6141 u_int8_t *offset;
6143 offset = ((u_int8_t *)&mode_hdr[1])
6144 + mode_hdr->blk_desc_len;
6145 page = (struct scsi_control_page *)offset;
6146 path->device->queue_flags = page->queue_flags;
6147 } else if (cam_periph_error(done_ccb, 0,
6148 SF_RETRY_UA|SF_NO_PRINT,
6149 &softc->saved_ccb) == ERESTART) {
6150 return;
6151 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6152 /* Don't wedge the queue */
6153 xpt_release_devq(done_ccb->ccb_h.path,
6154 /*count*/1, /*run_queue*/TRUE);
6156 xpt_release_ccb(done_ccb);
6157 kfree(mode_hdr, M_CAMXPT);
6158 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6159 xpt_schedule(periph, priority);
6160 return;
6162 case PROBE_SERIAL_NUM_0:
6164 struct ccb_scsiio *csio;
6165 struct scsi_vpd_supported_page_list *page_list;
6166 int length, serialnum_supported, i;
6168 serialnum_supported = 0;
6169 csio = &done_ccb->csio;
6170 page_list =
6171 (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6173 if (page_list == NULL) {
6175 * Don't process the command as it was never sent
6177 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6178 && (page_list->length > 0)) {
6179 length = min(page_list->length,
6180 SVPD_SUPPORTED_PAGES_SIZE);
6181 for (i = 0; i < length; i++) {
6182 if (page_list->list[i] ==
6183 SVPD_UNIT_SERIAL_NUMBER) {
6184 serialnum_supported = 1;
6185 break;
6188 } else if (cam_periph_error(done_ccb, 0,
6189 SF_RETRY_UA|SF_NO_PRINT,
6190 &softc->saved_ccb) == ERESTART) {
6191 return;
6192 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6193 /* Don't wedge the queue */
6194 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6195 /*run_queue*/TRUE);
6198 if (page_list != NULL)
6199 kfree(page_list, M_DEVBUF);
6201 if (serialnum_supported) {
6202 xpt_release_ccb(done_ccb);
6203 PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_1);
6204 xpt_schedule(periph, priority);
6205 return;
6208 csio->data_ptr = NULL;
6209 /* FALLTHROUGH */
6212 case PROBE_SERIAL_NUM_1:
6214 struct ccb_scsiio *csio;
6215 struct scsi_vpd_unit_serial_number *serial_buf;
6216 u_int32_t priority;
6217 int changed;
6218 int have_serialnum;
6220 changed = 1;
6221 have_serialnum = 0;
6222 csio = &done_ccb->csio;
6223 priority = done_ccb->ccb_h.pinfo.priority;
6224 serial_buf =
6225 (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6227 /* Clean up from previous instance of this device */
6228 if (path->device->serial_num != NULL) {
6229 kfree(path->device->serial_num, M_CAMXPT);
6230 path->device->serial_num = NULL;
6231 path->device->serial_num_len = 0;
6234 if (serial_buf == NULL) {
6236 * Don't process the command as it was never sent
6238 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6239 && (serial_buf->length > 0)) {
6241 have_serialnum = 1;
6242 path->device->serial_num =
6243 kmalloc((serial_buf->length + 1),
6244 M_CAMXPT, M_INTWAIT);
6245 bcopy(serial_buf->serial_num,
6246 path->device->serial_num,
6247 serial_buf->length);
6248 path->device->serial_num_len = serial_buf->length;
6249 path->device->serial_num[serial_buf->length] = '\0';
6250 } else if (cam_periph_error(done_ccb, 0,
6251 SF_RETRY_UA|SF_NO_PRINT,
6252 &softc->saved_ccb) == ERESTART) {
6253 return;
6254 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6255 /* Don't wedge the queue */
6256 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6257 /*run_queue*/TRUE);
6261 * Let's see if we have seen this device before.
6263 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6264 MD5_CTX context;
6265 u_int8_t digest[16];
6267 MD5Init(&context);
6269 MD5Update(&context,
6270 (unsigned char *)&path->device->inq_data,
6271 sizeof(struct scsi_inquiry_data));
6273 if (have_serialnum)
6274 MD5Update(&context, serial_buf->serial_num,
6275 serial_buf->length);
6277 MD5Final(digest, &context);
6278 if (bcmp(softc->digest, digest, 16) == 0)
6279 changed = 0;
6282 * XXX Do we need to do a TUR in order to ensure
6283 * that the device really hasn't changed???
