1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
34 #include "diagnostic.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph
;
44 /* Loop structure of the program. Used to analyze scalar evolutions
45 inside adjust_range_with_scev. */
46 static struct loops
*cfg_loops
;
48 /* Local functions. */
49 static int compare_values (tree val1
, tree val2
);
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
58 /* Basic block where the assertion would be inserted. */
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si
;
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code
;
71 /* Value being compared against. */
74 /* Next node in the linked list. */
75 struct assert_locus_d
*next
;
78 typedef struct assert_locus_d
*assert_locus_t
;
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for
;
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t
*asserts_for
;
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited
;
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t
**vr_value
;
98 /* Return true if ARG is marked with the nonnull attribute in the
99 current function signature. */
102 nonnull_arg_p (tree arg
)
104 tree t
, attrs
, fntype
;
105 unsigned HOST_WIDE_INT arg_num
;
107 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
109 fntype
= TREE_TYPE (current_function_decl
);
110 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
112 /* If "nonnull" wasn't specified, we know nothing about the argument. */
113 if (attrs
== NULL_TREE
)
116 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
117 if (TREE_VALUE (attrs
) == NULL_TREE
)
120 /* Get the position number for ARG in the function signature. */
121 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
123 t
= TREE_CHAIN (t
), arg_num
++)
129 gcc_assert (t
== arg
);
131 /* Now see if ARG_NUM is mentioned in the nonnull list. */
132 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
134 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
142 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
145 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
146 tree max
, bitmap equiv
)
148 #if defined ENABLE_CHECKING
149 /* Check the validity of the range. */
150 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
154 gcc_assert (min
&& max
);
156 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
157 gcc_assert (min
!= TYPE_MIN_VALUE (TREE_TYPE (min
))
158 || max
!= TYPE_MAX_VALUE (TREE_TYPE (max
)));
160 cmp
= compare_values (min
, max
);
161 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
164 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
165 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
167 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
168 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
175 /* Since updating the equivalence set involves deep copying the
176 bitmaps, only do it if absolutely necessary. */
177 if (vr
->equiv
== NULL
)
178 vr
->equiv
= BITMAP_ALLOC (NULL
);
180 if (equiv
!= vr
->equiv
)
182 if (equiv
&& !bitmap_empty_p (equiv
))
183 bitmap_copy (vr
->equiv
, equiv
);
185 bitmap_clear (vr
->equiv
);
190 /* Copy value range FROM into value range TO. */
193 copy_value_range (value_range_t
*to
, value_range_t
*from
)
195 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
199 /* Set value range VR to a non-NULL range of type TYPE. */
202 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
204 tree zero
= build_int_cst (type
, 0);
205 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
209 /* Set value range VR to a NULL range of type TYPE. */
212 set_value_range_to_null (value_range_t
*vr
, tree type
)
214 tree zero
= build_int_cst (type
, 0);
215 set_value_range (vr
, VR_RANGE
, zero
, zero
, vr
->equiv
);
219 /* Set value range VR to VR_VARYING. */
222 set_value_range_to_varying (value_range_t
*vr
)
224 vr
->type
= VR_VARYING
;
225 vr
->min
= vr
->max
= NULL_TREE
;
227 bitmap_clear (vr
->equiv
);
231 /* Set value range VR to VR_UNDEFINED. */
234 set_value_range_to_undefined (value_range_t
*vr
)
236 vr
->type
= VR_UNDEFINED
;
237 vr
->min
= vr
->max
= NULL_TREE
;
239 bitmap_clear (vr
->equiv
);
243 /* Return value range information for VAR. Create an empty range
246 static value_range_t
*
247 get_value_range (tree var
)
251 unsigned ver
= SSA_NAME_VERSION (var
);
257 /* Create a default value range. */
258 vr_value
[ver
] = vr
= xmalloc (sizeof (*vr
));
259 memset (vr
, 0, sizeof (*vr
));
261 /* Allocate an equivalence set. */
262 vr
->equiv
= BITMAP_ALLOC (NULL
);
264 /* If VAR is a default definition, the variable can take any value
266 sym
= SSA_NAME_VAR (var
);
267 if (var
== default_def (sym
))
269 /* Try to use the "nonnull" attribute to create ~[0, 0]
270 anti-ranges for pointers. Note that this is only valid with
271 default definitions of PARM_DECLs. */
272 if (TREE_CODE (sym
) == PARM_DECL
273 && POINTER_TYPE_P (TREE_TYPE (sym
))
274 && nonnull_arg_p (sym
))
275 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
277 set_value_range_to_varying (vr
);
283 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
286 vrp_operand_equal_p (tree val1
, tree val2
)
290 && operand_equal_p (val1
, val2
, 0)));
293 /* Return true, if the bitmaps B1 and B2 are equal. */
296 vrp_bitmap_equal_p (bitmap b1
, bitmap b2
)
300 && bitmap_equal_p (b1
, b2
)));
303 /* Update the value range and equivalence set for variable VAR to
304 NEW_VR. Return true if NEW_VR is different from VAR's previous
307 NOTE: This function assumes that NEW_VR is a temporary value range
308 object created for the sole purpose of updating VAR's range. The
309 storage used by the equivalence set from NEW_VR will be freed by
310 this function. Do not call update_value_range when NEW_VR
311 is the range object associated with another SSA name. */
314 update_value_range (tree var
, value_range_t
*new_vr
)
316 value_range_t
*old_vr
;
319 /* Update the value range, if necessary. */
320 old_vr
= get_value_range (var
);
321 is_new
= old_vr
->type
!= new_vr
->type
322 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
323 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
324 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
327 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
330 BITMAP_FREE (new_vr
->equiv
);
331 new_vr
->equiv
= NULL
;
337 /* Add VAR and VAR's equivalence set to EQUIV. */
340 add_equivalence (bitmap equiv
, tree var
)
342 unsigned ver
= SSA_NAME_VERSION (var
);
343 value_range_t
*vr
= vr_value
[ver
];
345 bitmap_set_bit (equiv
, ver
);
347 bitmap_ior_into (equiv
, vr
->equiv
);
351 /* Return true if VR is ~[0, 0]. */
354 range_is_nonnull (value_range_t
*vr
)
356 return vr
->type
== VR_ANTI_RANGE
357 && integer_zerop (vr
->min
)
358 && integer_zerop (vr
->max
);
362 /* Return true if VR is [0, 0]. */
365 range_is_null (value_range_t
*vr
)
367 return vr
->type
== VR_RANGE
368 && integer_zerop (vr
->min
)
369 && integer_zerop (vr
->max
);
373 /* Return true if value range VR involves at least one symbol. */
376 symbolic_range_p (value_range_t
*vr
)
378 return (!is_gimple_min_invariant (vr
->min
)
379 || !is_gimple_min_invariant (vr
->max
));
383 /* Like tree_expr_nonzero_p, but this function uses value ranges
387 vrp_expr_computes_nonzero (tree expr
)
389 if (tree_expr_nonzero_p (expr
))
392 /* If we have an expression of the form &X->a, then the expression
393 is nonnull if X is nonnull. */
394 if (TREE_CODE (expr
) == ADDR_EXPR
)
396 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
398 if (base
!= NULL_TREE
399 && TREE_CODE (base
) == INDIRECT_REF
400 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
402 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
403 if (range_is_nonnull (vr
))
412 /* Compare two values VAL1 and VAL2. Return
414 -2 if VAL1 and VAL2 cannot be compared at compile-time,
417 +1 if VAL1 > VAL2, and
420 This is similar to tree_int_cst_compare but supports pointer values
421 and values that cannot be compared at compile time. */
424 compare_values (tree val1
, tree val2
)
429 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
431 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
432 == POINTER_TYPE_P (TREE_TYPE (val2
)));
434 /* Do some limited symbolic comparisons. */
435 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
437 /* We can determine some comparisons against +INF and -INF even
438 if the other value is an expression. */
439 if (val1
== TYPE_MAX_VALUE (TREE_TYPE (val1
))
440 && TREE_CODE (val2
) == MINUS_EXPR
)
442 /* +INF > NAME - CST. */
445 else if (val1
== TYPE_MIN_VALUE (TREE_TYPE (val1
))
446 && TREE_CODE (val2
) == PLUS_EXPR
)
448 /* -INF < NAME + CST. */
451 else if (TREE_CODE (val1
) == MINUS_EXPR
452 && val2
== TYPE_MAX_VALUE (TREE_TYPE (val2
)))
454 /* NAME - CST < +INF. */
457 else if (TREE_CODE (val1
) == PLUS_EXPR
458 && val2
== TYPE_MIN_VALUE (TREE_TYPE (val2
)))
460 /* NAME + CST > -INF. */
465 if ((TREE_CODE (val1
) == SSA_NAME
466 || TREE_CODE (val1
) == PLUS_EXPR
467 || TREE_CODE (val1
) == MINUS_EXPR
)
468 && (TREE_CODE (val2
) == SSA_NAME
469 || TREE_CODE (val2
) == PLUS_EXPR
470 || TREE_CODE (val2
) == MINUS_EXPR
))
474 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
475 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
476 same name, return -2. */
477 if (TREE_CODE (val1
) == SSA_NAME
)
484 n1
= TREE_OPERAND (val1
, 0);
485 c1
= TREE_OPERAND (val1
, 1);
488 if (TREE_CODE (val2
) == SSA_NAME
)
495 n2
= TREE_OPERAND (val2
, 0);
496 c2
= TREE_OPERAND (val2
, 1);
499 /* Both values must use the same name. */
503 if (TREE_CODE (val1
) == SSA_NAME
)
505 if (TREE_CODE (val2
) == SSA_NAME
)
508 else if (TREE_CODE (val2
) == PLUS_EXPR
)
509 /* NAME < NAME + CST */
511 else if (TREE_CODE (val2
) == MINUS_EXPR
)
512 /* NAME > NAME - CST */
515 else if (TREE_CODE (val1
) == PLUS_EXPR
)
517 if (TREE_CODE (val2
) == SSA_NAME
)
518 /* NAME + CST > NAME */
520 else if (TREE_CODE (val2
) == PLUS_EXPR
)
521 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
522 return compare_values (c1
, c2
);
523 else if (TREE_CODE (val2
) == MINUS_EXPR
)
524 /* NAME + CST1 > NAME - CST2 */
527 else if (TREE_CODE (val1
) == MINUS_EXPR
)
529 if (TREE_CODE (val2
) == SSA_NAME
)
530 /* NAME - CST < NAME */
532 else if (TREE_CODE (val2
) == PLUS_EXPR
)
533 /* NAME - CST1 < NAME + CST2 */
535 else if (TREE_CODE (val2
) == MINUS_EXPR
)
536 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
537 C1 and C2 are swapped in the call to compare_values. */
538 return compare_values (c2
, c1
);
544 /* We cannot compare non-constants. */
545 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
548 /* We cannot compare overflowed values. */
549 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
552 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
553 return tree_int_cst_compare (val1
, val2
);
558 /* First see if VAL1 and VAL2 are not the same. */
559 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
562 /* If VAL1 is a lower address than VAL2, return -1. */
563 t
= fold_binary (LT_EXPR
, boolean_type_node
, val1
, val2
);
564 if (t
== boolean_true_node
)
567 /* If VAL1 is a higher address than VAL2, return +1. */
568 t
= fold_binary (GT_EXPR
, boolean_type_node
, val1
, val2
);
569 if (t
== boolean_true_node
)
572 /* If VAL1 is different than VAL2, return +2. */
573 t
= fold_binary (NE_EXPR
, boolean_type_node
, val1
, val2
);
574 if (t
== boolean_true_node
)
582 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
583 0 if VAL is not inside VR,
584 -2 if we cannot tell either way.
586 FIXME, the current semantics of this functions are a bit quirky
587 when taken in the context of VRP. In here we do not care
588 about VR's type. If VR is the anti-range ~[3, 5] the call
589 value_inside_range (4, VR) will return 1.
591 This is counter-intuitive in a strict sense, but the callers
592 currently expect this. They are calling the function
593 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
594 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
597 This also applies to value_ranges_intersect_p and
598 range_includes_zero_p. The semantics of VR_RANGE and
599 VR_ANTI_RANGE should be encoded here, but that also means
600 adapting the users of these functions to the new semantics. */
603 value_inside_range (tree val
, value_range_t
*vr
)
607 cmp1
= compare_values (val
, vr
->min
);
608 if (cmp1
== -2 || cmp1
== 2)
611 cmp2
= compare_values (val
, vr
->max
);
612 if (cmp2
== -2 || cmp2
== 2)
615 return (cmp1
== 0 || cmp1
== 1) && (cmp2
== -1 || cmp2
== 0);
619 /* Return true if value ranges VR0 and VR1 have a non-empty
623 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
625 return (value_inside_range (vr1
->min
, vr0
) == 1
626 || value_inside_range (vr1
->max
, vr0
) == 1
627 || value_inside_range (vr0
->min
, vr1
) == 1
628 || value_inside_range (vr0
->max
, vr1
) == 1);
632 /* Return true if VR includes the value zero, false otherwise. FIXME,
633 currently this will return false for an anti-range like ~[-4, 3].
