kernel - Fix some rare pmap races in i386 and x86_64.
[dragonfly.git] / contrib / gcc-4.1 / gcc / reload.c
blob39a2f06caf7280bcb6710319bdf61e3361edbbac
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 /* True if X is a constant that can be forced into the constant pool. */
112 #define CONST_POOL_OK_P(X) \
113 (CONSTANT_P (X) \
114 && GET_CODE (X) != HIGH \
115 && !targetm.cannot_force_const_mem (X))
117 /* True if C is a non-empty register class that has too few registers
118 to be safely used as a reload target class. */
119 #define SMALL_REGISTER_CLASS_P(C) \
120 (reg_class_size [(C)] == 1 \
121 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
124 /* All reloads of the current insn are recorded here. See reload.h for
125 comments. */
126 int n_reloads;
127 struct reload rld[MAX_RELOADS];
129 /* All the "earlyclobber" operands of the current insn
130 are recorded here. */
131 int n_earlyclobbers;
132 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
134 int reload_n_operands;
136 /* Replacing reloads.
138 If `replace_reloads' is nonzero, then as each reload is recorded
139 an entry is made for it in the table `replacements'.
140 Then later `subst_reloads' can look through that table and
141 perform all the replacements needed. */
143 /* Nonzero means record the places to replace. */
144 static int replace_reloads;
146 /* Each replacement is recorded with a structure like this. */
147 struct replacement
149 rtx *where; /* Location to store in */
150 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
151 a SUBREG; 0 otherwise. */
152 int what; /* which reload this is for */
153 enum machine_mode mode; /* mode it must have */
156 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
158 /* Number of replacements currently recorded. */
159 static int n_replacements;
161 /* Used to track what is modified by an operand. */
162 struct decomposition
164 int reg_flag; /* Nonzero if referencing a register. */
165 int safe; /* Nonzero if this can't conflict with anything. */
166 rtx base; /* Base address for MEM. */
167 HOST_WIDE_INT start; /* Starting offset or register number. */
168 HOST_WIDE_INT end; /* Ending offset or register number. */
171 #ifdef SECONDARY_MEMORY_NEEDED
173 /* Save MEMs needed to copy from one class of registers to another. One MEM
174 is used per mode, but normally only one or two modes are ever used.
176 We keep two versions, before and after register elimination. The one
177 after register elimination is record separately for each operand. This
178 is done in case the address is not valid to be sure that we separately
179 reload each. */
181 static rtx secondary_memlocs[NUM_MACHINE_MODES];
182 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
183 static int secondary_memlocs_elim_used = 0;
184 #endif
186 /* The instruction we are doing reloads for;
187 so we can test whether a register dies in it. */
188 static rtx this_insn;
190 /* Nonzero if this instruction is a user-specified asm with operands. */
191 static int this_insn_is_asm;
193 /* If hard_regs_live_known is nonzero,
194 we can tell which hard regs are currently live,
195 at least enough to succeed in choosing dummy reloads. */
196 static int hard_regs_live_known;
198 /* Indexed by hard reg number,
199 element is nonnegative if hard reg has been spilled.
200 This vector is passed to `find_reloads' as an argument
201 and is not changed here. */
202 static short *static_reload_reg_p;
204 /* Set to 1 in subst_reg_equivs if it changes anything. */
205 static int subst_reg_equivs_changed;
207 /* On return from push_reload, holds the reload-number for the OUT
208 operand, which can be different for that from the input operand. */
209 static int output_reloadnum;
211 /* Compare two RTX's. */
212 #define MATCHES(x, y) \
213 (x == y || (x != 0 && (REG_P (x) \
214 ? REG_P (y) && REGNO (x) == REGNO (y) \
215 : rtx_equal_p (x, y) && ! side_effects_p (x))))
217 /* Indicates if two reloads purposes are for similar enough things that we
218 can merge their reloads. */
219 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
220 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
221 || ((when1) == (when2) && (op1) == (op2)) \
222 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
223 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
224 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
225 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
226 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
228 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
229 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
230 ((when1) != (when2) \
231 || ! ((op1) == (op2) \
232 || (when1) == RELOAD_FOR_INPUT \
233 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
234 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
236 /* If we are going to reload an address, compute the reload type to
237 use. */
238 #define ADDR_TYPE(type) \
239 ((type) == RELOAD_FOR_INPUT_ADDRESS \
240 ? RELOAD_FOR_INPADDR_ADDRESS \
241 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
242 ? RELOAD_FOR_OUTADDR_ADDRESS \
243 : (type)))
245 #ifdef HAVE_SECONDARY_RELOADS
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 enum machine_mode, enum reload_type,
248 enum insn_code *);
249 #endif
250 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
251 int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
282 static int refers_to_mem_for_reload_p (rtx);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 rtx, rtx *);
286 #ifdef HAVE_SECONDARY_RELOADS
288 /* Determine if any secondary reloads are needed for loading (if IN_P is
289 nonzero) or storing (if IN_P is zero) X to or from a reload register of
290 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
291 are needed, push them.
293 Return the reload number of the secondary reload we made, or -1 if
294 we didn't need one. *PICODE is set to the insn_code to use if we do
295 need a secondary reload. */
297 static int
298 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
299 enum reg_class reload_class,
300 enum machine_mode reload_mode, enum reload_type type,
301 enum insn_code *picode)
303 enum reg_class class = NO_REGS;
304 enum machine_mode mode = reload_mode;
305 enum insn_code icode = CODE_FOR_nothing;
306 enum reg_class t_class = NO_REGS;
307 enum machine_mode t_mode = VOIDmode;
308 enum insn_code t_icode = CODE_FOR_nothing;
309 enum reload_type secondary_type;
310 int s_reload, t_reload = -1;
312 if (type == RELOAD_FOR_INPUT_ADDRESS
313 || type == RELOAD_FOR_OUTPUT_ADDRESS
314 || type == RELOAD_FOR_INPADDR_ADDRESS
315 || type == RELOAD_FOR_OUTADDR_ADDRESS)
316 secondary_type = type;
317 else
318 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
320 *picode = CODE_FOR_nothing;
322 /* If X is a paradoxical SUBREG, use the inner value to determine both the
323 mode and object being reloaded. */
324 if (GET_CODE (x) == SUBREG
325 && (GET_MODE_SIZE (GET_MODE (x))
326 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
328 x = SUBREG_REG (x);
329 reload_mode = GET_MODE (x);
332 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
333 is still a pseudo-register by now, it *must* have an equivalent MEM
334 but we don't want to assume that), use that equivalent when seeing if
335 a secondary reload is needed since whether or not a reload is needed
336 might be sensitive to the form of the MEM. */
338 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
339 && reg_equiv_mem[REGNO (x)] != 0)
340 x = reg_equiv_mem[REGNO (x)];
342 #ifdef SECONDARY_INPUT_RELOAD_CLASS
343 if (in_p)
344 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
347 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
348 if (! in_p)
349 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
350 #endif
352 /* If we don't need any secondary registers, done. */
353 if (class == NO_REGS)
354 return -1;
356 /* Get a possible insn to use. If the predicate doesn't accept X, don't
357 use the insn. */
359 icode = (in_p ? reload_in_optab[(int) reload_mode]
360 : reload_out_optab[(int) reload_mode]);
362 if (icode != CODE_FOR_nothing
363 && insn_data[(int) icode].operand[in_p].predicate
364 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
365 icode = CODE_FOR_nothing;
367 /* If we will be using an insn, see if it can directly handle the reload
368 register we will be using. If it can, the secondary reload is for a
369 scratch register. If it can't, we will use the secondary reload for
370 an intermediate register and require a tertiary reload for the scratch
371 register. */
373 if (icode != CODE_FOR_nothing)
375 /* If IN_P is nonzero, the reload register will be the output in
376 operand 0. If IN_P is zero, the reload register will be the input
377 in operand 1. Outputs should have an initial "=", which we must
378 skip. */
380 enum reg_class insn_class;
382 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
383 insn_class = ALL_REGS;
384 else
386 const char *insn_constraint
387 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
388 char insn_letter = *insn_constraint;
389 insn_class
390 = (insn_letter == 'r' ? GENERAL_REGS
391 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
392 insn_constraint));
394 gcc_assert (insn_class != NO_REGS);
395 gcc_assert (!in_p
396 || insn_data[(int) icode].operand[!in_p].constraint[0]
397 == '=');
400 /* The scratch register's constraint must start with "=&". */
401 gcc_assert (insn_data[(int) icode].operand[2].constraint[0] == '='
402 && insn_data[(int) icode].operand[2].constraint[1] == '&');
404 if (reg_class_subset_p (reload_class, insn_class))
405 mode = insn_data[(int) icode].operand[2].mode;
406 else
408 const char *t_constraint
409 = &insn_data[(int) icode].operand[2].constraint[2];
410 char t_letter = *t_constraint;
411 class = insn_class;
412 t_mode = insn_data[(int) icode].operand[2].mode;
413 t_class = (t_letter == 'r' ? GENERAL_REGS
414 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
415 t_constraint));
416 t_icode = icode;
417 icode = CODE_FOR_nothing;
421 /* This case isn't valid, so fail. Reload is allowed to use the same
422 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
423 in the case of a secondary register, we actually need two different
424 registers for correct code. We fail here to prevent the possibility of
425 silently generating incorrect code later.
