CAM - Auto unit number start based on device
[dragonfly.git] / sys / bus / cam / cam_periph.c
blob988edec6b44575ae7a109245be3677bf168e9b9b
1 /*
2 * Common functions for CAM "type" (peripheral) drivers.
4 * Copyright (c) 1997, 1998 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/cam/cam_periph.c,v 1.70 2008/02/12 11:07:33 raj Exp $
30 * $DragonFly: src/sys/bus/cam/cam_periph.c,v 1.41 2008/07/18 00:07:21 dillon Exp $
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/devicestat.h>
42 #include <sys/bus.h>
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
46 #include <sys/thread2.h>
48 #include "cam.h"
49 #include "cam_ccb.h"
50 #include "cam_xpt_periph.h"
51 #include "cam_periph.h"
52 #include "cam_debug.h"
53 #include "cam_sim.h"
55 #include <bus/cam/scsi/scsi_all.h>
56 #include <bus/cam/scsi/scsi_message.h>
57 #include <bus/cam/scsi/scsi_pass.h>
59 static u_int camperiphnextunit(struct periph_driver *p_drv,
60 u_int newunit, int wired,
61 path_id_t pathid, target_id_t target,
62 lun_id_t lun);
63 static u_int camperiphunit(struct periph_driver *p_drv,
64 struct cam_sim *sim, path_id_t pathid,
65 target_id_t target, lun_id_t lun);
66 static void camperiphdone(struct cam_periph *periph,
67 union ccb *done_ccb);
68 static void camperiphfree(struct cam_periph *periph);
69 static int camperiphscsistatuserror(union ccb *ccb,
70 cam_flags camflags,
71 u_int32_t sense_flags,
72 union ccb *save_ccb,
73 int *openings,
74 u_int32_t *relsim_flags,
75 u_int32_t *timeout);
76 static int camperiphscsisenseerror(union ccb *ccb,
77 cam_flags camflags,
78 u_int32_t sense_flags,
79 union ccb *save_ccb,
80 int *openings,
81 u_int32_t *relsim_flags,
82 u_int32_t *timeout);
83 static void cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
84 u_int8_t ***data_ptrs, int numbufs);
86 static int nperiph_drivers;
87 struct periph_driver **periph_drivers;
89 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
91 static int periph_selto_delay = 1000;
92 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
93 static int periph_noresrc_delay = 500;
94 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
95 static int periph_busy_delay = 500;
96 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
99 void
100 periphdriver_register(void *data)
102 struct periph_driver **newdrivers, **old;
103 int ndrivers;
105 ndrivers = nperiph_drivers + 2;
106 newdrivers = kmalloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
107 M_WAITOK);
108 if (periph_drivers)
109 bcopy(periph_drivers, newdrivers,
110 sizeof(*newdrivers) * nperiph_drivers);
111 newdrivers[nperiph_drivers] = (struct periph_driver *)data;
112 newdrivers[nperiph_drivers + 1] = NULL;
113 old = periph_drivers;
114 periph_drivers = newdrivers;
115 if (old)
116 kfree(old, M_CAMPERIPH);
117 nperiph_drivers++;
120 cam_status
121 cam_periph_alloc(periph_ctor_t *periph_ctor,
122 periph_oninv_t *periph_oninvalidate,
123 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
124 char *name, cam_periph_type type, struct cam_path *path,
125 ac_callback_t *ac_callback, ac_code code, void *arg)
127 struct periph_driver **p_drv;
128 struct cam_sim *sim;
129 struct cam_periph *periph;
130 struct cam_periph *cur_periph;
131 path_id_t path_id;
132 target_id_t target_id;
133 lun_id_t lun_id;
134 cam_status status;
135 u_int init_level;
137 init_level = 0;
139 * Handle Hot-Plug scenarios. If there is already a peripheral
140 * of our type assigned to this path, we are likely waiting for
141 * final close on an old, invalidated, peripheral. If this is
142 * the case, queue up a deferred call to the peripheral's async
143 * handler. If it looks like a mistaken re-allocation, complain.
145 if ((periph = cam_periph_find(path, name)) != NULL) {
147 if ((periph->flags & CAM_PERIPH_INVALID) != 0
148 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
149 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
150 periph->deferred_callback = ac_callback;
151 periph->deferred_ac = code;
152 return (CAM_REQ_INPROG);
153 } else {
154 kprintf("cam_periph_alloc: attempt to re-allocate "
155 "valid device %s%d rejected\n",
156 periph->periph_name, periph->unit_number);
158 return (CAM_REQ_INVALID);
161 periph = kmalloc(sizeof(*periph), M_CAMPERIPH, M_INTWAIT | M_ZERO);
163 init_level++;
165 xpt_lock_buses();
166 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
167 if (strcmp((*p_drv)->driver_name, name) == 0)
168 break;
170 xpt_unlock_buses();
172 sim = xpt_path_sim(path);
173 path_id = xpt_path_path_id(path);
174 target_id = xpt_path_target_id(path);
175 lun_id = xpt_path_lun_id(path);
176 cam_init_pinfo(&periph->pinfo);
177 periph->periph_start = periph_start;
178 periph->periph_dtor = periph_dtor;
179 periph->periph_oninval = periph_oninvalidate;
180 periph->type = type;
181 periph->periph_name = name;
182 periph->unit_number = camperiphunit(*p_drv, sim, path_id,
183 target_id, lun_id);
184 periph->immediate_priority = CAM_PRIORITY_NONE;
185 periph->refcount = 0;
186 periph->sim = sim;
187 SLIST_INIT(&periph->ccb_list);
188 status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
189 if (status != CAM_REQ_CMP)
190 goto failure;
192 periph->path = path;
193 init_level++;
195 status = xpt_add_periph(periph);
197 if (status != CAM_REQ_CMP)
198 goto failure;
200 cur_periph = TAILQ_FIRST(&(*p_drv)->units);
201 while (cur_periph != NULL
202 && cur_periph->unit_number < periph->unit_number)
203 cur_periph = TAILQ_NEXT(cur_periph, unit_links);
205 if (cur_periph != NULL)
206 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
207 else {
208 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
209 (*p_drv)->generation++;
212 init_level++;
214 status = periph_ctor(periph, arg);
216 if (status == CAM_REQ_CMP)
217 init_level++;
219 failure:
220 switch (init_level) {
221 case 4:
222 /* Initialized successfully */
223 break;
224 case 3:
225 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
226 xpt_remove_periph(periph);
227 /* FALLTHROUGH */
228 case 2:
229 xpt_free_path(periph->path);
230 /* FALLTHROUGH */
231 case 1:
232 kfree(periph, M_CAMPERIPH);
233 /* FALLTHROUGH */
234 case 0:
235 /* No cleanup to perform. */
236 break;
237 default:
238 panic("cam_periph_alloc: Unknown init level");
240 return(status);
244 * Find a peripheral structure with the specified path, target, lun,
245 * and (optionally) type. If the name is NULL, this function will return
246 * the first peripheral driver that matches the specified path.