634 This will be wrong when the semantics of value_inside_range are
635 modified (currently the users of this function expect these
639 range_includes_zero_p (value_range_t
*vr
)
643 gcc_assert (vr
->type
!= VR_UNDEFINED
644 && vr
->type
!= VR_VARYING
645 && !symbolic_range_p (vr
));
647 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
648 return (value_inside_range (zero
, vr
) == 1);
652 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
653 initially consider X_i and Y_j equivalent, so the equivalence set
654 of Y_j is added to the equivalence set of X_i. However, it is
655 possible to have a chain of ASSERT_EXPRs whose predicates are
656 actually incompatible. This is usually the result of nesting of
657 contradictory if-then-else statements. For instance, in PR 24670:
659 count_4 has range [-INF, 63]
663 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
666 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
672 Notice that 'if (count_19 > 63)' is trivially false and will be
673 folded out at the end. However, during propagation, the flowgraph
674 is not cleaned up and so, VRP will evaluate predicates more
675 predicates than necessary, so it must support these
676 inconsistencies. The problem here is that because of the chaining
677 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
678 Since count_4 has an incompatible range, we ICE when evaluating the
679 ranges in the equivalency set. So, we need to remove count_4 from
683 fix_equivalence_set (value_range_t
*vr_p
)
687 bitmap e
= vr_p
->equiv
;
688 bitmap to_remove
= BITMAP_ALLOC (NULL
);
690 /* Only detect inconsistencies on numeric ranges. */
691 if (vr_p
->type
== VR_VARYING
692 || vr_p
->type
== VR_UNDEFINED
693 || symbolic_range_p (vr_p
))
696 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
698 value_range_t
*equiv_vr
= vr_value
[i
];
700 if (equiv_vr
->type
== VR_VARYING
701 || equiv_vr
->type
== VR_UNDEFINED
702 || symbolic_range_p (equiv_vr
))
705 if (equiv_vr
->type
== VR_RANGE
706 && vr_p
->type
== VR_RANGE
707 && !value_ranges_intersect_p (vr_p
, equiv_vr
))
708 bitmap_set_bit (to_remove
, i
);
709 else if ((equiv_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
710 || (equiv_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
712 /* A range and an anti-range have an empty intersection if
713 their end points are the same. FIXME,
714 value_ranges_intersect_p should handle this
716 if (compare_values (equiv_vr
->min
, vr_p
->min
) == 0
717 && compare_values (equiv_vr
->max
, vr_p
->max
) == 0)
718 bitmap_set_bit (to_remove
, i
);
722 bitmap_and_compl_into (vr_p
->equiv
, to_remove
);
723 BITMAP_FREE (to_remove
);
727 /* Extract value range information from an ASSERT_EXPR EXPR and store
731 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
733 tree var
, cond
, limit
, min
, max
, type
;
734 value_range_t
*var_vr
, *limit_vr
;
735 enum tree_code cond_code
;
737 var
= ASSERT_EXPR_VAR (expr
);
738 cond
= ASSERT_EXPR_COND (expr
);
740 gcc_assert (COMPARISON_CLASS_P (cond
));
742 /* Find VAR in the ASSERT_EXPR conditional. */
743 if (var
== TREE_OPERAND (cond
, 0))
745 /* If the predicate is of the form VAR COMP LIMIT, then we just
746 take LIMIT from the RHS and use the same comparison code. */
747 limit
= TREE_OPERAND (cond
, 1);
748 cond_code
= TREE_CODE (cond
);
752 /* If the predicate is of the form LIMIT COMP VAR, then we need
753 to flip around the comparison code to create the proper range
755 limit
= TREE_OPERAND (cond
, 0);
756 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
759 type
= TREE_TYPE (limit
);
760 gcc_assert (limit
!= var
);
762 /* For pointer arithmetic, we only keep track of pointer equality
764 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
766 set_value_range_to_varying (vr_p
);
770 /* If LIMIT is another SSA name and LIMIT has a range of its own,
771 try to use LIMIT's range to avoid creating symbolic ranges
773 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
775 /* LIMIT's range is only interesting if it has any useful information. */
777 && (limit_vr
->type
== VR_UNDEFINED
778 || limit_vr
->type
== VR_VARYING
779 || symbolic_range_p (limit_vr
)))
782 /* Special handling for integral types with super-types. Some FEs
783 construct integral types derived from other types and restrict
784 the range of values these new types may take.
786 It may happen that LIMIT is actually smaller than TYPE's minimum
787 value. For instance, the Ada FE is generating code like this
790 D.1480_32 = nam_30 - 300000361;
791 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
793 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
795 All the names are of type types__name_id___XDLU_300000000__399999999
796 which has min == 300000000 and max == 399999999. This means that
797 the ASSERT_EXPR would try to create the range [3000000, 1] which
800 The fact that the type specifies MIN and MAX values does not
801 automatically mean that every variable of that type will always
802 be within that range, so the predicate may well be true at run
803 time. If we had symbolic -INF and +INF values, we could
804 represent this range, but we currently represent -INF and +INF
805 using the type's min and max values.
807 So, the only sensible thing we can do for now is set the
808 resulting range to VR_VARYING. TODO, would having symbolic -INF
809 and +INF values be worth the trouble? */
810 if (TREE_CODE (limit
) != SSA_NAME
811 && INTEGRAL_TYPE_P (type
)
814 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
816 tree type_min
= TYPE_MIN_VALUE (type
);
817 int cmp
= compare_values (limit
, type_min
);
819 /* For < or <= comparisons, if LIMIT is smaller than
820 TYPE_MIN, set the range to VR_VARYING. */
821 if (cmp
== -1 || cmp
== 0)
823 set_value_range_to_varying (vr_p
);
827 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
829 tree type_max
= TYPE_MIN_VALUE (type
);
830 int cmp
= compare_values (limit
, type_max
);
832 /* For > or >= comparisons, if LIMIT is bigger than
833 TYPE_MAX, set the range to VR_VARYING. */
834 if (cmp
== 1 || cmp
== 0)
836 set_value_range_to_varying (vr_p
);
842 /* Initially, the new range has the same set of equivalences of
843 VAR's range. This will be revised before returning the final
844 value. Since assertions may be chained via mutually exclusive
845 predicates, we will need to trim the set of equivalences before
847 gcc_assert (vr_p
->equiv
== NULL
);
848 vr_p
->equiv
= BITMAP_ALLOC (NULL
);
849 add_equivalence (vr_p
->equiv
, var
);
851 /* Extract a new range based on the asserted comparison for VAR and
852 LIMIT's value range. Notice that if LIMIT has an anti-range, we
853 will only use it for equality comparisons (EQ_EXPR). For any
854 other kind of assertion, we cannot derive a range from LIMIT's
855 anti-range that can be used to describe the new range. For
856 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
857 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
858 no single range for x_2 that could describe LE_EXPR, so we might
859 as well build the range [b_4, +INF] for it. */
860 if (cond_code
== EQ_EXPR
)
862 enum value_range_type range_type
;
866 range_type
= limit_vr
->type
;
872 range_type
= VR_RANGE
;
877 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
879 /* When asserting the equality VAR == LIMIT and LIMIT is another
880 SSA name, the new range will also inherit the equivalence set
882 if (TREE_CODE (limit
) == SSA_NAME
)
883 add_equivalence (vr_p
->equiv
, limit
);
885 else if (cond_code
== NE_EXPR
)
887 /* As described above, when LIMIT's range is an anti-range and
888 this assertion is an inequality (NE_EXPR), then we cannot
889 derive anything from the anti-range. For instance, if
890 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
891 not imply that VAR's range is [0, 0]. So, in the case of
892 anti-ranges, we just assert the inequality using LIMIT and
895 If LIMIT_VR is a range, we can only use it to build a new
896 anti-range if LIMIT_VR is a single-valued range. For
897 instance, if LIMIT_VR is [0, 1], the predicate
898 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
899 Rather, it means that for value 0 VAR should be ~[0, 0]
900 and for value 1, VAR should be ~[1, 1]. We cannot
901 represent these ranges.
903 The only situation in which we can build a valid
904 anti-range is when LIMIT_VR is a single-valued range
905 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
906 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
908 && limit_vr
->type
== VR_RANGE
909 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
916 /* In any other case, we cannot use LIMIT's range to build a
921 /* If MIN and MAX cover the whole range for their type, then
922 just use the original LIMIT. */
923 if (INTEGRAL_TYPE_P (type
)
924 && min
== TYPE_MIN_VALUE (type
)
925 && max
== TYPE_MAX_VALUE (type
))
928 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
930 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
932 min
= TYPE_MIN_VALUE (type
);
934 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
938 /* If LIMIT_VR is of the form [N1, N2], we need to build the
939 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
944 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
945 if (cond_code
== LT_EXPR
)
947 tree one
= build_int_cst (type
, 1);
948 max
= fold_build2 (MINUS_EXPR
, type
, max
, one
);
951 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
953 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
955 max
= TYPE_MAX_VALUE (type
);
957 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
961 /* If LIMIT_VR is of the form [N1, N2], we need to build the
962 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
967 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
968 if (cond_code
== GT_EXPR
)
970 tree one
= build_int_cst (type
, 1);
971 min
= fold_build2 (PLUS_EXPR
, type
, min
, one
);
974 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
979 /* If VAR already had a known range, it may happen that the new
980 range we have computed and VAR's range are not compatible. For
984 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
986 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
988 While the above comes from a faulty program, it will cause an ICE
989 later because p_8 and p_6 will have incompatible ranges and at
990 the same time will be considered equivalent. A similar situation
994 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
996 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
998 Again i_6 and i_7 will have incompatible ranges. It would be
999 pointless to try and do anything with i_7's range because
1000 anything dominated by 'if (i_5 < 5)' will be optimized away.
1001 Note, due to the wa in which simulation proceeds, the statement
1002 i_7 = ASSERT_EXPR <...> we would never be visited because the
1003 conditional 'if (i_5 < 5)' always evaluates to false. However,
1004 this extra check does not hurt and may protect against future
1005 changes to VRP that may get into a situation similar to the
1006 NULL pointer dereference example.
1008 Note that these compatibility tests are only needed when dealing
1009 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1010 are both anti-ranges, they will always be compatible, because two
1011 anti-ranges will always have a non-empty intersection. */
1013 var_vr
= get_value_range (var
);
1015 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1016 ranges or anti-ranges. */
1017 if (vr_p
->type
== VR_VARYING
1018 || vr_p
->type
== VR_UNDEFINED
1019 || var_vr
->type
== VR_VARYING
1020 || var_vr
->type
== VR_UNDEFINED
1021 || symbolic_range_p (vr_p
)
1022 || symbolic_range_p (var_vr
))
1025 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1027 /* If the two ranges have a non-empty intersection, we can
1028 refine the resulting range. Since the assert expression
1029 creates an equivalency and at the same time it asserts a
1030 predicate, we can take the intersection of the two ranges to
1031 get better precision. */
1032 if (value_ranges_intersect_p (var_vr
, vr_p
))
1034 /* Use the larger of the two minimums. */
1035 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1040 /* Use the smaller of the two maximums. */
1041 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1046 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1050 /* The two ranges do not intersect, set the new range to
1051 VARYING, because we will not be able to do anything
1052 meaningful with it. */
1053 set_value_range_to_varying (vr_p
);
1056 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1057 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1059 /* A range and an anti-range will cancel each other only if
1060 their ends are the same. For instance, in the example above,
1061 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1062 so VR_P should be set to VR_VARYING. */
1063 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1064 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1065 set_value_range_to_varying (vr_p
);
1068 /* Remove names from the equivalence set that have ranges
1069 incompatible with VR_P. */
1071 fix_equivalence_set (vr_p
);
1075 /* Extract range information from SSA name VAR and store it in VR. If
1076 VAR has an interesting range, use it. Otherwise, create the
1077 range [VAR, VAR] and return it. This is useful in situations where
1078 we may have conditionals testing values of VARYING names. For
1085 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1089 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1091 value_range_t
*var_vr
= get_value_range (var
);
1093 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1094 copy_value_range (vr
, var_vr
);
1096 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1098 add_equivalence (vr
->equiv
, var
);
1102 /* Wrapper around int_const_binop. If the operation overflows and we
1103 are not using wrapping arithmetic, then adjust the result to be
1104 -INF or +INF depending on CODE, VAL1 and VAL2. */
1107 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1112 return int_const_binop (code
, val1
, val2
, 0);
1114 /* If we are not using wrapping arithmetic, operate symbolically
1115 on -INF and +INF. */
1116 res
= int_const_binop (code
, val1
, val2
, 0);
1118 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1120 int checkz
= compare_values (res
, val1
);
1121 bool overflow
= false;
1123 /* Ensure that res = val1 [+*] val2 >= val1
1124 or that res = val1 - val2 <= val1. */
1125 if ((code
== PLUS_EXPR
1126 && !(checkz
== 1 || checkz
== 0))
1127 || (code
== MINUS_EXPR
1128 && !(checkz
== 0 || checkz
== -1)))
1132 /* Checking for multiplication overflow is done by dividing the
1133 output of the multiplication by the first input of the
1134 multiplication. If the result of that division operation is
1135 not equal to the second input of the multiplication, then the
1136 multiplication overflowed. */
1137 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1139 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1140 TYPE_MAX_VALUE (TREE_TYPE (val1
)),
1142 int check
= compare_values (tmp
, val2
);
1150 res
= copy_node (res
);
1151 TREE_OVERFLOW (res
) = 1;
1155 else if (TREE_OVERFLOW (res
)
1156 && !TREE_OVERFLOW (val1
)
1157 && !TREE_OVERFLOW (val2
))
1159 /* If the operation overflowed but neither VAL1 nor VAL2 are
1160 overflown, return -INF or +INF depending on the operation
1161 and the combination of signs of the operands. */
1162 int sgn1
= tree_int_cst_sgn (val1
);
1163 int sgn2
= tree_int_cst_sgn (val2
);
1165 /* Notice that we only need to handle the restricted set of
1166 operations handled by extract_range_from_binary_expr.