427 The convention is that secondary input reloads are valid only if the
428 secondary_class is different from class. If you have such a case, you
429 can not use secondary reloads, you must work around the problem some
430 other way.
432 Allow this when a reload_in/out pattern is being used. I.e. assume
433 that the generated code handles this case. */
435 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
436 || t_icode != CODE_FOR_nothing);
438 /* If we need a tertiary reload, see if we have one we can reuse or else
439 make a new one. */
441 if (t_class != NO_REGS)
443 for (t_reload = 0; t_reload < n_reloads; t_reload++)
444 if (rld[t_reload].secondary_p
445 && (reg_class_subset_p (t_class, rld[t_reload].class)
446 || reg_class_subset_p (rld[t_reload].class, t_class))
447 && ((in_p && rld[t_reload].inmode == t_mode)
448 || (! in_p && rld[t_reload].outmode == t_mode))
449 && ((in_p && (rld[t_reload].secondary_in_icode
450 == CODE_FOR_nothing))
451 || (! in_p &&(rld[t_reload].secondary_out_icode
452 == CODE_FOR_nothing)))
453 && (SMALL_REGISTER_CLASS_P (t_class) || SMALL_REGISTER_CLASSES)
454 && MERGABLE_RELOADS (secondary_type,
455 rld[t_reload].when_needed,
456 opnum, rld[t_reload].opnum))
458 if (in_p)
459 rld[t_reload].inmode = t_mode;
460 if (! in_p)
461 rld[t_reload].outmode = t_mode;
463 if (reg_class_subset_p (t_class, rld[t_reload].class))
464 rld[t_reload].class = t_class;
466 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
467 rld[t_reload].optional &= optional;
468 rld[t_reload].secondary_p = 1;
469 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
470 opnum, rld[t_reload].opnum))
471 rld[t_reload].when_needed = RELOAD_OTHER;
474 if (t_reload == n_reloads)
476 /* We need to make a new tertiary reload for this register class. */
477 rld[t_reload].in = rld[t_reload].out = 0;
478 rld[t_reload].class = t_class;
479 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
480 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
481 rld[t_reload].reg_rtx = 0;
482 rld[t_reload].optional = optional;
483 rld[t_reload].inc = 0;
484 /* Maybe we could combine these, but it seems too tricky. */
485 rld[t_reload].nocombine = 1;
486 rld[t_reload].in_reg = 0;
487 rld[t_reload].out_reg = 0;
488 rld[t_reload].opnum = opnum;
489 rld[t_reload].when_needed = secondary_type;
490 rld[t_reload].secondary_in_reload = -1;
491 rld[t_reload].secondary_out_reload = -1;
492 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
493 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
494 rld[t_reload].secondary_p = 1;
496 n_reloads++;
500 /* See if we can reuse an existing secondary reload. */
501 for (s_reload = 0; s_reload < n_reloads; s_reload++)
502 if (rld[s_reload].secondary_p
503 && (reg_class_subset_p (class, rld[s_reload].class)
504 || reg_class_subset_p (rld[s_reload].class, class))
505 && ((in_p && rld[s_reload].inmode == mode)
506 || (! in_p && rld[s_reload].outmode == mode))
507 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
508 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
509 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
510 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
511 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
512 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
513 opnum, rld[s_reload].opnum))
515 if (in_p)
516 rld[s_reload].inmode = mode;
517 if (! in_p)
518 rld[s_reload].outmode = mode;
520 if (reg_class_subset_p (class, rld[s_reload].class))
521 rld[s_reload].class = class;
523 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
524 rld[s_reload].optional &= optional;
525 rld[s_reload].secondary_p = 1;
526 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
527 opnum, rld[s_reload].opnum))
528 rld[s_reload].when_needed = RELOAD_OTHER;
531 if (s_reload == n_reloads)
533 #ifdef SECONDARY_MEMORY_NEEDED
534 /* If we need a memory location to copy between the two reload regs,
535 set it up now. Note that we do the input case before making
536 the reload and the output case after. This is due to the
537 way reloads are output. */
539 if (in_p && icode == CODE_FOR_nothing
540 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
542 get_secondary_mem (x, reload_mode, opnum, type);
544 /* We may have just added new reloads. Make sure we add
545 the new reload at the end. */
546 s_reload = n_reloads;
548 #endif
550 /* We need to make a new secondary reload for this register class. */
551 rld[s_reload].in = rld[s_reload].out = 0;
552 rld[s_reload].class = class;
554 rld[s_reload].inmode = in_p ? mode : VOIDmode;
555 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
556 rld[s_reload].reg_rtx = 0;
557 rld[s_reload].optional = optional;
558 rld[s_reload].inc = 0;
559 /* Maybe we could combine these, but it seems too tricky. */
560 rld[s_reload].nocombine = 1;
561 rld[s_reload].in_reg = 0;
562 rld[s_reload].out_reg = 0;
563 rld[s_reload].opnum = opnum;
564 rld[s_reload].when_needed = secondary_type;
565 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
566 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
567 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
568 rld[s_reload].secondary_out_icode
569 = ! in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_p = 1;
572 n_reloads++;
574 #ifdef SECONDARY_MEMORY_NEEDED
575 if (! in_p && icode == CODE_FOR_nothing
576 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
577 get_secondary_mem (x, mode, opnum, type);
578 #endif
581 *picode = icode;
582 return s_reload;
584 #endif /* HAVE_SECONDARY_RELOADS */
586 #ifdef SECONDARY_MEMORY_NEEDED
588 /* Return a memory location that will be used to copy X in mode MODE.
589 If we haven't already made a location for this mode in this insn,
590 call find_reloads_address on the location being returned. */
593 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
594 int opnum, enum reload_type type)
596 rtx loc;
597 int mem_valid;
599 /* By default, if MODE is narrower than a word, widen it to a word.
600 This is required because most machines that require these memory
601 locations do not support short load and stores from all registers
602 (e.g., FP registers). */
604 #ifdef SECONDARY_MEMORY_NEEDED_MODE
605 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
606 #else
607 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
608 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
609 #endif
611 /* If we already have made a MEM for this operand in MODE, return it. */
612 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
613 return secondary_memlocs_elim[(int) mode][opnum];
615 /* If this is the first time we've tried to get a MEM for this mode,
616 allocate a new one. `something_changed' in reload will get set
617 by noticing that the frame size has changed. */
619 if (secondary_memlocs[(int) mode] == 0)
621 #ifdef SECONDARY_MEMORY_NEEDED_RTX
622 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
623 #else
624 secondary_memlocs[(int) mode]
625 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
626 #endif
629 /* Get a version of the address doing any eliminations needed. If that
630 didn't give us a new MEM, make a new one if it isn't valid. */
632 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
633 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
635 if (! mem_valid && loc == secondary_memlocs[(int) mode])
636 loc = copy_rtx (loc);
638 /* The only time the call below will do anything is if the stack
639 offset is too large. In that case IND_LEVELS doesn't matter, so we
640 can just pass a zero. Adjust the type to be the address of the
641 corresponding object. If the address was valid, save the eliminated
642 address. If it wasn't valid, we need to make a reload each time, so
643 don't save it. */
645 if (! mem_valid)
647 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
648 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
649 : RELOAD_OTHER);
651 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
652 opnum, type, 0, 0);
655 secondary_memlocs_elim[(int) mode][opnum] = loc;
656 if (secondary_memlocs_elim_used <= (int)mode)
657 secondary_memlocs_elim_used = (int)mode + 1;
658 return loc;
661 /* Clear any secondary memory locations we've made. */
663 void
664 clear_secondary_mem (void)
666 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
668 #endif /* SECONDARY_MEMORY_NEEDED */
671 /* Find the largest class which has at least one register valid in
672 mode INNER, and which for every such register, that register number
673 plus N is also valid in OUTER (if in range) and is cheap to move
674 into REGNO. Such a class must exist. */
676 static enum reg_class
677 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
678 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
679 unsigned int dest_regno ATTRIBUTE_UNUSED)
681 int best_cost = -1;
682 int class;
683 int regno;
684 enum reg_class best_class = NO_REGS;
685 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
686 unsigned int best_size = 0;
687 int cost;
689 for (class = 1; class < N_REG_CLASSES; class++)
691 int bad = 0;
692 int good = 0;
693 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
694 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
696 if (HARD_REGNO_MODE_OK (regno, inner))
698 good = 1;
699 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
700 || ! HARD_REGNO_MODE_OK (regno + n, outer))
701 bad = 1;
705 if (bad || !good)
706 continue;
707 cost = REGISTER_MOVE_COST (outer, class, dest_class);
709 if ((reg_class_size[class] > best_size
710 && (best_cost < 0 || best_cost >= cost))
711 || best_cost > cost)
713 best_class = class;
714 best_size = reg_class_size[class];
715 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
719 gcc_assert (best_size != 0);
721 return best_class;
724 /* Return the number of a previously made reload that can be combined with
725 a new one, or n_reloads if none of the existing reloads can be used.