248 struct cam_periph *
249 cam_periph_find(struct cam_path *path, char *name)
251 struct periph_driver **p_drv;
252 struct cam_periph *periph;
254 xpt_lock_buses();
255 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
256 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
257 continue;
259 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
260 if (xpt_path_comp(periph->path, path) == 0) {
261 xpt_unlock_buses();
262 return(periph);
265 if (name != NULL) {
266 xpt_unlock_buses();
267 return(NULL);
270 xpt_unlock_buses();
271 return(NULL);
274 cam_status
275 cam_periph_acquire(struct cam_periph *periph)
277 if (periph == NULL)
278 return(CAM_REQ_CMP_ERR);
280 xpt_lock_buses();
281 periph->refcount++;
282 xpt_unlock_buses();
284 return(CAM_REQ_CMP);
287 void
288 cam_periph_release(struct cam_periph *periph)
291 if (periph == NULL)
292 return;
294 xpt_lock_buses();
295 if ((--periph->refcount == 0)
296 && (periph->flags & CAM_PERIPH_INVALID)) {
297 camperiphfree(periph);
299 xpt_unlock_buses();
304 cam_periph_hold(struct cam_periph *periph, int flags)
306 int error;
308 sim_lock_assert_owned(periph->sim->lock);
311 * Increment the reference count on the peripheral
312 * while we wait for our lock attempt to succeed
313 * to ensure the peripheral doesn't disappear out
314 * from user us while we sleep.
317 if (cam_periph_acquire(periph) != CAM_REQ_CMP)
318 return (ENXIO);
320 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
321 periph->flags |= CAM_PERIPH_LOCK_WANTED;
322 if ((error = sim_lock_sleep(periph, flags, "caplck", 0,
323 periph->sim->lock)) != 0) {
324 cam_periph_release(periph);
325 return (error);
329 periph->flags |= CAM_PERIPH_LOCKED;
330 return (0);
333 void
334 cam_periph_unhold(struct cam_periph *periph, int unlock)
336 struct cam_sim *sim;
338 sim_lock_assert_owned(periph->sim->lock);
339 periph->flags &= ~CAM_PERIPH_LOCKED;
340 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
341 periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
342 wakeup(periph);
344 if (unlock) {
345 sim = periph->sim;
346 cam_periph_release(periph);
347 /* periph may be garbage now */
348 CAM_SIM_UNLOCK(sim);
349 } else {
350 cam_periph_release(periph);
355 * Look for the next unit number that is not currently in use for this
356 * peripheral type starting at "newunit". Also exclude unit numbers that
357 * are reserved by for future "hardwiring" unless we already know that this
358 * is a potential wired device. Only assume that the device is "wired" the
359 * first time through the loop since after that we'll be looking at unit
360 * numbers that did not match a wiring entry.
362 static u_int
363 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
364 path_id_t pathid, target_id_t target, lun_id_t lun)
366 struct cam_periph *periph;
367 char *periph_name, *strval;
368 int i, val, dunit;
369 const char *dname;
371 periph_name = p_drv->driver_name;
372 for (;;newunit++) {
374 for (periph = TAILQ_FIRST(&p_drv->units);
375 periph != NULL && periph->unit_number != newunit;
376 periph = TAILQ_NEXT(periph, unit_links))
379 if (periph != NULL && periph->unit_number == newunit) {
380 if (wired != 0) {
381 xpt_print(periph->path, "Duplicate Wired "
382 "Device entry!\n");
383 xpt_print(periph->path, "Second device (%s "
384 "device at scbus%d target %d lun %d) will "
385 "not be wired\n", periph_name, pathid,
386 target, lun);
387 wired = 0;
389 continue;
391 if (wired)
392 break;
395 * Don't match entries like "da 4" as a wired down
396 * device, but do match entries like "da 4 target 5"
397 * or even "da 4 scbus 1".
399 i = -1;
400 while ((i = resource_locate(i, periph_name)) != -1) {
401 dname = resource_query_name(i);
402 dunit = resource_query_unit(i);
403 /* if no "target" and no specific scbus, skip */
404 if (resource_int_value(dname, dunit, "target", &val) &&
405 (resource_string_value(dname, dunit, "at",&strval)||
406 strcmp(strval, "scbus") == 0))
407 continue;
408 if (newunit == dunit)
409 break;
411 if (i == -1)
412 break;
414 return (newunit);
417 static u_int
418 camperiphunit(struct periph_driver *p_drv,
419 struct cam_sim *sim, path_id_t pathid,
420 target_id_t target, lun_id_t lun)
422 u_int unit;
423 int hit, i, val, dunit;
424 const char *dname;
425 char pathbuf[32], *strval, *periph_name;
427 unit = 0;
429 periph_name = p_drv->driver_name;
430 ksnprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
431 i = -1;
432 for (hit = 0; (i = resource_locate(i, periph_name)) != -1; hit = 0) {
433 dname = resource_query_name(i);
434 dunit = resource_query_unit(i);
435 if (resource_string_value(dname, dunit, "at", &strval) == 0) {
436 if (strcmp(strval, pathbuf) != 0)
437 continue;
438 hit++;
440 if (resource_int_value(dname, dunit, "target", &val) == 0) {
441 if (val != target)
442 continue;
443 hit++;
445 if (resource_int_value(dname, dunit, "lun", &val) == 0) {
446 if (val != lun)
447 continue;
448 hit++;
450 if (hit != 0) {
451 unit = dunit;
452 break;
457 * If no wired units are in the kernel config do an auto unit
458 * start selection. We want usb mass storage out of the way
459 * so it doesn't steal low numbered da%d slots from ahci, sili,
460 * or other scsi attachments.
462 if (hit == 0 && sim) {
463 if (strncmp(sim->sim_name, "umass", 4) == 0 && unit < 8)
464 unit = 8;
468 * Either start from 0 looking for the next unit or from
469 * the unit number given in the resource config. This way,
470 * if we have wildcard matches, we don't return the same
471 * unit number twice.