1167 Among them, only multiplication, addition and subtraction
1168 can yield overflow without overflown operands because we
1169 are working with integral types only... except in the
1170 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1171 for division too. */
1173 /* For multiplication, the sign of the overflow is given
1174 by the comparison of the signs of the operands. */
1175 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1176 /* For addition, the operands must be of the same sign
1177 to yield an overflow. Its sign is therefore that
1178 of one of the operands, for example the first. */
1179 || (code
== PLUS_EXPR
&& sgn1
> 0)
1180 /* For subtraction, the operands must be of different
1181 signs to yield an overflow. Its sign is therefore
1182 that of the first operand or the opposite of that
1183 of the second operand. A first operand of 0 counts
1184 as positive here, for the corner case 0 - (-INF),
1185 which overflows, but must yield +INF. */
1186 || (code
== MINUS_EXPR
&& sgn1
>= 0)
1187 /* For division, the only case is -INF / -1 = +INF. */
1188 || code
== TRUNC_DIV_EXPR
1189 || code
== FLOOR_DIV_EXPR
1190 || code
== CEIL_DIV_EXPR
1191 || code
== EXACT_DIV_EXPR
1192 || code
== ROUND_DIV_EXPR
)
1193 return TYPE_MAX_VALUE (TREE_TYPE (res
));
1195 return TYPE_MIN_VALUE (TREE_TYPE (res
));
1202 /* Extract range information from a binary expression EXPR based on
1203 the ranges of each of its operands and the expression code. */
1206 extract_range_from_binary_expr (value_range_t
*vr
, tree expr
)
1208 enum tree_code code
= TREE_CODE (expr
);
1209 tree op0
, op1
, min
, max
;
1211 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1212 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1214 /* Not all binary expressions can be applied to ranges in a
1215 meaningful way. Handle only arithmetic operations. */
1216 if (code
!= PLUS_EXPR
1217 && code
!= MINUS_EXPR
1218 && code
!= MULT_EXPR
1219 && code
!= TRUNC_DIV_EXPR
1220 && code
!= FLOOR_DIV_EXPR
1221 && code
!= CEIL_DIV_EXPR
1222 && code
!= EXACT_DIV_EXPR
1223 && code
!= ROUND_DIV_EXPR
1226 && code
!= TRUTH_ANDIF_EXPR
1227 && code
!= TRUTH_ORIF_EXPR
1228 && code
!= TRUTH_AND_EXPR
1229 && code
!= TRUTH_OR_EXPR
1230 && code
!= TRUTH_XOR_EXPR
)
1232 set_value_range_to_varying (vr
);
1236 /* Get value ranges for each operand. For constant operands, create
1237 a new value range with the operand to simplify processing. */
1238 op0
= TREE_OPERAND (expr
, 0);
1239 if (TREE_CODE (op0
) == SSA_NAME
)
1240 vr0
= *(get_value_range (op0
));
1241 else if (is_gimple_min_invariant (op0
))
1242 set_value_range (&vr0
, VR_RANGE
, op0
, op0
, NULL
);
1244 set_value_range_to_varying (&vr0
);
1246 op1
= TREE_OPERAND (expr
, 1);
1247 if (TREE_CODE (op1
) == SSA_NAME
)
1248 vr1
= *(get_value_range (op1
));
1249 else if (is_gimple_min_invariant (op1
))
1250 set_value_range (&vr1
, VR_RANGE
, op1
, op1
, NULL
);
1252 set_value_range_to_varying (&vr1
);
1254 /* If either range is UNDEFINED, so is the result. */
1255 if (vr0
.type
== VR_UNDEFINED
|| vr1
.type
== VR_UNDEFINED
)
1257 set_value_range_to_undefined (vr
);
1261 /* Refuse to operate on VARYING ranges, ranges of different kinds
1262 and symbolic ranges. TODO, we may be able to derive anti-ranges
1264 if (vr0
.type
== VR_VARYING
1265 || vr1
.type
== VR_VARYING
1266 || vr0
.type
!= vr1
.type
1267 || symbolic_range_p (&vr0
)
1268 || symbolic_range_p (&vr1
))
1270 set_value_range_to_varying (vr
);
1274 /* Now evaluate the expression to determine the new range. */
1275 if (POINTER_TYPE_P (TREE_TYPE (expr
))
1276 || POINTER_TYPE_P (TREE_TYPE (op0
))
1277 || POINTER_TYPE_P (TREE_TYPE (op1
)))
1279 /* For pointer types, we are really only interested in asserting
1280 whether the expression evaluates to non-NULL. FIXME, we used
1281 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1282 ivopts is generating expressions with pointer multiplication
1284 if (code
== PLUS_EXPR
)
1286 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
1287 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1288 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
1289 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1291 set_value_range_to_varying (vr
);
1295 /* Subtracting from a pointer, may yield 0, so just drop the
1296 resulting range to varying. */
1297 set_value_range_to_varying (vr
);
1303 /* For integer ranges, apply the operation to each end of the
1304 range and see what we end up with. */
1305 if (code
== TRUTH_ANDIF_EXPR
1306 || code
== TRUTH_ORIF_EXPR
1307 || code
== TRUTH_AND_EXPR
1308 || code
== TRUTH_OR_EXPR
1309 || code
== TRUTH_XOR_EXPR
)
1311 /* Boolean expressions cannot be folded with int_const_binop. */
1312 min
= fold_binary (code
, TREE_TYPE (expr
), vr0
.min
, vr1
.min
);
1313 max
= fold_binary (code
, TREE_TYPE (expr
), vr0
.max
, vr1
.max
);
1315 else if (code
== PLUS_EXPR
1317 || code
== MAX_EXPR
)
1319 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1320 VR_VARYING. It would take more effort to compute a precise
1321 range for such a case. For example, if we have op0 == 1 and
1322 op1 == -1 with their ranges both being ~[0,0], we would have
1323 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1324 Note that we are guaranteed to have vr0.type == vr1.type at
1326 if (code
== PLUS_EXPR
&& vr0
.type
== VR_ANTI_RANGE
)
1328 set_value_range_to_varying (vr
);
1332 /* For operations that make the resulting range directly
1333 proportional to the original ranges, apply the operation to
1334 the same end of each range. */
1335 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1336 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
1338 else if (code
== MULT_EXPR
1339 || code
== TRUNC_DIV_EXPR
1340 || code
== FLOOR_DIV_EXPR
1341 || code
== CEIL_DIV_EXPR
1342 || code
== EXACT_DIV_EXPR
1343 || code
== ROUND_DIV_EXPR
)
1348 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1349 drop to VR_VARYING. It would take more effort to compute a
1350 precise range for such a case. For example, if we have
1351 op0 == 65536 and op1 == 65536 with their ranges both being
1352 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1353 we cannot claim that the product is in ~[0,0]. Note that we
1354 are guaranteed to have vr0.type == vr1.type at this
1356 if (code
== MULT_EXPR
1357 && vr0
.type
== VR_ANTI_RANGE
1358 && (flag_wrapv
|| TYPE_UNSIGNED (TREE_TYPE (op0
))))
1360 set_value_range_to_varying (vr
);
1364 /* Multiplications and divisions are a bit tricky to handle,
1365 depending on the mix of signs we have in the two ranges, we
1366 need to operate on different values to get the minimum and
1367 maximum values for the new range. One approach is to figure
1368 out all the variations of range combinations and do the
1371 However, this involves several calls to compare_values and it
1372 is pretty convoluted. It's simpler to do the 4 operations
1373 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1374 MAX1) and then figure the smallest and largest values to form
1377 /* Divisions by zero result in a VARYING value. */
1378 if (code
!= MULT_EXPR
1379 && (vr0
.type
== VR_ANTI_RANGE
|| range_includes_zero_p (&vr1
)))
1381 set_value_range_to_varying (vr
);
1385 /* Compute the 4 cross operations. */
1386 val
[0] = vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1388 val
[1] = (vr1
.max
!= vr1
.min
)
1389 ? vrp_int_const_binop (code
, vr0
.min
, vr1
.max
)
1392 val
[2] = (vr0
.max
!= vr0
.min
)
1393 ? vrp_int_const_binop (code
, vr0
.max
, vr1
.min
)
1396 val
[3] = (vr0
.min
!= vr0
.max
&& vr1
.min
!= vr1
.max
)
1397 ? vrp_int_const_binop (code
, vr0
.max
, vr1
.max
)
1400 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1404 for (i
= 1; i
< 4; i
++)
1406 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
1411 if (TREE_OVERFLOW (val
[i
]))
1413 /* If we found an overflowed value, set MIN and MAX
1414 to it so that we set the resulting range to
1420 if (compare_values (val
[i
], min
) == -1)
1423 if (compare_values (val
[i
], max
) == 1)
1428 else if (code
== MINUS_EXPR
)
1430 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1431 VR_VARYING. It would take more effort to compute a precise
1432 range for such a case. For example, if we have op0 == 1 and
1433 op1 == 1 with their ranges both being ~[0,0], we would have
1434 op0 - op1 == 0, so we cannot claim that the difference is in
1435 ~[0,0]. Note that we are guaranteed to have
1436 vr0.type == vr1.type at this point. */
1437 if (vr0
.type
== VR_ANTI_RANGE
)
1439 set_value_range_to_varying (vr
);
1443 /* For MINUS_EXPR, apply the operation to the opposite ends of
1445 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
1446 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
1451 /* If either MIN or MAX overflowed, then set the resulting range to
1453 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
1455 set_value_range_to_varying (vr
);
1459 cmp
= compare_values (min
, max
);
1460 if (cmp
== -2 || cmp
== 1)
1462 /* If the new range has its limits swapped around (MIN > MAX),
1463 then the operation caused one of them to wrap around, mark
1464 the new range VARYING. */
1465 set_value_range_to_varying (vr
);
1468 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
1472 /* Extract range information from a unary expression EXPR based on
1473 the range of its operand and the expression code. */
1476 extract_range_from_unary_expr (value_range_t
*vr
, tree expr
)
1478 enum tree_code code
= TREE_CODE (expr
);
1481 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1483 /* Refuse to operate on certain unary expressions for which we
1484 cannot easily determine a resulting range. */
1485 if (code
== FIX_TRUNC_EXPR
1486 || code
== FIX_CEIL_EXPR
1487 || code
== FIX_FLOOR_EXPR
1488 || code
== FIX_ROUND_EXPR
1489 || code
== FLOAT_EXPR
1490 || code
== BIT_NOT_EXPR
1491 || code
== NON_LVALUE_EXPR
1492 || code
== CONJ_EXPR
)
1494 set_value_range_to_varying (vr
);
1498 /* Get value ranges for the operand. For constant operands, create
1499 a new value range with the operand to simplify processing. */
1500 op0
= TREE_OPERAND (expr
, 0);
1501 if (TREE_CODE (op0
) == SSA_NAME
)
1502 vr0
= *(get_value_range (op0
));
1503 else if (is_gimple_min_invariant (op0
))
1504 set_value_range (&vr0
, VR_RANGE
, op0
, op0
, NULL
);
1506 set_value_range_to_varying (&vr0
);
1508 /* If VR0 is UNDEFINED, so is the result. */
1509 if (vr0
.type
== VR_UNDEFINED
)
1511 set_value_range_to_undefined (vr
);
1515 /* Refuse to operate on varying and symbolic ranges. Also, if the
1516 operand is neither a pointer nor an integral type, set the
1517 resulting range to VARYING. TODO, in some cases we may be able
1518 to derive anti-ranges (like nonzero values). */
1519 if (vr0
.type
== VR_VARYING
1520 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
1521 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
1522 || symbolic_range_p (&vr0
))
1524 set_value_range_to_varying (vr
);
1528 /* If the expression involves pointers, we are only interested in
1529 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1530 if (POINTER_TYPE_P (TREE_TYPE (expr
)) || POINTER_TYPE_P (TREE_TYPE (op0
)))
1532 if (range_is_nonnull (&vr0
) || tree_expr_nonzero_p (expr
))
1533 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1534 else if (range_is_null (&vr0
))
1535 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1537 set_value_range_to_varying (vr
);
1542 /* Handle unary expressions on integer ranges. */
1543 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
)
1545 tree inner_type
= TREE_TYPE (op0
);
1546 tree outer_type
= TREE_TYPE (expr
);
1548 /* If VR0 represents a simple range, then try to convert
1549 the min and max values for the range to the same type
1550 as OUTER_TYPE. If the results compare equal to VR0's
1551 min and max values and the new min is still less than
1552 or equal to the new max, then we can safely use the newly
1553 computed range for EXPR. This allows us to compute
1554 accurate ranges through many casts. */
1555 if (vr0
.type
== VR_RANGE
)
1557 tree new_min
, new_max
;
1559 /* Convert VR0's min/max to OUTER_TYPE. */
1560 new_min
= fold_convert (outer_type
, vr0
.min
);
1561 new_max
= fold_convert (outer_type
, vr0
.max
);
1563 /* Verify the new min/max values are gimple values and
1564 that they compare equal to VR0's min/max values. */
1565 if (is_gimple_val (new_min
)
1566 && is_gimple_val (new_max
)
1567 && tree_int_cst_equal (new_min
, vr0
.min
)
1568 && tree_int_cst_equal (new_max
, vr0
.max
)
1569 && compare_values (new_min
, new_max
) <= 0
1570 && compare_values (new_min
, new_max
) >= -1)
1572 set_value_range (vr
, VR_RANGE
, new_min
, new_max
, vr
->equiv
);
1577 /* When converting types of different sizes, set the result to
1578 VARYING. Things like sign extensions and precision loss may
1579 change the range. For instance, if x_3 is of type 'long long
1580 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1581 is impossible to know at compile time whether y_5 will be
1583 if (TYPE_SIZE (inner_type
) != TYPE_SIZE (outer_type
)
1584 || TYPE_PRECISION (inner_type
) != TYPE_PRECISION (outer_type
))
1586 set_value_range_to_varying (vr
);
1591 /* Apply the operation to each end of the range and see what we end
1593 if (code
== NEGATE_EXPR
1594 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
1596 /* NEGATE_EXPR flips the range around. */
1597 min
= (vr0
.max
== TYPE_MAX_VALUE (TREE_TYPE (expr
)) && !flag_wrapv
)
1598 ? TYPE_MIN_VALUE (TREE_TYPE (expr
))
1599 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1601 max
= (vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)) && !flag_wrapv
)
1602 ? TYPE_MAX_VALUE (TREE_TYPE (expr
))
1603 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1605 else if (code
== ABS_EXPR
1606 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
1608 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1611 && ((vr0
.type
== VR_RANGE
1612 && vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)))
1613 || (vr0
.type
== VR_ANTI_RANGE
1614 && vr0
.min
!= TYPE_MIN_VALUE (TREE_TYPE (expr
))
1615 && !range_includes_zero_p (&vr0
))))
