acpi_hpet - Implement early HPET initialization for TSC calibration.
[dragonfly.git] / sys / vm / vm_fault.c
blob6a368fcd44a0347ff95d5d3cec7d80bf81e9d97e
1 /*
2 * Copyright (c) 2003-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * ---
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * Copyright (c) 1994 John S. Dyson
39 * All rights reserved.
40 * Copyright (c) 1994 David Greenman
41 * All rights reserved.
44 * This code is derived from software contributed to Berkeley by
45 * The Mach Operating System project at Carnegie-Mellon University.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * ---
73 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74 * All rights reserved.
76 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
78 * Permission to use, copy, modify and distribute this software and
79 * its documentation is hereby granted, provided that both the copyright
80 * notice and this permission notice appear in all copies of the
81 * software, derivative works or modified versions, and any portions
82 * thereof, and that both notices appear in supporting documentation.
84 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
88 * Carnegie Mellon requests users of this software to return to
90 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
91 * School of Computer Science
92 * Carnegie Mellon University
93 * Pittsburgh PA 15213-3890
95 * any improvements or extensions that they make and grant Carnegie the
96 * rights to redistribute these changes.
100 * Page fault handling module.
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
114 #include <cpu/lwbuf.h>
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
131 struct faultstate {
132 vm_page_t m;
133 vm_object_t object;
134 vm_pindex_t pindex;
135 vm_prot_t prot;
136 vm_page_t first_m;
137 vm_object_t first_object;
138 vm_prot_t first_prot;
139 vm_map_t map;
140 vm_map_entry_t entry;
141 int lookup_still_valid;
142 int hardfault;
143 int fault_flags;
144 int map_generation;
145 int shared;
146 int first_shared;
147 int wflags;
148 struct vnode *vp;
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 static int virtual_copy_enable = 1;
156 SYSCTL_INT(_vm, OID_AUTO, virtual_copy_enable, CTLFLAG_RW,
157 &virtual_copy_enable, 0, "");
158 int vm_shared_fault = 1;
159 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
160 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW,
161 &vm_shared_fault, 0, "Allow shared token on vm_object");
163 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
164 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
165 vpte_t, int, int);
166 #if 0
167 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
168 #endif
169 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
170 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
171 vm_map_entry_t entry, int prot, int fault_flags);
172 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
173 vm_map_entry_t entry, int prot, int fault_flags);
175 static __inline void
176 release_page(struct faultstate *fs)
178 vm_page_deactivate(fs->m);
179 vm_page_wakeup(fs->m);
180 fs->m = NULL;
184 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
185 * requires relocking and then checking the timestamp.
187 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
188 * not have to update fs->map_generation here.
190 * NOTE: This function can fail due to a deadlock against the caller's
191 * holding of a vm_page BUSY.
193 static __inline int
194 relock_map(struct faultstate *fs)
196 int error;
198 if (fs->lookup_still_valid == FALSE && fs->map) {
199 error = vm_map_lock_read_to(fs->map);
200 if (error == 0)
201 fs->lookup_still_valid = TRUE;
202 } else {
203 error = 0;
205 return error;
208 static __inline void
209 unlock_map(struct faultstate *fs)
211 if (fs->lookup_still_valid && fs->map) {
212 vm_map_lookup_done(fs->map, fs->entry, 0);
213 fs->lookup_still_valid = FALSE;
218 * Clean up after a successful call to vm_fault_object() so another call
219 * to vm_fault_object() can be made.
221 static void
222 _cleanup_successful_fault(struct faultstate *fs, int relock)
225 * We allocated a junk page for a COW operation that did
226 * not occur, the page must be freed.
228 if (fs->object != fs->first_object) {
229 KKASSERT(fs->first_shared == 0);
230 vm_page_free(fs->first_m);
231 vm_object_pip_wakeup(fs->object);
232 fs->first_m = NULL;
236 * Reset fs->object.
238 fs->object = fs->first_object;
239 if (relock && fs->lookup_still_valid == FALSE) {
240 if (fs->map)
241 vm_map_lock_read(fs->map);
242 fs->lookup_still_valid = TRUE;
246 static void
247 _unlock_things(struct faultstate *fs, int dealloc)
249 _cleanup_successful_fault(fs, 0);
250 if (dealloc) {
251 /*vm_object_deallocate(fs->first_object);*/
252 /*fs->first_object = NULL; drop used later on */
254 unlock_map(fs);
255 if (fs->vp != NULL) {
256 vput(fs->vp);
257 fs->vp = NULL;
261 #define unlock_things(fs) _unlock_things(fs, 0)
262 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
263 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
266 * Virtual copy tests. Used by the fault code to determine if a
267 * page can be moved from an orphan vm_object into its shadow
268 * instead of copying its contents.
270 static __inline int
271 virtual_copy_test(struct faultstate *fs)
274 * Must be holding exclusive locks
276 if (fs->first_shared || fs->shared || virtual_copy_enable == 0)
277 return 0;
280 * Map, if present, has not changed
282 if (fs->map && fs->map_generation != fs->map->timestamp)
283 return 0;
286 * Only one shadow object
288 if (fs->object->shadow_count != 1)
289 return 0;
292 * No COW refs, except us
294 if (fs->object->ref_count != 1)
295 return 0;
298 * No one else can look this object up
300 if (fs->object->handle != NULL)
301 return 0;
304 * No other ways to look the object up
306 if (fs->object->type != OBJT_DEFAULT &&
307 fs->object->type != OBJT_SWAP)
308 return 0;
311 * We don't chase down the shadow chain
313 if (fs->object != fs->first_object->backing_object)
314 return 0;
316 return 1;
319 static __inline int
320 virtual_copy_ok(struct faultstate *fs)
322 if (virtual_copy_test(fs)) {
324 * Grab the lock and re-test changeable items.
326 if (fs->lookup_still_valid == FALSE && fs->map) {
327 if (lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT))
328 return 0;
329 fs->lookup_still_valid = TRUE;
330 if (virtual_copy_test(fs)) {
331 fs->map_generation = ++fs->map->timestamp;
332 return 1;
334 fs->lookup_still_valid = FALSE;
335 lockmgr(&fs->map->lock, LK_RELEASE);
338 return 0;
342 * TRYPAGER
344 * Determine if the pager for the current object *might* contain the page.
346 * We only need to try the pager if this is not a default object (default
347 * objects are zero-fill and have no real pager), and if we are not taking
348 * a wiring fault or if the FS entry is wired.
350 #define TRYPAGER(fs) \
351 (fs->object->type != OBJT_DEFAULT && \
352 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || \
353 (fs->wflags & FW_WIRED)))
356 * vm_fault:
358 * Handle a page fault occuring at the given address, requiring the given
359 * permissions, in the map specified. If successful, the page is inserted
360 * into the associated physical map.
362 * NOTE: The given address should be truncated to the proper page address.
364 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
365 * a standard error specifying why the fault is fatal is returned.
367 * The map in question must be referenced, and remains so.
368 * The caller may hold no locks.
369 * No other requirements.
372 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
374 int result;
375 vm_pindex_t first_pindex;
376 struct faultstate fs;
377 struct lwp *lp;
378 struct proc *p;
379 thread_t td;
380 struct vm_map_ilock ilock;
381 int didilock;
382 int growstack;
383 int retry = 0;
384 int inherit_prot;
386 inherit_prot = fault_type & VM_PROT_NOSYNC;
387 fs.hardfault = 0;
388 fs.fault_flags = fault_flags;
389 fs.vp = NULL;
390 fs.shared = vm_shared_fault;
391 fs.first_shared = vm_shared_fault;
392 growstack = 1;
395 * vm_map interactions
397 td = curthread;
398 if ((lp = td->td_lwp) != NULL)
399 lp->lwp_flags |= LWP_PAGING;
401 RetryFault:
403 * Find the vm_map_entry representing the backing store and resolve
404 * the top level object and page index. This may have the side
405 * effect of executing a copy-on-write on the map entry,
406 * creating a shadow object, or splitting an anonymous entry for
407 * performance, but will not COW any actual VM pages.
409 * On success fs.map is left read-locked and various other fields
410 * are initialized but not otherwise referenced or locked.
412 * NOTE! vm_map_lookup will try to upgrade the fault_type to
413 * VM_FAULT_WRITE if the map entry is a virtual page table
414 * and also writable, so we can set the 'A'accessed bit in
415 * the virtual page table entry.
417 fs.map = map;
418 result = vm_map_lookup(&fs.map, vaddr, fault_type,
419 &fs.entry, &fs.first_object,
420 &first_pindex, &fs.first_prot, &fs.wflags);
423 * If the lookup failed or the map protections are incompatible,
424 * the fault generally fails.
426 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
427 * tried to do a COW fault.
429 * If the caller is trying to do a user wiring we have more work
430 * to do.
432 if (result != KERN_SUCCESS) {
433 if (result == KERN_FAILURE_NOFAULT) {
434 result = KERN_FAILURE;
435 goto done;
437 if (result != KERN_PROTECTION_FAILURE ||
438 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
440 if (result == KERN_INVALID_ADDRESS && growstack &&
441 map != &kernel_map && curproc != NULL) {
442 result = vm_map_growstack(map, vaddr);
443 if (result == KERN_SUCCESS) {
444 growstack = 0;
445 ++retry;
446 goto RetryFault;
448 result = KERN_FAILURE;
450 goto done;
454 * If we are user-wiring a r/w segment, and it is COW, then
455 * we need to do the COW operation. Note that we don't
456 * currently COW RO sections now, because it is NOT desirable
457 * to COW .text. We simply keep .text from ever being COW'ed
458 * and take the heat that one cannot debug wired .text sections.
460 * XXX Try to allow the above by specifying OVERRIDE_WRITE.
462 result = vm_map_lookup(&fs.map, vaddr,
463 VM_PROT_READ|VM_PROT_WRITE|
464 VM_PROT_OVERRIDE_WRITE,
465 &fs.entry, &fs.first_object,
466 &first_pindex, &fs.first_prot,
467 &fs.wflags);
468 if (result != KERN_SUCCESS) {
469 /* could also be KERN_FAILURE_NOFAULT */
470 result = KERN_FAILURE;
471 goto done;
475 * If we don't COW now, on a user wire, the user will never
476 * be able to write to the mapping. If we don't make this
477 * restriction, the bookkeeping would be nearly impossible.
479 * XXX We have a shared lock, this will have a MP race but
480 * I don't see how it can hurt anything.
482 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
483 atomic_clear_char(&fs.entry->max_protection,
484 VM_PROT_WRITE);
489 * fs.map is read-locked
491 * Misc checks. Save the map generation number to detect races.
493 fs.map_generation = fs.map->timestamp;
494 fs.lookup_still_valid = TRUE;
495 fs.first_m = NULL;
496 fs.object = fs.first_object; /* so unlock_and_deallocate works */
497 fs.prot = fs.first_prot; /* default (used by uksmap) */
499 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
500 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
501 panic("vm_fault: fault on nofault entry, addr: %p",
502 (void *)vaddr);
504 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
505 vaddr >= fs.entry->start &&
506 vaddr < fs.entry->start + PAGE_SIZE) {
507 panic("vm_fault: fault on stack guard, addr: %p",
508 (void *)vaddr);
513 * A user-kernel shared map has no VM object and bypasses
514 * everything. We execute the uksmap function with a temporary
515 * fictitious vm_page. The address is directly mapped with no
516 * management.