6285 if ((changed != 0)
6286 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6287 xpt_async(AC_LOST_DEVICE, path, NULL);
6289 if (serial_buf != NULL)
6290 kfree(serial_buf, M_CAMXPT);
6292 if (changed != 0) {
6294 * Now that we have all the necessary
6295 * information to safely perform transfer
6296 * negotiations... Controllers don't perform
6297 * any negotiation or tagged queuing until
6298 * after the first XPT_SET_TRAN_SETTINGS ccb is
6299 * received. So, on a new device, just retrieve
6300 * the user settings, and set them as the current
6301 * settings to set the device up.
6303 proberequestdefaultnegotiation(periph);
6304 xpt_release_ccb(done_ccb);
6307 * Perform a TUR to allow the controller to
6308 * perform any necessary transfer negotiation.
6310 PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6311 xpt_schedule(periph, priority);
6312 return;
6314 xpt_release_ccb(done_ccb);
6315 break;
6317 case PROBE_TUR_FOR_NEGOTIATION:
6318 case PROBE_DV_EXIT:
6319 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6320 /* Don't wedge the queue */
6321 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6322 /*run_queue*/TRUE);
6325 xpt_reference_device(path->device);
6327 * Do Domain Validation for lun 0 on devices that claim
6328 * to support Synchronous Transfer modes.
6330 if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6331 && done_ccb->ccb_h.target_lun == 0
6332 && (path->device->inq_data.flags & SID_Sync) != 0
6333 && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6334 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6335 ("Begin Domain Validation\n"));
6336 path->device->flags |= CAM_DEV_IN_DV;
6337 xpt_release_ccb(done_ccb);
6338 PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1);
6339 xpt_schedule(periph, priority);
6340 return;
6342 if (softc->action == PROBE_DV_EXIT) {
6343 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6344 ("Leave Domain Validation\n"));
6346 path->device->flags &=
6347 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6348 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6349 /* Inform the XPT that a new device has been found */
6350 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6351 xpt_action(done_ccb);
6352 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6353 done_ccb);
6355 xpt_release_ccb(done_ccb);
6356 break;
6357 case PROBE_INQUIRY_BASIC_DV1:
6358 case PROBE_INQUIRY_BASIC_DV2:
6360 struct scsi_inquiry_data *nbuf;
6361 struct ccb_scsiio *csio;
6363 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6364 /* Don't wedge the queue */
6365 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6366 /*run_queue*/TRUE);
6368 csio = &done_ccb->csio;
6369 nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6370 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6371 xpt_print(path,
6372 "inquiry data fails comparison at DV%d step\n",
6373 softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6374 if (proberequestbackoff(periph, path->device)) {
6375 path->device->flags &= ~CAM_DEV_IN_DV;
6376 PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6377 } else {
6378 /* give up */
6379 PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
6381 kfree(nbuf, M_CAMXPT);
6382 xpt_release_ccb(done_ccb);
6383 xpt_schedule(periph, priority);
6384 return;
6386 kfree(nbuf, M_CAMXPT);
6387 if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6388 PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2);
6389 xpt_release_ccb(done_ccb);
6390 xpt_schedule(periph, priority);
6391 return;
6393 if (softc->action == PROBE_DV_EXIT) {
6394 CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6395 ("Leave Domain Validation Successfully\n"));
6397 path->device->flags &=
6398 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6399 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6400 /* Inform the XPT that a new device has been found */
6401 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6402 xpt_action(done_ccb);
6403 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6404 done_ccb);
6406 xpt_release_ccb(done_ccb);
6407 break;
6409 case PROBE_INVALID:
6410 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_INFO,
6411 ("probedone: invalid action state\n"));
6412 default:
6413 break;
6415 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6416 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6417 done_ccb->ccb_h.status = CAM_REQ_CMP;
6418 xpt_done(done_ccb);
6419 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6420 cam_periph_invalidate(periph);
6421 cam_periph_release(periph);
6422 } else {
6423 probeschedule(periph);
6427 static void
6428 probecleanup(struct cam_periph *periph)
6430 kfree(periph->softc, M_CAMXPT);
6433 static void
6434 xpt_find_quirk(struct cam_ed *device)
6436 caddr_t match;
6438 match = cam_quirkmatch((caddr_t)&device->inq_data,
6439 (caddr_t)xpt_quirk_table,
6440 NELEM(xpt_quirk_table),
6441 sizeof(*xpt_quirk_table), scsi_inquiry_match);
6443 if (match == NULL)
6444 panic("xpt_find_quirk: device didn't match wildcard entry!!");
6446 device->quirk = (struct xpt_quirk_entry *)match;
6449 static int
6450 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6452 int error, lbool;
6454 lbool = cam_srch_hi;
6455 error = sysctl_handle_int(oidp, &lbool, 0, req);
6456 if (error != 0 || req->newptr == NULL)
6457 return (error);
6458 if (lbool == 0 || lbool == 1) {
6459 cam_srch_hi = lbool;
6460 return (0);
6461 } else {
6462 return (EINVAL);
6466 static void
6467 xpt_devise_transport(struct cam_path *path)
6469 struct ccb_pathinq cpi;
6470 struct ccb_trans_settings cts;
6471 struct scsi_inquiry_data *inq_buf;
6473 /* Get transport information from the SIM */
6474 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6475 cpi.ccb_h.func_code = XPT_PATH_INQ;
6476 xpt_action((union ccb *)&cpi);
6478 inq_buf = NULL;
6479 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6480 inq_buf = &path->device->inq_data;
6481 path->device->protocol = PROTO_SCSI;
6482 path->device->protocol_version =
6483 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6484 path->device->transport = cpi.transport;
6485 path->device->transport_version = cpi.transport_version;
6488 * Any device not using SPI3 features should
6489 * be considered SPI2 or lower.
