kernel - Fix bug in machdep.pmap_mmu_optimize
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
blobcaa16eee26fb9e7637c20cfaed95303606104292
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011-2017 Matthew Dillon
10 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
45 * Manage physical address maps for x86-64 systems.
48 #if 0 /* JG */
49 #include "opt_disable_pse.h"
50 #include "opt_pmap.h"
51 #endif
52 #include "opt_msgbuf.h"
54 #include <sys/param.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
59 #include <sys/mman.h>
60 #include <sys/systm.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
65 #include <sys/lock.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
75 #include <sys/user.h>
76 #include <sys/thread2.h>
77 #include <sys/spinlock2.h>
78 #include <vm/vm_page2.h>
80 #include <machine/cputypes.h>
81 #include <machine/md_var.h>
82 #include <machine/specialreg.h>
83 #include <machine/smp.h>
84 #include <machine_base/apic/apicreg.h>
85 #include <machine/globaldata.h>
86 #include <machine/pmap.h>
87 #include <machine/pmap_inval.h>
88 #include <machine/inttypes.h>
90 #include <ddb/ddb.h>
92 #define PMAP_KEEP_PDIRS
93 #ifndef PMAP_SHPGPERPROC
94 #define PMAP_SHPGPERPROC 2000
95 #endif
97 #if defined(DIAGNOSTIC)
98 #define PMAP_DIAGNOSTIC
99 #endif
101 #define MINPV 2048
104 * pmap debugging will report who owns a pv lock when blocking.
106 #ifdef PMAP_DEBUG
108 #define PMAP_DEBUG_DECL ,const char *func, int lineno
109 #define PMAP_DEBUG_ARGS , __func__, __LINE__
110 #define PMAP_DEBUG_COPY , func, lineno
112 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp \
113 PMAP_DEBUG_ARGS)
114 #define pv_lock(pv) _pv_lock(pv \
115 PMAP_DEBUG_ARGS)
116 #define pv_hold_try(pv) _pv_hold_try(pv \
117 PMAP_DEBUG_ARGS)
118 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
119 PMAP_DEBUG_ARGS)
121 #define pv_free(pv, pvp) _pv_free(pv, pvp PMAP_DEBUG_ARGS)
123 #else
125 #define PMAP_DEBUG_DECL
126 #define PMAP_DEBUG_ARGS
127 #define PMAP_DEBUG_COPY
129 #define pv_get(pmap, pindex, pmarkp) _pv_get(pmap, pindex, pmarkp)
130 #define pv_lock(pv) _pv_lock(pv)
131 #define pv_hold_try(pv) _pv_hold_try(pv)
132 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
133 #define pv_free(pv, pvp) _pv_free(pv, pvp)
135 #endif
138 * Get PDEs and PTEs for user/kernel address space
140 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
142 #define pmap_pde_v(pmap, pte) ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
143 #define pmap_pte_w(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
144 #define pmap_pte_m(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
145 #define pmap_pte_u(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
146 #define pmap_pte_v(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
149 * Given a map and a machine independent protection code,
150 * convert to a vax protection code.
152 #define pte_prot(m, p) \
153 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
154 static uint64_t protection_codes[PROTECTION_CODES_SIZE];
156 struct pmap kernel_pmap;
158 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
160 vm_paddr_t avail_start; /* PA of first available physical page */
161 vm_paddr_t avail_end; /* PA of last available physical page */
162 vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
163 vm_offset_t virtual2_end;
164 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
165 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
166 vm_offset_t KvaStart; /* VA start of KVA space */
167 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
168 vm_offset_t KvaSize; /* max size of kernel virtual address space */
169 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
170 //static int pgeflag; /* PG_G or-in */
171 //static int pseflag; /* PG_PS or-in */
172 uint64_t PatMsr;
174 static int ndmpdp;
175 static vm_paddr_t dmaplimit;
176 static int nkpt;
177 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
179 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
180 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/ /* PAT -> PG_ bits */
182 static uint64_t KPTbase;
183 static uint64_t KPTphys;
184 static uint64_t KPDphys; /* phys addr of kernel level 2 */
185 static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
186 uint64_t KPDPphys; /* phys addr of kernel level 3 */
187 uint64_t KPML4phys; /* phys addr of kernel level 4 */
189 static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
190 static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
193 * Data for the pv entry allocation mechanism
195 static vm_zone_t pvzone;
196 static struct vm_zone pvzone_store;
197 static int pv_entry_max=0, pv_entry_high_water=0;
198 static int pmap_pagedaemon_waken = 0;
199 static struct pv_entry *pvinit;
202 * All those kernel PT submaps that BSD is so fond of
204 pt_entry_t *CMAP1 = NULL, *ptmmap;
205 caddr_t CADDR1 = NULL, ptvmmap = NULL;
206 static pt_entry_t *msgbufmap;
207 struct msgbuf *msgbufp=NULL;
210 * PMAP default PG_* bits. Needed to be able to add
211 * EPT/NPT pagetable pmap_bits for the VMM module
213 uint64_t pmap_bits_default[] = {
214 REGULAR_PMAP, /* TYPE_IDX 0 */
215 X86_PG_V, /* PG_V_IDX 1 */
216 X86_PG_RW, /* PG_RW_IDX 2 */
217 X86_PG_U, /* PG_U_IDX 3 */
218 X86_PG_A, /* PG_A_IDX 4 */
219 X86_PG_M, /* PG_M_IDX 5 */
220 X86_PG_PS, /* PG_PS_IDX3 6 */
221 X86_PG_G, /* PG_G_IDX 7 */
222 X86_PG_AVAIL1, /* PG_AVAIL1_IDX 8 */
223 X86_PG_AVAIL2, /* PG_AVAIL2_IDX 9 */
224 X86_PG_AVAIL3, /* PG_AVAIL3_IDX 10 */
225 X86_PG_NC_PWT | X86_PG_NC_PCD, /* PG_N_IDX 11 */
226 X86_PG_NX, /* PG_NX_IDX 12 */
229 * Crashdump maps.
231 static pt_entry_t *pt_crashdumpmap;
232 static caddr_t crashdumpmap;
234 static int pmap_debug = 0;
235 SYSCTL_INT(_machdep, OID_AUTO, pmap_debug, CTLFLAG_RW,
236 &pmap_debug, 0, "Debug pmap's");
237 #ifdef PMAP_DEBUG2
238 static int pmap_enter_debug = 0;
239 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
240 &pmap_enter_debug, 0, "Debug pmap_enter's");
241 #endif
242 static int pmap_yield_count = 64;
243 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
244 &pmap_yield_count, 0, "Yield during init_pt/release");
245 static int pmap_mmu_optimize = 0;
246 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
247 &pmap_mmu_optimize, 0, "Share page table pages when possible");
248 int pmap_fast_kernel_cpusync = 0;
249 SYSCTL_INT(_machdep, OID_AUTO, pmap_fast_kernel_cpusync, CTLFLAG_RW,
250 &pmap_fast_kernel_cpusync, 0, "Share page table pages when possible");
251 int pmap_dynamic_delete = 0;
252 SYSCTL_INT(_machdep, OID_AUTO, pmap_dynamic_delete, CTLFLAG_RW,
253 &pmap_dynamic_delete, 0, "Dynamically delete PT/PD/PDPs");
254 int pmap_lock_delay = 100;
255 SYSCTL_INT(_machdep, OID_AUTO, pmap_lock_delay, CTLFLAG_RW,
256 &pmap_lock_delay, 0, "Spin loops");
258 static int pmap_nx_enable = 0;
259 /* needs manual TUNABLE in early probe, see below */
261 #define DISABLE_PSE
263 /* Standard user access funtions */
264 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
265 size_t *lencopied);
266 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
267 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
268 extern int std_fubyte (const uint8_t *base);
269 extern int std_subyte (uint8_t *base, uint8_t byte);
270 extern int32_t std_fuword32 (const uint32_t *base);
271 extern int64_t std_fuword64 (const uint64_t *base);
272 extern int std_suword64 (uint64_t *base, uint64_t word);
273 extern int std_suword32 (uint32_t *base, int word);
274 extern uint32_t std_swapu32 (volatile uint32_t *base, uint32_t v);
275 extern uint64_t std_swapu64 (volatile uint64_t *base, uint64_t v);
277 static void pv_hold(pv_entry_t pv);
278 static int _pv_hold_try(pv_entry_t pv
279 PMAP_DEBUG_DECL);
280 static void pv_drop(pv_entry_t pv);
281 static void _pv_lock(pv_entry_t pv
282 PMAP_DEBUG_DECL);
283 static void pv_unlock(pv_entry_t pv);
284 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
285 PMAP_DEBUG_DECL);
286 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp
287 PMAP_DEBUG_DECL);
288 static void _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL);
289 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex,
290 vm_pindex_t **pmarkp, int *errorp);
291 static void pv_put(pv_entry_t pv);
292 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
293 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
294 pv_entry_t *pvpp);
295 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
296 pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
297 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
298 pmap_inval_bulk_t *bulk, int destroy);
299 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
300 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp,
301 pmap_inval_bulk_t *bulk);
303 struct pmap_scan_info;
304 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
305 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
306 pv_entry_t pt_pv, int sharept,
307 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
308 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
309 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
310 pv_entry_t pt_pv, int sharept,
311 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
313 static void i386_protection_init (void);
314 static void create_pagetables(vm_paddr_t *firstaddr);
315 static void pmap_remove_all (vm_page_t m);
316 static boolean_t pmap_testbit (vm_page_t m, int bit);
318 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
319 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
321 static void pmap_pinit_defaults(struct pmap *pmap);
322 static void pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark);
323 static void pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark);
325 static unsigned pdir4mb;
327 static int
328 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
330 if (pv1->pv_pindex < pv2->pv_pindex)
331 return(-1);
332 if (pv1->pv_pindex > pv2->pv_pindex)
333 return(1);
334 return(0);
337 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
338 pv_entry_compare, vm_pindex_t, pv_pindex);
340 static __inline
341 void
342 pmap_page_stats_adding(vm_page_t m)
344 globaldata_t gd = mycpu;
346 if (TAILQ_EMPTY(&m->md.pv_list)) {
347 ++gd->gd_vmtotal.t_arm;
348 } else if (TAILQ_FIRST(&m->md.pv_list) ==
349 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
350 ++gd->gd_vmtotal.t_armshr;
351 ++gd->gd_vmtotal.t_avmshr;
352 } else {
353 ++gd->gd_vmtotal.t_avmshr;
357 static __inline
358 void
359 pmap_page_stats_deleting(vm_page_t m)
361 globaldata_t gd = mycpu;
363 if (TAILQ_EMPTY(&m->md.pv_list)) {
364 --gd->gd_vmtotal.t_arm;
365 } else if (TAILQ_FIRST(&m->md.pv_list) ==
366 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
367 --gd->gd_vmtotal.t_armshr;
368 --gd->gd_vmtotal.t_avmshr;
369 } else {
370 --gd->gd_vmtotal.t_avmshr;
375 * This is an ineligent crowbar to prevent heavily threaded programs
376 * from creating long live-locks in the pmap code when pmap_mmu_optimize
377 * is enabled. Without it a pmap-local page table page can wind up being
378 * constantly created and destroyed (without injury, but also without
379 * progress) as the optimization tries to switch to the object's shared page
380 * table page.
382 static __inline void
383 pmap_softwait(pmap_t pmap)
385 while (pmap->pm_softhold) {
386 tsleep_interlock(&pmap->pm_softhold, 0);
387 if (pmap->pm_softhold)
388 tsleep(&pmap->pm_softhold, PINTERLOCKED, "mmopt", 0);
392 static __inline void
393 pmap_softhold(pmap_t pmap)
395 while (atomic_swap_int(&pmap->pm_softhold, 1) == 1) {
396 tsleep_interlock(&pmap->pm_softhold, 0);
397 if (atomic_swap_int(&pmap->pm_softhold, 1) == 1)
398 tsleep(&pmap->pm_softhold, PINTERLOCKED, "mmopt", 0);
402 static __inline void
403 pmap_softdone(pmap_t pmap)
405 atomic_swap_int(&pmap->pm_softhold, 0);
406 wakeup(&pmap->pm_softhold);
410 * Move the kernel virtual free pointer to the next
411 * 2MB. This is used to help improve performance
412 * by using a large (2MB) page for much of the kernel
413 * (.text, .data, .bss)
415 static
416 vm_offset_t
417 pmap_kmem_choose(vm_offset_t addr)
419 vm_offset_t newaddr = addr;
421 newaddr = roundup2(addr, NBPDR);
422 return newaddr;
426 * Returns the pindex of a page table entry (representing a terminal page).
427 * There are NUPTE_TOTAL page table entries possible (a huge number)
429 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
430 * We want to properly translate negative KVAs.
432 static __inline
433 vm_pindex_t
434 pmap_pte_pindex(vm_offset_t va)
436 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
440 * Returns the pindex of a page table.
442 static __inline
443 vm_pindex_t
444 pmap_pt_pindex(vm_offset_t va)
446 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
450 * Returns the pindex of a page directory.
452 static __inline
453 vm_pindex_t
454 pmap_pd_pindex(vm_offset_t va)
456 return (NUPTE_TOTAL + NUPT_TOTAL +
457 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
460 static __inline
461 vm_pindex_t
462 pmap_pdp_pindex(vm_offset_t va)
464 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
465 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
468 static __inline
469 vm_pindex_t
470 pmap_pml4_pindex(void)
472 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
476 * Return various clipped indexes for a given VA
478 * Returns the index of a pt in a page directory, representing a page
479 * table.
481 static __inline
482 vm_pindex_t
483 pmap_pt_index(vm_offset_t va)
485 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
489 * Returns the index of a pd in a page directory page, representing a page
490 * directory.
492 static __inline
493 vm_pindex_t
494 pmap_pd_index(vm_offset_t va)
496 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
500 * Returns the index of a pdp in the pml4 table, representing a page
501 * directory page.
503 static __inline
504 vm_pindex_t
505 pmap_pdp_index(vm_offset_t va)
507 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
511 * Locate the requested pt_entry
513 static __inline
514 pv_entry_t
515 pv_entry_lookup(pmap_t pmap, vm_pindex_t pindex)
517 pv_entry_t pv;
519 if (pindex < pmap_pt_pindex(0))
520 pv = pmap->pm_pvhint_pte;
521 else if (pindex < pmap_pd_pindex(0))
522 pv = pmap->pm_pvhint_pt;
523 else
524 pv = NULL;
525 cpu_ccfence();
526 if (pv == NULL || pv->pv_pmap != pmap) {
527 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
528 pindex);
529 } else if (pv->pv_pindex != pindex) {
530 pv = pv_entry_rb_tree_RB_LOOKUP_REL(&pmap->pm_pvroot,
531 pindex, pv);
533 return pv;
537 * pmap_pte_quick:
539 * Super fast pmap_pte routine best used when scanning the pv lists.
540 * This eliminates many course-grained invltlb calls. Note that many of
541 * the pv list scans are across different pmaps and it is very wasteful
542 * to do an entire invltlb when checking a single mapping.
544 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
546 static
547 pt_entry_t *
548 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
550 return pmap_pte(pmap, va);
554 * The placemarker hash must be broken up into four zones so lock
555 * ordering semantics continue to work (e.g. pte, pt, pd, then pdp).
557 * Placemarkers are used to 'lock' page table indices that do not have
558 * a pv_entry. This allows the pmap to support managed and unmanaged
559 * pages and shared page tables.
561 #define PM_PLACE_BASE (PM_PLACEMARKS >> 2)
563 static __inline
564 vm_pindex_t *
565 pmap_placemarker_hash(pmap_t pmap, vm_pindex_t pindex)
567 int hi;
569 if (pindex < pmap_pt_pindex(0)) /* zone 0 - PTE */
570 hi = 0;
571 else if (pindex < pmap_pd_pindex(0)) /* zone 1 - PT */
572 hi = PM_PLACE_BASE;
573 else if (pindex < pmap_pdp_pindex(0)) /* zone 2 - PD */
574 hi = PM_PLACE_BASE << 1;
575 else /* zone 3 - PDP (and PML4E) */
576 hi = PM_PLACE_BASE | (PM_PLACE_BASE << 1);
577 hi += pindex & (PM_PLACE_BASE - 1);
579 return (&pmap->pm_placemarks[hi]);
584 * Generic procedure to index a pte from a pt, pd, or pdp.
586 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
587 * a page table page index but is instead of PV lookup index.
589 static
590 void *
591 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
593 pt_entry_t *pte;
595 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
596 return(&pte[pindex]);
600 * Return pointer to PDP slot in the PML4
602 static __inline
603 pml4_entry_t *
604 pmap_pdp(pmap_t pmap, vm_offset_t va)
606 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
610 * Return pointer to PD slot in the PDP given a pointer to the PDP
612 static __inline
613 pdp_entry_t *
614 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
616 pdp_entry_t *pd;
618 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
619 return (&pd[pmap_pd_index(va)]);
623 * Return pointer to PD slot in the PDP.
625 static __inline
626 pdp_entry_t *
627 pmap_pd(pmap_t pmap, vm_offset_t va)
629 pml4_entry_t *pdp;
631 pdp = pmap_pdp(pmap, va);
632 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
633 return NULL;
634 return (pmap_pdp_to_pd(*pdp, va));
638 * Return pointer to PT slot in the PD given a pointer to the PD
640 static __inline
641 pd_entry_t *
642 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
644 pd_entry_t *pt;
646 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
647 return (&pt[pmap_pt_index(va)]);
651 * Return pointer to PT slot in the PD
653 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
654 * so we cannot lookup the PD via the PDP. Instead we
655 * must look it up via the pmap.
657 static __inline
658 pd_entry_t *
659 pmap_pt(pmap_t pmap, vm_offset_t va)
661 pdp_entry_t *pd;
662 pv_entry_t pv;
663 vm_pindex_t pd_pindex;
664 vm_paddr_t phys;
666 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
667 pd_pindex = pmap_pd_pindex(va);
668 spin_lock_shared(&pmap->pm_spin);
669 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
670 if (pv == NULL || pv->pv_m == NULL) {
671 spin_unlock_shared(&pmap->pm_spin);
672 return NULL;
674 phys = VM_PAGE_TO_PHYS(pv->pv_m);
675 spin_unlock_shared(&pmap->pm_spin);
676 return (pmap_pd_to_pt(phys, va));
677 } else {
678 pd = pmap_pd(pmap, va);
679 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
680 return NULL;
681 return (pmap_pd_to_pt(*pd, va));
686 * Return pointer to PTE slot in the PT given a pointer to the PT
688 static __inline
689 pt_entry_t *
690 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
692 pt_entry_t *pte;
694 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
695 return (&pte[pmap_pte_index(va)]);
699 * Return pointer to PTE slot in the PT
701 static __inline
702 pt_entry_t *
703 pmap_pte(pmap_t pmap, vm_offset_t va)
705 pd_entry_t *pt;
707 pt = pmap_pt(pmap, va);
708 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
709 return NULL;
710 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
711 return ((pt_entry_t *)pt);
712 return (pmap_pt_to_pte(*pt, va));
716 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
717 * the PT layer. This will speed up core pmap operations considerably.
719 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
720 * must be in a known associated state (typically by being locked when
721 * the pmap spinlock isn't held). We allow the race for that case.
723 * NOTE: pm_pvhint* is only accessed (read) with the spin-lock held, using
724 * cpu_ccfence() to prevent compiler optimizations from reloading the
725 * field.
727 static __inline
728 void
729 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
731 if (pindex < pmap_pt_pindex(0)) {
732 if (pv->pv_pmap)
733 pv->pv_pmap->pm_pvhint_pte = pv;
734 } else if (pindex < pmap_pd_pindex(0)) {
735 if (pv->pv_pmap)
736 pv->pv_pmap->pm_pvhint_pt = pv;
742 * Return address of PT slot in PD (KVM only)
744 * Cannot be used for user page tables because it might interfere with
745 * the shared page-table-page optimization (pmap_mmu_optimize).
747 static __inline
748 pd_entry_t *
749 vtopt(vm_offset_t va)
751 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
752 NPML4EPGSHIFT)) - 1);
754 return (PDmap + ((va >> PDRSHIFT) & mask));
758 * KVM - return address of PTE slot in PT
760 static __inline
761 pt_entry_t *
762 vtopte(vm_offset_t va)
764 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
765 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
767 return (PTmap + ((va >> PAGE_SHIFT) & mask));
771 * Returns the physical address translation from va for a user address.
772 * (vm_paddr_t)-1 is returned on failure.
774 vm_paddr_t
775 uservtophys(vm_offset_t va)
777 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
778 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
779 vm_paddr_t pa;
780 pt_entry_t pte;
781 pmap_t pmap;
783 pmap = vmspace_pmap(mycpu->gd_curthread->td_lwp->lwp_vmspace);
784 pa = (vm_paddr_t)-1;
785 if (va < VM_MAX_USER_ADDRESS) {
786 pte = kreadmem64(PTmap + ((va >> PAGE_SHIFT) & mask));
787 if (pte & pmap->pmap_bits[PG_V_IDX])
788 pa = (pte & PG_FRAME) | (va & PAGE_MASK);
790 return pa;
793 static uint64_t
794 allocpages(vm_paddr_t *firstaddr, long n)
796 uint64_t ret;
798 ret = *firstaddr;
799 bzero((void *)ret, n * PAGE_SIZE);
800 *firstaddr += n * PAGE_SIZE;
801 return (ret);
804 static
805 void
806 create_pagetables(vm_paddr_t *firstaddr)
808 long i; /* must be 64 bits */
809 long nkpt_base;
810 long nkpt_phys;
811 int j;
814 * We are running (mostly) V=P at this point
816 * Calculate NKPT - number of kernel page tables. We have to
817 * accomodoate prealloction of the vm_page_array, dump bitmap,
818 * MSGBUF_SIZE, and other stuff. Be generous.
820 * Maxmem is in pages.
822 * ndmpdp is the number of 1GB pages we wish to map.
824 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
825 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
826 ndmpdp = 4;
827 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
830 * Starting at the beginning of kvm (not KERNBASE).
832 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
833 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
834 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
835 ndmpdp) + 511) / 512;
836 nkpt_phys += 128;
839 * Starting at KERNBASE - map 2G worth of page table pages.
840 * KERNBASE is offset -2G from the end of kvm.
842 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
845 * Allocate pages
847 KPTbase = allocpages(firstaddr, nkpt_base);
848 KPTphys = allocpages(firstaddr, nkpt_phys);
849 KPML4phys = allocpages(firstaddr, 1);
850 KPDPphys = allocpages(firstaddr, NKPML4E);
851 KPDphys = allocpages(firstaddr, NKPDPE);
854 * Calculate the page directory base for KERNBASE,
855 * that is where we start populating the page table pages.
856 * Basically this is the end - 2.
858 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
860 DMPDPphys = allocpages(firstaddr, NDMPML4E);
861 if ((amd_feature & AMDID_PAGE1GB) == 0)
862 DMPDphys = allocpages(firstaddr, ndmpdp);
863 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
866 * Fill in the underlying page table pages for the area around
867 * KERNBASE. This remaps low physical memory to KERNBASE.
869 * Read-only from zero to physfree
870 * XXX not fully used, underneath 2M pages
872 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
873 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
874 ((pt_entry_t *)KPTbase)[i] |=
875 pmap_bits_default[PG_RW_IDX] |
876 pmap_bits_default[PG_V_IDX] |
877 pmap_bits_default[PG_G_IDX];
881 * Now map the initial kernel page tables. One block of page
882 * tables is placed at the beginning of kernel virtual memory,
883 * and another block is placed at KERNBASE to map the kernel binary,
884 * data, bss, and initial pre-allocations.