518 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
519 struct vm_page fakem;
521 bzero(&fakem, sizeof(fakem));
522 fakem.pindex = first_pindex;
523 fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
524 fakem.busy_count = PBUSY_LOCKED;
525 fakem.valid = VM_PAGE_BITS_ALL;
526 fakem.pat_mode = VM_MEMATTR_DEFAULT;
527 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
528 result = KERN_FAILURE;
529 unlock_things(&fs);
530 goto done2;
532 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
533 (fs.wflags & FW_WIRED), fs.entry);
534 goto done_success;
538 * A system map entry may return a NULL object. No object means
539 * no pager means an unrecoverable kernel fault.
541 if (fs.first_object == NULL) {
542 panic("vm_fault: unrecoverable fault at %p in entry %p",
543 (void *)vaddr, fs.entry);
547 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
548 * is set.
550 * Unfortunately a deadlock can occur if we are forced to page-in
551 * from swap, but diving all the way into the vm_pager_get_page()
552 * function to find out is too much. Just check the object type.
554 * The deadlock is a CAM deadlock on a busy VM page when trying
555 * to finish an I/O if another process gets stuck in
556 * vop_helper_read_shortcut() due to a swap fault.
558 if ((td->td_flags & TDF_NOFAULT) &&
559 (retry ||
560 fs.first_object->type == OBJT_VNODE ||
561 fs.first_object->type == OBJT_SWAP ||
562 fs.first_object->backing_object)) {
563 result = KERN_FAILURE;
564 unlock_things(&fs);
565 goto done2;
569 * If the entry is wired we cannot change the page protection.
571 if (fs.wflags & FW_WIRED)
572 fault_type = fs.first_prot;
575 * We generally want to avoid unnecessary exclusive modes on backing
576 * and terminal objects because this can seriously interfere with
577 * heavily fork()'d processes (particularly /bin/sh scripts).
579 * However, we also want to avoid unnecessary retries due to needed
580 * shared->exclusive promotion for common faults. Exclusive mode is
581 * always needed if any page insertion, rename, or free occurs in an
582 * object (and also indirectly if any I/O is done).
584 * The main issue here is going to be fs.first_shared. If the
585 * first_object has a backing object which isn't shadowed and the
586 * process is single-threaded we might as well use an exclusive
587 * lock/chain right off the bat.
589 if (fs.first_shared && fs.first_object->backing_object &&
590 LIST_EMPTY(&fs.first_object->shadow_head) &&
591 td->td_proc && td->td_proc->p_nthreads == 1) {
592 fs.first_shared = 0;
596 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
597 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
598 * we can try shared first.
600 if (fault_flags & VM_FAULT_UNSWAP) {
601 fs.first_shared = 0;
605 * Obtain a top-level object lock, shared or exclusive depending
606 * on fs.first_shared. If a shared lock winds up being insufficient
607 * we will retry with an exclusive lock.
609 * The vnode pager lock is always shared.
611 if (fs.first_shared)
612 vm_object_hold_shared(fs.first_object);
613 else
614 vm_object_hold(fs.first_object);
615 if (fs.vp == NULL)
616 fs.vp = vnode_pager_lock(fs.first_object);
619 * The page we want is at (first_object, first_pindex), but if the
620 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
621 * page table to figure out the actual pindex.
623 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
624 * ONLY
626 didilock = 0;
627 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
628 vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
629 didilock = 1;
630 result = vm_fault_vpagetable(&fs, &first_pindex,
631 fs.entry->aux.master_pde,
632 fault_type, 1);
633 if (result == KERN_TRY_AGAIN) {
634 vm_map_deinterlock(fs.map, &ilock);
635 vm_object_drop(fs.first_object);
636 ++retry;
637 goto RetryFault;
639 if (result != KERN_SUCCESS) {
640 vm_map_deinterlock(fs.map, &ilock);
641 goto done;
646 * Now we have the actual (object, pindex), fault in the page. If
647 * vm_fault_object() fails it will unlock and deallocate the FS
648 * data. If it succeeds everything remains locked and fs->object
649 * will have an additional PIP count if it is not equal to
650 * fs->first_object
652 * vm_fault_object will set fs->prot for the pmap operation. It is
653 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
654 * page can be safely written. However, it will force a read-only
655 * mapping for a read fault if the memory is managed by a virtual
656 * page table.
658 * If the fault code uses the shared object lock shortcut
659 * we must not try to burst (we can't allocate VM pages).
661 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
663 if (debug_fault > 0) {
664 --debug_fault;
665 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
666 "fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
667 result, (intmax_t)vaddr, fault_type, fault_flags,
668 fs.m, fs.prot, fs.wflags, fs.entry);
671 if (result == KERN_TRY_AGAIN) {
672 if (didilock)
673 vm_map_deinterlock(fs.map, &ilock);
674 vm_object_drop(fs.first_object);
675 ++retry;
676 goto RetryFault;
678 if (result != KERN_SUCCESS) {
679 if (didilock)
680 vm_map_deinterlock(fs.map, &ilock);
681 goto done;
685 * On success vm_fault_object() does not unlock or deallocate, and fs.m
686 * will contain a busied page.
688 * Enter the page into the pmap and do pmap-related adjustments.
690 KKASSERT(fs.lookup_still_valid == TRUE);
691 vm_page_flag_set(fs.m, PG_REFERENCED);
692 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
693 fs.wflags & FW_WIRED, fs.entry);
695 if (didilock)
696 vm_map_deinterlock(fs.map, &ilock);
698 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
699 KKASSERT(fs.m->busy_count & PBUSY_LOCKED);
702 * If the page is not wired down, then put it where the pageout daemon
703 * can find it.
705 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
706 if (fs.wflags & FW_WIRED)
707 vm_page_wire(fs.m);
708 else
709 vm_page_unwire(fs.m, 1);
710 } else {
711 vm_page_activate(fs.m);
713 vm_page_wakeup(fs.m);
716 * Burst in a few more pages if possible. The fs.map should still
717 * be locked. To avoid interlocking against a vnode->getblk
718 * operation we had to be sure to unbusy our primary vm_page above
719 * first.
721 * A normal burst can continue down backing store, only execute
722 * if we are holding an exclusive lock, otherwise the exclusive
723 * locks the burst code gets might cause excessive SMP collisions.
725 * A quick burst can be utilized when there is no backing object
726 * (i.e. a shared file mmap).
728 if ((fault_flags & VM_FAULT_BURST) &&
729 (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
730 (fs.wflags & FW_WIRED) == 0) {
731 if (fs.first_shared == 0 && fs.shared == 0) {
732 vm_prefault(fs.map->pmap, vaddr,
733 fs.entry, fs.prot, fault_flags);
734 } else {
735 vm_prefault_quick(fs.map->pmap, vaddr,
736 fs.entry, fs.prot, fault_flags);
740 done_success:
741 mycpu->gd_cnt.v_vm_faults++;
742 if (td->td_lwp)
743 ++td->td_lwp->lwp_ru.ru_minflt;
746 * Unlock everything, and return
748 unlock_things(&fs);
750 if (td->td_lwp) {
751 if (fs.hardfault) {
752 td->td_lwp->lwp_ru.ru_majflt++;
753 } else {
754 td->td_lwp->lwp_ru.ru_minflt++;
758 /*vm_object_deallocate(fs.first_object);*/
759 /*fs.m = NULL; */
760 /*fs.first_object = NULL; must still drop later */
762 result = KERN_SUCCESS;
763 done:
764 if (fs.first_object)
765 vm_object_drop(fs.first_object);
766 done2:
767 if (lp)
768 lp->lwp_flags &= ~LWP_PAGING;
770 #if !defined(NO_SWAPPING)
772 * Check the process RSS limit and force deactivation and
773 * (asynchronous) paging if necessary. This is a complex operation,
774 * only do it for direct user-mode faults, for now.
776 * To reduce overhead implement approximately a ~16MB hysteresis.
778 p = td->td_proc;
779 if ((fault_flags & VM_FAULT_USERMODE) && lp &&
780 p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
781 map != &kernel_map) {
782 vm_pindex_t limit;
783 vm_pindex_t size;
785 limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
786 p->p_rlimit[RLIMIT_RSS].rlim_max));
787 size = pmap_resident_tlnw_count(map->pmap);
788 if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
789 vm_pageout_map_deactivate_pages(map, limit);
792 #endif
794 return (result);
798 * Fault in the specified virtual address in the current process map,
799 * returning a held VM page or NULL. See vm_fault_page() for more
800 * information.
802 * No requirements.
804 vm_page_t
805 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
806 int *errorp, int *busyp)
808 struct lwp *lp = curthread->td_lwp;
809 vm_page_t m;
811 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
812 fault_type, VM_FAULT_NORMAL,
813 errorp, busyp);
814 return(m);
818 * Fault in the specified virtual address in the specified map, doing all
819 * necessary manipulation of the object store and all necessary I/O. Return
820 * a held VM page or NULL, and set *errorp. The related pmap is not
821 * updated.
823 * If busyp is not NULL then *busyp will be set to TRUE if this routine
824 * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
825 * does not (VM_PROT_WRITE not specified or busyp is NULL). If busyp is
826 * NULL the returned page is only held.
828 * If the caller has no intention of writing to the page's contents, busyp
829 * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
830 * without busying the page.
832 * The returned page will also be marked PG_REFERENCED.
834 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
835 * error will be returned.
837 * No requirements.
839 vm_page_t
840 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
841 int fault_flags, int *errorp, int *busyp)
843 vm_pindex_t first_pindex;
844 struct faultstate fs;
845 int result;
846 int retry;
847 int growstack;
848 int didcow;
849 vm_prot_t orig_fault_type = fault_type;
851 retry = 0;
852 didcow = 0;
853 fs.hardfault = 0;
854 fs.fault_flags = fault_flags;
855 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
858 * Dive the pmap (concurrency possible). If we find the
859 * appropriate page we can terminate early and quickly.
861 * This works great for normal programs but will always return
862 * NULL for host lookups of vkernel maps in VMM mode.
864 * NOTE: pmap_fault_page_quick() might not busy the page. If
865 * VM_PROT_WRITE is set in fault_type and pmap_fault_page_quick()
866 * returns non-NULL, it will safely dirty the returned vm_page_t
867 * for us. We cannot safely dirty it here (it might not be
868 * busy).
870 fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
871 if (fs.m) {
872 *errorp = 0;
873 return(fs.m);
877 * Otherwise take a concurrency hit and do a formal page
878 * fault.
880 fs.vp = NULL;
881 fs.shared = vm_shared_fault;
882 fs.first_shared = vm_shared_fault;
883 growstack = 1;
886 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
887 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
888 * we can try shared first.
890 if (fault_flags & VM_FAULT_UNSWAP) {
891 fs.first_shared = 0;
894 RetryFault:
896 * Find the vm_map_entry representing the backing store and resolve
897 * the top level object and page index. This may have the side
898 * effect of executing a copy-on-write on the map entry and/or
899 * creating a shadow object, but will not COW any actual VM pages.
901 * On success fs.map is left read-locked and various other fields
902 * are initialized but not otherwise referenced or locked.
904 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
905 * if the map entry is a virtual page table and also writable,
906 * so we can set the 'A'accessed bit in the virtual page table
907 * entry.