6491 if (inq_buf != NULL) {
6492 if (path->device->transport == XPORT_SPI
6493 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6494 && path->device->transport_version > 2)
6495 path->device->transport_version = 2;
6496 } else {
6497 struct cam_ed* otherdev;
6499 for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6500 otherdev != NULL;
6501 otherdev = TAILQ_NEXT(otherdev, links)) {
6502 if (otherdev != path->device)
6503 break;
6506 if (otherdev != NULL) {
6508 * Initially assume the same versioning as
6509 * prior luns for this target.
6511 path->device->protocol_version =
6512 otherdev->protocol_version;
6513 path->device->transport_version =
6514 otherdev->transport_version;
6515 } else {
6516 /* Until we know better, opt for safty */
6517 path->device->protocol_version = 2;
6518 if (path->device->transport == XPORT_SPI)
6519 path->device->transport_version = 2;
6520 else
6521 path->device->transport_version = 0;
6526 * XXX
6527 * For a device compliant with SPC-2 we should be able
6528 * to determine the transport version supported by
6529 * scrutinizing the version descriptors in the
6530 * inquiry buffer.
6533 /* Tell the controller what we think */
6534 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6535 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6536 cts.type = CTS_TYPE_CURRENT_SETTINGS;
6537 cts.transport = path->device->transport;
6538 cts.transport_version = path->device->transport_version;
6539 cts.protocol = path->device->protocol;
6540 cts.protocol_version = path->device->protocol_version;
6541 cts.proto_specific.valid = 0;
6542 cts.xport_specific.valid = 0;
6543 xpt_action((union ccb *)&cts);
6546 static void
6547 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6548 int async_update)
6550 struct ccb_pathinq cpi;
6551 struct ccb_trans_settings cur_cts;
6552 struct ccb_trans_settings_scsi *scsi;
6553 struct ccb_trans_settings_scsi *cur_scsi;
6554 struct cam_sim *sim;
6555 struct scsi_inquiry_data *inq_data;
6557 if (device == NULL) {
6558 cts->ccb_h.status = CAM_PATH_INVALID;
6559 xpt_done((union ccb *)cts);
6560 return;
6563 if (cts->protocol == PROTO_UNKNOWN
6564 || cts->protocol == PROTO_UNSPECIFIED) {
6565 cts->protocol = device->protocol;
6566 cts->protocol_version = device->protocol_version;
6569 if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6570 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6571 cts->protocol_version = device->protocol_version;
6573 if (cts->protocol != device->protocol) {
6574 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6575 cts->protocol, device->protocol);
6576 cts->protocol = device->protocol;
6579 if (cts->protocol_version > device->protocol_version) {
6580 if (bootverbose) {
6581 xpt_print(cts->ccb_h.path, "Down reving Protocol "
6582 "Version from %d to %d?\n", cts->protocol_version,
6583 device->protocol_version);
6585 cts->protocol_version = device->protocol_version;
6588 if (cts->transport == XPORT_UNKNOWN
6589 || cts->transport == XPORT_UNSPECIFIED) {
6590 cts->transport = device->transport;
6591 cts->transport_version = device->transport_version;
6594 if (cts->transport_version == XPORT_VERSION_UNKNOWN
6595 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6596 cts->transport_version = device->transport_version;
6598 if (cts->transport != device->transport) {
6599 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6600 cts->transport, device->transport);
6601 cts->transport = device->transport;
6604 if (cts->transport_version > device->transport_version) {
6605 if (bootverbose) {
6606 xpt_print(cts->ccb_h.path, "Down reving Transport "
6607 "Version from %d to %d?\n", cts->transport_version,
6608 device->transport_version);
6610 cts->transport_version = device->transport_version;
6613 sim = cts->ccb_h.path->bus->sim;
6616 * Nothing more of interest to do unless
6617 * this is a device connected via the
6618 * SCSI protocol.