886 for (i = 0; i < nkpt_base; i++) {
887 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
888 ((pd_entry_t *)KPDbase)[i] |=
889 pmap_bits_default[PG_RW_IDX] |
890 pmap_bits_default[PG_V_IDX];
892 for (i = 0; i < nkpt_phys; i++) {
893 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
894 ((pd_entry_t *)KPDphys)[i] |=
895 pmap_bits_default[PG_RW_IDX] |
896 pmap_bits_default[PG_V_IDX];
900 * Map from zero to end of allocations using 2M pages as an
901 * optimization. This will bypass some of the KPTBase pages
902 * above in the KERNBASE area.
904 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
905 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
906 ((pd_entry_t *)KPDbase)[i] |=
907 pmap_bits_default[PG_RW_IDX] |
908 pmap_bits_default[PG_V_IDX] |
909 pmap_bits_default[PG_PS_IDX] |
910 pmap_bits_default[PG_G_IDX];
914 * And connect up the PD to the PDP. The kernel pmap is expected
915 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
917 for (i = 0; i < NKPDPE; i++) {
918 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
919 KPDphys + (i << PAGE_SHIFT);
920 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
921 pmap_bits_default[PG_RW_IDX] |
922 pmap_bits_default[PG_V_IDX] |
923 pmap_bits_default[PG_U_IDX];
927 * Now set up the direct map space using either 2MB or 1GB pages
928 * Preset PG_M and PG_A because demotion expects it.
930 * When filling in entries in the PD pages make sure any excess
931 * entries are set to zero as we allocated enough PD pages
933 if ((amd_feature & AMDID_PAGE1GB) == 0) {
934 for (i = 0; i < NPDEPG * ndmpdp; i++) {
935 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
936 ((pd_entry_t *)DMPDphys)[i] |=
937 pmap_bits_default[PG_RW_IDX] |
938 pmap_bits_default[PG_V_IDX] |
939 pmap_bits_default[PG_PS_IDX] |
940 pmap_bits_default[PG_G_IDX] |
941 pmap_bits_default[PG_M_IDX] |
942 pmap_bits_default[PG_A_IDX];
946 * And the direct map space's PDP
948 for (i = 0; i < ndmpdp; i++) {
949 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
950 (i << PAGE_SHIFT);
951 ((pdp_entry_t *)DMPDPphys)[i] |=
952 pmap_bits_default[PG_RW_IDX] |
953 pmap_bits_default[PG_V_IDX] |
954 pmap_bits_default[PG_U_IDX];
956 } else {
957 for (i = 0; i < ndmpdp; i++) {
958 ((pdp_entry_t *)DMPDPphys)[i] =
959 (vm_paddr_t)i << PDPSHIFT;
960 ((pdp_entry_t *)DMPDPphys)[i] |=
961 pmap_bits_default[PG_RW_IDX] |
962 pmap_bits_default[PG_V_IDX] |
963 pmap_bits_default[PG_PS_IDX] |
964 pmap_bits_default[PG_G_IDX] |
965 pmap_bits_default[PG_M_IDX] |
966 pmap_bits_default[PG_A_IDX];
970 /* And recursively map PML4 to itself in order to get PTmap */
971 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
972 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
973 pmap_bits_default[PG_RW_IDX] |
974 pmap_bits_default[PG_V_IDX] |
975 pmap_bits_default[PG_U_IDX];
978 * Connect the Direct Map slots up to the PML4
980 for (j = 0; j < NDMPML4E; ++j) {
981 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
982 (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
983 pmap_bits_default[PG_RW_IDX] |
984 pmap_bits_default[PG_V_IDX] |
985 pmap_bits_default[PG_U_IDX];
989 * Connect the KVA slot up to the PML4
991 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
992 ((pdp_entry_t *)KPML4phys)[KPML4I] |=
993 pmap_bits_default[PG_RW_IDX] |
994 pmap_bits_default[PG_V_IDX] |
995 pmap_bits_default[PG_U_IDX];
999 * Bootstrap the system enough to run with virtual memory.
1001 * On the i386 this is called after mapping has already been enabled
1002 * and just syncs the pmap module with what has already been done.
1003 * [We can't call it easily with mapping off since the kernel is not
1004 * mapped with PA == VA, hence we would have to relocate every address
1005 * from the linked base (virtual) address "KERNBASE" to the actual
1006 * (physical) address starting relative to 0]
1008 void
1009 pmap_bootstrap(vm_paddr_t *firstaddr)
1011 vm_offset_t va;
1012 pt_entry_t *pte;
1013 int i;
1015 KvaStart = VM_MIN_KERNEL_ADDRESS;
1016 KvaEnd = VM_MAX_KERNEL_ADDRESS;
1017 KvaSize = KvaEnd - KvaStart;
1019 avail_start = *firstaddr;
1022 * Create an initial set of page tables to run the kernel in.
1024 create_pagetables(firstaddr);
1026 virtual2_start = KvaStart;
1027 virtual2_end = PTOV_OFFSET;
1029 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
1030 virtual_start = pmap_kmem_choose(virtual_start);
1032 virtual_end = VM_MAX_KERNEL_ADDRESS;
1034 /* XXX do %cr0 as well */
1035 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
1036 load_cr3(KPML4phys);
1039 * Initialize protection array.
1041 i386_protection_init();
1044 * The kernel's pmap is statically allocated so we don't have to use
1045 * pmap_create, which is unlikely to work correctly at this part of
1046 * the boot sequence (XXX and which no longer exists).
1048 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
1049 kernel_pmap.pm_count = 1;
1050 CPUMASK_ASSALLONES(kernel_pmap.pm_active);
1051 RB_INIT(&kernel_pmap.pm_pvroot);
1052 spin_init(&kernel_pmap.pm_spin, "pmapbootstrap");
1053 for (i = 0; i < PM_PLACEMARKS; ++i)
1054 kernel_pmap.pm_placemarks[i] = PM_NOPLACEMARK;
1057 * Reserve some special page table entries/VA space for temporary
1058 * mapping of pages.
1060 #define SYSMAP(c, p, v, n) \
1061 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
1063 va = virtual_start;
1064 pte = vtopte(va);
1067 * CMAP1/CMAP2 are used for zeroing and copying pages.
1069 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
1072 * Crashdump maps.
1074 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
1077 * ptvmmap is used for reading arbitrary physical pages via
1078 * /dev/mem.
1080 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
1083 * msgbufp is used to map the system message buffer.
1084 * XXX msgbufmap is not used.
1086 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
1087 atop(round_page(MSGBUF_SIZE)))
1089 virtual_start = va;
1090 virtual_start = pmap_kmem_choose(virtual_start);
1092 *CMAP1 = 0;
1095 * PG_G is terribly broken on SMP because we IPI invltlb's in some
1096 * cases rather then invl1pg. Actually, I don't even know why it
1097 * works under UP because self-referential page table mappings
1099 // pgeflag = 0;
1102 * Initialize the 4MB page size flag
1104 // pseflag = 0;
1106 * The 4MB page version of the initial
1107 * kernel page mapping.
1109 pdir4mb = 0;
1111 #if !defined(DISABLE_PSE)
1112 if (cpu_feature & CPUID_PSE) {
1113 pt_entry_t ptditmp;
1115 * Note that we have enabled PSE mode
1117 // pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
1118 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
1119 ptditmp &= ~(NBPDR - 1);
1120 ptditmp |= pmap_bits_default[PG_V_IDX] |
1121 pmap_bits_default[PG_RW_IDX] |
1122 pmap_bits_default[PG_PS_IDX] |
1123 pmap_bits_default[PG_U_IDX];
1124 // pgeflag;
1125 pdir4mb = ptditmp;
1127 #endif
1128 cpu_invltlb();
1130 /* Initialize the PAT MSR */
1131 pmap_init_pat();
1132 pmap_pinit_defaults(&kernel_pmap);
1134 TUNABLE_INT_FETCH("machdep.pmap_fast_kernel_cpusync",
1135 &pmap_fast_kernel_cpusync);
1140 * Setup the PAT MSR.
1142 void
1143 pmap_init_pat(void)
1145 uint64_t pat_msr;
1146 u_long cr0, cr4;
1149 * Default values mapping PATi,PCD,PWT bits at system reset.
1150 * The default values effectively ignore the PATi bit by
1151 * repeating the encodings for 0-3 in 4-7, and map the PCD
1152 * and PWT bit combinations to the expected PAT types.
1154 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1155 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1156 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1157 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1158 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1159 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1160 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1161 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1162 pat_pte_index[PAT_WRITE_BACK] = 0;
1163 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1164 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1165 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
1166 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1167 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1169 if (cpu_feature & CPUID_PAT) {
1171 * If we support the PAT then set-up entries for
1172 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1173 * 5 and 6.
1175 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1176 PAT_VALUE(5, PAT_WRITE_PROTECTED);
1177 pat_msr = (pat_msr & ~PAT_MASK(6)) |
1178 PAT_VALUE(6, PAT_WRITE_COMBINING);
1179 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1180 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PCD;
1183 * Then enable the PAT
1186 /* Disable PGE. */
1187 cr4 = rcr4();
1188 load_cr4(cr4 & ~CR4_PGE);
1190 /* Disable caches (CD = 1, NW = 0). */
1191 cr0 = rcr0();
1192 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1194 /* Flushes caches and TLBs. */
1195 wbinvd();
1196 cpu_invltlb();
1198 /* Update PAT and index table. */
1199 wrmsr(MSR_PAT, pat_msr);
1201 /* Flush caches and TLBs again. */
1202 wbinvd();
1203 cpu_invltlb();
1205 /* Restore caches and PGE. */
1206 load_cr0(cr0);
1207 load_cr4(cr4);
1208 PatMsr = pat_msr;
1213 * Set 4mb pdir for mp startup
1215 void
1216 pmap_set_opt(void)
1218 if (cpu_feature & CPUID_PSE) {
1219 load_cr4(rcr4() | CR4_PSE);
1220 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
1221 cpu_invltlb();
1227 * Initialize the pmap module.
1228 * Called by vm_init, to initialize any structures that the pmap
1229 * system needs to map virtual memory.
1230 * pmap_init has been enhanced to support in a fairly consistant
1231 * way, discontiguous physical memory.
1233 void
1234 pmap_init(void)
1236 int i;
1237 int initial_pvs;
1240 * Allocate memory for random pmap data structures. Includes the
1241 * pv_head_table.
1244 for (i = 0; i < vm_page_array_size; i++) {
1245 vm_page_t m;
1247 m = &vm_page_array[i];
1248 TAILQ_INIT(&m->md.pv_list);
1252 * init the pv free list
1254 initial_pvs = vm_page_array_size;
1255 if (initial_pvs < MINPV)
1256 initial_pvs = MINPV;
1257 pvzone = &pvzone_store;
1258 pvinit = (void *)kmem_alloc(&kernel_map,
1259 initial_pvs * sizeof (struct pv_entry),
1260 VM_SUBSYS_PVENTRY);
1261 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1262 pvinit, initial_pvs);
1265 * Now it is safe to enable pv_table recording.
1267 pmap_initialized = TRUE;
1271 * Initialize the address space (zone) for the pv_entries. Set a
1272 * high water mark so that the system can recover from excessive
1273 * numbers of pv entries.
1275 void
1276 pmap_init2(void)
1278 int shpgperproc = PMAP_SHPGPERPROC;
1279 int entry_max;
1281 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1282 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1283 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1284 pv_entry_high_water = 9 * (pv_entry_max / 10);
1287 * Subtract out pages already installed in the zone (hack)
1289 entry_max = pv_entry_max - vm_page_array_size;
1290 if (entry_max <= 0)
1291 entry_max = 1;
1293 zinitna(pvzone, NULL, 0, entry_max, ZONE_INTERRUPT);
1296 * Enable dynamic deletion of empty higher-level page table pages
1297 * by default only if system memory is < 8GB (use 7GB for slop).
1298 * This can save a little memory, but imposes significant
1299 * performance overhead for things like bulk builds, and for programs
1300 * which do a lot of memory mapping and memory unmapping.
1302 if (pmap_dynamic_delete < 0) {
1303 if (vmstats.v_page_count < 7LL * 1024 * 1024 * 1024 / PAGE_SIZE)
1304 pmap_dynamic_delete = 1;
1305 else
1306 pmap_dynamic_delete = 0;
1311 * Typically used to initialize a fictitious page by vm/device_pager.c
1313 void
1314 pmap_page_init(struct vm_page *m)
1316 vm_page_init(m);
1317 TAILQ_INIT(&m->md.pv_list);
1320 /***************************************************
1321 * Low level helper routines.....
1322 ***************************************************/
1325 * this routine defines the region(s) of memory that should
1326 * not be tested for the modified bit.
1328 static __inline
1330 pmap_track_modified(vm_pindex_t pindex)
1332 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1333 if ((va < clean_sva) || (va >= clean_eva))
1334 return 1;
1335 else
1336 return 0;
1340 * Extract the physical page address associated with the map/VA pair.
1341 * The page must be wired for this to work reliably.
1343 vm_paddr_t
1344 pmap_extract(pmap_t pmap, vm_offset_t va, void **handlep)
1346 vm_paddr_t rtval;
1347 pv_entry_t pt_pv;
1348 pt_entry_t *ptep;
1350 rtval = 0;
1351 if (va >= VM_MAX_USER_ADDRESS) {
1353 * Kernel page directories might be direct-mapped and
1354 * there is typically no PV tracking of pte's
1356 pd_entry_t *pt;
1358 pt = pmap_pt(pmap, va);
1359 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1360 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1361 rtval = *pt & PG_PS_FRAME;
1362 rtval |= va & PDRMASK;
1363 } else {
1364 ptep = pmap_pt_to_pte(*pt, va);
1365 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1366 rtval = *ptep & PG_FRAME;
1367 rtval |= va & PAGE_MASK;
1371 if (handlep)
1372 *handlep = NULL;
1373 } else {
1375 * User pages currently do not direct-map the page directory
1376 * and some pages might not used managed PVs. But all PT's
1377 * will have a PV.
1379 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1380 if (pt_pv) {
1381 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1382 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1383 rtval = *ptep & PG_FRAME;
1384 rtval |= va & PAGE_MASK;
1386 if (handlep)
1387 *handlep = pt_pv; /* locked until done */
1388 else
1389 pv_put (pt_pv);
1390 } else if (handlep) {
1391 *handlep = NULL;
1394 return rtval;
1397 void
1398 pmap_extract_done(void *handle)
1400 if (handle)
1401 pv_put((pv_entry_t)handle);
1405 * Similar to extract but checks protections, SMP-friendly short-cut for
1406 * vm_fault_page[_quick](). Can return NULL to cause the caller to
1407 * fall-through to the real fault code. Does not work with HVM page
1408 * tables.
1410 * if busyp is NULL the returned page, if not NULL, is held (and not busied).
1412 * If busyp is not NULL and this function sets *busyp non-zero, the returned
1413 * page is busied (and not held).
1415 * If busyp is not NULL and this function sets *busyp to zero, the returned
1416 * page is held (and not busied).
1418 * If VM_PROT_WRITE or VM_PROT_OVERRIDE_WRITE is set in prot, and the pte
1419 * is already writable, the returned page will be dirtied. If the pte
1420 * is not already writable NULL is returned. In otherwords, if either
1421 * bit is set and a vm_page_t is returned, any COW will already have happened
1422 * and that page can be written by the caller.
1424 * WARNING! THE RETURNED PAGE IS ONLY HELD AND NOT SUITABLE FOR READING
1425 * OR WRITING AS-IS.
1427 vm_page_t
1428 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot, int *busyp)
1430 if (pmap &&
1431 va < VM_MAX_USER_ADDRESS &&
1432 (pmap->pm_flags & PMAP_HVM) == 0) {
1433 pv_entry_t pt_pv;
1434 pv_entry_t pte_pv;
1435 pt_entry_t *ptep;
1436 pt_entry_t req;
1437 vm_page_t m;
1438 int error;
1440 req = pmap->pmap_bits[PG_V_IDX] |
1441 pmap->pmap_bits[PG_U_IDX];
1442 if (prot & (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE))
1443 req |= pmap->pmap_bits[PG_RW_IDX];
1445 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
1446 if (pt_pv == NULL)
1447 return (NULL);
1448 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1449 if ((*ptep & req) != req) {
1450 pv_put(pt_pv);
1451 return (NULL);
1453 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), NULL, &error);
1454 if (pte_pv && error == 0) {
1455 m = pte_pv->pv_m;
1456 if (prot & (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE)) {
1457 /* interlocked by presence of pv_entry */
1458 vm_page_dirty(m);
1460 if (busyp) {
1461 if (prot & VM_PROT_WRITE) {
1462 if (vm_page_busy_try(m, TRUE))
1463 m = NULL;
1464 *busyp = 1;
1465 } else {
1466 vm_page_hold(m);
1467 *busyp = 0;
1469 } else {
1470 vm_page_hold(m);
1472 pv_put(pte_pv);
1473 } else if (pte_pv) {
1474 pv_drop(pte_pv);
1475 m = NULL;
1476 } else {
1477 /* error, since we didn't request a placemarker */
1478 m = NULL;
1480 pv_put(pt_pv);
1481 return(m);
1482 } else {
1483 return(NULL);
1488 * Extract the physical page address associated kernel virtual address.
1490 vm_paddr_t
1491 pmap_kextract(vm_offset_t va)
1493 pd_entry_t pt; /* pt entry in pd */
1494 vm_paddr_t pa;
1496 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1497 pa = DMAP_TO_PHYS(va);
1498 } else {
1499 pt = *vtopt(va);
1500 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1501 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1502 } else {
1504 * Beware of a concurrent promotion that changes the
1505 * PDE at this point! For example, vtopte() must not
1506 * be used to access the PTE because it would use the
1507 * new PDE. It is, however, safe to use the old PDE
1508 * because the page table page is preserved by the
1509 * promotion.
1511 pa = *pmap_pt_to_pte(pt, va);
1512 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1515 return pa;
1518 /***************************************************
1519 * Low level mapping routines.....
1520 ***************************************************/
1523 * Routine: pmap_kenter
1524 * Function:
1525 * Add a wired page to the KVA
1526 * NOTE! note that in order for the mapping to take effect -- you
1527 * should do an invltlb after doing the pmap_kenter().
1529 void
1530 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1532 pt_entry_t *ptep;
1533 pt_entry_t npte;
1535 npte = pa |
1536 kernel_pmap.pmap_bits[PG_RW_IDX] |
1537 kernel_pmap.pmap_bits[PG_V_IDX];
1538 // pgeflag;
1539 ptep = vtopte(va);
1540 #if 1
1541 pmap_inval_smp(&kernel_pmap, va, 1, ptep, npte);
1542 #else
1543 /* FUTURE */
1544 if (*ptep)
1545 pmap_inval_smp(&kernel_pmap, va, ptep, npte);
1546 else
1547 *ptep = npte;
1548 #endif
1552 * Similar to pmap_kenter(), except we only invalidate the mapping on the
1553 * current CPU. Returns 0 if the previous pte was 0, 1 if it wasn't
1554 * (caller can conditionalize calling smp_invltlb()).
1557 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1559 pt_entry_t *ptep;
1560 pt_entry_t npte;
1561 int res;
1563 npte = pa | kernel_pmap.pmap_bits[PG_RW_IDX] |
1564 kernel_pmap.pmap_bits[PG_V_IDX];
1565 // npte |= pgeflag;
1566 ptep = vtopte(va);
1567 #if 1
1568 res = 1;
1569 #else
1570 /* FUTURE */
1571 res = (*ptep != 0);
1572 #endif
1573 atomic_swap_long(ptep, npte);
1574 cpu_invlpg((void *)va);
1576 return res;
1580 * Enter addresses into the kernel pmap but don't bother
1581 * doing any tlb invalidations. Caller will do a rollup
1582 * invalidation via pmap_rollup_inval().
1585 pmap_kenter_noinval(vm_offset_t va, vm_paddr_t pa)
1587 pt_entry_t *ptep;
1588 pt_entry_t npte;
1589 int res;
1591 npte = pa |
1592 kernel_pmap.pmap_bits[PG_RW_IDX] |
1593 kernel_pmap.pmap_bits[PG_V_IDX];
1594 // pgeflag;
1595 ptep = vtopte(va);
1596 #if 1
1597 res = 1;
1598 #else
1599 /* FUTURE */
1600 res = (*ptep != 0);
1601 #endif
1602 atomic_swap_long(ptep, npte);
1603 cpu_invlpg((void *)va);
1605 return res;
1609 * remove a page from the kernel pagetables
1611 void
1612 pmap_kremove(vm_offset_t va)
1614 pt_entry_t *ptep;
1616 ptep = vtopte(va);
1617 pmap_inval_smp(&kernel_pmap, va, 1, ptep, 0);
1620 void
1621 pmap_kremove_quick(vm_offset_t va)
1623 pt_entry_t *ptep;
1625 ptep = vtopte(va);
1626 (void)pte_load_clear(ptep);
1627 cpu_invlpg((void *)va);
1631 * Remove addresses from the kernel pmap but don't bother
1632 * doing any tlb invalidations. Caller will do a rollup
1633 * invalidation via pmap_rollup_inval().
1635 void
1636 pmap_kremove_noinval(vm_offset_t va)
1638 pt_entry_t *ptep;
1640 ptep = vtopte(va);
1641 (void)pte_load_clear(ptep);
1645 * XXX these need to be recoded. They are not used in any critical path.
1647 void
1648 pmap_kmodify_rw(vm_offset_t va)
1650 atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1651 cpu_invlpg((void *)va);
1654 /* NOT USED
1655 void
1656 pmap_kmodify_nc(vm_offset_t va)
1658 atomic_set_long(vtopte(va), PG_N);
1659 cpu_invlpg((void *)va);
1664 * Used to map a range of physical addresses into kernel virtual
1665 * address space during the low level boot, typically to map the
1666 * dump bitmap, message buffer, and vm_page_array.
1668 * These mappings are typically made at some pointer after the end of the
1669 * kernel text+data.
1671 * We could return PHYS_TO_DMAP(start) here and not allocate any
1672 * via (*virtp), but then kmem from userland and kernel dumps won't
1673 * have access to the related pointers.
1675 vm_offset_t
1676 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1678 vm_offset_t va;
1679 vm_offset_t va_start;
1681 /*return PHYS_TO_DMAP(start);*/
1683 va_start = *virtp;
1684 va = va_start;
1686 while (start < end) {
1687 pmap_kenter_quick(va, start);
1688 va += PAGE_SIZE;
1689 start += PAGE_SIZE;
1691 *virtp = va;
1692 return va_start;
1695 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
1698 * Remove the specified set of pages from the data and instruction caches.
1700 * In contrast to pmap_invalidate_cache_range(), this function does not
1701 * rely on the CPU's self-snoop feature, because it is intended for use
1702 * when moving pages into a different cache domain.
1704 void
1705 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1707 vm_offset_t daddr, eva;
1708 int i;
1710 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1711 (cpu_feature & CPUID_CLFSH) == 0)
1712 wbinvd();
1713 else {
1714 cpu_mfence();
1715 for (i = 0; i < count; i++) {
1716 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1717 eva = daddr + PAGE_SIZE;
1718 for (; daddr < eva; daddr += cpu_clflush_line_size)
1719 clflush(daddr);
1721 cpu_mfence();
1725 void
1726 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1728 KASSERT((sva & PAGE_MASK) == 0,
1729 ("pmap_invalidate_cache_range: sva not page-aligned"));
1730 KASSERT((eva & PAGE_MASK) == 0,
1731 ("pmap_invalidate_cache_range: eva not page-aligned"));
1733 if (cpu_feature & CPUID_SS) {
1734 ; /* If "Self Snoop" is supported, do nothing. */
1735 } else {
1736 /* Globally invalidate caches */
1737 cpu_wbinvd_on_all_cpus();
1742 * Invalidate the specified range of virtual memory on all cpus associated
1743 * with the pmap.