726 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
727 push_reload, they determine the kind of the new reload that we try to
728 combine. P_IN points to the corresponding value of IN, which can be
729 modified by this function.
730 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
732 static int
733 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
734 enum reload_type type, int opnum, int dont_share)
736 rtx in = *p_in;
737 int i;
738 /* We can't merge two reloads if the output of either one is
739 earlyclobbered. */
741 if (earlyclobber_operand_p (out))
742 return n_reloads;
744 /* We can use an existing reload if the class is right
745 and at least one of IN and OUT is a match
746 and the other is at worst neutral.
747 (A zero compared against anything is neutral.)
749 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
750 for the same thing since that can cause us to need more reload registers
751 than we otherwise would. */
753 for (i = 0; i < n_reloads; i++)
754 if ((reg_class_subset_p (class, rld[i].class)
755 || reg_class_subset_p (rld[i].class, class))
756 /* If the existing reload has a register, it must fit our class. */
757 && (rld[i].reg_rtx == 0
758 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
759 true_regnum (rld[i].reg_rtx)))
760 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
761 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
762 || (out != 0 && MATCHES (rld[i].out, out)
763 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
764 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
765 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
766 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
767 return i;
769 /* Reloading a plain reg for input can match a reload to postincrement
770 that reg, since the postincrement's value is the right value.
771 Likewise, it can match a preincrement reload, since we regard
772 the preincrementation as happening before any ref in this insn
773 to that register. */
774 for (i = 0; i < n_reloads; i++)
775 if ((reg_class_subset_p (class, rld[i].class)
776 || reg_class_subset_p (rld[i].class, class))
777 /* If the existing reload has a register, it must fit our
778 class. */
779 && (rld[i].reg_rtx == 0
780 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
781 true_regnum (rld[i].reg_rtx)))
782 && out == 0 && rld[i].out == 0 && rld[i].in != 0
783 && ((REG_P (in)
784 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
785 && MATCHES (XEXP (rld[i].in, 0), in))
786 || (REG_P (rld[i].in)
787 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
788 && MATCHES (XEXP (in, 0), rld[i].in)))
789 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
790 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
791 && MERGABLE_RELOADS (type, rld[i].when_needed,
792 opnum, rld[i].opnum))
794 /* Make sure reload_in ultimately has the increment,
795 not the plain register. */
796 if (REG_P (in))
797 *p_in = rld[i].in;
798 return i;
800 return n_reloads;
803 /* Return nonzero if X is a SUBREG which will require reloading of its
804 SUBREG_REG expression. */
806 static int
807 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
809 rtx inner;
811 /* Only SUBREGs are problematical. */
812 if (GET_CODE (x) != SUBREG)
813 return 0;
815 inner = SUBREG_REG (x);
817 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
818 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
819 return 1;
821 /* If INNER is not a hard register, then INNER will not need to
822 be reloaded. */
823 if (!REG_P (inner)
824 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
825 return 0;
827 /* If INNER is not ok for MODE, then INNER will need reloading. */
828 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
829 return 1;
831 /* If the outer part is a word or smaller, INNER larger than a
832 word and the number of regs for INNER is not the same as the
833 number of words in INNER, then INNER will need reloading. */
834 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
835 && output
836 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
837 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
838 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
841 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
842 requiring an extra reload register. The caller has already found that
843 IN contains some reference to REGNO, so check that we can produce the
844 new value in a single step. E.g. if we have
845 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
846 instruction that adds one to a register, this should succeed.
847 However, if we have something like
848 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
849 needs to be loaded into a register first, we need a separate reload
850 register.
851 Such PLUS reloads are generated by find_reload_address_part.
852 The out-of-range PLUS expressions are usually introduced in the instruction
853 patterns by register elimination and substituting pseudos without a home
854 by their function-invariant equivalences. */
855 static int
856 can_reload_into (rtx in, int regno, enum machine_mode mode)
858 rtx dst, test_insn;
859 int r = 0;
860 struct recog_data save_recog_data;
862 /* For matching constraints, we often get notional input reloads where
863 we want to use the original register as the reload register. I.e.
864 technically this is a non-optional input-output reload, but IN is
865 already a valid register, and has been chosen as the reload register.
866 Speed this up, since it trivially works. */
867 if (REG_P (in))
868 return 1;
870 /* To test MEMs properly, we'd have to take into account all the reloads
871 that are already scheduled, which can become quite complicated.
872 And since we've already handled address reloads for this MEM, it
873 should always succeed anyway. */
874 if (MEM_P (in))
875 return 1;
877 /* If we can make a simple SET insn that does the job, everything should
878 be fine. */
879 dst = gen_rtx_REG (mode, regno);
880 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
881 save_recog_data = recog_data;
882 if (recog_memoized (test_insn) >= 0)
884 extract_insn (test_insn);
885 r = constrain_operands (1);
887 recog_data = save_recog_data;
888 return r;
891 /* Record one reload that needs to be performed.
892 IN is an rtx saying where the data are to be found before this instruction.
893 OUT says where they must be stored after the instruction.
894 (IN is zero for data not read, and OUT is zero for data not written.)
895 INLOC and OUTLOC point to the places in the instructions where
896 IN and OUT were found.
897 If IN and OUT are both nonzero, it means the same register must be used
898 to reload both IN and OUT.
900 CLASS is a register class required for the reloaded data.
901 INMODE is the machine mode that the instruction requires
902 for the reg that replaces IN and OUTMODE is likewise for OUT.
904 If IN is zero, then OUT's location and mode should be passed as
905 INLOC and INMODE.
907 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
909 OPTIONAL nonzero means this reload does not need to be performed:
910 it can be discarded if that is more convenient.
912 OPNUM and TYPE say what the purpose of this reload is.
914 The return value is the reload-number for this reload.
916 If both IN and OUT are nonzero, in some rare cases we might
917 want to make two separate reloads. (Actually we never do this now.)
918 Therefore, the reload-number for OUT is stored in
919 output_reloadnum when we return; the return value applies to IN.
920 Usually (presently always), when IN and OUT are nonzero,
921 the two reload-numbers are equal, but the caller should be careful to
922 distinguish them. */
925 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
926 enum reg_class class, enum machine_mode inmode,
927 enum machine_mode outmode, int strict_low, int optional,
928 int opnum, enum reload_type type)
930 int i;
931 int dont_share = 0;
932 int dont_remove_subreg = 0;
933 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
934 int secondary_in_reload = -1, secondary_out_reload = -1;
935 enum insn_code secondary_in_icode = CODE_FOR_nothing;
936 enum insn_code secondary_out_icode = CODE_FOR_nothing;
938 /* INMODE and/or OUTMODE could be VOIDmode if no mode
939 has been specified for the operand. In that case,
940 use the operand's mode as the mode to reload. */
941 if (inmode == VOIDmode && in != 0)
942 inmode = GET_MODE (in);
943 if (outmode == VOIDmode && out != 0)
944 outmode = GET_MODE (out);
946 /* If IN is a pseudo register everywhere-equivalent to a constant, and
947 it is not in a hard register, reload straight from the constant,
948 since we want to get rid of such pseudo registers.
949 Often this is done earlier, but not always in find_reloads_address. */
950 if (in != 0 && REG_P (in))
952 int regno = REGNO (in);
954 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
955 && reg_equiv_constant[regno] != 0)
956 in = reg_equiv_constant[regno];
959 /* Likewise for OUT. Of course, OUT will never be equivalent to
960 an actual constant, but it might be equivalent to a memory location
961 (in the case of a parameter). */
962 if (out != 0 && REG_P (out))
964 int regno = REGNO (out);
966 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
967 && reg_equiv_constant[regno] != 0)
968 out = reg_equiv_constant[regno];
971 /* If we have a read-write operand with an address side-effect,
972 change either IN or OUT so the side-effect happens only once. */
973 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
974 switch (GET_CODE (XEXP (in, 0)))
976 case POST_INC: case POST_DEC: case POST_MODIFY:
977 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
978 break;
980 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
981 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
982 break;
984 default:
985 break;
988 /* If we are reloading a (SUBREG constant ...), really reload just the
989 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
990 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
991 a pseudo and hence will become a MEM) with M1 wider than M2 and the
992 register is a pseudo, also reload the inside expression.