1617 set_value_range_to_varying (vr
);
1621 /* ABS_EXPR may flip the range around, if the original range
1622 included negative values. */
1623 min
= (vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)))
1624 ? TYPE_MAX_VALUE (TREE_TYPE (expr
))
1625 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1627 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1629 cmp
= compare_values (min
, max
);
1631 /* If a VR_ANTI_RANGEs contains zero, then we have
1632 ~[-INF, min(MIN, MAX)]. */
1633 if (vr0
.type
== VR_ANTI_RANGE
)
1635 if (range_includes_zero_p (&vr0
))
1637 tree type_min_value
= TYPE_MIN_VALUE (TREE_TYPE (expr
));
1639 /* Take the lower of the two values. */
1643 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1644 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1645 flag_wrapv is set and the original anti-range doesn't include
1646 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1647 min
= (flag_wrapv
&& vr0
.min
!= type_min_value
1648 ? int_const_binop (PLUS_EXPR
,
1650 integer_one_node
, 0)
1655 /* All else has failed, so create the range [0, INF], even for
1656 flag_wrapv since TYPE_MIN_VALUE is in the original
1658 vr0
.type
= VR_RANGE
;
1659 min
= build_int_cst (TREE_TYPE (expr
), 0);
1660 max
= TYPE_MAX_VALUE (TREE_TYPE (expr
));
1664 /* If the range contains zero then we know that the minimum value in the
1665 range will be zero. */
1666 else if (range_includes_zero_p (&vr0
))
1670 min
= build_int_cst (TREE_TYPE (expr
), 0);
1674 /* If the range was reversed, swap MIN and MAX. */
1685 /* Otherwise, operate on each end of the range. */
1686 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1687 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1690 cmp
= compare_values (min
, max
);
1691 if (cmp
== -2 || cmp
== 1)
1693 /* If the new range has its limits swapped around (MIN > MAX),
1694 then the operation caused one of them to wrap around, mark
1695 the new range VARYING. */
1696 set_value_range_to_varying (vr
);
1699 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
1703 /* Extract range information from a comparison expression EXPR based
1704 on the range of its operand and the expression code. */
1707 extract_range_from_comparison (value_range_t
*vr
, tree expr
)
1709 tree val
= vrp_evaluate_conditional (expr
, false);
1712 /* Since this expression was found on the RHS of an assignment,
1713 its type may be different from _Bool. Convert VAL to EXPR's
1715 val
= fold_convert (TREE_TYPE (expr
), val
);
1716 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
1719 set_value_range_to_varying (vr
);
1723 /* Try to compute a useful range out of expression EXPR and store it
1727 extract_range_from_expr (value_range_t
*vr
, tree expr
)
1729 enum tree_code code
= TREE_CODE (expr
);
1731 if (code
== ASSERT_EXPR
)
1732 extract_range_from_assert (vr
, expr
);
1733 else if (code
== SSA_NAME
)
1734 extract_range_from_ssa_name (vr
, expr
);
1735 else if (TREE_CODE_CLASS (code
) == tcc_binary
1736 || code
== TRUTH_ANDIF_EXPR
1737 || code
== TRUTH_ORIF_EXPR
1738 || code
== TRUTH_AND_EXPR
1739 || code
== TRUTH_OR_EXPR
1740 || code
== TRUTH_XOR_EXPR
)
1741 extract_range_from_binary_expr (vr
, expr
);
1742 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
1743 extract_range_from_unary_expr (vr
, expr
);
1744 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1745 extract_range_from_comparison (vr
, expr
);
1746 else if (is_gimple_min_invariant (expr
))
1747 set_value_range (vr
, VR_RANGE
, expr
, expr
, NULL
);
1748 else if (vrp_expr_computes_nonzero (expr
))
1749 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1751 set_value_range_to_varying (vr
);
1754 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1755 would be profitable to adjust VR using scalar evolution information
1756 for VAR. If so, update VR with the new limits. */
1759 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
, tree stmt
,
1762 tree init
, step
, chrec
;
1763 enum ev_direction dir
;
1765 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1766 better opportunities than a regular range, but I'm not sure. */
1767 if (vr
->type
== VR_ANTI_RANGE
)
1770 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
1771 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
1774 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
1775 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
1777 /* If STEP is symbolic, we can't know whether INIT will be the
1778 minimum or maximum value in the range. */
1779 if (step
== NULL_TREE
1780 || !is_gimple_min_invariant (step
))
1783 dir
= scev_direction (chrec
);
1784 if (/* Do not adjust ranges if we do not know whether the iv increases
1785 or decreases, ... */
1786 dir
== EV_DIR_UNKNOWN
1787 /* ... or if it may wrap. */
1788 || scev_probably_wraps_p (init
, step
, stmt
,
1789 cfg_loops
->parray
[CHREC_VARIABLE (chrec
)],
1793 if (!POINTER_TYPE_P (TREE_TYPE (init
))
1794 && (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
))
1796 /* For VARYING or UNDEFINED ranges, just about anything we get
1797 from scalar evolutions should be better. */
1798 if (dir
== EV_DIR_DECREASES
)
1799 set_value_range (vr
, VR_RANGE
, TYPE_MIN_VALUE (TREE_TYPE (init
)),
1802 set_value_range (vr
, VR_RANGE
, init
, TYPE_MAX_VALUE (TREE_TYPE (init
)),
1805 else if (vr
->type
== VR_RANGE
)
1810 if (dir
== EV_DIR_DECREASES
)
1812 /* INIT is the maximum value. If INIT is lower than VR->MAX
1813 but no smaller than VR->MIN, set VR->MAX to INIT. */
1814 if (compare_values (init
, max
) == -1)
1818 /* If we just created an invalid range with the minimum
1819 greater than the maximum, we fail conservatively.
1820 This should happen only in unreachable
1821 parts of code, or for invalid programs. */
1822 if (compare_values (min
, max
) == 1)
1828 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1829 if (compare_values (init
, min
) == 1)
1833 /* Again, avoid creating invalid range by failing. */
1834 if (compare_values (min
, max
) == 1)
1839 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
1844 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1846 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1847 all the values in the ranges.
1849 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1851 - Return NULL_TREE if it is not always possible to determine the
1852 value of the comparison. */
1856 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
)
1858 /* VARYING or UNDEFINED ranges cannot be compared. */
1859 if (vr0
->type
== VR_VARYING
1860 || vr0
->type
== VR_UNDEFINED
1861 || vr1
->type
== VR_VARYING
1862 || vr1
->type
== VR_UNDEFINED
)
1865 /* Anti-ranges need to be handled separately. */
1866 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
1868 /* If both are anti-ranges, then we cannot compute any
1870 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
1873 /* These comparisons are never statically computable. */
1880 /* Equality can be computed only between a range and an
1881 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
1882 if (vr0
->type
== VR_RANGE
)
1884 /* To simplify processing, make VR0 the anti-range. */
1885 value_range_t
*tmp
= vr0
;
1890 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
1892 if (compare_values (vr0
->min
, vr1
->min
) == 0
1893 && compare_values (vr0
->max
, vr1
->max
) == 0)
1894 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
1899 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
1900 operands around and change the comparison code. */
1901 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
1904 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
1910 if (comp
== EQ_EXPR
)
1912 /* Equality may only be computed if both ranges represent
1913 exactly one value. */
1914 if (compare_values (vr0
->min
, vr0
->max
) == 0
1915 && compare_values (vr1
->min
, vr1
->max
) == 0)
1917 int cmp_min
= compare_values (vr0
->min
, vr1
->min
);
1918 int cmp_max
= compare_values (vr0
->max
, vr1
->max
);
1919 if (cmp_min
== 0 && cmp_max
== 0)
1920 return boolean_true_node
;
1921 else if (cmp_min
!= -2 && cmp_max
!= -2)
1922 return boolean_false_node
;
1927 else if (comp
== NE_EXPR
)
1931 /* If VR0 is completely to the left or completely to the right
1932 of VR1, they are always different. Notice that we need to
1933 make sure that both comparisons yield similar results to
1934 avoid comparing values that cannot be compared at
1936 cmp1
= compare_values (vr0
->max
, vr1
->min
);
1937 cmp2
= compare_values (vr0
->min
, vr1
->max
);
1938 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
1939 return boolean_true_node
;
1941 /* If VR0 and VR1 represent a single value and are identical,
1943 else if (compare_values (vr0
->min
, vr0
->max
) == 0
1944 && compare_values (vr1
->min
, vr1
->max
) == 0
1945 && compare_values (vr0
->min
, vr1
->min
) == 0
1946 && compare_values (vr0
->max
, vr1
->max
) == 0)
1947 return boolean_false_node
;
1949 /* Otherwise, they may or may not be different. */
1953 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
1957 /* If VR0 is to the left of VR1, return true. */
1958 tst
= compare_values (vr0
->max
, vr1
->min
);
1959 if ((comp
== LT_EXPR
&& tst
== -1)
1960 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
1961 return boolean_true_node
;
1963 /* If VR0 is to the right of VR1, return false. */
1964 tst
= compare_values (vr0
->min
, vr1
->max
);
1965 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
1966 || (comp
== LE_EXPR
&& tst
== 1))
1967 return boolean_false_node
;
1969 /* Otherwise, we don't know. */
1977 /* Given a value range VR, a value VAL and a comparison code COMP, return
1978 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
1979 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
1980 always returns false. Return NULL_TREE if it is not always
1981 possible to determine the value of the comparison. */
1984 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
)
1986 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
1989 /* Anti-ranges need to be handled separately. */
1990 if (vr
->type
== VR_ANTI_RANGE
)
1992 /* For anti-ranges, the only predicates that we can compute at
1993 compile time are equality and inequality. */
2000 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2001 if (value_inside_range (val
, vr
) == 1)
2002 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
2007 if (comp
== EQ_EXPR
)
2009 /* EQ_EXPR may only be computed if VR represents exactly
2011 if (compare_values (vr
->min
, vr
->max
) == 0)
2013 int cmp
= compare_values (vr
->min
, val
);
2015 return boolean_true_node
;
2016 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
2017 return boolean_false_node
;
2019 else if (compare_values (val
, vr
->min
) == -1
2020 || compare_values (vr
->max
, val
) == -1)
2021 return boolean_false_node
;
2025 else if (comp
== NE_EXPR
)
2027 /* If VAL is not inside VR, then they are always different. */
2028 if (compare_values (vr
->max
, val
) == -1
2029 || compare_values (vr
->min
, val
) == 1)
2030 return boolean_true_node
;
2032 /* If VR represents exactly one value equal to VAL, then return
2034 if (compare_values (vr
->min
, vr
->max
) == 0
2035 && compare_values (vr
->min
, val
) == 0)
2036 return boolean_false_node
;
2038 /* Otherwise, they may or may not be different. */
2041 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
2045 /* If VR is to the left of VAL, return true. */
2046 tst
= compare_values (vr
->max
, val
);
2047 if ((comp
== LT_EXPR
&& tst
== -1)
2048 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
2049 return boolean_true_node
;
2051 /* If VR is to the right of VAL, return false. */
2052 tst
= compare_values (vr
->min
, val
);
2053 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
2054 || (comp
== LE_EXPR
&& tst
== 1))
2055 return boolean_false_node
;
2057 /* Otherwise, we don't know. */
2060 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
2064 /* If VR is to the right of VAL, return true. */
2065 tst
= compare_values (vr
->min
, val
);
2066 if ((comp
== GT_EXPR
&& tst
== 1)
2067 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
2068 return boolean_true_node
;
2070 /* If VR is to the left of VAL, return false. */
2071 tst
= compare_values (vr
->max
, val
);
2072 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
2073 || (comp
== GE_EXPR
&& tst
== -1))
2074 return boolean_false_node
;
2076 /* Otherwise, we don't know. */
2084 /* Debugging dumps. */
2086 void dump_value_range (FILE *, value_range_t
*);
2087 void debug_value_range (value_range_t
*);
2088 void dump_all_value_ranges (FILE *);
2089 void debug_all_value_ranges (void);
2090 void dump_vr_equiv (FILE *, bitmap
);
2091 void debug_vr_equiv (bitmap
);
2094 /* Dump value range VR to FILE. */
2097 dump_value_range (FILE *file
, value_range_t
*vr
)
2100 fprintf (file
, "[]");
2101 else if (vr
->type
== VR_UNDEFINED
)
2102 fprintf (file
, "UNDEFINED");
2103 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
2105 tree type
= TREE_TYPE (vr
->min
);
2107 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
2109 if (INTEGRAL_TYPE_P (type
)
2110 && !TYPE_UNSIGNED (type
)
2111 && vr
->min
== TYPE_MIN_VALUE (type
))
2112 fprintf (file
, "-INF");
2114 print_generic_expr (file
, vr
->min
, 0);
2116 fprintf (file
, ", ");
2118 if (INTEGRAL_TYPE_P (type
)
2119 && vr
->max
== TYPE_MAX_VALUE (type
))
2120 fprintf (file
, "+INF");
2122 print_generic_expr (file
, vr
->max
, 0);
2124 fprintf (file
, "]");
2131 fprintf (file
, " EQUIVALENCES: { ");
2133 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
2135 print_generic_expr (file
, ssa_name (i
), 0);
2136 fprintf (file
, " ");
2140 fprintf (file
, "} (%u elements)", c
);
2143 else if (vr
->type
== VR_VARYING
)
2144 fprintf (file
, "VARYING");
2146 fprintf (file
, "INVALID RANGE");
2150 /* Dump value range VR to stderr. */
2153 debug_value_range (value_range_t
*vr
)
2155 dump_value_range (stderr
, vr
);
2159 /* Dump value ranges of all SSA_NAMEs to FILE. */
2162 dump_all_value_ranges (FILE *file
)
2166 for (i
= 0; i
< num_ssa_names
; i
++)
2170 print_generic_expr (file
, ssa_name (i
), 0);
2171 fprintf (file
, ": ");