1745 void
1746 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1748 pmap_inval_smp(pmap, sva, (eva - sva) >> PAGE_SHIFT, NULL, 0);
1752 * Add a list of wired pages to the kva. This routine is used for temporary
1753 * kernel mappings such as those found in buffer cache buffer. Page
1754 * modifications and accesses are not tracked or recorded.
1756 * NOTE! Old mappings are simply overwritten, and we cannot assume relaxed
1757 * semantics as previous mappings may have been zerod without any
1758 * invalidation.
1760 * The page *must* be wired.
1762 static __inline void
1763 _pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count, int doinval)
1765 vm_offset_t end_va;
1766 vm_offset_t va;
1768 end_va = beg_va + count * PAGE_SIZE;
1770 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1771 pt_entry_t pte;
1772 pt_entry_t *ptep;
1774 ptep = vtopte(va);
1775 pte = VM_PAGE_TO_PHYS(*m) |
1776 kernel_pmap.pmap_bits[PG_RW_IDX] |
1777 kernel_pmap.pmap_bits[PG_V_IDX] |
1778 kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1779 // pgeflag;
1780 atomic_swap_long(ptep, pte);
1781 m++;
1783 if (doinval)
1784 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1787 void
1788 pmap_qenter(vm_offset_t beg_va, vm_page_t *m, int count)
1790 _pmap_qenter(beg_va, m, count, 1);
1793 void
1794 pmap_qenter_noinval(vm_offset_t beg_va, vm_page_t *m, int count)
1796 _pmap_qenter(beg_va, m, count, 0);
1800 * This routine jerks page mappings from the kernel -- it is meant only
1801 * for temporary mappings such as those found in buffer cache buffers.
1802 * No recording modified or access status occurs.
1804 * MPSAFE, INTERRUPT SAFE (cluster callback)
1806 void
1807 pmap_qremove(vm_offset_t beg_va, int count)
1809 vm_offset_t end_va;
1810 vm_offset_t va;
1812 end_va = beg_va + count * PAGE_SIZE;
1814 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1815 pt_entry_t *pte;
1817 pte = vtopte(va);
1818 (void)pte_load_clear(pte);
1819 cpu_invlpg((void *)va);
1821 pmap_invalidate_range(&kernel_pmap, beg_va, end_va);
1825 * This routine removes temporary kernel mappings, only invalidating them
1826 * on the current cpu. It should only be used under carefully controlled
1827 * conditions.
1829 void
1830 pmap_qremove_quick(vm_offset_t beg_va, int count)
1832 vm_offset_t end_va;
1833 vm_offset_t va;
1835 end_va = beg_va + count * PAGE_SIZE;
1837 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1838 pt_entry_t *pte;
1840 pte = vtopte(va);
1841 (void)pte_load_clear(pte);
1842 cpu_invlpg((void *)va);
1847 * This routine removes temporary kernel mappings *without* invalidating
1848 * the TLB. It can only be used on permanent kva reservations such as those
1849 * found in buffer cache buffers, under carefully controlled circumstances.
1851 * NOTE: Repopulating these KVAs requires unconditional invalidation.
1852 * (pmap_qenter() does unconditional invalidation).
1854 void
1855 pmap_qremove_noinval(vm_offset_t beg_va, int count)
1857 vm_offset_t end_va;
1858 vm_offset_t va;
1860 end_va = beg_va + count * PAGE_SIZE;
1862 for (va = beg_va; va < end_va; va += PAGE_SIZE) {
1863 pt_entry_t *pte;
1865 pte = vtopte(va);
1866 (void)pte_load_clear(pte);
1871 * Create a new thread and optionally associate it with a (new) process.
1872 * NOTE! the new thread's cpu may not equal the current cpu.
1874 void
1875 pmap_init_thread(thread_t td)
1877 /* enforce pcb placement & alignment */
1878 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1879 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1880 td->td_savefpu = &td->td_pcb->pcb_save;
1881 td->td_sp = (char *)td->td_pcb; /* no -16 */
1885 * This routine directly affects the fork perf for a process.
1887 void
1888 pmap_init_proc(struct proc *p)
1892 static void
1893 pmap_pinit_defaults(struct pmap *pmap)
1895 bcopy(pmap_bits_default, pmap->pmap_bits,
1896 sizeof(pmap_bits_default));
1897 bcopy(protection_codes, pmap->protection_codes,
1898 sizeof(protection_codes));
1899 bcopy(pat_pte_index, pmap->pmap_cache_bits,
1900 sizeof(pat_pte_index));
1901 pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1902 pmap->copyinstr = std_copyinstr;
1903 pmap->copyin = std_copyin;
1904 pmap->copyout = std_copyout;
1905 pmap->fubyte = std_fubyte;
1906 pmap->subyte = std_subyte;
1907 pmap->fuword32 = std_fuword32;
1908 pmap->fuword64 = std_fuword64;
1909 pmap->suword32 = std_suword32;
1910 pmap->suword64 = std_suword64;
1911 pmap->swapu32 = std_swapu32;
1912 pmap->swapu64 = std_swapu64;
1915 * Initialize pmap0/vmspace0.
1917 * On architectures where the kernel pmap is not integrated into the user
1918 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1919 * kernel_pmap should be used to directly access the kernel_pmap.
1921 void
1922 pmap_pinit0(struct pmap *pmap)
1924 int i;
1926 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1927 pmap->pm_count = 1;
1928 CPUMASK_ASSZERO(pmap->pm_active);
1929 pmap->pm_pvhint_pt = NULL;
1930 pmap->pm_pvhint_pte = NULL;
1931 RB_INIT(&pmap->pm_pvroot);
1932 spin_init(&pmap->pm_spin, "pmapinit0");
1933 for (i = 0; i < PM_PLACEMARKS; ++i)
1934 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1935 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1936 pmap_pinit_defaults(pmap);
1940 * Initialize a preallocated and zeroed pmap structure,
1941 * such as one in a vmspace structure.
1943 static void
1944 pmap_pinit_simple(struct pmap *pmap)
1946 int i;
1949 * Misc initialization
1951 pmap->pm_count = 1;
1952 CPUMASK_ASSZERO(pmap->pm_active);
1953 pmap->pm_pvhint_pt = NULL;
1954 pmap->pm_pvhint_pte = NULL;
1955 pmap->pm_flags = PMAP_FLAG_SIMPLE;
1957 pmap_pinit_defaults(pmap);
1960 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1961 * for this).
1963 if (pmap->pm_pmlpv == NULL) {
1964 RB_INIT(&pmap->pm_pvroot);
1965 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1966 spin_init(&pmap->pm_spin, "pmapinitsimple");
1967 for (i = 0; i < PM_PLACEMARKS; ++i)
1968 pmap->pm_placemarks[i] = PM_NOPLACEMARK;
1972 void
1973 pmap_pinit(struct pmap *pmap)
1975 pv_entry_t pv;
1976 int j;
1978 if (pmap->pm_pmlpv) {
1979 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1980 pmap_puninit(pmap);
1984 pmap_pinit_simple(pmap);
1985 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1988 * No need to allocate page table space yet but we do need a valid
1989 * page directory table.
1991 if (pmap->pm_pml4 == NULL) {
1992 pmap->pm_pml4 =
1993 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map,
1994 PAGE_SIZE,
1995 VM_SUBSYS_PML4);
1999 * Allocate the page directory page, which wires it even though
2000 * it isn't being entered into some higher level page table (it
2001 * being the highest level). If one is already cached we don't
2002 * have to do anything.
2004 if ((pv = pmap->pm_pmlpv) == NULL) {
2005 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2006 pmap->pm_pmlpv = pv;
2007 pmap_kenter((vm_offset_t)pmap->pm_pml4,
2008 VM_PAGE_TO_PHYS(pv->pv_m));
2009 pv_put(pv);
2012 * Install DMAP and KMAP.
2014 for (j = 0; j < NDMPML4E; ++j) {
2015 pmap->pm_pml4[DMPML4I + j] =
2016 (DMPDPphys + ((vm_paddr_t)j << PAGE_SHIFT)) |
2017 pmap->pmap_bits[PG_RW_IDX] |
2018 pmap->pmap_bits[PG_V_IDX] |
2019 pmap->pmap_bits[PG_U_IDX];
2021 pmap->pm_pml4[KPML4I] = KPDPphys |
2022 pmap->pmap_bits[PG_RW_IDX] |
2023 pmap->pmap_bits[PG_V_IDX] |
2024 pmap->pmap_bits[PG_U_IDX];
2027 * install self-referential address mapping entry
2029 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
2030 pmap->pmap_bits[PG_V_IDX] |
2031 pmap->pmap_bits[PG_RW_IDX] |
2032 pmap->pmap_bits[PG_A_IDX] |
2033 pmap->pmap_bits[PG_M_IDX];
2034 } else {
2035 KKASSERT(pv->pv_m->flags & PG_MAPPED);
2036 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
2038 KKASSERT(pmap->pm_pml4[255] == 0);
2039 KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
2040 KKASSERT(pv->pv_entry.rbe_left == NULL);
2041 KKASSERT(pv->pv_entry.rbe_right == NULL);
2045 * Clean up a pmap structure so it can be physically freed. This routine
2046 * is called by the vmspace dtor function. A great deal of pmap data is
2047 * left passively mapped to improve vmspace management so we have a bit
2048 * of cleanup work to do here.
2050 void
2051 pmap_puninit(pmap_t pmap)
2053 pv_entry_t pv;
2054 vm_page_t p;
2056 KKASSERT(CPUMASK_TESTZERO(pmap->pm_active));
2057 if ((pv = pmap->pm_pmlpv) != NULL) {
2058 if (pv_hold_try(pv) == 0)
2059 pv_lock(pv);
2060 KKASSERT(pv == pmap->pm_pmlpv);
2061 p = pmap_remove_pv_page(pv);
2062 pv_free(pv, NULL);
2063 pv = NULL; /* safety */
2064 pmap_kremove((vm_offset_t)pmap->pm_pml4);
2065 vm_page_busy_wait(p, FALSE, "pgpun");
2066 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
2067 vm_page_unwire(p, 0);
2068 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
2071 * XXX eventually clean out PML4 static entries and
2072 * use vm_page_free_zero()
2074 vm_page_free(p);
2075 pmap->pm_pmlpv = NULL;
2077 if (pmap->pm_pml4) {
2078 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
2079 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
2080 pmap->pm_pml4 = NULL;
2082 KKASSERT(pmap->pm_stats.resident_count == 0);
2083 KKASSERT(pmap->pm_stats.wired_count == 0);
2087 * This function is now unused (used to add the pmap to the pmap_list)
2089 void
2090 pmap_pinit2(struct pmap *pmap)
2095 * This routine is called when various levels in the page table need to
2096 * be populated. This routine cannot fail.
2098 * This function returns two locked pv_entry's, one representing the
2099 * requested pv and one representing the requested pv's parent pv. If
2100 * an intermediate page table does not exist it will be created, mapped,
2101 * wired, and the parent page table will be given an additional hold
2102 * count representing the presence of the child pv_entry.
2104 static
2105 pv_entry_t
2106 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
2108 pt_entry_t *ptep;
2109 pv_entry_t pv;
2110 pv_entry_t pvp;
2111 pt_entry_t v;
2112 vm_pindex_t pt_pindex;
2113 vm_page_t m;
2114 int isnew;
2115 int ispt;
2118 * If the pv already exists and we aren't being asked for the
2119 * parent page table page we can just return it. A locked+held pv
2120 * is returned. The pv will also have a second hold related to the
2121 * pmap association that we don't have to worry about.
2123 ispt = 0;
2124 pv = pv_alloc(pmap, ptepindex, &isnew);
2125 if (isnew == 0 && pvpp == NULL)
2126 return(pv);
2129 * Special case terminal PVs. These are not page table pages so
2130 * no vm_page is allocated (the caller supplied the vm_page). If
2131 * pvpp is non-NULL we are being asked to also removed the pt_pv
2132 * for this pv.
2134 * Note that pt_pv's are only returned for user VAs. We assert that
2135 * a pt_pv is not being requested for kernel VAs. The kernel
2136 * pre-wires all higher-level page tables so don't overload managed
2137 * higher-level page tables on top of it!
2139 if (ptepindex < pmap_pt_pindex(0)) {
2140 if (ptepindex >= NUPTE_USER) {
2141 /* kernel manages this manually for KVM */
2142 KKASSERT(pvpp == NULL);
2143 } else {
2144 KKASSERT(pvpp != NULL);
2145 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
2146 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
2147 if (isnew)
2148 vm_page_wire_quick(pvp->pv_m);
2149 *pvpp = pvp;
2151 return(pv);
2155 * The kernel never uses managed PT/PD/PDP pages.
2157 KKASSERT(pmap != &kernel_pmap);
2160 * Non-terminal PVs allocate a VM page to represent the page table,
2161 * so we have to resolve pvp and calculate ptepindex for the pvp
2162 * and then for the page table entry index in the pvp for
2163 * fall-through.
2165 if (ptepindex < pmap_pd_pindex(0)) {
2167 * pv is PT, pvp is PD
2169 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
2170 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
2171 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2174 * PT index in PD
2176 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
2177 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
2178 ispt = 1;
2179 } else if (ptepindex < pmap_pdp_pindex(0)) {
2181 * pv is PD, pvp is PDP
2183 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
2184 * the PD.
2186 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
2187 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2189 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
2190 KKASSERT(pvpp == NULL);
2191 pvp = NULL;
2192 } else {
2193 pvp = pmap_allocpte(pmap, ptepindex, NULL);
2197 * PD index in PDP
2199 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
2200 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
2201 } else if (ptepindex < pmap_pml4_pindex()) {
2203 * pv is PDP, pvp is the root pml4 table
2205 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
2208 * PDP index in PML4
2210 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
2211 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
2212 } else {
2214 * pv represents the top-level PML4, there is no parent.
2216 pvp = NULL;
2219 if (isnew == 0)
2220 goto notnew;
2223 * (isnew) is TRUE, pv is not terminal.
2225 * (1) Add a wire count to the parent page table (pvp).
2226 * (2) Allocate a VM page for the page table.
2227 * (3) Enter the VM page into the parent page table.
2229 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
2231 if (pvp)
2232 vm_page_wire_quick(pvp->pv_m);
2234 for (;;) {
2235 m = vm_page_alloc(NULL, pv->pv_pindex,
2236 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2237 VM_ALLOC_INTERRUPT);
2238 if (m)
2239 break;
2240 vm_wait(0);
2242 vm_page_wire(m); /* wire for mapping in parent */
2243 vm_page_unmanage(m); /* m must be spinunlocked */
2244 pmap_zero_page(VM_PAGE_TO_PHYS(m));
2245 m->valid = VM_PAGE_BITS_ALL;
2247 vm_page_spin_lock(m);
2248 pmap_page_stats_adding(m);
2249 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2250 pv->pv_m = m;
2251 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
2252 vm_page_spin_unlock(m);
2255 * (isnew) is TRUE, pv is not terminal.
2257 * Wire the page into pvp. Bump the resident_count for the pmap.
2258 * There is no pvp for the top level, address the pm_pml4[] array
2259 * directly.
2261 * If the caller wants the parent we return it, otherwise
2262 * we just put it away.
2264 * No interlock is needed for pte 0 -> non-zero.
2266 * In the situation where *ptep is valid we might have an unmanaged
2267 * page table page shared from another page table which we need to
2268 * unshare before installing our private page table page.
2270 if (pvp) {
2271 v = VM_PAGE_TO_PHYS(m) |
2272 (pmap->pmap_bits[PG_U_IDX] |
2273 pmap->pmap_bits[PG_RW_IDX] |
2274 pmap->pmap_bits[PG_V_IDX] |
2275 pmap->pmap_bits[PG_A_IDX] |
2276 pmap->pmap_bits[PG_M_IDX]);
2277 ptep = pv_pte_lookup(pvp, ptepindex);
2278 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
2279 pt_entry_t pte;
2281 if (ispt == 0) {
2282 panic("pmap_allocpte: unexpected pte %p/%d",
2283 pvp, (int)ptepindex);
2285 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, v);
2286 if (vm_page_unwire_quick(
2287 PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
2288 panic("pmap_allocpte: shared pgtable "
2289 "pg bad wirecount");
2291 } else {
2292 pt_entry_t pte;
2294 pte = atomic_swap_long(ptep, v);
2295 if (pte != 0) {
2296 kprintf("install pgtbl mixup 0x%016jx "
2297 "old/new 0x%016jx/0x%016jx\n",
2298 (intmax_t)ptepindex, pte, v);
2302 vm_page_wakeup(m);
2305 * (isnew) may be TRUE or FALSE, pv may or may not be terminal.
2307 notnew:
2308 if (pvp) {
2309 KKASSERT(pvp->pv_m != NULL);
2310 ptep = pv_pte_lookup(pvp, ptepindex);
2311 v = VM_PAGE_TO_PHYS(pv->pv_m) |
2312 (pmap->pmap_bits[PG_U_IDX] |
2313 pmap->pmap_bits[PG_RW_IDX] |
2314 pmap->pmap_bits[PG_V_IDX] |
2315 pmap->pmap_bits[PG_A_IDX] |
2316 pmap->pmap_bits[PG_M_IDX]);
2317 if (*ptep != v) {
2318 kprintf("mismatched upper level pt %016jx/%016jx\n",
2319 *ptep, v);
2322 if (pvpp)
2323 *pvpp = pvp;
2324 else if (pvp)
2325 pv_put(pvp);
2326 return (pv);
2330 * This version of pmap_allocpte() checks for possible segment optimizations
2331 * that would allow page-table sharing. It can be called for terminal
2332 * page or page table page ptepindex's.
2334 * The function is called with page table page ptepindex's for fictitious
2335 * and unmanaged terminal pages. That is, we don't want to allocate a
2336 * terminal pv, we just want the pt_pv. pvpp is usually passed as NULL
2337 * for this case.
2339 * This function can return a pv and *pvpp associated with the passed in pmap
2340 * OR a pv and *pvpp associated with the shared pmap. In the latter case
2341 * an unmanaged page table page will be entered into the pass in pmap.
2343 static
2344 pv_entry_t
2345 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2346 vm_map_entry_t entry, vm_offset_t va)
2348 vm_object_t object;
2349 pmap_t obpmap;
2350 pmap_t *obpmapp;
2351 vm_pindex_t *pt_placemark;
2352 vm_offset_t b;
2353 pv_entry_t pte_pv; /* in original or shared pmap */
2354 pv_entry_t pt_pv; /* in original or shared pmap */
2355 pv_entry_t proc_pd_pv; /* in original pmap */
2356 pv_entry_t proc_pt_pv; /* in original pmap */
2357 pv_entry_t xpv; /* PT in shared pmap */
2358 pd_entry_t *pt; /* PT entry in PD of original pmap */
2359 pd_entry_t opte; /* contents of *pt */
2360 pd_entry_t npte; /* contents of *pt */
2361 vm_page_t m;
2362 int softhold;
2365 * Basic tests, require a non-NULL vm_map_entry, require proper
2366 * alignment and type for the vm_map_entry, require that the
2367 * underlying object already be allocated.
2369 * We allow almost any type of object to use this optimization.
2370 * The object itself does NOT have to be sized to a multiple of the
2371 * segment size, but the memory mapping does.
2373 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2374 * won't work as expected.
2376 if (entry == NULL ||
2377 pmap_mmu_optimize == 0 || /* not enabled */
2378 (pmap->pm_flags & PMAP_HVM) || /* special pmap */
2379 ptepindex >= pmap_pd_pindex(0) || /* not terminal or pt */
2380 entry->inheritance != VM_INHERIT_SHARE || /* not shared */
2381 entry->maptype != VM_MAPTYPE_NORMAL || /* weird map type */
2382 entry->object.vm_object == NULL || /* needs VM object */
2383 entry->object.vm_object->type == OBJT_DEVICE || /* ick */
2384 entry->object.vm_object->type == OBJT_MGTDEVICE || /* ick */
2385 (entry->offset & SEG_MASK) || /* must be aligned */
2386 (entry->start & SEG_MASK)) {
2387 return(pmap_allocpte(pmap, ptepindex, pvpp));
2391 * Make sure the full segment can be represented.
2393 b = va & ~(vm_offset_t)SEG_MASK;
2394 if (b < entry->start || b + SEG_SIZE > entry->end)
2395 return(pmap_allocpte(pmap, ptepindex, pvpp));
2398 * If the full segment can be represented dive the VM object's
2399 * shared pmap, allocating as required.
2401 object = entry->object.vm_object;
2403 if (entry->protection & VM_PROT_WRITE)
2404 obpmapp = &object->md.pmap_rw;
2405 else
2406 obpmapp = &object->md.pmap_ro;
2408 #ifdef PMAP_DEBUG2
2409 if (pmap_enter_debug > 0) {
2410 --pmap_enter_debug;
2411 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2412 "obpmapp %p %p\n",
2413 va, entry->protection, object,
2414 obpmapp, *obpmapp);
2415 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2416 entry, entry->start, entry->end);
2418 #endif
2421 * We allocate what appears to be a normal pmap but because portions
2422 * of this pmap are shared with other unrelated pmaps we have to
2423 * set pm_active to point to all cpus.
2425 * XXX Currently using pmap_spin to interlock the update, can't use
2426 * vm_object_hold/drop because the token might already be held
2427 * shared OR exclusive and we don't know.
2429 while ((obpmap = *obpmapp) == NULL) {
2430 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2431 pmap_pinit_simple(obpmap);
2432 pmap_pinit2(obpmap);
2433 spin_lock(&pmap_spin);
2434 if (*obpmapp != NULL) {
2436 * Handle race
2438 spin_unlock(&pmap_spin);
2439 pmap_release(obpmap);
2440 pmap_puninit(obpmap);
2441 kfree(obpmap, M_OBJPMAP);
2442 obpmap = *obpmapp; /* safety */
2443 } else {
2444 obpmap->pm_active = smp_active_mask;
2445 obpmap->pm_flags |= PMAP_SEGSHARED;
2446 *obpmapp = obpmap;
2447 spin_unlock(&pmap_spin);
2452 * Layering is: PTE, PT, PD, PDP, PML4. We have to return the
2453 * pte/pt using the shared pmap from the object but also adjust
2454 * the process pmap's page table page as a side effect.
2458 * Resolve the terminal PTE and PT in the shared pmap. This is what
2459 * we will return. This is true if ptepindex represents a terminal
2460 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2461 * the PD.
2463 pt_pv = NULL;
2464 pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2465 softhold = 0;
2466 retry:
2467 if (ptepindex >= pmap_pt_pindex(0))
2468 xpv = pte_pv;
2469 else
2470 xpv = pt_pv;
2473 * Resolve the PD in the process pmap so we can properly share the
2474 * page table page. Lock order is bottom-up (leaf first)!
2476 * NOTE: proc_pt_pv can be NULL.
2478 proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b), &pt_placemark);
2479 proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2480 #ifdef PMAP_DEBUG2
2481 if (pmap_enter_debug > 0) {
2482 --pmap_enter_debug;
2483 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2484 proc_pt_pv,
2485 (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2486 proc_pd_pv,
2487 va);
2489 #endif
2492 * xpv is the page table page pv from the shared object
2493 * (for convenience), from above.