6620 if (cts->protocol != PROTO_SCSI) {
6621 if (async_update == FALSE)
6622 (*(sim->sim_action))(sim, (union ccb *)cts);
6623 return;
6626 inq_data = &device->inq_data;
6627 scsi = &cts->proto_specific.scsi;
6628 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6629 cpi.ccb_h.func_code = XPT_PATH_INQ;
6630 xpt_action((union ccb *)&cpi);
6632 /* SCSI specific sanity checking */
6633 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6634 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6635 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6636 || (device->quirk->mintags == 0)) {
6638 * Can't tag on hardware that doesn't support tags,
6639 * doesn't have it enabled, or has broken tag support.
6641 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6644 if (async_update == FALSE) {
6646 * Perform sanity checking against what the
6647 * controller and device can do.
6649 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6650 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6651 cur_cts.type = cts->type;
6652 xpt_action((union ccb *)&cur_cts);
6653 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6654 return;
6656 cur_scsi = &cur_cts.proto_specific.scsi;
6657 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6658 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6659 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6661 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6662 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6665 /* SPI specific sanity checking */
6666 if (cts->transport == XPORT_SPI && async_update == FALSE) {
6667 u_int spi3caps;
6668 struct ccb_trans_settings_spi *spi;
6669 struct ccb_trans_settings_spi *cur_spi;
6671 spi = &cts->xport_specific.spi;
6673 cur_spi = &cur_cts.xport_specific.spi;
6675 /* Fill in any gaps in what the user gave us */
6676 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6677 spi->sync_period = cur_spi->sync_period;
6678 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6679 spi->sync_period = 0;
6680 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6681 spi->sync_offset = cur_spi->sync_offset;
6682 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6683 spi->sync_offset = 0;
6684 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6685 spi->ppr_options = cur_spi->ppr_options;
6686 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6687 spi->ppr_options = 0;
6688 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6689 spi->bus_width = cur_spi->bus_width;
6690 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6691 spi->bus_width = 0;
6692 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6693 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6694 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6696 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6697 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6698 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6699 && (inq_data->flags & SID_Sync) == 0
6700 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6701 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)) {
6702 /* Force async */
6703 spi->sync_period = 0;
6704 spi->sync_offset = 0;
6707 switch (spi->bus_width) {
6708 case MSG_EXT_WDTR_BUS_32_BIT:
6709 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6710 || (inq_data->flags & SID_WBus32) != 0
6711 || cts->type == CTS_TYPE_USER_SETTINGS)
6712 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6713 break;
6714 /* Fall Through to 16-bit */
6715 case MSG_EXT_WDTR_BUS_16_BIT:
6716 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6717 || (inq_data->flags & SID_WBus16) != 0
6718 || cts->type == CTS_TYPE_USER_SETTINGS)
6719 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6720 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6721 break;
6723 /* Fall Through to 8-bit */
6724 default: /* New bus width?? */
6725 case MSG_EXT_WDTR_BUS_8_BIT:
6726 /* All targets can do this */
6727 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6728 break;
6731 spi3caps = cpi.xport_specific.spi.ppr_options;
6732 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6733 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6734 spi3caps &= inq_data->spi3data;
6736 if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6737 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6739 if ((spi3caps & SID_SPI_IUS) == 0)
6740 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6742 if ((spi3caps & SID_SPI_QAS) == 0)
6743 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6745 /* No SPI Transfer settings are allowed unless we are wide */
6746 if (spi->bus_width == 0)
6747 spi->ppr_options = 0;
6749 if ((spi->valid & CTS_SPI_VALID_DISC)
6750 && ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) {
6752 * Can't tag queue without disconnection.
6754 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6755 scsi->valid |= CTS_SCSI_VALID_TQ;
6759 * If we are currently performing tagged transactions to
6760 * this device and want to change its negotiation parameters,
6761 * go non-tagged for a bit to give the controller a chance to
6762 * negotiate unhampered by tag messages.