2172 dump_value_range (file
, vr_value
[i
]);
2173 fprintf (file
, "\n");
2177 fprintf (file
, "\n");
2181 /* Dump all value ranges to stderr. */
2184 debug_all_value_ranges (void)
2186 dump_all_value_ranges (stderr
);
2190 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2191 create a new SSA name N and return the assertion assignment
2192 'V = ASSERT_EXPR <V, V OP W>'. */
2195 build_assert_expr_for (tree cond
, tree v
)
2199 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
2200 n
= duplicate_ssa_name (v
, NULL_TREE
);
2202 if (COMPARISON_CLASS_P (cond
))
2204 tree a
= build (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
2205 assertion
= build (MODIFY_EXPR
, TREE_TYPE (v
), n
, a
);
2207 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
2209 /* Given !V, build the assignment N = false. */
2210 tree op0
= TREE_OPERAND (cond
, 0);
2211 gcc_assert (op0
== v
);
2212 assertion
= build (MODIFY_EXPR
, TREE_TYPE (v
), n
, boolean_false_node
);
2214 else if (TREE_CODE (cond
) == SSA_NAME
)
2216 /* Given V, build the assignment N = true. */
2217 gcc_assert (v
== cond
);
2218 assertion
= build (MODIFY_EXPR
, TREE_TYPE (v
), n
, boolean_true_node
);
2223 SSA_NAME_DEF_STMT (n
) = assertion
;
2225 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2226 operand of the ASSERT_EXPR. Register the new name and the old one
2227 in the replacement table so that we can fix the SSA web after
2228 adding all the ASSERT_EXPRs. */
2229 register_new_name_mapping (n
, v
);
2235 /* Return false if EXPR is a predicate expression involving floating
2239 fp_predicate (tree expr
)
2241 return (COMPARISON_CLASS_P (expr
)
2242 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0))));
2246 /* If the range of values taken by OP can be inferred after STMT executes,
2247 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2248 describes the inferred range. Return true if a range could be
2252 infer_value_range (tree stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
2255 *comp_code_p
= ERROR_MARK
;
2257 /* Do not attempt to infer anything in names that flow through
2259 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
2262 /* Similarly, don't infer anything from statements that may throw
2264 if (tree_could_throw_p (stmt
))
2267 /* If STMT is the last statement of a basic block with no
2268 successors, there is no point inferring anything about any of its
2269 operands. We would not be able to find a proper insertion point
2270 for the assertion, anyway. */
2271 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (bb_for_stmt (stmt
)->succs
) == 0)
2274 if (POINTER_TYPE_P (TREE_TYPE (op
)))
2277 unsigned num_uses
, num_derefs
;
2279 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_derefs
, &is_store
);
2280 if (num_derefs
> 0 && flag_delete_null_pointer_checks
)
2282 /* We can only assume that a pointer dereference will yield
2283 non-NULL if -fdelete-null-pointer-checks is enabled. */
2284 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
2285 *comp_code_p
= NE_EXPR
;
2294 void dump_asserts_for (FILE *, tree
);
2295 void debug_asserts_for (tree
);
2296 void dump_all_asserts (FILE *);
2297 void debug_all_asserts (void);
2299 /* Dump all the registered assertions for NAME to FILE. */
2302 dump_asserts_for (FILE *file
, tree name
)
2306 fprintf (file
, "Assertions to be inserted for ");
2307 print_generic_expr (file
, name
, 0);
2308 fprintf (file
, "\n");
2310 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2313 fprintf (file
, "\t");
2314 print_generic_expr (file
, bsi_stmt (loc
->si
), 0);
2315 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
2318 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
2319 loc
->e
->dest
->index
);
2320 dump_edge_info (file
, loc
->e
, 0);
2322 fprintf (file
, "\n\tPREDICATE: ");
2323 print_generic_expr (file
, name
, 0);
2324 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
2325 print_generic_expr (file
, loc
->val
, 0);
2326 fprintf (file
, "\n\n");
2330 fprintf (file
, "\n");
2334 /* Dump all the registered assertions for NAME to stderr. */
2337 debug_asserts_for (tree name
)
2339 dump_asserts_for (stderr
, name
);
2343 /* Dump all the registered assertions for all the names to FILE. */
2346 dump_all_asserts (FILE *file
)
2351 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
2352 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
2353 dump_asserts_for (file
, ssa_name (i
));
2354 fprintf (file
, "\n");
2358 /* Dump all the registered assertions for all the names to stderr. */
2361 debug_all_asserts (void)
2363 dump_all_asserts (stderr
);
2367 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2368 'NAME COMP_CODE VAL' at a location that dominates block BB or
2369 E->DEST, then register this location as a possible insertion point
2370 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2372 BB, E and SI provide the exact insertion point for the new
2373 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2374 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2375 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2376 must not be NULL. */
2379 register_new_assert_for (tree name
,
2380 enum tree_code comp_code
,
2384 block_stmt_iterator si
)
2386 assert_locus_t n
, loc
, last_loc
;
2388 basic_block dest_bb
;
2390 #if defined ENABLE_CHECKING
2391 gcc_assert (bb
== NULL
|| e
== NULL
);
2394 gcc_assert (TREE_CODE (bsi_stmt (si
)) != COND_EXPR
2395 && TREE_CODE (bsi_stmt (si
)) != SWITCH_EXPR
);
2398 /* The new assertion A will be inserted at BB or E. We need to
2399 determine if the new location is dominated by a previously
2400 registered location for A. If we are doing an edge insertion,
2401 assume that A will be inserted at E->DEST. Note that this is not
2404 If E is a critical edge, it will be split. But even if E is
2405 split, the new block will dominate the same set of blocks that
2408 The reverse, however, is not true, blocks dominated by E->DEST
2409 will not be dominated by the new block created to split E. So,
2410 if the insertion location is on a critical edge, we will not use
2411 the new location to move another assertion previously registered
2412 at a block dominated by E->DEST. */
2413 dest_bb
= (bb
) ? bb
: e
->dest
;
2415 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2416 VAL at a block dominating DEST_BB, then we don't need to insert a new
2417 one. Similarly, if the same assertion already exists at a block
2418 dominated by DEST_BB and the new location is not on a critical
2419 edge, then update the existing location for the assertion (i.e.,
2420 move the assertion up in the dominance tree).
2422 Note, this is implemented as a simple linked list because there
2423 should not be more than a handful of assertions registered per
2424 name. If this becomes a performance problem, a table hashed by
2425 COMP_CODE and VAL could be implemented. */
2426 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2431 if (loc
->comp_code
== comp_code
2433 || operand_equal_p (loc
->val
, val
, 0)))
2435 /* If the assertion NAME COMP_CODE VAL has already been
2436 registered at a basic block that dominates DEST_BB, then
2437 we don't need to insert the same assertion again. Note
2438 that we don't check strict dominance here to avoid
2439 replicating the same assertion inside the same basic
2440 block more than once (e.g., when a pointer is
2441 dereferenced several times inside a block).
2443 An exception to this rule are edge insertions. If the
2444 new assertion is to be inserted on edge E, then it will
2445 dominate all the other insertions that we may want to
2446 insert in DEST_BB. So, if we are doing an edge
2447 insertion, don't do this dominance check. */
2449 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
2452 /* Otherwise, if E is not a critical edge and DEST_BB
2453 dominates the existing location for the assertion, move
2454 the assertion up in the dominance tree by updating its
2455 location information. */
2456 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
2457 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
2466 /* Update the last node of the list and move to the next one. */
2471 /* If we didn't find an assertion already registered for
2472 NAME COMP_CODE VAL, add a new one at the end of the list of
2473 assertions associated with NAME. */
2474 n
= xmalloc (sizeof (*n
));
2478 n
->comp_code
= comp_code
;
2485 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
2487 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
2491 /* Try to register an edge assertion for SSA name NAME on edge E for
2492 the conditional jump pointed to by SI. Return true if an assertion
2493 for NAME could be registered. */
2496 register_edge_assert_for (tree name
, edge e
, block_stmt_iterator si
)
2499 enum tree_code comp_code
;
2501 stmt
= bsi_stmt (si
);
2503 /* Do not attempt to infer anything in names that flow through
2505 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
2508 /* If NAME was not found in the sub-graph reachable from E, then
2509 there's nothing to do. */
2510 if (!TEST_BIT (found_in_subgraph
, SSA_NAME_VERSION (name
)))
2513 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2514 Register an assertion for NAME according to the value that NAME
2516 if (TREE_CODE (stmt
) == COND_EXPR
)
2518 /* If BB ends in a COND_EXPR then NAME then we should insert
2519 the original predicate on EDGE_TRUE_VALUE and the
2520 opposite predicate on EDGE_FALSE_VALUE. */
2521 tree cond
= COND_EXPR_COND (stmt
);
2522 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
2524 /* Predicates may be a single SSA name or NAME OP VAL. */
2527 /* If the predicate is a name, it must be NAME, in which
2528 case we create the predicate NAME == true or
2529 NAME == false accordingly. */
2530 comp_code
= EQ_EXPR
;
2531 val
= (is_else_edge
) ? boolean_false_node
: boolean_true_node
;
2535 /* Otherwise, we have a comparison of the form NAME COMP VAL
2536 or VAL COMP NAME. */
2537 if (name
== TREE_OPERAND (cond
, 1))
2539 /* If the predicate is of the form VAL COMP NAME, flip
2540 COMP around because we need to register NAME as the
2541 first operand in the predicate. */
2542 comp_code
= swap_tree_comparison (TREE_CODE (cond
));
2543 val
= TREE_OPERAND (cond
, 0);
2547 /* The comparison is of the form NAME COMP VAL, so the
2548 comparison code remains unchanged. */
2549 comp_code
= TREE_CODE (cond
);
2550 val
= TREE_OPERAND (cond
, 1);
2553 /* If we are inserting the assertion on the ELSE edge, we
2554 need to invert the sign comparison. */
2556 comp_code
= invert_tree_comparison (comp_code
, 0);
2558 /* Do not register always-false predicates. FIXME, this
2559 works around a limitation in fold() when dealing with
2560 enumerations. Given 'enum { N1, N2 } x;', fold will not
2561 fold 'if (x > N2)' to 'if (0)'. */
2562 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
2563 && (INTEGRAL_TYPE_P (TREE_TYPE (val
))
2564 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
))))
2566 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
2567 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
2569 if (comp_code
== GT_EXPR
&& compare_values (val
, max
) == 0)
2572 if (comp_code
== LT_EXPR
&& compare_values (val
, min
) == 0)
2579 /* FIXME. Handle SWITCH_EXPR. */
2583 register_new_assert_for (name
, comp_code
, val
, NULL
, e
, si
);
2588 static bool find_assert_locations (basic_block bb
);
2590 /* Determine whether the outgoing edges of BB should receive an
2591 ASSERT_EXPR for each of the operands of BB's last statement. The
2592 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2594 If any of the sub-graphs rooted at BB have an interesting use of
2595 the predicate operands, an assert location node is added to the
2596 list of assertions for the corresponding operands. */
2599 find_conditional_asserts (basic_block bb
)
2602 block_stmt_iterator last_si
;
2608 need_assert
= false;
2609 last_si
= bsi_last (bb
);
2610 last
= bsi_stmt (last_si
);
2612 /* Look for uses of the operands in each of the sub-graphs
2613 rooted at BB. We need to check each of the outgoing edges
2614 separately, so that we know what kind of ASSERT_EXPR to
2616 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2621 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2622 Otherwise, when we finish traversing each of the sub-graphs, we
2623 won't know whether the variables were found in the sub-graphs or
2624 if they had been found in a block upstream from BB. */
2625 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2626 RESET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2628 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2629 to determine if any of the operands in the conditional
2630 predicate are used. */
2632 need_assert
|= find_assert_locations (e
->dest
);
2634 /* Register the necessary assertions for each operand in the
2635 conditional predicate. */
2636 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2637 need_assert
|= register_edge_assert_for (op
, e
, last_si
);
2640 /* Finally, indicate that we have found the operands in the
2642 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2643 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2649 /* Traverse all the statements in block BB looking for statements that
2650 may generate useful assertions for the SSA names in their operand.
2651 If a statement produces a useful assertion A for name N_i, then the
2652 list of assertions already generated for N_i is scanned to
2653 determine if A is actually needed.
2655 If N_i already had the assertion A at a location dominating the
2656 current location, then nothing needs to be done. Otherwise, the
2657 new location for A is recorded instead.
2659 1- For every statement S in BB, all the variables used by S are
2660 added to bitmap FOUND_IN_SUBGRAPH.
2662 2- If statement S uses an operand N in a way that exposes a known
2663 value range for N, then if N was not already generated by an
2664 ASSERT_EXPR, create a new assert location for N. For instance,
2665 if N is a pointer and the statement dereferences it, we can
2666 assume that N is not NULL.
