2 * Copyright (c) 2003-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * Copyright (c) 1994 John S. Dyson
39 * All rights reserved.
40 * Copyright (c) 1994 David Greenman
41 * All rights reserved.
44 * This code is derived from software contributed to Berkeley by
45 * The Mach Operating System project at Carnegie-Mellon University.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74 * All rights reserved.
76 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
78 * Permission to use, copy, modify and distribute this software and
79 * its documentation is hereby granted, provided that both the copyright
80 * notice and this permission notice appear in all copies of the
81 * software, derivative works or modified versions, and any portions
82 * thereof, and that both notices appear in supporting documentation.
84 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
88 * Carnegie Mellon requests users of this software to return to
90 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
91 * School of Computer Science
92 * Carnegie Mellon University
93 * Pittsburgh PA 15213-3890
95 * any improvements or extensions that they make and grant Carnegie the
96 * rights to redistribute these changes.
100 * Page fault handling module.
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
114 #include <cpu/lwbuf.h>
117 #include <vm/vm_param.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
137 vm_object_t first_object
;
138 vm_prot_t first_prot
;
140 vm_map_entry_t entry
;
141 int lookup_still_valid
;
151 static int debug_fault
= 0;
152 SYSCTL_INT(_vm
, OID_AUTO
, debug_fault
, CTLFLAG_RW
, &debug_fault
, 0, "");
153 static int debug_cluster
= 0;
154 SYSCTL_INT(_vm
, OID_AUTO
, debug_cluster
, CTLFLAG_RW
, &debug_cluster
, 0, "");
155 static int virtual_copy_enable
= 1;
156 SYSCTL_INT(_vm
, OID_AUTO
, virtual_copy_enable
, CTLFLAG_RW
,
157 &virtual_copy_enable
, 0, "");
158 int vm_shared_fault
= 1;
159 TUNABLE_INT("vm.shared_fault", &vm_shared_fault
);
160 SYSCTL_INT(_vm
, OID_AUTO
, shared_fault
, CTLFLAG_RW
,
161 &vm_shared_fault
, 0, "Allow shared token on vm_object");
163 static int vm_fault_object(struct faultstate
*, vm_pindex_t
, vm_prot_t
, int);
164 static int vm_fault_vpagetable(struct faultstate
*, vm_pindex_t
*,
167 static int vm_fault_additional_pages (vm_page_t
, int, int, vm_page_t
*, int *);
169 static void vm_set_nosync(vm_page_t m
, vm_map_entry_t entry
);
170 static void vm_prefault(pmap_t pmap
, vm_offset_t addra
,
171 vm_map_entry_t entry
, int prot
, int fault_flags
);
172 static void vm_prefault_quick(pmap_t pmap
, vm_offset_t addra
,
173 vm_map_entry_t entry
, int prot
, int fault_flags
);
176 release_page(struct faultstate
*fs
)
178 vm_page_deactivate(fs
->m
);
179 vm_page_wakeup(fs
->m
);
184 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
185 * requires relocking and then checking the timestamp.
187 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
188 * not have to update fs->map_generation here.
190 * NOTE: This function can fail due to a deadlock against the caller's
191 * holding of a vm_page BUSY.
194 relock_map(struct faultstate
*fs
)
198 if (fs
->lookup_still_valid
== FALSE
&& fs
->map
) {
199 error
= vm_map_lock_read_to(fs
->map
);
201 fs
->lookup_still_valid
= TRUE
;
209 unlock_map(struct faultstate
*fs
)
211 if (fs
->lookup_still_valid
&& fs
->map
) {
212 vm_map_lookup_done(fs
->map
, fs
->entry
, 0);
213 fs
->lookup_still_valid
= FALSE
;
218 * Clean up after a successful call to vm_fault_object() so another call
219 * to vm_fault_object() can be made.
222 _cleanup_successful_fault(struct faultstate
*fs
, int relock
)
225 * We allocated a junk page for a COW operation that did
226 * not occur, the page must be freed.
228 if (fs
->object
!= fs
->first_object
) {
229 KKASSERT(fs
->first_shared
== 0);
230 vm_page_free(fs
->first_m
);
231 vm_object_pip_wakeup(fs
->object
);
238 fs
->object
= fs
->first_object
;
239 if (relock
&& fs
->lookup_still_valid
== FALSE
) {
241 vm_map_lock_read(fs
->map
);
242 fs
->lookup_still_valid
= TRUE
;
247 _unlock_things(struct faultstate
*fs
, int dealloc
)
249 _cleanup_successful_fault(fs
, 0);
251 /*vm_object_deallocate(fs->first_object);*/
252 /*fs->first_object = NULL; drop used later on */
255 if (fs
->vp
!= NULL
) {
261 #define unlock_things(fs) _unlock_things(fs, 0)
262 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
263 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
266 * Virtual copy tests. Used by the fault code to determine if a
267 * page can be moved from an orphan vm_object into its shadow
268 * instead of copying its contents.
271 virtual_copy_test(struct faultstate
*fs
)
274 * Must be holding exclusive locks
276 if (fs
->first_shared
|| fs
->shared
|| virtual_copy_enable
== 0)
280 * Map, if present, has not changed
282 if (fs
->map
&& fs
->map_generation
!= fs
->map
->timestamp
)
286 * Only one shadow object
288 if (fs
->object
->shadow_count
!= 1)
292 * No COW refs, except us
294 if (fs
->object
->ref_count
!= 1)
298 * No one else can look this object up
300 if (fs
->object
->handle
!= NULL
)
304 * No other ways to look the object up
306 if (fs
->object
->type
!= OBJT_DEFAULT
&&
307 fs
->object
->type
!= OBJT_SWAP
)
311 * We don't chase down the shadow chain
313 if (fs
->object
!= fs
->first_object
->backing_object
)
320 virtual_copy_ok(struct faultstate
*fs
)
322 if (virtual_copy_test(fs
)) {
324 * Grab the lock and re-test changeable items.
326 if (fs
->lookup_still_valid
== FALSE
&& fs
->map
) {
327 if (lockmgr(&fs
->map
->lock
, LK_EXCLUSIVE
|LK_NOWAIT
))
329 fs
->lookup_still_valid
= TRUE
;
330 if (virtual_copy_test(fs
)) {
331 fs
->map_generation
= ++fs
->map
->timestamp
;
334 fs
->lookup_still_valid
= FALSE
;
335 lockmgr(&fs
->map
->lock
, LK_RELEASE
);
344 * Determine if the pager for the current object *might* contain the page.
346 * We only need to try the pager if this is not a default object (default
347 * objects are zero-fill and have no real pager), and if we are not taking
348 * a wiring fault or if the FS entry is wired.
350 #define TRYPAGER(fs) \
351 (fs->object->type != OBJT_DEFAULT && \
352 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || \
353 (fs->wflags & FW_WIRED)))
358 * Handle a page fault occuring at the given address, requiring the given
359 * permissions, in the map specified. If successful, the page is inserted
360 * into the associated physical map.
362 * NOTE: The given address should be truncated to the proper page address.
364 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
365 * a standard error specifying why the fault is fatal is returned.
367 * The map in question must be referenced, and remains so.
368 * The caller may hold no locks.
369 * No other requirements.
372 vm_fault(vm_map_t map
, vm_offset_t vaddr
, vm_prot_t fault_type
, int fault_flags
)
375 vm_pindex_t first_pindex
;
376 struct faultstate fs
;
380 struct vm_map_ilock ilock
;
386 inherit_prot
= fault_type
& VM_PROT_NOSYNC
;
388 fs
.fault_flags
= fault_flags
;
390 fs
.shared
= vm_shared_fault
;
391 fs
.first_shared
= vm_shared_fault
;
395 * vm_map interactions
398 if ((lp
= td
->td_lwp
) != NULL
)
399 lp
->lwp_flags
|= LWP_PAGING
;
403 * Find the vm_map_entry representing the backing store and resolve
404 * the top level object and page index. This may have the side
405 * effect of executing a copy-on-write on the map entry,
406 * creating a shadow object, or splitting an anonymous entry for
407 * performance, but will not COW any actual VM pages.
409 * On success fs.map is left read-locked and various other fields
410 * are initialized but not otherwise referenced or locked.
412 * NOTE! vm_map_lookup will try to upgrade the fault_type to
413 * VM_FAULT_WRITE if the map entry is a virtual page table
414 * and also writable, so we can set the 'A'accessed bit in
415 * the virtual page table entry.
418 result
= vm_map_lookup(&fs
.map
, vaddr
, fault_type
,
419 &fs
.entry
, &fs
.first_object
,
420 &first_pindex
, &fs
.first_prot
, &fs
.wflags
);
423 * If the lookup failed or the map protections are incompatible,
424 * the fault generally fails.
426 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
427 * tried to do a COW fault.
429 * If the caller is trying to do a user wiring we have more work
432 if (result
!= KERN_SUCCESS
) {
433 if (result
== KERN_FAILURE_NOFAULT
) {
434 result
= KERN_FAILURE
;
437 if (result
!= KERN_PROTECTION_FAILURE
||
438 (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) != VM_FAULT_USER_WIRE
)
440 if (result
== KERN_INVALID_ADDRESS
&& growstack
&&
441 map
!= &kernel_map
&& curproc
!= NULL
) {
442 result
= vm_map_growstack(map
, vaddr
);
443 if (result
== KERN_SUCCESS
) {
448 result
= KERN_FAILURE
;
454 * If we are user-wiring a r/w segment, and it is COW, then
455 * we need to do the COW operation. Note that we don't
456 * currently COW RO sections now, because it is NOT desirable
457 * to COW .text. We simply keep .text from ever being COW'ed
458 * and take the heat that one cannot debug wired .text sections.
460 * XXX Try to allow the above by specifying OVERRIDE_WRITE.
462 result
= vm_map_lookup(&fs
.map
, vaddr
,
463 VM_PROT_READ
|VM_PROT_WRITE
|
464 VM_PROT_OVERRIDE_WRITE
,
465 &fs
.entry
, &fs
.first_object
,
466 &first_pindex
, &fs
.first_prot
,
468 if (result
!= KERN_SUCCESS
) {
469 /* could also be KERN_FAILURE_NOFAULT */
470 result
= KERN_FAILURE
;
475 * If we don't COW now, on a user wire, the user will never
476 * be able to write to the mapping. If we don't make this
477 * restriction, the bookkeeping would be nearly impossible.
479 * XXX We have a shared lock, this will have a MP race but
480 * I don't see how it can hurt anything.
482 if ((fs
.entry
->protection
& VM_PROT_WRITE
) == 0) {
483 atomic_clear_char(&fs
.entry
->max_protection
,
489 * fs.map is read-locked
491 * Misc checks. Save the map generation number to detect races.