6764 if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6765 && (device->inq_flags & SID_CmdQue) != 0
6766 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6767 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6768 CTS_SPI_VALID_SYNC_OFFSET|
6769 CTS_SPI_VALID_BUS_WIDTH)) != 0)
6770 xpt_toggle_tags(cts->ccb_h.path);
6773 if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6774 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6775 int device_tagenb;
6778 * If we are transitioning from tags to no-tags or
6779 * vice-versa, we need to carefully freeze and restart
6780 * the queue so that we don't overlap tagged and non-tagged
6781 * commands. We also temporarily stop tags if there is
6782 * a change in transfer negotiation settings to allow
6783 * "tag-less" negotiation.
6785 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6786 || (device->inq_flags & SID_CmdQue) != 0)
6787 device_tagenb = TRUE;
6788 else
6789 device_tagenb = FALSE;
6791 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6792 && device_tagenb == FALSE)
6793 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6794 && device_tagenb == TRUE)) {
6796 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6798 * Delay change to use tags until after a
6799 * few commands have gone to this device so
6800 * the controller has time to perform transfer
6801 * negotiations without tagged messages getting
6802 * in the way.
6804 device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6805 device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6806 } else {
6807 struct ccb_relsim crs;
6809 xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6810 device->inq_flags &= ~SID_CmdQue;
6811 xpt_dev_ccbq_resize(cts->ccb_h.path,
6812 sim->max_dev_openings);
6813 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6814 device->tag_delay_count = 0;
6816 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6817 /*priority*/1);
6818 crs.ccb_h.func_code = XPT_REL_SIMQ;
6819 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6820 crs.openings
6821 = crs.release_timeout
6822 = crs.qfrozen_cnt
6823 = 0;
6824 xpt_action((union ccb *)&crs);
6828 if (async_update == FALSE)
6829 (*(sim->sim_action))(sim, (union ccb *)cts);
6832 static void
6833 xpt_toggle_tags(struct cam_path *path)
6835 struct cam_ed *dev;
6838 * Give controllers a chance to renegotiate
6839 * before starting tag operations. We
6840 * "toggle" tagged queuing off then on
6841 * which causes the tag enable command delay
6842 * counter to come into effect.
6844 dev = path->device;
6845 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6846 || ((dev->inq_flags & SID_CmdQue) != 0
6847 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6848 struct ccb_trans_settings cts;
6850 xpt_setup_ccb(&cts.ccb_h, path, 1);
6851 cts.protocol = PROTO_SCSI;
6852 cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6853 cts.transport = XPORT_UNSPECIFIED;
6854 cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6855 cts.proto_specific.scsi.flags = 0;
6856 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6857 xpt_set_transfer_settings(&cts, path->device,
6858 /*async_update*/TRUE);
6859 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6860 xpt_set_transfer_settings(&cts, path->device,
6861 /*async_update*/TRUE);
6865 static void
6866 xpt_start_tags(struct cam_path *path)
6868 struct ccb_relsim crs;
6869 struct cam_ed *device;
6870 struct cam_sim *sim;
6871 int newopenings;
6873 device = path->device;
6874 sim = path->bus->sim;
6875 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6876 xpt_freeze_devq(path, /*count*/1);
6877 device->inq_flags |= SID_CmdQue;
6878 if (device->tag_saved_openings != 0)
6879 newopenings = device->tag_saved_openings;
6880 else
6881 newopenings = min(device->quirk->maxtags,
6882 sim->max_tagged_dev_openings);
6883 xpt_dev_ccbq_resize(path, newopenings);
6884 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6885 crs.ccb_h.func_code = XPT_REL_SIMQ;
6886 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6887 crs.openings
6888 = crs.release_timeout
6889 = crs.qfrozen_cnt
6890 = 0;
6891 xpt_action((union ccb *)&crs);
6894 static int busses_to_config;
6895 static int busses_to_reset;
6897 static int
6898 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6900 sim_lock_assert_owned(bus->sim->lock);
6902 if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
6903 struct cam_path path;
6904 struct ccb_pathinq cpi;
6905 int can_negotiate;
6907 if (bootverbose) {
6908 kprintf("CAM: Configuring bus:");
6909 if (bus->sim) {