2495 * Calculate the pte value for the PT to load into the process PD.
2496 * If we have to change it we must properly dispose of the previous
2497 * entry.
2499 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2500 npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2501 (pmap->pmap_bits[PG_U_IDX] |
2502 pmap->pmap_bits[PG_RW_IDX] |
2503 pmap->pmap_bits[PG_V_IDX] |
2504 pmap->pmap_bits[PG_A_IDX] |
2505 pmap->pmap_bits[PG_M_IDX]);
2508 * Dispose of previous page table page if it was local to the
2509 * process pmap. If the old pt is not empty we cannot dispose of it
2510 * until we clean it out. This case should not arise very often so
2511 * it is not optimized.
2513 * Leave pt_pv and pte_pv (in our object pmap) locked and intact
2514 * for the retry.
2516 if (proc_pt_pv) {
2517 pmap_inval_bulk_t bulk;
2519 if (proc_pt_pv->pv_m->wire_count != 1) {
2521 * The page table has a bunch of stuff in it
2522 * which we have to scrap.
2524 if (softhold == 0) {
2525 softhold = 1;
2526 pmap_softhold(pmap);
2528 pv_put(proc_pd_pv);
2529 pv_put(proc_pt_pv);
2530 pmap_remove(pmap,
2531 va & ~(vm_offset_t)SEG_MASK,
2532 (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2533 } else {
2535 * The page table is empty and can be destroyed.
2536 * However, doing so leaves the pt slot unlocked,
2537 * so we have to loop-up to handle any races until
2538 * we get a NULL proc_pt_pv and a proper pt_placemark.
2540 pmap_inval_bulk_init(&bulk, proc_pt_pv->pv_pmap);
2541 pmap_release_pv(proc_pt_pv, proc_pd_pv, &bulk);
2542 pmap_inval_bulk_flush(&bulk);
2543 pv_put(proc_pd_pv);
2545 goto retry;
2549 * Handle remaining cases. We are holding pt_placemark to lock
2550 * the page table page in the primary pmap while we manipulate
2551 * it.
2553 if (*pt == 0) {
2554 atomic_swap_long(pt, npte);
2555 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2556 vm_page_wire_quick(proc_pd_pv->pv_m); /* proc pd for sh pt */
2557 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2558 } else if (*pt != npte) {
2559 opte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, pt, npte);
2561 #if 0
2562 opte = pte_load_clear(pt);
2563 KKASSERT(opte && opte != npte);
2565 *pt = npte;
2566 #endif
2567 vm_page_wire_quick(xpv->pv_m); /* shared pt -> proc */
2570 * Clean up opte, bump the wire_count for the process
2571 * PD page representing the new entry if it was
2572 * previously empty.
2574 * If the entry was not previously empty and we have
2575 * a PT in the proc pmap then opte must match that
2576 * pt. The proc pt must be retired (this is done
2577 * later on in this procedure).
2579 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2580 * stays the same.
2582 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2583 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2584 if (vm_page_unwire_quick(m)) {
2585 panic("pmap_allocpte_seg: "
2586 "bad wire count %p",
2591 if (softhold)
2592 pmap_softdone(pmap);
2595 * Remove our earmark on the page table page.
2597 pv_placemarker_wakeup(pmap, pt_placemark);
2600 * The existing process page table was replaced and must be destroyed
2601 * here.
2603 if (proc_pd_pv)
2604 pv_put(proc_pd_pv);
2605 if (pvpp)
2606 *pvpp = pt_pv;
2607 else
2608 pv_put(pt_pv);
2609 return (pte_pv);
2613 * Release any resources held by the given physical map.
2615 * Called when a pmap initialized by pmap_pinit is being released. Should
2616 * only be called if the map contains no valid mappings.
2618 struct pmap_release_info {
2619 pmap_t pmap;
2620 int retry;
2621 pv_entry_t pvp;
2624 static int pmap_release_callback(pv_entry_t pv, void *data);
2626 void
2627 pmap_release(struct pmap *pmap)
2629 struct pmap_release_info info;
2631 KASSERT(CPUMASK_TESTZERO(pmap->pm_active),
2632 ("pmap still active! %016jx",
2633 (uintmax_t)CPUMASK_LOWMASK(pmap->pm_active)));
2636 * There is no longer a pmap_list, if there were we would remove the
2637 * pmap from it here.
2641 * Pull pv's off the RB tree in order from low to high and release
2642 * each page.
2644 info.pmap = pmap;
2645 do {
2646 info.retry = 0;
2647 info.pvp = NULL;
2649 spin_lock(&pmap->pm_spin);
2650 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2651 pmap_release_callback, &info);
2652 spin_unlock(&pmap->pm_spin);
2654 if (info.pvp)
2655 pv_put(info.pvp);
2656 } while (info.retry);
2660 * One resident page (the pml4 page) should remain.
2661 * No wired pages should remain.
2663 #if 1
2664 if (pmap->pm_stats.resident_count !=
2665 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1) ||
2666 pmap->pm_stats.wired_count != 0) {
2667 kprintf("fatal pmap problem - pmap %p flags %08x "
2668 "rescnt=%jd wirecnt=%jd\n",
2669 pmap,
2670 pmap->pm_flags,
2671 pmap->pm_stats.resident_count,
2672 pmap->pm_stats.wired_count);
2673 tsleep(pmap, 0, "DEAD", 0);
2675 #else
2676 KKASSERT(pmap->pm_stats.resident_count ==
2677 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2678 KKASSERT(pmap->pm_stats.wired_count == 0);
2679 #endif
2683 * Called from low to high. We must cache the proper parent pv so we
2684 * can adjust its wired count.
2686 static int
2687 pmap_release_callback(pv_entry_t pv, void *data)
2689 struct pmap_release_info *info = data;
2690 pmap_t pmap = info->pmap;
2691 vm_pindex_t pindex;
2692 int r;
2695 * Acquire a held and locked pv, check for release race
2697 pindex = pv->pv_pindex;
2698 if (info->pvp == pv) {
2699 spin_unlock(&pmap->pm_spin);
2700 info->pvp = NULL;
2701 } else if (pv_hold_try(pv)) {
2702 spin_unlock(&pmap->pm_spin);
2703 } else {
2704 spin_unlock(&pmap->pm_spin);
2705 pv_lock(pv);
2706 pv_put(pv);
2707 info->retry = 1;
2708 spin_lock(&pmap->pm_spin);
2710 return -1;
2712 KKASSERT(pv->pv_pmap == pmap && pindex == pv->pv_pindex);
2714 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2716 * I am PTE, parent is PT
2718 pindex = pv->pv_pindex >> NPTEPGSHIFT;
2719 pindex += NUPTE_TOTAL;
2720 } else if (pv->pv_pindex < pmap_pd_pindex(0)) {
2722 * I am PT, parent is PD
2724 pindex = (pv->pv_pindex - NUPTE_TOTAL) >> NPDEPGSHIFT;
2725 pindex += NUPTE_TOTAL + NUPT_TOTAL;
2726 } else if (pv->pv_pindex < pmap_pdp_pindex(0)) {
2728 * I am PD, parent is PDP
2730 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL) >>
2731 NPDPEPGSHIFT;
2732 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
2733 } else if (pv->pv_pindex < pmap_pml4_pindex()) {
2735 * I am PDP, parent is PML4 (there's only one)
2737 #if 0
2738 pindex = (pv->pv_pindex - NUPTE_TOTAL - NUPT_TOTAL -
2739 NUPD_TOTAL) >> NPML4EPGSHIFT;
2740 pindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL;
2741 #endif
2742 pindex = pmap_pml4_pindex();
2743 } else {
2745 * parent is NULL
2747 if (info->pvp) {
2748 pv_put(info->pvp);
2749 info->pvp = NULL;
2751 pindex = 0;
2753 if (pindex) {
2754 if (info->pvp && info->pvp->pv_pindex != pindex) {
2755 pv_put(info->pvp);
2756 info->pvp = NULL;
2758 if (info->pvp == NULL)
2759 info->pvp = pv_get(pmap, pindex, NULL);
2760 } else {
2761 if (info->pvp) {
2762 pv_put(info->pvp);
2763 info->pvp = NULL;
2766 r = pmap_release_pv(pv, info->pvp, NULL);
2767 spin_lock(&pmap->pm_spin);
2769 return(r);
2773 * Called with held (i.e. also locked) pv. This function will dispose of
2774 * the lock along with the pv.
2776 * If the caller already holds the locked parent page table for pv it
2777 * must pass it as pvp, allowing us to avoid a deadlock, else it can
2778 * pass NULL for pvp.
2780 static int
2781 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk)
2783 vm_page_t p;
2786 * The pmap is currently not spinlocked, pv is held+locked.
2787 * Remove the pv's page from its parent's page table. The
2788 * parent's page table page's wire_count will be decremented.
2790 * This will clean out the pte at any level of the page table.
2791 * If smp != 0 all cpus are affected.
2793 * Do not tear-down recursively, its faster to just let the
2794 * release run its course.
2796 pmap_remove_pv_pte(pv, pvp, bulk, 0);
2799 * Terminal pvs are unhooked from their vm_pages. Because
2800 * terminal pages aren't page table pages they aren't wired
2801 * by us, so we have to be sure not to unwire them either.
2803 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2804 pmap_remove_pv_page(pv);
2805 goto skip;
2809 * We leave the top-level page table page cached, wired, and
2810 * mapped in the pmap until the dtor function (pmap_puninit())
2811 * gets called.
2813 * Since we are leaving the top-level pv intact we need
2814 * to break out of what would otherwise be an infinite loop.
2816 if (pv->pv_pindex == pmap_pml4_pindex()) {
2817 pv_put(pv);
2818 return(-1);
2822 * For page table pages (other than the top-level page),
2823 * remove and free the vm_page. The representitive mapping
2824 * removed above by pmap_remove_pv_pte() did not undo the
2825 * last wire_count so we have to do that as well.
2827 p = pmap_remove_pv_page(pv);
2828 vm_page_busy_wait(p, FALSE, "pmaprl");
2829 if (p->wire_count != 1) {
2830 kprintf("p->wire_count was %016lx %d\n",
2831 pv->pv_pindex, p->wire_count);
2833 KKASSERT(p->wire_count == 1);
2834 KKASSERT(p->flags & PG_UNMANAGED);
2836 vm_page_unwire(p, 0);
2837 KKASSERT(p->wire_count == 0);
2839 vm_page_free(p);
2840 skip:
2841 pv_free(pv, pvp);
2843 return 0;
2847 * This function will remove the pte associated with a pv from its parent.
2848 * Terminal pv's are supported. All cpus specified by (bulk) are properly
2849 * invalidated.
2851 * The wire count will be dropped on the parent page table. The wire
2852 * count on the page being removed (pv->pv_m) from the parent page table
2853 * is NOT touched. Note that terminal pages will not have any additional
2854 * wire counts while page table pages will have at least one representing
2855 * the mapping, plus others representing sub-mappings.
2857 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2858 * pages and user page table and terminal pages.
2860 * NOTE: The pte being removed might be unmanaged, and the pv supplied might
2861 * be freshly allocated and not imply that the pte is managed. In this
2862 * case pv->pv_m should be NULL.
2864 * The pv must be locked. The pvp, if supplied, must be locked. All
2865 * supplied pv's will remain locked on return.
2867 * XXX must lock parent pv's if they exist to remove pte XXX
2869 static
2870 void
2871 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, pmap_inval_bulk_t *bulk,
2872 int destroy)
2874 vm_pindex_t ptepindex = pv->pv_pindex;
2875 pmap_t pmap = pv->pv_pmap;
2876 vm_page_t p;
2877 int gotpvp = 0;
2879 KKASSERT(pmap);
2881 if (ptepindex == pmap_pml4_pindex()) {
2883 * We are the top level PML4E table, there is no parent.
2885 p = pmap->pm_pmlpv->pv_m;
2886 KKASSERT(pv->pv_m == p); /* debugging */
2887 } else if (ptepindex >= pmap_pdp_pindex(0)) {
2889 * Remove a PDP page from the PML4E. This can only occur
2890 * with user page tables. We do not have to lock the
2891 * pml4 PV so just ignore pvp.
2893 vm_pindex_t pml4_pindex;
2894 vm_pindex_t pdp_index;
2895 pml4_entry_t *pdp;
2897 pdp_index = ptepindex - pmap_pdp_pindex(0);
2898 if (pvp == NULL) {
2899 pml4_pindex = pmap_pml4_pindex();
2900 pvp = pv_get(pv->pv_pmap, pml4_pindex, NULL);
2901 KKASSERT(pvp);
2902 gotpvp = 1;
2905 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2906 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2907 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2908 pmap_inval_bulk(bulk, (vm_offset_t)-1, pdp, 0);
2909 KKASSERT(pv->pv_m == p); /* debugging */
2910 } else if (ptepindex >= pmap_pd_pindex(0)) {
2912 * Remove a PD page from the PDP
2914 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2915 * of a simple pmap because it stops at
2916 * the PD page.
2918 vm_pindex_t pdp_pindex;
2919 vm_pindex_t pd_index;
2920 pdp_entry_t *pd;
2922 pd_index = ptepindex - pmap_pd_pindex(0);
2924 if (pvp == NULL) {
2925 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2926 (pd_index >> NPML4EPGSHIFT);
2927 pvp = pv_get(pv->pv_pmap, pdp_pindex, NULL);
2928 gotpvp = 1;
2931 if (pvp) {
2932 pd = pv_pte_lookup(pvp, pd_index &
2933 ((1ul << NPDPEPGSHIFT) - 1));
2934 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2935 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2936 pmap_inval_bulk(bulk, (vm_offset_t)-1, pd, 0);
2937 } else {
2938 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2939 p = pv->pv_m; /* degenerate test later */
2941 KKASSERT(pv->pv_m == p); /* debugging */
2942 } else if (ptepindex >= pmap_pt_pindex(0)) {
2944 * Remove a PT page from the PD
2946 vm_pindex_t pd_pindex;
2947 vm_pindex_t pt_index;
2948 pd_entry_t *pt;
2950 pt_index = ptepindex - pmap_pt_pindex(0);
2952 if (pvp == NULL) {
2953 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2954 (pt_index >> NPDPEPGSHIFT);
2955 pvp = pv_get(pv->pv_pmap, pd_pindex, NULL);
2956 KKASSERT(pvp);
2957 gotpvp = 1;
2960 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2961 #if 0
2962 KASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0,
2963 ("*pt unexpectedly invalid %016jx "
2964 "gotpvp=%d ptepindex=%ld ptindex=%ld pv=%p pvp=%p",
2965 *pt, gotpvp, ptepindex, pt_index, pv, pvp));
2966 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2967 #else
2968 if ((*pt & pmap->pmap_bits[PG_V_IDX]) == 0) {
2969 kprintf("*pt unexpectedly invalid %016jx "
2970 "gotpvp=%d ptepindex=%ld ptindex=%ld "
2971 "pv=%p pvp=%p\n",
2972 *pt, gotpvp, ptepindex, pt_index, pv, pvp);
2973 tsleep(pt, 0, "DEAD", 0);
2974 p = pv->pv_m;
2975 } else {
2976 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2978 #endif
2979 pmap_inval_bulk(bulk, (vm_offset_t)-1, pt, 0);
2980 KKASSERT(pv->pv_m == p); /* debugging */
2981 } else {
2983 * Remove a PTE from the PT page. The PV might exist even if
2984 * the PTE is not managed, in whichcase pv->pv_m should be
2985 * NULL.
2987 * NOTE: Userland pmaps manage the parent PT/PD/PDP page
2988 * table pages but the kernel_pmap does not.
2990 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2991 * pv is a pte_pv so we can safely lock pt_pv.
2993 * NOTE: FICTITIOUS pages may have multiple physical mappings
2994 * so PHYS_TO_VM_PAGE() will not necessarily work for
2995 * terminal ptes.
2997 vm_pindex_t pt_pindex;
2998 pt_entry_t *ptep;
2999 pt_entry_t pte;
3000 vm_offset_t va;
3002 pt_pindex = ptepindex >> NPTEPGSHIFT;
3003 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
3005 if (ptepindex >= NUPTE_USER) {
3006 ptep = vtopte(ptepindex << PAGE_SHIFT);
3007 KKASSERT(pvp == NULL);
3008 /* pvp remains NULL */
3009 } else {
3010 if (pvp == NULL) {
3011 pt_pindex = NUPTE_TOTAL +
3012 (ptepindex >> NPDPEPGSHIFT);
3013 pvp = pv_get(pv->pv_pmap, pt_pindex, NULL);
3014 KKASSERT(pvp);
3015 gotpvp = 1;
3017 ptep = pv_pte_lookup(pvp, ptepindex &
3018 ((1ul << NPDPEPGSHIFT) - 1));
3020 pte = pmap_inval_bulk(bulk, va, ptep, 0);
3021 if (bulk == NULL) /* XXX */
3022 cpu_invlpg((void *)va); /* XXX */
3025 * Now update the vm_page_t
3027 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3028 (pte & pmap->pmap_bits[PG_V_IDX])) {
3030 * Valid managed page, adjust (p).
3032 if (pte & pmap->pmap_bits[PG_DEVICE_IDX]) {
3033 p = pv->pv_m;
3034 } else {
3035 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3036 KKASSERT(pv->pv_m == p);
3038 if (pte & pmap->pmap_bits[PG_M_IDX]) {
3039 if (pmap_track_modified(ptepindex))
3040 vm_page_dirty(p);
3042 if (pte & pmap->pmap_bits[PG_A_IDX]) {
3043 vm_page_flag_set(p, PG_REFERENCED);
3045 } else {
3047 * Unmanaged page, do not try to adjust the vm_page_t.
3048 * pv could be freshly allocated for a pmap_enter(),
3049 * replacing an unmanaged page with a managed one.
3051 * pv->pv_m might reflect the new page and not the
3052 * existing page.
3054 * We could extract p from the physical address and
3055 * adjust it but we explicitly do not for unmanaged
3056 * pages.
3058 p = NULL;
3060 if (pte & pmap->pmap_bits[PG_W_IDX])
3061 atomic_add_long(&pmap->pm_stats.wired_count, -1);
3062 if (pte & pmap->pmap_bits[PG_G_IDX])
3063 cpu_invlpg((void *)va);
3067 * If requested, scrap the underlying pv->pv_m and the underlying
3068 * pv. If this is a page-table-page we must also free the page.
3070 * pvp must be returned locked.
3072 if (destroy == 1) {
3074 * page table page (PT, PD, PDP, PML4), caller was responsible
3075 * for testing wired_count.
3077 KKASSERT(pv->pv_m->wire_count == 1);
3078 p = pmap_remove_pv_page(pv);
3079 pv_free(pv, pvp);
3080 pv = NULL;
3082 vm_page_busy_wait(p, FALSE, "pgpun");
3083 vm_page_unwire(p, 0);
3084 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
3085 vm_page_free(p);
3086 } else if (destroy == 2) {
3088 * Normal page, remove from pmap and leave the underlying
3089 * page untouched.
3091 pmap_remove_pv_page(pv);
3092 pv_free(pv, pvp);
3093 pv = NULL; /* safety */
3097 * If we acquired pvp ourselves then we are responsible for
3098 * recursively deleting it.
3100 if (pvp && gotpvp) {
3102 * Recursively destroy higher-level page tables.
3104 * This is optional. If we do not, they will still
3105 * be destroyed when the process exits.
3107 * NOTE: Do not destroy pv_entry's with extra hold refs,
3108 * a caller may have unlocked it and intends to
3109 * continue to use it.
3111 if (pmap_dynamic_delete &&
3112 pvp->pv_m &&
3113 pvp->pv_m->wire_count == 1 &&
3114 (pvp->pv_hold & PV_HOLD_MASK) == 2 &&
3115 pvp->pv_pindex != pmap_pml4_pindex()) {
3116 if (pmap_dynamic_delete == 2)
3117 kprintf("A %jd %08x\n", pvp->pv_pindex, pvp->pv_hold);
3118 if (pmap != &kernel_pmap) {
3119 pmap_remove_pv_pte(pvp, NULL, bulk, 1);
3120 pvp = NULL; /* safety */
3121 } else {
3122 kprintf("Attempt to remove kernel_pmap pindex "
3123 "%jd\n", pvp->pv_pindex);
3124 pv_put(pvp);
3126 } else {
3127 pv_put(pvp);
3133 * Remove the vm_page association to a pv. The pv must be locked.
3135 static
3136 vm_page_t
3137 pmap_remove_pv_page(pv_entry_t pv)
3139 vm_page_t m;
3141 m = pv->pv_m;
3142 vm_page_spin_lock(m);
3143 KKASSERT(m && m == pv->pv_m);
3144 pv->pv_m = NULL;
3145 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3146 pmap_page_stats_deleting(m);
3147 if (TAILQ_EMPTY(&m->md.pv_list))
3148 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3149 vm_page_spin_unlock(m);
3151 return(m);
3155 * Grow the number of kernel page table entries, if needed.
3157 * This routine is always called to validate any address space
3158 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
3159 * space below KERNBASE.
3161 * kernel_map must be locked exclusively by the caller.
3163 void
3164 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
3166 vm_paddr_t paddr;
3167 vm_offset_t ptppaddr;
3168 vm_page_t nkpg;
3169 pd_entry_t *pt, newpt;
3170 pdp_entry_t newpd;
3171 int update_kernel_vm_end;
3174 * bootstrap kernel_vm_end on first real VM use
3176 if (kernel_vm_end == 0) {
3177 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
3178 nkpt = 0;
3179 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3180 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
3181 ~(PAGE_SIZE * NPTEPG - 1);
3182 nkpt++;
3183 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
3184 kernel_vm_end = kernel_map.max_offset;
3185 break;
3191 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
3192 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
3193 * do not want to force-fill 128G worth of page tables.
3195 if (kstart < KERNBASE) {
3196 if (kstart > kernel_vm_end)
3197 kstart = kernel_vm_end;
3198 KKASSERT(kend <= KERNBASE);
3199 update_kernel_vm_end = 1;
3200 } else {
3201 update_kernel_vm_end = 0;
3204 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
3205 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
3207 if (kend - 1 >= kernel_map.max_offset)
3208 kend = kernel_map.max_offset;
3210 while (kstart < kend) {
3211 pt = pmap_pt(&kernel_pmap, kstart);
3212 if (pt == NULL) {
3213 /* We need a new PD entry */
3214 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3215 VM_ALLOC_NORMAL |
3216 VM_ALLOC_SYSTEM |
3217 VM_ALLOC_INTERRUPT);
3218 if (nkpg == NULL) {
3219 panic("pmap_growkernel: no memory to grow "
3220 "kernel");
3222 paddr = VM_PAGE_TO_PHYS(nkpg);
3223 pmap_zero_page(paddr);
3224 newpd = (pdp_entry_t)
3225 (paddr |
3226 kernel_pmap.pmap_bits[PG_V_IDX] |
3227 kernel_pmap.pmap_bits[PG_RW_IDX] |
3228 kernel_pmap.pmap_bits[PG_A_IDX] |
3229 kernel_pmap.pmap_bits[PG_M_IDX]);
3230 *pmap_pd(&kernel_pmap, kstart) = newpd;
3231 continue; /* try again */
3233 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
3234 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3235 ~(PAGE_SIZE * NPTEPG - 1);
3236 if (kstart - 1 >= kernel_map.max_offset) {
3237 kstart = kernel_map.max_offset;
3238 break;
3240 continue;
3244 * We need a new PT
3246 * This index is bogus, but out of the way
3248 nkpg = vm_page_alloc(NULL, mycpu->gd_rand_incr++,
3249 VM_ALLOC_NORMAL |
3250 VM_ALLOC_SYSTEM |
3251 VM_ALLOC_INTERRUPT);
3252 if (nkpg == NULL)
3253 panic("pmap_growkernel: no memory to grow kernel");
3255 vm_page_wire(nkpg);
3256 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
3257 pmap_zero_page(ptppaddr);
3258 newpt = (pd_entry_t)(ptppaddr |
3259 kernel_pmap.pmap_bits[PG_V_IDX] |
3260 kernel_pmap.pmap_bits[PG_RW_IDX] |
3261 kernel_pmap.pmap_bits[PG_A_IDX] |
3262 kernel_pmap.pmap_bits[PG_M_IDX]);
3263 atomic_swap_long(pmap_pt(&kernel_pmap, kstart), newpt);
3265 kstart = (kstart + PAGE_SIZE * NPTEPG) &
3266 ~(PAGE_SIZE * NPTEPG - 1);
3268 if (kstart - 1 >= kernel_map.max_offset) {
3269 kstart = kernel_map.max_offset;
3270 break;
3275 * Only update kernel_vm_end for areas below KERNBASE.