493 fs
.map_generation
= fs
.map
->timestamp
;
494 fs
.lookup_still_valid
= TRUE
;
496 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
497 fs
.prot
= fs
.first_prot
; /* default (used by uksmap) */
499 if (fs
.entry
->eflags
& (MAP_ENTRY_NOFAULT
| MAP_ENTRY_KSTACK
)) {
500 if (fs
.entry
->eflags
& MAP_ENTRY_NOFAULT
) {
501 panic("vm_fault: fault on nofault entry, addr: %p",
504 if ((fs
.entry
->eflags
& MAP_ENTRY_KSTACK
) &&
505 vaddr
>= fs
.entry
->start
&&
506 vaddr
< fs
.entry
->start
+ PAGE_SIZE
) {
507 panic("vm_fault: fault on stack guard, addr: %p",
513 * A user-kernel shared map has no VM object and bypasses
514 * everything. We execute the uksmap function with a temporary
515 * fictitious vm_page. The address is directly mapped with no
518 if (fs
.entry
->maptype
== VM_MAPTYPE_UKSMAP
) {
519 struct vm_page fakem
;
521 bzero(&fakem
, sizeof(fakem
));
522 fakem
.pindex
= first_pindex
;
523 fakem
.flags
= PG_FICTITIOUS
| PG_UNMANAGED
;
524 fakem
.busy_count
= PBUSY_LOCKED
;
525 fakem
.valid
= VM_PAGE_BITS_ALL
;
526 fakem
.pat_mode
= VM_MEMATTR_DEFAULT
;
527 if (fs
.entry
->object
.uksmap(fs
.entry
->aux
.dev
, &fakem
)) {
528 result
= KERN_FAILURE
;
532 pmap_enter(fs
.map
->pmap
, vaddr
, &fakem
, fs
.prot
| inherit_prot
,
533 (fs
.wflags
& FW_WIRED
), fs
.entry
);
538 * A system map entry may return a NULL object. No object means
539 * no pager means an unrecoverable kernel fault.
541 if (fs
.first_object
== NULL
) {
542 panic("vm_fault: unrecoverable fault at %p in entry %p",
543 (void *)vaddr
, fs
.entry
);
547 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
550 * Unfortunately a deadlock can occur if we are forced to page-in
551 * from swap, but diving all the way into the vm_pager_get_page()
552 * function to find out is too much. Just check the object type.
554 * The deadlock is a CAM deadlock on a busy VM page when trying
555 * to finish an I/O if another process gets stuck in
556 * vop_helper_read_shortcut() due to a swap fault.
558 if ((td
->td_flags
& TDF_NOFAULT
) &&
560 fs
.first_object
->type
== OBJT_VNODE
||
561 fs
.first_object
->type
== OBJT_SWAP
||
562 fs
.first_object
->backing_object
)) {
563 result
= KERN_FAILURE
;
569 * If the entry is wired we cannot change the page protection.
571 if (fs
.wflags
& FW_WIRED
)
572 fault_type
= fs
.first_prot
;
575 * We generally want to avoid unnecessary exclusive modes on backing
576 * and terminal objects because this can seriously interfere with
577 * heavily fork()'d processes (particularly /bin/sh scripts).
579 * However, we also want to avoid unnecessary retries due to needed
580 * shared->exclusive promotion for common faults. Exclusive mode is
581 * always needed if any page insertion, rename, or free occurs in an
582 * object (and also indirectly if any I/O is done).
584 * The main issue here is going to be fs.first_shared. If the
585 * first_object has a backing object which isn't shadowed and the
586 * process is single-threaded we might as well use an exclusive
587 * lock/chain right off the bat.
589 if (fs
.first_shared
&& fs
.first_object
->backing_object
&&
590 LIST_EMPTY(&fs
.first_object
->shadow_head
) &&
591 td
->td_proc
&& td
->td_proc
->p_nthreads
== 1) {
596 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
597 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
598 * we can try shared first.
600 if (fault_flags
& VM_FAULT_UNSWAP
) {
605 * Obtain a top-level object lock, shared or exclusive depending
606 * on fs.first_shared. If a shared lock winds up being insufficient
607 * we will retry with an exclusive lock.
609 * The vnode pager lock is always shared.
612 vm_object_hold_shared(fs
.first_object
);
614 vm_object_hold(fs
.first_object
);
616 fs
.vp
= vnode_pager_lock(fs
.first_object
);
619 * The page we want is at (first_object, first_pindex), but if the
620 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
621 * page table to figure out the actual pindex.
623 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
627 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
628 vm_map_interlock(fs
.map
, &ilock
, vaddr
, vaddr
+ PAGE_SIZE
);
630 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
631 fs
.entry
->aux
.master_pde
,
633 if (result
== KERN_TRY_AGAIN
) {
634 vm_map_deinterlock(fs
.map
, &ilock
);
635 vm_object_drop(fs
.first_object
);
639 if (result
!= KERN_SUCCESS
) {
640 vm_map_deinterlock(fs
.map
, &ilock
);
646 * Now we have the actual (object, pindex), fault in the page. If
647 * vm_fault_object() fails it will unlock and deallocate the FS
648 * data. If it succeeds everything remains locked and fs->object
649 * will have an additional PIP count if it is not equal to
652 * vm_fault_object will set fs->prot for the pmap operation. It is
653 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
654 * page can be safely written. However, it will force a read-only
655 * mapping for a read fault if the memory is managed by a virtual
658 * If the fault code uses the shared object lock shortcut
659 * we must not try to burst (we can't allocate VM pages).
661 result
= vm_fault_object(&fs
, first_pindex
, fault_type
, 1);
663 if (debug_fault
> 0) {
665 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
666 "fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
667 result
, (intmax_t)vaddr
, fault_type
, fault_flags
,
668 fs
.m
, fs
.prot
, fs
.wflags
, fs
.entry
);
671 if (result
== KERN_TRY_AGAIN
) {
673 vm_map_deinterlock(fs
.map
, &ilock
);
674 vm_object_drop(fs
.first_object
);
678 if (result
!= KERN_SUCCESS
) {
680 vm_map_deinterlock(fs
.map
, &ilock
);
685 * On success vm_fault_object() does not unlock or deallocate, and fs.m
686 * will contain a busied page.
688 * Enter the page into the pmap and do pmap-related adjustments.
690 KKASSERT(fs
.lookup_still_valid
== TRUE
);
691 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
692 pmap_enter(fs
.map
->pmap
, vaddr
, fs
.m
, fs
.prot
| inherit_prot
,
693 fs
.wflags
& FW_WIRED
, fs
.entry
);
696 vm_map_deinterlock(fs
.map
, &ilock
);
698 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
699 KKASSERT(fs
.m
->busy_count
& PBUSY_LOCKED
);
702 * If the page is not wired down, then put it where the pageout daemon
705 if (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) {
706 if (fs
.wflags
& FW_WIRED
)
709 vm_page_unwire(fs
.m
, 1);
711 vm_page_activate(fs
.m
);
713 vm_page_wakeup(fs
.m
);
716 * Burst in a few more pages if possible. The fs.map should still
717 * be locked. To avoid interlocking against a vnode->getblk
718 * operation we had to be sure to unbusy our primary vm_page above
721 * A normal burst can continue down backing store, only execute
722 * if we are holding an exclusive lock, otherwise the exclusive
723 * locks the burst code gets might cause excessive SMP collisions.
725 * A quick burst can be utilized when there is no backing object
726 * (i.e. a shared file mmap).
728 if ((fault_flags
& VM_FAULT_BURST
) &&
729 (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) == 0 &&
730 (fs
.wflags
& FW_WIRED
) == 0) {
731 if (fs
.first_shared
== 0 && fs
.shared
== 0) {
732 vm_prefault(fs
.map
->pmap
, vaddr
,
733 fs
.entry
, fs
.prot
, fault_flags
);
735 vm_prefault_quick(fs
.map
->pmap
, vaddr
,
736 fs
.entry
, fs
.prot
, fault_flags
);
741 mycpu
->gd_cnt
.v_vm_faults
++;
743 ++td
->td_lwp
->lwp_ru
.ru_minflt
;
746 * Unlock everything, and return
752 td
->td_lwp
->lwp_ru
.ru_majflt
++;
754 td
->td_lwp
->lwp_ru
.ru_minflt
++;
758 /*vm_object_deallocate(fs.first_object);*/
760 /*fs.first_object = NULL; must still drop later */
762 result
= KERN_SUCCESS
;
765 vm_object_drop(fs
.first_object
);
768 lp
->lwp_flags
&= ~LWP_PAGING
;
770 #if !defined(NO_SWAPPING)
772 * Check the process RSS limit and force deactivation and
773 * (asynchronous) paging if necessary. This is a complex operation,
774 * only do it for direct user-mode faults, for now.
776 * To reduce overhead implement approximately a ~16MB hysteresis.
779 if ((fault_flags
& VM_FAULT_USERMODE
) && lp
&&
780 p
->p_limit
&& map
->pmap
&& vm_pageout_memuse_mode
>= 1 &&
781 map
!= &kernel_map
) {
785 limit
= OFF_TO_IDX(qmin(p
->p_rlimit
[RLIMIT_RSS
].rlim_cur
,
786 p
->p_rlimit
[RLIMIT_RSS
].rlim_max
));
787 size
= pmap_resident_tlnw_count(map
->pmap
);
788 if (limit
>= 0 && size
> 4096 && size
- 4096 >= limit
) {
789 vm_pageout_map_deactivate_pages(map
, limit
);
798 * Fault in the specified virtual address in the current process map,
799 * returning a held VM page or NULL. See vm_fault_page() for more
805 vm_fault_page_quick(vm_offset_t va
, vm_prot_t fault_type
,
806 int *errorp
, int *busyp
)
808 struct lwp
*lp
= curthread
->td_lwp
;
811 m
= vm_fault_page(&lp
->lwp_vmspace
->vm_map
, va
,
812 fault_type
, VM_FAULT_NORMAL
,
818 * Fault in the specified virtual address in the specified map, doing all
819 * necessary manipulation of the object store and all necessary I/O. Return
820 * a held VM page or NULL, and set *errorp. The related pmap is not
823 * If busyp is not NULL then *busyp will be set to TRUE if this routine
824 * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
825 * does not (VM_PROT_WRITE not specified or busyp is NULL). If busyp is
826 * NULL the returned page is only held.
828 * If the caller has no intention of writing to the page's contents, busyp
829 * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
830 * without busying the page.
832 * The returned page will also be marked PG_REFERENCED.
834 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
835 * error will be returned.
840 vm_fault_page(vm_map_t map
, vm_offset_t vaddr
, vm_prot_t fault_type
,
841 int fault_flags
, int *errorp
, int *busyp
)
843 vm_pindex_t first_pindex
;
844 struct faultstate fs
;
849 vm_prot_t orig_fault_type
= fault_type
;
854 fs
.fault_flags
= fault_flags
;
855 KKASSERT((fault_flags
& VM_FAULT_WIRE_MASK
) == 0);
858 * Dive the pmap (concurrency possible). If we find the
859 * appropriate page we can terminate early and quickly.
861 * This works great for normal programs but will always return
862 * NULL for host lookups of vkernel maps in VMM mode.