473 unit = camperiphnextunit(p_drv, unit, /*wired*/hit, pathid,
474 target, lun);
476 return (unit);
479 void
480 cam_periph_invalidate(struct cam_periph *periph)
483 * We only call this routine the first time a peripheral is
484 * invalidated.
486 if (((periph->flags & CAM_PERIPH_INVALID) == 0)
487 && (periph->periph_oninval != NULL))
488 periph->periph_oninval(periph);
490 periph->flags |= CAM_PERIPH_INVALID;
491 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
493 xpt_lock_buses();
494 if (periph->refcount == 0)
495 camperiphfree(periph);
496 else if (periph->refcount < 0)
497 kprintf("cam_invalidate_periph: refcount < 0!!\n");
498 xpt_unlock_buses();
501 static void
502 camperiphfree(struct cam_periph *periph)
504 struct periph_driver **p_drv;
506 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
507 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
508 break;
511 if (*p_drv == NULL) {
512 kprintf("camperiphfree: attempt to free non-existent periph\n");
513 return;
516 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
517 (*p_drv)->generation++;
518 xpt_unlock_buses();
520 if (periph->periph_dtor != NULL)
521 periph->periph_dtor(periph);
522 xpt_remove_periph(periph);
524 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
525 union ccb ccb;
526 void *arg;
528 switch (periph->deferred_ac) {
529 case AC_FOUND_DEVICE:
530 ccb.ccb_h.func_code = XPT_GDEV_TYPE;
531 xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
532 xpt_action(&ccb);
533 arg = &ccb;
534 break;
535 case AC_PATH_REGISTERED:
536 ccb.ccb_h.func_code = XPT_PATH_INQ;
537 xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
538 xpt_action(&ccb);
539 arg = &ccb;
540 break;
541 default:
542 arg = NULL;
543 break;
545 periph->deferred_callback(NULL, periph->deferred_ac,
546 periph->path, arg);
548 xpt_free_path(periph->path);
549 kfree(periph, M_CAMPERIPH);
550 xpt_lock_buses();
554 * Map user virtual pointers into kernel virtual address space, so we can
555 * access the memory. This won't work on physical pointers, for now it's
556 * up to the caller to check for that. (XXX KDM -- should we do that here
557 * instead?) This also only works for up to MAXPHYS memory. Since we use
558 * buffers to map stuff in and out, we're limited to the buffer size.
561 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
563 buf_cmd_t cmd[CAM_PERIPH_MAXMAPS];
564 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
565 u_int32_t lengths[CAM_PERIPH_MAXMAPS];
566 int numbufs;
567 int error;
568 int i;
569 struct buf *bp;
571 switch(ccb->ccb_h.func_code) {
572 case XPT_DEV_MATCH:
573 if (ccb->cdm.match_buf_len == 0) {
574 kprintf("cam_periph_mapmem: invalid match buffer "
575 "length 0\n");
576 return(EINVAL);
578 if (ccb->cdm.pattern_buf_len > 0) {
579 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
580 lengths[0] = ccb->cdm.pattern_buf_len;
581 mapinfo->dirs[0] = CAM_DIR_OUT;
582 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
583 lengths[1] = ccb->cdm.match_buf_len;
584 mapinfo->dirs[1] = CAM_DIR_IN;
585 numbufs = 2;
586 } else {
587 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
588 lengths[0] = ccb->cdm.match_buf_len;
589 mapinfo->dirs[0] = CAM_DIR_IN;
590 numbufs = 1;
592 break;
593 case XPT_SCSI_IO:
594 case XPT_CONT_TARGET_IO:
595 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
596 return(0);
598 data_ptrs[0] = &ccb->csio.data_ptr;
599 lengths[0] = ccb->csio.dxfer_len;
600 mapinfo->dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
601 numbufs = 1;
602 break;
603 default:
604 return(EINVAL);
605 break; /* NOTREACHED */
609 * Check the transfer length and permissions first, so we don't
610 * have to unmap any previously mapped buffers.
612 for (i = 0; i < numbufs; i++) {
614 * Its kinda bogus, we need a R+W command. For now the
615 * buffer needs some sort of command. Use BUF_CMD_WRITE
616 * to indicate a write and BUF_CMD_READ to indicate R+W.
618 cmd[i] = BUF_CMD_WRITE;
621 * The userland data pointer passed in may not be page
622 * aligned. vmapbuf() truncates the address to a page
623 * boundary, so if the address isn't page aligned, we'll
624 * need enough space for the given transfer length, plus
625 * whatever extra space is necessary to make it to the page
626 * boundary.
628 if ((lengths[i] +
629 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){
630 kprintf("cam_periph_mapmem: attempt to map %lu bytes, "
631 "which is greater than DFLTPHYS(%d)\n",
632 (long)(lengths[i] +
633 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
634 DFLTPHYS);
635 return(E2BIG);
638 if (mapinfo->dirs[i] & CAM_DIR_OUT) {
639 if (!useracc(*data_ptrs[i], lengths[i],
640 VM_PROT_READ)) {
641 kprintf("cam_periph_mapmem: error, "
642 "address %p, length %lu isn't "
643 "user accessible for READ\n",
644 (void *)*data_ptrs[i],
645 (u_long)lengths[i]);
646 return(EACCES);
650 if (mapinfo->dirs[i] & CAM_DIR_IN) {
651 cmd[i] = BUF_CMD_READ;
652 if (!useracc(*data_ptrs[i], lengths[i],
653 VM_PROT_WRITE)) {
654 kprintf("cam_periph_mapmem: error, "
655 "address %p, length %lu isn't "
656 "user accessible for WRITE\n",
657 (void *)*data_ptrs[i],
658 (u_long)lengths[i]);
660 return(EACCES);
666 for (i = 0; i < numbufs; i++) {
668 * Get the buffer.
670 bp = getpbuf(NULL);
672 /* save the original user pointer */
673 mapinfo->saved_ptrs[i] = *data_ptrs[i];
675 /* set the flags */
676 bp->b_cmd = cmd[i];
679 * Require 16-byte alignment and bounce if we don't get it.
680 * (NATA does not realign buffers for DMA).
682 if ((intptr_t)*data_ptrs[i] & 15)
683 mapinfo->bounce[i] = 1;
684 else
685 mapinfo->bounce[i] = 0;
688 * Map the user buffer into kernel memory. If the user
689 * buffer is not aligned we have to allocate a bounce buffer
690 * and copy.