909 fs.map = map;
910 result = vm_map_lookup(&fs.map, vaddr, fault_type,
911 &fs.entry, &fs.first_object,
912 &first_pindex, &fs.first_prot, &fs.wflags);
914 if (result != KERN_SUCCESS) {
915 if (result == KERN_FAILURE_NOFAULT) {
916 *errorp = KERN_FAILURE;
917 fs.m = NULL;
918 goto done;
920 if (result != KERN_PROTECTION_FAILURE ||
921 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
923 if (result == KERN_INVALID_ADDRESS && growstack &&
924 map != &kernel_map && curproc != NULL) {
925 result = vm_map_growstack(map, vaddr);
926 if (result == KERN_SUCCESS) {
927 growstack = 0;
928 ++retry;
929 goto RetryFault;
931 result = KERN_FAILURE;
933 fs.m = NULL;
934 *errorp = result;
935 goto done;
939 * If we are user-wiring a r/w segment, and it is COW, then
940 * we need to do the COW operation. Note that we don't
941 * currently COW RO sections now, because it is NOT desirable
942 * to COW .text. We simply keep .text from ever being COW'ed
943 * and take the heat that one cannot debug wired .text sections.
945 result = vm_map_lookup(&fs.map, vaddr,
946 VM_PROT_READ|VM_PROT_WRITE|
947 VM_PROT_OVERRIDE_WRITE,
948 &fs.entry, &fs.first_object,
949 &first_pindex, &fs.first_prot,
950 &fs.wflags);
951 if (result != KERN_SUCCESS) {
952 /* could also be KERN_FAILURE_NOFAULT */
953 *errorp = KERN_FAILURE;
954 fs.m = NULL;
955 goto done;
959 * If we don't COW now, on a user wire, the user will never
960 * be able to write to the mapping. If we don't make this
961 * restriction, the bookkeeping would be nearly impossible.
963 * XXX We have a shared lock, this will have a MP race but
964 * I don't see how it can hurt anything.
966 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
967 atomic_clear_char(&fs.entry->max_protection,
968 VM_PROT_WRITE);
973 * fs.map is read-locked
975 * Misc checks. Save the map generation number to detect races.
977 fs.map_generation = fs.map->timestamp;
978 fs.lookup_still_valid = TRUE;
979 fs.first_m = NULL;
980 fs.object = fs.first_object; /* so unlock_and_deallocate works */
982 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
983 panic("vm_fault: fault on nofault entry, addr: %lx",
984 (u_long)vaddr);
988 * A user-kernel shared map has no VM object and bypasses
989 * everything. We execute the uksmap function with a temporary
990 * fictitious vm_page. The address is directly mapped with no
991 * management.
993 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
994 struct vm_page fakem;
996 bzero(&fakem, sizeof(fakem));
997 fakem.pindex = first_pindex;
998 fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
999 fakem.busy_count = PBUSY_LOCKED;
1000 fakem.valid = VM_PAGE_BITS_ALL;
1001 fakem.pat_mode = VM_MEMATTR_DEFAULT;
1002 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
1003 *errorp = KERN_FAILURE;
1004 fs.m = NULL;
1005 unlock_things(&fs);
1006 goto done2;
1008 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
1009 vm_page_hold(fs.m);
1010 if (busyp)
1011 *busyp = 0; /* don't need to busy R or W */
1012 unlock_things(&fs);
1013 *errorp = 0;
1014 goto done;
1019 * A system map entry may return a NULL object. No object means
1020 * no pager means an unrecoverable kernel fault.
1022 if (fs.first_object == NULL) {
1023 panic("vm_fault: unrecoverable fault at %p in entry %p",
1024 (void *)vaddr, fs.entry);
1028 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
1029 * is set.
1031 * Unfortunately a deadlock can occur if we are forced to page-in
1032 * from swap, but diving all the way into the vm_pager_get_page()
1033 * function to find out is too much. Just check the object type.
1035 if ((curthread->td_flags & TDF_NOFAULT) &&
1036 (retry ||
1037 fs.first_object->type == OBJT_VNODE ||
1038 fs.first_object->type == OBJT_SWAP ||
1039 fs.first_object->backing_object)) {
1040 *errorp = KERN_FAILURE;
1041 unlock_things(&fs);
1042 fs.m = NULL;
1043 goto done2;
1047 * If the entry is wired we cannot change the page protection.
1049 if (fs.wflags & FW_WIRED)
1050 fault_type = fs.first_prot;
1053 * Make a reference to this object to prevent its disposal while we
1054 * are messing with it. Once we have the reference, the map is free
1055 * to be diddled. Since objects reference their shadows (and copies),
1056 * they will stay around as well.
1058 * The reference should also prevent an unexpected collapse of the
1059 * parent that might move pages from the current object into the
1060 * parent unexpectedly, resulting in corruption.
1062 * Bump the paging-in-progress count to prevent size changes (e.g.
1063 * truncation operations) during I/O. This must be done after
1064 * obtaining the vnode lock in order to avoid possible deadlocks.
1066 if (fs.first_shared)
1067 vm_object_hold_shared(fs.first_object);
1068 else
1069 vm_object_hold(fs.first_object);
1070 if (fs.vp == NULL)
1071 fs.vp = vnode_pager_lock(fs.first_object); /* shared */
1074 * The page we want is at (first_object, first_pindex), but if the
1075 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
1076 * page table to figure out the actual pindex.
1078 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
1079 * ONLY
1081 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1082 result = vm_fault_vpagetable(&fs, &first_pindex,
1083 fs.entry->aux.master_pde,
1084 fault_type, 1);
1085 if (result == KERN_TRY_AGAIN) {
1086 vm_object_drop(fs.first_object);
1087 ++retry;
1088 goto RetryFault;
1090 if (result != KERN_SUCCESS) {
1091 *errorp = result;
1092 fs.m = NULL;
1093 goto done;
1098 * Now we have the actual (object, pindex), fault in the page. If
1099 * vm_fault_object() fails it will unlock and deallocate the FS
1100 * data. If it succeeds everything remains locked and fs->object
1101 * will have an additinal PIP count if it is not equal to
1102 * fs->first_object
1104 fs.m = NULL;
1105 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1107 if (result == KERN_TRY_AGAIN) {
1108 vm_object_drop(fs.first_object);
1109 ++retry;
1110 didcow |= fs.wflags & FW_DIDCOW;
1111 goto RetryFault;
1113 if (result != KERN_SUCCESS) {
1114 *errorp = result;
1115 fs.m = NULL;
1116 goto done;
1119 if ((orig_fault_type & VM_PROT_WRITE) &&
1120 (fs.prot & VM_PROT_WRITE) == 0) {
1121 *errorp = KERN_PROTECTION_FAILURE;
1122 unlock_and_deallocate(&fs);
1123 fs.m = NULL;
1124 goto done;
1128 * Generally speaking we don't want to update the pmap because
1129 * this routine can be called many times for situations that do
1130 * not require updating the pmap, not to mention the page might
1131 * already be in the pmap.
1133 * However, if our vm_map_lookup() results in a COW, we need to
1134 * at least remove the pte from the pmap to guarantee proper
1135 * visibility of modifications made to the process. For example,
1136 * modifications made by vkernel uiocopy/related routines and
1137 * modifications made by ptrace().
1139 vm_page_flag_set(fs.m, PG_REFERENCED);
1140 #if 0
1141 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1142 fs.wflags & FW_WIRED, NULL);
1143 mycpu->gd_cnt.v_vm_faults++;
1144 if (curthread->td_lwp)
1145 ++curthread->td_lwp->lwp_ru.ru_minflt;
1146 #endif
1147 if ((fs.wflags | didcow) | FW_DIDCOW) {
1148 pmap_remove(fs.map->pmap,
1149 vaddr & ~PAGE_MASK,
1150 (vaddr & ~PAGE_MASK) + PAGE_SIZE);
1154 * On success vm_fault_object() does not unlock or deallocate, and fs.m
1155 * will contain a busied page. So we must unlock here after having
1156 * messed with the pmap.
1158 unlock_things(&fs);
1161 * Return a held page. We are not doing any pmap manipulation so do
1162 * not set PG_MAPPED. However, adjust the page flags according to
1163 * the fault type because the caller may not use a managed pmapping
1164 * (so we don't want to lose the fact that the page will be dirtied
1165 * if a write fault was specified).
1167 if (fault_type & VM_PROT_WRITE)
1168 vm_page_dirty(fs.m);
1169 vm_page_activate(fs.m);
1171 if (curthread->td_lwp) {
1172 if (fs.hardfault) {
1173 curthread->td_lwp->lwp_ru.ru_majflt++;
1174 } else {
1175 curthread->td_lwp->lwp_ru.ru_minflt++;
1180 * Unlock everything, and return the held or busied page.
1182 if (busyp) {
1183 if (fault_type & VM_PROT_WRITE) {
1184 vm_page_dirty(fs.m);
1185 *busyp = 1;
1186 } else {
1187 *busyp = 0;
1188 vm_page_hold(fs.m);
1189 vm_page_wakeup(fs.m);
1191 } else {
1192 vm_page_hold(fs.m);
1193 vm_page_wakeup(fs.m);
1195 /*vm_object_deallocate(fs.first_object);*/
1196 /*fs.first_object = NULL; */
1197 *errorp = 0;
1199 done:
1200 if (fs.first_object)
1201 vm_object_drop(fs.first_object);
1202 done2:
1203 return(fs.m);
1207 * Fault in the specified (object,offset), dirty the returned page as
1208 * needed. If the requested fault_type cannot be done NULL and an
1209 * error is returned.
1211 * A held (but not busied) page is returned.
1213 * The passed in object must be held as specified by the shared
1214 * argument.
1216 vm_page_t
1217 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1218 vm_prot_t fault_type, int fault_flags,
1219 int *sharedp, int *errorp)
1221 int result;
1222 vm_pindex_t first_pindex;
1223 struct faultstate fs;
1224 struct vm_map_entry entry;
1226 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1227 bzero(&entry, sizeof(entry));
1228 entry.object.vm_object = object;
1229 entry.maptype = VM_MAPTYPE_NORMAL;
1230 entry.protection = entry.max_protection = fault_type;
1232 fs.hardfault = 0;
1233 fs.fault_flags = fault_flags;
1234 fs.map = NULL;
1235 fs.shared = vm_shared_fault;
1236 fs.first_shared = *sharedp;
1237 fs.vp = NULL;
1238 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1241 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1242 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
1243 * we can try shared first.
1245 if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1246 fs.first_shared = 0;
1247 vm_object_upgrade(object);
1251 * Retry loop as needed (typically for shared->exclusive transitions)
1253 RetryFault:
1254 *sharedp = fs.first_shared;
1255 first_pindex = OFF_TO_IDX(offset);
1256 fs.first_object = object;
1257 fs.entry = &entry;
1258 fs.first_prot = fault_type;
1259 fs.wflags = 0;
1260 /*fs.map_generation = 0; unused */
1263 * Make a reference to this object to prevent its disposal while we
1264 * are messing with it. Once we have the reference, the map is free
1265 * to be diddled. Since objects reference their shadows (and copies),
1266 * they will stay around as well.
1268 * The reference should also prevent an unexpected collapse of the
1269 * parent that might move pages from the current object into the
1270 * parent unexpectedly, resulting in corruption.
1272 * Bump the paging-in-progress count to prevent size changes (e.g.