993 For machines that extend byte loads, do this for any SUBREG of a pseudo
994 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
995 M2 is an integral mode that gets extended when loaded.
996 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
997 either M1 is not valid for R or M2 is wider than a word but we only
998 need one word to store an M2-sized quantity in R.
999 (However, if OUT is nonzero, we need to reload the reg *and*
1000 the subreg, so do nothing here, and let following statement handle it.)
1002 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1003 we can't handle it here because CONST_INT does not indicate a mode.
1005 Similarly, we must reload the inside expression if we have a
1006 STRICT_LOW_PART (presumably, in == out in the cas).
1008 Also reload the inner expression if it does not require a secondary
1009 reload but the SUBREG does.
1011 Finally, reload the inner expression if it is a register that is in
1012 the class whose registers cannot be referenced in a different size
1013 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1014 cannot reload just the inside since we might end up with the wrong
1015 register class. But if it is inside a STRICT_LOW_PART, we have
1016 no choice, so we hope we do get the right register class there. */
1018 if (in != 0 && GET_CODE (in) == SUBREG
1019 && (subreg_lowpart_p (in) || strict_low)
1020 #ifdef CANNOT_CHANGE_MODE_CLASS
1021 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1022 #endif
1023 && (CONSTANT_P (SUBREG_REG (in))
1024 || GET_CODE (SUBREG_REG (in)) == PLUS
1025 || strict_low
1026 || (((REG_P (SUBREG_REG (in))
1027 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1028 || MEM_P (SUBREG_REG (in)))
1029 && ((GET_MODE_SIZE (inmode)
1030 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1031 #ifdef LOAD_EXTEND_OP
1032 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1034 <= UNITS_PER_WORD)
1035 && (GET_MODE_SIZE (inmode)
1036 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1037 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1038 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1039 #endif
1040 #ifdef WORD_REGISTER_OPERATIONS
1041 || ((GET_MODE_SIZE (inmode)
1042 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1043 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1044 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1045 / UNITS_PER_WORD)))
1046 #endif
1048 || (REG_P (SUBREG_REG (in))
1049 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1050 /* The case where out is nonzero
1051 is handled differently in the following statement. */
1052 && (out == 0 || subreg_lowpart_p (in))
1053 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1054 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1055 > UNITS_PER_WORD)
1056 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1057 / UNITS_PER_WORD)
1058 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1059 [GET_MODE (SUBREG_REG (in))]))
1060 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1061 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1062 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1063 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1064 GET_MODE (SUBREG_REG (in)),
1065 SUBREG_REG (in))
1066 == NO_REGS))
1067 #endif
1068 #ifdef CANNOT_CHANGE_MODE_CLASS
1069 || (REG_P (SUBREG_REG (in))
1070 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1071 && REG_CANNOT_CHANGE_MODE_P
1072 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1073 #endif
1076 in_subreg_loc = inloc;
1077 inloc = &SUBREG_REG (in);
1078 in = *inloc;
1079 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1080 if (MEM_P (in))
1081 /* This is supposed to happen only for paradoxical subregs made by
1082 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1083 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1084 #endif
1085 inmode = GET_MODE (in);
1088 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1089 either M1 is not valid for R or M2 is wider than a word but we only
1090 need one word to store an M2-sized quantity in R.
1092 However, we must reload the inner reg *as well as* the subreg in
1093 that case. */
1095 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1096 code above. This can happen if SUBREG_BYTE != 0. */
1098 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1100 enum reg_class in_class = class;
1102 if (REG_P (SUBREG_REG (in)))
1103 in_class
1104 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1105 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1106 GET_MODE (SUBREG_REG (in)),
1107 SUBREG_BYTE (in),
1108 GET_MODE (in)),
1109 REGNO (SUBREG_REG (in)));
1111 /* This relies on the fact that emit_reload_insns outputs the
1112 instructions for input reloads of type RELOAD_OTHER in the same
1113 order as the reloads. Thus if the outer reload is also of type
1114 RELOAD_OTHER, we are guaranteed that this inner reload will be
1115 output before the outer reload. */
1116 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1117 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1118 dont_remove_subreg = 1;
1121 /* Similarly for paradoxical and problematical SUBREGs on the output.
1122 Note that there is no reason we need worry about the previous value
1123 of SUBREG_REG (out); even if wider than out,
1124 storing in a subreg is entitled to clobber it all
1125 (except in the case of STRICT_LOW_PART,
1126 and in that case the constraint should label it input-output.) */
1127 if (out != 0 && GET_CODE (out) == SUBREG
1128 && (subreg_lowpart_p (out) || strict_low)
1129 #ifdef CANNOT_CHANGE_MODE_CLASS
1130 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1131 #endif
1132 && (CONSTANT_P (SUBREG_REG (out))
1133 || strict_low
1134 || (((REG_P (SUBREG_REG (out))
1135 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1136 || MEM_P (SUBREG_REG (out)))
1137 && ((GET_MODE_SIZE (outmode)
1138 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1139 #ifdef WORD_REGISTER_OPERATIONS
1140 || ((GET_MODE_SIZE (outmode)
1141 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1142 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1143 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1144 / UNITS_PER_WORD)))
1145 #endif
1147 || (REG_P (SUBREG_REG (out))
1148 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1149 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1150 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1151 > UNITS_PER_WORD)
1152 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1153 / UNITS_PER_WORD)
1154 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1155 [GET_MODE (SUBREG_REG (out))]))
1156 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1157 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1158 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1159 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1160 GET_MODE (SUBREG_REG (out)),
1161 SUBREG_REG (out))
1162 == NO_REGS))
1163 #endif
1164 #ifdef CANNOT_CHANGE_MODE_CLASS
1165 || (REG_P (SUBREG_REG (out))
1166 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1167 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1168 GET_MODE (SUBREG_REG (out)),
1169 outmode))
1170 #endif
1173 out_subreg_loc = outloc;
1174 outloc = &SUBREG_REG (out);
1175 out = *outloc;
1176 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1177 gcc_assert (!MEM_P (out)
1178 || GET_MODE_SIZE (GET_MODE (out))
1179 <= GET_MODE_SIZE (outmode));
1180 #endif
1181 outmode = GET_MODE (out);
1184 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1185 either M1 is not valid for R or M2 is wider than a word but we only
1186 need one word to store an M2-sized quantity in R.
1188 However, we must reload the inner reg *as well as* the subreg in
1189 that case. In this case, the inner reg is an in-out reload. */
1191 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1193 /* This relies on the fact that emit_reload_insns outputs the
1194 instructions for output reloads of type RELOAD_OTHER in reverse
1195 order of the reloads. Thus if the outer reload is also of type
1196 RELOAD_OTHER, we are guaranteed that this inner reload will be
1197 output after the outer reload. */
1198 dont_remove_subreg = 1;
1199 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1200 &SUBREG_REG (out),
1201 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1202 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1203 GET_MODE (SUBREG_REG (out)),
1204 SUBREG_BYTE (out),
1205 GET_MODE (out)),
1206 REGNO (SUBREG_REG (out))),
1207 VOIDmode, VOIDmode, 0, 0,
1208 opnum, RELOAD_OTHER);
1211 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1212 if (in != 0 && out != 0 && MEM_P (out)
1213 && (REG_P (in) || MEM_P (in))
1214 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1215 dont_share = 1;
1217 /* If IN is a SUBREG of a hard register, make a new REG. This
1218 simplifies some of the cases below. */
1220 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1221 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1222 && ! dont_remove_subreg)
1223 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1225 /* Similarly for OUT. */
1226 if (out != 0 && GET_CODE (out) == SUBREG
1227 && REG_P (SUBREG_REG (out))
1228 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1229 && ! dont_remove_subreg)
1230 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1232 /* Narrow down the class of register wanted if that is
1233 desirable on this machine for efficiency. */
1234 if (in != 0)
1235 class = PREFERRED_RELOAD_CLASS (in, class);
1237 /* Output reloads may need analogous treatment, different in detail. */
1238 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1239 if (out != 0)
1240 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1241 #endif
1243 /* Make sure we use a class that can handle the actual pseudo
1244 inside any subreg. For example, on the 386, QImode regs
1245 can appear within SImode subregs. Although GENERAL_REGS
1246 can handle SImode, QImode needs a smaller class. */
1247 #ifdef LIMIT_RELOAD_CLASS
1248 if (in_subreg_loc)
1249 class = LIMIT_RELOAD_CLASS (inmode, class);
1250 else if (in != 0 && GET_CODE (in) == SUBREG)
1251 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1253 if (out_subreg_loc)
1254 class = LIMIT_RELOAD_CLASS (outmode, class);
1255 if (out != 0 && GET_CODE (out) == SUBREG)
1256 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1257 #endif
1259 /* Verify that this class is at least possible for the mode that
1260 is specified. */
1261 if (this_insn_is_asm)
1263 enum machine_mode mode;
1264 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1265 mode = inmode;
1266 else
1267 mode = outmode;
1268 if (mode == VOIDmode)
1270 error_for_asm (this_insn, "cannot reload integer constant "
1271 "operand in %<asm%>");
1272 mode = word_mode;
1273 if (in != 0)
1274 inmode = word_mode;
1275 if (out != 0)
1276 outmode = word_mode;
1278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1279 if (HARD_REGNO_MODE_OK (i, mode)
1280 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1282 int nregs = hard_regno_nregs[i][mode];
1284 int j;
1285 for (j = 1; j < nregs; j++)
1286 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1287 break;
1288 if (j == nregs)
1289 break;
1291 if (i == FIRST_PSEUDO_REGISTER)
1293 error_for_asm (this_insn, "impossible register constraint "
1294 "in %<asm%>");
1295 class = ALL_REGS;
1299 /* Optional output reloads are always OK even if we have no register class,
1300 since the function of these reloads is only to have spill_reg_store etc.