2668 3- COND_EXPRs are a special case of #2. We can derive range
2669 information from the predicate but need to insert different
2670 ASSERT_EXPRs for each of the sub-graphs rooted at the
2671 conditional block. If the last statement of BB is a conditional
2672 expression of the form 'X op Y', then
2674 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2676 b) If the conditional is the only entry point to the sub-graph
2677 corresponding to the THEN_CLAUSE, recurse into it. On
2678 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2679 an ASSERT_EXPR is added for the corresponding variable.
2681 c) Repeat step (b) on the ELSE_CLAUSE.
2683 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2692 In this case, an assertion on the THEN clause is useful to
2693 determine that 'a' is always 9 on that edge. However, an assertion
2694 on the ELSE clause would be unnecessary.
2696 4- If BB does not end in a conditional expression, then we recurse
2697 into BB's dominator children.
2699 At the end of the recursive traversal, every SSA name will have a
2700 list of locations where ASSERT_EXPRs should be added. When a new
2701 location for name N is found, it is registered by calling
2702 register_new_assert_for. That function keeps track of all the
2703 registered assertions to prevent adding unnecessary assertions.
2704 For instance, if a pointer P_4 is dereferenced more than once in a
2705 dominator tree, only the location dominating all the dereference of
2706 P_4 will receive an ASSERT_EXPR.
2708 If this function returns true, then it means that there are names
2709 for which we need to generate ASSERT_EXPRs. Those assertions are
2710 inserted by process_assert_insertions.
2712 TODO. Handle SWITCH_EXPR. */
2715 find_assert_locations (basic_block bb
)
2717 block_stmt_iterator si
;
2722 if (TEST_BIT (blocks_visited
, bb
->index
))
2725 SET_BIT (blocks_visited
, bb
->index
);
2727 need_assert
= false;
2729 /* Traverse all PHI nodes in BB marking used operands. */
2730 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
2732 use_operand_p arg_p
;
2735 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
2737 tree arg
= USE_FROM_PTR (arg_p
);
2738 if (TREE_CODE (arg
) == SSA_NAME
)
2740 gcc_assert (is_gimple_reg (PHI_RESULT (phi
)));
2741 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (arg
));
2746 /* Traverse all the statements in BB marking used names and looking
2747 for statements that may infer assertions for their used operands. */
2749 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
2754 stmt
= bsi_stmt (si
);
2756 /* See if we can derive an assertion for any of STMT's operands. */
2757 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
2760 enum tree_code comp_code
;
2762 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2763 the sub-graph of a conditional block, when we return from
2764 this recursive walk, our parent will use the
2765 FOUND_IN_SUBGRAPH bitset to determine if one of the
2766 operands it was looking for was present in the sub-graph. */
2767 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2769 /* If OP is used only once, namely in this STMT, don't
2770 bother creating an ASSERT_EXPR for it. Such an
2771 ASSERT_EXPR would do nothing but increase compile time.
2772 Experiments show that with this simple check, we can save
2773 more than 20% of ASSERT_EXPRs. */
2774 if (has_single_use (op
))
2777 /* If OP is used in such a way that we can infer a value
2778 range for it, and we don't find a previous assertion for
2779 it, create a new assertion location node for OP. */
2780 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
2782 register_new_assert_for (op
, comp_code
, value
, bb
, NULL
, si
);
2787 /* Remember the last statement of the block. */
2791 /* If BB's last statement is a conditional expression
2792 involving integer operands, recurse into each of the sub-graphs
2793 rooted at BB to determine if we need to add ASSERT_EXPRs. */
2795 && TREE_CODE (last
) == COND_EXPR
2796 && !fp_predicate (COND_EXPR_COND (last
))
2797 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
2798 need_assert
|= find_conditional_asserts (bb
);
2800 /* Recurse into the dominator children of BB. */
2801 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
2803 son
= next_dom_son (CDI_DOMINATORS
, son
))
2804 need_assert
|= find_assert_locations (son
);
2810 /* Create an ASSERT_EXPR for NAME and insert it in the location
2811 indicated by LOC. Return true if we made any edge insertions. */
2814 process_assert_insertions_for (tree name
, assert_locus_t loc
)
2816 /* Build the comparison expression NAME_i COMP_CODE VAL. */
2817 tree stmt
, cond
, assert_expr
;
2821 cond
= build (loc
->comp_code
, boolean_type_node
, name
, loc
->val
);
2822 assert_expr
= build_assert_expr_for (cond
, name
);
2826 /* We have been asked to insert the assertion on an edge. This
2827 is used only by COND_EXPR and SWITCH_EXPR assertions. */
2828 #if defined ENABLE_CHECKING
2829 gcc_assert (TREE_CODE (bsi_stmt (loc
->si
)) == COND_EXPR
2830 || TREE_CODE (bsi_stmt (loc
->si
)) == SWITCH_EXPR
);
2833 bsi_insert_on_edge (loc
->e
, assert_expr
);
2837 /* Otherwise, we can insert right after LOC->SI iff the
2838 statement must not be the last statement in the block. */
2839 stmt
= bsi_stmt (loc
->si
);
2840 if (!stmt_ends_bb_p (stmt
))
2842 bsi_insert_after (&loc
->si
, assert_expr
, BSI_SAME_STMT
);
2846 /* If STMT must be the last statement in BB, we can only insert new
2847 assertions on the non-abnormal edge out of BB. Note that since
2848 STMT is not control flow, there may only be one non-abnormal edge
2850 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
2851 if (!(e
->flags
& EDGE_ABNORMAL
))
2853 bsi_insert_on_edge (e
, assert_expr
);
2861 /* Process all the insertions registered for every name N_i registered
2862 in NEED_ASSERT_FOR. The list of assertions to be inserted are
2863 found in ASSERTS_FOR[i]. */
2866 process_assert_insertions (void)
2870 bool update_edges_p
= false;
2871 int num_asserts
= 0;
2873 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2874 dump_all_asserts (dump_file
);
2876 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
2878 assert_locus_t loc
= asserts_for
[i
];
2883 assert_locus_t next
= loc
->next
;
2884 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
2892 bsi_commit_edge_inserts ();
2894 if (dump_file
&& (dump_flags
& TDF_STATS
))
2895 fprintf (dump_file
, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
2900 /* Traverse the flowgraph looking for conditional jumps to insert range
2901 expressions. These range expressions are meant to provide information
2902 to optimizations that need to reason in terms of value ranges. They
2903 will not be expanded into RTL. For instance, given:
2912 this pass will transform the code into:
2918 x = ASSERT_EXPR <x, x < y>
2923 y = ASSERT_EXPR <y, x <= y>
2927 The idea is that once copy and constant propagation have run, other
2928 optimizations will be able to determine what ranges of values can 'x'
2929 take in different paths of the code, simply by checking the reaching
2930 definition of 'x'. */
2933 insert_range_assertions (void)
2939 found_in_subgraph
= sbitmap_alloc (num_ssa_names
);
2940 sbitmap_zero (found_in_subgraph
);
2942 blocks_visited
= sbitmap_alloc (last_basic_block
);
2943 sbitmap_zero (blocks_visited
);
2945 need_assert_for
= BITMAP_ALLOC (NULL
);
2946 asserts_for
= xmalloc (num_ssa_names
* sizeof (assert_locus_t
));
2947 memset (asserts_for
, 0, num_ssa_names
* sizeof (assert_locus_t
));
2949 calculate_dominance_info (CDI_DOMINATORS
);
2951 update_ssa_p
= false;
2952 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2953 if (find_assert_locations (e
->dest
))
2954 update_ssa_p
= true;
2958 process_assert_insertions ();
2959 update_ssa (TODO_update_ssa_no_phi
);
2962 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2964 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
2965 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
2968 sbitmap_free (found_in_subgraph
);
2970 BITMAP_FREE (need_assert_for
);
2974 /* Replaces all uses of NAME by VAL. */
2977 replace_uses_by_vrp (tree name
, tree val
)
2979 imm_use_iterator imm_iter
;
2984 VEC(tree
,heap
) *stmts
= VEC_alloc (tree
, heap
, 20);
2986 FOR_EACH_IMM_USE_SAFE (use
, imm_iter
, name
)
2988 stmt
= USE_STMT (use
);
2991 if (TREE_CODE (stmt
) == PHI_NODE
)
2993 e
= PHI_ARG_EDGE (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
2994 if (e
->flags
& EDGE_ABNORMAL
)
2996 /* This can only occur for virtual operands, since
2997 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2998 would prevent replacement. */
2999 gcc_assert (!is_gimple_reg (name
));
3000 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
3004 VEC_safe_push (tree
, heap
, stmts
, stmt
);
3007 /* We do not update the statements in the loop above. Consider
3010 If we performed the update in the first loop, the statement
3011 would be rescanned after first occurrence of w is replaced,
3012 the new uses would be placed to the beginning of the list,
3013 and we would never process them. */
3014 for (i
= 0; VEC_iterate (tree
, stmts
, i
, stmt
); i
++)
3017 VEC_free (tree
, heap
, stmts
);
3019 /* Also update the trees stored in loop structures. */
3024 for (i
= 0; i
< current_loops
->num
; i
++)
3026 loop
= current_loops
->parray
[i
];
3028 substitute_in_loop_info (loop
, name
, val
);
3034 /* Convert range assertion expressions into the implied copies and
3035 copy propagate away the copies. Doing the trivial copy propagation
3036 here avoids the need to run the full copy propagation pass after
3039 FIXME, this will eventually lead to copy propagation removing the
3040 names that had useful range information attached to them. For
3041 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3042 then N_i will have the range [3, +INF].
3044 However, by converting the assertion into the implied copy
3045 operation N_i = N_j, we will then copy-propagate N_j into the uses
3046 of N_i and lose the range information. We may want to hold on to
3047 ASSERT_EXPRs a little while longer as the ranges could be used in
3048 things like jump threading.