1273 * truncation operations) during I/O. This must be done after
1274 * obtaining the vnode lock in order to avoid possible deadlocks.
1276 if (fs.vp == NULL)
1277 fs.vp = vnode_pager_lock(fs.first_object);
1279 fs.lookup_still_valid = TRUE;
1280 fs.first_m = NULL;
1281 fs.object = fs.first_object; /* so unlock_and_deallocate works */
1283 #if 0
1284 /* XXX future - ability to operate on VM object using vpagetable */
1285 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1286 result = vm_fault_vpagetable(&fs, &first_pindex,
1287 fs.entry->aux.master_pde,
1288 fault_type, 0);
1289 if (result == KERN_TRY_AGAIN) {
1290 if (fs.first_shared == 0 && *sharedp)
1291 vm_object_upgrade(object);
1292 goto RetryFault;
1294 if (result != KERN_SUCCESS) {
1295 *errorp = result;
1296 return (NULL);
1299 #endif
1302 * Now we have the actual (object, pindex), fault in the page. If
1303 * vm_fault_object() fails it will unlock and deallocate the FS
1304 * data. If it succeeds everything remains locked and fs->object
1305 * will have an additinal PIP count if it is not equal to
1306 * fs->first_object
1308 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1309 * We may have to upgrade its lock to handle the requested fault.
1311 result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1313 if (result == KERN_TRY_AGAIN) {
1314 if (fs.first_shared == 0 && *sharedp)
1315 vm_object_upgrade(object);
1316 goto RetryFault;
1318 if (result != KERN_SUCCESS) {
1319 *errorp = result;
1320 return(NULL);
1323 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1324 *errorp = KERN_PROTECTION_FAILURE;
1325 unlock_and_deallocate(&fs);
1326 return(NULL);
1330 * On success vm_fault_object() does not unlock or deallocate, so we
1331 * do it here. Note that the returned fs.m will be busied.
1333 unlock_things(&fs);
1336 * Return a held page. We are not doing any pmap manipulation so do
1337 * not set PG_MAPPED. However, adjust the page flags according to
1338 * the fault type because the caller may not use a managed pmapping
1339 * (so we don't want to lose the fact that the page will be dirtied
1340 * if a write fault was specified).
1342 vm_page_hold(fs.m);
1343 vm_page_activate(fs.m);
1344 if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1345 vm_page_dirty(fs.m);
1346 if (fault_flags & VM_FAULT_UNSWAP)
1347 swap_pager_unswapped(fs.m);
1350 * Indicate that the page was accessed.
1352 vm_page_flag_set(fs.m, PG_REFERENCED);
1354 if (curthread->td_lwp) {
1355 if (fs.hardfault) {
1356 curthread->td_lwp->lwp_ru.ru_majflt++;
1357 } else {
1358 curthread->td_lwp->lwp_ru.ru_minflt++;
1363 * Unlock everything, and return the held page.
1365 vm_page_wakeup(fs.m);
1366 /*vm_object_deallocate(fs.first_object);*/
1367 /*fs.first_object = NULL; */
1369 *errorp = 0;
1370 return(fs.m);
1374 * Translate the virtual page number (first_pindex) that is relative
1375 * to the address space into a logical page number that is relative to the
1376 * backing object. Use the virtual page table pointed to by (vpte).
1378 * Possibly downgrade the protection based on the vpte bits.
1380 * This implements an N-level page table. Any level can terminate the
1381 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
1382 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1384 static
1386 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1387 vpte_t vpte, int fault_type, int allow_nofault)
1389 struct lwbuf *lwb;
1390 struct lwbuf lwb_cache;
1391 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1392 int result;
1393 vpte_t *ptep;
1395 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1396 for (;;) {
1398 * We cannot proceed if the vpte is not valid, not readable
1399 * for a read fault, not writable for a write fault, or
1400 * not executable for an instruction execution fault.
1402 if ((vpte & VPTE_V) == 0) {
1403 unlock_and_deallocate(fs);
1404 return (KERN_FAILURE);
1406 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1407 unlock_and_deallocate(fs);
1408 return (KERN_FAILURE);
1410 if ((fault_type & VM_PROT_EXECUTE) && (vpte & VPTE_NX)) {
1411 unlock_and_deallocate(fs);
1412 return (KERN_FAILURE);
1414 if ((vpte & VPTE_PS) || vshift == 0)
1415 break;
1418 * Get the page table page. Nominally we only read the page
1419 * table, but since we are actively setting VPTE_M and VPTE_A,
1420 * tell vm_fault_object() that we are writing it.
1422 * There is currently no real need to optimize this.
1424 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1425 VM_PROT_READ|VM_PROT_WRITE,
1426 allow_nofault);
1427 if (result != KERN_SUCCESS)
1428 return (result);
1431 * Process the returned fs.m and look up the page table
1432 * entry in the page table page.
1434 vshift -= VPTE_PAGE_BITS;
1435 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1436 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1437 ((*pindex >> vshift) & VPTE_PAGE_MASK));
1438 vm_page_activate(fs->m);
1441 * Page table write-back - entire operation including
1442 * validation of the pte must be atomic to avoid races
1443 * against the vkernel changing the pte.
1445 * If the vpte is valid for the* requested operation, do
1446 * a write-back to the page table.
1448 * XXX VPTE_M is not set properly for page directory pages.
1449 * It doesn't get set in the page directory if the page table
1450 * is modified during a read access.
1452 for (;;) {
1453 vpte_t nvpte;
1456 * Reload for the cmpset, but make sure the pte is
1457 * still valid.
1459 vpte = *ptep;
1460 cpu_ccfence();
1461 nvpte = vpte;
1463 if ((vpte & VPTE_V) == 0)
1464 break;
1466 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1467 nvpte |= VPTE_M | VPTE_A;
1468 if (fault_type & (VM_PROT_READ | VM_PROT_EXECUTE))
1469 nvpte |= VPTE_A;
1470 if (vpte == nvpte)
1471 break;
1472 if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1473 vm_page_dirty(fs->m);
1474 break;
1477 lwbuf_free(lwb);
1478 vm_page_flag_set(fs->m, PG_REFERENCED);
1479 vm_page_wakeup(fs->m);
1480 fs->m = NULL;
1481 cleanup_successful_fault(fs);
1485 * When the vkernel sets VPTE_RW it expects the real kernel to
1486 * reflect VPTE_M back when the page is modified via the mapping.
1487 * In order to accomplish this the real kernel must map the page
1488 * read-only for read faults and use write faults to reflect VPTE_M
1489 * back.
1491 * Once VPTE_M has been set, the real kernel's pte allows writing.
1492 * If the vkernel clears VPTE_M the vkernel must be sure to
1493 * MADV_INVAL the real kernel's mappings to force the real kernel
1494 * to re-fault on the next write so oit can set VPTE_M again.
1496 if ((fault_type & VM_PROT_WRITE) == 0 &&
1497 (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1498 fs->first_prot &= ~VM_PROT_WRITE;
1502 * Disable EXECUTE perms if NX bit is set.
1504 if (vpte & VPTE_NX)
1505 fs->first_prot &= ~VM_PROT_EXECUTE;
1508 * Combine remaining address bits with the vpte.
1510 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1511 (*pindex & ((1L << vshift) - 1));
1512 return (KERN_SUCCESS);
1517 * This is the core of the vm_fault code.
1519 * Do all operations required to fault-in (fs.first_object, pindex). Run
1520 * through the shadow chain as necessary and do required COW or virtual
1521 * copy operations. The caller has already fully resolved the vm_map_entry
1522 * and, if appropriate, has created a copy-on-write layer. All we need to
1523 * do is iterate the object chain.
1525 * On failure (fs) is unlocked and deallocated and the caller may return or
1526 * retry depending on the failure code. On success (fs) is NOT unlocked or
1527 * deallocated, fs.m will contained a resolved, busied page, and fs.object
1528 * will have an additional PIP count if it is not equal to fs.first_object.
1530 * If locks based on fs->first_shared or fs->shared are insufficient,
1531 * clear the appropriate field(s) and return RETRY. COWs require that
1532 * first_shared be 0, while page allocations (or frees) require that
1533 * shared be 0. Renames require that both be 0.
1535 * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1536 * we will have to retry with it exclusive if the vm_page is
1537 * PG_SWAPPED.
1539 * fs->first_object must be held on call.
1541 static
1543 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1544 vm_prot_t fault_type, int allow_nofault)
1546 vm_object_t next_object;
1547 vm_pindex_t pindex;
1548 int error;
1550 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1551 fs->prot = fs->first_prot;
1552 fs->object = fs->first_object;
1553 pindex = first_pindex;
1555 vm_object_chain_acquire(fs->first_object, fs->shared);
1556 vm_object_pip_add(fs->first_object, 1);
1559 * If a read fault occurs we try to upgrade the page protection
1560 * and make it also writable if possible. There are three cases
1561 * where we cannot make the page mapping writable:
1563 * (1) The mapping is read-only or the VM object is read-only,
1564 * fs->prot above will simply not have VM_PROT_WRITE set.
1566 * (2) If the mapping is a virtual page table fs->first_prot will
1567 * have already been properly adjusted by vm_fault_vpagetable().
1568 * to detect writes so we can set VPTE_M in the virtual page
1569 * table. Used by vkernels.
1571 * (3) If the VM page is read-only or copy-on-write, upgrading would
1572 * just result in an unnecessary COW fault.
1574 * (4) If the pmap specifically requests A/M bit emulation, downgrade
1575 * here.
1577 #if 0
1578 /* see vpagetable code */
1579 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1580 if ((fault_type & VM_PROT_WRITE) == 0)
1581 fs->prot &= ~VM_PROT_WRITE;
1583 #endif
1585 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1586 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1587 if ((fault_type & VM_PROT_WRITE) == 0)
1588 fs->prot &= ~VM_PROT_WRITE;
1591 /* vm_object_hold(fs->object); implied b/c object == first_object */
1593 for (;;) {
1595 * The entire backing chain from first_object to object
1596 * inclusive is chainlocked.
1598 * If the object is dead, we stop here
1600 if (fs->object->flags & OBJ_DEAD) {
1601 vm_object_pip_wakeup(fs->first_object);
1602 vm_object_chain_release_all(fs->first_object,
1603 fs->object);
1604 if (fs->object != fs->first_object)
1605 vm_object_drop(fs->object);
1606 unlock_and_deallocate(fs);
1607 return (KERN_PROTECTION_FAILURE);
1611 * See if the page is resident. Wait/Retry if the page is
1612 * busy (lots of stuff may have changed so we can't continue
1613 * in that case).
1615 * We can theoretically allow the soft-busy case on a read
1616 * fault if the page is marked valid, but since such
1617 * pages are typically already pmap'd, putting that
1618 * special case in might be more effort then it is
1619 * worth. We cannot under any circumstances mess
1620 * around with a vm_page_t->busy page except, perhaps,
1621 * to pmap it.
1623 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1624 TRUE, &error);
1625 if (error) {
1626 vm_object_pip_wakeup(fs->first_object);
1627 vm_object_chain_release_all(fs->first_object,
1628 fs->object);
1629 if (fs->object != fs->first_object)
1630 vm_object_drop(fs->object);
1631 unlock_things(fs);
1632 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1633 mycpu->gd_cnt.v_intrans++;
1634 /*vm_object_deallocate(fs->first_object);*/
1635 /*fs->first_object = NULL;*/
1636 fs->m = NULL;
1637 return (KERN_TRY_AGAIN);
1639 if (fs->m) {
1641 * The page is busied for us.