864 * NOTE: pmap_fault_page_quick() might not busy the page. If
865 * VM_PROT_WRITE is set in fault_type and pmap_fault_page_quick()
866 * returns non-NULL, it will safely dirty the returned vm_page_t
867 * for us. We cannot safely dirty it here (it might not be
870 fs
.m
= pmap_fault_page_quick(map
->pmap
, vaddr
, fault_type
, busyp
);
877 * Otherwise take a concurrency hit and do a formal page
881 fs
.shared
= vm_shared_fault
;
882 fs
.first_shared
= vm_shared_fault
;
886 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
887 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
888 * we can try shared first.
890 if (fault_flags
& VM_FAULT_UNSWAP
) {
896 * Find the vm_map_entry representing the backing store and resolve
897 * the top level object and page index. This may have the side
898 * effect of executing a copy-on-write on the map entry and/or
899 * creating a shadow object, but will not COW any actual VM pages.
901 * On success fs.map is left read-locked and various other fields
902 * are initialized but not otherwise referenced or locked.
904 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
905 * if the map entry is a virtual page table and also writable,
906 * so we can set the 'A'accessed bit in the virtual page table
910 result
= vm_map_lookup(&fs
.map
, vaddr
, fault_type
,
911 &fs
.entry
, &fs
.first_object
,
912 &first_pindex
, &fs
.first_prot
, &fs
.wflags
);
914 if (result
!= KERN_SUCCESS
) {
915 if (result
== KERN_FAILURE_NOFAULT
) {
916 *errorp
= KERN_FAILURE
;
920 if (result
!= KERN_PROTECTION_FAILURE
||
921 (fs
.fault_flags
& VM_FAULT_WIRE_MASK
) != VM_FAULT_USER_WIRE
)
923 if (result
== KERN_INVALID_ADDRESS
&& growstack
&&
924 map
!= &kernel_map
&& curproc
!= NULL
) {
925 result
= vm_map_growstack(map
, vaddr
);
926 if (result
== KERN_SUCCESS
) {
931 result
= KERN_FAILURE
;
939 * If we are user-wiring a r/w segment, and it is COW, then
940 * we need to do the COW operation. Note that we don't
941 * currently COW RO sections now, because it is NOT desirable
942 * to COW .text. We simply keep .text from ever being COW'ed
943 * and take the heat that one cannot debug wired .text sections.
945 result
= vm_map_lookup(&fs
.map
, vaddr
,
946 VM_PROT_READ
|VM_PROT_WRITE
|
947 VM_PROT_OVERRIDE_WRITE
,
948 &fs
.entry
, &fs
.first_object
,
949 &first_pindex
, &fs
.first_prot
,
951 if (result
!= KERN_SUCCESS
) {
952 /* could also be KERN_FAILURE_NOFAULT */
953 *errorp
= KERN_FAILURE
;
959 * If we don't COW now, on a user wire, the user will never
960 * be able to write to the mapping. If we don't make this
961 * restriction, the bookkeeping would be nearly impossible.
963 * XXX We have a shared lock, this will have a MP race but
964 * I don't see how it can hurt anything.
966 if ((fs
.entry
->protection
& VM_PROT_WRITE
) == 0) {
967 atomic_clear_char(&fs
.entry
->max_protection
,
973 * fs.map is read-locked
975 * Misc checks. Save the map generation number to detect races.
977 fs
.map_generation
= fs
.map
->timestamp
;
978 fs
.lookup_still_valid
= TRUE
;
980 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
982 if (fs
.entry
->eflags
& MAP_ENTRY_NOFAULT
) {
983 panic("vm_fault: fault on nofault entry, addr: %lx",
988 * A user-kernel shared map has no VM object and bypasses
989 * everything. We execute the uksmap function with a temporary
990 * fictitious vm_page. The address is directly mapped with no
993 if (fs
.entry
->maptype
== VM_MAPTYPE_UKSMAP
) {
994 struct vm_page fakem
;
996 bzero(&fakem
, sizeof(fakem
));
997 fakem
.pindex
= first_pindex
;
998 fakem
.flags
= PG_FICTITIOUS
| PG_UNMANAGED
;
999 fakem
.busy_count
= PBUSY_LOCKED
;
1000 fakem
.valid
= VM_PAGE_BITS_ALL
;
1001 fakem
.pat_mode
= VM_MEMATTR_DEFAULT
;
1002 if (fs
.entry
->object
.uksmap(fs
.entry
->aux
.dev
, &fakem
)) {
1003 *errorp
= KERN_FAILURE
;
1008 fs
.m
= PHYS_TO_VM_PAGE(fakem
.phys_addr
);
1011 *busyp
= 0; /* don't need to busy R or W */
1019 * A system map entry may return a NULL object. No object means
1020 * no pager means an unrecoverable kernel fault.
1022 if (fs
.first_object
== NULL
) {
1023 panic("vm_fault: unrecoverable fault at %p in entry %p",
1024 (void *)vaddr
, fs
.entry
);
1028 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
1031 * Unfortunately a deadlock can occur if we are forced to page-in
1032 * from swap, but diving all the way into the vm_pager_get_page()
1033 * function to find out is too much. Just check the object type.
1035 if ((curthread
->td_flags
& TDF_NOFAULT
) &&
1037 fs
.first_object
->type
== OBJT_VNODE
||
1038 fs
.first_object
->type
== OBJT_SWAP
||
1039 fs
.first_object
->backing_object
)) {
1040 *errorp
= KERN_FAILURE
;
1047 * If the entry is wired we cannot change the page protection.
1049 if (fs
.wflags
& FW_WIRED
)
1050 fault_type
= fs
.first_prot
;
1053 * Make a reference to this object to prevent its disposal while we
1054 * are messing with it. Once we have the reference, the map is free
1055 * to be diddled. Since objects reference their shadows (and copies),
1056 * they will stay around as well.
1058 * The reference should also prevent an unexpected collapse of the
1059 * parent that might move pages from the current object into the
1060 * parent unexpectedly, resulting in corruption.
1062 * Bump the paging-in-progress count to prevent size changes (e.g.
1063 * truncation operations) during I/O. This must be done after
1064 * obtaining the vnode lock in order to avoid possible deadlocks.
1066 if (fs
.first_shared
)
1067 vm_object_hold_shared(fs
.first_object
);
1069 vm_object_hold(fs
.first_object
);
1071 fs
.vp
= vnode_pager_lock(fs
.first_object
); /* shared */
1074 * The page we want is at (first_object, first_pindex), but if the
1075 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
1076 * page table to figure out the actual pindex.
1078 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
1081 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
1082 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
1083 fs
.entry
->aux
.master_pde
,
1085 if (result
== KERN_TRY_AGAIN
) {
1086 vm_object_drop(fs
.first_object
);
1090 if (result
!= KERN_SUCCESS
) {
1098 * Now we have the actual (object, pindex), fault in the page. If
1099 * vm_fault_object() fails it will unlock and deallocate the FS
1100 * data. If it succeeds everything remains locked and fs->object
1101 * will have an additinal PIP count if it is not equal to
1105 result
= vm_fault_object(&fs
, first_pindex
, fault_type
, 1);
1107 if (result
== KERN_TRY_AGAIN
) {
1108 vm_object_drop(fs
.first_object
);
1110 didcow
|= fs
.wflags
& FW_DIDCOW
;
1113 if (result
!= KERN_SUCCESS
) {
1119 if ((orig_fault_type
& VM_PROT_WRITE
) &&
1120 (fs
.prot
& VM_PROT_WRITE
) == 0) {
1121 *errorp
= KERN_PROTECTION_FAILURE
;
1122 unlock_and_deallocate(&fs
);
1128 * Generally speaking we don't want to update the pmap because
1129 * this routine can be called many times for situations that do
1130 * not require updating the pmap, not to mention the page might
1131 * already be in the pmap.
1133 * However, if our vm_map_lookup() results in a COW, we need to
1134 * at least remove the pte from the pmap to guarantee proper
1135 * visibility of modifications made to the process. For example,
1136 * modifications made by vkernel uiocopy/related routines and
1137 * modifications made by ptrace().
1139 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
1141 pmap_enter(fs
.map
->pmap
, vaddr
, fs
.m
, fs
.prot
,
1142 fs
.wflags
& FW_WIRED
, NULL
);
1143 mycpu
->gd_cnt
.v_vm_faults
++;
1144 if (curthread
->td_lwp
)
1145 ++curthread
->td_lwp
->lwp_ru
.ru_minflt
;
1147 if ((fs
.wflags
| didcow
) | FW_DIDCOW
) {
1148 pmap_remove(fs
.map
->pmap
,
1150 (vaddr
& ~PAGE_MASK
) + PAGE_SIZE
);
1154 * On success vm_fault_object() does not unlock or deallocate, and fs.m
1155 * will contain a busied page. So we must unlock here after having
1156 * messed with the pmap.
1161 * Return a held page. We are not doing any pmap manipulation so do
1162 * not set PG_MAPPED. However, adjust the page flags according to
1163 * the fault type because the caller may not use a managed pmapping
1164 * (so we don't want to lose the fact that the page will be dirtied
1165 * if a write fault was specified).
1167 if (fault_type
& VM_PROT_WRITE
)
1168 vm_page_dirty(fs
.m
);
1169 vm_page_activate(fs
.m
);
1171 if (curthread
->td_lwp
) {
1173 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
1175 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
1180 * Unlock everything, and return the held or busied page.
1183 if (fault_type
& VM_PROT_WRITE
) {
1184 vm_page_dirty(fs
.m
);
1189 vm_page_wakeup(fs
.m
);
1193 vm_page_wakeup(fs
.m
);
1195 /*vm_object_deallocate(fs.first_object);*/
1196 /*fs.first_object = NULL; */
1200 if (fs
.first_object
)
1201 vm_object_drop(fs
.first_object
);
1207 * Fault in the specified (object,offset), dirty the returned page as
1208 * needed. If the requested fault_type cannot be done NULL and an
1209 * error is returned.
1211 * A held (but not busied) page is returned.
1213 * The passed in object must be held as specified by the shared
1217 vm_fault_object_page(vm_object_t object
, vm_ooffset_t offset
,
1218 vm_prot_t fault_type
, int fault_flags
,
1219 int *sharedp
, int *errorp
)
1222 vm_pindex_t first_pindex
;
1223 struct faultstate fs
;
1224 struct vm_map_entry entry
;
1226 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object
));
1227 bzero(&entry
, sizeof(entry
));
1228 entry
.object
.vm_object
= object
;
1229 entry
.maptype
= VM_MAPTYPE_NORMAL
;
1230 entry
.protection
= entry
.max_protection
= fault_type
;
1233 fs
.fault_flags
= fault_flags
;
1235 fs
.shared
= vm_shared_fault
;
1236 fs
.first_shared
= *sharedp
;
1238 KKASSERT((fault_flags
& VM_FAULT_WIRE_MASK
) == 0);
1241 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1242 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
1243 * we can try shared first.
1245 if (fs
.first_shared
&& (fault_flags
& VM_FAULT_UNSWAP
)) {
1246 fs
.first_shared
= 0;
1247 vm_object_upgrade(object
);
1251 * Retry loop as needed (typically for shared->exclusive transitions)
1254 *sharedp
= fs
.first_shared
;
1255 first_pindex
= OFF_TO_IDX(offset
);
1256 fs
.first_object
= object
;
1258 fs
.first_prot
= fault_type
;
1260 /*fs.map_generation = 0; unused */
1263 * Make a reference to this object to prevent its disposal while we
1264 * are messing with it. Once we have the reference, the map is free
1265 * to be diddled. Since objects reference their shadows (and copies),
1266 * they will stay around as well.