1301 set, so that the storing insn can be deleted later. */
1302 gcc_assert (class != NO_REGS
1303 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1305 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1307 if (i == n_reloads)
1309 /* See if we need a secondary reload register to move between CLASS
1310 and IN or CLASS and OUT. Get the icode and push any required reloads
1311 needed for each of them if so. */
1313 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1314 if (in != 0)
1315 secondary_in_reload
1316 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1317 &secondary_in_icode);
1318 #endif
1320 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1321 if (out != 0 && GET_CODE (out) != SCRATCH)
1322 secondary_out_reload
1323 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1324 type, &secondary_out_icode);
1325 #endif
1327 /* We found no existing reload suitable for re-use.
1328 So add an additional reload. */
1330 #ifdef SECONDARY_MEMORY_NEEDED
1331 /* If a memory location is needed for the copy, make one. */
1332 if (in != 0
1333 && (REG_P (in)
1334 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1335 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1336 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1337 class, inmode))
1338 get_secondary_mem (in, inmode, opnum, type);
1339 #endif
1341 i = n_reloads;
1342 rld[i].in = in;
1343 rld[i].out = out;
1344 rld[i].class = class;
1345 rld[i].inmode = inmode;
1346 rld[i].outmode = outmode;
1347 rld[i].reg_rtx = 0;
1348 rld[i].optional = optional;
1349 rld[i].inc = 0;
1350 rld[i].nocombine = 0;
1351 rld[i].in_reg = inloc ? *inloc : 0;
1352 rld[i].out_reg = outloc ? *outloc : 0;
1353 rld[i].opnum = opnum;
1354 rld[i].when_needed = type;
1355 rld[i].secondary_in_reload = secondary_in_reload;
1356 rld[i].secondary_out_reload = secondary_out_reload;
1357 rld[i].secondary_in_icode = secondary_in_icode;
1358 rld[i].secondary_out_icode = secondary_out_icode;
1359 rld[i].secondary_p = 0;
1361 n_reloads++;
1363 #ifdef SECONDARY_MEMORY_NEEDED
1364 if (out != 0
1365 && (REG_P (out)
1366 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1367 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1368 && SECONDARY_MEMORY_NEEDED (class,
1369 REGNO_REG_CLASS (reg_or_subregno (out)),
1370 outmode))
1371 get_secondary_mem (out, outmode, opnum, type);
1372 #endif
1374 else
1376 /* We are reusing an existing reload,
1377 but we may have additional information for it.
1378 For example, we may now have both IN and OUT
1379 while the old one may have just one of them. */
1381 /* The modes can be different. If they are, we want to reload in
1382 the larger mode, so that the value is valid for both modes. */
1383 if (inmode != VOIDmode
1384 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1385 rld[i].inmode = inmode;
1386 if (outmode != VOIDmode
1387 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1388 rld[i].outmode = outmode;
1389 if (in != 0)
1391 rtx in_reg = inloc ? *inloc : 0;
1392 /* If we merge reloads for two distinct rtl expressions that
1393 are identical in content, there might be duplicate address
1394 reloads. Remove the extra set now, so that if we later find
1395 that we can inherit this reload, we can get rid of the
1396 address reloads altogether.
1398 Do not do this if both reloads are optional since the result
1399 would be an optional reload which could potentially leave
1400 unresolved address replacements.
1402 It is not sufficient to call transfer_replacements since
1403 choose_reload_regs will remove the replacements for address
1404 reloads of inherited reloads which results in the same
1405 problem. */
1406 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1407 && ! (rld[i].optional && optional))
1409 /* We must keep the address reload with the lower operand
1410 number alive. */
1411 if (opnum > rld[i].opnum)
1413 remove_address_replacements (in);
1414 in = rld[i].in;
1415 in_reg = rld[i].in_reg;
1417 else
1418 remove_address_replacements (rld[i].in);
1420 rld[i].in = in;
1421 rld[i].in_reg = in_reg;
1423 if (out != 0)
1425 rld[i].out = out;
1426 rld[i].out_reg = outloc ? *outloc : 0;
1428 if (reg_class_subset_p (class, rld[i].class))
1429 rld[i].class = class;
1430 rld[i].optional &= optional;
1431 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1432 opnum, rld[i].opnum))
1433 rld[i].when_needed = RELOAD_OTHER;
1434 rld[i].opnum = MIN (rld[i].opnum, opnum);
1437 /* If the ostensible rtx being reloaded differs from the rtx found
1438 in the location to substitute, this reload is not safe to combine
1439 because we cannot reliably tell whether it appears in the insn. */
1441 if (in != 0 && in != *inloc)
1442 rld[i].nocombine = 1;
1444 #if 0
1445 /* This was replaced by changes in find_reloads_address_1 and the new
1446 function inc_for_reload, which go with a new meaning of reload_inc. */
1448 /* If this is an IN/OUT reload in an insn that sets the CC,
1449 it must be for an autoincrement. It doesn't work to store
1450 the incremented value after the insn because that would clobber the CC.
1451 So we must do the increment of the value reloaded from,
1452 increment it, store it back, then decrement again. */
1453 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1455 out = 0;
1456 rld[i].out = 0;
1457 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1458 /* If we did not find a nonzero amount-to-increment-by,
1459 that contradicts the belief that IN is being incremented
1460 in an address in this insn. */
1461 gcc_assert (rld[i].inc != 0);
1463 #endif
1465 /* If we will replace IN and OUT with the reload-reg,
1466 record where they are located so that substitution need
1467 not do a tree walk. */
1469 if (replace_reloads)
1471 if (inloc != 0)
1473 struct replacement *r = &replacements[n_replacements++];
1474 r->what = i;
1475 r->subreg_loc = in_subreg_loc;
1476 r->where = inloc;
1477 r->mode = inmode;
1479 if (outloc != 0 && outloc != inloc)
1481 struct replacement *r = &replacements[n_replacements++];
1482 r->what = i;
1483 r->where = outloc;
1484 r->subreg_loc = out_subreg_loc;
1485 r->mode = outmode;
1489 /* If this reload is just being introduced and it has both
1490 an incoming quantity and an outgoing quantity that are
1491 supposed to be made to match, see if either one of the two
1492 can serve as the place to reload into.
1494 If one of them is acceptable, set rld[i].reg_rtx
1495 to that one. */
1497 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1499 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1500 inmode, outmode,
1501 rld[i].class, i,
1502 earlyclobber_operand_p (out));
1504 /* If the outgoing register already contains the same value
1505 as the incoming one, we can dispense with loading it.
1506 The easiest way to tell the caller that is to give a phony
1507 value for the incoming operand (same as outgoing one). */
1508 if (rld[i].reg_rtx == out
1509 && (REG_P (in) || CONSTANT_P (in))
1510 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1511 static_reload_reg_p, i, inmode))
1512 rld[i].in = out;
1515 /* If this is an input reload and the operand contains a register that
1516 dies in this insn and is used nowhere else, see if it is the right class
1517 to be used for this reload. Use it if so. (This occurs most commonly
1518 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1519 this if it is also an output reload that mentions the register unless
1520 the output is a SUBREG that clobbers an entire register.
1522 Note that the operand might be one of the spill regs, if it is a
1523 pseudo reg and we are in a block where spilling has not taken place.