1643 * If reactivating a page from PQ_CACHE we may have
1644 * to rate-limit.
1646 int queue = fs->m->queue;
1647 vm_page_unqueue_nowakeup(fs->m);
1649 if ((queue - fs->m->pc) == PQ_CACHE &&
1650 vm_page_count_severe()) {
1651 vm_page_activate(fs->m);
1652 vm_page_wakeup(fs->m);
1653 fs->m = NULL;
1654 vm_object_pip_wakeup(fs->first_object);
1655 vm_object_chain_release_all(fs->first_object,
1656 fs->object);
1657 if (fs->object != fs->first_object)
1658 vm_object_drop(fs->object);
1659 unlock_and_deallocate(fs);
1660 if (allow_nofault == 0 ||
1661 (curthread->td_flags & TDF_NOFAULT) == 0) {
1662 thread_t td;
1664 vm_wait_pfault();
1665 td = curthread;
1666 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1667 return (KERN_PROTECTION_FAILURE);
1669 return (KERN_TRY_AGAIN);
1673 * If it still isn't completely valid (readable),
1674 * or if a read-ahead-mark is set on the VM page,
1675 * jump to readrest, else we found the page and
1676 * can return.
1678 * We can release the spl once we have marked the
1679 * page busy.
1681 if (fs->m->object != &kernel_object) {
1682 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1683 VM_PAGE_BITS_ALL) {
1684 goto readrest;
1686 if (fs->m->flags & PG_RAM) {
1687 if (debug_cluster)
1688 kprintf("R");
1689 vm_page_flag_clear(fs->m, PG_RAM);
1690 goto readrest;
1693 break; /* break to PAGE HAS BEEN FOUND */
1697 * Page is not resident, If this is the search termination
1698 * or the pager might contain the page, allocate a new page.
1700 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1702 * Allocating, must be exclusive.
1704 if (fs->object == fs->first_object &&
1705 fs->first_shared) {
1706 fs->first_shared = 0;
1707 vm_object_pip_wakeup(fs->first_object);
1708 vm_object_chain_release_all(fs->first_object,
1709 fs->object);
1710 if (fs->object != fs->first_object)
1711 vm_object_drop(fs->object);
1712 unlock_and_deallocate(fs);
1713 return (KERN_TRY_AGAIN);
1715 if (fs->object != fs->first_object &&
1716 fs->shared) {
1717 fs->first_shared = 0;
1718 fs->shared = 0;
1719 vm_object_pip_wakeup(fs->first_object);
1720 vm_object_chain_release_all(fs->first_object,
1721 fs->object);
1722 if (fs->object != fs->first_object)
1723 vm_object_drop(fs->object);
1724 unlock_and_deallocate(fs);
1725 return (KERN_TRY_AGAIN);
1729 * If the page is beyond the object size we fail
1731 if (pindex >= fs->object->size) {
1732 vm_object_pip_wakeup(fs->first_object);
1733 vm_object_chain_release_all(fs->first_object,
1734 fs->object);
1735 if (fs->object != fs->first_object)
1736 vm_object_drop(fs->object);
1737 unlock_and_deallocate(fs);
1738 return (KERN_PROTECTION_FAILURE);
1742 * Allocate a new page for this object/offset pair.
1744 * It is possible for the allocation to race, so
1745 * handle the case.
1747 fs->m = NULL;
1748 if (!vm_page_count_severe()) {
1749 fs->m = vm_page_alloc(fs->object, pindex,
1750 ((fs->vp || fs->object->backing_object) ?
1751 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1752 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1753 VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1755 if (fs->m == NULL) {
1756 vm_object_pip_wakeup(fs->first_object);
1757 vm_object_chain_release_all(fs->first_object,
1758 fs->object);
1759 if (fs->object != fs->first_object)
1760 vm_object_drop(fs->object);
1761 unlock_and_deallocate(fs);
1762 if (allow_nofault == 0 ||
1763 (curthread->td_flags & TDF_NOFAULT) == 0) {
1764 thread_t td;
1766 vm_wait_pfault();
1767 td = curthread;
1768 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1769 return (KERN_PROTECTION_FAILURE);
1771 return (KERN_TRY_AGAIN);
1775 * Fall through to readrest. We have a new page which
1776 * will have to be paged (since m->valid will be 0).
1780 readrest:
1782 * We have found an invalid or partially valid page, a
1783 * page with a read-ahead mark which might be partially or
1784 * fully valid (and maybe dirty too), or we have allocated
1785 * a new page.
1787 * Attempt to fault-in the page if there is a chance that the
1788 * pager has it, and potentially fault in additional pages
1789 * at the same time.
1791 * If TRYPAGER is true then fs.m will be non-NULL and busied
1792 * for us.
1794 if (TRYPAGER(fs)) {
1795 int rv;
1796 int seqaccess;
1797 u_char behavior = vm_map_entry_behavior(fs->entry);
1799 if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1800 seqaccess = 0;
1801 else
1802 seqaccess = -1;
1805 * Doing I/O may synchronously insert additional
1806 * pages so we can't be shared at this point either.
1808 * NOTE: We can't free fs->m here in the allocated
1809 * case (fs->object != fs->first_object) as
1810 * this would require an exclusively locked
1811 * VM object.
1813 if (fs->object == fs->first_object &&
1814 fs->first_shared) {
1815 vm_page_deactivate(fs->m);
1816 vm_page_wakeup(fs->m);
1817 fs->m = NULL;
1818 fs->first_shared = 0;
1819 vm_object_pip_wakeup(fs->first_object);
1820 vm_object_chain_release_all(fs->first_object,
1821 fs->object);
1822 if (fs->object != fs->first_object)
1823 vm_object_drop(fs->object);
1824 unlock_and_deallocate(fs);
1825 return (KERN_TRY_AGAIN);
1827 if (fs->object != fs->first_object &&
1828 fs->shared) {
1829 vm_page_deactivate(fs->m);
1830 vm_page_wakeup(fs->m);
1831 fs->m = NULL;
1832 fs->first_shared = 0;
1833 fs->shared = 0;
1834 vm_object_pip_wakeup(fs->first_object);
1835 vm_object_chain_release_all(fs->first_object,
1836 fs->object);
1837 if (fs->object != fs->first_object)
1838 vm_object_drop(fs->object);
1839 unlock_and_deallocate(fs);
1840 return (KERN_TRY_AGAIN);
1844 * Avoid deadlocking against the map when doing I/O.
1845 * fs.object and the page is BUSY'd.
1847 * NOTE: Once unlocked, fs->entry can become stale
1848 * so this will NULL it out.
1850 * NOTE: fs->entry is invalid until we relock the
1851 * map and verify that the timestamp has not
1852 * changed.
1854 unlock_map(fs);
1857 * Acquire the page data. We still hold a ref on
1858 * fs.object and the page has been BUSY's.
1860 * The pager may replace the page (for example, in
1861 * order to enter a fictitious page into the
1862 * object). If it does so it is responsible for
1863 * cleaning up the passed page and properly setting
1864 * the new page BUSY.
1866 * If we got here through a PG_RAM read-ahead
1867 * mark the page may be partially dirty and thus
1868 * not freeable. Don't bother checking to see
1869 * if the pager has the page because we can't free
1870 * it anyway. We have to depend on the get_page
1871 * operation filling in any gaps whether there is
1872 * backing store or not.
1874 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1876 if (rv == VM_PAGER_OK) {
1878 * Relookup in case pager changed page. Pager
1879 * is responsible for disposition of old page
1880 * if moved.
1882 * XXX other code segments do relookups too.
1883 * It's a bad abstraction that needs to be
1884 * fixed/removed.
1886 fs->m = vm_page_lookup(fs->object, pindex);
1887 if (fs->m == NULL) {
1888 vm_object_pip_wakeup(fs->first_object);
1889 vm_object_chain_release_all(
1890 fs->first_object, fs->object);
1891 if (fs->object != fs->first_object)
1892 vm_object_drop(fs->object);
1893 unlock_and_deallocate(fs);
1894 return (KERN_TRY_AGAIN);
1896 ++fs->hardfault;
1897 break; /* break to PAGE HAS BEEN FOUND */
1901 * Remove the bogus page (which does not exist at this
1902 * object/offset); before doing so, we must get back
1903 * our object lock to preserve our invariant.
1905 * Also wake up any other process that may want to bring
1906 * in this page.
1908 * If this is the top-level object, we must leave the
1909 * busy page to prevent another process from rushing
1910 * past us, and inserting the page in that object at
1911 * the same time that we are.
1913 if (rv == VM_PAGER_ERROR) {
1914 if (curproc) {
1915 kprintf("vm_fault: pager read error, "
1916 "pid %d (%s)\n",
1917 curproc->p_pid,
1918 curproc->p_comm);
1919 } else {
1920 kprintf("vm_fault: pager read error, "
1921 "thread %p (%s)\n",
1922 curthread,
1923 curproc->p_comm);
1928 * Data outside the range of the pager or an I/O error
1930 * The page may have been wired during the pagein,
1931 * e.g. by the buffer cache, and cannot simply be
1932 * freed. Call vnode_pager_freepage() to deal with it.
1934 * Also note that we cannot free the page if we are
1935 * holding the related object shared. XXX not sure
1936 * what to do in that case.
1938 if (fs->object != fs->first_object) {
1940 * Scrap the page. Check to see if the
1941 * vm_pager_get_page() call has already
1942 * dealt with it.
1944 if (fs->m) {
1945 vnode_pager_freepage(fs->m);
1946 fs->m = NULL;
1950 * XXX - we cannot just fall out at this
1951 * point, m has been freed and is invalid!
1955 * XXX - the check for kernel_map is a kludge to work
1956 * around having the machine panic on a kernel space
1957 * fault w/ I/O error.
1959 if (((fs->map != &kernel_map) &&
1960 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1961 if (fs->m) {
1962 if (fs->first_shared) {
1963 vm_page_deactivate(fs->m);
1964 vm_page_wakeup(fs->m);
1965 } else {
1966 vnode_pager_freepage(fs->m);
1968 fs->m = NULL;
1970 vm_object_pip_wakeup(fs->first_object);
1971 vm_object_chain_release_all(fs->first_object,
1972 fs->object);
1973 if (fs->object != fs->first_object)
1974 vm_object_drop(fs->object);
1975 unlock_and_deallocate(fs);
1976 if (rv == VM_PAGER_ERROR)
1977 return (KERN_FAILURE);
1978 else
1979 return (KERN_PROTECTION_FAILURE);
1980 /* NOT REACHED */
1985 * We get here if the object has a default pager (or unwiring)
1986 * or the pager doesn't have the page.
1988 * fs->first_m will be used for the COW unless we find a
1989 * deeper page to be mapped read-only, in which case the
1990 * unlock*(fs) will free first_m.
1992 if (fs->object == fs->first_object)
1993 fs->first_m = fs->m;
1996 * Move on to the next object. The chain lock should prevent
1997 * the backing_object from getting ripped out from under us.
1999 * The object lock for the next object is governed by
2000 * fs->shared.