1268 * The reference should also prevent an unexpected collapse of the
1269 * parent that might move pages from the current object into the
1270 * parent unexpectedly, resulting in corruption.
1272 * Bump the paging-in-progress count to prevent size changes (e.g.
1273 * truncation operations) during I/O. This must be done after
1274 * obtaining the vnode lock in order to avoid possible deadlocks.
1277 fs
.vp
= vnode_pager_lock(fs
.first_object
);
1279 fs
.lookup_still_valid
= TRUE
;
1281 fs
.object
= fs
.first_object
; /* so unlock_and_deallocate works */
1284 /* XXX future - ability to operate on VM object using vpagetable */
1285 if (fs
.entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
1286 result
= vm_fault_vpagetable(&fs
, &first_pindex
,
1287 fs
.entry
->aux
.master_pde
,
1289 if (result
== KERN_TRY_AGAIN
) {
1290 if (fs
.first_shared
== 0 && *sharedp
)
1291 vm_object_upgrade(object
);
1294 if (result
!= KERN_SUCCESS
) {
1302 * Now we have the actual (object, pindex), fault in the page. If
1303 * vm_fault_object() fails it will unlock and deallocate the FS
1304 * data. If it succeeds everything remains locked and fs->object
1305 * will have an additinal PIP count if it is not equal to
1308 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1309 * We may have to upgrade its lock to handle the requested fault.
1311 result
= vm_fault_object(&fs
, first_pindex
, fault_type
, 0);
1313 if (result
== KERN_TRY_AGAIN
) {
1314 if (fs
.first_shared
== 0 && *sharedp
)
1315 vm_object_upgrade(object
);
1318 if (result
!= KERN_SUCCESS
) {
1323 if ((fault_type
& VM_PROT_WRITE
) && (fs
.prot
& VM_PROT_WRITE
) == 0) {
1324 *errorp
= KERN_PROTECTION_FAILURE
;
1325 unlock_and_deallocate(&fs
);
1330 * On success vm_fault_object() does not unlock or deallocate, so we
1331 * do it here. Note that the returned fs.m will be busied.
1336 * Return a held page. We are not doing any pmap manipulation so do
1337 * not set PG_MAPPED. However, adjust the page flags according to
1338 * the fault type because the caller may not use a managed pmapping
1339 * (so we don't want to lose the fact that the page will be dirtied
1340 * if a write fault was specified).
1343 vm_page_activate(fs
.m
);
1344 if ((fault_type
& VM_PROT_WRITE
) || (fault_flags
& VM_FAULT_DIRTY
))
1345 vm_page_dirty(fs
.m
);
1346 if (fault_flags
& VM_FAULT_UNSWAP
)
1347 swap_pager_unswapped(fs
.m
);
1350 * Indicate that the page was accessed.
1352 vm_page_flag_set(fs
.m
, PG_REFERENCED
);
1354 if (curthread
->td_lwp
) {
1356 curthread
->td_lwp
->lwp_ru
.ru_majflt
++;
1358 curthread
->td_lwp
->lwp_ru
.ru_minflt
++;
1363 * Unlock everything, and return the held page.
1365 vm_page_wakeup(fs
.m
);
1366 /*vm_object_deallocate(fs.first_object);*/
1367 /*fs.first_object = NULL; */
1374 * Translate the virtual page number (first_pindex) that is relative
1375 * to the address space into a logical page number that is relative to the
1376 * backing object. Use the virtual page table pointed to by (vpte).
1378 * Possibly downgrade the protection based on the vpte bits.
1380 * This implements an N-level page table. Any level can terminate the
1381 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
1382 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1386 vm_fault_vpagetable(struct faultstate
*fs
, vm_pindex_t
*pindex
,
1387 vpte_t vpte
, int fault_type
, int allow_nofault
)
1390 struct lwbuf lwb_cache
;
1391 int vshift
= VPTE_FRAME_END
- PAGE_SHIFT
; /* index bits remaining */
1395 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs
->first_object
));
1398 * We cannot proceed if the vpte is not valid, not readable
1399 * for a read fault, not writable for a write fault, or
1400 * not executable for an instruction execution fault.
1402 if ((vpte
& VPTE_V
) == 0) {
1403 unlock_and_deallocate(fs
);
1404 return (KERN_FAILURE
);
1406 if ((fault_type
& VM_PROT_WRITE
) && (vpte
& VPTE_RW
) == 0) {
1407 unlock_and_deallocate(fs
);
1408 return (KERN_FAILURE
);
1410 if ((fault_type
& VM_PROT_EXECUTE
) && (vpte
& VPTE_NX
)) {
1411 unlock_and_deallocate(fs
);
1412 return (KERN_FAILURE
);
1414 if ((vpte
& VPTE_PS
) || vshift
== 0)
1418 * Get the page table page. Nominally we only read the page
1419 * table, but since we are actively setting VPTE_M and VPTE_A,
1420 * tell vm_fault_object() that we are writing it.
1422 * There is currently no real need to optimize this.
1424 result
= vm_fault_object(fs
, (vpte
& VPTE_FRAME
) >> PAGE_SHIFT
,
1425 VM_PROT_READ
|VM_PROT_WRITE
,
1427 if (result
!= KERN_SUCCESS
)
1431 * Process the returned fs.m and look up the page table
1432 * entry in the page table page.
1434 vshift
-= VPTE_PAGE_BITS
;
1435 lwb
= lwbuf_alloc(fs
->m
, &lwb_cache
);
1436 ptep
= ((vpte_t
*)lwbuf_kva(lwb
) +
1437 ((*pindex
>> vshift
) & VPTE_PAGE_MASK
));
1438 vm_page_activate(fs
->m
);
1441 * Page table write-back - entire operation including
1442 * validation of the pte must be atomic to avoid races
1443 * against the vkernel changing the pte.
1445 * If the vpte is valid for the* requested operation, do
1446 * a write-back to the page table.
1448 * XXX VPTE_M is not set properly for page directory pages.
1449 * It doesn't get set in the page directory if the page table
1450 * is modified during a read access.
1456 * Reload for the cmpset, but make sure the pte is
1463 if ((vpte
& VPTE_V
) == 0)
1466 if ((fault_type
& VM_PROT_WRITE
) && (vpte
& VPTE_RW
))
1467 nvpte
|= VPTE_M
| VPTE_A
;
1468 if (fault_type
& (VM_PROT_READ
| VM_PROT_EXECUTE
))
1472 if (atomic_cmpset_long(ptep
, vpte
, nvpte
)) {
1473 vm_page_dirty(fs
->m
);
1478 vm_page_flag_set(fs
->m
, PG_REFERENCED
);
1479 vm_page_wakeup(fs
->m
);
1481 cleanup_successful_fault(fs
);
1485 * When the vkernel sets VPTE_RW it expects the real kernel to
1486 * reflect VPTE_M back when the page is modified via the mapping.
1487 * In order to accomplish this the real kernel must map the page
1488 * read-only for read faults and use write faults to reflect VPTE_M
1491 * Once VPTE_M has been set, the real kernel's pte allows writing.
1492 * If the vkernel clears VPTE_M the vkernel must be sure to
1493 * MADV_INVAL the real kernel's mappings to force the real kernel
1494 * to re-fault on the next write so oit can set VPTE_M again.
1496 if ((fault_type
& VM_PROT_WRITE
) == 0 &&
1497 (vpte
& (VPTE_RW
| VPTE_M
)) != (VPTE_RW
| VPTE_M
)) {
1498 fs
->first_prot
&= ~VM_PROT_WRITE
;
1502 * Disable EXECUTE perms if NX bit is set.
1505 fs
->first_prot
&= ~VM_PROT_EXECUTE
;
1508 * Combine remaining address bits with the vpte.
1510 *pindex
= ((vpte
& VPTE_FRAME
) >> PAGE_SHIFT
) +
1511 (*pindex
& ((1L << vshift
) - 1));
1512 return (KERN_SUCCESS
);
1517 * This is the core of the vm_fault code.
1519 * Do all operations required to fault-in (fs.first_object, pindex). Run
1520 * through the shadow chain as necessary and do required COW or virtual
1521 * copy operations. The caller has already fully resolved the vm_map_entry
1522 * and, if appropriate, has created a copy-on-write layer. All we need to
1523 * do is iterate the object chain.
1525 * On failure (fs) is unlocked and deallocated and the caller may return or
1526 * retry depending on the failure code. On success (fs) is NOT unlocked or
1527 * deallocated, fs.m will contained a resolved, busied page, and fs.object
1528 * will have an additional PIP count if it is not equal to fs.first_object.
1530 * If locks based on fs->first_shared or fs->shared are insufficient,
1531 * clear the appropriate field(s) and return RETRY. COWs require that
1532 * first_shared be 0, while page allocations (or frees) require that
1533 * shared be 0. Renames require that both be 0.
1535 * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1536 * we will have to retry with it exclusive if the vm_page is
1539 * fs->first_object must be held on call.
1543 vm_fault_object(struct faultstate
*fs
, vm_pindex_t first_pindex
,
1544 vm_prot_t fault_type
, int allow_nofault
)
1546 vm_object_t next_object
;
1550 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs
->first_object
));
1551 fs
->prot
= fs
->first_prot
;
1552 fs
->object
= fs
->first_object
;
1553 pindex
= first_pindex
;
1555 vm_object_chain_acquire(fs
->first_object
, fs
->shared
);
1556 vm_object_pip_add(fs
->first_object
, 1);
1559 * If a read fault occurs we try to upgrade the page protection
1560 * and make it also writable if possible. There are three cases
1561 * where we cannot make the page mapping writable:
1563 * (1) The mapping is read-only or the VM object is read-only,
1564 * fs->prot above will simply not have VM_PROT_WRITE set.
1566 * (2) If the mapping is a virtual page table fs->first_prot will
1567 * have already been properly adjusted by vm_fault_vpagetable().
1568 * to detect writes so we can set VPTE_M in the virtual page
1569 * table. Used by vkernels.
1571 * (3) If the VM page is read-only or copy-on-write, upgrading would
1572 * just result in an unnecessary COW fault.
1574 * (4) If the pmap specifically requests A/M bit emulation, downgrade
1578 /* see vpagetable code */
1579 if (fs
->entry
->maptype
== VM_MAPTYPE_VPAGETABLE
) {
1580 if ((fault_type
& VM_PROT_WRITE
) == 0)
1581 fs
->prot
&= ~VM_PROT_WRITE
;
1585 if (curthread
->td_lwp
&& curthread
->td_lwp
->lwp_vmspace
&&
1586 pmap_emulate_ad_bits(&curthread
->td_lwp
->lwp_vmspace
->vm_pmap
)) {
1587 if ((fault_type
& VM_PROT_WRITE
) == 0)
1588 fs
->prot
&= ~VM_PROT_WRITE
;
1591 /* vm_object_hold(fs->object); implied b/c object == first_object */
1595 * The entire backing chain from first_object to object
1596 * inclusive is chainlocked.
