kernel - Fix some rare pmap races in i386 and x86_64.
[dragonfly.git] / sys / platform / pc32 / i386 / machdep.c
blob170474484f539efcf0e4629678c1587a39a95bfc
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
38 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
39 * $DragonFly: src/sys/platform/pc32/i386/machdep.c,v 1.135 2008/08/02 01:14:43 dillon Exp $
42 #include "use_apm.h"
43 #include "use_ether.h"
44 #include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_cpu.h"
49 #include "opt_ddb.h"
50 #include "opt_directio.h"
51 #include "opt_inet.h"
52 #include "opt_ipx.h"
53 #include "opt_maxmem.h"
54 #include "opt_msgbuf.h"
55 #include "opt_perfmon.h"
56 #include "opt_swap.h"
57 #include "opt_userconfig.h"
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/sysproto.h>
62 #include <sys/signalvar.h>
63 #include <sys/kernel.h>
64 #include <sys/linker.h>
65 #include <sys/malloc.h>
66 #include <sys/proc.h>
67 #include <sys/priv.h>
68 #include <sys/buf.h>
69 #include <sys/reboot.h>
70 #include <sys/mbuf.h>
71 #include <sys/msgbuf.h>
72 #include <sys/sysent.h>
73 #include <sys/sysctl.h>
74 #include <sys/vmmeter.h>
75 #include <sys/bus.h>
76 #include <sys/upcall.h>
77 #include <sys/usched.h>
78 #include <sys/reg.h>
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <sys/lock.h>
83 #include <vm/vm_kern.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
90 #include <sys/thread2.h>
91 #include <sys/mplock2.h>
93 #include <sys/user.h>
94 #include <sys/exec.h>
95 #include <sys/cons.h>
97 #include <ddb/ddb.h>
99 #include <machine/cpu.h>
100 #include <machine/clock.h>
101 #include <machine/specialreg.h>
102 #include <machine/bootinfo.h>
103 #include <machine/md_var.h>
104 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
105 #include <machine/globaldata.h> /* CPU_prvspace */
106 #include <machine/smp.h>
107 #ifdef PERFMON
108 #include <machine/perfmon.h>
109 #endif
110 #include <machine/cputypes.h>
112 #ifdef OLD_BUS_ARCH
113 #include <bus/isa/isa_device.h>
114 #endif
115 #include <machine_base/isa/intr_machdep.h>
116 #include <bus/isa/rtc.h>
117 #include <machine/vm86.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
122 #define PHYSMAP_ENTRIES 10
124 extern void init386(int first);
125 extern void dblfault_handler(void);
127 extern void printcpuinfo(void); /* XXX header file */
128 extern void finishidentcpu(void);
129 extern void panicifcpuunsupported(void);
130 extern void initializecpu(void);
132 static void cpu_startup(void *);
133 #ifndef CPU_DISABLE_SSE
134 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
135 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
136 #endif /* CPU_DISABLE_SSE */
137 #ifdef DIRECTIO
138 extern void ffs_rawread_setup(void);
139 #endif /* DIRECTIO */
140 static void init_locks(void);
142 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
144 int _udatasel, _ucodesel;
145 u_int atdevbase;
146 #ifdef SMP
147 int64_t tsc_offsets[MAXCPU];
148 #else
149 int64_t tsc_offsets[1];
150 #endif
152 #if defined(SWTCH_OPTIM_STATS)
153 extern int swtch_optim_stats;
154 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
155 CTLFLAG_RD, &swtch_optim_stats, 0, "");
156 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
157 CTLFLAG_RD, &tlb_flush_count, 0, "");
158 #endif
160 int physmem = 0;
162 u_long ebda_addr = 0;
164 static int
165 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
167 int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
168 return (error);
171 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
172 0, 0, sysctl_hw_physmem, "IU", "");
174 static int
175 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
177 int error = sysctl_handle_int(oidp, 0,
178 ctob(physmem - vmstats.v_wire_count), req);
179 return (error);
182 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
183 0, 0, sysctl_hw_usermem, "IU", "");
185 static int
186 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
188 int error = sysctl_handle_int(oidp, 0,
189 i386_btop(avail_end - avail_start), req);
190 return (error);
193 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
194 0, 0, sysctl_hw_availpages, "I", "");
196 vm_paddr_t Maxmem = 0;
198 vm_paddr_t phys_avail[PHYSMAP_ENTRIES*2+2];
199 vm_paddr_t dump_avail[PHYSMAP_ENTRIES*2+2];
202 static vm_offset_t buffer_sva, buffer_eva;
203 vm_offset_t clean_sva, clean_eva;
204 static vm_offset_t pager_sva, pager_eva;
205 static struct trapframe proc0_tf;
207 static void
208 cpu_startup(void *dummy)
210 caddr_t v;
211 vm_size_t size = 0;
212 vm_offset_t firstaddr;
214 if (boothowto & RB_VERBOSE)
215 bootverbose++;
218 * Good {morning,afternoon,evening,night}.
220 kprintf("%s", version);
221 startrtclock();
222 printcpuinfo();
223 panicifcpuunsupported();
224 #ifdef PERFMON
225 perfmon_init();
226 #endif
227 kprintf("real memory = %ju (%ju MB)\n",
228 (intmax_t)ptoa(Maxmem), (intmax_t)ptoa(Maxmem) / 1024 / 1024);
230 * Display any holes after the first chunk of extended memory.
232 if (bootverbose) {
233 int indx;
235 kprintf("Physical memory chunk(s):\n");
236 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
237 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
239 kprintf("0x%08llx - 0x%08llx, %llu bytes (%llu pages)\n",
240 phys_avail[indx], phys_avail[indx + 1] - 1, size1,
241 size1 / PAGE_SIZE);
246 * Allocate space for system data structures.
247 * The first available kernel virtual address is in "v".
248 * As pages of kernel virtual memory are allocated, "v" is incremented.
249 * As pages of memory are allocated and cleared,
250 * "firstaddr" is incremented.
251 * An index into the kernel page table corresponding to the
252 * virtual memory address maintained in "v" is kept in "mapaddr".
256 * Make two passes. The first pass calculates how much memory is
257 * needed and allocates it. The second pass assigns virtual
258 * addresses to the various data structures.
260 firstaddr = 0;
261 again:
262 v = (caddr_t)firstaddr;
264 #define valloc(name, type, num) \
265 (name) = (type *)v; v = (caddr_t)((name)+(num))
266 #define valloclim(name, type, num, lim) \
267 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
270 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
271 * For the first 64MB of ram nominally allocate sufficient buffers to
272 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
273 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
274 * the buffer cache we limit the eventual kva reservation to
275 * maxbcache bytes.
277 * factor represents the 1/4 x ram conversion.
279 if (nbuf == 0) {
280 int factor = 4 * BKVASIZE / 1024;
281 int kbytes = physmem * (PAGE_SIZE / 1024);
283 nbuf = 50;
284 if (kbytes > 4096)
285 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
286 if (kbytes > 65536)
287 nbuf += (kbytes - 65536) * 2 / (factor * 5);
288 if (maxbcache && nbuf > maxbcache / BKVASIZE)
289 nbuf = maxbcache / BKVASIZE;
293 * Do not allow the buffer_map to be more then 1/2 the size of the
294 * kernel_map.
296 if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
297 nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
298 kprintf("Warning: nbufs capped at %d\n", nbuf);
301 nswbuf = max(min(nbuf/4, 256), 16);
302 #ifdef NSWBUF_MIN
303 if (nswbuf < NSWBUF_MIN)
304 nswbuf = NSWBUF_MIN;
305 #endif
306 #ifdef DIRECTIO
307 ffs_rawread_setup();
308 #endif
310 valloc(swbuf, struct buf, nswbuf);
311 valloc(buf, struct buf, nbuf);
314 * End of first pass, size has been calculated so allocate memory
316 if (firstaddr == 0) {
317 size = (vm_size_t)(v - firstaddr);
318 firstaddr = kmem_alloc(&kernel_map, round_page(size));
319 if (firstaddr == 0)
320 panic("startup: no room for tables");
321 goto again;
325 * End of second pass, addresses have been assigned
327 if ((vm_size_t)(v - firstaddr) != size)
328 panic("startup: table size inconsistency");
330 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
331 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
332 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
333 (nbuf*BKVASIZE));
334 buffer_map.system_map = 1;
335 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
336 (nswbuf*MAXPHYS) + pager_map_size);
337 pager_map.system_map = 1;
339 #if defined(USERCONFIG)
340 userconfig();
341 cninit(); /* the preferred console may have changed */
342 #endif
344 kprintf("avail memory = %ju (%ju MB)\n",
345 (intmax_t)ptoa(vmstats.v_free_count),
346 (intmax_t)ptoa(vmstats.v_free_count) / 1024 / 1024);
349 * Set up buffers, so they can be used to read disk labels.
351 bufinit();
352 vm_pager_bufferinit();
354 #ifdef SMP
356 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
358 mp_start(); /* fire up the APs and APICs */
359 mp_announce();
360 #endif /* SMP */
361 cpu_setregs();
365 * Send an interrupt to process.
367 * Stack is set up to allow sigcode stored
368 * at top to call routine, followed by kcall
369 * to sigreturn routine below. After sigreturn
370 * resets the signal mask, the stack, and the
371 * frame pointer, it returns to the user
372 * specified pc, psl.