2002 if ((next_object = fs->object->backing_object) != NULL) {
2003 if (fs->shared)
2004 vm_object_hold_shared(next_object);
2005 else
2006 vm_object_hold(next_object);
2007 vm_object_chain_acquire(next_object, fs->shared);
2008 KKASSERT(next_object == fs->object->backing_object);
2009 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
2012 if (next_object == NULL) {
2014 * If there's no object left, fill the page in the top
2015 * object with zeros.
2017 if (fs->object != fs->first_object) {
2018 #if 0
2019 if (fs->first_object->backing_object !=
2020 fs->object) {
2021 vm_object_hold(fs->first_object->backing_object);
2023 #endif
2024 vm_object_chain_release_all(
2025 fs->first_object->backing_object,
2026 fs->object);
2027 #if 0
2028 if (fs->first_object->backing_object !=
2029 fs->object) {
2030 vm_object_drop(fs->first_object->backing_object);
2032 #endif
2033 vm_object_pip_wakeup(fs->object);
2034 vm_object_drop(fs->object);
2035 fs->object = fs->first_object;
2036 pindex = first_pindex;
2037 fs->m = fs->first_m;
2039 fs->first_m = NULL;
2042 * Zero the page and mark it valid.
2044 vm_page_zero_fill(fs->m);
2045 mycpu->gd_cnt.v_zfod++;
2046 fs->m->valid = VM_PAGE_BITS_ALL;
2047 break; /* break to PAGE HAS BEEN FOUND */
2049 if (fs->object != fs->first_object) {
2050 vm_object_pip_wakeup(fs->object);
2051 vm_object_lock_swap();
2052 vm_object_drop(fs->object);
2054 KASSERT(fs->object != next_object,
2055 ("object loop %p", next_object));
2056 fs->object = next_object;
2057 vm_object_pip_add(fs->object, 1);
2061 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
2062 * is held.]
2064 * object still held.
2065 * vm_map may not be locked (determined by fs->lookup_still_valid)
2067 * local shared variable may be different from fs->shared.
2069 * If the page is being written, but isn't already owned by the
2070 * top-level object, we have to copy it into a new page owned by the
2071 * top-level object.
2073 KASSERT((fs->m->busy_count & PBUSY_LOCKED) != 0,
2074 ("vm_fault: not busy after main loop"));
2076 if (fs->object != fs->first_object) {
2078 * We only really need to copy if we want to write it.
2080 if (fault_type & VM_PROT_WRITE) {
2082 * This allows pages to be virtually copied from a
2083 * backing_object into the first_object, where the
2084 * backing object has no other refs to it, and cannot
2085 * gain any more refs. Instead of a bcopy, we just
2086 * move the page from the backing object to the
2087 * first object. Note that we must mark the page
2088 * dirty in the first object so that it will go out
2089 * to swap when needed.
2091 if (virtual_copy_ok(fs)) {
2093 * (first_m) and (m) are both busied. We have
2094 * move (m) into (first_m)'s object/pindex
2095 * in an atomic fashion, then free (first_m).
2097 * first_object is held so second remove
2098 * followed by the rename should wind
2099 * up being atomic. vm_page_free() might
2100 * block so we don't do it until after the
2101 * rename.
2103 vm_page_protect(fs->first_m, VM_PROT_NONE);
2104 vm_page_remove(fs->first_m);
2105 vm_page_rename(fs->m, fs->first_object,
2106 first_pindex);
2107 vm_page_free(fs->first_m);
2108 fs->first_m = fs->m;
2109 fs->m = NULL;
2110 mycpu->gd_cnt.v_cow_optim++;
2111 } else {
2113 * Oh, well, lets copy it.
2115 * Why are we unmapping the original page
2116 * here? Well, in short, not all accessors
2117 * of user memory go through the pmap. The
2118 * procfs code doesn't have access user memory
2119 * via a local pmap, so vm_fault_page*()
2120 * can't call pmap_enter(). And the umtx*()
2121 * code may modify the COW'd page via a DMAP
2122 * or kernel mapping and not via the pmap,
2123 * leaving the original page still mapped
2124 * read-only into the pmap.
2126 * So we have to remove the page from at
2127 * least the current pmap if it is in it.
2129 * We used to just remove it from all pmaps
2130 * but that creates inefficiencies on SMP,
2131 * particularly for COW program & library
2132 * mappings that are concurrently exec'd.
2133 * Only remove the page from the current
2134 * pmap.
2136 KKASSERT(fs->first_shared == 0);
2137 vm_page_copy(fs->m, fs->first_m);
2138 /*vm_page_protect(fs->m, VM_PROT_NONE);*/
2139 pmap_remove_specific(
2140 &curthread->td_lwp->lwp_vmspace->vm_pmap,
2141 fs->m);
2145 * We no longer need the old page or object.
2147 if (fs->m)
2148 release_page(fs);
2151 * We intend to revert to first_object, undo the
2152 * chain lock through to that.
2154 #if 0
2155 if (fs->first_object->backing_object != fs->object)
2156 vm_object_hold(fs->first_object->backing_object);
2157 #endif
2158 vm_object_chain_release_all(
2159 fs->first_object->backing_object,
2160 fs->object);
2161 #if 0
2162 if (fs->first_object->backing_object != fs->object)
2163 vm_object_drop(fs->first_object->backing_object);
2164 #endif
2167 * fs->object != fs->first_object due to above
2168 * conditional
2170 vm_object_pip_wakeup(fs->object);
2171 vm_object_drop(fs->object);
2174 * Only use the new page below...
2176 mycpu->gd_cnt.v_cow_faults++;
2177 fs->m = fs->first_m;
2178 fs->object = fs->first_object;
2179 pindex = first_pindex;
2180 } else {
2182 * If it wasn't a write fault avoid having to copy
2183 * the page by mapping it read-only.
2185 fs->prot &= ~VM_PROT_WRITE;
2190 * Relock the map if necessary, then check the generation count.
2191 * relock_map() will update fs->timestamp to account for the
2192 * relocking if necessary.
2194 * If the count has changed after relocking then all sorts of
2195 * crap may have happened and we have to retry.
2197 * NOTE: The relock_map() can fail due to a deadlock against
2198 * the vm_page we are holding BUSY.
2200 if (fs->lookup_still_valid == FALSE && fs->map) {
2201 if (relock_map(fs) ||
2202 fs->map->timestamp != fs->map_generation) {
2203 release_page(fs);
2204 vm_object_pip_wakeup(fs->first_object);
2205 vm_object_chain_release_all(fs->first_object,
2206 fs->object);
2207 if (fs->object != fs->first_object)
2208 vm_object_drop(fs->object);
2209 unlock_and_deallocate(fs);
2210 return (KERN_TRY_AGAIN);
2215 * If the fault is a write, we know that this page is being
2216 * written NOW so dirty it explicitly to save on pmap_is_modified()
2217 * calls later.
2219 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2220 * if the page is already dirty to prevent data written with
2221 * the expectation of being synced from not being synced.
2222 * Likewise if this entry does not request NOSYNC then make
2223 * sure the page isn't marked NOSYNC. Applications sharing
2224 * data should use the same flags to avoid ping ponging.
2226 * Also tell the backing pager, if any, that it should remove
2227 * any swap backing since the page is now dirty.
2229 vm_page_activate(fs->m);
2230 if (fs->prot & VM_PROT_WRITE) {
2231 vm_object_set_writeable_dirty(fs->m->object);
2232 vm_set_nosync(fs->m, fs->entry);
2233 if (fs->fault_flags & VM_FAULT_DIRTY) {
2234 vm_page_dirty(fs->m);
2235 if (fs->m->flags & PG_SWAPPED) {
2237 * If the page is swapped out we have to call
2238 * swap_pager_unswapped() which requires an
2239 * exclusive object lock. If we are shared,
2240 * we must clear the shared flag and retry.
2242 if ((fs->object == fs->first_object &&
2243 fs->first_shared) ||
2244 (fs->object != fs->first_object &&
2245 fs->shared)) {
2246 vm_page_wakeup(fs->m);
2247 fs->m = NULL;
2248 if (fs->object == fs->first_object)
2249 fs->first_shared = 0;
2250 else
2251 fs->shared = 0;
2252 vm_object_pip_wakeup(fs->first_object);
2253 vm_object_chain_release_all(
2254 fs->first_object, fs->object);
2255 if (fs->object != fs->first_object)
2256 vm_object_drop(fs->object);
2257 unlock_and_deallocate(fs);
2258 return (KERN_TRY_AGAIN);
2260 swap_pager_unswapped(fs->m);
2265 vm_object_pip_wakeup(fs->first_object);
2266 vm_object_chain_release_all(fs->first_object, fs->object);
2267 if (fs->object != fs->first_object)
2268 vm_object_drop(fs->object);
2271 * Page had better still be busy. We are still locked up and
2272 * fs->object will have another PIP reference if it is not equal
2273 * to fs->first_object.
2275 KASSERT(fs->m->busy_count & PBUSY_LOCKED,
2276 ("vm_fault: page %p not busy!", fs->m));
2279 * Sanity check: page must be completely valid or it is not fit to
2280 * map into user space. vm_pager_get_pages() ensures this.
2282 if (fs->m->valid != VM_PAGE_BITS_ALL) {
2283 vm_page_zero_invalid(fs->m, TRUE);
2284 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2287 return (KERN_SUCCESS);
2291 * Wire down a range of virtual addresses in a map. The entry in question
2292 * should be marked in-transition and the map must be locked. We must
2293 * release the map temporarily while faulting-in the page to avoid a
2294 * deadlock. Note that the entry may be clipped while we are blocked but
2295 * will never be freed.
2297 * No requirements.
2300 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2301 boolean_t user_wire, int kmflags)
2303 boolean_t fictitious;
2304 vm_offset_t start;
2305 vm_offset_t end;
2306 vm_offset_t va;
2307 pmap_t pmap;
2308 int rv;
2309 int wire_prot;
2310 int fault_flags;
2311 vm_page_t m;
2313 if (user_wire) {
2314 wire_prot = VM_PROT_READ;
2315 fault_flags = VM_FAULT_USER_WIRE;
2316 } else {
2317 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2318 fault_flags = VM_FAULT_CHANGE_WIRING;
2320 if (kmflags & KM_NOTLBSYNC)
2321 wire_prot |= VM_PROT_NOSYNC;
2323 pmap = vm_map_pmap(map);
2324 start = entry->start;
2325 end = entry->end;
2327 switch(entry->maptype) {
2328 case VM_MAPTYPE_NORMAL:
2329 case VM_MAPTYPE_VPAGETABLE:
2330 fictitious = entry->object.vm_object &&
2331 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2332 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2333 break;
2334 case VM_MAPTYPE_UKSMAP:
2335 fictitious = TRUE;
2336 break;
2337 default:
2338 fictitious = FALSE;
2339 break;
2342 if (entry->eflags & MAP_ENTRY_KSTACK)
2343 start += PAGE_SIZE;
2344 map->timestamp++;
2345 vm_map_unlock(map);
2348 * We simulate a fault to get the page and enter it in the physical
2349 * map.
2351 for (va = start; va < end; va += PAGE_SIZE) {
2352 rv = vm_fault(map, va, wire_prot, fault_flags);
2353 if (rv) {
2354 while (va > start) {
2355 va -= PAGE_SIZE;
2356 m = pmap_unwire(pmap, va);
2357 if (m && !fictitious) {
2358 vm_page_busy_wait(m, FALSE, "vmwrpg");
2359 vm_page_unwire(m, 1);
2360 vm_page_wakeup(m);
2363 goto done;
2366 rv = KERN_SUCCESS;
2367 done:
2368 vm_map_lock(map);
2370 return (rv);
2374 * Unwire a range of virtual addresses in a map. The map should be
2375 * locked.