1598 * If the object is dead, we stop here
1600 if (fs
->object
->flags
& OBJ_DEAD
) {
1601 vm_object_pip_wakeup(fs
->first_object
);
1602 vm_object_chain_release_all(fs
->first_object
,
1604 if (fs
->object
!= fs
->first_object
)
1605 vm_object_drop(fs
->object
);
1606 unlock_and_deallocate(fs
);
1607 return (KERN_PROTECTION_FAILURE
);
1611 * See if the page is resident. Wait/Retry if the page is
1612 * busy (lots of stuff may have changed so we can't continue
1615 * We can theoretically allow the soft-busy case on a read
1616 * fault if the page is marked valid, but since such
1617 * pages are typically already pmap'd, putting that
1618 * special case in might be more effort then it is
1619 * worth. We cannot under any circumstances mess
1620 * around with a vm_page_t->busy page except, perhaps,
1623 fs
->m
= vm_page_lookup_busy_try(fs
->object
, pindex
,
1626 vm_object_pip_wakeup(fs
->first_object
);
1627 vm_object_chain_release_all(fs
->first_object
,
1629 if (fs
->object
!= fs
->first_object
)
1630 vm_object_drop(fs
->object
);
1632 vm_page_sleep_busy(fs
->m
, TRUE
, "vmpfw");
1633 mycpu
->gd_cnt
.v_intrans
++;
1634 /*vm_object_deallocate(fs->first_object);*/
1635 /*fs->first_object = NULL;*/
1637 return (KERN_TRY_AGAIN
);
1641 * The page is busied for us.
1643 * If reactivating a page from PQ_CACHE we may have
1646 int queue
= fs
->m
->queue
;
1647 vm_page_unqueue_nowakeup(fs
->m
);
1649 if ((queue
- fs
->m
->pc
) == PQ_CACHE
&&
1650 vm_page_count_severe()) {
1651 vm_page_activate(fs
->m
);
1652 vm_page_wakeup(fs
->m
);
1654 vm_object_pip_wakeup(fs
->first_object
);
1655 vm_object_chain_release_all(fs
->first_object
,
1657 if (fs
->object
!= fs
->first_object
)
1658 vm_object_drop(fs
->object
);
1659 unlock_and_deallocate(fs
);
1660 if (allow_nofault
== 0 ||
1661 (curthread
->td_flags
& TDF_NOFAULT
) == 0) {
1666 if (td
->td_proc
&& (td
->td_proc
->p_flags
& P_LOWMEMKILL
))
1667 return (KERN_PROTECTION_FAILURE
);
1669 return (KERN_TRY_AGAIN
);
1673 * If it still isn't completely valid (readable),
1674 * or if a read-ahead-mark is set on the VM page,
1675 * jump to readrest, else we found the page and
1678 * We can release the spl once we have marked the
1681 if (fs
->m
->object
!= &kernel_object
) {
1682 if ((fs
->m
->valid
& VM_PAGE_BITS_ALL
) !=
1686 if (fs
->m
->flags
& PG_RAM
) {
1689 vm_page_flag_clear(fs
->m
, PG_RAM
);
1693 break; /* break to PAGE HAS BEEN FOUND */
1697 * Page is not resident, If this is the search termination
1698 * or the pager might contain the page, allocate a new page.
1700 if (TRYPAGER(fs
) || fs
->object
== fs
->first_object
) {
1702 * Allocating, must be exclusive.
1704 if (fs
->object
== fs
->first_object
&&
1706 fs
->first_shared
= 0;
1707 vm_object_pip_wakeup(fs
->first_object
);
1708 vm_object_chain_release_all(fs
->first_object
,
1710 if (fs
->object
!= fs
->first_object
)
1711 vm_object_drop(fs
->object
);
1712 unlock_and_deallocate(fs
);
1713 return (KERN_TRY_AGAIN
);
1715 if (fs
->object
!= fs
->first_object
&&
1717 fs
->first_shared
= 0;
1719 vm_object_pip_wakeup(fs
->first_object
);
1720 vm_object_chain_release_all(fs
->first_object
,
1722 if (fs
->object
!= fs
->first_object
)
1723 vm_object_drop(fs
->object
);
1724 unlock_and_deallocate(fs
);
1725 return (KERN_TRY_AGAIN
);
1729 * If the page is beyond the object size we fail
1731 if (pindex
>= fs
->object
->size
) {
1732 vm_object_pip_wakeup(fs
->first_object
);
1733 vm_object_chain_release_all(fs
->first_object
,
1735 if (fs
->object
!= fs
->first_object
)
1736 vm_object_drop(fs
->object
);
1737 unlock_and_deallocate(fs
);
1738 return (KERN_PROTECTION_FAILURE
);
1742 * Allocate a new page for this object/offset pair.
1744 * It is possible for the allocation to race, so
1748 if (!vm_page_count_severe()) {
1749 fs
->m
= vm_page_alloc(fs
->object
, pindex
,
1750 ((fs
->vp
|| fs
->object
->backing_object
) ?
1751 VM_ALLOC_NULL_OK
| VM_ALLOC_NORMAL
:
1752 VM_ALLOC_NULL_OK
| VM_ALLOC_NORMAL
|
1753 VM_ALLOC_USE_GD
| VM_ALLOC_ZERO
));
1755 if (fs
->m
== NULL
) {
1756 vm_object_pip_wakeup(fs
->first_object
);
1757 vm_object_chain_release_all(fs
->first_object
,
1759 if (fs
->object
!= fs
->first_object
)
1760 vm_object_drop(fs
->object
);
1761 unlock_and_deallocate(fs
);
1762 if (allow_nofault
== 0 ||
1763 (curthread
->td_flags
& TDF_NOFAULT
) == 0) {
1768 if (td
->td_proc
&& (td
->td_proc
->p_flags
& P_LOWMEMKILL
))
1769 return (KERN_PROTECTION_FAILURE
);
1771 return (KERN_TRY_AGAIN
);
1775 * Fall through to readrest. We have a new page which
1776 * will have to be paged (since m->valid will be 0).
1782 * We have found an invalid or partially valid page, a
1783 * page with a read-ahead mark which might be partially or
1784 * fully valid (and maybe dirty too), or we have allocated
1787 * Attempt to fault-in the page if there is a chance that the
1788 * pager has it, and potentially fault in additional pages
1791 * If TRYPAGER is true then fs.m will be non-NULL and busied
1797 u_char behavior
= vm_map_entry_behavior(fs
->entry
);
1799 if (behavior
== MAP_ENTRY_BEHAV_RANDOM
)
1805 * Doing I/O may synchronously insert additional
1806 * pages so we can't be shared at this point either.
1808 * NOTE: We can't free fs->m here in the allocated
1809 * case (fs->object != fs->first_object) as
1810 * this would require an exclusively locked
1813 if (fs
->object
== fs
->first_object
&&
1815 vm_page_deactivate(fs
->m
);
1816 vm_page_wakeup(fs
->m
);
1818 fs
->first_shared
= 0;
1819 vm_object_pip_wakeup(fs
->first_object
);
1820 vm_object_chain_release_all(fs
->first_object
,
1822 if (fs
->object
!= fs
->first_object
)
1823 vm_object_drop(fs
->object
);
1824 unlock_and_deallocate(fs
);
1825 return (KERN_TRY_AGAIN
);
1827 if (fs
->object
!= fs
->first_object
&&
1829 vm_page_deactivate(fs
->m
);
1830 vm_page_wakeup(fs
->m
);
1832 fs
->first_shared
= 0;
1834 vm_object_pip_wakeup(fs
->first_object
);
1835 vm_object_chain_release_all(fs
->first_object
,
1837 if (fs
->object
!= fs
->first_object
)
1838 vm_object_drop(fs
->object
);
1839 unlock_and_deallocate(fs
);
1840 return (KERN_TRY_AGAIN
);
1844 * Avoid deadlocking against the map when doing I/O.
1845 * fs.object and the page is BUSY'd.
1847 * NOTE: Once unlocked, fs->entry can become stale
1848 * so this will NULL it out.
1850 * NOTE: fs->entry is invalid until we relock the
1851 * map and verify that the timestamp has not
1857 * Acquire the page data. We still hold a ref on
1858 * fs.object and the page has been BUSY's.
1860 * The pager may replace the page (for example, in
1861 * order to enter a fictitious page into the
1862 * object). If it does so it is responsible for
1863 * cleaning up the passed page and properly setting
1864 * the new page BUSY.
1866 * If we got here through a PG_RAM read-ahead
1867 * mark the page may be partially dirty and thus
1868 * not freeable. Don't bother checking to see
1869 * if the pager has the page because we can't free
1870 * it anyway. We have to depend on the get_page
1871 * operation filling in any gaps whether there is
1872 * backing store or not.
1874 rv
= vm_pager_get_page(fs
->object
, &fs
->m
, seqaccess
);
1876 if (rv
== VM_PAGER_OK
) {
1878 * Relookup in case pager changed page. Pager
1879 * is responsible for disposition of old page
1882 * XXX other code segments do relookups too.
1883 * It's a bad abstraction that needs to be
1886 fs
->m
= vm_page_lookup(fs
->object
, pindex
);
1887 if (fs
->m
== NULL
) {
1888 vm_object_pip_wakeup(fs
->first_object
);
1889 vm_object_chain_release_all(
1890 fs
->first_object
, fs
->object
);
1891 if (fs
->object
!= fs
->first_object
)
1892 vm_object_drop(fs
->object
);
1893 unlock_and_deallocate(fs
);
1894 return (KERN_TRY_AGAIN
);
1897 break; /* break to PAGE HAS BEEN FOUND */
1901 * Remove the bogus page (which does not exist at this
1902 * object/offset); before doing so, we must get back
1903 * our object lock to preserve our invariant.
1905 * Also wake up any other process that may want to bring
1908 * If this is the top-level object, we must leave the
1909 * busy page to prevent another process from rushing
1910 * past us, and inserting the page in that object at
1911 * the same time that we are.
1913 if (rv
== VM_PAGER_ERROR
) {
1915 kprintf("vm_fault: pager read error, "
1920 kprintf("vm_fault: pager read error, "
1928 * Data outside the range of the pager or an I/O error
1930 * The page may have been wired during the pagein,
1931 * e.g. by the buffer cache, and cannot simply be
1932 * freed. Call vnode_pager_freepage() to deal with it.
1934 * Also note that we cannot free the page if we are
1935 * holding the related object shared. XXX not sure
1936 * what to do in that case.
1938 if (fs
->object
!= fs
->first_object
) {
1940 * Scrap the page. Check to see if the
1941 * vm_pager_get_page() call has already
1945 vnode_pager_freepage(fs
->m
);
1950 * XXX - we cannot just fall out at this
1951 * point, m has been freed and is invalid!
1955 * XXX - the check for kernel_map is a kludge to work
1956 * around having the machine panic on a kernel space
1957 * fault w/ I/O error.