3277 if (update_kernel_vm_end && kernel_vm_end < kstart)
3278 kernel_vm_end = kstart;
3282 * Add a reference to the specified pmap.
3284 void
3285 pmap_reference(pmap_t pmap)
3287 if (pmap != NULL)
3288 atomic_add_int(&pmap->pm_count, 1);
3291 /***************************************************
3292 * page management routines.
3293 ***************************************************/
3296 * Hold a pv without locking it
3298 static void
3299 pv_hold(pv_entry_t pv)
3301 atomic_add_int(&pv->pv_hold, 1);
3305 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
3306 * was successfully locked, FALSE if it wasn't. The caller must dispose of
3307 * the pv properly.
3309 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
3310 * pv list via its page) must be held by the caller in order to stabilize
3311 * the pv.
3313 static int
3314 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
3316 u_int count;
3319 * Critical path shortcut expects pv to already have one ref
3320 * (for the pv->pv_pmap).
3322 if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
3323 #ifdef PMAP_DEBUG
3324 pv->pv_func = func;
3325 pv->pv_line = lineno;
3326 #endif
3327 return TRUE;
3330 for (;;) {
3331 count = pv->pv_hold;
3332 cpu_ccfence();
3333 if ((count & PV_HOLD_LOCKED) == 0) {
3334 if (atomic_cmpset_int(&pv->pv_hold, count,
3335 (count + 1) | PV_HOLD_LOCKED)) {
3336 #ifdef PMAP_DEBUG
3337 pv->pv_func = func;
3338 pv->pv_line = lineno;
3339 #endif
3340 return TRUE;
3342 } else {
3343 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
3344 return FALSE;
3346 /* retry */
3351 * Drop a previously held pv_entry which could not be locked, allowing its
3352 * destruction.
3354 * Must not be called with a spinlock held as we might zfree() the pv if it
3355 * is no longer associated with a pmap and this was the last hold count.
3357 static void
3358 pv_drop(pv_entry_t pv)
3360 u_int count;
3362 for (;;) {
3363 count = pv->pv_hold;
3364 cpu_ccfence();
3365 KKASSERT((count & PV_HOLD_MASK) > 0);
3366 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
3367 (PV_HOLD_LOCKED | 1));
3368 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
3369 if ((count & PV_HOLD_MASK) == 1) {
3370 #ifdef PMAP_DEBUG2
3371 if (pmap_enter_debug > 0) {
3372 --pmap_enter_debug;
3373 kprintf("pv_drop: free pv %p\n", pv);
3375 #endif
3376 KKASSERT(count == 1);
3377 KKASSERT(pv->pv_pmap == NULL);
3378 zfree(pvzone, pv);
3380 return;
3382 /* retry */
3387 * Find or allocate the requested PV entry, returning a locked, held pv.
3389 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
3390 * for the caller and one representing the pmap and vm_page association.
3392 * If (*isnew) is zero, the returned pv will have only one hold count.
3394 * Since both associations can only be adjusted while the pv is locked,
3395 * together they represent just one additional hold.
3397 static
3398 pv_entry_t
3399 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
3401 struct mdglobaldata *md = mdcpu;
3402 pv_entry_t pv;
3403 pv_entry_t pnew;
3404 int pmap_excl = 0;
3406 pnew = NULL;
3407 if (md->gd_newpv) {
3408 #if 1
3409 pnew = atomic_swap_ptr((void *)&md->gd_newpv, NULL);
3410 #else
3411 crit_enter();
3412 pnew = md->gd_newpv; /* might race NULL */
3413 md->gd_newpv = NULL;
3414 crit_exit();
3415 #endif
3417 if (pnew == NULL)
3418 pnew = zalloc(pvzone);
3420 spin_lock_shared(&pmap->pm_spin);
3421 for (;;) {
3423 * Shortcut cache
3425 pv = pv_entry_lookup(pmap, pindex);
3426 if (pv == NULL) {
3427 vm_pindex_t *pmark;
3430 * Requires exclusive pmap spinlock
3432 if (pmap_excl == 0) {
3433 pmap_excl = 1;
3434 if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3435 spin_unlock_shared(&pmap->pm_spin);
3436 spin_lock(&pmap->pm_spin);
3437 continue;
3442 * We need to block if someone is holding our
3443 * placemarker. As long as we determine the
3444 * placemarker has not been aquired we do not
3445 * need to get it as acquision also requires
3446 * the pmap spin lock.
3448 * However, we can race the wakeup.
3450 pmark = pmap_placemarker_hash(pmap, pindex);
3452 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3453 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3454 tsleep_interlock(pmark, 0);
3455 if (((*pmark ^ pindex) &
3456 ~PM_PLACEMARK_WAKEUP) == 0) {
3457 spin_unlock(&pmap->pm_spin);
3458 tsleep(pmark, PINTERLOCKED, "pvplc", 0);
3459 spin_lock(&pmap->pm_spin);
3461 continue;
3465 * Setup the new entry
3467 pnew->pv_pmap = pmap;
3468 pnew->pv_pindex = pindex;
3469 pnew->pv_hold = PV_HOLD_LOCKED | 2;
3470 #ifdef PMAP_DEBUG
3471 pnew->pv_func = func;
3472 pnew->pv_line = lineno;
3473 if (pnew->pv_line_lastfree > 0) {
3474 pnew->pv_line_lastfree =
3475 -pnew->pv_line_lastfree;
3477 #endif
3478 pv = pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
3479 atomic_add_long(&pmap->pm_stats.resident_count, 1);
3480 spin_unlock(&pmap->pm_spin);
3481 *isnew = 1;
3483 KKASSERT(pv == NULL);
3484 return(pnew);
3488 * We already have an entry, cleanup the staged pnew if
3489 * we can get the lock, otherwise block and retry.
3491 if (__predict_true(_pv_hold_try(pv PMAP_DEBUG_COPY))) {
3492 if (pmap_excl)
3493 spin_unlock(&pmap->pm_spin);
3494 else
3495 spin_unlock_shared(&pmap->pm_spin);
3496 #if 1
3497 pnew = atomic_swap_ptr((void *)&md->gd_newpv, pnew);
3498 if (pnew)
3499 zfree(pvzone, pnew);
3500 #else
3501 crit_enter();
3502 if (md->gd_newpv == NULL)
3503 md->gd_newpv = pnew;
3504 else
3505 zfree(pvzone, pnew);
3506 crit_exit();
3507 #endif
3508 KKASSERT(pv->pv_pmap == pmap &&
3509 pv->pv_pindex == pindex);
3510 *isnew = 0;
3511 return(pv);
3513 if (pmap_excl) {
3514 spin_unlock(&pmap->pm_spin);
3515 _pv_lock(pv PMAP_DEBUG_COPY);
3516 pv_put(pv);
3517 spin_lock(&pmap->pm_spin);
3518 } else {
3519 spin_unlock_shared(&pmap->pm_spin);
3520 _pv_lock(pv PMAP_DEBUG_COPY);
3521 pv_put(pv);
3522 spin_lock_shared(&pmap->pm_spin);
3525 /* NOT REACHED */
3529 * Find the requested PV entry, returning a locked+held pv or NULL
3531 static
3532 pv_entry_t
3533 _pv_get(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp PMAP_DEBUG_DECL)
3535 pv_entry_t pv;
3536 int pmap_excl = 0;
3538 spin_lock_shared(&pmap->pm_spin);
3539 for (;;) {
3541 * Shortcut cache
3543 pv = pv_entry_lookup(pmap, pindex);
3544 if (pv == NULL) {
3546 * Block if there is ANY placemarker. If we are to
3547 * return it, we must also aquire the spot, so we
3548 * have to block even if the placemarker is held on
3549 * a different address.
3551 * OPTIMIZATION: If pmarkp is passed as NULL the
3552 * caller is just probing (or looking for a real
3553 * pv_entry), and in this case we only need to check
3554 * to see if the placemarker matches pindex.
3556 vm_pindex_t *pmark;
3559 * Requires exclusive pmap spinlock
3561 if (pmap_excl == 0) {
3562 pmap_excl = 1;
3563 if (!spin_lock_upgrade_try(&pmap->pm_spin)) {
3564 spin_unlock_shared(&pmap->pm_spin);
3565 spin_lock(&pmap->pm_spin);
3566 continue;
3570 pmark = pmap_placemarker_hash(pmap, pindex);
3572 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3573 ((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3574 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
3575 tsleep_interlock(pmark, 0);
3576 if ((pmarkp && *pmark != PM_NOPLACEMARK) ||
3577 ((*pmark ^ pindex) &
3578 ~PM_PLACEMARK_WAKEUP) == 0) {
3579 spin_unlock(&pmap->pm_spin);
3580 tsleep(pmark, PINTERLOCKED, "pvpld", 0);
3581 spin_lock(&pmap->pm_spin);
3583 continue;
3585 if (pmarkp) {
3586 if (atomic_swap_long(pmark, pindex) !=
3587 PM_NOPLACEMARK) {
3588 panic("_pv_get: pmark race");
3590 *pmarkp = pmark;
3592 spin_unlock(&pmap->pm_spin);
3593 return NULL;
3595 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
3596 pv_cache(pv, pindex);
3597 if (pmap_excl)
3598 spin_unlock(&pmap->pm_spin);
3599 else
3600 spin_unlock_shared(&pmap->pm_spin);
3601 KKASSERT(pv->pv_pmap == pmap &&
3602 pv->pv_pindex == pindex);
3603 return(pv);
3605 if (pmap_excl) {
3606 spin_unlock(&pmap->pm_spin);
3607 _pv_lock(pv PMAP_DEBUG_COPY);
3608 pv_put(pv);
3609 spin_lock(&pmap->pm_spin);
3610 } else {
3611 spin_unlock_shared(&pmap->pm_spin);
3612 _pv_lock(pv PMAP_DEBUG_COPY);
3613 pv_put(pv);
3614 spin_lock_shared(&pmap->pm_spin);
3620 * Lookup, hold, and attempt to lock (pmap,pindex).
3622 * If the entry does not exist NULL is returned and *errorp is set to 0
3624 * If the entry exists and could be successfully locked it is returned and
3625 * errorp is set to 0.
3627 * If the entry exists but could NOT be successfully locked it is returned
3628 * held and *errorp is set to 1.
3630 * If the entry is placemarked by someone else NULL is returned and *errorp
3631 * is set to 1.
3633 static
3634 pv_entry_t
3635 pv_get_try(pmap_t pmap, vm_pindex_t pindex, vm_pindex_t **pmarkp, int *errorp)
3637 pv_entry_t pv;
3639 spin_lock_shared(&pmap->pm_spin);
3641 pv = pv_entry_lookup(pmap, pindex);
3642 if (pv == NULL) {
3643 vm_pindex_t *pmark;
3645 pmark = pmap_placemarker_hash(pmap, pindex);
3647 if (((*pmark ^ pindex) & ~PM_PLACEMARK_WAKEUP) == 0) {
3648 *errorp = 1;
3649 } else if (pmarkp &&
3650 atomic_cmpset_long(pmark, PM_NOPLACEMARK, pindex)) {
3651 *errorp = 0;
3652 } else {
3654 * Can't set a placemark with a NULL pmarkp, or if
3655 * pmarkp is non-NULL but we failed to set our
3656 * placemark.
3658 *errorp = 1;
3660 if (pmarkp)
3661 *pmarkp = pmark;
3662 spin_unlock_shared(&pmap->pm_spin);
3664 return NULL;
3668 * XXX This has problems if the lock is shared, why?
3670 if (pv_hold_try(pv)) {
3671 pv_cache(pv, pindex); /* overwrite ok (shared lock) */
3672 spin_unlock_shared(&pmap->pm_spin);
3673 *errorp = 0;
3674 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
3675 return(pv); /* lock succeeded */
3677 spin_unlock_shared(&pmap->pm_spin);
3678 *errorp = 1;
3680 return (pv); /* lock failed */
3684 * Lock a held pv, keeping the hold count
3686 static
3687 void
3688 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3690 u_int count;
3692 for (;;) {
3693 count = pv->pv_hold;
3694 cpu_ccfence();
3695 if ((count & PV_HOLD_LOCKED) == 0) {
3696 if (atomic_cmpset_int(&pv->pv_hold, count,
3697 count | PV_HOLD_LOCKED)) {
3698 #ifdef PMAP_DEBUG
3699 pv->pv_func = func;
3700 pv->pv_line = lineno;
3701 #endif
3702 return;
3704 continue;
3706 tsleep_interlock(pv, 0);
3707 if (atomic_cmpset_int(&pv->pv_hold, count,
3708 count | PV_HOLD_WAITING)) {
3709 #ifdef PMAP_DEBUG2
3710 if (pmap_enter_debug > 0) {
3711 --pmap_enter_debug;
3712 kprintf("pv waiting on %s:%d\n",
3713 pv->pv_func, pv->pv_line);
3715 #endif
3716 tsleep(pv, PINTERLOCKED, "pvwait", hz);
3718 /* retry */
3723 * Unlock a held and locked pv, keeping the hold count.
3725 static
3726 void
3727 pv_unlock(pv_entry_t pv)
3729 u_int count;
3731 for (;;) {
3732 count = pv->pv_hold;
3733 cpu_ccfence();
3734 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3735 (PV_HOLD_LOCKED | 1));
3736 if (atomic_cmpset_int(&pv->pv_hold, count,
3737 count &
3738 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3739 if (count & PV_HOLD_WAITING)
3740 wakeup(pv);
3741 break;
3747 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3748 * and the hold count drops to zero we will free it.
3750 * Caller should not hold any spin locks. We are protected from hold races
3751 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3752 * lock held. A pv cannot be located otherwise.
3754 static
3755 void
3756 pv_put(pv_entry_t pv)
3758 #ifdef PMAP_DEBUG2
3759 if (pmap_enter_debug > 0) {
3760 --pmap_enter_debug;
3761 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3763 #endif
3766 * Normal put-aways must have a pv_m associated with the pv,
3767 * but allow the case where the pv has been destructed due
3768 * to pmap_dynamic_delete.
3770 KKASSERT(pv->pv_pmap == NULL || pv->pv_m != NULL);
3773 * Fast - shortcut most common condition
3775 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3776 return;
3779 * Slow
3781 pv_unlock(pv);
3782 pv_drop(pv);
3786 * Remove the pmap association from a pv, require that pv_m already be removed,
3787 * then unlock and drop the pv. Any pte operations must have already been
3788 * completed. This call may result in a last-drop which will physically free
3789 * the pv.
3791 * Removing the pmap association entails an additional drop.
3793 * pv must be exclusively locked on call and will be disposed of on return.
3795 static
3796 void
3797 _pv_free(pv_entry_t pv, pv_entry_t pvp PMAP_DEBUG_DECL)
3799 pmap_t pmap;
3801 #ifdef PMAP_DEBUG
3802 pv->pv_func_lastfree = func;
3803 pv->pv_line_lastfree = lineno;
3804 #endif
3805 KKASSERT(pv->pv_m == NULL);
3806 KKASSERT((pv->pv_hold & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
3807 (PV_HOLD_LOCKED|1));
3808 if ((pmap = pv->pv_pmap) != NULL) {
3809 spin_lock(&pmap->pm_spin);
3810 KKASSERT(pv->pv_pmap == pmap);
3811 if (pmap->pm_pvhint_pt == pv)
3812 pmap->pm_pvhint_pt = NULL;
3813 if (pmap->pm_pvhint_pte == pv)
3814 pmap->pm_pvhint_pte = NULL;
3815 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3816 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3817 pv->pv_pmap = NULL;
3818 pv->pv_pindex = 0;
3819 spin_unlock(&pmap->pm_spin);
3822 * Try to shortcut three atomic ops, otherwise fall through
3823 * and do it normally. Drop two refs and the lock all in
3824 * one go.
3826 if (pvp)
3827 vm_page_unwire_quick(pvp->pv_m);
3828 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3829 #ifdef PMAP_DEBUG2
3830 if (pmap_enter_debug > 0) {
3831 --pmap_enter_debug;
3832 kprintf("pv_free: free pv %p\n", pv);
3834 #endif
3835 zfree(pvzone, pv);
3836 return;
3838 pv_drop(pv); /* ref for pv_pmap */
3840 pv_unlock(pv);
3841 pv_drop(pv);
3845 * This routine is very drastic, but can save the system
3846 * in a pinch.
3848 void
3849 pmap_collect(void)
3851 int i;
3852 vm_page_t m;
3853 static int warningdone=0;
3855 if (pmap_pagedaemon_waken == 0)
3856 return;
3857 pmap_pagedaemon_waken = 0;
3858 if (warningdone < 5) {
3859 kprintf("pmap_collect: collecting pv entries -- "
3860 "suggest increasing PMAP_SHPGPERPROC\n");
3861 warningdone++;
3864 for (i = 0; i < vm_page_array_size; i++) {
3865 m = &vm_page_array[i];
3866 if (m->wire_count || m->hold_count)
3867 continue;
3868 if (vm_page_busy_try(m, TRUE) == 0) {
3869 if (m->wire_count == 0 && m->hold_count == 0) {
3870 pmap_remove_all(m);
3872 vm_page_wakeup(m);
3878 * Scan the pmap for active page table entries and issue a callback.
3879 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3880 * its parent page table.
3882 * pte_pv will be NULL if the page or page table is unmanaged.
3883 * pt_pv will point to the page table page containing the pte for the page.
3885 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3886 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3887 * process pmap's PD and page to the callback function. This can be
3888 * confusing because the pt_pv is really a pd_pv, and the target page
3889 * table page is simply aliased by the pmap and not owned by it.
3891 * It is assumed that the start and end are properly rounded to the page size.
3893 * It is assumed that PD pages and above are managed and thus in the RB tree,
3894 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3896 struct pmap_scan_info {
3897 struct pmap *pmap;
3898 vm_offset_t sva;
3899 vm_offset_t eva;
3900 vm_pindex_t sva_pd_pindex;
3901 vm_pindex_t eva_pd_pindex;
3902 void (*func)(pmap_t, struct pmap_scan_info *,
3903 pv_entry_t, vm_pindex_t *, pv_entry_t,
3904 int, vm_offset_t,
3905 pt_entry_t *, void *);
3906 void *arg;
3907 pmap_inval_bulk_t bulk_core;
3908 pmap_inval_bulk_t *bulk;
3909 int count;
3910 int stop;
3913 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3914 static int pmap_scan_callback(pv_entry_t pv, void *data);
3916 static void
3917 pmap_scan(struct pmap_scan_info *info, int smp_inval)
3919 struct pmap *pmap = info->pmap;
3920 pv_entry_t pd_pv; /* A page directory PV */
3921 pv_entry_t pt_pv; /* A page table PV */
3922 pv_entry_t pte_pv; /* A page table entry PV */
3923 vm_pindex_t *pte_placemark;
3924 vm_pindex_t *pt_placemark;
3925 pt_entry_t *ptep;
3926 pt_entry_t oldpte;
3927 struct pv_entry dummy_pv;
3929 info->stop = 0;
3930 if (pmap == NULL)
3931 return;
3932 if (info->sva == info->eva)
3933 return;
3934 if (smp_inval) {
3935 info->bulk = &info->bulk_core;
3936 pmap_inval_bulk_init(&info->bulk_core, pmap);
3937 } else {
3938 info->bulk = NULL;
3942 * Hold the token for stability; if the pmap is empty we have nothing
3943 * to do.
3945 #if 0
3946 if (pmap->pm_stats.resident_count == 0) {
3947 return;
3949 #endif
3951 info->count = 0;
3954 * Special handling for scanning one page, which is a very common
3955 * operation (it is?).
3957 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3959 if (info->sva + PAGE_SIZE == info->eva) {
3960 if (info->sva >= VM_MAX_USER_ADDRESS) {
3962 * Kernel mappings do not track wire counts on
3963 * page table pages and only maintain pd_pv and
3964 * pte_pv levels so pmap_scan() works.
3966 pt_pv = NULL;
3967 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3968 &pte_placemark);
3969 ptep = vtopte(info->sva);
3970 } else {
3972 * User pages which are unmanaged will not have a
3973 * pte_pv. User page table pages which are unmanaged
3974 * (shared from elsewhere) will also not have a pt_pv.
3975 * The func() callback will pass both pte_pv and pt_pv
3976 * as NULL in that case.
3978 * We hold pte_placemark across the operation for
3979 * unmanaged pages.
3981 * WARNING! We must hold pt_placemark across the
3982 * *ptep test to prevent misintepreting
3983 * a non-zero *ptep as a shared page
3984 * table page. Hold it across the function
3985 * callback as well for SMP safety.
3987 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva),
3988 &pte_placemark);
3989 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva),
3990 &pt_placemark);
3991 if (pt_pv == NULL) {
3992 KKASSERT(pte_pv == NULL);
3993 pd_pv = pv_get(pmap,
3994 pmap_pd_pindex(info->sva),
3995 NULL);
3996 if (pd_pv) {
3997 ptep = pv_pte_lookup(pd_pv,
3998 pmap_pt_index(info->sva));
3999 if (*ptep) {
4000 info->func(pmap, info,
4001 NULL, pt_placemark,
4002 pd_pv, 1,
4003 info->sva, ptep,
4004 info->arg);
4005 } else {
4006 pv_placemarker_wakeup(pmap,
4007 pt_placemark);
4009 pv_put(pd_pv);
4010 } else {
4011 pv_placemarker_wakeup(pmap,
4012 pt_placemark);
4014 pv_placemarker_wakeup(pmap, pte_placemark);
4015 goto fast_skip;
4017 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
4021 * NOTE: *ptep can't be ripped out from under us if we hold
4022 * pte_pv (or pte_placemark) locked, but bits can
4023 * change.
4025 oldpte = *ptep;
4026 cpu_ccfence();
4027 if (oldpte == 0) {
4028 KKASSERT(pte_pv == NULL);
4029 pv_placemarker_wakeup(pmap, pte_placemark);
4030 } else if (pte_pv) {
4031 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
4032 pmap->pmap_bits[PG_V_IDX])) ==
4033 (pmap->pmap_bits[PG_MANAGED_IDX] |
4034 pmap->pmap_bits[PG_V_IDX]),
4035 ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p",
4036 *ptep, oldpte, info->sva, pte_pv));
4037 info->func(pmap, info, pte_pv, NULL, pt_pv, 0,
4038 info->sva, ptep, info->arg);
4039 } else {
4040 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
4041 pmap->pmap_bits[PG_V_IDX])) ==
4042 pmap->pmap_bits[PG_V_IDX],
4043 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL",
4044 *ptep, oldpte, info->sva));
4045 info->func(pmap, info, NULL, pte_placemark, pt_pv, 0,
4046 info->sva, ptep, info->arg);
4048 if (pt_pv)
4049 pv_put(pt_pv);
4050 fast_skip:
4051 pmap_inval_bulk_flush(info->bulk);
4052 return;
4056 * Nominal scan case, RB_SCAN() for PD pages and iterate from
4057 * there.