3050 The problem with keeping ASSERT_EXPRs around is that passes after
3051 VRP need to handle them appropriately.
3053 Another approach would be to make the range information a first
3054 class property of the SSA_NAME so that it can be queried from
3055 any pass. This is made somewhat more complex by the need for
3056 multiple ranges to be associated with one SSA_NAME. */
3059 remove_range_assertions (void)
3062 block_stmt_iterator si
;
3064 /* Note that the BSI iterator bump happens at the bottom of the
3065 loop and no bump is necessary if we're removing the statement
3066 referenced by the current BSI. */
3068 for (si
= bsi_start (bb
); !bsi_end_p (si
);)
3070 tree stmt
= bsi_stmt (si
);
3072 if (TREE_CODE (stmt
) == MODIFY_EXPR
3073 && TREE_CODE (TREE_OPERAND (stmt
, 1)) == ASSERT_EXPR
)
3075 tree rhs
= TREE_OPERAND (stmt
, 1);
3076 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
3077 tree lhs
= TREE_OPERAND (stmt
, 0);
3079 gcc_assert (cond
!= boolean_false_node
);
3080 TREE_OPERAND (stmt
, 1) = ASSERT_EXPR_VAR (rhs
);
3083 /* The statement is now a copy. Propagate the RHS into
3084 every use of the LHS. */
3085 replace_uses_by_vrp (lhs
, ASSERT_EXPR_VAR (rhs
));
3087 /* And finally, remove the copy, it is not needed. */
3094 sbitmap_free (blocks_visited
);
3098 /* Return true if STMT is interesting for VRP. */
3101 stmt_interesting_for_vrp (tree stmt
)
3103 if (TREE_CODE (stmt
) == PHI_NODE
3104 && is_gimple_reg (PHI_RESULT (stmt
))
3105 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))
3106 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))))
3108 else if (TREE_CODE (stmt
) == MODIFY_EXPR
)
3110 tree lhs
= TREE_OPERAND (stmt
, 0);
3112 if (TREE_CODE (lhs
) == SSA_NAME
3113 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3114 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
3115 && ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
3118 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
3125 /* Initialize local data structures for VRP. */
3128 vrp_initialize (void)
3132 vr_value
= xmalloc (num_ssa_names
* sizeof (value_range_t
*));
3133 memset (vr_value
, 0, num_ssa_names
* sizeof (value_range_t
*));
3137 block_stmt_iterator si
;
3140 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
3142 if (!stmt_interesting_for_vrp (phi
))
3144 tree lhs
= PHI_RESULT (phi
);
3145 set_value_range_to_varying (get_value_range (lhs
));
3146 DONT_SIMULATE_AGAIN (phi
) = true;
3149 DONT_SIMULATE_AGAIN (phi
) = false;
3152 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
3154 tree stmt
= bsi_stmt (si
);
3156 if (!stmt_interesting_for_vrp (stmt
))
3160 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
3161 set_value_range_to_varying (get_value_range (def
));
3162 DONT_SIMULATE_AGAIN (stmt
) = true;
3166 DONT_SIMULATE_AGAIN (stmt
) = false;
3173 /* Visit assignment STMT. If it produces an interesting range, record
3174 the SSA name in *OUTPUT_P. */
3176 static enum ssa_prop_result
3177 vrp_visit_assignment (tree stmt
, tree
*output_p
)
3182 lhs
= TREE_OPERAND (stmt
, 0);
3183 rhs
= TREE_OPERAND (stmt
, 1);
3185 /* We only keep track of ranges in integral and pointer types. */
3186 if (TREE_CODE (lhs
) == SSA_NAME
3187 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3188 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
3191 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3193 extract_range_from_expr (&new_vr
, rhs
);
3195 /* If STMT is inside a loop, we may be able to know something
3196 else about the range of LHS by examining scalar evolution
3198 if (cfg_loops
&& (l
= loop_containing_stmt (stmt
)))
3199 adjust_range_with_scev (&new_vr
, l
, stmt
, lhs
);
3201 if (update_value_range (lhs
, &new_vr
))
3205 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3207 fprintf (dump_file
, "Found new range for ");
3208 print_generic_expr (dump_file
, lhs
, 0);
3209 fprintf (dump_file
, ": ");
3210 dump_value_range (dump_file
, &new_vr
);
3211 fprintf (dump_file
, "\n\n");
3214 if (new_vr
.type
== VR_VARYING
)
3215 return SSA_PROP_VARYING
;
3217 return SSA_PROP_INTERESTING
;
3220 return SSA_PROP_NOT_INTERESTING
;
3223 /* Every other statement produces no useful ranges. */
3224 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
3225 set_value_range_to_varying (get_value_range (def
));
3227 return SSA_PROP_VARYING
;
3231 /* Compare all the value ranges for names equivalent to VAR with VAL
3232 using comparison code COMP. Return the same value returned by
3233 compare_range_with_value. */
3236 compare_name_with_value (enum tree_code comp
, tree var
, tree val
)
3243 t
= retval
= NULL_TREE
;
3245 /* Get the set of equivalences for VAR. */
3246 e
= get_value_range (var
)->equiv
;
3248 /* Add VAR to its own set of equivalences so that VAR's value range
3249 is processed by this loop (otherwise, we would have to replicate
3250 the body of the loop just to check VAR's value range). */
3251 bitmap_set_bit (e
, SSA_NAME_VERSION (var
));
3253 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
3255 value_range_t equiv_vr
= *(vr_value
[i
]);
3257 /* If name N_i does not have a valid range, use N_i as its own
3258 range. This allows us to compare against names that may
3259 have N_i in their ranges. */
3260 if (equiv_vr
.type
== VR_VARYING
|| equiv_vr
.type
== VR_UNDEFINED
)
3262 equiv_vr
.type
= VR_RANGE
;
3263 equiv_vr
.min
= ssa_name (i
);
3264 equiv_vr
.max
= ssa_name (i
);
3267 t
= compare_range_with_value (comp
, &equiv_vr
, val
);
3270 /* All the ranges should compare the same against VAL. */
3271 gcc_assert (retval
== NULL
|| t
== retval
);
3276 /* Remove VAR from its own equivalence set. */
3277 bitmap_clear_bit (e
, SSA_NAME_VERSION (var
));
3282 /* We couldn't find a non-NULL value for the predicate. */
3287 /* Given a comparison code COMP and names N1 and N2, compare all the
3288 ranges equivalent to N1 against all the ranges equivalent to N2
3289 to determine the value of N1 COMP N2. Return the same value
3290 returned by compare_ranges. */
3293 compare_names (enum tree_code comp
, tree n1
, tree n2
)
3297 bitmap_iterator bi1
, bi2
;
3300 /* Compare the ranges of every name equivalent to N1 against the
3301 ranges of every name equivalent to N2. */
3302 e1
= get_value_range (n1
)->equiv
;
3303 e2
= get_value_range (n2
)->equiv
;
3305 /* Add N1 and N2 to their own set of equivalences to avoid
3306 duplicating the body of the loop just to check N1 and N2
3308 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
3309 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
3311 /* If the equivalence sets have a common intersection, then the two
3312 names can be compared without checking their ranges. */
3313 if (bitmap_intersect_p (e1
, e2
))
3315 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3316 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3318 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
3320 : boolean_false_node
;
3323 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3324 N2 to their own set of equivalences to avoid duplicating the body
3325 of the loop just to check N1 and N2 ranges. */
3326 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
3328 value_range_t vr1
= *(vr_value
[i1
]);
3330 /* If the range is VARYING or UNDEFINED, use the name itself. */
3331 if (vr1
.type
== VR_VARYING
|| vr1
.type
== VR_UNDEFINED
)
3333 vr1
.type
= VR_RANGE
;
3334 vr1
.min
= ssa_name (i1
);
3335 vr1
.max
= ssa_name (i1
);
3338 t
= retval
= NULL_TREE
;
3339 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
3341 value_range_t vr2
= *(vr_value
[i2
]);
3343 if (vr2
.type
== VR_VARYING
|| vr2
.type
== VR_UNDEFINED
)
3345 vr2
.type
= VR_RANGE
;
3346 vr2
.min
= ssa_name (i2
);
3347 vr2
.max
= ssa_name (i2
);
3350 t
= compare_ranges (comp
, &vr1
, &vr2
);
3353 /* All the ranges in the equivalent sets should compare
3355 gcc_assert (retval
== NULL
|| t
== retval
);
3362 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3363 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3368 /* None of the equivalent ranges are useful in computing this
3370 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3371 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3376 /* Given a conditional predicate COND, try to determine if COND yields
3377 true or false based on the value ranges of its operands. Return
3378 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3379 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3380 NULL if the conditional cannot be evaluated at compile time.
3382 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3383 the operands in COND are used when trying to compute its value.
3384 This is only used during final substitution. During propagation,
3385 we only check the range of each variable and not its equivalents. */
3388 vrp_evaluate_conditional (tree cond
, bool use_equiv_p
)
3390 gcc_assert (TREE_CODE (cond
) == SSA_NAME
3391 || TREE_CODE_CLASS (TREE_CODE (cond
)) == tcc_comparison
);
3393 if (TREE_CODE (cond
) == SSA_NAME
)
3399 retval
= compare_name_with_value (NE_EXPR
, cond
, boolean_false_node
);
3402 value_range_t
*vr
= get_value_range (cond
);
3403 retval
= compare_range_with_value (NE_EXPR
, vr
, boolean_false_node
);
3406 /* If COND has a known boolean range, return it. */
3410 /* Otherwise, if COND has a symbolic range of exactly one value,
3412 vr
= get_value_range (cond
);
3413 if (vr
->type
== VR_RANGE
&& vr
->min
== vr
->max
)
3418 tree op0
= TREE_OPERAND (cond
, 0);
3419 tree op1
= TREE_OPERAND (cond
, 1);
3421 /* We only deal with integral and pointer types. */
3422 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
3423 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
3428 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
3429 return compare_names (TREE_CODE (cond
), op0
, op1
);
3430 else if (TREE_CODE (op0
) == SSA_NAME
)
3431 return compare_name_with_value (TREE_CODE (cond
), op0
, op1
);
3432 else if (TREE_CODE (op1
) == SSA_NAME
)
3433 return compare_name_with_value (
3434 swap_tree_comparison (TREE_CODE (cond
)), op1
, op0
);
3438 value_range_t
*vr0
, *vr1
;
3440 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
3441 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
3444 return compare_ranges (TREE_CODE (cond
), vr0
, vr1
);
3445 else if (vr0
&& vr1
== NULL
)
3446 return compare_range_with_value (TREE_CODE (cond
), vr0
, op1
);
3447 else if (vr0
== NULL
&& vr1
)
3448 return compare_range_with_value (
3449 swap_tree_comparison (TREE_CODE (cond
)), vr1
, op0
);
3453 /* Anything else cannot be computed statically. */
3458 /* Visit conditional statement STMT. If we can determine which edge
3459 will be taken out of STMT's basic block, record it in
3460 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3461 SSA_PROP_VARYING. */
3463 static enum ssa_prop_result
3464 vrp_visit_cond_stmt (tree stmt
, edge
*taken_edge_p
)
3468 *taken_edge_p
= NULL
;
3470 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3471 add ASSERT_EXPRs for them. */
3472 if (TREE_CODE (stmt
) == SWITCH_EXPR
)
3473 return SSA_PROP_VARYING
;
3475 cond
= COND_EXPR_COND (stmt
);
3477 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3482 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
3483 print_generic_expr (dump_file
, cond
, 0);
3484 fprintf (dump_file
, "\nWith known ranges\n");
3486 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
3488 fprintf (dump_file
, "\t");
3489 print_generic_expr (dump_file
, use
, 0);
3490 fprintf (dump_file
, ": ");
3491 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
3494 fprintf (dump_file
, "\n");
3497 /* Compute the value of the predicate COND by checking the known
3498 ranges of each of its operands.
3500 Note that we cannot evaluate all the equivalent ranges here
3501 because those ranges may not yet be final and with the current
3502 propagation strategy, we cannot determine when the value ranges
3503 of the names in the equivalence set have changed.
3505 For instance, given the following code fragment
3509 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3513 Assume that on the first visit to i_14, i_5 has the temporary
3514 range [8, 8] because the second argument to the PHI function is
3515 not yet executable. We derive the range ~[0, 0] for i_14 and the
3516 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3517 the first time, since i_14 is equivalent to the range [8, 8], we
3518 determine that the predicate is always false.
3520 On the next round of propagation, i_13 is determined to be
3521 VARYING, which causes i_5 to drop down to VARYING. So, another
3522 visit to i_14 is scheduled. In this second visit, we compute the
3523 exact same range and equivalence set for i_14, namely ~[0, 0] and
3524 { i_5 }. But we did not have the previous range for i_5
3525 registered, so vrp_visit_assignment thinks that the range for
3526 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3527 is not visited again, which stops propagation from visiting
3528 statements in the THEN clause of that if().
3530 To properly fix this we would need to keep the previous range
3531 value for the names in the equivalence set. This way we would've
3532 discovered that from one visit to the other i_5 changed from
3533 range [8, 8] to VR_VARYING.
3535 However, fixing this apparent limitation may not be worth the
3536 additional checking. Testing on several code bases (GCC, DLV,
3537 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3538 4 more predicates folded in SPEC. */
3539 val
= vrp_evaluate_conditional (cond
, false);
3541 *taken_edge_p
= find_taken_edge (bb_for_stmt (stmt
), val
);
3543 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3545 fprintf (dump_file
, "\nPredicate evaluates to: ");
3546 if (val
== NULL_TREE
)
3547 fprintf (dump_file
, "DON'T KNOW\n");
3549 print_generic_stmt (dump_file
, val
, 0);
3552 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
3556 /* Evaluate statement STMT. If the statement produces a useful range,
3557 return SSA_PROP_INTERESTING and record the SSA name with the
3558 interesting range into *OUTPUT_P.
3560 If STMT is a conditional branch and we can determine its truth
3561 value, the taken edge is recorded in *TAKEN_EDGE_P.
3563 If STMT produces a varying value, return SSA_PROP_VARYING. */
3565 static enum ssa_prop_result
3566 vrp_visit_stmt (tree stmt
, edge
*taken_edge_p
, tree
*output_p
)
3572 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3574 fprintf (dump_file
, "\nVisiting statement:\n");
3575 print_generic_stmt (dump_file
, stmt
, dump_flags
);
3576 fprintf (dump_file
, "\n");
3579 ann
= stmt_ann (stmt
);
3580 if (TREE_CODE (stmt
) == MODIFY_EXPR
3581 && ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
3582 return vrp_visit_assignment (stmt
, output_p
);
3583 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
3584 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
3586 /* All other statements produce nothing of interest for VRP, so mark
3587 their outputs varying and prevent further simulation. */
3588 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
3589 set_value_range_to_varying (get_value_range (def
));
3591 return SSA_PROP_VARYING
;