2377 void
2378 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2380 boolean_t fictitious;
2381 vm_offset_t start;
2382 vm_offset_t end;
2383 vm_offset_t va;
2384 pmap_t pmap;
2385 vm_page_t m;
2387 pmap = vm_map_pmap(map);
2388 start = entry->start;
2389 end = entry->end;
2390 fictitious = entry->object.vm_object &&
2391 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2392 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2393 if (entry->eflags & MAP_ENTRY_KSTACK)
2394 start += PAGE_SIZE;
2397 * Since the pages are wired down, we must be able to get their
2398 * mappings from the physical map system.
2400 for (va = start; va < end; va += PAGE_SIZE) {
2401 m = pmap_unwire(pmap, va);
2402 if (m && !fictitious) {
2403 vm_page_busy_wait(m, FALSE, "vmwrpg");
2404 vm_page_unwire(m, 1);
2405 vm_page_wakeup(m);
2411 * Copy all of the pages from a wired-down map entry to another.
2413 * The source and destination maps must be locked for write.
2414 * The source and destination maps token must be held
2415 * The source map entry must be wired down (or be a sharing map
2416 * entry corresponding to a main map entry that is wired down).
2418 * No other requirements.
2420 * XXX do segment optimization
2422 void
2423 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2424 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2426 vm_object_t dst_object;
2427 vm_object_t src_object;
2428 vm_ooffset_t dst_offset;
2429 vm_ooffset_t src_offset;
2430 vm_prot_t prot;
2431 vm_offset_t vaddr;
2432 vm_page_t dst_m;
2433 vm_page_t src_m;
2435 src_object = src_entry->object.vm_object;
2436 src_offset = src_entry->offset;
2439 * Create the top-level object for the destination entry. (Doesn't
2440 * actually shadow anything - we copy the pages directly.)
2442 vm_map_entry_allocate_object(dst_entry);
2443 dst_object = dst_entry->object.vm_object;
2445 prot = dst_entry->max_protection;
2448 * Loop through all of the pages in the entry's range, copying each
2449 * one from the source object (it should be there) to the destination
2450 * object.
2452 vm_object_hold(src_object);
2453 vm_object_hold(dst_object);
2455 for (vaddr = dst_entry->start, dst_offset = 0;
2456 vaddr < dst_entry->end;
2457 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2460 * Allocate a page in the destination object
2462 do {
2463 dst_m = vm_page_alloc(dst_object,
2464 OFF_TO_IDX(dst_offset),
2465 VM_ALLOC_NORMAL);
2466 if (dst_m == NULL) {
2467 vm_wait(0);
2469 } while (dst_m == NULL);
2472 * Find the page in the source object, and copy it in.
2473 * (Because the source is wired down, the page will be in
2474 * memory.)
2476 src_m = vm_page_lookup(src_object,
2477 OFF_TO_IDX(dst_offset + src_offset));
2478 if (src_m == NULL)
2479 panic("vm_fault_copy_wired: page missing");
2481 vm_page_copy(src_m, dst_m);
2484 * Enter it in the pmap...
2486 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2489 * Mark it no longer busy, and put it on the active list.
2491 vm_page_activate(dst_m);
2492 vm_page_wakeup(dst_m);
2494 vm_object_drop(dst_object);
2495 vm_object_drop(src_object);
2498 #if 0
2501 * This routine checks around the requested page for other pages that
2502 * might be able to be faulted in. This routine brackets the viable
2503 * pages for the pages to be paged in.
2505 * Inputs:
2506 * m, rbehind, rahead
2508 * Outputs:
2509 * marray (array of vm_page_t), reqpage (index of requested page)
2511 * Return value:
2512 * number of pages in marray
2514 static int
2515 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2516 vm_page_t *marray, int *reqpage)
2518 int i,j;
2519 vm_object_t object;
2520 vm_pindex_t pindex, startpindex, endpindex, tpindex;
2521 vm_page_t rtm;
2522 int cbehind, cahead;
2524 object = m->object;
2525 pindex = m->pindex;
2528 * we don't fault-ahead for device pager
2530 if ((object->type == OBJT_DEVICE) ||
2531 (object->type == OBJT_MGTDEVICE)) {
2532 *reqpage = 0;
2533 marray[0] = m;
2534 return 1;
2538 * if the requested page is not available, then give up now
2540 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2541 *reqpage = 0; /* not used by caller, fix compiler warn */
2542 return 0;
2545 if ((cbehind == 0) && (cahead == 0)) {
2546 *reqpage = 0;
2547 marray[0] = m;
2548 return 1;
2551 if (rahead > cahead) {
2552 rahead = cahead;
2555 if (rbehind > cbehind) {
2556 rbehind = cbehind;
2560 * Do not do any readahead if we have insufficient free memory.
2562 * XXX code was broken disabled before and has instability
2563 * with this conditonal fixed, so shortcut for now.
2565 if (burst_fault == 0 || vm_page_count_severe()) {
2566 marray[0] = m;
2567 *reqpage = 0;
2568 return 1;
2572 * scan backward for the read behind pages -- in memory
2574 * Assume that if the page is not found an interrupt will not
2575 * create it. Theoretically interrupts can only remove (busy)
2576 * pages, not create new associations.
2578 if (pindex > 0) {
2579 if (rbehind > pindex) {
2580 rbehind = pindex;
2581 startpindex = 0;
2582 } else {
2583 startpindex = pindex - rbehind;
2586 vm_object_hold(object);
2587 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2588 if (vm_page_lookup(object, tpindex - 1))
2589 break;
2592 i = 0;
2593 while (tpindex < pindex) {
2594 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2595 VM_ALLOC_NULL_OK);
2596 if (rtm == NULL) {
2597 for (j = 0; j < i; j++) {
2598 vm_page_free(marray[j]);
2600 vm_object_drop(object);
2601 marray[0] = m;
2602 *reqpage = 0;
2603 return 1;
2605 marray[i] = rtm;
2606 ++i;
2607 ++tpindex;
2609 vm_object_drop(object);
2610 } else {
2611 i = 0;
2615 * Assign requested page
2617 marray[i] = m;
2618 *reqpage = i;
2619 ++i;
2622 * Scan forwards for read-ahead pages
2624 tpindex = pindex + 1;
2625 endpindex = tpindex + rahead;
2626 if (endpindex > object->size)
2627 endpindex = object->size;
2629 vm_object_hold(object);
2630 while (tpindex < endpindex) {
2631 if (vm_page_lookup(object, tpindex))
2632 break;
2633 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2634 VM_ALLOC_NULL_OK);
2635 if (rtm == NULL)
2636 break;
2637 marray[i] = rtm;
2638 ++i;
2639 ++tpindex;
2641 vm_object_drop(object);
2643 return (i);
2646 #endif
2649 * vm_prefault() provides a quick way of clustering pagefaults into a
2650 * processes address space. It is a "cousin" of pmap_object_init_pt,
2651 * except it runs at page fault time instead of mmap time.
2653 * vm.fast_fault Enables pre-faulting zero-fill pages
2655 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to
2656 * prefault. Scan stops in either direction when
2657 * a page is found to already exist.
2659 * This code used to be per-platform pmap_prefault(). It is now
2660 * machine-independent and enhanced to also pre-fault zero-fill pages
2661 * (see vm.fast_fault) as well as make them writable, which greatly
2662 * reduces the number of page faults programs incur.
2664 * Application performance when pre-faulting zero-fill pages is heavily
2665 * dependent on the application. Very tiny applications like /bin/echo
2666 * lose a little performance while applications of any appreciable size
2667 * gain performance. Prefaulting multiple pages also reduces SMP
2668 * congestion and can improve SMP performance significantly.
2670 * NOTE! prot may allow writing but this only applies to the top level
2671 * object. If we wind up mapping a page extracted from a backing
2672 * object we have to make sure it is read-only.
2674 * NOTE! The caller has already handled any COW operations on the
2675 * vm_map_entry via the normal fault code. Do NOT call this
2676 * shortcut unless the normal fault code has run on this entry.
2678 * The related map must be locked.
2679 * No other requirements.
2681 static int vm_prefault_pages = 8;
2682 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2683 "Maximum number of pages to pre-fault");
2684 static int vm_fast_fault = 1;
2685 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2686 "Burst fault zero-fill regions");
2689 * Set PG_NOSYNC if the map entry indicates so, but only if the page
2690 * is not already dirty by other means. This will prevent passive
2691 * filesystem syncing as well as 'sync' from writing out the page.
2693 static void
2694 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2696 if (entry->eflags & MAP_ENTRY_NOSYNC) {
2697 if (m->dirty == 0)
2698 vm_page_flag_set(m, PG_NOSYNC);
2699 } else {
2700 vm_page_flag_clear(m, PG_NOSYNC);
2704 static void
2705 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2706 int fault_flags)
2708 struct lwp *lp;
2709 vm_page_t m;
2710 vm_offset_t addr;
2711 vm_pindex_t index;
2712 vm_pindex_t pindex;
2713 vm_object_t object;
2714 int pprot;
2715 int i;
2716 int noneg;
2717 int nopos;
2718 int maxpages;
2721 * Get stable max count value, disabled if set to 0
2723 maxpages = vm_prefault_pages;
2724 cpu_ccfence();
2725 if (maxpages <= 0)
2726 return;
2729 * We do not currently prefault mappings that use virtual page
2730 * tables. We do not prefault foreign pmaps.
2732 if (entry->maptype != VM_MAPTYPE_NORMAL)
2733 return;
2734 lp = curthread->td_lwp;
2735 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2736 return;
2739 * Limit pre-fault count to 1024 pages.
2741 if (maxpages > 1024)
2742 maxpages = 1024;
2744 object = entry->object.vm_object;
2745 KKASSERT(object != NULL);
2746 KKASSERT(object == entry->object.vm_object);
2749 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2750 * now (or do something more complex XXX).
2752 vm_object_hold(object);
2753 vm_object_chain_acquire(object, 0);
2755 noneg = 0;
2756 nopos = 0;
2757 for (i = 0; i < maxpages; ++i) {
2758 vm_object_t lobject;
2759 vm_object_t nobject;
2760 int allocated = 0;
2761 int error;
2764 * This can eat a lot of time on a heavily contended
2765 * machine so yield on the tick if needed.
2767 if ((i & 7) == 7)
2768 lwkt_yield();
2771 * Calculate the page to pre-fault, stopping the scan in
2772 * each direction separately if the limit is reached.
2774 if (i & 1) {
2775 if (noneg)
2776 continue;
2777 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2778 } else {
2779 if (nopos)
2780 continue;
2781 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2783 if (addr < entry->start) {
2784 noneg = 1;
2785 if (noneg && nopos)
2786 break;
2787 continue;
2789 if (addr >= entry->end) {
2790 nopos = 1;
2791 if (noneg && nopos)
2792 break;
2793 continue;
2797 * Skip pages already mapped, and stop scanning in that
2798 * direction. When the scan terminates in both directions
2799 * we are done.