692 if (mapinfo->bounce[i]) {
693 bp->b_data = bp->b_kvabase;
694 bp->b_bcount = lengths[i];
695 vm_hold_load_pages(bp, (vm_offset_t)bp->b_data,
696 (vm_offset_t)bp->b_data + bp->b_bcount);
697 if (mapinfo->dirs[i] & CAM_DIR_OUT) {
698 error = copyin(*data_ptrs[i], bp->b_data, bp->b_bcount);
699 if (error) {
700 vm_hold_free_pages(bp, (vm_offset_t)bp->b_data, (vm_offset_t)bp->b_data + bp->b_bcount);
702 } else {
703 error = 0;
705 } else if (vmapbuf(bp, *data_ptrs[i], lengths[i]) < 0) {
706 kprintf("cam_periph_mapmem: error, "
707 "address %p, length %lu isn't "
708 "user accessible any more\n",
709 (void *)*data_ptrs[i],
710 (u_long)lengths[i]);
711 error = EACCES;
712 } else {
713 error = 0;
715 if (error) {
716 relpbuf(bp, NULL);
717 cam_periph_unmapbufs(mapinfo, data_ptrs, i);
718 mapinfo->num_bufs_used -= i;
719 return(error);
722 /* set our pointer to the new mapped area */
723 *data_ptrs[i] = bp->b_data;
725 mapinfo->bp[i] = bp;
726 mapinfo->num_bufs_used++;
729 return(0);
733 * Unmap memory segments mapped into kernel virtual address space by
734 * cam_periph_mapmem().
736 void
737 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
739 int numbufs;
740 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
742 if (mapinfo->num_bufs_used <= 0) {
743 /* allow ourselves to be swapped once again */
744 return;
747 switch (ccb->ccb_h.func_code) {
748 case XPT_DEV_MATCH:
749 numbufs = min(mapinfo->num_bufs_used, 2);
751 if (numbufs == 1) {
752 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
753 } else {
754 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
755 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
757 break;
758 case XPT_SCSI_IO:
759 case XPT_CONT_TARGET_IO:
760 data_ptrs[0] = &ccb->csio.data_ptr;
761 numbufs = min(mapinfo->num_bufs_used, 1);
762 break;
763 default:
764 /* allow ourselves to be swapped once again */
765 return;
766 break; /* NOTREACHED */
768 cam_periph_unmapbufs(mapinfo, data_ptrs, numbufs);
771 static void
772 cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
773 u_int8_t ***data_ptrs, int numbufs)
775 struct buf *bp;
776 int i;
778 for (i = 0; i < numbufs; i++) {
779 bp = mapinfo->bp[i];
781 /* Set the user's pointer back to the original value */
782 *data_ptrs[i] = mapinfo->saved_ptrs[i];
784 /* unmap the buffer */
785 if (mapinfo->bounce[i]) {
786 if (mapinfo->dirs[i] & CAM_DIR_IN) {
787 /* XXX return error */
788 copyout(bp->b_data, *data_ptrs[i],
789 bp->b_bcount);
791 vm_hold_free_pages(bp, (vm_offset_t)bp->b_data,
792 (vm_offset_t)bp->b_data + bp->b_bcount);
793 } else {
794 vunmapbuf(bp);
796 relpbuf(bp, NULL);
797 mapinfo->bp[i] = NULL;
801 union ccb *
802 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
804 struct ccb_hdr *ccb_h;
806 sim_lock_assert_owned(periph->sim->lock);
807 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
809 while (SLIST_FIRST(&periph->ccb_list) == NULL) {
810 if (periph->immediate_priority > priority)
811 periph->immediate_priority = priority;
812 xpt_schedule(periph, priority);
813 if ((SLIST_FIRST(&periph->ccb_list) != NULL)
814 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
815 break;
816 sim_lock_sleep(&periph->ccb_list, 0, "cgticb", 0,
817 periph->sim->lock);
820 ccb_h = SLIST_FIRST(&periph->ccb_list);
821 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
822 return ((union ccb *)ccb_h);
825 void
826 cam_periph_ccbwait(union ccb *ccb)
828 struct cam_sim *sim;
830 sim = xpt_path_sim(ccb->ccb_h.path);
831 while ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
832 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) {
833 sim_lock_sleep(&ccb->ccb_h.cbfcnp, 0, "cbwait", 0, sim->lock);
838 cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr,
839 int (*error_routine)(union ccb *ccb,
840 cam_flags camflags,
841 u_int32_t sense_flags))
843 union ccb *ccb;
844 int error;
845 int found;
847 error = found = 0;
849 switch(cmd){
850 case CAMGETPASSTHRU:
851 ccb = cam_periph_getccb(periph, /* priority */ 1);
852 xpt_setup_ccb(&ccb->ccb_h,
853 ccb->ccb_h.path,
854 /*priority*/1);
855 ccb->ccb_h.func_code = XPT_GDEVLIST;
858 * Basically, the point of this is that we go through
859 * getting the list of devices, until we find a passthrough
860 * device. In the current version of the CAM code, the
861 * only way to determine what type of device we're dealing
862 * with is by its name.
864 while (found == 0) {
865 ccb->cgdl.index = 0;
866 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
867 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
869 /* we want the next device in the list */
870 xpt_action(ccb);
871 if (strncmp(ccb->cgdl.periph_name,
872 "pass", 4) == 0){
873 found = 1;
874 break;
877 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
878 (found == 0)) {
879 ccb->cgdl.periph_name[0] = '\0';
880 ccb->cgdl.unit_number = 0;
881 break;
885 /* copy the result back out */
886 bcopy(ccb, addr, sizeof(union ccb));
888 /* and release the ccb */
889 xpt_release_ccb(ccb);
891 break;
892 default:
893 error = ENOTTY;
894 break;
896 return(error);
900 cam_periph_runccb(union ccb *ccb,
901 int (*error_routine)(union ccb *ccb,
902 cam_flags camflags,
903 u_int32_t sense_flags),
904 cam_flags camflags, u_int32_t sense_flags,
905 struct devstat *ds)
907 struct cam_sim *sim;
908 int error;
910 error = 0;
911 sim = xpt_path_sim(ccb->ccb_h.path);
912 sim_lock_assert_owned(sim->lock);
915 * If the user has supplied a stats structure, and if we understand
916 * this particular type of ccb, record the transaction start.