3595 /* Meet operation for value ranges. Given two value ranges VR0 and
3596 VR1, store in VR0 the result of meeting VR0 and VR1.
3598 The meeting rules are as follows:
3600 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3602 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3603 union of VR0 and VR1. */
3606 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
3608 if (vr0
->type
== VR_UNDEFINED
)
3610 copy_value_range (vr0
, vr1
);
3614 if (vr1
->type
== VR_UNDEFINED
)
3616 /* Nothing to do. VR0 already has the resulting range. */
3620 if (vr0
->type
== VR_VARYING
)
3622 /* Nothing to do. VR0 already has the resulting range. */
3626 if (vr1
->type
== VR_VARYING
)
3628 set_value_range_to_varying (vr0
);
3632 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
3634 /* If VR0 and VR1 have a non-empty intersection, compute the
3635 union of both ranges. */
3636 if (value_ranges_intersect_p (vr0
, vr1
))
3641 /* The lower limit of the new range is the minimum of the
3642 two ranges. If they cannot be compared, the result is
3644 cmp
= compare_values (vr0
->min
, vr1
->min
);
3645 if (cmp
== 0 || cmp
== 1)
3651 set_value_range_to_varying (vr0
);
3655 /* Similarly, the upper limit of the new range is the
3656 maximum of the two ranges. If they cannot be compared,
3657 the result is VARYING. */
3658 cmp
= compare_values (vr0
->max
, vr1
->max
);
3659 if (cmp
== 0 || cmp
== -1)
3665 set_value_range_to_varying (vr0
);
3669 /* The resulting set of equivalences is the intersection of
3671 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3672 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3673 else if (vr0
->equiv
&& !vr1
->equiv
)
3674 bitmap_clear (vr0
->equiv
);
3676 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
3681 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3683 /* Two anti-ranges meet only if they are both identical. */
3684 if (compare_values (vr0
->min
, vr1
->min
) == 0
3685 && compare_values (vr0
->max
, vr1
->max
) == 0
3686 && compare_values (vr0
->min
, vr0
->max
) == 0)
3688 /* The resulting set of equivalences is the intersection of
3690 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3691 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3692 else if (vr0
->equiv
&& !vr1
->equiv
)
3693 bitmap_clear (vr0
->equiv
);
3698 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3700 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3701 meet only if the ranges have an empty intersection. The
3702 result of the meet operation is the anti-range. */
3703 if (!symbolic_range_p (vr0
)
3704 && !symbolic_range_p (vr1
)
3705 && !value_ranges_intersect_p (vr0
, vr1
))
3707 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3708 set. We need to compute the intersection of the two
3709 equivalence sets. */
3710 if (vr1
->type
== VR_ANTI_RANGE
)
3711 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
3713 /* The resulting set of equivalences is the intersection of
3715 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3716 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3717 else if (vr0
->equiv
&& !vr1
->equiv
)
3718 bitmap_clear (vr0
->equiv
);
3729 /* The two range VR0 and VR1 do not meet. Before giving up and
3730 setting the result to VARYING, see if we can at least derive a
3731 useful anti-range. FIXME, all this nonsense about distinguishing
3732 anti-ranges from ranges is necessary because of the odd
3733 semantics of range_includes_zero_p and friends. */
3734 if (!symbolic_range_p (vr0
)
3735 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
3736 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
3737 && !symbolic_range_p (vr1
)
3738 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
3739 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
3741 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
3743 /* Since this meet operation did not result from the meeting of
3744 two equivalent names, VR0 cannot have any equivalences. */
3746 bitmap_clear (vr0
->equiv
);
3749 set_value_range_to_varying (vr0
);
3753 /* Visit all arguments for PHI node PHI that flow through executable
3754 edges. If a valid value range can be derived from all the incoming
3755 value ranges, set a new range for the LHS of PHI. */
3757 static enum ssa_prop_result
3758 vrp_visit_phi_node (tree phi
)
3761 tree lhs
= PHI_RESULT (phi
);
3762 value_range_t
*lhs_vr
= get_value_range (lhs
);
3763 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3765 copy_value_range (&vr_result
, lhs_vr
);
3767 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3769 fprintf (dump_file
, "\nVisiting PHI node: ");
3770 print_generic_expr (dump_file
, phi
, dump_flags
);
3773 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
3775 edge e
= PHI_ARG_EDGE (phi
, i
);
3777 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3780 "\n Argument #%d (%d -> %d %sexecutable)\n",
3781 i
, e
->src
->index
, e
->dest
->index
,
3782 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
3785 if (e
->flags
& EDGE_EXECUTABLE
)
3787 tree arg
= PHI_ARG_DEF (phi
, i
);
3788 value_range_t vr_arg
;
3790 if (TREE_CODE (arg
) == SSA_NAME
)
3791 vr_arg
= *(get_value_range (arg
));
3794 vr_arg
.type
= VR_RANGE
;
3797 vr_arg
.equiv
= NULL
;
3800 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3802 fprintf (dump_file
, "\t");
3803 print_generic_expr (dump_file
, arg
, dump_flags
);
3804 fprintf (dump_file
, "\n\tValue: ");
3805 dump_value_range (dump_file
, &vr_arg
);
3806 fprintf (dump_file
, "\n");
3809 vrp_meet (&vr_result
, &vr_arg
);
3811 if (vr_result
.type
== VR_VARYING
)
3816 if (vr_result
.type
== VR_VARYING
)
3819 /* To prevent infinite iterations in the algorithm, derive ranges
3820 when the new value is slightly bigger or smaller than the
3822 if (lhs_vr
->type
== VR_RANGE
&& vr_result
.type
== VR_RANGE
)
3824 if (!POINTER_TYPE_P (TREE_TYPE (lhs
)))
3826 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
3827 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
3829 /* If the new minimum is smaller or larger than the previous
3830 one, go all the way to -INF. In the first case, to avoid
3831 iterating millions of times to reach -INF, and in the
3832 other case to avoid infinite bouncing between different
3834 if (cmp_min
> 0 || cmp_min
< 0)
3835 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
3837 /* Similarly, if the new maximum is smaller or larger than
3838 the previous one, go all the way to +INF. */
3839 if (cmp_max
< 0 || cmp_max
> 0)
3840 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
3842 /* If we ended up with a (-INF, +INF) range, set it to
3844 if (vr_result
.min
== TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
))
3845 && vr_result
.max
== TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
)))
3850 /* If the new range is different than the previous value, keep
3852 if (update_value_range (lhs
, &vr_result
))
3853 return SSA_PROP_INTERESTING
;
3855 /* Nothing changed, don't add outgoing edges. */
3856 return SSA_PROP_NOT_INTERESTING
;
3858 /* No match found. Set the LHS to VARYING. */
3860 set_value_range_to_varying (lhs_vr
);
3861 return SSA_PROP_VARYING
;
3864 /* Simplify a division or modulo operator to a right shift or
3865 bitwise and if the first operand is unsigned or is greater
3866 than zero and the second operand is an exact power of two. */
3869 simplify_div_or_mod_using_ranges (tree stmt
, tree rhs
, enum tree_code rhs_code
)
3872 tree op
= TREE_OPERAND (rhs
, 0);
3873 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
3875 if (TYPE_UNSIGNED (TREE_TYPE (op
)))
3877 val
= integer_one_node
;
3881 val
= compare_range_with_value (GT_EXPR
, vr
, integer_zero_node
);
3884 if (val
&& integer_onep (val
))
3887 tree op0
= TREE_OPERAND (rhs
, 0);
3888 tree op1
= TREE_OPERAND (rhs
, 1);
3890 if (rhs_code
== TRUNC_DIV_EXPR
)
3892 t
= build_int_cst (NULL_TREE
, tree_log2 (op1
));
3893 t
= build2 (RSHIFT_EXPR
, TREE_TYPE (op0
), op0
, t
);
3897 t
= build_int_cst (TREE_TYPE (op1
), 1);
3898 t
= int_const_binop (MINUS_EXPR
, op1
, t
, 0);
3899 t
= fold_convert (TREE_TYPE (op0
), t
);
3900 t
= build2 (BIT_AND_EXPR
, TREE_TYPE (op0
), op0
, t
);
3903 TREE_OPERAND (stmt
, 1) = t
;
3908 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
3909 ABS_EXPR. If the operand is <= 0, then simplify the
3910 ABS_EXPR into a NEGATE_EXPR. */
3913 simplify_abs_using_ranges (tree stmt
, tree rhs
)
3916 tree op
= TREE_OPERAND (rhs
, 0);
3917 tree type
= TREE_TYPE (op
);
3918 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
3920 if (TYPE_UNSIGNED (type
))
3922 val
= integer_zero_node
;
3926 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
);
3929 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
);
3933 if (integer_zerop (val
))
3934 val
= integer_one_node
;
3935 else if (integer_onep (val
))
3936 val
= integer_zero_node
;
3941 && (integer_onep (val
) || integer_zerop (val
)))
3945 if (integer_onep (val
))
3946 t
= build1 (NEGATE_EXPR
, TREE_TYPE (op
), op
);
3950 TREE_OPERAND (stmt
, 1) = t
;
3956 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
3957 a known value range VR.
3959 If there is one and only one value which will satisfy the
3960 conditional, then return that value. Else return NULL. */
3963 test_for_singularity (enum tree_code cond_code
, tree op0
,
3964 tree op1
, value_range_t
*vr
)
3969 /* Extract minimum/maximum values which satisfy the
3970 the conditional as it was written. */
3971 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
3973 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
3976 if (cond_code
== LT_EXPR
)
3978 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
3979 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
3982 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
3984 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
3987 if (cond_code
== GT_EXPR
)
3989 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
3990 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), max
, one
);
3994 /* Now refine the minimum and maximum values using any
3995 value range information we have for op0. */
3998 if (compare_values (vr
->min
, min
) == -1)
4002 if (compare_values (vr
->max
, max
) == 1)
4007 /* If the new min/max values have converged to a
4008 single value, then there is only one value which
4009 can satisfy the condition, return that value. */
4010 if (min
== max
&& is_gimple_min_invariant (min
))
4016 /* Simplify a conditional using a relational operator to an equality
4017 test if the range information indicates only one value can satisfy
4018 the original conditional. */
4021 simplify_cond_using_ranges (tree stmt
)
4023 tree cond
= COND_EXPR_COND (stmt
);
4024 tree op0
= TREE_OPERAND (cond
, 0);
4025 tree op1
= TREE_OPERAND (cond
, 1);
4026 enum tree_code cond_code
= TREE_CODE (cond
);
4028 if (cond_code
!= NE_EXPR
4029 && cond_code
!= EQ_EXPR
4030 && TREE_CODE (op0
) == SSA_NAME
4031 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
4032 && is_gimple_min_invariant (op1
))
4034 value_range_t
*vr
= get_value_range (op0
);
4036 /* If we have range information for OP0, then we might be
4037 able to simplify this conditional. */
4038 if (vr
->type
== VR_RANGE
)
4040 tree
new = test_for_singularity (cond_code
, op0
, op1
, vr
);
4046 fprintf (dump_file
, "Simplified relational ");
4047 print_generic_expr (dump_file
, cond
, 0);
4048 fprintf (dump_file
, " into ");
4051 COND_EXPR_COND (stmt
)
4052 = build (EQ_EXPR
, boolean_type_node
, op0
, new);
4057 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
4058 fprintf (dump_file
, "\n");
4064 /* Try again after inverting the condition. We only deal
4065 with integral types here, so no need to worry about
4066 issues with inverting FP comparisons. */
4067 cond_code
= invert_tree_comparison (cond_code
, false);
4068 new = test_for_singularity (cond_code
, op0
, op1
, vr
);
4074 fprintf (dump_file
, "Simplified relational ");
4075 print_generic_expr (dump_file
, cond
, 0);
4076 fprintf (dump_file
, " into ");
4079 COND_EXPR_COND (stmt
)
4080 = build (NE_EXPR
, boolean_type_node
, op0
, new);
4085 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
4086 fprintf (dump_file
, "\n");
4095 /* Simplify STMT using ranges if possible. */
4098 simplify_stmt_using_ranges (tree stmt
)
4100 if (TREE_CODE (stmt
) == MODIFY_EXPR
)
4102 tree rhs
= TREE_OPERAND (stmt
, 1);
4103 enum tree_code rhs_code
= TREE_CODE (rhs
);
4105 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4106 and BIT_AND_EXPR respectively if the first operand is greater
4107 than zero and the second operand is an exact power of two. */
4108 if ((rhs_code
== TRUNC_DIV_EXPR
|| rhs_code
== TRUNC_MOD_EXPR
)
4109 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0)))
4110 && integer_pow2p (TREE_OPERAND (rhs
, 1)))
4111 simplify_div_or_mod_using_ranges (stmt
, rhs
, rhs_code
);
4113 /* Transform ABS (X) into X or -X as appropriate. */
4114 if (rhs_code
== ABS_EXPR
4115 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == SSA_NAME
4116 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0))))
4117 simplify_abs_using_ranges (stmt
, rhs
);
4119 else if (TREE_CODE (stmt
) == COND_EXPR
4120 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt
)))
4122 simplify_cond_using_ranges (stmt
);
4128 /* Traverse all the blocks folding conditionals with known ranges. */
4134 prop_value_t
*single_val_range
;
4135 bool do_value_subst_p
;
4139 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
4140 dump_all_value_ranges (dump_file
);
4141 fprintf (dump_file
, "\n");
4144 /* We may have ended with ranges that have exactly one value. Those
4145 values can be substituted as any other copy/const propagated
4146 value using substitute_and_fold. */
4147 single_val_range
= xmalloc (num_ssa_names
* sizeof (*single_val_range
));
4148 memset (single_val_range
, 0, num_ssa_names
* sizeof (*single_val_range
));
4150 do_value_subst_p
= false;
4151 for (i
= 0; i
< num_ssa_names
; i
++)
4153 && vr_value
[i
]->type
== VR_RANGE
4154 && vr_value
[i
]->min
== vr_value
[i
]->max
)
4156 single_val_range
[i
].value
= vr_value
[i
]->min
;
4157 do_value_subst_p
= true;
4160 if (!do_value_subst_p
)
4162 /* We found no single-valued ranges, don't waste time trying to
4163 do single value substitution in substitute_and_fold. */
4164 free (single_val_range
);
4165 single_val_range
= NULL
;
4168 substitute_and_fold (single_val_range
, true);
4170 /* Free allocated memory. */
4171 for (i
= 0; i
< num_ssa_names
; i
++)
4174 BITMAP_FREE (vr_value
[i
]->equiv
);
4178 free (single_val_range
);
4183 /* Main entry point to VRP (Value Range Propagation). This pass is
4184 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4185 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4186 Programming Language Design and Implementation, pp. 67-78, 1995.
4187 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4189 This is essentially an SSA-CCP pass modified to deal with ranges
4190 instead of constants.
4192 While propagating ranges, we may find that two or more SSA name
4193 have equivalent, though distinct ranges. For instance,
4196 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4198 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4202 In the code above, pointer p_5 has range [q_2, q_2], but from the
4203 code we can also determine that p_5 cannot be NULL and, if q_2 had
4204 a non-varying range, p_5's range should also be compatible with it.
4206 These equivalences are created by two expressions: ASSERT_EXPR and
4207 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4208 result of another assertion, then we can use the fact that p_5 and
4209 p_4 are equivalent when evaluating p_5's range.
4211 Together with value ranges, we also propagate these equivalences
4212 between names so that we can take advantage of information from
4213 multiple ranges when doing final replacement. Note that this
4214 equivalency relation is transitive but not symmetric.
4216 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4217 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4218 in contexts where that assertion does not hold (e.g., in line 6).
4220 TODO, the main difference between this pass and Patterson's is that
4221 we do not propagate edge probabilities. We only compute whether
4222 edges can be taken or not. That is, instead of having a spectrum
4223 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4224 DON'T KNOW. In the future, it may be worthwhile to propagate
4225 probabilities to aid branch prediction. */
4230 insert_range_assertions ();
4232 cfg_loops
= loop_optimizer_init (NULL
);
4234 scev_initialize (cfg_loops
);
4237 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
4243 loop_optimizer_finalize (cfg_loops
, NULL
);
4244 current_loops
= NULL
;
4247 remove_range_assertions ();
4253 return flag_tree_vrp
!= 0;
4256 struct tree_opt_pass pass_vrp
=
4259 gate_vrp
, /* gate */
4260 execute_vrp
, /* execute */
4263 0, /* static_pass_number */
4264 TV_TREE_VRP
, /* tv_id */
4265 PROP_ssa
| PROP_alias
, /* properties_required */
4266 0, /* properties_provided */
4267 0, /* properties_destroyed */
4268 0, /* todo_flags_start */
4273 | TODO_update_ssa
, /* todo_flags_finish */