374 void
375 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
377 struct lwp *lp = curthread->td_lwp;
378 struct proc *p = lp->lwp_proc;
379 struct trapframe *regs;
380 struct sigacts *psp = p->p_sigacts;
381 struct sigframe sf, *sfp;
382 int oonstack;
384 regs = lp->lwp_md.md_regs;
385 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
387 /* save user context */
388 bzero(&sf, sizeof(struct sigframe));
389 sf.sf_uc.uc_sigmask = *mask;
390 sf.sf_uc.uc_stack = lp->lwp_sigstk;
391 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
392 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_gs, sizeof(struct trapframe));
394 /* make the size of the saved context visible to userland */
395 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
397 /* save mailbox pending state for syscall interlock semantics */
398 if (p->p_flag & P_MAILBOX)
399 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
401 /* Allocate and validate space for the signal handler context. */
402 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
403 SIGISMEMBER(psp->ps_sigonstack, sig)) {
404 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
405 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
406 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
407 } else {
408 sfp = (struct sigframe *)regs->tf_esp - 1;
411 /* Translate the signal is appropriate */
412 if (p->p_sysent->sv_sigtbl) {
413 if (sig <= p->p_sysent->sv_sigsize)
414 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
417 /* Build the argument list for the signal handler. */
418 sf.sf_signum = sig;
419 sf.sf_ucontext = (register_t)&sfp->sf_uc;
420 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
421 /* Signal handler installed with SA_SIGINFO. */
422 sf.sf_siginfo = (register_t)&sfp->sf_si;
423 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
425 /* fill siginfo structure */
426 sf.sf_si.si_signo = sig;
427 sf.sf_si.si_code = code;
428 sf.sf_si.si_addr = (void*)regs->tf_err;
430 else {
431 /* Old FreeBSD-style arguments. */
432 sf.sf_siginfo = code;
433 sf.sf_addr = regs->tf_err;
434 sf.sf_ahu.sf_handler = catcher;
438 * If we're a vm86 process, we want to save the segment registers.
439 * We also change eflags to be our emulated eflags, not the actual
440 * eflags.
442 if (regs->tf_eflags & PSL_VM) {
443 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
444 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
446 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
447 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
448 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
449 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
451 if (vm86->vm86_has_vme == 0)
452 sf.sf_uc.uc_mcontext.mc_eflags =
453 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
454 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
457 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
458 * syscalls made by the signal handler. This just avoids
459 * wasting time for our lazy fixup of such faults. PSL_NT
460 * does nothing in vm86 mode, but vm86 programs can set it
461 * almost legitimately in probes for old cpu types.
463 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
467 * Save the FPU state and reinit the FP unit
469 npxpush(&sf.sf_uc.uc_mcontext);
472 * Copy the sigframe out to the user's stack.
474 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
476 * Something is wrong with the stack pointer.
477 * ...Kill the process.
479 sigexit(lp, SIGILL);
482 regs->tf_esp = (int)sfp;
483 regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
486 * i386 abi specifies that the direction flag must be cleared
487 * on function entry
489 regs->tf_eflags &= ~(PSL_T|PSL_D);
491 regs->tf_cs = _ucodesel;
492 regs->tf_ds = _udatasel;
493 regs->tf_es = _udatasel;
496 * Allow the signal handler to inherit %fs in addition to %gs as
497 * the userland program might be using both.
499 * However, if a T_PROTFLT occured the segment registers could be
500 * totally broken. They must be reset in order to be able to
501 * return to userland.
503 if (regs->tf_trapno == T_PROTFLT) {
504 regs->tf_fs = _udatasel;
505 regs->tf_gs = _udatasel;
507 regs->tf_ss = _udatasel;
511 * Sanitize the trapframe for a virtual kernel passing control to a custom
512 * VM context. Remove any items that would otherwise create a privilage
513 * issue.
515 * XXX at the moment we allow userland to set the resume flag. Is this a
516 * bad idea?
519 cpu_sanitize_frame(struct trapframe *frame)
521 frame->tf_cs = _ucodesel;
522 frame->tf_ds = _udatasel;
523 frame->tf_es = _udatasel; /* XXX allow userland this one too? */
524 #if 0
525 frame->tf_fs = _udatasel;
526 frame->tf_gs = _udatasel;
527 #endif
528 frame->tf_ss = _udatasel;
529 frame->tf_eflags &= (PSL_RF | PSL_USERCHANGE);
530 frame->tf_eflags |= PSL_RESERVED_DEFAULT | PSL_I;
531 return(0);
535 cpu_sanitize_tls(struct savetls *tls)
537 struct segment_descriptor *desc;
538 int i;
540 for (i = 0; i < NGTLS; ++i) {
541 desc = &tls->tls[i];
542 if (desc->sd_dpl == 0 && desc->sd_type == 0)
543 continue;
544 if (desc->sd_def32 == 0)
545 return(ENXIO);
546 if (desc->sd_type != SDT_MEMRWA)
547 return(ENXIO);
548 if (desc->sd_dpl != SEL_UPL)
549 return(ENXIO);
550 if (desc->sd_xx != 0 || desc->sd_p != 1)
551 return(ENXIO);
553 return(0);
557 * sigreturn(ucontext_t *sigcntxp)
559 * System call to cleanup state after a signal
560 * has been taken. Reset signal mask and
561 * stack state from context left by sendsig (above).
562 * Return to previous pc and psl as specified by
563 * context left by sendsig. Check carefully to
564 * make sure that the user has not modified the
565 * state to gain improper privileges.
567 * MPSAFE
569 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
570 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
573 sys_sigreturn(struct sigreturn_args *uap)
575 struct lwp *lp = curthread->td_lwp;
576 struct proc *p = lp->lwp_proc;
577 struct trapframe *regs;
578 ucontext_t uc;
579 ucontext_t *ucp;
580 int cs;
581 int eflags;
582 int error;
585 * We have to copy the information into kernel space so userland
586 * can't modify it while we are sniffing it.
588 regs = lp->lwp_md.md_regs;
589 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
590 if (error)
591 return (error);
592 ucp = &uc;
593 eflags = ucp->uc_mcontext.mc_eflags;
595 if (eflags & PSL_VM) {
596 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
597 struct vm86_kernel *vm86;
600 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
601 * set up the vm86 area, and we can't enter vm86 mode.
603 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
604 return (EINVAL);
605 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
606 if (vm86->vm86_inited == 0)
607 return (EINVAL);
609 /* go back to user mode if both flags are set */
610 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
611 trapsignal(lp, SIGBUS, 0);
613 if (vm86->vm86_has_vme) {
614 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
615 (eflags & VME_USERCHANGE) | PSL_VM;
616 } else {
617 vm86->vm86_eflags = eflags; /* save VIF, VIP */
618 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
619 (eflags & VM_USERCHANGE) | PSL_VM;
621 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
622 tf->tf_eflags = eflags;
623 tf->tf_vm86_ds = tf->tf_ds;
624 tf->tf_vm86_es = tf->tf_es;
625 tf->tf_vm86_fs = tf->tf_fs;
626 tf->tf_vm86_gs = tf->tf_gs;
627 tf->tf_ds = _udatasel;
628 tf->tf_es = _udatasel;
629 #if 0
630 tf->tf_fs = _udatasel;
631 tf->tf_gs = _udatasel;
632 #endif
633 } else {
635 * Don't allow users to change privileged or reserved flags.
638 * XXX do allow users to change the privileged flag PSL_RF.
639 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
640 * should sometimes set it there too. tf_eflags is kept in
641 * the signal context during signal handling and there is no
642 * other place to remember it, so the PSL_RF bit may be
643 * corrupted by the signal handler without us knowing.
644 * Corruption of the PSL_RF bit at worst causes one more or
645 * one less debugger trap, so allowing it is fairly harmless.
647 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
648 kprintf("sigreturn: eflags = 0x%x\n", eflags);
649 return(EINVAL);
653 * Don't allow users to load a valid privileged %cs. Let the
654 * hardware check for invalid selectors, excess privilege in
655 * other selectors, invalid %eip's and invalid %esp's.
657 cs = ucp->uc_mcontext.mc_cs;
658 if (!CS_SECURE(cs)) {
659 kprintf("sigreturn: cs = 0x%x\n", cs);
660 trapsignal(lp, SIGBUS, T_PROTFLT);
661 return(EINVAL);
663 bcopy(&ucp->uc_mcontext.mc_gs, regs, sizeof(struct trapframe));
667 * Restore the FPU state from the frame
669 crit_enter();
670 npxpop(&ucp->uc_mcontext);
673 * Merge saved signal mailbox pending flag to maintain interlock
674 * semantics against system calls.
676 if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
677 p->p_flag |= P_MAILBOX;
679 if (ucp->uc_mcontext.mc_onstack & 1)
680 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
681 else
682 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
684 lp->lwp_sigmask = ucp->uc_sigmask;
685 SIG_CANTMASK(lp->lwp_sigmask);
686 crit_exit();
687 return(EJUSTRETURN);
691 * Stack frame on entry to function. %eax will contain the function vector,
692 * %ecx will contain the function data. flags, ecx, and eax will have
693 * already been pushed on the stack.
695 struct upc_frame {
696 register_t eax;
697 register_t ecx;
698 register_t edx;
699 register_t flags;
700 register_t oldip;
703 void
704 sendupcall(struct vmupcall *vu, int morepending)
706 struct lwp *lp = curthread->td_lwp;
707 struct trapframe *regs;
708 struct upcall upcall;
709 struct upc_frame upc_frame;
710 int crit_count = 0;
713 * If we are a virtual kernel running an emulated user process
714 * context, switch back to the virtual kernel context before
715 * trying to post the signal.
717 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
718 lp->lwp_md.md_regs->tf_trapno = 0;
719 vkernel_trap(lp, lp->lwp_md.md_regs);
723 * Get the upcall data structure
725 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
726 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
728 vu->vu_pending = 0;
729 kprintf("bad upcall address\n");
730 return;
734 * If the data structure is already marked pending or has a critical
735 * section count, mark the data structure as pending and return
736 * without doing an upcall. vu_pending is left set.