918 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
919 devstat_start_transaction(ds);
921 xpt_action(ccb);
923 do {
924 cam_periph_ccbwait(ccb);
925 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
926 error = 0;
927 else if (error_routine != NULL)
928 error = (*error_routine)(ccb, camflags, sense_flags);
929 else
930 error = 0;
932 } while (error == ERESTART);
934 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
935 cam_release_devq(ccb->ccb_h.path,
936 /* relsim_flags */0,
937 /* openings */0,
938 /* timeout */0,
939 /* getcount_only */ FALSE);
941 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
942 devstat_end_transaction(ds,
943 ccb->csio.dxfer_len,
944 ccb->csio.tag_action & 0xf,
945 ((ccb->ccb_h.flags & CAM_DIR_MASK) ==
946 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
947 (ccb->ccb_h.flags & CAM_DIR_OUT) ?
948 DEVSTAT_WRITE :
949 DEVSTAT_READ);
951 return(error);
954 void
955 cam_freeze_devq(struct cam_path *path)
957 struct ccb_hdr ccb_h;
959 xpt_setup_ccb(&ccb_h, path, /*priority*/1);
960 ccb_h.func_code = XPT_NOOP;
961 ccb_h.flags = CAM_DEV_QFREEZE;
962 xpt_action((union ccb *)&ccb_h);
965 u_int32_t
966 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
967 u_int32_t openings, u_int32_t timeout,
968 int getcount_only)
970 struct ccb_relsim crs;
972 xpt_setup_ccb(&crs.ccb_h, path,
973 /*priority*/1);
974 crs.ccb_h.func_code = XPT_REL_SIMQ;
975 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
976 crs.release_flags = relsim_flags;
977 crs.openings = openings;
978 crs.release_timeout = timeout;
979 xpt_action((union ccb *)&crs);
980 return (crs.qfrozen_cnt);
983 #define saved_ccb_ptr ppriv_ptr0
984 static void
985 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
987 union ccb *saved_ccb;
988 cam_status status;
989 int frozen;
990 int sense;
991 struct scsi_start_stop_unit *scsi_cmd;
992 u_int32_t relsim_flags, timeout;
993 u_int32_t qfrozen_cnt;
994 int xpt_done_ccb;
996 xpt_done_ccb = FALSE;
997 status = done_ccb->ccb_h.status;
998 frozen = (status & CAM_DEV_QFRZN) != 0;
999 sense = (status & CAM_AUTOSNS_VALID) != 0;
1000 status &= CAM_STATUS_MASK;
1002 timeout = 0;
1003 relsim_flags = 0;
1004 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1007 * Unfreeze the queue once if it is already frozen..
1009 if (frozen != 0) {
1010 qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1011 /*relsim_flags*/0,
1012 /*openings*/0,
1013 /*timeout*/0,
1014 /*getcount_only*/0);
1017 switch (status) {
1018 case CAM_REQ_CMP:
1021 * If we have successfully taken a device from the not
1022 * ready to ready state, re-scan the device and re-get
1023 * the inquiry information. Many devices (mostly disks)
1024 * don't properly report their inquiry information unless
1025 * they are spun up.
1027 * If we manually retrieved sense into a CCB and got
1028 * something other than "NO SENSE" send the updated CCB
1029 * back to the client via xpt_done() to be processed via
1030 * the error recovery code again.
1032 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
1033 scsi_cmd = (struct scsi_start_stop_unit *)
1034 &done_ccb->csio.cdb_io.cdb_bytes;
1036 if (scsi_cmd->opcode == START_STOP_UNIT)
1037 xpt_async(AC_INQ_CHANGED,
1038 done_ccb->ccb_h.path, NULL);
1039 if (scsi_cmd->opcode == REQUEST_SENSE) {
1040 u_int sense_key;
1042 sense_key = saved_ccb->csio.sense_data.flags;
1043 sense_key &= SSD_KEY;
1044 if (sense_key != SSD_KEY_NO_SENSE) {
1045 saved_ccb->ccb_h.status |=
1046 CAM_AUTOSNS_VALID;
1047 #if 0
1048 xpt_print(saved_ccb->ccb_h.path,
1049 "Recovered Sense\n");
1050 scsi_sense_print(&saved_ccb->csio);
1051 cam_error_print(saved_ccb, CAM_ESF_ALL,
1052 CAM_EPF_ALL);
1053 #endif
1054 xpt_done_ccb = TRUE;
1058 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1059 sizeof(union ccb));
1061 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1063 if (xpt_done_ccb == FALSE)
1064 xpt_action(done_ccb);
1066 break;
1068 case CAM_SCSI_STATUS_ERROR:
1069 scsi_cmd = (struct scsi_start_stop_unit *)
1070 &done_ccb->csio.cdb_io.cdb_bytes;
1071 if (sense != 0) {
1072 struct ccb_getdev cgd;
1073 struct scsi_sense_data *sense;
1074 int error_code, sense_key, asc, ascq;
1075 scsi_sense_action err_action;
1077 sense = &done_ccb->csio.sense_data;
1078 scsi_extract_sense(sense, &error_code,
1079 &sense_key, &asc, &ascq);
1082 * Grab the inquiry data for this device.
1084 xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1085 /*priority*/ 1);
1086 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1087 xpt_action((union ccb *)&cgd);
1088 err_action = scsi_error_action(&done_ccb->csio,
1089 &cgd.inq_data, 0);
1092 * If the error is "invalid field in CDB",
1093 * and the load/eject flag is set, turn the
1094 * flag off and try again. This is just in
1095 * case the drive in question barfs on the
1096 * load eject flag. The CAM code should set
1097 * the load/eject flag by default for
1098 * removable media.
1101 /* XXX KDM
1102 * Should we check to see what the specific
1103 * scsi status is?? Or does it not matter
1104 * since we already know that there was an
1105 * error, and we know what the specific
1106 * error code was, and we know what the
1107 * opcode is..
1109 if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1110 ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1111 (asc == 0x24) && (ascq == 0x00) &&
1112 (done_ccb->ccb_h.retry_count > 0)) {
1114 scsi_cmd->how &= ~SSS_LOEJ;
1116 xpt_action(done_ccb);
1118 } else if ((done_ccb->ccb_h.retry_count > 1)
1119 && ((err_action & SS_MASK) != SS_FAIL)) {
1122 * In this case, the error recovery
1123 * command failed, but we've got
1124 * some retries left on it. Give
1125 * it another try unless this is an
1126 * unretryable error.