1524 But if there is no spilling in this block, that is OK.
1525 An explicitly used hard reg cannot be a spill reg. */
1527 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1529 rtx note;
1530 int regno;
1531 enum machine_mode rel_mode = inmode;
1533 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1534 rel_mode = outmode;
1536 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1537 if (REG_NOTE_KIND (note) == REG_DEAD
1538 && REG_P (XEXP (note, 0))
1539 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1540 && reg_mentioned_p (XEXP (note, 0), in)
1541 /* Check that we don't use a hardreg for an uninitialized
1542 pseudo. See also find_dummy_reload(). */
1543 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1544 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1545 ORIGINAL_REGNO (XEXP (note, 0))))
1546 && ! refers_to_regno_for_reload_p (regno,
1547 (regno
1548 + hard_regno_nregs[regno]
1549 [rel_mode]),
1550 PATTERN (this_insn), inloc)
1551 /* If this is also an output reload, IN cannot be used as
1552 the reload register if it is set in this insn unless IN
1553 is also OUT. */
1554 && (out == 0 || in == out
1555 || ! hard_reg_set_here_p (regno,
1556 (regno
1557 + hard_regno_nregs[regno]
1558 [rel_mode]),
1559 PATTERN (this_insn)))
1560 /* ??? Why is this code so different from the previous?
1561 Is there any simple coherent way to describe the two together?
1562 What's going on here. */
1563 && (in != out
1564 || (GET_CODE (in) == SUBREG
1565 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1566 / UNITS_PER_WORD)
1567 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1568 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1569 /* Make sure the operand fits in the reg that dies. */
1570 && (GET_MODE_SIZE (rel_mode)
1571 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1572 && HARD_REGNO_MODE_OK (regno, inmode)
1573 && HARD_REGNO_MODE_OK (regno, outmode))
1575 unsigned int offs;
1576 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1577 hard_regno_nregs[regno][outmode]);
1579 for (offs = 0; offs < nregs; offs++)
1580 if (fixed_regs[regno + offs]
1581 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1582 regno + offs))
1583 break;
1585 if (offs == nregs
1586 && (! (refers_to_regno_for_reload_p
1587 (regno, (regno + hard_regno_nregs[regno][inmode]),
1588 in, (rtx *)0))
1589 || can_reload_into (in, regno, inmode)))
1591 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1592 break;
1597 if (out)
1598 output_reloadnum = i;
1600 return i;
1603 /* Record an additional place we must replace a value
1604 for which we have already recorded a reload.
1605 RELOADNUM is the value returned by push_reload
1606 when the reload was recorded.
1607 This is used in insn patterns that use match_dup. */
1609 static void
1610 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1612 if (replace_reloads)
1614 struct replacement *r = &replacements[n_replacements++];
1615 r->what = reloadnum;
1616 r->where = loc;
1617 r->subreg_loc = 0;
1618 r->mode = mode;
1622 /* Duplicate any replacement we have recorded to apply at
1623 location ORIG_LOC to also be performed at DUP_LOC.
1624 This is used in insn patterns that use match_dup. */
1626 static void
1627 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1629 int i, n = n_replacements;
1631 for (i = 0; i < n; i++)
1633 struct replacement *r = &replacements[i];
1634 if (r->where == orig_loc)
1635 push_replacement (dup_loc, r->what, r->mode);
1639 /* Transfer all replacements that used to be in reload FROM to be in
1640 reload TO. */
1642 void
1643 transfer_replacements (int to, int from)
1645 int i;
1647 for (i = 0; i < n_replacements; i++)
1648 if (replacements[i].what == from)
1649 replacements[i].what = to;
1652 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1653 or a subpart of it. If we have any replacements registered for IN_RTX,
1654 cancel the reloads that were supposed to load them.
1655 Return nonzero if we canceled any reloads. */
1657 remove_address_replacements (rtx in_rtx)
1659 int i, j;
1660 char reload_flags[MAX_RELOADS];
1661 int something_changed = 0;
1663 memset (reload_flags, 0, sizeof reload_flags);
1664 for (i = 0, j = 0; i < n_replacements; i++)
1666 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1667 reload_flags[replacements[i].what] |= 1;
1668 else
1670 replacements[j++] = replacements[i];
1671 reload_flags[replacements[i].what] |= 2;
1674 /* Note that the following store must be done before the recursive calls. */
1675 n_replacements = j;
1677 for (i = n_reloads - 1; i >= 0; i--)
1679 if (reload_flags[i] == 1)
1681 deallocate_reload_reg (i);
1682 remove_address_replacements (rld[i].in);
1683 rld[i].in = 0;
1684 something_changed = 1;
1687 return something_changed;
1690 /* If there is only one output reload, and it is not for an earlyclobber
1691 operand, try to combine it with a (logically unrelated) input reload
1692 to reduce the number of reload registers needed.
1694 This is safe if the input reload does not appear in
1695 the value being output-reloaded, because this implies
1696 it is not needed any more once the original insn completes.
1698 If that doesn't work, see we can use any of the registers that
1699 die in this insn as a reload register. We can if it is of the right
1700 class and does not appear in the value being output-reloaded. */
1702 static void
1703 combine_reloads (void)
1705 int i;
1706 int output_reload = -1;
1707 int secondary_out = -1;
1708 rtx note;
1710 /* Find the output reload; return unless there is exactly one
1711 and that one is mandatory. */
1713 for (i = 0; i < n_reloads; i++)
1714 if (rld[i].out != 0)
1716 if (output_reload >= 0)
1717 return;
1718 output_reload = i;
1721 if (output_reload < 0 || rld[output_reload].optional)
1722 return;
1724 /* An input-output reload isn't combinable. */
1726 if (rld[output_reload].in != 0)
1727 return;
1729 /* If this reload is for an earlyclobber operand, we can't do anything. */
1730 if (earlyclobber_operand_p (rld[output_reload].out))
1731 return;
1733 /* If there is a reload for part of the address of this operand, we would
1734 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1735 its life to the point where doing this combine would not lower the
1736 number of spill registers needed. */
1737 for (i = 0; i < n_reloads; i++)
1738 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1739 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1740 && rld[i].opnum == rld[output_reload].opnum)
1741 return;
1743 /* Check each input reload; can we combine it? */
1745 for (i = 0; i < n_reloads; i++)
1746 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1747 /* Life span of this reload must not extend past main insn. */
1748 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1749 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1750 && rld[i].when_needed != RELOAD_OTHER
1751 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1752 == CLASS_MAX_NREGS (rld[output_reload].class,
1753 rld[output_reload].outmode))
1754 && rld[i].inc == 0
1755 && rld[i].reg_rtx == 0
1756 #ifdef SECONDARY_MEMORY_NEEDED
1757 /* Don't combine two reloads with different secondary
1758 memory locations. */
1759 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1760 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1761 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1762 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1763 #endif
1764 && (SMALL_REGISTER_CLASSES
1765 ? (rld[i].class == rld[output_reload].class)
1766 : (reg_class_subset_p (rld[i].class,
1767 rld[output_reload].class)
1768 || reg_class_subset_p (rld[output_reload].class,
1769 rld[i].class)))
1770 && (MATCHES (rld[i].in, rld[output_reload].out)
1771 /* Args reversed because the first arg seems to be
1772 the one that we imagine being modified
1773 while the second is the one that might be affected. */
1774 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1775 rld[i].in)
1776 /* However, if the input is a register that appears inside
1777 the output, then we also can't share.