738 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
739 if (upcall.upc_pending < vu->vu_pending) {
740 upcall.upc_pending = vu->vu_pending;
741 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
742 sizeof(upcall.upc_pending));
744 return;
748 * We can run this upcall now, clear vu_pending.
750 * Bump our critical section count and set or clear the
751 * user pending flag depending on whether more upcalls are
752 * pending. The user will be responsible for calling
753 * upc_dispatch(-1) to process remaining upcalls.
755 vu->vu_pending = 0;
756 upcall.upc_pending = morepending;
757 crit_count += TDPRI_CRIT;
758 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
759 sizeof(upcall.upc_pending));
760 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
761 sizeof(int));
764 * Construct a stack frame and issue the upcall
766 regs = lp->lwp_md.md_regs;
767 upc_frame.eax = regs->tf_eax;
768 upc_frame.ecx = regs->tf_ecx;
769 upc_frame.edx = regs->tf_edx;
770 upc_frame.flags = regs->tf_eflags;
771 upc_frame.oldip = regs->tf_eip;
772 if (copyout(&upc_frame, (void *)(regs->tf_esp - sizeof(upc_frame)),
773 sizeof(upc_frame)) != 0) {
774 kprintf("bad stack on upcall\n");
775 } else {
776 regs->tf_eax = (register_t)vu->vu_func;
777 regs->tf_ecx = (register_t)vu->vu_data;
778 regs->tf_edx = (register_t)lp->lwp_upcall;
779 regs->tf_eip = (register_t)vu->vu_ctx;
780 regs->tf_esp -= sizeof(upc_frame);
785 * fetchupcall occurs in the context of a system call, which means that
786 * we have to return EJUSTRETURN in order to prevent eax and edx from
787 * being overwritten by the syscall return value.
789 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
790 * and the function pointer in %eax.
793 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
795 struct upc_frame upc_frame;
796 struct lwp *lp = curthread->td_lwp;
797 struct trapframe *regs;
798 int error;
799 struct upcall upcall;
800 int crit_count;
802 regs = lp->lwp_md.md_regs;
804 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
805 if (error == 0) {
806 if (vu) {
808 * This jumps us to the next ready context.
810 vu->vu_pending = 0;
811 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
812 crit_count = 0;
813 if (error == 0)
814 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
815 crit_count += TDPRI_CRIT;
816 if (error == 0)
817 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
818 regs->tf_eax = (register_t)vu->vu_func;
819 regs->tf_ecx = (register_t)vu->vu_data;
820 regs->tf_edx = (register_t)lp->lwp_upcall;
821 regs->tf_eip = (register_t)vu->vu_ctx;
822 regs->tf_esp = (register_t)rsp;
823 } else {
825 * This returns us to the originally interrupted code.
827 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
828 regs->tf_eax = upc_frame.eax;
829 regs->tf_ecx = upc_frame.ecx;
830 regs->tf_edx = upc_frame.edx;
831 regs->tf_eflags = (regs->tf_eflags & ~PSL_USERCHANGE) |
832 (upc_frame.flags & PSL_USERCHANGE);
833 regs->tf_eip = upc_frame.oldip;
834 regs->tf_esp = (register_t)((char *)rsp + sizeof(upc_frame));
837 if (error == 0)
838 error = EJUSTRETURN;
839 return(error);
843 * Machine dependent boot() routine
845 * I haven't seen anything to put here yet
846 * Possibly some stuff might be grafted back here from boot()
848 void
849 cpu_boot(int howto)
854 * Shutdown the CPU as much as possible
856 void
857 cpu_halt(void)
859 for (;;)
860 __asm__ __volatile("hlt");
864 * cpu_idle() represents the idle LWKT. You cannot return from this function
865 * (unless you want to blow things up!). Instead we look for runnable threads
866 * and loop or halt as appropriate. Giant is not held on entry to the thread.
868 * The main loop is entered with a critical section held, we must release
869 * the critical section before doing anything else. lwkt_switch() will
870 * check for pending interrupts due to entering and exiting its own
871 * critical section.
873 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
874 * to wake a HLTed cpu up. However, there are cases where the idlethread
875 * will be entered with the possibility that no IPI will occur and in such
876 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
878 static int cpu_idle_hlt = 1;
879 static int cpu_idle_hltcnt;
880 static int cpu_idle_spincnt;
881 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
882 &cpu_idle_hlt, 0, "Idle loop HLT enable");
883 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
884 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
885 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
886 &cpu_idle_spincnt, 0, "Idle loop entry spins");
888 static void
889 cpu_idle_default_hook(void)
892 * We must guarentee that hlt is exactly the instruction
893 * following the sti.
895 __asm __volatile("sti; hlt");
898 /* Other subsystems (e.g., ACPI) can hook this later. */
899 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
901 void
902 cpu_idle(void)
904 struct thread *td = curthread;
906 crit_exit();
907 KKASSERT(td->td_pri < TDPRI_CRIT);
908 for (;;) {
910 * See if there are any LWKTs ready to go.
912 lwkt_switch();
915 * If we are going to halt call splz unconditionally after
916 * CLIing to catch any interrupt races. Note that we are
917 * at SPL0 and interrupts are enabled.
919 if (cpu_idle_hlt && !lwkt_runnable() &&
920 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
921 __asm __volatile("cli");
922 splz();
923 if (!lwkt_runnable())
924 cpu_idle_hook();
925 #ifdef SMP
926 else
927 __asm __volatile("pause");
928 #endif
929 ++cpu_idle_hltcnt;
930 } else {
931 td->td_flags &= ~TDF_IDLE_NOHLT;
932 splz();
933 #ifdef SMP
934 __asm __volatile("sti; pause");
935 #else
936 __asm __volatile("sti");
937 #endif
938 ++cpu_idle_spincnt;
943 #ifdef SMP
946 * This routine is called when the only runnable threads require
947 * the MP lock, and the scheduler couldn't get it. On a real cpu
948 * we let the scheduler spin.
950 void
951 cpu_mplock_contested(void)
953 cpu_pause();
957 * This routine is called if a spinlock has been held through the
958 * exponential backoff period and is seriously contested. On a real cpu
959 * we let it spin.
961 void
962 cpu_spinlock_contested(void)
964 cpu_pause();
967 #endif
970 * Clear registers on exec
972 void
973 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
975 struct thread *td = curthread;
976 struct lwp *lp = td->td_lwp;
977 struct pcb *pcb = td->td_pcb;
978 struct trapframe *regs = lp->lwp_md.md_regs;
980 /* was i386_user_cleanup() in NetBSD */
981 user_ldt_free(pcb);
983 bzero((char *)regs, sizeof(struct trapframe));
984 regs->tf_eip = entry;
985 regs->tf_esp = stack;
986 regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
987 regs->tf_ss = _udatasel;
988 regs->tf_ds = _udatasel;
989 regs->tf_es = _udatasel;
990 regs->tf_fs = _udatasel;
991 regs->tf_gs = _udatasel;
992 regs->tf_cs = _ucodesel;
994 /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
995 regs->tf_ebx = ps_strings;
998 * Reset the hardware debug registers if they were in use.
999 * They won't have any meaning for the newly exec'd process.
1001 if (pcb->pcb_flags & PCB_DBREGS) {
1002 pcb->pcb_dr0 = 0;
1003 pcb->pcb_dr1 = 0;
1004 pcb->pcb_dr2 = 0;
1005 pcb->pcb_dr3 = 0;
1006 pcb->pcb_dr6 = 0;
1007 pcb->pcb_dr7 = 0;
1008 if (pcb == td->td_pcb) {
1010 * Clear the debug registers on the running
1011 * CPU, otherwise they will end up affecting
1012 * the next process we switch to.
1014 reset_dbregs();
1016 pcb->pcb_flags &= ~PCB_DBREGS;
1020 * Initialize the math emulator (if any) for the current process.
1021 * Actually, just clear the bit that says that the emulator has
1022 * been initialized. Initialization is delayed until the process
1023 * traps to the emulator (if it is done at all) mainly because
1024 * emulators don't provide an entry point for initialization.
1026 pcb->pcb_flags &= ~FP_SOFTFP;
1029 * note: do not set CR0_TS here. npxinit() must do it after clearing
1030 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
1031 * in npxdna().
1033 crit_enter();
1034 load_cr0(rcr0() | CR0_MP);
1036 #if NNPX > 0
1037 /* Initialize the npx (if any) for the current process. */
1038 npxinit(__INITIAL_NPXCW__);
1039 #endif
1040 crit_exit();
1043 * note: linux emulator needs edx to be 0x0 on entry, which is
1044 * handled in execve simply by setting the 64 bit syscall
1045 * return value to 0.