1129 /* set the timeout to .5 sec */
1130 relsim_flags =
1131 RELSIM_RELEASE_AFTER_TIMEOUT;
1132 timeout = 500;
1134 xpt_action(done_ccb);
1136 break;
1138 } else {
1140 * Perform the final retry with the original
1141 * CCB so that final error processing is
1142 * performed by the owner of the CCB.
1144 bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1145 done_ccb, sizeof(union ccb));
1147 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1149 xpt_action(done_ccb);
1151 } else {
1153 * Eh?? The command failed, but we don't
1154 * have any sense. What's up with that?
1155 * Fire the CCB again to return it to the
1156 * caller.
1158 bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1159 done_ccb, sizeof(union ccb));
1161 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1163 xpt_action(done_ccb);
1166 break;
1167 default:
1168 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1169 sizeof(union ccb));
1171 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1173 xpt_action(done_ccb);
1175 break;
1178 /* decrement the retry count */
1180 * XXX This isn't appropriate in all cases. Restructure,
1181 * so that the retry count is only decremented on an
1182 * actual retry. Remeber that the orignal ccb had its
1183 * retry count dropped before entering recovery, so
1184 * doing it again is a bug.
1186 if (done_ccb->ccb_h.retry_count > 0)
1187 done_ccb->ccb_h.retry_count--;
1189 qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1190 /*relsim_flags*/relsim_flags,
1191 /*openings*/0,
1192 /*timeout*/timeout,
1193 /*getcount_only*/0);
1194 if (xpt_done_ccb == TRUE)
1195 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1199 * Generic Async Event handler. Peripheral drivers usually
1200 * filter out the events that require personal attention,
1201 * and leave the rest to this function.
1203 void
1204 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1205 struct cam_path *path, void *arg)
1207 switch (code) {
1208 case AC_LOST_DEVICE:
1209 cam_periph_invalidate(periph);
1210 break;
1211 case AC_SENT_BDR:
1212 case AC_BUS_RESET:
1214 cam_periph_bus_settle(periph, scsi_delay);
1215 break;
1217 default:
1218 break;
1222 void
1223 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1225 struct ccb_getdevstats cgds;
1227 xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1228 cgds.ccb_h.func_code = XPT_GDEV_STATS;
1229 xpt_action((union ccb *)&cgds);
1230 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1233 void
1234 cam_periph_freeze_after_event(struct cam_periph *periph,
1235 struct timeval* event_time, u_int duration_ms)
1237 struct timeval delta;
1238 struct timeval duration_tv;
1240 microuptime(&delta);
1241 timevalsub(&delta, event_time);
1242 duration_tv.tv_sec = duration_ms / 1000;
1243 duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1244 if (timevalcmp(&delta, &duration_tv, <)) {
1245 timevalsub(&duration_tv, &delta);
1247 duration_ms = duration_tv.tv_sec * 1000;
1248 duration_ms += duration_tv.tv_usec / 1000;
1249 cam_freeze_devq(periph->path);
1250 cam_release_devq(periph->path,
1251 RELSIM_RELEASE_AFTER_TIMEOUT,
1252 /*reduction*/0,
1253 /*timeout*/duration_ms,
1254 /*getcount_only*/0);
1259 static int
1260 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1261 u_int32_t sense_flags, union ccb *save_ccb,
1262 int *openings, u_int32_t *relsim_flags,
1263 u_int32_t *timeout)
1265 int error;
1267 switch (ccb->csio.scsi_status) {
1268 case SCSI_STATUS_OK:
1269 case SCSI_STATUS_COND_MET:
1270 case SCSI_STATUS_INTERMED:
1271 case SCSI_STATUS_INTERMED_COND_MET:
1272 error = 0;
1273 break;
1274 case SCSI_STATUS_CMD_TERMINATED:
1275 case SCSI_STATUS_CHECK_COND:
1276 error = camperiphscsisenseerror(ccb,
1277 camflags,
1278 sense_flags,
1279 save_ccb,
1280 openings,
1281 relsim_flags,
1282 timeout);
1283 break;
1284 case SCSI_STATUS_QUEUE_FULL:
1286 /* no decrement */
1287 struct ccb_getdevstats cgds;
1290 * First off, find out what the current
1291 * transaction counts are.
1293 xpt_setup_ccb(&cgds.ccb_h,
1294 ccb->ccb_h.path,
1295 /*priority*/1);
1296 cgds.ccb_h.func_code = XPT_GDEV_STATS;
1297 xpt_action((union ccb *)&cgds);
1300 * If we were the only transaction active, treat
1301 * the QUEUE FULL as if it were a BUSY condition.
1303 if (cgds.dev_active != 0) {
1304 int total_openings;
1307 * Reduce the number of openings to
1308 * be 1 less than the amount it took
1309 * to get a queue full bounded by the
1310 * minimum allowed tag count for this
1311 * device.
1313 total_openings = cgds.dev_active + cgds.dev_openings;
1314 *openings = cgds.dev_active;
1315 if (*openings < cgds.mintags)
1316 *openings = cgds.mintags;
1317 if (*openings < total_openings)
1318 *relsim_flags = RELSIM_ADJUST_OPENINGS;
1319 else {
1321 * Some devices report queue full for
1322 * temporary resource shortages. For
1323 * this reason, we allow a minimum
1324 * tag count to be entered via a
1325 * quirk entry to prevent the queue
1326 * count on these devices from falling
1327 * to a pessimisticly low value. We
1328 * still wait for the next successful
1329 * completion, however, before queueing
1330 * more transactions to the device.
1332 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1334 *timeout = 0;
1335 error = ERESTART;
1336 if (bootverbose) {
1337 xpt_print(ccb->ccb_h.path, "Queue Full\n");
1339 break;
1341 /* FALLTHROUGH */
1343 case SCSI_STATUS_BUSY:
1345 * Restart the queue after either another
1346 * command completes or a 1 second timeout.