4059 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4060 * bounds, resulting in a pd_pindex of 0. To solve the
4061 * problem we use an inclusive range.
4063 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
4064 info->eva_pd_pindex = pmap_pd_pindex(info->eva - PAGE_SIZE);
4066 if (info->sva >= VM_MAX_USER_ADDRESS) {
4068 * The kernel does not currently maintain any pv_entry's for
4069 * higher-level page tables.
4071 bzero(&dummy_pv, sizeof(dummy_pv));
4072 dummy_pv.pv_pindex = info->sva_pd_pindex;
4073 spin_lock(&pmap->pm_spin);
4074 while (dummy_pv.pv_pindex <= info->eva_pd_pindex) {
4075 pmap_scan_callback(&dummy_pv, info);
4076 ++dummy_pv.pv_pindex;
4077 if (dummy_pv.pv_pindex < info->sva_pd_pindex) /*wrap*/
4078 break;
4080 spin_unlock(&pmap->pm_spin);
4081 } else {
4083 * User page tables maintain local PML4, PDP, and PD
4084 * pv_entry's at the very least. PT pv's might be
4085 * unmanaged and thus not exist. PTE pv's might be
4086 * unmanaged and thus not exist.
4088 spin_lock(&pmap->pm_spin);
4089 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot, pmap_scan_cmp,
4090 pmap_scan_callback, info);
4091 spin_unlock(&pmap->pm_spin);
4093 pmap_inval_bulk_flush(info->bulk);
4097 * WARNING! pmap->pm_spin held
4099 * WARNING! eva can overflow our standard ((N + mask) >> bits)
4100 * bounds, resulting in a pd_pindex of 0. To solve the
4101 * problem we use an inclusive range.
4103 static int
4104 pmap_scan_cmp(pv_entry_t pv, void *data)
4106 struct pmap_scan_info *info = data;
4107 if (pv->pv_pindex < info->sva_pd_pindex)
4108 return(-1);
4109 if (pv->pv_pindex > info->eva_pd_pindex)
4110 return(1);
4111 return(0);
4115 * pmap_scan() by PDs
4117 * WARNING! pmap->pm_spin held
4119 static int
4120 pmap_scan_callback(pv_entry_t pv, void *data)
4122 struct pmap_scan_info *info = data;
4123 struct pmap *pmap = info->pmap;
4124 pv_entry_t pd_pv; /* A page directory PV */
4125 pv_entry_t pt_pv; /* A page table PV */
4126 vm_pindex_t *pt_placemark;
4127 pt_entry_t *ptep;
4128 pt_entry_t oldpte;
4129 vm_offset_t sva;
4130 vm_offset_t eva;
4131 vm_offset_t va_next;
4132 vm_pindex_t pd_pindex;
4133 int error;
4136 * Stop if requested
4138 if (info->stop)
4139 return -1;
4142 * Pull the PD pindex from the pv before releasing the spinlock.
4144 * WARNING: pv is faked for kernel pmap scans.
4146 pd_pindex = pv->pv_pindex;
4147 spin_unlock(&pmap->pm_spin);
4148 pv = NULL; /* invalid after spinlock unlocked */
4151 * Calculate the page range within the PD. SIMPLE pmaps are
4152 * direct-mapped for the entire 2^64 address space. Normal pmaps
4153 * reflect the user and kernel address space which requires
4154 * cannonicalization w/regards to converting pd_pindex's back
4155 * into addresses.
4157 sva = (pd_pindex - pmap_pd_pindex(0)) << PDPSHIFT;
4158 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
4159 (sva & PML4_SIGNMASK)) {
4160 sva |= PML4_SIGNMASK;
4162 eva = sva + NBPDP; /* can overflow */
4163 if (sva < info->sva)
4164 sva = info->sva;
4165 if (eva < info->sva || eva > info->eva)
4166 eva = info->eva;
4169 * NOTE: kernel mappings do not track page table pages, only
4170 * terminal pages.
4172 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
4173 * However, for the scan to be efficient we try to
4174 * cache items top-down.
4176 pd_pv = NULL;
4177 pt_pv = NULL;
4179 for (; sva < eva; sva = va_next) {
4180 if (info->stop)
4181 break;
4182 if (sva >= VM_MAX_USER_ADDRESS) {
4183 if (pt_pv) {
4184 pv_put(pt_pv);
4185 pt_pv = NULL;
4187 goto kernel_skip;
4191 * PD cache, scan shortcut if it doesn't exist.
4193 if (pd_pv == NULL) {
4194 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4195 } else if (pd_pv->pv_pmap != pmap ||
4196 pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
4197 pv_put(pd_pv);
4198 pd_pv = pv_get(pmap, pmap_pd_pindex(sva), NULL);
4200 if (pd_pv == NULL) {
4201 va_next = (sva + NBPDP) & ~PDPMASK;
4202 if (va_next < sva)
4203 va_next = eva;
4204 continue;
4208 * PT cache
4210 * NOTE: The cached pt_pv can be removed from the pmap when
4211 * pmap_dynamic_delete is enabled.
4213 if (pt_pv && (pt_pv->pv_pmap != pmap ||
4214 pt_pv->pv_pindex != pmap_pt_pindex(sva))) {
4215 pv_put(pt_pv);
4216 pt_pv = NULL;
4218 if (pt_pv == NULL) {
4219 pt_pv = pv_get_try(pmap, pmap_pt_pindex(sva),
4220 &pt_placemark, &error);
4221 if (error) {
4222 pv_put(pd_pv); /* lock order */
4223 pd_pv = NULL;
4224 if (pt_pv) {
4225 pv_lock(pt_pv);
4226 pv_put(pt_pv);
4227 pt_pv = NULL;
4228 } else {
4229 pv_placemarker_wait(pmap, pt_placemark);
4231 va_next = sva;
4232 continue;
4234 /* may have to re-check later if pt_pv is NULL here */
4238 * If pt_pv is NULL we either have an shared page table
4239 * page and must issue a callback specific to that case,
4240 * or there is no page table page.
4242 * Either way we can skip the page table page.
4244 * WARNING! pt_pv can also be NULL due to a pv creation
4245 * race where we find it to be NULL and then
4246 * later see a pte_pv. But its possible the pt_pv
4247 * got created inbetween the two operations, so
4248 * we must check.
4250 if (pt_pv == NULL) {
4252 * Possible unmanaged (shared from another pmap)
4253 * page table page.
4255 * WARNING! We must hold pt_placemark across the
4256 * *ptep test to prevent misintepreting
4257 * a non-zero *ptep as a shared page
4258 * table page. Hold it across the function
4259 * callback as well for SMP safety.
4261 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
4262 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
4263 info->func(pmap, info, NULL, pt_placemark,
4264 pd_pv, 1,
4265 sva, ptep, info->arg);
4266 } else {
4267 pv_placemarker_wakeup(pmap, pt_placemark);
4271 * Done, move to next page table page.
4273 va_next = (sva + NBPDR) & ~PDRMASK;
4274 if (va_next < sva)
4275 va_next = eva;
4276 continue;
4280 * From this point in the loop testing pt_pv for non-NULL
4281 * means we are in UVM, else if it is NULL we are in KVM.
4283 * Limit our scan to either the end of the va represented
4284 * by the current page table page, or to the end of the
4285 * range being removed.
4287 kernel_skip:
4288 va_next = (sva + NBPDR) & ~PDRMASK;
4289 if (va_next < sva)
4290 va_next = eva;
4291 if (va_next > eva)
4292 va_next = eva;
4295 * Scan the page table for pages. Some pages may not be
4296 * managed (might not have a pv_entry).
4298 * There is no page table management for kernel pages so
4299 * pt_pv will be NULL in that case, but otherwise pt_pv
4300 * is non-NULL, locked, and referenced.
4304 * At this point a non-NULL pt_pv means a UVA, and a NULL
4305 * pt_pv means a KVA.
4307 if (pt_pv)
4308 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
4309 else
4310 ptep = vtopte(sva);
4312 while (sva < va_next) {
4313 pv_entry_t pte_pv;
4314 vm_pindex_t *pte_placemark;
4317 * Yield every 64 pages, stop if requested.
4319 if ((++info->count & 63) == 0)
4320 lwkt_user_yield();
4321 if (info->stop)
4322 break;
4325 * We can shortcut our scan if *ptep == 0. This is
4326 * an unlocked check.
4328 if (*ptep == 0) {
4329 sva += PAGE_SIZE;
4330 ++ptep;
4331 continue;
4333 cpu_ccfence();
4336 * Acquire the related pte_pv, if any. If *ptep == 0
4337 * the related pte_pv should not exist, but if *ptep
4338 * is not zero the pte_pv may or may not exist (e.g.
4339 * will not exist for an unmanaged page).
4341 * However a multitude of races are possible here
4342 * so if we cannot lock definite state we clean out
4343 * our cache and break the inner while() loop to
4344 * force a loop up to the top of the for().
4346 * XXX unlock/relock pd_pv, pt_pv, and re-test their
4347 * validity instead of looping up?
4349 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
4350 &pte_placemark, &error);
4351 if (error) {
4352 pv_put(pd_pv); /* lock order */
4353 pd_pv = NULL;
4354 if (pt_pv) {
4355 pv_put(pt_pv); /* lock order */
4356 pt_pv = NULL;
4358 if (pte_pv) { /* block */
4359 pv_lock(pte_pv);
4360 pv_put(pte_pv);
4361 pte_pv = NULL;
4362 } else {
4363 pv_placemarker_wait(pmap,
4364 pte_placemark);
4366 va_next = sva; /* retry */
4367 break;
4371 * Reload *ptep after successfully locking the
4372 * pindex. If *ptep == 0 we had better NOT have a
4373 * pte_pv.
4375 cpu_ccfence();
4376 oldpte = *ptep;
4377 if (oldpte == 0) {
4378 if (pte_pv) {
4379 kprintf("Unexpected non-NULL pte_pv "
4380 "%p pt_pv %p "
4381 "*ptep = %016lx/%016lx\n",
4382 pte_pv, pt_pv, *ptep, oldpte);
4383 panic("Unexpected non-NULL pte_pv");
4384 } else {
4385 pv_placemarker_wakeup(pmap, pte_placemark);
4387 sva += PAGE_SIZE;
4388 ++ptep;
4389 continue;
4393 * We can't hold pd_pv across the callback (because
4394 * we don't pass it to the callback and the callback
4395 * might deadlock)
4397 if (pd_pv) {
4398 vm_page_wire_quick(pd_pv->pv_m);
4399 pv_unlock(pd_pv);
4403 * Ready for the callback. The locked pte_pv (if any)
4404 * is consumed by the callback. pte_pv will exist if
4405 * the page is managed, and will not exist if it
4406 * isn't.
4408 if (oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
4410 * Managed pte
4412 KASSERT(pte_pv &&
4413 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4414 ("badC *ptep %016lx/%016lx sva %016lx "
4415 "pte_pv %p",
4416 *ptep, oldpte, sva, pte_pv));
4418 * We must unlock pd_pv across the callback
4419 * to avoid deadlocks on any recursive
4420 * disposal. Re-check that it still exists
4421 * after re-locking.
4423 * Call target disposes of pte_pv and may
4424 * destroy but will not dispose of pt_pv.
4426 info->func(pmap, info, pte_pv, NULL,
4427 pt_pv, 0,
4428 sva, ptep, info->arg);
4429 } else {
4431 * Unmanaged pte
4433 * We must unlock pd_pv across the callback
4434 * to avoid deadlocks on any recursive
4435 * disposal. Re-check that it still exists
4436 * after re-locking.
4438 * Call target disposes of pte_pv or
4439 * pte_placemark and may destroy but will
4440 * not dispose of pt_pv.
4442 KASSERT(pte_pv == NULL &&
4443 (oldpte & pmap->pmap_bits[PG_V_IDX]),
4444 ("badD *ptep %016lx/%016lx sva %016lx "
4445 "pte_pv %p pte_pv->pv_m %p ",
4446 *ptep, oldpte, sva,
4447 pte_pv, (pte_pv ? pte_pv->pv_m : NULL)));
4448 if (pte_pv)
4449 kprintf("RaceD\n");
4450 if (pte_pv) {
4451 info->func(pmap, info,
4452 pte_pv, NULL,
4453 pt_pv, 0,
4454 sva, ptep, info->arg);
4455 } else {
4456 info->func(pmap, info,
4457 NULL, pte_placemark,
4458 pt_pv, 0,
4459 sva, ptep, info->arg);
4462 if (pd_pv) {
4463 pv_lock(pd_pv);
4464 vm_page_unwire_quick(pd_pv->pv_m);
4465 if (pd_pv->pv_pmap == NULL) {
4466 va_next = sva; /* retry */
4467 break;
4472 * NOTE: The cached pt_pv can be removed from the
4473 * pmap when pmap_dynamic_delete is enabled,
4474 * which will cause ptep to become stale.
4476 * This also means that no pages remain under
4477 * the PT, so we can just break out of the inner
4478 * loop and let the outer loop clean everything
4479 * up.
4481 if (pt_pv && pt_pv->pv_pmap != pmap)
4482 break;
4483 pte_pv = NULL;
4484 sva += PAGE_SIZE;
4485 ++ptep;
4488 if (pd_pv) {
4489 pv_put(pd_pv);
4490 pd_pv = NULL;
4492 if (pt_pv) {
4493 pv_put(pt_pv);
4494 pt_pv = NULL;
4496 if ((++info->count & 7) == 0)
4497 lwkt_user_yield();
4500 * Relock before returning.
4502 spin_lock(&pmap->pm_spin);
4503 return (0);
4506 void
4507 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4509 struct pmap_scan_info info;
4511 info.pmap = pmap;
4512 info.sva = sva;
4513 info.eva = eva;
4514 info.func = pmap_remove_callback;
4515 info.arg = NULL;
4516 pmap_scan(&info, 1);
4517 #if 0
4518 cpu_invltlb();
4519 if (eva - sva < 1024*1024) {
4520 while (sva < eva) {
4521 cpu_invlpg((void *)sva);
4522 sva += PAGE_SIZE;
4525 #endif
4528 static void
4529 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
4531 struct pmap_scan_info info;
4533 info.pmap = pmap;
4534 info.sva = sva;
4535 info.eva = eva;
4536 info.func = pmap_remove_callback;
4537 info.arg = NULL;
4538 pmap_scan(&info, 0);
4541 static void
4542 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
4543 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4544 pv_entry_t pt_pv, int sharept,
4545 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4547 pt_entry_t pte;
4549 if (pte_pv) {
4551 * Managed entry
4553 * This will also drop pt_pv's wire_count. Note that
4554 * terminal pages are not wired based on mmu presence.
4556 * NOTE: If this is the kernel_pmap, pt_pv can be NULL.
4558 KKASSERT(pte_pv->pv_m != NULL);
4559 pmap_remove_pv_pte(pte_pv, pt_pv, info->bulk, 2);
4560 pte_pv = NULL; /* safety */
4563 * Recursively destroy higher-level page tables.
4565 * This is optional. If we do not, they will still
4566 * be destroyed when the process exits.
4568 * NOTE: Do not destroy pv_entry's with extra hold refs,
4569 * a caller may have unlocked it and intends to
4570 * continue to use it.
4572 if (pmap_dynamic_delete &&
4573 pt_pv &&
4574 pt_pv->pv_m &&
4575 pt_pv->pv_m->wire_count == 1 &&
4576 (pt_pv->pv_hold & PV_HOLD_MASK) == 2 &&
4577 pt_pv->pv_pindex != pmap_pml4_pindex()) {
4578 if (pmap_dynamic_delete == 2)
4579 kprintf("B %jd %08x\n", pt_pv->pv_pindex, pt_pv->pv_hold);
4580 pv_hold(pt_pv); /* extra hold */
4581 pmap_remove_pv_pte(pt_pv, NULL, info->bulk, 1);
4582 pv_lock(pt_pv); /* prior extra hold + relock */
4584 } else if (sharept == 0) {
4586 * Unmanaged pte (pte_placemark is non-NULL)
4588 * pt_pv's wire_count is still bumped by unmanaged pages
4589 * so we must decrement it manually.
4591 * We have to unwire the target page table page.
4593 pte = pmap_inval_bulk(info->bulk, va, ptep, 0);
4594 if (pte & pmap->pmap_bits[PG_W_IDX])
4595 atomic_add_long(&pmap->pm_stats.wired_count, -1);
4596 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4597 if (vm_page_unwire_quick(pt_pv->pv_m))
4598 panic("pmap_remove: insufficient wirecount");
4599 pv_placemarker_wakeup(pmap, pte_placemark);
4600 } else {
4602 * Unmanaged page table (pt, pd, or pdp. Not pte) for
4603 * a shared page table.
4605 * pt_pv is actually the pd_pv for our pmap (not the shared
4606 * object pmap).
4608 * We have to unwire the target page table page and we
4609 * have to unwire our page directory page.
4611 * It is unclear how we can invalidate a segment so we
4612 * invalidate -1 which invlidates the tlb.
4614 pte = pmap_inval_bulk(info->bulk, (vm_offset_t)-1, ptep, 0);
4615 atomic_add_long(&pmap->pm_stats.resident_count, -1);
4616 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
4617 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4618 panic("pmap_remove: shared pgtable1 bad wirecount");
4619 if (vm_page_unwire_quick(pt_pv->pv_m))
4620 panic("pmap_remove: shared pgtable2 bad wirecount");
4621 pv_placemarker_wakeup(pmap, pte_placemark);
4626 * Removes this physical page from all physical maps in which it resides.
4627 * Reflects back modify bits to the pager.
4629 * This routine may not be called from an interrupt.
4631 static
4632 void
4633 pmap_remove_all(vm_page_t m)
4635 pv_entry_t pv;
4636 pmap_inval_bulk_t bulk;
4638 if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
4639 return;
4641 vm_page_spin_lock(m);
4642 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4643 KKASSERT(pv->pv_m == m);
4644 if (pv_hold_try(pv)) {
4645 vm_page_spin_unlock(m);
4646 } else {
4647 vm_page_spin_unlock(m);
4648 pv_lock(pv);
4649 pv_put(pv);
4650 vm_page_spin_lock(m);
4651 continue;
4653 KKASSERT(pv->pv_pmap && pv->pv_m == m);
4656 * Holding no spinlocks, pv is locked. Once we scrap
4657 * pv we can no longer use it as a list iterator (but
4658 * we are doing a TAILQ_FIRST() so we are ok).
4660 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4661 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4662 pv = NULL; /* safety */
4663 pmap_inval_bulk_flush(&bulk);
4664 vm_page_spin_lock(m);
4666 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
4667 vm_page_spin_unlock(m);
4671 * Removes the page from a particular pmap
4673 void
4674 pmap_remove_specific(pmap_t pmap, vm_page_t m)
4676 pv_entry_t pv;
4677 pmap_inval_bulk_t bulk;
4679 if (!pmap_initialized)
4680 return;
4682 again:
4683 vm_page_spin_lock(m);
4684 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4685 if (pv->pv_pmap != pmap)
4686 continue;
4687 KKASSERT(pv->pv_m == m);
4688 if (pv_hold_try(pv)) {
4689 vm_page_spin_unlock(m);
4690 } else {
4691 vm_page_spin_unlock(m);
4692 pv_lock(pv);
4693 pv_put(pv);
4694 goto again;
4696 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
4699 * Holding no spinlocks, pv is locked. Once gone it can't
4700 * be used as an iterator. In fact, because we couldn't
4701 * necessarily lock it atomically it may have moved within
4702 * the list and ALSO cannot be used as an iterator.
4704 pmap_inval_bulk_init(&bulk, pv->pv_pmap);
4705 pmap_remove_pv_pte(pv, NULL, &bulk, 2);
4706 pv = NULL; /* safety */
4707 pmap_inval_bulk_flush(&bulk);
4708 goto again;
4710 vm_page_spin_unlock(m);
4714 * Set the physical protection on the specified range of this map
4715 * as requested. This function is typically only used for debug watchpoints
4716 * and COW pages.
4718 * This function may not be called from an interrupt if the map is
4719 * not the kernel_pmap.
4721 * NOTE! For shared page table pages we just unmap the page.
4723 void
4724 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4726 struct pmap_scan_info info;
4727 /* JG review for NX */
4729 if (pmap == NULL)
4730 return;
4731 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == VM_PROT_NONE) {
4732 pmap_remove(pmap, sva, eva);
4733 return;
4735 if (prot & VM_PROT_WRITE)
4736 return;
4737 info.pmap = pmap;
4738 info.sva = sva;
4739 info.eva = eva;
4740 info.func = pmap_protect_callback;
4741 info.arg = &prot;
4742 pmap_scan(&info, 1);
4745 static
4746 void
4747 pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
4748 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
4749 pv_entry_t pt_pv, int sharept,
4750 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
4752 pt_entry_t pbits;
4753 pt_entry_t cbits;
4754 pt_entry_t pte;
4755 vm_page_t m;
4757 again:
4758 pbits = *ptep;
4759 cbits = pbits;
4760 if (pte_pv) {
4761 KKASSERT(pte_pv->pv_m != NULL);
4762 m = NULL;
4763 if (pbits & pmap->pmap_bits[PG_A_IDX]) {
4764 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4765 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
4766 KKASSERT(m == pte_pv->pv_m);
4767 vm_page_flag_set(m, PG_REFERENCED);
4769 cbits &= ~pmap->pmap_bits[PG_A_IDX];
4771 if (pbits & pmap->pmap_bits[PG_M_IDX]) {
4772 if (pmap_track_modified(pte_pv->pv_pindex)) {
4773 if ((pbits & pmap->pmap_bits[PG_DEVICE_IDX]) == 0) {
4774 if (m == NULL) {
4775 m = PHYS_TO_VM_PAGE(pbits &
4776 PG_FRAME);
4778 vm_page_dirty(m);
4780 cbits &= ~pmap->pmap_bits[PG_M_IDX];
4783 } else if (sharept) {
4785 * Unmanaged page table, pt_pv is actually the pd_pv
4786 * for our pmap (not the object's shared pmap).
4788 * When asked to protect something in a shared page table
4789 * page we just unmap the page table page. We have to
4790 * invalidate the tlb in this situation.
4792 * XXX Warning, shared page tables will not be used for
4793 * OBJT_DEVICE or OBJT_MGTDEVICE (PG_FICTITIOUS) mappings
4794 * so PHYS_TO_VM_PAGE() should be safe here.