1049 void
1050 cpu_setregs(void)
1052 unsigned int cr0;
1054 cr0 = rcr0();
1055 cr0 |= CR0_NE; /* Done by npxinit() */
1056 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1057 cr0 |= CR0_WP | CR0_AM;
1058 load_cr0(cr0);
1059 load_gs(_udatasel);
1062 static int
1063 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1065 int error;
1066 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1067 req);
1068 if (!error && req->newptr)
1069 resettodr();
1070 return (error);
1073 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1074 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1076 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1077 CTLFLAG_RW, &disable_rtc_set, 0, "");
1079 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1080 CTLFLAG_RD, &bootinfo, bootinfo, "");
1082 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1083 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1085 extern u_long bootdev; /* not a cdev_t - encoding is different */
1086 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1087 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1090 * Initialize 386 and configure to run kernel
1094 * Initialize segments & interrupt table
1097 int _default_ldt;
1098 union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1099 static struct gate_descriptor idt0[NIDT];
1100 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1101 union descriptor ldt[NLDT]; /* local descriptor table */
1103 /* table descriptors - used to load tables by cpu */
1104 struct region_descriptor r_gdt, r_idt;
1106 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1107 extern int has_f00f_bug;
1108 #endif
1110 static struct i386tss dblfault_tss;
1111 static char dblfault_stack[PAGE_SIZE];
1113 extern struct user *proc0paddr;
1116 /* software prototypes -- in more palatable form */
1117 struct soft_segment_descriptor gdt_segs[] = {
1118 /* GNULL_SEL 0 Null Descriptor */
1119 { 0x0, /* segment base address */
1120 0x0, /* length */
1121 0, /* segment type */
1122 0, /* segment descriptor priority level */
1123 0, /* segment descriptor present */
1124 0, 0,
1125 0, /* default 32 vs 16 bit size */
1126 0 /* limit granularity (byte/page units)*/ },
1127 /* GCODE_SEL 1 Code Descriptor for kernel */
1128 { 0x0, /* segment base address */
1129 0xfffff, /* length - all address space */
1130 SDT_MEMERA, /* segment type */
1131 0, /* segment descriptor priority level */
1132 1, /* segment descriptor present */
1133 0, 0,
1134 1, /* default 32 vs 16 bit size */
1135 1 /* limit granularity (byte/page units)*/ },
1136 /* GDATA_SEL 2 Data Descriptor for kernel */
1137 { 0x0, /* segment base address */
1138 0xfffff, /* length - all address space */
1139 SDT_MEMRWA, /* segment type */
1140 0, /* segment descriptor priority level */
1141 1, /* segment descriptor present */
1142 0, 0,
1143 1, /* default 32 vs 16 bit size */
1144 1 /* limit granularity (byte/page units)*/ },
1145 /* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */
1146 { 0x0, /* segment base address */
1147 0xfffff, /* length - all address space */
1148 SDT_MEMRWA, /* segment type */
1149 0, /* segment descriptor priority level */
1150 1, /* segment descriptor present */
1151 0, 0,
1152 1, /* default 32 vs 16 bit size */
1153 1 /* limit granularity (byte/page units)*/ },
1154 /* GPROC0_SEL 4 Proc 0 Tss Descriptor */
1156 0x0, /* segment base address */
1157 sizeof(struct i386tss)-1,/* length - all address space */
1158 SDT_SYS386TSS, /* segment type */
1159 0, /* segment descriptor priority level */
1160 1, /* segment descriptor present */
1161 0, 0,
1162 0, /* unused - default 32 vs 16 bit size */
1163 0 /* limit granularity (byte/page units)*/ },
1164 /* GLDT_SEL 5 LDT Descriptor */
1165 { (int) ldt, /* segment base address */
1166 sizeof(ldt)-1, /* length - all address space */
1167 SDT_SYSLDT, /* segment type */
1168 SEL_UPL, /* segment descriptor priority level */
1169 1, /* segment descriptor present */
1170 0, 0,
1171 0, /* unused - default 32 vs 16 bit size */
1172 0 /* limit granularity (byte/page units)*/ },
1173 /* GUSERLDT_SEL 6 User LDT Descriptor per process */
1174 { (int) ldt, /* segment base address */
1175 (512 * sizeof(union descriptor)-1), /* length */
1176 SDT_SYSLDT, /* segment type */
1177 0, /* segment descriptor priority level */
1178 1, /* segment descriptor present */
1179 0, 0,
1180 0, /* unused - default 32 vs 16 bit size */
1181 0 /* limit granularity (byte/page units)*/ },
1182 /* GTGATE_SEL 7 Null Descriptor - Placeholder */
1183 { 0x0, /* segment base address */
1184 0x0, /* length - all address space */
1185 0, /* segment type */
1186 0, /* segment descriptor priority level */
1187 0, /* segment descriptor present */
1188 0, 0,
1189 0, /* default 32 vs 16 bit size */
1190 0 /* limit granularity (byte/page units)*/ },
1191 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1192 { 0x400, /* segment base address */
1193 0xfffff, /* length */
1194 SDT_MEMRWA, /* segment type */
1195 0, /* segment descriptor priority level */
1196 1, /* segment descriptor present */
1197 0, 0,
1198 1, /* default 32 vs 16 bit size */
1199 1 /* limit granularity (byte/page units)*/ },
1200 /* GPANIC_SEL 9 Panic Tss Descriptor */
1201 { (int) &dblfault_tss, /* segment base address */
1202 sizeof(struct i386tss)-1,/* length - all address space */
1203 SDT_SYS386TSS, /* segment type */
1204 0, /* segment descriptor priority level */
1205 1, /* segment descriptor present */
1206 0, 0,
1207 0, /* unused - default 32 vs 16 bit size */
1208 0 /* limit granularity (byte/page units)*/ },
1209 /* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1210 { 0, /* segment base address (overwritten) */
1211 0xfffff, /* length */
1212 SDT_MEMERA, /* segment type */
1213 0, /* segment descriptor priority level */
1214 1, /* segment descriptor present */
1215 0, 0,
1216 0, /* default 32 vs 16 bit size */
1217 1 /* limit granularity (byte/page units)*/ },
1218 /* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1219 { 0, /* segment base address (overwritten) */
1220 0xfffff, /* length */
1221 SDT_MEMERA, /* segment type */
1222 0, /* segment descriptor priority level */
1223 1, /* segment descriptor present */
1224 0, 0,
1225 0, /* default 32 vs 16 bit size */
1226 1 /* limit granularity (byte/page units)*/ },
1227 /* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1228 { 0, /* segment base address (overwritten) */
1229 0xfffff, /* length */
1230 SDT_MEMRWA, /* segment type */
1231 0, /* segment descriptor priority level */
1232 1, /* segment descriptor present */
1233 0, 0,
1234 1, /* default 32 vs 16 bit size */
1235 1 /* limit granularity (byte/page units)*/ },
1236 /* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1237 { 0, /* segment base address (overwritten) */
1238 0xfffff, /* length */
1239 SDT_MEMRWA, /* segment type */
1240 0, /* segment descriptor priority level */
1241 1, /* segment descriptor present */
1242 0, 0,
1243 0, /* default 32 vs 16 bit size */
1244 1 /* limit granularity (byte/page units)*/ },
1245 /* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1246 { 0, /* segment base address (overwritten) */
1247 0xfffff, /* length */
1248 SDT_MEMRWA, /* segment type */
1249 0, /* segment descriptor priority level */
1250 1, /* segment descriptor present */
1251 0, 0,
1252 0, /* default 32 vs 16 bit size */
1253 1 /* limit granularity (byte/page units)*/ },
1254 /* GTLS_START 15 TLS */
1255 { 0x0, /* segment base address */
1256 0x0, /* length */
1257 0, /* segment type */
1258 0, /* segment descriptor priority level */
1259 0, /* segment descriptor present */
1260 0, 0,
1261 0, /* default 32 vs 16 bit size */
1262 0 /* limit granularity (byte/page units)*/ },
1263 /* GTLS_START+1 16 TLS */
1264 { 0x0, /* segment base address */
1265 0x0, /* length */
1266 0, /* segment type */
1267 0, /* segment descriptor priority level */
1268 0, /* segment descriptor present */
1269 0, 0,
1270 0, /* default 32 vs 16 bit size */
1271 0 /* limit granularity (byte/page units)*/ },
1272 /* GTLS_END 17 TLS */
1273 { 0x0, /* segment base address */
1274 0x0, /* length */
1275 0, /* segment type */
1276 0, /* segment descriptor priority level */
1277 0, /* segment descriptor present */
1278 0, 0,
1279 0, /* default 32 vs 16 bit size */
1280 0 /* limit granularity (byte/page units)*/ },
1283 static struct soft_segment_descriptor ldt_segs[] = {
1284 /* Null Descriptor - overwritten by call gate */
1285 { 0x0, /* segment base address */
1286 0x0, /* length - all address space */
1287 0, /* segment type */
1288 0, /* segment descriptor priority level */
1289 0, /* segment descriptor present */
1290 0, 0,
1291 0, /* default 32 vs 16 bit size */
1292 0 /* limit granularity (byte/page units)*/ },
1293 /* Null Descriptor - overwritten by call gate */
1294 { 0x0, /* segment base address */
1295 0x0, /* length - all address space */
1296 0, /* segment type */
1297 0, /* segment descriptor priority level */
1298 0, /* segment descriptor present */
1299 0, 0,
1300 0, /* default 32 vs 16 bit size */
1301 0 /* limit granularity (byte/page units)*/ },
1302 /* Null Descriptor - overwritten by call gate */
1303 { 0x0, /* segment base address */
1304 0x0, /* length - all address space */
1305 0, /* segment type */
1306 0, /* segment descriptor priority level */
1307 0, /* segment descriptor present */
1308 0, 0,
1309 0, /* default 32 vs 16 bit size */
1310 0 /* limit granularity (byte/page units)*/ },
1311 /* Code Descriptor for user */
1312 { 0x0, /* segment base address */
1313 0xfffff, /* length - all address space */
1314 SDT_MEMERA, /* segment type */
1315 SEL_UPL, /* segment descriptor priority level */
1316 1, /* segment descriptor present */
1317 0, 0,
1318 1, /* default 32 vs 16 bit size */
1319 1 /* limit granularity (byte/page units)*/ },
1320 /* Null Descriptor - overwritten by call gate */
1321 { 0x0, /* segment base address */
1322 0x0, /* length - all address space */
1323 0, /* segment type */
1324 0, /* segment descriptor priority level */
1325 0, /* segment descriptor present */
1326 0, 0,
1327 0, /* default 32 vs 16 bit size */
1328 0 /* limit granularity (byte/page units)*/ },
1329 /* Data Descriptor for user */
1330 { 0x0, /* segment base address */
1331 0xfffff, /* length - all address space */
1332 SDT_MEMRWA, /* segment type */
1333 SEL_UPL, /* segment descriptor priority level */
1334 1, /* segment descriptor present */
1335 0, 0,
1336 1, /* default 32 vs 16 bit size */
1337 1 /* limit granularity (byte/page units)*/ },
1340 void
1341 setidt(int idx, inthand_t *func, int typ, int dpl, int selec)
1343 struct gate_descriptor *ip;
1345 ip = idt + idx;
1346 ip->gd_looffset = (int)func;
1347 ip->gd_selector = selec;
1348 ip->gd_stkcpy = 0;
1349 ip->gd_xx = 0;
1350 ip->gd_type = typ;
1351 ip->gd_dpl = dpl;
1352 ip->gd_p = 1;
1353 ip->gd_hioffset = ((int)func)>>16 ;
1356 #define IDTVEC(name) __CONCAT(X,name)
1358 extern inthand_t
1359 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1360 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1361 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1362 IDTVEC(page), IDTVEC(mchk), IDTVEC(fpu), IDTVEC(align),
1363 IDTVEC(xmm), IDTVEC(syscall),
1364 IDTVEC(rsvd0);
1365 extern inthand_t
1366 IDTVEC(int0x80_syscall);
1368 #ifdef DEBUG_INTERRUPTS
1369 extern inthand_t *Xrsvdary[256];
1370 #endif
1372 void
1373 sdtossd(struct segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1375 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1376 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1377 ssd->ssd_type = sd->sd_type;
1378 ssd->ssd_dpl = sd->sd_dpl;
1379 ssd->ssd_p = sd->sd_p;
1380 ssd->ssd_def32 = sd->sd_def32;
1381 ssd->ssd_gran = sd->sd_gran;
1385 * Populate the (physmap) array with base/bound pairs describing the
1386 * available physical memory in the system, then test this memory and
1387 * build the phys_avail array describing the actually-available memory.