1348 if (bootverbose) {
1349 xpt_print(ccb->ccb_h.path, "Device Busy\n");
1351 if (ccb->ccb_h.retry_count > 0) {
1352 ccb->ccb_h.retry_count--;
1353 error = ERESTART;
1354 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1355 | RELSIM_RELEASE_AFTER_CMDCMPLT;
1356 *timeout = 1000;
1357 } else {
1358 error = EIO;
1360 break;
1361 case SCSI_STATUS_RESERV_CONFLICT:
1362 xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
1363 error = EIO;
1364 break;
1365 default:
1366 xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
1367 ccb->csio.scsi_status);
1368 error = EIO;
1369 break;
1371 return (error);
1374 static int
1375 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1376 u_int32_t sense_flags, union ccb *save_ccb,
1377 int *openings, u_int32_t *relsim_flags,
1378 u_int32_t *timeout)
1380 struct cam_periph *periph;
1381 int error;
1383 periph = xpt_path_periph(ccb->ccb_h.path);
1384 if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
1387 * If error recovery is already in progress, don't attempt
1388 * to process this error, but requeue it unconditionally
1389 * and attempt to process it once error recovery has
1390 * completed. This failed command is probably related to
1391 * the error that caused the currently active error recovery
1392 * action so our current recovery efforts should also
1393 * address this command. Be aware that the error recovery
1394 * code assumes that only one recovery action is in progress
1395 * on a particular peripheral instance at any given time
1396 * (e.g. only one saved CCB for error recovery) so it is
1397 * imperitive that we don't violate this assumption.
1399 error = ERESTART;
1400 } else {
1401 scsi_sense_action err_action;
1402 struct ccb_getdev cgd;
1403 const char *action_string;
1404 union ccb* print_ccb;
1406 /* A description of the error recovery action performed */
1407 action_string = NULL;
1410 * The location of the orignal ccb
1411 * for sense printing purposes.
1413 print_ccb = ccb;
1416 * Grab the inquiry data for this device.
1418 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1);
1419 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1420 xpt_action((union ccb *)&cgd);
1422 if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1423 err_action = scsi_error_action(&ccb->csio,
1424 &cgd.inq_data,
1425 sense_flags);
1426 else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1427 err_action = SS_REQSENSE;
1428 else
1429 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1431 error = err_action & SS_ERRMASK;
1434 * If the recovery action will consume a retry,
1435 * make sure we actually have retries available.
1437 if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1438 if (ccb->ccb_h.retry_count > 0)
1439 ccb->ccb_h.retry_count--;
1440 else {
1441 action_string = "Retries Exhausted";
1442 goto sense_error_done;
1446 if ((err_action & SS_MASK) >= SS_START) {
1448 * Do common portions of commands that
1449 * use recovery CCBs.
1451 if (save_ccb == NULL) {
1452 action_string = "No recovery CCB supplied";
1453 goto sense_error_done;
1455 bcopy(ccb, save_ccb, sizeof(*save_ccb));
1456 print_ccb = save_ccb;
1457 periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1460 switch (err_action & SS_MASK) {
1461 case SS_NOP:
1462 action_string = "No Recovery Action Needed";
1463 error = 0;
1464 break;
1465 case SS_RETRY:
1466 action_string = "Retrying Command (per Sense Data)";
1467 error = ERESTART;
1468 break;
1469 case SS_FAIL:
1470 action_string = "Unretryable error";
1471 break;
1472 case SS_START:
1474 int le;
1477 * Send a start unit command to the device, and
1478 * then retry the command.
1480 action_string = "Attempting to Start Unit";
1483 * Check for removable media and set
1484 * load/eject flag appropriately.
1486 if (SID_IS_REMOVABLE(&cgd.inq_data))
1487 le = TRUE;
1488 else
1489 le = FALSE;
1491 scsi_start_stop(&ccb->csio,
1492 /*retries*/1,
1493 camperiphdone,
1494 MSG_SIMPLE_Q_TAG,
1495 /*start*/TRUE,
1496 /*load/eject*/le,
1497 /*immediate*/FALSE,
1498 SSD_FULL_SIZE,
1499 /*timeout*/50000);
1500 break;
1502 case SS_TUR:
1505 * Send a Test Unit Ready to the device.
1506 * If the 'many' flag is set, we send 120
1507 * test unit ready commands, one every half
1508 * second. Otherwise, we just send one TUR.
1509 * We only want to do this if the retry
1510 * count has not been exhausted.
1512 int retries;
1514 if ((err_action & SSQ_MANY) != 0) {
1515 action_string = "Polling device for readiness";
1516 retries = 120;
1517 } else {
1518 action_string = "Testing device for readiness";
1519 retries = 1;
1521 scsi_test_unit_ready(&ccb->csio,
1522 retries,
1523 camperiphdone,
1524 MSG_SIMPLE_Q_TAG,
1525 SSD_FULL_SIZE,
1526 /*timeout*/5000);
1529 * Accomplish our 500ms delay by deferring
1530 * the release of our device queue appropriately.
1532 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1533 *timeout = 500;
1534 break;
1536 case SS_REQSENSE:
1539 * Send a Request Sense to the device. We
1540 * assume that we are in a contingent allegiance
1541 * condition so we do not tag this request.
1543 scsi_request_sense(&ccb->csio, /*retries*/1,
1544 camperiphdone,
1545 &save_ccb->csio.sense_data,
1546 sizeof(save_ccb->csio.sense_data),
1547 CAM_TAG_ACTION_NONE,
1548 /*sense_len*/SSD_FULL_SIZE,
1549 /*timeout*/5000);
1550 break;
1552 default:
1553 panic("Unhandled error action %x", err_action);
1556 if ((err_action & SS_MASK) >= SS_START) {
1558 * Drop the priority to 0 so that the recovery
1559 * CCB is the first to execute. Freeze the queue
1560 * after this command is sent so that we can
1561 * restore the old csio and have it queued in
1562 * the proper order before we release normal
1563 * transactions to the device.
1565 ccb->ccb_h.pinfo.priority = 0;
1566 ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1567 ccb->ccb_h.saved_ccb_ptr = save_ccb;
1568 error = ERESTART;
1571 sense_error_done:
1572 if ((err_action & SSQ_PRINT_SENSE) != 0
1573 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
1574 cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1575 xpt_print_path(ccb->ccb_h.path);
1576 if (bootverbose)
1577 scsi_sense_print(&print_ccb->csio);
1578 kprintf("%s\n", action_string);
1581 return (error);
1585 * Generic error handler. Peripheral drivers usually filter
1586 * out the errors that they handle in a unique mannor, then
1587 * call this function.