6910 kprintf(" %s%d\n",
6911 bus->sim->sim_name,
6912 bus->sim->unit_number);
6913 } else {
6914 kprintf(" (unknown)\n");
6917 atomic_add_int(&busses_to_config, 1);
6918 bus->counted_to_config = 1;
6919 xpt_compile_path(&path, NULL, bus->path_id,
6920 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6921 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6922 cpi.ccb_h.func_code = XPT_PATH_INQ;
6923 xpt_action((union ccb *)&cpi);
6924 can_negotiate = cpi.hba_inquiry;
6925 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6926 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
6927 busses_to_reset++;
6928 xpt_release_path(&path);
6929 } else
6930 if (bus->counted_to_config == 0 && bus->path_id == CAM_XPT_PATH_ID) {
6931 /* this is our dummy periph/bus */
6932 atomic_add_int(&busses_to_config, 1);
6933 bus->counted_to_config = 1;
6936 return(1);
6939 static int
6940 xptconfigfunc(struct cam_eb *bus, void *arg)
6942 struct cam_path *path;
6943 union ccb *work_ccb;
6945 sim_lock_assert_owned(bus->sim->lock);
6947 if (bus->path_id != CAM_XPT_PATH_ID) {
6948 cam_status status;
6949 int can_negotiate;
6951 work_ccb = xpt_alloc_ccb();
6952 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6953 CAM_TARGET_WILDCARD,
6954 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6955 kprintf("xptconfigfunc: xpt_create_path failed with "
6956 "status %#x for bus %d\n", status, bus->path_id);
6957 kprintf("xptconfigfunc: halting bus configuration\n");
6958 xpt_free_ccb(work_ccb);
6959 xpt_uncount_bus(bus);
6960 return(0);
6962 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6963 work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6964 xpt_action(work_ccb);
6965 if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6966 kprintf("xptconfigfunc: CPI failed on bus %d "
6967 "with status %d\n", bus->path_id,
6968 work_ccb->ccb_h.status);
6969 xpt_finishconfig(xpt_periph, work_ccb);
6970 return(1);
6973 can_negotiate = work_ccb->cpi.hba_inquiry;
6974 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6975 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6976 && (can_negotiate != 0)) {
6977 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6978 work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6979 work_ccb->ccb_h.cbfcnp = NULL;
6980 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6981 ("Resetting Bus\n"));
6982 xpt_action(work_ccb);
6983 xpt_finishconfig(xpt_periph, work_ccb);
6984 } else {
6985 /* Act as though we performed a successful BUS RESET */
6986 work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6987 xpt_finishconfig(xpt_periph, work_ccb);
6989 } else {
6990 xpt_uncount_bus(bus);
6993 return(1);
6997 * Now that interrupts are enabled, go find our devices.
6999 * This hook function is called once by run_interrupt_driven_config_hooks().
7000 * XPT is expected to disestablish its hook when done.
7002 static void
7003 xpt_config(void *arg)
7006 #ifdef CAMDEBUG
7007 /* Setup debugging flags and path */
7008 #ifdef CAM_DEBUG_FLAGS
7009 cam_dflags = CAM_DEBUG_FLAGS;
7010 #else /* !CAM_DEBUG_FLAGS */
7011 cam_dflags = CAM_DEBUG_NONE;
7012 #endif /* CAM_DEBUG_FLAGS */
7013 #ifdef CAM_DEBUG_BUS
7014 if (cam_dflags != CAM_DEBUG_NONE) {
7016 * Locking is specifically omitted here. No SIMs have
7017 * registered yet, so xpt_create_path will only be searching
7018 * empty lists of targets and devices.
7020 if (xpt_create_path(&cam_dpath, xpt_periph,
7021 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
7022 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
7023 kprintf("xpt_config: xpt_create_path() failed for debug"
7024 " target %d:%d:%d, debugging disabled\n",
7025 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
7026 cam_dflags = CAM_DEBUG_NONE;
7028 } else {
7029 cam_dpath = NULL;
7031 #else /* !CAM_DEBUG_BUS */
7032 cam_dpath = NULL;
7033 #endif /* CAM_DEBUG_BUS */
7034 #endif /* CAMDEBUG */
7037 * Scan all installed busses. This will also add a count
7038 * for our dummy placeholder (xpt_periph).
7040 xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7042 kprintf("CAM: Configuring %d busses\n", busses_to_config - 1);
7043 if (busses_to_reset > 0 && scsi_delay >= 2000) {
7044 kprintf("Waiting %d seconds for SCSI "
7045 "devices to settle\n",
7046 scsi_delay/1000);
7048 xpt_for_all_busses(xptconfigfunc, NULL);
7052 * If the given device only has one peripheral attached to it, and if that
7053 * peripheral is the passthrough driver, announce it. This insures that the
7054 * user sees some sort of announcement for every peripheral in their system.