1778 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1779 If the same reload reg is used for both reg 69 and the
1780 result to be stored in memory, then that result
1781 will clobber the address of the memory ref. */
1782 && ! (REG_P (rld[i].in)
1783 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1784 rld[output_reload].out))))
1785 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1786 rld[i].when_needed != RELOAD_FOR_INPUT)
1787 && (reg_class_size[(int) rld[i].class]
1788 || SMALL_REGISTER_CLASSES)
1789 /* We will allow making things slightly worse by combining an
1790 input and an output, but no worse than that. */
1791 && (rld[i].when_needed == RELOAD_FOR_INPUT
1792 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1794 int j;
1796 /* We have found a reload to combine with! */
1797 rld[i].out = rld[output_reload].out;
1798 rld[i].out_reg = rld[output_reload].out_reg;
1799 rld[i].outmode = rld[output_reload].outmode;
1800 /* Mark the old output reload as inoperative. */
1801 rld[output_reload].out = 0;
1802 /* The combined reload is needed for the entire insn. */
1803 rld[i].when_needed = RELOAD_OTHER;
1804 /* If the output reload had a secondary reload, copy it. */
1805 if (rld[output_reload].secondary_out_reload != -1)
1807 rld[i].secondary_out_reload
1808 = rld[output_reload].secondary_out_reload;
1809 rld[i].secondary_out_icode
1810 = rld[output_reload].secondary_out_icode;
1813 #ifdef SECONDARY_MEMORY_NEEDED
1814 /* Copy any secondary MEM. */
1815 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1816 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1817 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1818 #endif
1819 /* If required, minimize the register class. */
1820 if (reg_class_subset_p (rld[output_reload].class,
1821 rld[i].class))
1822 rld[i].class = rld[output_reload].class;
1824 /* Transfer all replacements from the old reload to the combined. */
1825 for (j = 0; j < n_replacements; j++)
1826 if (replacements[j].what == output_reload)
1827 replacements[j].what = i;
1829 return;
1832 /* If this insn has only one operand that is modified or written (assumed
1833 to be the first), it must be the one corresponding to this reload. It
1834 is safe to use anything that dies in this insn for that output provided
1835 that it does not occur in the output (we already know it isn't an
1836 earlyclobber. If this is an asm insn, give up. */
1838 if (INSN_CODE (this_insn) == -1)
1839 return;
1841 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1842 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1843 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1844 return;
1846 /* See if some hard register that dies in this insn and is not used in
1847 the output is the right class. Only works if the register we pick
1848 up can fully hold our output reload. */
1849 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1850 if (REG_NOTE_KIND (note) == REG_DEAD
1851 && REG_P (XEXP (note, 0))
1852 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1853 rld[output_reload].out)
1854 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1855 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1856 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1857 REGNO (XEXP (note, 0)))
1858 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1859 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1860 /* Ensure that a secondary or tertiary reload for this output
1861 won't want this register. */
1862 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1863 || (! (TEST_HARD_REG_BIT
1864 (reg_class_contents[(int) rld[secondary_out].class],
1865 REGNO (XEXP (note, 0))))
1866 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1867 || ! (TEST_HARD_REG_BIT
1868 (reg_class_contents[(int) rld[secondary_out].class],
1869 REGNO (XEXP (note, 0)))))))
1870 && ! fixed_regs[REGNO (XEXP (note, 0))])
1872 rld[output_reload].reg_rtx
1873 = gen_rtx_REG (rld[output_reload].outmode,
1874 REGNO (XEXP (note, 0)));
1875 return;
1879 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1880 See if one of IN and OUT is a register that may be used;
1881 this is desirable since a spill-register won't be needed.
1882 If so, return the register rtx that proves acceptable.
1884 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1885 CLASS is the register class required for the reload.
1887 If FOR_REAL is >= 0, it is the number of the reload,
1888 and in some cases when it can be discovered that OUT doesn't need
1889 to be computed, clear out rld[FOR_REAL].out.
1891 If FOR_REAL is -1, this should not be done, because this call
1892 is just to see if a register can be found, not to find and install it.
1894 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1895 puts an additional constraint on being able to use IN for OUT since
1896 IN must not appear elsewhere in the insn (it is assumed that IN itself
1897 is safe from the earlyclobber). */
1899 static rtx
1900 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1901 enum machine_mode inmode, enum machine_mode outmode,
1902 enum reg_class class, int for_real, int earlyclobber)
1904 rtx in = real_in;
1905 rtx out = real_out;
1906 int in_offset = 0;
1907 int out_offset = 0;
1908 rtx value = 0;
1910 /* If operands exceed a word, we can't use either of them
1911 unless they have the same size. */
1912 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1913 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1914 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1915 return 0;
1917 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1918 respectively refers to a hard register. */
1920 /* Find the inside of any subregs. */
1921 while (GET_CODE (out) == SUBREG)
1923 if (REG_P (SUBREG_REG (out))
1924 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1925 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1926 GET_MODE (SUBREG_REG (out)),
1927 SUBREG_BYTE (out),
1928 GET_MODE (out));
1929 out = SUBREG_REG (out);
1931 while (GET_CODE (in) == SUBREG)
1933 if (REG_P (SUBREG_REG (in))
1934 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1935 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1936 GET_MODE (SUBREG_REG (in)),
1937 SUBREG_BYTE (in),
1938 GET_MODE (in));
1939 in = SUBREG_REG (in);
1942 /* Narrow down the reg class, the same way push_reload will;
1943 otherwise we might find a dummy now, but push_reload won't. */
1944 class = PREFERRED_RELOAD_CLASS (in, class);
1946 /* See if OUT will do. */
1947 if (REG_P (out)
1948 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1950 unsigned int regno = REGNO (out) + out_offset;
1951 unsigned int nwords = hard_regno_nregs[regno][outmode];
1952 rtx saved_rtx;
1954 /* When we consider whether the insn uses OUT,
1955 ignore references within IN. They don't prevent us
1956 from copying IN into OUT, because those refs would
1957 move into the insn that reloads IN.
1959 However, we only ignore IN in its role as this reload.
1960 If the insn uses IN elsewhere and it contains OUT,
1961 that counts. We can't be sure it's the "same" operand
1962 so it might not go through this reload. */
1963 saved_rtx = *inloc;
1964 *inloc = const0_rtx;
1966 if (regno < FIRST_PSEUDO_REGISTER
1967 && HARD_REGNO_MODE_OK (regno, outmode)
1968 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1969 PATTERN (this_insn), outloc))
1971 unsigned int i;
1973 for (i = 0; i < nwords; i++)
1974 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1975 regno + i))
1976 break;
1978 if (i == nwords)
1980 if (REG_P (real_out))
1981 value = real_out;
1982 else
1983 value = gen_rtx_REG (outmode, regno);
1987 *inloc = saved_rtx;
1990 /* Consider using IN if OUT was not acceptable
1991 or if OUT dies in this insn (like the quotient in a divmod insn).
1992 We can't use IN unless it is dies in this insn,
1993 which means we must know accurately which hard regs are live.
1994 Also, the result can't go in IN if IN is used within OUT,
1995 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1996 if (hard_regs_live_known
1997 && REG_P (in)
1998 && REGNO (in) < FIRST_PSEUDO_REGISTER
1999 && (value == 0
2000 || find_reg_note (this_insn, REG_UNUSED, real_out))
2001 && find_reg_note (this_insn, REG_DEAD, real_in)
2002 && !fixed_regs[REGNO (in)]
2003 && HARD_REGNO_MODE_OK (REGNO (in),
2004 /* The only case where out and real_out might
2005 have different modes is where real_out
2006 is a subreg, and in that case, out
2007 has a real mode. */
2008 (GET_MODE (out) != VOIDmode
2009 ? GET_MODE (out) : outmode))
2010 /* But only do all this if we can be sure, that this input
2011 operand doesn't correspond with an uninitialized pseudoreg.
2012 global can assign some hardreg to it, which is the same as
2013 a different pseudo also currently live (as it can ignore the
2014 conflict). So we never must introduce writes to such hardregs,
2015 as they would clobber the other live pseudo using the same.
2016 See also PR20973. */
2017 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2018 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2019 ORIGINAL_REGNO (in))))
2021 unsigned int regno = REGNO (in) + in_offset;
2022 unsigned int nwords = hard_regno_nregs[regno][inmode];
2024 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2025 && ! hard_reg_set_here_p (regno, regno + nwords,
2026 PATTERN (this_insn))
2027 && (! earlyclobber
2028 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2029 PATTERN (this_insn), inloc)))
2031 unsigned int i;
2033 for (i = 0; i < nwords; i++)
2034 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2035 regno + i))
2036 break;
2038 if (i == nwords)
2040 /* If we were going to use OUT as the reload reg
2041 and changed our mind, it means OUT is a dummy that
2042 dies here. So don't bother copying value to it. */
2043 if (for_real >= 0 && value == real_out)
2044 rld[for_real].out = 0;
2045 if (REG_P (real_in))
2046 value = real_in;
2047 else
2048 value = gen_rtx_REG (inmode, regno);
2053 return value;
2056 /* This page contains subroutines used mainly for determining
2057 whether the IN or an OUT of a reload can serve as the
2058 reload register. */
2060 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2063 earlyclobber_operand_p (rtx x)
2065 int i;
2067 for (i = 0; i < n_earlyclobbers; i++)
2068 if (reload_earlyclobbers[i] == x)
2069 return 1;
2071 return 0;
2074 /* Return 1 if expression X alters a hard reg in the range
2075 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2076 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2077 X should be the body of an instruction. */
2079 static int
2080 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2082 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2084 rtx op0 = SET_DEST (x);
2086 while (GET_CODE (op0) == SUBREG)
2087 op0 = SUBREG_REG (op0);
2088 if (REG_P (op0))
2090 unsigned int r = REGNO (op0);
2092 /* See if this reg overlaps range under consideration. */
2093 if (r < end_regno
2094 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2095 return 1;
2098 else if (GET_CODE (x) == PARALLEL)
2100 int i = XVECLEN (x, 0) - 1;
2102 for (; i >= 0; i--)
2103 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2104 return 1;
2107 return 0;
2110 /* Return 1 if ADDR is a valid memory address for mode MODE,
2111 and check that each pseudo reg has the proper kind of
2112 hard reg. */
2115 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2117 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2118 return 0;
2120 win:
2121 return 1;
2124 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2125 if they are the same hard reg, and has special hacks for
2126 autoincrement and autodecrement.