1389 * If we cannot accurately determine the physical memory map, then use
1390 * value from the 0xE801 call, and failing that, the RTC.
1392 * Total memory size may be set by the kernel environment variable
1393 * hw.physmem or the compile-time define MAXMEM.
1395 static void
1396 getmemsize(int first)
1398 int i, physmap_idx, pa_indx, da_indx;
1399 int hasbrokenint12;
1400 u_int basemem, extmem;
1401 struct vm86frame vmf;
1402 struct vm86context vmc;
1403 vm_offset_t pa;
1404 vm_offset_t physmap[PHYSMAP_ENTRIES*2];
1405 pt_entry_t *pte;
1406 quad_t maxmem;
1407 struct {
1408 u_int64_t base;
1409 u_int64_t length;
1410 u_int32_t type;
1411 } *smap;
1412 quad_t dcons_addr, dcons_size;
1414 bzero(&vmf, sizeof(struct vm86frame));
1415 bzero(physmap, sizeof(physmap));
1416 basemem = 0;
1419 * Some newer BIOSes has broken INT 12H implementation which cause
1420 * kernel panic immediately. In this case, we need to scan SMAP
1421 * with INT 15:E820 first, then determine base memory size.
1423 hasbrokenint12 = 0;
1424 TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1425 if (hasbrokenint12) {
1426 goto int15e820;
1430 * Perform "base memory" related probes & setup. If we get a crazy
1431 * value give the bios some scribble space just in case.
1433 vm86_intcall(0x12, &vmf);
1434 basemem = vmf.vmf_ax;
1435 if (basemem > 640) {
1436 kprintf("Preposterous BIOS basemem of %uK, "
1437 "truncating to < 640K\n", basemem);
1438 basemem = 636;
1442 * XXX if biosbasemem is now < 640, there is a `hole'
1443 * between the end of base memory and the start of
1444 * ISA memory. The hole may be empty or it may
1445 * contain BIOS code or data. Map it read/write so
1446 * that the BIOS can write to it. (Memory from 0 to
1447 * the physical end of the kernel is mapped read-only
1448 * to begin with and then parts of it are remapped.
1449 * The parts that aren't remapped form holes that
1450 * remain read-only and are unused by the kernel.
1451 * The base memory area is below the physical end of
1452 * the kernel and right now forms a read-only hole.
1453 * The part of it from PAGE_SIZE to
1454 * (trunc_page(biosbasemem * 1024) - 1) will be
1455 * remapped and used by the kernel later.)
1457 * This code is similar to the code used in
1458 * pmap_mapdev, but since no memory needs to be
1459 * allocated we simply change the mapping.
1461 for (pa = trunc_page(basemem * 1024);
1462 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1463 pte = vtopte(pa + KERNBASE);
1464 *pte = pa | PG_RW | PG_V;
1468 * if basemem != 640, map pages r/w into vm86 page table so
1469 * that the bios can scribble on it.
1471 pte = vm86paddr;
1472 for (i = basemem / 4; i < 160; i++)
1473 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1475 int15e820:
1477 * map page 1 R/W into the kernel page table so we can use it
1478 * as a buffer. The kernel will unmap this page later.
1480 pte = vtopte(KERNBASE + (1 << PAGE_SHIFT));
1481 *pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1484 * get memory map with INT 15:E820
1486 #define SMAPSIZ sizeof(*smap)
1487 #define SMAP_SIG 0x534D4150 /* 'SMAP' */
1489 vmc.npages = 0;
1490 smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1491 vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1493 physmap_idx = 0;
1494 vmf.vmf_ebx = 0;
1495 do {
1496 vmf.vmf_eax = 0xE820;
1497 vmf.vmf_edx = SMAP_SIG;
1498 vmf.vmf_ecx = SMAPSIZ;
1499 i = vm86_datacall(0x15, &vmf, &vmc);
1500 if (i || vmf.vmf_eax != SMAP_SIG)
1501 break;
1502 if (boothowto & RB_VERBOSE)
1503 kprintf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1504 smap->type,
1505 *(u_int32_t *)((char *)&smap->base + 4),
1506 (u_int32_t)smap->base,
1507 *(u_int32_t *)((char *)&smap->length + 4),
1508 (u_int32_t)smap->length);
1510 if (smap->type != 0x01)
1511 goto next_run;
1513 if (smap->length == 0)
1514 goto next_run;
1516 if (smap->base >= 0xffffffff) {
1517 kprintf("%ju MB of memory above 4GB ignored\n",
1518 (uintmax_t)(smap->length / 1024 / 1024));
1519 goto next_run;
1522 for (i = 0; i <= physmap_idx; i += 2) {
1523 if (smap->base < physmap[i + 1]) {
1524 if (boothowto & RB_VERBOSE)
1525 kprintf(
1526 "Overlapping or non-montonic memory region, ignoring second region\n");
1527 goto next_run;
1531 if (smap->base == physmap[physmap_idx + 1]) {
1532 physmap[physmap_idx + 1] += smap->length;
1533 goto next_run;
1536 physmap_idx += 2;
1537 if (physmap_idx == PHYSMAP_ENTRIES*2) {
1538 kprintf(
1539 "Too many segments in the physical address map, giving up\n");
1540 break;
1542 physmap[physmap_idx] = smap->base;
1543 physmap[physmap_idx + 1] = smap->base + smap->length;
1544 next_run:
1545 ; /* fix GCC3.x warning */
1546 } while (vmf.vmf_ebx != 0);
1549 * Perform "base memory" related probes & setup based on SMAP
1551 if (basemem == 0) {
1552 for (i = 0; i <= physmap_idx; i += 2) {
1553 if (physmap[i] == 0x00000000) {
1554 basemem = physmap[i + 1] / 1024;
1555 break;
1559 if (basemem == 0) {
1560 basemem = 640;
1563 if (basemem > 640) {
1564 kprintf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1565 basemem);
1566 basemem = 640;
1569 for (pa = trunc_page(basemem * 1024);
1570 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1571 pte = vtopte(pa + KERNBASE);
1572 *pte = pa | PG_RW | PG_V;
1575 pte = vm86paddr;
1576 for (i = basemem / 4; i < 160; i++)
1577 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1580 if (physmap[1] != 0)
1581 goto physmap_done;
1584 * If we failed above, try memory map with INT 15:E801
1586 vmf.vmf_ax = 0xE801;
1587 if (vm86_intcall(0x15, &vmf) == 0) {
1588 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1589 } else {
1590 #if 0
1591 vmf.vmf_ah = 0x88;
1592 vm86_intcall(0x15, &vmf);
1593 extmem = vmf.vmf_ax;
1594 #else
1596 * Prefer the RTC value for extended memory.
1598 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1599 #endif
1603 * Special hack for chipsets that still remap the 384k hole when
1604 * there's 16MB of memory - this really confuses people that
1605 * are trying to use bus mastering ISA controllers with the
1606 * "16MB limit"; they only have 16MB, but the remapping puts
1607 * them beyond the limit.
1609 * If extended memory is between 15-16MB (16-17MB phys address range),
1610 * chop it to 15MB.
1612 if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1613 extmem = 15 * 1024;
1615 physmap[0] = 0;
1616 physmap[1] = basemem * 1024;
1617 physmap_idx = 2;
1618 physmap[physmap_idx] = 0x100000;
1619 physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1621 physmap_done:
1623 * Now, physmap contains a map of physical memory.