2801 if (pmap_prefault_ok(pmap, addr) == 0) {
2802 if (i & 1)
2803 noneg = 1;
2804 else
2805 nopos = 1;
2806 if (noneg && nopos)
2807 break;
2808 continue;
2812 * Follow the VM object chain to obtain the page to be mapped
2813 * into the pmap.
2815 * If we reach the terminal object without finding a page
2816 * and we determine it would be advantageous, then allocate
2817 * a zero-fill page for the base object. The base object
2818 * is guaranteed to be OBJT_DEFAULT for this case.
2820 * In order to not have to check the pager via *haspage*()
2821 * we stop if any non-default object is encountered. e.g.
2822 * a vnode or swap object would stop the loop.
2824 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2825 lobject = object;
2826 pindex = index;
2827 pprot = prot;
2829 KKASSERT(lobject == entry->object.vm_object);
2830 /*vm_object_hold(lobject); implied */
2832 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2833 TRUE, &error)) == NULL) {
2834 if (lobject->type != OBJT_DEFAULT)
2835 break;
2836 if (lobject->backing_object == NULL) {
2837 if (vm_fast_fault == 0)
2838 break;
2839 if ((prot & VM_PROT_WRITE) == 0 ||
2840 vm_page_count_min(0)) {
2841 break;
2845 * NOTE: Allocated from base object
2847 m = vm_page_alloc(object, index,
2848 VM_ALLOC_NORMAL |
2849 VM_ALLOC_ZERO |
2850 VM_ALLOC_USE_GD |
2851 VM_ALLOC_NULL_OK);
2852 if (m == NULL)
2853 break;
2854 allocated = 1;
2855 pprot = prot;
2856 /* lobject = object .. not needed */
2857 break;
2859 if (lobject->backing_object_offset & PAGE_MASK)
2860 break;
2861 nobject = lobject->backing_object;
2862 vm_object_hold(nobject);
2863 KKASSERT(nobject == lobject->backing_object);
2864 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2865 if (lobject != object) {
2866 vm_object_lock_swap();
2867 vm_object_drop(lobject);
2869 lobject = nobject;
2870 pprot &= ~VM_PROT_WRITE;
2871 vm_object_chain_acquire(lobject, 0);
2875 * NOTE: A non-NULL (m) will be associated with lobject if
2876 * it was found there, otherwise it is probably a
2877 * zero-fill page associated with the base object.
2879 * Give-up if no page is available.
2881 if (m == NULL) {
2882 if (lobject != object) {
2883 #if 0
2884 if (object->backing_object != lobject)
2885 vm_object_hold(object->backing_object);
2886 #endif
2887 vm_object_chain_release_all(
2888 object->backing_object, lobject);
2889 #if 0
2890 if (object->backing_object != lobject)
2891 vm_object_drop(object->backing_object);
2892 #endif
2893 vm_object_drop(lobject);
2895 break;
2899 * The object must be marked dirty if we are mapping a
2900 * writable page. m->object is either lobject or object,
2901 * both of which are still held. Do this before we
2902 * potentially drop the object.
2904 if (pprot & VM_PROT_WRITE)
2905 vm_object_set_writeable_dirty(m->object);
2908 * Do not conditionalize on PG_RAM. If pages are present in
2909 * the VM system we assume optimal caching. If caching is
2910 * not optimal the I/O gravy train will be restarted when we
2911 * hit an unavailable page. We do not want to try to restart
2912 * the gravy train now because we really don't know how much
2913 * of the object has been cached. The cost for restarting
2914 * the gravy train should be low (since accesses will likely
2915 * be I/O bound anyway).
2917 if (lobject != object) {
2918 #if 0
2919 if (object->backing_object != lobject)
2920 vm_object_hold(object->backing_object);
2921 #endif
2922 vm_object_chain_release_all(object->backing_object,
2923 lobject);
2924 #if 0
2925 if (object->backing_object != lobject)
2926 vm_object_drop(object->backing_object);
2927 #endif
2928 vm_object_drop(lobject);
2932 * Enter the page into the pmap if appropriate. If we had
2933 * allocated the page we have to place it on a queue. If not
2934 * we just have to make sure it isn't on the cache queue
2935 * (pages on the cache queue are not allowed to be mapped).
2937 if (allocated) {
2939 * Page must be zerod.
2941 vm_page_zero_fill(m);
2942 mycpu->gd_cnt.v_zfod++;
2943 m->valid = VM_PAGE_BITS_ALL;
2946 * Handle dirty page case
2948 if (pprot & VM_PROT_WRITE)
2949 vm_set_nosync(m, entry);
2950 pmap_enter(pmap, addr, m, pprot, 0, entry);
2951 mycpu->gd_cnt.v_vm_faults++;
2952 if (curthread->td_lwp)
2953 ++curthread->td_lwp->lwp_ru.ru_minflt;
2954 vm_page_deactivate(m);
2955 if (pprot & VM_PROT_WRITE) {
2956 /*vm_object_set_writeable_dirty(m->object);*/
2957 vm_set_nosync(m, entry);
2958 if (fault_flags & VM_FAULT_DIRTY) {
2959 vm_page_dirty(m);
2960 /*XXX*/
2961 swap_pager_unswapped(m);
2964 vm_page_wakeup(m);
2965 } else if (error) {
2966 /* couldn't busy page, no wakeup */
2967 } else if (
2968 ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2969 (m->flags & PG_FICTITIOUS) == 0) {
2971 * A fully valid page not undergoing soft I/O can
2972 * be immediately entered into the pmap.
2974 if ((m->queue - m->pc) == PQ_CACHE)
2975 vm_page_deactivate(m);
2976 if (pprot & VM_PROT_WRITE) {
2977 /*vm_object_set_writeable_dirty(m->object);*/
2978 vm_set_nosync(m, entry);
2979 if (fault_flags & VM_FAULT_DIRTY) {
2980 vm_page_dirty(m);
2981 /*XXX*/
2982 swap_pager_unswapped(m);
2985 if (pprot & VM_PROT_WRITE)
2986 vm_set_nosync(m, entry);
2987 pmap_enter(pmap, addr, m, pprot, 0, entry);
2988 mycpu->gd_cnt.v_vm_faults++;
2989 if (curthread->td_lwp)
2990 ++curthread->td_lwp->lwp_ru.ru_minflt;
2991 vm_page_wakeup(m);
2992 } else {
2993 vm_page_wakeup(m);
2996 vm_object_chain_release(object);
2997 vm_object_drop(object);
3001 * Object can be held shared
3003 static void
3004 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
3005 vm_map_entry_t entry, int prot, int fault_flags)
3007 struct lwp *lp;
3008 vm_page_t m;
3009 vm_offset_t addr;
3010 vm_pindex_t pindex;
3011 vm_object_t object;
3012 int i;
3013 int noneg;
3014 int nopos;
3015 int maxpages;
3018 * Get stable max count value, disabled if set to 0
3020 maxpages = vm_prefault_pages;
3021 cpu_ccfence();
3022 if (maxpages <= 0)
3023 return;
3026 * We do not currently prefault mappings that use virtual page
3027 * tables. We do not prefault foreign pmaps.
3029 if (entry->maptype != VM_MAPTYPE_NORMAL)
3030 return;
3031 lp = curthread->td_lwp;
3032 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
3033 return;
3034 object = entry->object.vm_object;
3035 if (object->backing_object != NULL)
3036 return;
3037 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
3040 * Limit pre-fault count to 1024 pages.
3042 if (maxpages > 1024)
3043 maxpages = 1024;
3045 noneg = 0;
3046 nopos = 0;
3047 for (i = 0; i < maxpages; ++i) {
3048 int error;
3051 * Calculate the page to pre-fault, stopping the scan in
3052 * each direction separately if the limit is reached.
3054 if (i & 1) {
3055 if (noneg)
3056 continue;
3057 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
3058 } else {
3059 if (nopos)
3060 continue;
3061 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3063 if (addr < entry->start) {
3064 noneg = 1;
3065 if (noneg && nopos)
3066 break;
3067 continue;
3069 if (addr >= entry->end) {
3070 nopos = 1;
3071 if (noneg && nopos)
3072 break;
3073 continue;
3077 * Follow the VM object chain to obtain the page to be mapped
3078 * into the pmap. This version of the prefault code only
3079 * works with terminal objects.
3081 * The page must already exist. If we encounter a problem
3082 * we stop here.
3084 * WARNING! We cannot call swap_pager_unswapped() or insert
3085 * a new vm_page with a shared token.
3087 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
3090 * Skip pages already mapped, and stop scanning in that
3091 * direction. When the scan terminates in both directions
3092 * we are done.
3094 if (pmap_prefault_ok(pmap, addr) == 0) {
3095 if (i & 1)
3096 noneg = 1;
3097 else
3098 nopos = 1;
3099 if (noneg && nopos)
3100 break;
3101 continue;
3105 * Shortcut the read-only mapping case using the far more
3106 * efficient vm_page_lookup_sbusy_try() function. This
3107 * allows us to acquire the page soft-busied only which
3108 * is especially nice for concurrent execs of the same
3109 * program.
3111 * The lookup function also validates page suitability
3112 * (all valid bits set, and not fictitious).
3114 * If the page is in PQ_CACHE we have to fall-through
3115 * and hard-busy it so we can move it out of PQ_CACHE.
3117 if ((prot & VM_PROT_WRITE) == 0) {
3118 m = vm_page_lookup_sbusy_try(object, pindex,
3119 0, PAGE_SIZE);
3120 if (m == NULL)
3121 break;
3122 if ((m->queue - m->pc) != PQ_CACHE) {
3123 pmap_enter(pmap, addr, m, prot, 0, entry);
3124 mycpu->gd_cnt.v_vm_faults++;
3125 if (curthread->td_lwp)
3126 ++curthread->td_lwp->lwp_ru.ru_minflt;
3127 vm_page_sbusy_drop(m);
3128 continue;
3130 vm_page_sbusy_drop(m);
3134 * Fallback to normal vm_page lookup code. This code
3135 * hard-busies the page. Not only that, but the page
3136 * can remain in that state for a significant period
3137 * time due to pmap_enter()'s overhead.
3139 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3140 if (m == NULL || error)
3141 break;
3144 * Stop if the page cannot be trivially entered into the
3145 * pmap.
3147 if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3148 (m->flags & PG_FICTITIOUS) ||
3149 ((m->flags & PG_SWAPPED) &&
3150 (prot & VM_PROT_WRITE) &&
3151 (fault_flags & VM_FAULT_DIRTY))) {
3152 vm_page_wakeup(m);
3153 break;
3157 * Enter the page into the pmap. The object might be held
3158 * shared so we can't do any (serious) modifying operation
3159 * on it.
3161 if ((m->queue - m->pc) == PQ_CACHE)
3162 vm_page_deactivate(m);
3163 if (prot & VM_PROT_WRITE) {
3164 vm_object_set_writeable_dirty(m->object);
3165 vm_set_nosync(m, entry);
3166 if (fault_flags & VM_FAULT_DIRTY) {
3167 vm_page_dirty(m);
3168 /* can't happeen due to conditional above */
3169 /* swap_pager_unswapped(m); */
3172 pmap_enter(pmap, addr, m, prot, 0, entry);
3173 mycpu->gd_cnt.v_vm_faults++;
3174 if (curthread->td_lwp)
3175 ++curthread->td_lwp->lwp_ru.ru_minflt;
3176 vm_page_wakeup(m);