7056 static int
7057 xptpassannouncefunc(struct cam_ed *device, void *arg)
7059 struct cam_periph *periph;
7060 int i;
7062 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7063 periph = SLIST_NEXT(periph, periph_links), i++);
7065 periph = SLIST_FIRST(&device->periphs);
7066 if ((i == 1)
7067 && (strncmp(periph->periph_name, "pass", 4) == 0))
7068 xpt_announce_periph(periph, NULL);
7070 return(1);
7073 static void
7074 xpt_finishconfig_task(void *context, int pending)
7076 struct periph_driver **p_drv;
7077 int i;
7079 kprintf("CAM: finished configuring all busses\n");
7081 if (busses_to_config == 0) {
7082 /* Register all the peripheral drivers */
7083 /* XXX This will have to change when we have loadable modules */
7084 p_drv = periph_drivers;
7085 for (i = 0; p_drv[i] != NULL; i++) {
7086 (*p_drv[i]->init)();
7090 * Check for devices with no "standard" peripheral driver
7091 * attached. For any devices like that, announce the
7092 * passthrough driver so the user will see something.
7094 xpt_for_all_devices(xptpassannouncefunc, NULL);
7096 /* Release our hook so that the boot can continue. */
7097 config_intrhook_disestablish(xsoftc.xpt_config_hook);
7098 kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7099 xsoftc.xpt_config_hook = NULL;
7101 kfree(context, M_CAMXPT);
7104 static void
7105 xpt_uncount_bus (struct cam_eb *bus)
7107 struct xpt_task *task;
7109 if (bus->counted_to_config) {
7110 bus->counted_to_config = 0;
7111 if (atomic_fetchadd_int(&busses_to_config, -1) == 1) {
7112 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7113 M_INTWAIT | M_ZERO);
7114 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7115 taskqueue_enqueue(taskqueue_thread[mycpuid],
7116 &task->task);
7121 static void
7122 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7124 struct cam_path *path;
7126 path = done_ccb->ccb_h.path;
7127 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7129 switch(done_ccb->ccb_h.func_code) {
7130 case XPT_RESET_BUS:
7131 if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7132 done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7133 done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7134 done_ccb->crcn.flags = 0;
7135 xpt_action(done_ccb);
7136 return;
7138 /* FALLTHROUGH */
7139 case XPT_SCAN_BUS:
7140 default:
7141 if (bootverbose) {
7142 kprintf("CAM: Finished configuring bus:");
7143 if (path->bus->sim) {
7144 kprintf(" %s%d\n",
7145 path->bus->sim->sim_name,
7146 path->bus->sim->unit_number);
7147 } else {
7148 kprintf(" (unknown)\n");
7151 xpt_uncount_bus(path->bus);
7152 xpt_free_path(path);
7153 xpt_free_ccb(done_ccb);
7154 break;
7158 cam_status
7159 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7160 struct cam_path *path)
7162 struct ccb_setasync csa;
7163 cam_status status;
7164 int xptpath = 0;
7166 if (path == NULL) {
7167 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7168 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7169 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7170 if (status != CAM_REQ_CMP) {
7171 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7172 return (status);
7174 xptpath = 1;
7177 xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7178 csa.ccb_h.func_code = XPT_SASYNC_CB;
7179 csa.event_enable = event;
7180 csa.callback = cbfunc;
7181 csa.callback_arg = cbarg;
7182 xpt_action((union ccb *)&csa);
7183 status = csa.ccb_h.status;
7184 if (xptpath) {
7185 xpt_free_path(path);
7186 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7188 return (status);
7191 static void
7192 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7194 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7196 switch (work_ccb->ccb_h.func_code) {
7197 /* Common cases first */
7198 case XPT_PATH_INQ: /* Path routing inquiry */
7200 struct ccb_pathinq *cpi;
7202 cpi = &work_ccb->cpi;
7203 cpi->version_num = 1; /* XXX??? */
7204 cpi->hba_inquiry = 0;
7205 cpi->target_sprt = 0;
7206 cpi->hba_misc = 0;
7207 cpi->hba_eng_cnt = 0;
7208 cpi->max_target = 0;
7209 cpi->max_lun = 0;
7210 cpi->initiator_id = 0;
7211 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7212 strncpy(cpi->hba_vid, "", HBA_IDLEN);
7213 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7214 cpi->unit_number = sim->unit_number;
7215 cpi->bus_id = sim->bus_id;
7216 cpi->base_transfer_speed = 0;
7217 cpi->protocol = PROTO_UNSPECIFIED;
7218 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7219 cpi->transport = XPORT_UNSPECIFIED;
7220 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7221 cpi->ccb_h.status = CAM_REQ_CMP;
7222 xpt_done(work_ccb);
7223 break;
7225 default:
7226 work_ccb->ccb_h.status = CAM_REQ_INVALID;
7227 xpt_done(work_ccb);
7228 break;
7233 * The xpt as a "controller" has no interrupt sources, so polling
7234 * is a no-op.