1959 if (((fs
->map
!= &kernel_map
) &&
1960 (rv
== VM_PAGER_ERROR
)) || (rv
== VM_PAGER_BAD
)) {
1962 if (fs
->first_shared
) {
1963 vm_page_deactivate(fs
->m
);
1964 vm_page_wakeup(fs
->m
);
1966 vnode_pager_freepage(fs
->m
);
1970 vm_object_pip_wakeup(fs
->first_object
);
1971 vm_object_chain_release_all(fs
->first_object
,
1973 if (fs
->object
!= fs
->first_object
)
1974 vm_object_drop(fs
->object
);
1975 unlock_and_deallocate(fs
);
1976 if (rv
== VM_PAGER_ERROR
)
1977 return (KERN_FAILURE
);
1979 return (KERN_PROTECTION_FAILURE
);
1985 * We get here if the object has a default pager (or unwiring)
1986 * or the pager doesn't have the page.
1988 * fs->first_m will be used for the COW unless we find a
1989 * deeper page to be mapped read-only, in which case the
1990 * unlock*(fs) will free first_m.
1992 if (fs
->object
== fs
->first_object
)
1993 fs
->first_m
= fs
->m
;
1996 * Move on to the next object. The chain lock should prevent
1997 * the backing_object from getting ripped out from under us.
1999 * The object lock for the next object is governed by
2002 if ((next_object
= fs
->object
->backing_object
) != NULL
) {
2004 vm_object_hold_shared(next_object
);
2006 vm_object_hold(next_object
);
2007 vm_object_chain_acquire(next_object
, fs
->shared
);
2008 KKASSERT(next_object
== fs
->object
->backing_object
);
2009 pindex
+= OFF_TO_IDX(fs
->object
->backing_object_offset
);
2012 if (next_object
== NULL
) {
2014 * If there's no object left, fill the page in the top
2015 * object with zeros.
2017 if (fs
->object
!= fs
->first_object
) {
2019 if (fs
->first_object
->backing_object
!=
2021 vm_object_hold(fs
->first_object
->backing_object
);
2024 vm_object_chain_release_all(
2025 fs
->first_object
->backing_object
,
2028 if (fs
->first_object
->backing_object
!=
2030 vm_object_drop(fs
->first_object
->backing_object
);
2033 vm_object_pip_wakeup(fs
->object
);
2034 vm_object_drop(fs
->object
);
2035 fs
->object
= fs
->first_object
;
2036 pindex
= first_pindex
;
2037 fs
->m
= fs
->first_m
;
2042 * Zero the page and mark it valid.
2044 vm_page_zero_fill(fs
->m
);
2045 mycpu
->gd_cnt
.v_zfod
++;
2046 fs
->m
->valid
= VM_PAGE_BITS_ALL
;
2047 break; /* break to PAGE HAS BEEN FOUND */
2049 if (fs
->object
!= fs
->first_object
) {
2050 vm_object_pip_wakeup(fs
->object
);
2051 vm_object_lock_swap();
2052 vm_object_drop(fs
->object
);
2054 KASSERT(fs
->object
!= next_object
,
2055 ("object loop %p", next_object
));
2056 fs
->object
= next_object
;
2057 vm_object_pip_add(fs
->object
, 1);
2061 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
2064 * object still held.
2065 * vm_map may not be locked (determined by fs->lookup_still_valid)
2067 * local shared variable may be different from fs->shared.
2069 * If the page is being written, but isn't already owned by the
2070 * top-level object, we have to copy it into a new page owned by the
2073 KASSERT((fs
->m
->busy_count
& PBUSY_LOCKED
) != 0,
2074 ("vm_fault: not busy after main loop"));
2076 if (fs
->object
!= fs
->first_object
) {
2078 * We only really need to copy if we want to write it.
2080 if (fault_type
& VM_PROT_WRITE
) {
2082 * This allows pages to be virtually copied from a
2083 * backing_object into the first_object, where the
2084 * backing object has no other refs to it, and cannot
2085 * gain any more refs. Instead of a bcopy, we just
2086 * move the page from the backing object to the
2087 * first object. Note that we must mark the page
2088 * dirty in the first object so that it will go out
2089 * to swap when needed.
2091 if (virtual_copy_ok(fs
)) {
2093 * (first_m) and (m) are both busied. We have
2094 * move (m) into (first_m)'s object/pindex
2095 * in an atomic fashion, then free (first_m).
2097 * first_object is held so second remove
2098 * followed by the rename should wind
2099 * up being atomic. vm_page_free() might
2100 * block so we don't do it until after the
2103 vm_page_protect(fs
->first_m
, VM_PROT_NONE
);
2104 vm_page_remove(fs
->first_m
);
2105 vm_page_rename(fs
->m
, fs
->first_object
,
2107 vm_page_free(fs
->first_m
);
2108 fs
->first_m
= fs
->m
;
2110 mycpu
->gd_cnt
.v_cow_optim
++;
2113 * Oh, well, lets copy it.
2115 * Why are we unmapping the original page
2116 * here? Well, in short, not all accessors
2117 * of user memory go through the pmap. The
2118 * procfs code doesn't have access user memory
2119 * via a local pmap, so vm_fault_page*()
2120 * can't call pmap_enter(). And the umtx*()
2121 * code may modify the COW'd page via a DMAP
2122 * or kernel mapping and not via the pmap,
2123 * leaving the original page still mapped
2124 * read-only into the pmap.
2126 * So we have to remove the page from at
2127 * least the current pmap if it is in it.
2129 * We used to just remove it from all pmaps
2130 * but that creates inefficiencies on SMP,
2131 * particularly for COW program & library
2132 * mappings that are concurrently exec'd.
2133 * Only remove the page from the current
2136 KKASSERT(fs
->first_shared
== 0);
2137 vm_page_copy(fs
->m
, fs
->first_m
);
2138 /*vm_page_protect(fs->m, VM_PROT_NONE);*/
2139 pmap_remove_specific(
2140 &curthread
->td_lwp
->lwp_vmspace
->vm_pmap
,
2145 * We no longer need the old page or object.
2151 * We intend to revert to first_object, undo the
2152 * chain lock through to that.
2155 if (fs
->first_object
->backing_object
!= fs
->object
)
2156 vm_object_hold(fs
->first_object
->backing_object
);
2158 vm_object_chain_release_all(
2159 fs
->first_object
->backing_object
,
2162 if (fs
->first_object
->backing_object
!= fs
->object
)
2163 vm_object_drop(fs
->first_object
->backing_object
);
2167 * fs->object != fs->first_object due to above
2170 vm_object_pip_wakeup(fs
->object
);
2171 vm_object_drop(fs
->object
);
2174 * Only use the new page below...
2176 mycpu
->gd_cnt
.v_cow_faults
++;
2177 fs
->m
= fs
->first_m
;
2178 fs
->object
= fs
->first_object
;
2179 pindex
= first_pindex
;
2182 * If it wasn't a write fault avoid having to copy
2183 * the page by mapping it read-only.
2185 fs
->prot
&= ~VM_PROT_WRITE
;
2190 * Relock the map if necessary, then check the generation count.
2191 * relock_map() will update fs->timestamp to account for the
2192 * relocking if necessary.
2194 * If the count has changed after relocking then all sorts of
2195 * crap may have happened and we have to retry.
2197 * NOTE: The relock_map() can fail due to a deadlock against
2198 * the vm_page we are holding BUSY.
2200 if (fs
->lookup_still_valid
== FALSE
&& fs
->map
) {
2201 if (relock_map(fs
) ||
2202 fs
->map
->timestamp
!= fs
->map_generation
) {
2204 vm_object_pip_wakeup(fs
->first_object
);
2205 vm_object_chain_release_all(fs
->first_object
,
2207 if (fs
->object
!= fs
->first_object
)
2208 vm_object_drop(fs
->object
);
2209 unlock_and_deallocate(fs
);
2210 return (KERN_TRY_AGAIN
);
2215 * If the fault is a write, we know that this page is being
2216 * written NOW so dirty it explicitly to save on pmap_is_modified()
2219 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2220 * if the page is already dirty to prevent data written with
2221 * the expectation of being synced from not being synced.
2222 * Likewise if this entry does not request NOSYNC then make
2223 * sure the page isn't marked NOSYNC. Applications sharing
2224 * data should use the same flags to avoid ping ponging.
2226 * Also tell the backing pager, if any, that it should remove
2227 * any swap backing since the page is now dirty.
2229 vm_page_activate(fs
->m
);
2230 if (fs
->prot
& VM_PROT_WRITE
) {
2231 vm_object_set_writeable_dirty(fs
->m
->object
);
2232 vm_set_nosync(fs
->m
, fs
->entry
);
2233 if (fs
->fault_flags
& VM_FAULT_DIRTY
) {
2234 vm_page_dirty(fs
->m
);
2235 if (fs
->m
->flags
& PG_SWAPPED
) {
2237 * If the page is swapped out we have to call
2238 * swap_pager_unswapped() which requires an
2239 * exclusive object lock. If we are shared,
2240 * we must clear the shared flag and retry.
2242 if ((fs
->object
== fs
->first_object
&&
2243 fs
->first_shared
) ||
2244 (fs
->object
!= fs
->first_object
&&
2246 vm_page_wakeup(fs
->m
);
2248 if (fs
->object
== fs
->first_object
)
2249 fs
->first_shared
= 0;
2252 vm_object_pip_wakeup(fs
->first_object
);
2253 vm_object_chain_release_all(
2254 fs
->first_object
, fs
->object
);
2255 if (fs
->object
!= fs
->first_object
)
2256 vm_object_drop(fs
->object
);
2257 unlock_and_deallocate(fs
);
2258 return (KERN_TRY_AGAIN
);
2260 swap_pager_unswapped(fs
->m
);
2265 vm_object_pip_wakeup(fs
->first_object
);
2266 vm_object_chain_release_all(fs
->first_object
, fs
->object
);
2267 if (fs
->object
!= fs
->first_object
)
2268 vm_object_drop(fs
->object
);
2271 * Page had better still be busy. We are still locked up and
2272 * fs->object will have another PIP reference if it is not equal
2273 * to fs->first_object.
2275 KASSERT(fs
->m
->busy_count
& PBUSY_LOCKED
,
2276 ("vm_fault: page %p not busy!", fs
->m
));
2279 * Sanity check: page must be completely valid or it is not fit to
2280 * map into user space. vm_pager_get_pages() ensures this.
2282 if (fs
->m
->valid
!= VM_PAGE_BITS_ALL
) {
2283 vm_page_zero_invalid(fs
->m
, TRUE
);
2284 kprintf("Warning: page %p partially invalid on fault\n", fs
->m
);
2287 return (KERN_SUCCESS
);
2291 * Wire down a range of virtual addresses in a map. The entry in question
2292 * should be marked in-transition and the map must be locked. We must
2293 * release the map temporarily while faulting-in the page to avoid a
2294 * deadlock. Note that the entry may be clipped while we are blocked but
2295 * will never be freed.