1590 cam_periph_error(union ccb *ccb, cam_flags camflags,
1591 u_int32_t sense_flags, union ccb *save_ccb)
1593 const char *action_string;
1594 cam_status status;
1595 int frozen;
1596 int error, printed = 0;
1597 int openings;
1598 u_int32_t relsim_flags;
1599 u_int32_t timeout = 0;
1601 action_string = NULL;
1602 status = ccb->ccb_h.status;
1603 frozen = (status & CAM_DEV_QFRZN) != 0;
1604 status &= CAM_STATUS_MASK;
1605 openings = relsim_flags = 0;
1607 switch (status) {
1608 case CAM_REQ_CMP:
1609 error = 0;
1610 break;
1611 case CAM_SCSI_STATUS_ERROR:
1612 error = camperiphscsistatuserror(ccb,
1613 camflags,
1614 sense_flags,
1615 save_ccb,
1616 &openings,
1617 &relsim_flags,
1618 &timeout);
1619 break;
1620 case CAM_AUTOSENSE_FAIL:
1621 xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
1622 error = EIO; /* we have to kill the command */
1623 break;
1624 case CAM_REQ_CMP_ERR:
1625 if (bootverbose && printed == 0) {
1626 xpt_print(ccb->ccb_h.path,
1627 "Request completed with CAM_REQ_CMP_ERR\n");
1628 printed++;
1630 /* FALLTHROUGH */
1631 case CAM_CMD_TIMEOUT:
1632 if (bootverbose && printed == 0) {
1633 xpt_print(ccb->ccb_h.path, "Command timed out\n");
1634 printed++;
1636 /* FALLTHROUGH */
1637 case CAM_UNEXP_BUSFREE:
1638 if (bootverbose && printed == 0) {
1639 xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1640 printed++;
1642 /* FALLTHROUGH */
1643 case CAM_UNCOR_PARITY:
1644 if (bootverbose && printed == 0) {
1645 xpt_print(ccb->ccb_h.path,
1646 "Uncorrected Parity Error\n");
1647 printed++;
1649 /* FALLTHROUGH */
1650 case CAM_DATA_RUN_ERR:
1651 if (bootverbose && printed == 0) {
1652 xpt_print(ccb->ccb_h.path, "Data Overrun\n");
1653 printed++;
1655 error = EIO; /* we have to kill the command */
1656 /* decrement the number of retries */
1657 if (ccb->ccb_h.retry_count > 0) {
1658 ccb->ccb_h.retry_count--;
1659 error = ERESTART;
1660 } else {
1661 action_string = "Retries Exhausted";
1662 error = EIO;
1664 break;
1665 case CAM_UA_ABORT:
1666 case CAM_UA_TERMIO:
1667 case CAM_MSG_REJECT_REC:
1668 /* XXX Don't know that these are correct */
1669 error = EIO;
1670 break;
1671 case CAM_SEL_TIMEOUT:
1673 struct cam_path *newpath;
1675 if ((camflags & CAM_RETRY_SELTO) != 0) {
1676 if (ccb->ccb_h.retry_count > 0) {
1678 ccb->ccb_h.retry_count--;
1679 error = ERESTART;
1680 if (bootverbose && printed == 0) {
1681 xpt_print(ccb->ccb_h.path,
1682 "Selection Timeout\n");
1683 printed++;
1687 * Wait a bit to give the device
1688 * time to recover before we try again.
1690 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1691 timeout = periph_selto_delay;
1692 break;
1695 error = ENXIO;
1696 /* Should we do more if we can't create the path?? */
1697 if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1698 xpt_path_path_id(ccb->ccb_h.path),
1699 xpt_path_target_id(ccb->ccb_h.path),
1700 CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1701 break;
1704 * Let peripheral drivers know that this device has gone
1705 * away.
1707 xpt_async(AC_LOST_DEVICE, newpath, NULL);
1708 xpt_free_path(newpath);
1709 break;
1711 case CAM_REQ_INVALID:
1712 case CAM_PATH_INVALID:
1713 case CAM_DEV_NOT_THERE:
1714 case CAM_NO_HBA:
1715 case CAM_PROVIDE_FAIL:
1716 case CAM_REQ_TOO_BIG:
1717 case CAM_LUN_INVALID:
1718 case CAM_TID_INVALID:
1719 error = EINVAL;
1720 break;
1721 case CAM_SCSI_BUS_RESET:
1722 case CAM_BDR_SENT:
1724 * Commands that repeatedly timeout and cause these
1725 * kinds of error recovery actions, should return
1726 * CAM_CMD_TIMEOUT, which allows us to safely assume
1727 * that this command was an innocent bystander to
1728 * these events and should be unconditionally
1729 * retried.
1731 if (bootverbose && printed == 0) {
1732 xpt_print_path(ccb->ccb_h.path);
1733 if (status == CAM_BDR_SENT)
1734 kprintf("Bus Device Reset sent\n");
1735 else
1736 kprintf("Bus Reset issued\n");
1737 printed++;
1739 /* FALLTHROUGH */
1740 case CAM_REQUEUE_REQ:
1741 /* Unconditional requeue */
1742 error = ERESTART;
1743 if (bootverbose && printed == 0) {
1744 xpt_print(ccb->ccb_h.path, "Request Requeued\n");
1745 printed++;
1747 break;
1748 case CAM_RESRC_UNAVAIL:
1749 /* Wait a bit for the resource shortage to abate. */
1750 timeout = periph_noresrc_delay;
1751 /* FALLTHROUGH */
1752 case CAM_BUSY:
1753 if (timeout == 0) {
1754 /* Wait a bit for the busy condition to abate. */
1755 timeout = periph_busy_delay;
1757 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1758 /* FALLTHROUGH */
1759 default:
1760 /* decrement the number of retries */
1761 if (ccb->ccb_h.retry_count > 0) {
1762 ccb->ccb_h.retry_count--;
1763 error = ERESTART;
1764 if (bootverbose && printed == 0) {
1765 xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
1766 status);
1767 printed++;
1769 } else {
1770 error = EIO;
1771 action_string = "Retries Exhausted";
1773 break;
1776 /* Attempt a retry */
1777 if (error == ERESTART || error == 0) {
1778 if (frozen != 0)
1779 ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1781 if (error == ERESTART) {
1782 action_string = "Retrying Command";
1783 xpt_action(ccb);
1786 if (frozen != 0)
1787 cam_release_devq(ccb->ccb_h.path,
1788 relsim_flags,
1789 openings,
1790 timeout,
1791 /*getcount_only*/0);
1795 * If we have an error and are booting verbosely, whine
1796 * *unless* this was a non-retryable selection timeout.
1798 if (error != 0 && bootverbose &&
1799 !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1802 if (action_string == NULL)
1803 action_string = "Unretryable Error";
1804 if (error != ERESTART) {
1805 xpt_print(ccb->ccb_h.path, "error %d\n", error);
1807 xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1810 return (error);