1626 #ifdef SMP
1627 /* make hole for AP bootstrap code YYY */
1628 physmap[1] = mp_bootaddress(physmap[1]);
1630 /* Save EBDA address, if any */
1631 ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1632 ebda_addr <<= 4;
1633 #endif
1636 * Maxmem isn't the "maximum memory", it's one larger than the
1637 * highest page of the physical address space. It should be
1638 * called something like "Maxphyspage". We may adjust this
1639 * based on ``hw.physmem'' and the results of the memory test.
1641 Maxmem = atop(physmap[physmap_idx + 1]);
1643 #ifdef MAXMEM
1644 Maxmem = MAXMEM / 4;
1645 #endif
1647 if (kgetenv_quad("hw.physmem", &maxmem))
1648 Maxmem = atop(maxmem);
1650 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1651 (boothowto & RB_VERBOSE))
1652 kprintf("Physical memory use set to %lluK\n", Maxmem * 4);
1655 * If Maxmem has been increased beyond what the system has detected,
1656 * extend the last memory segment to the new limit.
1658 if (atop(physmap[physmap_idx + 1]) < Maxmem)
1659 physmap[physmap_idx + 1] = ptoa(Maxmem);
1661 /* call pmap initialization to make new kernel address space */
1662 pmap_bootstrap(first, 0);
1665 * Size up each available chunk of physical memory.
1667 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1668 pa_indx = 0;
1669 da_indx = 1;
1670 phys_avail[pa_indx++] = physmap[0];
1671 phys_avail[pa_indx] = physmap[0];
1672 dump_avail[da_indx] = physmap[0];
1674 pte = CMAP1;
1677 * Get dcons buffer address
1679 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1680 kgetenv_quad("dcons.size", &dcons_size) == 0)
1681 dcons_addr = 0;
1684 * physmap is in bytes, so when converting to page boundaries,
1685 * round up the start address and round down the end address.
1687 for (i = 0; i <= physmap_idx; i += 2) {
1688 vm_offset_t end;
1690 end = ptoa(Maxmem);
1691 if (physmap[i + 1] < end)
1692 end = trunc_page(physmap[i + 1]);
1693 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1694 int tmp, page_bad, full;
1695 #if 0
1696 int *ptr = 0;
1697 #else
1698 int *ptr = (int *)CADDR1;
1699 #endif
1700 full = FALSE;
1703 * block out kernel memory as not available.
1705 if (pa >= 0x100000 && pa < first)
1706 goto do_dump_avail;
1709 * block out dcons buffer
1711 if (dcons_addr > 0
1712 && pa >= trunc_page(dcons_addr)
1713 && pa < dcons_addr + dcons_size)
1714 goto do_dump_avail;
1716 page_bad = FALSE;
1719 * map page into kernel: valid, read/write,non-cacheable
1721 *pte = pa | PG_V | PG_RW | PG_N;
1722 cpu_invltlb();
1724 tmp = *(int *)ptr;
1726 * Test for alternating 1's and 0's
1728 *(volatile int *)ptr = 0xaaaaaaaa;
1729 if (*(volatile int *)ptr != 0xaaaaaaaa) {
1730 page_bad = TRUE;
1733 * Test for alternating 0's and 1's
1735 *(volatile int *)ptr = 0x55555555;
1736 if (*(volatile int *)ptr != 0x55555555) {
1737 page_bad = TRUE;
1740 * Test for all 1's
1742 *(volatile int *)ptr = 0xffffffff;
1743 if (*(volatile int *)ptr != 0xffffffff) {
1744 page_bad = TRUE;
1747 * Test for all 0's
1749 *(volatile int *)ptr = 0x0;
1750 if (*(volatile int *)ptr != 0x0) {
1751 page_bad = TRUE;
1754 * Restore original value.
1756 *(int *)ptr = tmp;
1759 * Adjust array of valid/good pages.
1761 if (page_bad == TRUE) {
1762 continue;
1765 * If this good page is a continuation of the
1766 * previous set of good pages, then just increase
1767 * the end pointer. Otherwise start a new chunk.
1768 * Note that "end" points one higher than end,
1769 * making the range >= start and < end.
1770 * If we're also doing a speculative memory
1771 * test and we at or past the end, bump up Maxmem
1772 * so that we keep going. The first bad page
1773 * will terminate the loop.
1775 if (phys_avail[pa_indx] == pa) {
1776 phys_avail[pa_indx] += PAGE_SIZE;
1777 } else {
1778 pa_indx++;
1779 if (pa_indx >= PHYSMAP_ENTRIES*2) {
1780 kprintf("Too many holes in the physical address space, giving up\n");
1781 pa_indx--;
1782 full = TRUE;
1783 goto do_dump_avail;
1785 phys_avail[pa_indx++] = pa; /* start */
1786 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1788 physmem++;
1789 do_dump_avail:
1790 if (dump_avail[da_indx] == pa) {
1791 dump_avail[da_indx] += PAGE_SIZE;
1792 } else {
1793 da_indx++;
1794 if (da_indx >= PHYSMAP_ENTRIES*2) {
1795 da_indx--;
1796 goto do_next;
1798 dump_avail[da_indx++] = pa; /* start */
1799 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1801 do_next:
1802 if (full)
1803 break;
1807 *pte = 0;
1808 cpu_invltlb();
1811 * XXX
1812 * The last chunk must contain at least one page plus the message
1813 * buffer to avoid complicating other code (message buffer address
1814 * calculation, etc.).
1816 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1817 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1818 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1819 phys_avail[pa_indx--] = 0;
1820 phys_avail[pa_indx--] = 0;
1823 Maxmem = atop(phys_avail[pa_indx]);
1825 /* Trim off space for the message buffer. */
1826 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1828 avail_end = phys_avail[pa_indx];
1832 * IDT VECTORS:
1833 * 0 Divide by zero
1834 * 1 Debug
1835 * 2 NMI
1836 * 3 BreakPoint
1837 * 4 OverFlow
1838 * 5 Bound-Range
1839 * 6 Invalid OpCode
1840 * 7 Device Not Available (x87)
1841 * 8 Double-Fault
1842 * 9 Coprocessor Segment overrun (unsupported, reserved)
1843 * 10 Invalid-TSS
1844 * 11 Segment not present
1845 * 12 Stack
1846 * 13 General Protection
1847 * 14 Page Fault
1848 * 15 Reserved
1849 * 16 x87 FP Exception pending
1850 * 17 Alignment Check
1851 * 18 Machine Check
1852 * 19 SIMD floating point
1853 * 20-31 reserved
1854 * 32-255 INTn/external sources
1856 void
1857 init386(int first)
1859 struct gate_descriptor *gdp;
1860 int gsel_tss, metadata_missing, off, x;
1861 struct mdglobaldata *gd;
1864 * Prevent lowering of the ipl if we call tsleep() early.
1866 gd = &CPU_prvspace[0].mdglobaldata;
1867 bzero(gd, sizeof(*gd));
1869 gd->mi.gd_curthread = &thread0;
1870 thread0.td_gd = &gd->mi;
1872 atdevbase = ISA_HOLE_START + KERNBASE;
1874 metadata_missing = 0;
1875 if (bootinfo.bi_modulep) {
1876 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1877 preload_bootstrap_relocate(KERNBASE);
1878 } else {
1879 metadata_missing = 1;
1881 if (bootinfo.bi_envp)
1882 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1885 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
1886 * and ncpus_fit_mask remain 0.
1888 ncpus = 1;
1889 ncpus2 = 1;
1890 ncpus_fit = 1;
1891 /* Init basic tunables, hz etc */
1892 init_param1();
1895 * make gdt memory segments, the code segment goes up to end of the
1896 * page with etext in it, the data segment goes to the end of
1897 * the address space
1900 * XXX text protection is temporarily (?) disabled. The limit was
1901 * i386_btop(round_page(etext)) - 1.
1903 gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1904 gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1906 gdt_segs[GPRIV_SEL].ssd_limit =
1907 atop(sizeof(struct privatespace) - 1);
1908 gdt_segs[GPRIV_SEL].ssd_base = (int) &CPU_prvspace[0];
1909 gdt_segs[GPROC0_SEL].ssd_base =
1910 (int) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1912 gd->mi.gd_prvspace = &CPU_prvspace[0];
1915 * Note: on both UP and SMP curthread must be set non-NULL
1916 * early in the boot sequence because the system assumes
1917 * that 'curthread' is never NULL.
1920 for (x = 0; x < NGDT; x++) {
1921 #ifdef BDE_DEBUGGER
1922 /* avoid overwriting db entries with APM ones */
1923 if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1924 continue;
1925 #endif
1926 ssdtosd(&gdt_segs[x], &gdt[x].sd);
1929 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1930 r_gdt.rd_base = (int) gdt;
1931 lgdt(&r_gdt);
1933 mi_gdinit(&gd->mi, 0);
1934 cpu_gdinit(gd, 0);
1935 mi_proc0init(&gd->mi, proc0paddr);
1936 safepri = TDPRI_MAX;
1938 /* make ldt memory segments */
1940 * XXX - VM_MAX_USER_ADDRESS is an end address, not a max. And it
1941 * should be spelled ...MAX_USER...
1943 ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAX_USER_ADDRESS - 1);
1944 ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAX_USER_ADDRESS - 1);
1945 for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1946 ssdtosd(&ldt_segs[x], &ldt[x].sd);
1948 _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1949 lldt(_default_ldt);
1950 gd->gd_currentldt = _default_ldt;
1951 /* spinlocks and the BGL */
1952 init_locks();
1955 * Setup the hardware exception table. Most exceptions use
1956 * SDT_SYS386TGT, known as a 'trap gate'. Trap gates leave
1957 * interrupts enabled. VM page faults use SDT_SYS386IGT, known as
1958 * an 'interrupt trap gate', which disables interrupts on entry,
1959 * in order to be able to poll the appropriate CRn register to
1960 * determine the fault address.