2300 vm_fault_wire(vm_map_t map
, vm_map_entry_t entry
,
2301 boolean_t user_wire
, int kmflags
)
2303 boolean_t fictitious
;
2314 wire_prot
= VM_PROT_READ
;
2315 fault_flags
= VM_FAULT_USER_WIRE
;
2317 wire_prot
= VM_PROT_READ
| VM_PROT_WRITE
;
2318 fault_flags
= VM_FAULT_CHANGE_WIRING
;
2320 if (kmflags
& KM_NOTLBSYNC
)
2321 wire_prot
|= VM_PROT_NOSYNC
;
2323 pmap
= vm_map_pmap(map
);
2324 start
= entry
->start
;
2327 switch(entry
->maptype
) {
2328 case VM_MAPTYPE_NORMAL
:
2329 case VM_MAPTYPE_VPAGETABLE
:
2330 fictitious
= entry
->object
.vm_object
&&
2331 ((entry
->object
.vm_object
->type
== OBJT_DEVICE
) ||
2332 (entry
->object
.vm_object
->type
== OBJT_MGTDEVICE
));
2334 case VM_MAPTYPE_UKSMAP
:
2342 if (entry
->eflags
& MAP_ENTRY_KSTACK
)
2348 * We simulate a fault to get the page and enter it in the physical
2351 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
2352 rv
= vm_fault(map
, va
, wire_prot
, fault_flags
);
2354 while (va
> start
) {
2356 m
= pmap_unwire(pmap
, va
);
2357 if (m
&& !fictitious
) {
2358 vm_page_busy_wait(m
, FALSE
, "vmwrpg");
2359 vm_page_unwire(m
, 1);
2374 * Unwire a range of virtual addresses in a map. The map should be
2378 vm_fault_unwire(vm_map_t map
, vm_map_entry_t entry
)
2380 boolean_t fictitious
;
2387 pmap
= vm_map_pmap(map
);
2388 start
= entry
->start
;
2390 fictitious
= entry
->object
.vm_object
&&
2391 ((entry
->object
.vm_object
->type
== OBJT_DEVICE
) ||
2392 (entry
->object
.vm_object
->type
== OBJT_MGTDEVICE
));
2393 if (entry
->eflags
& MAP_ENTRY_KSTACK
)
2397 * Since the pages are wired down, we must be able to get their
2398 * mappings from the physical map system.
2400 for (va
= start
; va
< end
; va
+= PAGE_SIZE
) {
2401 m
= pmap_unwire(pmap
, va
);
2402 if (m
&& !fictitious
) {
2403 vm_page_busy_wait(m
, FALSE
, "vmwrpg");
2404 vm_page_unwire(m
, 1);
2411 * Copy all of the pages from a wired-down map entry to another.
2413 * The source and destination maps must be locked for write.
2414 * The source and destination maps token must be held
2415 * The source map entry must be wired down (or be a sharing map
2416 * entry corresponding to a main map entry that is wired down).
2418 * No other requirements.
2420 * XXX do segment optimization
2423 vm_fault_copy_entry(vm_map_t dst_map
, vm_map_t src_map
,
2424 vm_map_entry_t dst_entry
, vm_map_entry_t src_entry
)
2426 vm_object_t dst_object
;
2427 vm_object_t src_object
;
2428 vm_ooffset_t dst_offset
;
2429 vm_ooffset_t src_offset
;
2435 src_object
= src_entry
->object
.vm_object
;
2436 src_offset
= src_entry
->offset
;
2439 * Create the top-level object for the destination entry. (Doesn't
2440 * actually shadow anything - we copy the pages directly.)
2442 vm_map_entry_allocate_object(dst_entry
);
2443 dst_object
= dst_entry
->object
.vm_object
;
2445 prot
= dst_entry
->max_protection
;
2448 * Loop through all of the pages in the entry's range, copying each
2449 * one from the source object (it should be there) to the destination
2452 vm_object_hold(src_object
);
2453 vm_object_hold(dst_object
);
2455 for (vaddr
= dst_entry
->start
, dst_offset
= 0;
2456 vaddr
< dst_entry
->end
;
2457 vaddr
+= PAGE_SIZE
, dst_offset
+= PAGE_SIZE
) {
2460 * Allocate a page in the destination object
2463 dst_m
= vm_page_alloc(dst_object
,
2464 OFF_TO_IDX(dst_offset
),
2466 if (dst_m
== NULL
) {
2469 } while (dst_m
== NULL
);
2472 * Find the page in the source object, and copy it in.
2473 * (Because the source is wired down, the page will be in
2476 src_m
= vm_page_lookup(src_object
,
2477 OFF_TO_IDX(dst_offset
+ src_offset
));
2479 panic("vm_fault_copy_wired: page missing");
2481 vm_page_copy(src_m
, dst_m
);
2484 * Enter it in the pmap...
2486 pmap_enter(dst_map
->pmap
, vaddr
, dst_m
, prot
, FALSE
, dst_entry
);
2489 * Mark it no longer busy, and put it on the active list.
2491 vm_page_activate(dst_m
);
2492 vm_page_wakeup(dst_m
);
2494 vm_object_drop(dst_object
);
2495 vm_object_drop(src_object
);
2501 * This routine checks around the requested page for other pages that
2502 * might be able to be faulted in. This routine brackets the viable
2503 * pages for the pages to be paged in.
2506 * m, rbehind, rahead
2509 * marray (array of vm_page_t), reqpage (index of requested page)
2512 * number of pages in marray
2515 vm_fault_additional_pages(vm_page_t m
, int rbehind
, int rahead
,
2516 vm_page_t
*marray
, int *reqpage
)
2520 vm_pindex_t pindex
, startpindex
, endpindex
, tpindex
;
2522 int cbehind
, cahead
;
2528 * we don't fault-ahead for device pager
2530 if ((object
->type
== OBJT_DEVICE
) ||
2531 (object
->type
== OBJT_MGTDEVICE
)) {
2538 * if the requested page is not available, then give up now
2540 if (!vm_pager_has_page(object
, pindex
, &cbehind
, &cahead
)) {
2541 *reqpage
= 0; /* not used by caller, fix compiler warn */
2545 if ((cbehind
== 0) && (cahead
== 0)) {
2551 if (rahead
> cahead
) {
2555 if (rbehind
> cbehind
) {
2560 * Do not do any readahead if we have insufficient free memory.
2562 * XXX code was broken disabled before and has instability
2563 * with this conditonal fixed, so shortcut for now.
2565 if (burst_fault
== 0 || vm_page_count_severe()) {
2572 * scan backward for the read behind pages -- in memory
2574 * Assume that if the page is not found an interrupt will not
2575 * create it. Theoretically interrupts can only remove (busy)
2576 * pages, not create new associations.
2579 if (rbehind
> pindex
) {
2583 startpindex
= pindex
- rbehind
;
2586 vm_object_hold(object
);
2587 for (tpindex
= pindex
; tpindex
> startpindex
; --tpindex
) {
2588 if (vm_page_lookup(object
, tpindex
- 1))
2593 while (tpindex
< pindex
) {
2594 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_SYSTEM
|
2597 for (j
= 0; j
< i
; j
++) {
2598 vm_page_free(marray
[j
]);
2600 vm_object_drop(object
);
2609 vm_object_drop(object
);
2615 * Assign requested page
2622 * Scan forwards for read-ahead pages
2624 tpindex
= pindex
+ 1;
2625 endpindex
= tpindex
+ rahead
;
2626 if (endpindex
> object
->size
)
2627 endpindex
= object
->size
;
2629 vm_object_hold(object
);
2630 while (tpindex
< endpindex
) {
2631 if (vm_page_lookup(object
, tpindex
))
2633 rtm
= vm_page_alloc(object
, tpindex
, VM_ALLOC_SYSTEM
|
2641 vm_object_drop(object
);
2649 * vm_prefault() provides a quick way of clustering pagefaults into a
2650 * processes address space. It is a "cousin" of pmap_object_init_pt,
2651 * except it runs at page fault time instead of mmap time.
2653 * vm.fast_fault Enables pre-faulting zero-fill pages
2655 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to
2656 * prefault. Scan stops in either direction when
2657 * a page is found to already exist.
2659 * This code used to be per-platform pmap_prefault(). It is now
2660 * machine-independent and enhanced to also pre-fault zero-fill pages
2661 * (see vm.fast_fault) as well as make them writable, which greatly
2662 * reduces the number of page faults programs incur.
2664 * Application performance when pre-faulting zero-fill pages is heavily
2665 * dependent on the application. Very tiny applications like /bin/echo
2666 * lose a little performance while applications of any appreciable size
2667 * gain performance. Prefaulting multiple pages also reduces SMP
2668 * congestion and can improve SMP performance significantly.
2670 * NOTE! prot may allow writing but this only applies to the top level
2671 * object. If we wind up mapping a page extracted from a backing
2672 * object we have to make sure it is read-only.
2674 * NOTE! The caller has already handled any COW operations on the
2675 * vm_map_entry via the normal fault code. Do NOT call this
2676 * shortcut unless the normal fault code has run on this entry.
2678 * The related map must be locked.
2679 * No other requirements.
2681 static int vm_prefault_pages
= 8;
2682 SYSCTL_INT(_vm
, OID_AUTO
, prefault_pages
, CTLFLAG_RW
, &vm_prefault_pages
, 0,
2683 "Maximum number of pages to pre-fault");
2684 static int vm_fast_fault
= 1;
2685 SYSCTL_INT(_vm
, OID_AUTO
, fast_fault
, CTLFLAG_RW
, &vm_fast_fault
, 0,
2686 "Burst fault zero-fill regions");
2689 * Set PG_NOSYNC if the map entry indicates so, but only if the page
2690 * is not already dirty by other means. This will prevent passive
2691 * filesystem syncing as well as 'sync' from writing out the page.
2694 vm_set_nosync(vm_page_t m
, vm_map_entry_t entry
)
2696 if (entry
->eflags
& MAP_ENTRY_NOSYNC
) {
2698 vm_page_flag_set(m
, PG_NOSYNC
);
2700 vm_page_flag_clear(m
, PG_NOSYNC
);
2705 vm_prefault(pmap_t pmap
, vm_offset_t addra
, vm_map_entry_t entry
, int prot
,
2721 * Get stable max count value, disabled if set to 0
2723 maxpages
= vm_prefault_pages
;
2729 * We do not currently prefault mappings that use virtual page
2730 * tables. We do not prefault foreign pmaps.
2732 if (entry
->maptype
!= VM_MAPTYPE_NORMAL
)
2734 lp
= curthread
->td_lwp
;
2735 if (lp
== NULL
|| (pmap
!= vmspace_pmap(lp
->lwp_vmspace
)))
2739 * Limit pre-fault count to 1024 pages.
2741 if (maxpages
> 1024)
2744 object
= entry
->object
.vm_object
;
2745 KKASSERT(object
!= NULL
);
2746 KKASSERT(object
== entry
->object
.vm_object
);
2749 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2750 * now (or do something more complex XXX).
2752 vm_object_hold(object
);
2753 vm_object_chain_acquire(object
, 0);
2757 for (i
= 0; i
< maxpages
; ++i
) {
2758 vm_object_t lobject
;
2759 vm_object_t nobject
;
2764 * This can eat a lot of time on a heavily contended
2765 * machine so yield on the tick if needed.