4796 pte = pmap_inval_smp(pmap, (vm_offset_t)-1, 1, ptep, 0);
4797 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
4798 panic("pmap_protect: pgtable1 pg bad wirecount");
4799 if (vm_page_unwire_quick(pt_pv->pv_m))
4800 panic("pmap_protect: pgtable2 pg bad wirecount");
4801 ptep = NULL;
4803 /* else unmanaged page, adjust bits, no wire changes */
4805 if (ptep) {
4806 cbits &= ~pmap->pmap_bits[PG_RW_IDX];
4807 #ifdef PMAP_DEBUG2
4808 if (pmap_enter_debug > 0) {
4809 --pmap_enter_debug;
4810 kprintf("pmap_protect va=%lx ptep=%p pte_pv=%p "
4811 "pt_pv=%p cbits=%08lx\n",
4812 va, ptep, pte_pv,
4813 pt_pv, cbits
4816 #endif
4817 if (pbits != cbits) {
4818 vm_offset_t xva;
4820 xva = (sharept) ? (vm_offset_t)-1 : va;
4821 if (!pmap_inval_smp_cmpset(pmap, xva,
4822 ptep, pbits, cbits)) {
4823 goto again;
4827 if (pte_pv)
4828 pv_put(pte_pv);
4829 else
4830 pv_placemarker_wakeup(pmap, pte_placemark);
4834 * Insert the vm_page (m) at the virtual address (va), replacing any prior
4835 * mapping at that address. Set protection and wiring as requested.
4837 * If entry is non-NULL we check to see if the SEG_SIZE optimization is
4838 * possible. If it is we enter the page into the appropriate shared pmap
4839 * hanging off the related VM object instead of the passed pmap, then we
4840 * share the page table page from the VM object's pmap into the current pmap.
4842 * NOTE: This routine MUST insert the page into the pmap now, it cannot
4843 * lazy-evaluate.
4845 * NOTE: If (m) is PG_UNMANAGED it may also be a temporary fake vm_page_t.
4846 * never record it.
4848 void
4849 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
4850 boolean_t wired, vm_map_entry_t entry)
4852 pv_entry_t pt_pv; /* page table */
4853 pv_entry_t pte_pv; /* page table entry */
4854 vm_pindex_t *pte_placemark;
4855 pt_entry_t *ptep;
4856 vm_paddr_t opa;
4857 pt_entry_t origpte, newpte;
4858 vm_paddr_t pa;
4860 if (pmap == NULL)
4861 return;
4862 va = trunc_page(va);
4863 #ifdef PMAP_DIAGNOSTIC
4864 if (va >= KvaEnd)
4865 panic("pmap_enter: toobig");
4866 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
4867 panic("pmap_enter: invalid to pmap_enter page table "
4868 "pages (va: 0x%lx)", va);
4869 #endif
4870 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
4871 kprintf("Warning: pmap_enter called on UVA with "
4872 "kernel_pmap\n");
4873 #ifdef DDB
4874 db_print_backtrace();
4875 #endif
4877 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
4878 kprintf("Warning: pmap_enter called on KVA without"
4879 "kernel_pmap\n");
4880 #ifdef DDB
4881 db_print_backtrace();
4882 #endif
4886 * Get locked PV entries for our new page table entry (pte_pv or
4887 * pte_placemark) and for its parent page table (pt_pv). We need
4888 * the parent so we can resolve the location of the ptep.
4890 * Only hardware MMU actions can modify the ptep out from
4891 * under us.
4893 * if (m) is fictitious or unmanaged we do not create a managing
4894 * pte_pv for it. Any pre-existing page's management state must
4895 * match (avoiding code complexity).
4897 * If the pmap is still being initialized we assume existing
4898 * page tables.
4900 * Kernel mapppings do not track page table pages (i.e. pt_pv).
4902 * WARNING! If replacing a managed mapping with an unmanaged mapping
4903 * pte_pv will wind up being non-NULL and must be handled
4904 * below.
4906 if (pmap_initialized == FALSE) {
4907 pte_pv = NULL;
4908 pt_pv = NULL;
4909 pte_placemark = NULL;
4910 ptep = vtopte(va);
4911 origpte = *ptep;
4912 } else if (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) { /* XXX */
4913 pmap_softwait(pmap);
4914 pte_pv = pv_get(pmap, pmap_pte_pindex(va), &pte_placemark);
4915 KKASSERT(pte_pv == NULL);
4916 if (va >= VM_MAX_USER_ADDRESS) {
4917 pt_pv = NULL;
4918 ptep = vtopte(va);
4919 } else {
4920 pt_pv = pmap_allocpte_seg(pmap, pmap_pt_pindex(va),
4921 NULL, entry, va);
4922 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4924 origpte = *ptep;
4925 cpu_ccfence();
4926 KASSERT(origpte == 0 ||
4927 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0,
4928 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4929 } else {
4930 pmap_softwait(pmap);
4931 if (va >= VM_MAX_USER_ADDRESS) {
4933 * Kernel map, pv_entry-tracked.
4935 pt_pv = NULL;
4936 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
4937 ptep = vtopte(va);
4938 } else {
4940 * User map
4942 pte_pv = pmap_allocpte_seg(pmap, pmap_pte_pindex(va),
4943 &pt_pv, entry, va);
4944 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
4946 pte_placemark = NULL; /* safety */
4947 origpte = *ptep;
4948 cpu_ccfence();
4949 KASSERT(origpte == 0 ||
4950 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]),
4951 ("Invalid PTE 0x%016jx @ 0x%016jx\n", origpte, va));
4954 pa = VM_PAGE_TO_PHYS(m);
4955 opa = origpte & PG_FRAME;
4958 * Calculate the new PTE. Note that pte_pv alone does not mean
4959 * the new pte_pv is managed, it could exist because the old pte
4960 * was managed even if the new one is not.
4962 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) |
4963 pmap->pmap_bits[PG_V_IDX] | pmap->pmap_bits[PG_A_IDX]);
4964 if (wired)
4965 newpte |= pmap->pmap_bits[PG_W_IDX];
4966 if (va < VM_MAX_USER_ADDRESS)
4967 newpte |= pmap->pmap_bits[PG_U_IDX];
4968 if (pte_pv && (m->flags & (/*PG_FICTITIOUS |*/ PG_UNMANAGED)) == 0)
4969 newpte |= pmap->pmap_bits[PG_MANAGED_IDX];
4970 // if (pmap == &kernel_pmap)
4971 // newpte |= pgeflag;
4972 newpte |= pmap->pmap_cache_bits[m->pat_mode];
4973 if (m->flags & PG_FICTITIOUS)
4974 newpte |= pmap->pmap_bits[PG_DEVICE_IDX];
4977 * It is possible for multiple faults to occur in threaded
4978 * environments, the existing pte might be correct.
4980 if (((origpte ^ newpte) &
4981 ~(pt_entry_t)(pmap->pmap_bits[PG_M_IDX] |
4982 pmap->pmap_bits[PG_A_IDX])) == 0) {
4983 goto done;
4987 * Ok, either the address changed or the protection or wiring
4988 * changed.
4990 * Clear the current entry, interlocking the removal. For managed
4991 * pte's this will also flush the modified state to the vm_page.
4992 * Atomic ops are mandatory in order to ensure that PG_M events are
4993 * not lost during any transition.
4995 * WARNING: The caller has busied the new page but not the original
4996 * vm_page which we are trying to replace. Because we hold
4997 * the pte_pv lock, but have not busied the page, PG bits
4998 * can be cleared out from under us.
5000 if (opa) {
5001 if (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) {
5003 * Old page was managed. Expect pte_pv to exist.
5004 * (it might also exist if the old page was unmanaged).
5006 * NOTE: pt_pv won't exist for a kernel page
5007 * (managed or otherwise).
5009 * NOTE: We may be reusing the pte_pv so we do not
5010 * destroy it in pmap_remove_pv_pte().
5012 KKASSERT(pte_pv && pte_pv->pv_m);
5013 if (prot & VM_PROT_NOSYNC) {
5014 pmap_remove_pv_pte(pte_pv, pt_pv, NULL, 0);
5015 } else {
5016 pmap_inval_bulk_t bulk;
5018 pmap_inval_bulk_init(&bulk, pmap);
5019 pmap_remove_pv_pte(pte_pv, pt_pv, &bulk, 0);
5020 pmap_inval_bulk_flush(&bulk);
5022 pmap_remove_pv_page(pte_pv);
5023 /* will either set pte_pv->pv_m or pv_free() later */
5024 } else {
5026 * Old page was not managed. If we have a pte_pv
5027 * it better not have a pv_m assigned to it. If the
5028 * new page is managed the pte_pv will be destroyed
5029 * near the end (we need its interlock).
5031 * NOTE: We leave the wire count on the PT page
5032 * intact for the followup enter, but adjust
5033 * the wired-pages count on the pmap.
5035 KKASSERT(pte_pv == NULL);
5036 if (prot & VM_PROT_NOSYNC) {
5038 * NOSYNC (no mmu sync) requested.
5040 (void)pte_load_clear(ptep);
5041 cpu_invlpg((void *)va);
5042 } else {
5044 * Nominal SYNC
5046 pmap_inval_smp(pmap, va, 1, ptep, 0);
5050 * We must adjust pm_stats manually for unmanaged
5051 * pages.
5053 if (pt_pv) {
5054 atomic_add_long(&pmap->pm_stats.
5055 resident_count, -1);
5057 if (origpte & pmap->pmap_bits[PG_W_IDX]) {
5058 atomic_add_long(&pmap->pm_stats.
5059 wired_count, -1);
5062 KKASSERT(*ptep == 0);
5065 #ifdef PMAP_DEBUG2
5066 if (pmap_enter_debug > 0) {
5067 --pmap_enter_debug;
5068 kprintf("pmap_enter: va=%lx m=%p origpte=%lx newpte=%lx ptep=%p"
5069 " pte_pv=%p pt_pv=%p opa=%lx prot=%02x\n",
5070 va, m,
5071 origpte, newpte, ptep,
5072 pte_pv, pt_pv, opa, prot);
5074 #endif
5076 if ((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5078 * Entering an unmanaged page. We must wire the pt_pv unless
5079 * we retained the wiring from an unmanaged page we had
5080 * removed (if we retained it via pte_pv that will go away
5081 * soon).
5083 if (pt_pv && (opa == 0 ||
5084 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]))) {
5085 vm_page_wire_quick(pt_pv->pv_m);
5087 if (wired)
5088 atomic_add_long(&pmap->pm_stats.wired_count, 1);
5091 * Unmanaged pages need manual resident_count tracking.
5093 if (pt_pv) {
5094 atomic_add_long(&pt_pv->pv_pmap->pm_stats.
5095 resident_count, 1);
5097 if (newpte & pmap->pmap_bits[PG_RW_IDX])
5098 vm_page_flag_set(m, PG_WRITEABLE);
5099 } else {
5101 * Entering a managed page. Our pte_pv takes care of the
5102 * PT wiring, so if we had removed an unmanaged page before
5103 * we must adjust.
5105 * We have to take care of the pmap wired count ourselves.
5107 * Enter on the PV list if part of our managed memory.
5109 KKASSERT(pte_pv && (pte_pv->pv_m == NULL || pte_pv->pv_m == m));
5110 vm_page_spin_lock(m);
5111 pte_pv->pv_m = m;
5112 pmap_page_stats_adding(m);
5113 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
5114 vm_page_flag_set(m, PG_MAPPED);
5115 if (newpte & pmap->pmap_bits[PG_RW_IDX])
5116 vm_page_flag_set(m, PG_WRITEABLE);
5117 vm_page_spin_unlock(m);
5119 if (pt_pv && opa &&
5120 (origpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5121 vm_page_unwire_quick(pt_pv->pv_m);
5125 * Adjust pmap wired pages count for new entry.
5127 if (wired) {
5128 atomic_add_long(&pte_pv->pv_pmap->pm_stats.
5129 wired_count, 1);
5134 * Kernel VMAs (pt_pv == NULL) require pmap invalidation interlocks.
5136 * User VMAs do not because those will be zero->non-zero, so no
5137 * stale entries to worry about at this point.
5139 * For KVM there appear to still be issues. Theoretically we
5140 * should be able to scrap the interlocks entirely but we
5141 * get crashes.
5143 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL) {
5144 pmap_inval_smp(pmap, va, 1, ptep, newpte);
5145 } else {
5146 origpte = atomic_swap_long(ptep, newpte);
5147 if (origpte & pmap->pmap_bits[PG_M_IDX]) {
5148 kprintf("pmap [M] race @ %016jx\n", va);
5149 atomic_set_long(ptep, pmap->pmap_bits[PG_M_IDX]);
5151 if (pt_pv == NULL)
5152 cpu_invlpg((void *)va);
5156 * Cleanup
5158 done:
5159 KKASSERT((newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0 ||
5160 (m->flags & PG_MAPPED));
5163 * Cleanup the pv entry, allowing other accessors. If the new page
5164 * is not managed but we have a pte_pv (which was locking our
5165 * operation), we can free it now. pte_pv->pv_m should be NULL.
5167 if (pte_pv && (newpte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0) {
5168 pv_free(pte_pv, pt_pv);
5169 } else if (pte_pv) {
5170 pv_put(pte_pv);
5171 } else if (pte_placemark) {
5172 pv_placemarker_wakeup(pmap, pte_placemark);
5174 if (pt_pv)
5175 pv_put(pt_pv);
5179 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
5180 * This code also assumes that the pmap has no pre-existing entry for this
5181 * VA.
5183 * This code currently may only be used on user pmaps, not kernel_pmap.
5185 void
5186 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
5188 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE, NULL);
5192 * Make a temporary mapping for a physical address. This is only intended
5193 * to be used for panic dumps.
5195 * The caller is responsible for calling smp_invltlb().
5197 void *
5198 pmap_kenter_temporary(vm_paddr_t pa, long i)
5200 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
5201 return ((void *)crashdumpmap);
5204 #define MAX_INIT_PT (96)
5207 * This routine preloads the ptes for a given object into the specified pmap.
5208 * This eliminates the blast of soft faults on process startup and
5209 * immediately after an mmap.
5211 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
5213 void
5214 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
5215 vm_object_t object, vm_pindex_t pindex,
5216 vm_size_t size, int limit)
5218 struct rb_vm_page_scan_info info;
5219 struct lwp *lp;
5220 vm_size_t psize;
5223 * We can't preinit if read access isn't set or there is no pmap
5224 * or object.
5226 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
5227 return;
5230 * We can't preinit if the pmap is not the current pmap
5232 lp = curthread->td_lwp;
5233 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
5234 return;
5237 * Misc additional checks
5239 psize = x86_64_btop(size);
5241 if ((object->type != OBJT_VNODE) ||
5242 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
5243 (object->resident_page_count > MAX_INIT_PT))) {
5244 return;
5247 if (pindex + psize > object->size) {
5248 if (object->size < pindex)
5249 return;
5250 psize = object->size - pindex;
5253 if (psize == 0)
5254 return;
5257 * If everything is segment-aligned do not pre-init here. Instead
5258 * allow the normal vm_fault path to pass a segment hint to
5259 * pmap_enter() which will then use an object-referenced shared
5260 * page table page.
5262 if ((addr & SEG_MASK) == 0 &&
5263 (ctob(psize) & SEG_MASK) == 0 &&
5264 (ctob(pindex) & SEG_MASK) == 0) {
5265 return;
5269 * Use a red-black scan to traverse the requested range and load
5270 * any valid pages found into the pmap.
5272 * We cannot safely scan the object's memq without holding the
5273 * object token.
5275 info.start_pindex = pindex;
5276 info.end_pindex = pindex + psize - 1;
5277 info.limit = limit;
5278 info.mpte = NULL;
5279 info.addr = addr;
5280 info.pmap = pmap;
5281 info.object = object;
5284 * By using the NOLK scan, the callback function must be sure
5285 * to return -1 if the VM page falls out of the object.
5287 vm_object_hold_shared(object);
5288 vm_page_rb_tree_RB_SCAN_NOLK(&object->rb_memq, rb_vm_page_scancmp,
5289 pmap_object_init_pt_callback, &info);
5290 vm_object_drop(object);
5293 static
5295 pmap_object_init_pt_callback(vm_page_t p, void *data)
5297 struct rb_vm_page_scan_info *info = data;
5298 vm_pindex_t rel_index;
5299 int hard_busy;
5302 * don't allow an madvise to blow away our really
5303 * free pages allocating pv entries.
5305 if ((info->limit & MAP_PREFAULT_MADVISE) &&
5306 vmstats.v_free_count < vmstats.v_free_reserved) {
5307 return(-1);
5311 * Ignore list markers and ignore pages we cannot instantly
5312 * busy (while holding the object token).
5314 if (p->flags & PG_MARKER)
5315 return 0;
5316 hard_busy = 0;
5317 again:
5318 if (hard_busy) {
5319 if (vm_page_busy_try(p, TRUE))
5320 return 0;
5321 } else {
5322 if (vm_page_sbusy_try(p))
5323 return 0;
5325 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
5326 (p->flags & PG_FICTITIOUS) == 0) {
5327 if ((p->queue - p->pc) == PQ_CACHE) {
5328 if (hard_busy == 0) {
5329 vm_page_sbusy_drop(p);
5330 hard_busy = 1;
5331 goto again;
5333 vm_page_deactivate(p);
5335 rel_index = p->pindex - info->start_pindex;
5336 pmap_enter_quick(info->pmap,
5337 info->addr + x86_64_ptob(rel_index), p);
5339 if (hard_busy)
5340 vm_page_wakeup(p);
5341 else
5342 vm_page_sbusy_drop(p);
5345 * We are using an unlocked scan (that is, the scan expects its
5346 * current element to remain in the tree on return). So we have
5347 * to check here and abort the scan if it isn't.
5349 if (p->object != info->object)
5350 return -1;
5351 lwkt_yield();
5352 return(0);
5356 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
5357 * address.
5359 * Returns FALSE if it would be non-trivial or if a pte is already loaded
5360 * into the slot.
5362 * XXX This is safe only because page table pages are not freed.
5365 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
5367 pt_entry_t *pte;
5369 /*spin_lock(&pmap->pm_spin);*/
5370 if ((pte = pmap_pte(pmap, addr)) != NULL) {
5371 if (*pte & pmap->pmap_bits[PG_V_IDX]) {
5372 /*spin_unlock(&pmap->pm_spin);*/
5373 return FALSE;
5376 /*spin_unlock(&pmap->pm_spin);*/
5377 return TRUE;
5381 * Change the wiring attribute for a pmap/va pair. The mapping must already
5382 * exist in the pmap. The mapping may or may not be managed. The wiring in
5383 * the page is not changed, the page is returned so the caller can adjust
5384 * its wiring (the page is not locked in any way).
5386 * Wiring is not a hardware characteristic so there is no need to invalidate
5387 * TLB. However, in an SMP environment we must use a locked bus cycle to
5388 * update the pte (if we are not using the pmap_inval_*() API that is)...
5389 * it's ok to do this for simple wiring changes.
5391 vm_page_t
5392 pmap_unwire(pmap_t pmap, vm_offset_t va)
5394 pt_entry_t *ptep;
5395 pv_entry_t pt_pv;
5396 vm_paddr_t pa;
5397 vm_page_t m;
5399 if (pmap == NULL)
5400 return NULL;
5403 * Assume elements in the kernel pmap are stable
5405 if (pmap == &kernel_pmap) {
5406 if (pmap_pt(pmap, va) == 0)
5407 return NULL;
5408 ptep = pmap_pte_quick(pmap, va);
5409 if (pmap_pte_v(pmap, ptep)) {
5410 if (pmap_pte_w(pmap, ptep))
5411 atomic_add_long(&pmap->pm_stats.wired_count,-1);
5412 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5413 pa = *ptep & PG_FRAME;
5414 m = PHYS_TO_VM_PAGE(pa);
5415 } else {
5416 m = NULL;
5418 } else {
5420 * We can only [un]wire pmap-local pages (we cannot wire
5421 * shared pages)
5423 pt_pv = pv_get(pmap, pmap_pt_pindex(va), NULL);
5424 if (pt_pv == NULL)
5425 return NULL;
5427 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
5428 if ((*ptep & pmap->pmap_bits[PG_V_IDX]) == 0) {
5429 pv_put(pt_pv);
5430 return NULL;
5433 if (pmap_pte_w(pmap, ptep)) {
5434 atomic_add_long(&pt_pv->pv_pmap->pm_stats.wired_count,
5435 -1);
5437 /* XXX else return NULL so caller doesn't unwire m ? */
5439 atomic_clear_long(ptep, pmap->pmap_bits[PG_W_IDX]);
5441 pa = *ptep & PG_FRAME;
5442 m = PHYS_TO_VM_PAGE(pa); /* held by wired count */
5443 pv_put(pt_pv);
5445 return m;
5449 * Copy the range specified by src_addr/len from the source map to
5450 * the range dst_addr/len in the destination map.
5452 * This routine is only advisory and need not do anything.
5454 void
5455 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
5456 vm_size_t len, vm_offset_t src_addr)
5461 * pmap_zero_page:
5463 * Zero the specified physical page.
5465 * This function may be called from an interrupt and no locking is
5466 * required.
5468 void
5469 pmap_zero_page(vm_paddr_t phys)
5471 vm_offset_t va = PHYS_TO_DMAP(phys);
5473 pagezero((void *)va);
5477 * pmap_zero_page:
5479 * Zero part of a physical page by mapping it into memory and clearing
5480 * its contents with bzero.
5482 * off and size may not cover an area beyond a single hardware page.
5484 void
5485 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
5487 vm_offset_t virt = PHYS_TO_DMAP(phys);
5489 bzero((char *)virt + off, size);
5493 * pmap_copy_page:
5495 * Copy the physical page from the source PA to the target PA.
5496 * This function may be called from an interrupt. No locking
5497 * is required.
5499 void
5500 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
5502 vm_offset_t src_virt, dst_virt;
5504 src_virt = PHYS_TO_DMAP(src);
5505 dst_virt = PHYS_TO_DMAP(dst);
5506 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
5510 * pmap_copy_page_frag:
5512 * Copy the physical page from the source PA to the target PA.
5513 * This function may be called from an interrupt. No locking
5514 * is required.
5516 void
5517 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
5519 vm_offset_t src_virt, dst_virt;
5521 src_virt = PHYS_TO_DMAP(src);
5522 dst_virt = PHYS_TO_DMAP(dst);
5524 bcopy((char *)src_virt + (src & PAGE_MASK),
5525 (char *)dst_virt + (dst & PAGE_MASK),
5526 bytes);
5530 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
5531 * this page. This count may be changed upwards or downwards in the future;
5532 * it is only necessary that true be returned for a small subset of pmaps
5533 * for proper page aging.
5535 boolean_t
5536 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5538 pv_entry_t pv;
5539 int loops = 0;
5541 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5542 return FALSE;
5544 vm_page_spin_lock(m);
5545 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5546 if (pv->pv_pmap == pmap) {
5547 vm_page_spin_unlock(m);
5548 return TRUE;
5550 loops++;
5551 if (loops >= 16)
5552 break;
5554 vm_page_spin_unlock(m);
5555 return (FALSE);
5559 * Remove all pages from specified address space this aids process exit
5560 * speeds. Also, this code may be special cased for the current process
5561 * only.
5563 void
5564 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5566 pmap_remove_noinval(pmap, sva, eva);
5567 cpu_invltlb();
5571 * pmap_testbit tests bits in pte's note that the testbit/clearbit
5572 * routines are inline, and a lot of things compile-time evaluate.
5575 static
5576 boolean_t
5577 pmap_testbit(vm_page_t m, int bit)
5579 pv_entry_t pv;
5580 pt_entry_t *pte;
5581 pmap_t pmap;
5583 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5584 return FALSE;
5586 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
5587 return FALSE;
5588 vm_page_spin_lock(m);
5589 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
5590 vm_page_spin_unlock(m);
5591 return FALSE;
5594 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5595 #if defined(PMAP_DIAGNOSTIC)
5596 if (pv->pv_pmap == NULL) {
5597 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
5598 pv->pv_pindex);
5599 continue;
5601 #endif
5602 pmap = pv->pv_pmap;
5605 * If the bit being tested is the modified bit, then
5606 * mark clean_map and ptes as never
5607 * modified.