1962 for (x = 0; x < NIDT; x++) {
1963 #ifdef DEBUG_INTERRUPTS
1964 setidt(x, Xrsvdary[x], SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1965 #else
1966 setidt(x, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1967 #endif
1969 setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1970 setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1971 setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1972 setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1973 setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1974 setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1975 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1976 setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1977 setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1978 setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1979 setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1980 setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1981 setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1982 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1983 setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1984 setidt(15, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1985 setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1986 setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1987 setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1988 setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1989 setidt(0x80, &IDTVEC(int0x80_syscall),
1990 SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1992 r_idt.rd_limit = sizeof(idt0) - 1;
1993 r_idt.rd_base = (int) idt;
1994 lidt(&r_idt);
1997 * Initialize the console before we print anything out.
1999 cninit();
2001 if (metadata_missing)
2002 kprintf("WARNING: loader(8) metadata is missing!\n");
2004 #if NISA >0
2005 isa_defaultirq();
2006 #endif
2007 rand_initialize();
2009 #ifdef DDB
2010 kdb_init();
2011 if (boothowto & RB_KDB)
2012 Debugger("Boot flags requested debugger");
2013 #endif
2015 finishidentcpu(); /* Final stage of CPU initialization */
2016 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2017 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2018 initializecpu(); /* Initialize CPU registers */
2021 * make an initial tss so cpu can get interrupt stack on syscall!
2022 * The 16 bytes is to save room for a VM86 context.
2024 gd->gd_common_tss.tss_esp0 = (int) thread0.td_pcb - 16;
2025 gd->gd_common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
2026 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2027 gd->gd_tss_gdt = &gdt[GPROC0_SEL].sd;
2028 gd->gd_common_tssd = *gd->gd_tss_gdt;
2029 gd->gd_common_tss.tss_ioopt = (sizeof gd->gd_common_tss) << 16;
2030 ltr(gsel_tss);
2032 dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2033 dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
2034 dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2035 dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2036 dblfault_tss.tss_cr3 = (int)IdlePTD;
2037 dblfault_tss.tss_eip = (int) dblfault_handler;
2038 dblfault_tss.tss_eflags = PSL_KERNEL;
2039 dblfault_tss.tss_ds = dblfault_tss.tss_es =
2040 dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2041 dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2042 dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2043 dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2045 vm86_initialize();
2046 getmemsize(first);
2047 init_param2(physmem);
2049 /* now running on new page tables, configured,and u/iom is accessible */
2051 /* Map the message buffer. */
2052 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2053 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2055 msgbufinit(msgbufp, MSGBUF_SIZE);
2057 /* make a call gate to reenter kernel with */
2058 gdp = &ldt[LSYS5CALLS_SEL].gd;
2060 x = (int) &IDTVEC(syscall);
2061 gdp->gd_looffset = x++;
2062 gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2063 gdp->gd_stkcpy = 1;
2064 gdp->gd_type = SDT_SYS386CGT;
2065 gdp->gd_dpl = SEL_UPL;
2066 gdp->gd_p = 1;
2067 gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
2069 /* XXX does this work? */
2070 ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2071 ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2073 /* transfer to user mode */
2075 _ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2076 _udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2078 /* setup proc 0's pcb */
2079 thread0.td_pcb->pcb_flags = 0;
2080 thread0.td_pcb->pcb_cr3 = (int)IdlePTD; /* should already be setup */
2081 thread0.td_pcb->pcb_ext = 0;
2082 lwp0.lwp_md.md_regs = &proc0_tf;
2086 * Initialize machine-dependant portions of the global data structure.
2087 * Note that the global data area and cpu0's idlestack in the private
2088 * data space were allocated in locore.
2090 * Note: the idlethread's cpl is 0
2092 * WARNING! Called from early boot, 'mycpu' may not work yet.
2094 void
2095 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2097 if (cpu)
2098 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2100 lwkt_init_thread(&gd->mi.gd_idlethread,
2101 gd->mi.gd_prvspace->idlestack,
2102 sizeof(gd->mi.gd_prvspace->idlestack),
2103 TDF_MPSAFE, &gd->mi);
2104 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2105 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2106 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2107 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2111 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2113 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2114 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2115 return (TRUE);
2117 return (FALSE);
2120 struct globaldata *
2121 globaldata_find(int cpu)
2123 KKASSERT(cpu >= 0 && cpu < ncpus);
2124 return(&CPU_prvspace[cpu].mdglobaldata.mi);
2127 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2128 static void f00f_hack(void *unused);
2129 SYSINIT(f00f_hack, SI_BOOT2_BIOS, SI_ORDER_ANY, f00f_hack, NULL);
2131 static void
2132 f00f_hack(void *unused)
2134 struct gate_descriptor *new_idt;
2135 vm_offset_t tmp;
2137 if (!has_f00f_bug)
2138 return;
2140 kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
2142 r_idt.rd_limit = sizeof(idt0) - 1;
2144 tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
2145 if (tmp == 0)
2146 panic("kmem_alloc returned 0");
2147 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2148 panic("kmem_alloc returned non-page-aligned memory");
2149 /* Put the first seven entries in the lower page */
2150 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2151 bcopy(idt, new_idt, sizeof(idt0));
2152 r_idt.rd_base = (int)new_idt;
2153 lidt(&r_idt);
2154 idt = new_idt;
2155 if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
2156 VM_PROT_READ, FALSE) != KERN_SUCCESS)
2157 panic("vm_map_protect failed");
2158 return;
2160 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
2163 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2165 lp->lwp_md.md_regs->tf_eip = addr;
2166 return (0);
2170 ptrace_single_step(struct lwp *lp)
2172 lp->lwp_md.md_regs->tf_eflags |= PSL_T;
2173 return (0);
2177 fill_regs(struct lwp *lp, struct reg *regs)
2179 struct pcb *pcb;
2180 struct trapframe *tp;
2182 tp = lp->lwp_md.md_regs;
2183 regs->r_gs = tp->tf_gs;
2184 regs->r_fs = tp->tf_fs;
2185 regs->r_es = tp->tf_es;
2186 regs->r_ds = tp->tf_ds;
2187 regs->r_edi = tp->tf_edi;
2188 regs->r_esi = tp->tf_esi;
2189 regs->r_ebp = tp->tf_ebp;
2190 regs->r_ebx = tp->tf_ebx;
2191 regs->r_edx = tp->tf_edx;
2192 regs->r_ecx = tp->tf_ecx;
2193 regs->r_eax = tp->tf_eax;
2194 regs->r_eip = tp->tf_eip;
2195 regs->r_cs = tp->tf_cs;
2196 regs->r_eflags = tp->tf_eflags;
2197 regs->r_esp = tp->tf_esp;
2198 regs->r_ss = tp->tf_ss;
2199 pcb = lp->lwp_thread->td_pcb;
2200 return (0);
2204 set_regs(struct lwp *lp, struct reg *regs)
2206 struct pcb *pcb;
2207 struct trapframe *tp;
2209 tp = lp->lwp_md.md_regs;
2210 if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2211 !CS_SECURE(regs->r_cs))
2212 return (EINVAL);
2213 tp->tf_gs = regs->r_gs;
2214 tp->tf_fs = regs->r_fs;
2215 tp->tf_es = regs->r_es;
2216 tp->tf_ds = regs->r_ds;
2217 tp->tf_edi = regs->r_edi;
2218 tp->tf_esi = regs->r_esi;
2219 tp->tf_ebp = regs->r_ebp;
2220 tp->tf_ebx = regs->r_ebx;
2221 tp->tf_edx = regs->r_edx;
2222 tp->tf_ecx = regs->r_ecx;
2223 tp->tf_eax = regs->r_eax;
2224 tp->tf_eip = regs->r_eip;
2225 tp->tf_cs = regs->r_cs;
2226 tp->tf_eflags = regs->r_eflags;
2227 tp->tf_esp = regs->r_esp;
2228 tp->tf_ss = regs->r_ss;
2229 pcb = lp->lwp_thread->td_pcb;
2230 return (0);
2233 #ifndef CPU_DISABLE_SSE
2234 static void
2235 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2237 struct env87 *penv_87 = &sv_87->sv_env;
2238 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2239 int i;
2241 /* FPU control/status */
2242 penv_87->en_cw = penv_xmm->en_cw;
2243 penv_87->en_sw = penv_xmm->en_sw;
2244 penv_87->en_tw = penv_xmm->en_tw;
2245 penv_87->en_fip = penv_xmm->en_fip;
2246 penv_87->en_fcs = penv_xmm->en_fcs;
2247 penv_87->en_opcode = penv_xmm->en_opcode;
2248 penv_87->en_foo = penv_xmm->en_foo;
2249 penv_87->en_fos = penv_xmm->en_fos;
2251 /* FPU registers */
2252 for (i = 0; i < 8; ++i)
2253 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2255 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2258 static void
2259 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2261 struct env87 *penv_87 = &sv_87->sv_env;
2262 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2263 int i;
2265 /* FPU control/status */
2266 penv_xmm->en_cw = penv_87->en_cw;
2267 penv_xmm->en_sw = penv_87->en_sw;
2268 penv_xmm->en_tw = penv_87->en_tw;
2269 penv_xmm->en_fip = penv_87->en_fip;
2270 penv_xmm->en_fcs = penv_87->en_fcs;
2271 penv_xmm->en_opcode = penv_87->en_opcode;
2272 penv_xmm->en_foo = penv_87->en_foo;
2273 penv_xmm->en_fos = penv_87->en_fos;
2275 /* FPU registers */
2276 for (i = 0; i < 8; ++i)
2277 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2279 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2281 #endif /* CPU_DISABLE_SSE */
2284 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2286 #ifndef CPU_DISABLE_SSE
2287 if (cpu_fxsr) {
2288 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2289 (struct save87 *)fpregs);
2290 return (0);
2292 #endif /* CPU_DISABLE_SSE */
2293 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2294 return (0);
2298 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2300 #ifndef CPU_DISABLE_SSE
2301 if (cpu_fxsr) {
2302 set_fpregs_xmm((struct save87 *)fpregs,
2303 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2304 return (0);
2306 #endif /* CPU_DISABLE_SSE */
2307 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2308 return (0);
2312 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2314 if (lp == NULL) {
2315 dbregs->dr0 = rdr0();
2316 dbregs->dr1 = rdr1();
2317 dbregs->dr2 = rdr2();
2318 dbregs->dr3 = rdr3();
2319 dbregs->dr4 = rdr4();
2320 dbregs->dr5 = rdr5();
2321 dbregs->dr6 = rdr6();
2322 dbregs->dr7 = rdr7();
2323 } else {
2324 struct pcb *pcb;
2326 pcb = lp->lwp_thread->td_pcb;
2327 dbregs->dr0 = pcb->pcb_dr0;
2328 dbregs->dr1 = pcb->pcb_dr1;
2329 dbregs->dr2 = pcb->pcb_dr2;
2330 dbregs->dr3 = pcb->pcb_dr3;
2331 dbregs->dr4 = 0;
2332 dbregs->dr5 = 0;
2333 dbregs->dr6 = pcb->pcb_dr6;
2334 dbregs->dr7 = pcb->pcb_dr7;
2336 return (0);
2340 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2342 if (lp == NULL) {
2343 load_dr0(dbregs->dr0);
2344 load_dr1(dbregs->dr1);
2345 load_dr2(dbregs->dr2);
2346 load_dr3(dbregs->dr3);
2347 load_dr4(dbregs->dr4);
2348 load_dr5(dbregs->dr5);
2349 load_dr6(dbregs->dr6);
2350 load_dr7(dbregs->dr7);
2351 } else {
2352 struct pcb *pcb;
2353 struct ucred *ucred;
2354 int i;
2355 uint32_t mask1, mask2;
2358 * Don't let an illegal value for dr7 get set. Specifically,
2359 * check for undefined settings. Setting these bit patterns
2360 * result in undefined behaviour and can lead to an unexpected
2361 * TRCTRAP.