2771 * Calculate the page to pre-fault, stopping the scan in
2772 * each direction separately if the limit is reached.
2777 addr
= addra
- ((i
+ 1) >> 1) * PAGE_SIZE
;
2781 addr
= addra
+ ((i
+ 2) >> 1) * PAGE_SIZE
;
2783 if (addr
< entry
->start
) {
2789 if (addr
>= entry
->end
) {
2797 * Skip pages already mapped, and stop scanning in that
2798 * direction. When the scan terminates in both directions
2801 if (pmap_prefault_ok(pmap
, addr
) == 0) {
2812 * Follow the VM object chain to obtain the page to be mapped
2815 * If we reach the terminal object without finding a page
2816 * and we determine it would be advantageous, then allocate
2817 * a zero-fill page for the base object. The base object
2818 * is guaranteed to be OBJT_DEFAULT for this case.
2820 * In order to not have to check the pager via *haspage*()
2821 * we stop if any non-default object is encountered. e.g.
2822 * a vnode or swap object would stop the loop.
2824 index
= ((addr
- entry
->start
) + entry
->offset
) >> PAGE_SHIFT
;
2829 KKASSERT(lobject
== entry
->object
.vm_object
);
2830 /*vm_object_hold(lobject); implied */
2832 while ((m
= vm_page_lookup_busy_try(lobject
, pindex
,
2833 TRUE
, &error
)) == NULL
) {
2834 if (lobject
->type
!= OBJT_DEFAULT
)
2836 if (lobject
->backing_object
== NULL
) {
2837 if (vm_fast_fault
== 0)
2839 if ((prot
& VM_PROT_WRITE
) == 0 ||
2840 vm_page_count_min(0)) {
2845 * NOTE: Allocated from base object
2847 m
= vm_page_alloc(object
, index
,
2856 /* lobject = object .. not needed */
2859 if (lobject
->backing_object_offset
& PAGE_MASK
)
2861 nobject
= lobject
->backing_object
;
2862 vm_object_hold(nobject
);
2863 KKASSERT(nobject
== lobject
->backing_object
);
2864 pindex
+= lobject
->backing_object_offset
>> PAGE_SHIFT
;
2865 if (lobject
!= object
) {
2866 vm_object_lock_swap();
2867 vm_object_drop(lobject
);
2870 pprot
&= ~VM_PROT_WRITE
;
2871 vm_object_chain_acquire(lobject
, 0);
2875 * NOTE: A non-NULL (m) will be associated with lobject if
2876 * it was found there, otherwise it is probably a
2877 * zero-fill page associated with the base object.
2879 * Give-up if no page is available.
2882 if (lobject
!= object
) {
2884 if (object
->backing_object
!= lobject
)
2885 vm_object_hold(object
->backing_object
);
2887 vm_object_chain_release_all(
2888 object
->backing_object
, lobject
);
2890 if (object
->backing_object
!= lobject
)
2891 vm_object_drop(object
->backing_object
);
2893 vm_object_drop(lobject
);
2899 * The object must be marked dirty if we are mapping a
2900 * writable page. m->object is either lobject or object,
2901 * both of which are still held. Do this before we
2902 * potentially drop the object.
2904 if (pprot
& VM_PROT_WRITE
)
2905 vm_object_set_writeable_dirty(m
->object
);
2908 * Do not conditionalize on PG_RAM. If pages are present in
2909 * the VM system we assume optimal caching. If caching is
2910 * not optimal the I/O gravy train will be restarted when we
2911 * hit an unavailable page. We do not want to try to restart
2912 * the gravy train now because we really don't know how much
2913 * of the object has been cached. The cost for restarting
2914 * the gravy train should be low (since accesses will likely
2915 * be I/O bound anyway).
2917 if (lobject
!= object
) {
2919 if (object
->backing_object
!= lobject
)
2920 vm_object_hold(object
->backing_object
);
2922 vm_object_chain_release_all(object
->backing_object
,
2925 if (object
->backing_object
!= lobject
)
2926 vm_object_drop(object
->backing_object
);
2928 vm_object_drop(lobject
);
2932 * Enter the page into the pmap if appropriate. If we had
2933 * allocated the page we have to place it on a queue. If not
2934 * we just have to make sure it isn't on the cache queue
2935 * (pages on the cache queue are not allowed to be mapped).
2939 * Page must be zerod.
2941 vm_page_zero_fill(m
);
2942 mycpu
->gd_cnt
.v_zfod
++;
2943 m
->valid
= VM_PAGE_BITS_ALL
;
2946 * Handle dirty page case
2948 if (pprot
& VM_PROT_WRITE
)
2949 vm_set_nosync(m
, entry
);
2950 pmap_enter(pmap
, addr
, m
, pprot
, 0, entry
);
2951 mycpu
->gd_cnt
.v_vm_faults
++;
2952 if (curthread
->td_lwp
)
2953 ++curthread
->td_lwp
->lwp_ru
.ru_minflt
;
2954 vm_page_deactivate(m
);
2955 if (pprot
& VM_PROT_WRITE
) {
2956 /*vm_object_set_writeable_dirty(m->object);*/
2957 vm_set_nosync(m
, entry
);
2958 if (fault_flags
& VM_FAULT_DIRTY
) {
2961 swap_pager_unswapped(m
);
2966 /* couldn't busy page, no wakeup */
2968 ((m
->valid
& VM_PAGE_BITS_ALL
) == VM_PAGE_BITS_ALL
) &&
2969 (m
->flags
& PG_FICTITIOUS
) == 0) {
2971 * A fully valid page not undergoing soft I/O can
2972 * be immediately entered into the pmap.
2974 if ((m
->queue
- m
->pc
) == PQ_CACHE
)
2975 vm_page_deactivate(m
);
2976 if (pprot
& VM_PROT_WRITE
) {
2977 /*vm_object_set_writeable_dirty(m->object);*/
2978 vm_set_nosync(m
, entry
);
2979 if (fault_flags
& VM_FAULT_DIRTY
) {
2982 swap_pager_unswapped(m
);
2985 if (pprot
& VM_PROT_WRITE
)
2986 vm_set_nosync(m
, entry
);
2987 pmap_enter(pmap
, addr
, m
, pprot
, 0, entry
);
2988 mycpu
->gd_cnt
.v_vm_faults
++;
2989 if (curthread
->td_lwp
)
2990 ++curthread
->td_lwp
->lwp_ru
.ru_minflt
;
2996 vm_object_chain_release(object
);
2997 vm_object_drop(object
);
3001 * Object can be held shared
3004 vm_prefault_quick(pmap_t pmap
, vm_offset_t addra
,
3005 vm_map_entry_t entry
, int prot
, int fault_flags
)
3018 * Get stable max count value, disabled if set to 0
3020 maxpages
= vm_prefault_pages
;
3026 * We do not currently prefault mappings that use virtual page
3027 * tables. We do not prefault foreign pmaps.
3029 if (entry
->maptype
!= VM_MAPTYPE_NORMAL
)
3031 lp
= curthread
->td_lwp
;
3032 if (lp
== NULL
|| (pmap
!= vmspace_pmap(lp
->lwp_vmspace
)))
3034 object
= entry
->object
.vm_object
;
3035 if (object
->backing_object
!= NULL
)
3037 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object
));
3040 * Limit pre-fault count to 1024 pages.
3042 if (maxpages
> 1024)
3047 for (i
= 0; i
< maxpages
; ++i
) {
3051 * Calculate the page to pre-fault, stopping the scan in
3052 * each direction separately if the limit is reached.
3057 addr
= addra
- ((i
+ 1) >> 1) * PAGE_SIZE
;
3061 addr
= addra
+ ((i
+ 2) >> 1) * PAGE_SIZE
;
3063 if (addr
< entry
->start
) {
3069 if (addr
>= entry
->end
) {
3077 * Follow the VM object chain to obtain the page to be mapped
3078 * into the pmap. This version of the prefault code only
3079 * works with terminal objects.
3081 * The page must already exist. If we encounter a problem
3084 * WARNING! We cannot call swap_pager_unswapped() or insert
3085 * a new vm_page with a shared token.
3087 pindex
= ((addr
- entry
->start
) + entry
->offset
) >> PAGE_SHIFT
;
3090 * Skip pages already mapped, and stop scanning in that
3091 * direction. When the scan terminates in both directions
3094 if (pmap_prefault_ok(pmap
, addr
) == 0) {
3105 * Shortcut the read-only mapping case using the far more
3106 * efficient vm_page_lookup_sbusy_try() function. This
3107 * allows us to acquire the page soft-busied only which
3108 * is especially nice for concurrent execs of the same
3111 * The lookup function also validates page suitability
3112 * (all valid bits set, and not fictitious).
3114 * If the page is in PQ_CACHE we have to fall-through
3115 * and hard-busy it so we can move it out of PQ_CACHE.
3117 if ((prot
& VM_PROT_WRITE
) == 0) {
3118 m
= vm_page_lookup_sbusy_try(object
, pindex
,
3122 if ((m
->queue
- m
->pc
) != PQ_CACHE
) {
3123 pmap_enter(pmap
, addr
, m
, prot
, 0, entry
);
3124 mycpu
->gd_cnt
.v_vm_faults
++;
3125 if (curthread
->td_lwp
)
3126 ++curthread
->td_lwp
->lwp_ru
.ru_minflt
;
3127 vm_page_sbusy_drop(m
);
3130 vm_page_sbusy_drop(m
);
3134 * Fallback to normal vm_page lookup code. This code
3135 * hard-busies the page. Not only that, but the page
3136 * can remain in that state for a significant period
3137 * time due to pmap_enter()'s overhead.
3139 m
= vm_page_lookup_busy_try(object
, pindex
, TRUE
, &error
);
3140 if (m
== NULL
|| error
)
3144 * Stop if the page cannot be trivially entered into the
3147 if (((m
->valid
& VM_PAGE_BITS_ALL
) != VM_PAGE_BITS_ALL
) ||
3148 (m
->flags
& PG_FICTITIOUS
) ||
3149 ((m
->flags
& PG_SWAPPED
) &&
3150 (prot
& VM_PROT_WRITE
) &&
3151 (fault_flags
& VM_FAULT_DIRTY
))) {
3157 * Enter the page into the pmap. The object might be held
3158 * shared so we can't do any (serious) modifying operation
3161 if ((m
->queue
- m
->pc
) == PQ_CACHE
)
3162 vm_page_deactivate(m
);
3163 if (prot
& VM_PROT_WRITE
) {
3164 vm_object_set_writeable_dirty(m
->object
);
3165 vm_set_nosync(m
, entry
);
3166 if (fault_flags
& VM_FAULT_DIRTY
) {
3168 /* can't happeen due to conditional above */
3169 /* swap_pager_unswapped(m); */
3172 pmap_enter(pmap
, addr
, m
, prot
, 0, entry
);
3173 mycpu
->gd_cnt
.v_vm_faults
++;
3174 if (curthread
->td_lwp
)
3175 ++curthread
->td_lwp
->lwp_ru
.ru_minflt
;