5609 * WARNING! Because we do not lock the pv, *pte can be in a
5610 * state of flux. Despite this the value of *pte
5611 * will still be related to the vm_page in some way
5612 * because the pv cannot be destroyed as long as we
5613 * hold the vm_page spin lock.
5615 if (bit == PG_A_IDX || bit == PG_M_IDX) {
5616 //& (pmap->pmap_bits[PG_A_IDX] | pmap->pmap_bits[PG_M_IDX])) {
5617 if (!pmap_track_modified(pv->pv_pindex))
5618 continue;
5621 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5622 if (*pte & pmap->pmap_bits[bit]) {
5623 vm_page_spin_unlock(m);
5624 return TRUE;
5627 vm_page_spin_unlock(m);
5628 return (FALSE);
5632 * This routine is used to modify bits in ptes. Only one bit should be
5633 * specified. PG_RW requires special handling.
5635 * Caller must NOT hold any spin locks
5637 static __inline
5638 void
5639 pmap_clearbit(vm_page_t m, int bit_index)
5641 pv_entry_t pv;
5642 pt_entry_t *pte;
5643 pt_entry_t pbits;
5644 pmap_t pmap;
5646 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
5647 if (bit_index == PG_RW_IDX)
5648 vm_page_flag_clear(m, PG_WRITEABLE);
5649 return;
5653 * PG_M or PG_A case
5655 * Loop over all current mappings setting/clearing as appropos If
5656 * setting RO do we need to clear the VAC?
5658 * NOTE: When clearing PG_M we could also (not implemented) drop
5659 * through to the PG_RW code and clear PG_RW too, forcing
5660 * a fault on write to redetect PG_M for virtual kernels, but
5661 * it isn't necessary since virtual kernels invalidate the
5662 * pte when they clear the VPTE_M bit in their virtual page
5663 * tables.
5665 * NOTE: Does not re-dirty the page when clearing only PG_M.
5667 * NOTE: Because we do not lock the pv, *pte can be in a state of
5668 * flux. Despite this the value of *pte is still somewhat
5669 * related while we hold the vm_page spin lock.
5671 * *pte can be zero due to this race. Since we are clearing
5672 * bits we basically do no harm when this race occurs.
5674 if (bit_index != PG_RW_IDX) {
5675 vm_page_spin_lock(m);
5676 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5677 #if defined(PMAP_DIAGNOSTIC)
5678 if (pv->pv_pmap == NULL) {
5679 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5680 pv->pv_pindex);
5681 continue;
5683 #endif
5684 pmap = pv->pv_pmap;
5685 pte = pmap_pte_quick(pv->pv_pmap,
5686 pv->pv_pindex << PAGE_SHIFT);
5687 pbits = *pte;
5688 if (pbits & pmap->pmap_bits[bit_index])
5689 atomic_clear_long(pte, pmap->pmap_bits[bit_index]);
5691 vm_page_spin_unlock(m);
5692 return;
5696 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
5697 * was set.
5699 restart:
5700 vm_page_spin_lock(m);
5701 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5703 * don't write protect pager mappings
5705 if (!pmap_track_modified(pv->pv_pindex))
5706 continue;
5708 #if defined(PMAP_DIAGNOSTIC)
5709 if (pv->pv_pmap == NULL) {
5710 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
5711 pv->pv_pindex);
5712 continue;
5714 #endif
5715 pmap = pv->pv_pmap;
5718 * Skip pages which do not have PG_RW set.
5720 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5721 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0)
5722 continue;
5725 * We must lock the PV to be able to safely test the pte.
5727 if (pv_hold_try(pv)) {
5728 vm_page_spin_unlock(m);
5729 } else {
5730 vm_page_spin_unlock(m);
5731 pv_lock(pv); /* held, now do a blocking lock */
5732 pv_put(pv);
5733 goto restart;
5737 * Reload pte after acquiring pv.
5739 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5740 #if 0
5741 if ((*pte & pmap->pmap_bits[PG_RW_IDX]) == 0) {
5742 pv_put(pv);
5743 goto restart;
5745 #endif
5747 KKASSERT(pv->pv_pmap == pmap && pv->pv_m == m);
5748 for (;;) {
5749 pt_entry_t nbits;
5751 pbits = *pte;
5752 cpu_ccfence();
5753 nbits = pbits & ~(pmap->pmap_bits[PG_RW_IDX] |
5754 pmap->pmap_bits[PG_M_IDX]);
5755 if (pmap_inval_smp_cmpset(pmap,
5756 ((vm_offset_t)pv->pv_pindex << PAGE_SHIFT),
5757 pte, pbits, nbits)) {
5758 break;
5760 cpu_pause();
5764 * If PG_M was found to be set while we were clearing PG_RW
5765 * we also clear PG_M (done above) and mark the page dirty.
5766 * Callers expect this behavior.
5768 * we lost pv so it cannot be used as an iterator. In fact,
5769 * because we couldn't necessarily lock it atomically it may
5770 * have moved within the list and ALSO cannot be used as an
5771 * iterator.
5773 vm_page_spin_lock(m);
5774 if (pbits & pmap->pmap_bits[PG_M_IDX])
5775 vm_page_dirty(m);
5776 vm_page_spin_unlock(m);
5777 pv_put(pv);
5778 goto restart;
5780 if (bit_index == PG_RW_IDX)
5781 vm_page_flag_clear(m, PG_WRITEABLE);
5782 vm_page_spin_unlock(m);
5786 * Lower the permission for all mappings to a given page.
5788 * Page must be busied by caller. Because page is busied by caller this
5789 * should not be able to race a pmap_enter().
5791 void
5792 pmap_page_protect(vm_page_t m, vm_prot_t prot)
5794 /* JG NX support? */
5795 if ((prot & VM_PROT_WRITE) == 0) {
5796 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
5798 * NOTE: pmap_clearbit(.. PG_RW) also clears
5799 * the PG_WRITEABLE flag in (m).
5801 pmap_clearbit(m, PG_RW_IDX);
5802 } else {
5803 pmap_remove_all(m);
5808 vm_paddr_t
5809 pmap_phys_address(vm_pindex_t ppn)
5811 return (x86_64_ptob(ppn));
5815 * Return a count of reference bits for a page, clearing those bits.
5816 * It is not necessary for every reference bit to be cleared, but it
5817 * is necessary that 0 only be returned when there are truly no
5818 * reference bits set.
5820 * XXX: The exact number of bits to check and clear is a matter that
5821 * should be tested and standardized at some point in the future for
5822 * optimal aging of shared pages.
5824 * This routine may not block.
5827 pmap_ts_referenced(vm_page_t m)
5829 pv_entry_t pv;
5830 pt_entry_t *pte;
5831 pmap_t pmap;
5832 int rtval = 0;
5834 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
5835 return (rtval);
5837 vm_page_spin_lock(m);
5838 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5839 if (!pmap_track_modified(pv->pv_pindex))
5840 continue;
5841 pmap = pv->pv_pmap;
5842 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
5843 if (pte && (*pte & pmap->pmap_bits[PG_A_IDX])) {
5844 atomic_clear_long(pte, pmap->pmap_bits[PG_A_IDX]);
5845 rtval++;
5846 if (rtval > 4)
5847 break;
5850 vm_page_spin_unlock(m);
5851 return (rtval);
5855 * pmap_is_modified:
5857 * Return whether or not the specified physical page was modified
5858 * in any physical maps.
5860 boolean_t
5861 pmap_is_modified(vm_page_t m)
5863 boolean_t res;
5865 res = pmap_testbit(m, PG_M_IDX);
5866 return (res);
5870 * Clear the modify bits on the specified physical page.
5872 void
5873 pmap_clear_modify(vm_page_t m)
5875 pmap_clearbit(m, PG_M_IDX);
5879 * pmap_clear_reference:
5881 * Clear the reference bit on the specified physical page.
5883 void
5884 pmap_clear_reference(vm_page_t m)
5886 pmap_clearbit(m, PG_A_IDX);
5890 * Miscellaneous support routines follow
5893 static
5894 void
5895 i386_protection_init(void)
5897 uint64_t *kp;
5898 int prot;
5901 * NX supported? (boot time loader.conf override only)
5903 TUNABLE_INT_FETCH("machdep.pmap_nx_enable", &pmap_nx_enable);
5904 if (pmap_nx_enable == 0 || (amd_feature & AMDID_NX) == 0)
5905 pmap_bits_default[PG_NX_IDX] = 0;
5908 * 0 is basically read-only access, but also set the NX (no-execute)
5909 * bit when VM_PROT_EXECUTE is not specified.
5911 kp = protection_codes;
5912 for (prot = 0; prot < PROTECTION_CODES_SIZE; prot++) {
5913 switch (prot) {
5914 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
5916 * This case handled elsewhere
5918 *kp++ = 0;
5919 break;
5920 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
5922 * Read-only is 0|NX
5924 *kp++ = pmap_bits_default[PG_NX_IDX];
5925 break;
5926 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
5927 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
5929 * Execute requires read access
5931 *kp++ = 0;
5932 break;
5933 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
5934 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
5936 * Write without execute is RW|NX
5938 *kp++ = pmap_bits_default[PG_RW_IDX] |
5939 pmap_bits_default[PG_NX_IDX];
5940 break;
5941 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
5942 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
5944 * Write with execute is RW
5946 *kp++ = pmap_bits_default[PG_RW_IDX];
5947 break;
5953 * Map a set of physical memory pages into the kernel virtual
5954 * address space. Return a pointer to where it is mapped. This
5955 * routine is intended to be used for mapping device memory,
5956 * NOT real memory.
5958 * NOTE: We can't use pgeflag unless we invalidate the pages one at
5959 * a time.
5961 * NOTE: The PAT attributes {WRITE_BACK, WRITE_THROUGH, UNCACHED, UNCACHEABLE}
5962 * work whether the cpu supports PAT or not. The remaining PAT
5963 * attributes {WRITE_PROTECTED, WRITE_COMBINING} only work if the cpu
5964 * supports PAT.
5966 void *
5967 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5969 return(pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5972 void *
5973 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
5975 return(pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5978 void *
5979 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5981 return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5985 * Map a set of physical memory pages into the kernel virtual
5986 * address space. Return a pointer to where it is mapped. This
5987 * routine is intended to be used for mapping device memory,
5988 * NOT real memory.
5990 void *
5991 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5993 vm_offset_t va, tmpva, offset;
5994 pt_entry_t *pte;
5995 vm_size_t tmpsize;
5997 offset = pa & PAGE_MASK;
5998 size = roundup(offset + size, PAGE_SIZE);
6000 va = kmem_alloc_nofault(&kernel_map, size, VM_SUBSYS_MAPDEV, PAGE_SIZE);
6001 if (va == 0)
6002 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
6004 pa = pa & ~PAGE_MASK;
6005 for (tmpva = va, tmpsize = size; tmpsize > 0;) {
6006 pte = vtopte(tmpva);
6007 *pte = pa |
6008 kernel_pmap.pmap_bits[PG_RW_IDX] |
6009 kernel_pmap.pmap_bits[PG_V_IDX] | /* pgeflag | */
6010 kernel_pmap.pmap_cache_bits[mode];
6011 tmpsize -= PAGE_SIZE;
6012 tmpva += PAGE_SIZE;
6013 pa += PAGE_SIZE;
6015 pmap_invalidate_range(&kernel_pmap, va, va + size);
6016 pmap_invalidate_cache_range(va, va + size);
6018 return ((void *)(va + offset));
6021 void
6022 pmap_unmapdev(vm_offset_t va, vm_size_t size)
6024 vm_offset_t base, offset;
6026 base = va & ~PAGE_MASK;
6027 offset = va & PAGE_MASK;
6028 size = roundup(offset + size, PAGE_SIZE);
6029 pmap_qremove(va, size >> PAGE_SHIFT);
6030 kmem_free(&kernel_map, base, size);
6034 * Sets the memory attribute for the specified page.
6036 void
6037 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
6040 m->pat_mode = ma;
6043 * If "m" is a normal page, update its direct mapping. This update
6044 * can be relied upon to perform any cache operations that are
6045 * required for data coherence.
6047 if ((m->flags & PG_FICTITIOUS) == 0)
6048 pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), 1, m->pat_mode);
6052 * Change the PAT attribute on an existing kernel memory map. Caller
6053 * must ensure that the virtual memory in question is not accessed
6054 * during the adjustment.
6056 void
6057 pmap_change_attr(vm_offset_t va, vm_size_t count, int mode)
6059 pt_entry_t *pte;
6060 vm_offset_t base;
6061 int changed = 0;
6063 if (va == 0)
6064 panic("pmap_change_attr: va is NULL");
6065 base = trunc_page(va);
6067 while (count) {
6068 pte = vtopte(va);
6069 *pte = (*pte & ~(pt_entry_t)(kernel_pmap.pmap_cache_mask)) |
6070 kernel_pmap.pmap_cache_bits[mode];
6071 --count;
6072 va += PAGE_SIZE;
6075 changed = 1; /* XXX: not optimal */
6078 * Flush CPU caches if required to make sure any data isn't cached that
6079 * shouldn't be, etc.
6081 if (changed) {
6082 pmap_invalidate_range(&kernel_pmap, base, va);
6083 pmap_invalidate_cache_range(base, va);
6088 * perform the pmap work for mincore
6091 pmap_mincore(pmap_t pmap, vm_offset_t addr)
6093 pt_entry_t *ptep, pte;
6094 vm_page_t m;
6095 int val = 0;
6097 ptep = pmap_pte(pmap, addr);
6099 if (ptep && (pte = *ptep) != 0) {
6100 vm_offset_t pa;
6102 val = MINCORE_INCORE;
6103 if ((pte & pmap->pmap_bits[PG_MANAGED_IDX]) == 0)
6104 goto done;
6106 pa = pte & PG_FRAME;
6108 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
6109 m = NULL;
6110 else
6111 m = PHYS_TO_VM_PAGE(pa);
6114 * Modified by us
6116 if (pte & pmap->pmap_bits[PG_M_IDX])
6117 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
6119 * Modified by someone
6121 else if (m && (m->dirty || pmap_is_modified(m)))
6122 val |= MINCORE_MODIFIED_OTHER;
6124 * Referenced by us
6126 if (pte & pmap->pmap_bits[PG_A_IDX])
6127 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
6130 * Referenced by someone
6132 else if (m && ((m->flags & PG_REFERENCED) ||
6133 pmap_ts_referenced(m))) {
6134 val |= MINCORE_REFERENCED_OTHER;
6135 vm_page_flag_set(m, PG_REFERENCED);
6138 done:
6140 return val;
6144 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
6145 * vmspace will be ref'd and the old one will be deref'd.
6147 * The vmspace for all lwps associated with the process will be adjusted
6148 * and cr3 will be reloaded if any lwp is the current lwp.
6150 * The process must hold the vmspace->vm_map.token for oldvm and newvm
6152 void
6153 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
6155 struct vmspace *oldvm;
6156 struct lwp *lp;
6158 oldvm = p->p_vmspace;
6159 if (oldvm != newvm) {
6160 if (adjrefs)
6161 vmspace_ref(newvm);
6162 p->p_vmspace = newvm;
6163 KKASSERT(p->p_nthreads == 1);
6164 lp = RB_ROOT(&p->p_lwp_tree);
6165 pmap_setlwpvm(lp, newvm);
6166 if (adjrefs)
6167 vmspace_rel(oldvm);
6172 * Set the vmspace for a LWP. The vmspace is almost universally set the
6173 * same as the process vmspace, but virtual kernels need to swap out contexts
6174 * on a per-lwp basis.
6176 * Caller does not necessarily hold any vmspace tokens. Caller must control
6177 * the lwp (typically be in the context of the lwp). We use a critical
6178 * section to protect against statclock and hardclock (statistics collection).
6180 void
6181 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
6183 struct vmspace *oldvm;
6184 struct pmap *pmap;
6186 oldvm = lp->lwp_vmspace;
6188 if (oldvm != newvm) {
6189 crit_enter();
6190 KKASSERT((newvm->vm_refcnt & VM_REF_DELETED) == 0);
6191 lp->lwp_vmspace = newvm;
6192 if (curthread->td_lwp == lp) {
6193 pmap = vmspace_pmap(newvm);
6194 ATOMIC_CPUMASK_ORBIT(pmap->pm_active, mycpu->gd_cpuid);
6195 if (pmap->pm_active_lock & CPULOCK_EXCL)
6196 pmap_interlock_wait(newvm);
6197 #if defined(SWTCH_OPTIM_STATS)
6198 tlb_flush_count++;
6199 #endif
6200 if (pmap->pmap_bits[TYPE_IDX] == REGULAR_PMAP) {
6201 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
6202 } else if (pmap->pmap_bits[TYPE_IDX] == EPT_PMAP) {
6203 curthread->td_pcb->pcb_cr3 = KPML4phys;
6204 } else {
6205 panic("pmap_setlwpvm: unknown pmap type\n");
6207 load_cr3(curthread->td_pcb->pcb_cr3);
6208 pmap = vmspace_pmap(oldvm);
6209 ATOMIC_CPUMASK_NANDBIT(pmap->pm_active,
6210 mycpu->gd_cpuid);
6212 crit_exit();
6217 * Called when switching to a locked pmap, used to interlock against pmaps
6218 * undergoing modifications to prevent us from activating the MMU for the
6219 * target pmap until all such modifications have completed. We have to do
6220 * this because the thread making the modifications has already set up its
6221 * SMP synchronization mask.
6223 * This function cannot sleep!
6225 * No requirements.
6227 void
6228 pmap_interlock_wait(struct vmspace *vm)
6230 struct pmap *pmap = &vm->vm_pmap;
6232 if (pmap->pm_active_lock & CPULOCK_EXCL) {
6233 crit_enter();
6234 KKASSERT(curthread->td_critcount >= 2);
6235 DEBUG_PUSH_INFO("pmap_interlock_wait");
6236 while (pmap->pm_active_lock & CPULOCK_EXCL) {
6237 cpu_ccfence();
6238 lwkt_process_ipiq();
6240 DEBUG_POP_INFO();
6241 crit_exit();
6245 vm_offset_t
6246 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
6249 if ((obj == NULL) || (size < NBPDR) ||
6250 ((obj->type != OBJT_DEVICE) && (obj->type != OBJT_MGTDEVICE))) {
6251 return addr;
6254 addr = roundup2(addr, NBPDR);
6255 return addr;
6259 * Used by kmalloc/kfree, page already exists at va
6261 vm_page_t
6262 pmap_kvtom(vm_offset_t va)
6264 pt_entry_t *ptep = vtopte(va);
6266 KKASSERT((*ptep & kernel_pmap.pmap_bits[PG_DEVICE_IDX]) == 0);
6267 return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
6271 * Initialize machine-specific shared page directory support. This
6272 * is executed when a VM object is created.
6274 void
6275 pmap_object_init(vm_object_t object)
6277 object->md.pmap_rw = NULL;
6278 object->md.pmap_ro = NULL;
6282 * Clean up machine-specific shared page directory support. This
6283 * is executed when a VM object is destroyed.
6285 void
6286 pmap_object_free(vm_object_t object)
6288 pmap_t pmap;
6290 if ((pmap = object->md.pmap_rw) != NULL) {
6291 object->md.pmap_rw = NULL;
6292 pmap_remove_noinval(pmap,
6293 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6294 CPUMASK_ASSZERO(pmap->pm_active);
6295 pmap_release(pmap);
6296 pmap_puninit(pmap);
6297 kfree(pmap, M_OBJPMAP);
6299 if ((pmap = object->md.pmap_ro) != NULL) {
6300 object->md.pmap_ro = NULL;
6301 pmap_remove_noinval(pmap,
6302 VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
6303 CPUMASK_ASSZERO(pmap->pm_active);
6304 pmap_release(pmap);
6305 pmap_puninit(pmap);
6306 kfree(pmap, M_OBJPMAP);
6311 * pmap_pgscan_callback - Used by pmap_pgscan to acquire the related
6312 * VM page and issue a pginfo->callback.
6314 * We are expected to dispose of any non-NULL pte_pv.
6316 static
6317 void
6318 pmap_pgscan_callback(pmap_t pmap, struct pmap_scan_info *info,
6319 pv_entry_t pte_pv, vm_pindex_t *pte_placemark,
6320 pv_entry_t pt_pv, int sharept,
6321 vm_offset_t va, pt_entry_t *ptep, void *arg)
6323 struct pmap_pgscan_info *pginfo = arg;
6324 vm_page_t m;
6326 if (pte_pv) {
6328 * Try to busy the page while we hold the pte_pv locked.
6330 KKASSERT(pte_pv->pv_m);
6331 m = PHYS_TO_VM_PAGE(*ptep & PG_FRAME);
6332 if (vm_page_busy_try(m, TRUE) == 0) {
6333 if (m == PHYS_TO_VM_PAGE(*ptep & PG_FRAME)) {
6335 * The callback is issued with the pte_pv
6336 * unlocked and put away, and the pt_pv
6337 * unlocked.
6339 pv_put(pte_pv);
6340 if (pt_pv) {
6341 vm_page_wire_quick(pt_pv->pv_m);
6342 pv_unlock(pt_pv);
6344 if (pginfo->callback(pginfo, va, m) < 0)
6345 info->stop = 1;
6346 if (pt_pv) {
6347 pv_lock(pt_pv);
6348 vm_page_unwire_quick(pt_pv->pv_m);
6350 } else {
6351 vm_page_wakeup(m);
6352 pv_put(pte_pv);
6354 } else {
6355 ++pginfo->busycount;
6356 pv_put(pte_pv);
6358 } else {
6360 * Shared page table or unmanaged page (sharept or !sharept)
6362 pv_placemarker_wakeup(pmap, pte_placemark);
6366 void
6367 pmap_pgscan(struct pmap_pgscan_info *pginfo)
6369 struct pmap_scan_info info;
6371 pginfo->offset = pginfo->beg_addr;
6372 info.pmap = pginfo->pmap;
6373 info.sva = pginfo->beg_addr;
6374 info.eva = pginfo->end_addr;
6375 info.func = pmap_pgscan_callback;
6376 info.arg = pginfo;
6377 pmap_scan(&info, 0);
6378 if (info.stop == 0)
6379 pginfo->offset = pginfo->end_addr;
6383 * Wait for a placemarker that we do not own to clear. The placemarker
6384 * in question is not necessarily set to the pindex we want, we may have
6385 * to wait on the element because we want to reserve it ourselves.
6387 * NOTE: PM_PLACEMARK_WAKEUP sets a bit which is already set in
6388 * PM_NOPLACEMARK, so it does not interfere with placemarks
6389 * which have already been woken up.
6391 static
6392 void
6393 pv_placemarker_wait(pmap_t pmap, vm_pindex_t *pmark)
6395 if (*pmark != PM_NOPLACEMARK) {
6396 atomic_set_long(pmark, PM_PLACEMARK_WAKEUP);
6397 tsleep_interlock(pmark, 0);
6398 if (*pmark != PM_NOPLACEMARK)
6399 tsleep(pmark, PINTERLOCKED, "pvplw", 0);
6404 * Wakeup a placemarker that we own. Replace the entry with
6405 * PM_NOPLACEMARK and issue a wakeup() if necessary.
6407 static
6408 void
6409 pv_placemarker_wakeup(pmap_t pmap, vm_pindex_t *pmark)
6411 vm_pindex_t pindex;
6413 pindex = atomic_swap_long(pmark, PM_NOPLACEMARK);
6414 KKASSERT(pindex != PM_NOPLACEMARK);
6415 if (pindex & PM_PLACEMARK_WAKEUP)
6416 wakeup(pmark);