2363 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2364 i++, mask1 <<= 2, mask2 <<= 2)
2365 if ((dbregs->dr7 & mask1) == mask2)
2366 return (EINVAL);
2368 pcb = lp->lwp_thread->td_pcb;
2369 ucred = lp->lwp_proc->p_ucred;
2372 * Don't let a process set a breakpoint that is not within the
2373 * process's address space. If a process could do this, it
2374 * could halt the system by setting a breakpoint in the kernel
2375 * (if ddb was enabled). Thus, we need to check to make sure
2376 * that no breakpoints are being enabled for addresses outside
2377 * process's address space, unless, perhaps, we were called by
2378 * uid 0.
2380 * XXX - what about when the watched area of the user's
2381 * address space is written into from within the kernel
2382 * ... wouldn't that still cause a breakpoint to be generated
2383 * from within kernel mode?
2386 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2387 if (dbregs->dr7 & 0x3) {
2388 /* dr0 is enabled */
2389 if (dbregs->dr0 >= VM_MAX_USER_ADDRESS)
2390 return (EINVAL);
2393 if (dbregs->dr7 & (0x3<<2)) {
2394 /* dr1 is enabled */
2395 if (dbregs->dr1 >= VM_MAX_USER_ADDRESS)
2396 return (EINVAL);
2399 if (dbregs->dr7 & (0x3<<4)) {
2400 /* dr2 is enabled */
2401 if (dbregs->dr2 >= VM_MAX_USER_ADDRESS)
2402 return (EINVAL);
2405 if (dbregs->dr7 & (0x3<<6)) {
2406 /* dr3 is enabled */
2407 if (dbregs->dr3 >= VM_MAX_USER_ADDRESS)
2408 return (EINVAL);
2412 pcb->pcb_dr0 = dbregs->dr0;
2413 pcb->pcb_dr1 = dbregs->dr1;
2414 pcb->pcb_dr2 = dbregs->dr2;
2415 pcb->pcb_dr3 = dbregs->dr3;
2416 pcb->pcb_dr6 = dbregs->dr6;
2417 pcb->pcb_dr7 = dbregs->dr7;
2419 pcb->pcb_flags |= PCB_DBREGS;
2422 return (0);
2426 * Return > 0 if a hardware breakpoint has been hit, and the
2427 * breakpoint was in user space. Return 0, otherwise.
2430 user_dbreg_trap(void)
2432 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2433 u_int32_t bp; /* breakpoint bits extracted from dr6 */
2434 int nbp; /* number of breakpoints that triggered */
2435 caddr_t addr[4]; /* breakpoint addresses */
2436 int i;
2438 dr7 = rdr7();
2439 if ((dr7 & 0x000000ff) == 0) {
2441 * all GE and LE bits in the dr7 register are zero,
2442 * thus the trap couldn't have been caused by the
2443 * hardware debug registers
2445 return 0;
2448 nbp = 0;
2449 dr6 = rdr6();
2450 bp = dr6 & 0x0000000f;
2452 if (!bp) {
2454 * None of the breakpoint bits are set meaning this
2455 * trap was not caused by any of the debug registers
2457 return 0;
2461 * at least one of the breakpoints were hit, check to see
2462 * which ones and if any of them are user space addresses
2465 if (bp & 0x01) {
2466 addr[nbp++] = (caddr_t)rdr0();
2468 if (bp & 0x02) {
2469 addr[nbp++] = (caddr_t)rdr1();
2471 if (bp & 0x04) {
2472 addr[nbp++] = (caddr_t)rdr2();
2474 if (bp & 0x08) {
2475 addr[nbp++] = (caddr_t)rdr3();
2478 for (i=0; i<nbp; i++) {
2479 if (addr[i] <
2480 (caddr_t)VM_MAX_USER_ADDRESS) {
2482 * addr[i] is in user space
2484 return nbp;
2489 * None of the breakpoints are in user space.
2491 return 0;
2495 #ifndef DDB
2496 void
2497 Debugger(const char *msg)
2499 kprintf("Debugger(\"%s\") called.\n", msg);
2501 #endif /* no DDB */
2503 #ifdef DDB
2506 * Provide inb() and outb() as functions. They are normally only
2507 * available as macros calling inlined functions, thus cannot be
2508 * called inside DDB.
2510 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2513 #undef inb
2514 #undef outb
2516 /* silence compiler warnings */
2517 u_char inb(u_int);
2518 void outb(u_int, u_char);
2520 u_char
2521 inb(u_int port)
2523 u_char data;
2525 * We use %%dx and not %1 here because i/o is done at %dx and not at
2526 * %edx, while gcc generates inferior code (movw instead of movl)
2527 * if we tell it to load (u_short) port.
2529 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2530 return (data);
2533 void
2534 outb(u_int port, u_char data)
2536 u_char al;
2538 * Use an unnecessary assignment to help gcc's register allocator.
2539 * This make a large difference for gcc-1.40 and a tiny difference
2540 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2541 * best results. gcc-2.6.0 can't handle this.
2543 al = data;
2544 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2547 #endif /* DDB */
2551 #include "opt_cpu.h"
2555 * initialize all the SMP locks
2558 /* critical region when masking or unmasking interupts */
2559 struct spinlock_deprecated imen_spinlock;
2561 /* Make FAST_INTR() routines sequential */
2562 struct spinlock_deprecated fast_intr_spinlock;
2564 /* critical region for old style disable_intr/enable_intr */
2565 struct spinlock_deprecated mpintr_spinlock;
2567 /* critical region around INTR() routines */
2568 struct spinlock_deprecated intr_spinlock;
2570 /* lock region used by kernel profiling */
2571 struct spinlock_deprecated mcount_spinlock;
2573 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2574 struct spinlock_deprecated com_spinlock;
2576 /* locks kernel kprintfs */
2577 struct spinlock_deprecated cons_spinlock;
2579 /* lock regions around the clock hardware */
2580 struct spinlock_deprecated clock_spinlock;
2582 /* lock around the MP rendezvous */
2583 struct spinlock_deprecated smp_rv_spinlock;
2585 static void
2586 init_locks(void)
2589 * mp_lock = 0; BSP already owns the MP lock
2592 * Get the initial mp_lock with a count of 1 for the BSP.
2593 * This uses a LOGICAL cpu ID, ie BSP == 0.
2595 #ifdef SMP
2596 cpu_get_initial_mplock();
2597 #endif
2598 /* DEPRECATED */
2599 spin_lock_init(&mcount_spinlock);
2600 spin_lock_init(&fast_intr_spinlock);
2601 spin_lock_init(&intr_spinlock);
2602 spin_lock_init(&mpintr_spinlock);
2603 spin_lock_init(&imen_spinlock);
2604 spin_lock_init(&smp_rv_spinlock);
2605 spin_lock_init(&com_spinlock);
2606 spin_lock_init(&clock_spinlock);
2607 spin_lock_init(&cons_spinlock);
2609 /* our token pool needs to work early */
2610 lwkt_token_pool_init();