7236 static void
7237 xptpoll(struct cam_sim *sim)
7241 void
7242 xpt_lock_buses(void)
7244 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7247 void
7248 xpt_unlock_buses(void)
7250 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7255 * Should only be called by the machine interrupt dispatch routines,
7256 * so put these prototypes here instead of in the header.
7259 static void
7260 swi_cambio(void *arg, void *frame)
7262 camisr(NULL);
7265 static void
7266 camisr(void *dummy)
7268 cam_simq_t queue;
7269 struct cam_sim *sim;
7271 spin_lock(&cam_simq_spin);
7272 TAILQ_INIT(&queue);
7273 TAILQ_CONCAT(&queue, &cam_simq, links);
7274 spin_unlock(&cam_simq_spin);
7276 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7277 TAILQ_REMOVE(&queue, sim, links);
7278 CAM_SIM_LOCK(sim);
7279 sim->flags &= ~CAM_SIM_ON_DONEQ;
7280 camisr_runqueue(sim);
7281 CAM_SIM_UNLOCK(sim);
7285 static void
7286 camisr_runqueue(struct cam_sim *sim)
7288 struct ccb_hdr *ccb_h;
7289 int runq;
7291 spin_lock(&sim->sim_spin);
7292 while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7293 TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7294 spin_unlock(&sim->sim_spin);
7295 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7297 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7298 ("camisr\n"));
7300 runq = FALSE;
7302 if (ccb_h->flags & CAM_HIGH_POWER) {
7303 struct highpowerlist *hphead;
7304 union ccb *send_ccb;
7306 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7307 hphead = &xsoftc.highpowerq;
7309 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7312 * Increment the count since this command is done.
7314 xsoftc.num_highpower++;
7317 * Any high powered commands queued up?
7319 if (send_ccb != NULL) {
7320 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7321 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7323 xpt_release_devq(send_ccb->ccb_h.path,
7324 /*count*/1, /*runqueue*/TRUE);
7325 } else
7326 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7329 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7330 struct cam_ed *dev;
7332 dev = ccb_h->path->device;
7334 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7337 * devq may be NULL if this is cam_dead_sim
7339 if (ccb_h->path->bus->sim->devq) {
7340 ccb_h->path->bus->sim->devq->send_active--;
7341 ccb_h->path->bus->sim->devq->send_openings++;
7344 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7345 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7346 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7347 && (dev->ccbq.dev_active == 0))) {
7349 xpt_release_devq(ccb_h->path, /*count*/1,
7350 /*run_queue*/TRUE);
7353 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7354 && (--dev->tag_delay_count == 0))
7355 xpt_start_tags(ccb_h->path);
7357 if ((dev->ccbq.queue.entries > 0)
7358 && (dev->qfrozen_cnt == 0)
7359 && (device_is_send_queued(dev) == 0)) {
7360 runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7361 dev);
7365 if (ccb_h->status & CAM_RELEASE_SIMQ) {
7366 xpt_release_simq(ccb_h->path->bus->sim,
7367 /*run_queue*/TRUE);
7368 ccb_h->status &= ~CAM_RELEASE_SIMQ;
7369 runq = FALSE;
7372 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7373 && (ccb_h->status & CAM_DEV_QFRZN)) {
7374 xpt_release_devq(ccb_h->path, /*count*/1,
7375 /*run_queue*/TRUE);
7376 ccb_h->status &= ~CAM_DEV_QFRZN;
7377 } else if (runq) {
7378 xpt_run_dev_sendq(ccb_h->path->bus);
7381 /* Call the peripheral driver's callback */
7382 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7383 spin_lock(&sim->sim_spin);
7385 spin_unlock(&sim->sim_spin);
7389 * The dead_sim isn't completely hooked into CAM, we have to make sure
7390 * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7391 * doesn't block.
7393 static void
7394 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7397 ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7398 xpt_done(ccb);
7399 camisr_runqueue(sim);
7402 static void
7403 dead_sim_poll(struct cam_sim *sim)