2127 This is specifically intended for find_reloads to use
2128 in determining whether two operands match.
2129 X is the operand whose number is the lower of the two.
2131 The value is 2 if Y contains a pre-increment that matches
2132 a non-incrementing address in X. */
2134 /* ??? To be completely correct, we should arrange to pass
2135 for X the output operand and for Y the input operand.
2136 For now, we assume that the output operand has the lower number
2137 because that is natural in (SET output (... input ...)). */
2140 operands_match_p (rtx x, rtx y)
2142 int i;
2143 RTX_CODE code = GET_CODE (x);
2144 const char *fmt;
2145 int success_2;
2147 if (x == y)
2148 return 1;
2149 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2150 && (REG_P (y) || (GET_CODE (y) == SUBREG
2151 && REG_P (SUBREG_REG (y)))))
2153 int j;
2155 if (code == SUBREG)
2157 i = REGNO (SUBREG_REG (x));
2158 if (i >= FIRST_PSEUDO_REGISTER)
2159 goto slow;
2160 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2161 GET_MODE (SUBREG_REG (x)),
2162 SUBREG_BYTE (x),
2163 GET_MODE (x));
2165 else
2166 i = REGNO (x);
2168 if (GET_CODE (y) == SUBREG)
2170 j = REGNO (SUBREG_REG (y));
2171 if (j >= FIRST_PSEUDO_REGISTER)
2172 goto slow;
2173 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2174 GET_MODE (SUBREG_REG (y)),
2175 SUBREG_BYTE (y),
2176 GET_MODE (y));
2178 else
2179 j = REGNO (y);
2181 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2182 multiple hard register group of scalar integer registers, so that
2183 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2184 register. */
2185 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2186 && SCALAR_INT_MODE_P (GET_MODE (x))
2187 && i < FIRST_PSEUDO_REGISTER)
2188 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2189 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2190 && SCALAR_INT_MODE_P (GET_MODE (y))
2191 && j < FIRST_PSEUDO_REGISTER)
2192 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2194 return i == j;
2196 /* If two operands must match, because they are really a single
2197 operand of an assembler insn, then two postincrements are invalid
2198 because the assembler insn would increment only once.
2199 On the other hand, a postincrement matches ordinary indexing
2200 if the postincrement is the output operand. */
2201 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2202 return operands_match_p (XEXP (x, 0), y);
2203 /* Two preincrements are invalid
2204 because the assembler insn would increment only once.
2205 On the other hand, a preincrement matches ordinary indexing
2206 if the preincrement is the input operand.
2207 In this case, return 2, since some callers need to do special
2208 things when this happens. */
2209 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2210 || GET_CODE (y) == PRE_MODIFY)
2211 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2213 slow:
2215 /* Now we have disposed of all the cases in which different rtx codes
2216 can match. */
2217 if (code != GET_CODE (y))
2218 return 0;
2220 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2221 if (GET_MODE (x) != GET_MODE (y))
2222 return 0;
2224 switch (code)
2226 case CONST_INT:
2227 case CONST_DOUBLE:
2228 return 0;
2230 case LABEL_REF:
2231 return XEXP (x, 0) == XEXP (y, 0);
2232 case SYMBOL_REF:
2233 return XSTR (x, 0) == XSTR (y, 0);
2235 default:
2236 break;
2239 /* Compare the elements. If any pair of corresponding elements
2240 fail to match, return 0 for the whole things. */
2242 success_2 = 0;
2243 fmt = GET_RTX_FORMAT (code);
2244 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2246 int val, j;
2247 switch (fmt[i])
2249 case 'w':
2250 if (XWINT (x, i) != XWINT (y, i))
2251 return 0;
2252 break;
2254 case 'i':
2255 if (XINT (x, i) != XINT (y, i))
2256 return 0;
2257 break;
2259 case 'e':
2260 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2261 if (val == 0)
2262 return 0;
2263 /* If any subexpression returns 2,
2264 we should return 2 if we are successful. */
2265 if (val == 2)
2266 success_2 = 1;
2267 break;
2269 case '0':
2270 break;
2272 case 'E':
2273 if (XVECLEN (x, i) != XVECLEN (y, i))
2274 return 0;
2275 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2277 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2278 if (val == 0)
2279 return 0;
2280 if (val == 2)
2281 success_2 = 1;
2283 break;
2285 /* It is believed that rtx's at this level will never
2286 contain anything but integers and other rtx's,
2287 except for within LABEL_REFs and SYMBOL_REFs. */
2288 default:
2289 gcc_unreachable ();
2292 return 1 + success_2;
2295 /* Describe the range of registers or memory referenced by X.
2296 If X is a register, set REG_FLAG and put the first register
2297 number into START and the last plus one into END.
2298 If X is a memory reference, put a base address into BASE
2299 and a range of integer offsets into START and END.
2300 If X is pushing on the stack, we can assume it causes no trouble,
2301 so we set the SAFE field. */
2303 static struct decomposition
2304 decompose (rtx x)
2306 struct decomposition val;
2307 int all_const = 0;
2309 memset (&val, 0, sizeof (val));
2311 switch (GET_CODE (x))
2313 case MEM:
2315 rtx base = NULL_RTX, offset = 0;
2316 rtx addr = XEXP (x, 0);
2318 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2319 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2321 val.base = XEXP (addr, 0);
2322 val.start = -GET_MODE_SIZE (GET_MODE (x));
2323 val.end = GET_MODE_SIZE (GET_MODE (x));
2324 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2325 return val;
2328 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2330 if (GET_CODE (XEXP (addr, 1)) == PLUS
2331 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2332 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2334 val.base = XEXP (addr, 0);
2335 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2336 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2337 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2338 return val;
2342 if (GET_CODE (addr) == CONST)
2344 addr = XEXP (addr, 0);
2345 all_const = 1;
2347 if (GET_CODE (addr) == PLUS)
2349 if (CONSTANT_P (XEXP (addr, 0)))
2351 base = XEXP (addr, 1);
2352 offset = XEXP (addr, 0);
2354 else if (CONSTANT_P (XEXP (addr, 1)))
2356 base = XEXP (addr, 0);
2357 offset = XEXP (addr, 1);
2361 if (offset == 0)
2363 base = addr;
2364 offset = const0_rtx;
2366 if (GET_CODE (offset) == CONST)
2367 offset = XEXP (offset, 0);
2368 if (GET_CODE (offset) == PLUS)
2370 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2372 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2373 offset = XEXP (offset, 0);
2375 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2377 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2378 offset = XEXP (offset, 1);
2380 else
2382 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2383 offset = const0_rtx;
2386 else if (GET_CODE (offset) != CONST_INT)
2388 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2389 offset = const0_rtx;
2392 if (all_const && GET_CODE (base) == PLUS)
2393 base = gen_rtx_CONST (GET_MODE (base), base);
2395 gcc_assert (GET_CODE (offset) == CONST_INT);
2397 val.start = INTVAL (offset);
2398 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2399 val.base = base;
2401 break;
2403 case REG:
2404 val.reg_flag = 1;
2405 val.start = true_regnum (x);
2406 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2408 /* A pseudo with no hard reg. */
2409 val.start = REGNO (x);
2410 val.end = val.start + 1;
2412 else
2413 /* A hard reg. */
2414 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2415 break;
2417 case SUBREG:
2418 if (!REG_P (SUBREG_REG (x)))
2419 /* This could be more precise, but it's good enough. */
2420 return decompose (SUBREG_REG (x));
2421 val.reg_flag = 1;
2422 val.start = true_regnum (x);
2423 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2424 return decompose (SUBREG_REG (x));
2425 else
2426 /* A hard reg. */
2427 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2428 break;
2430 case SCRATCH:
2431 /* This hasn't been assigned yet, so it can't conflict yet. */
2432 val.safe = 1;
2433 break;
2435 default:
2436 gcc_assert (CONSTANT_P (x));
2437 val.safe = 1;
2438 break;
2440 return val;
2443 /* Return 1 if altering Y will not modify the value of X.
2444 Y is also described by YDATA, which should be decompose (Y). */
2446 static int
2447 immune_p (rtx x, rtx y, struct decomposition ydata)
2449 struct decomposition xdata;
2451 if (ydata.reg_flag)
2452 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2453 if (ydata.safe)
2454 return 1;
2456 gcc_assert (MEM_P (y));
2457 /* If Y is memory and X is not, Y can't affect X. */
2458 if (!MEM_P (x))
2459 return 1;
2461 xdata = decompose (x);
2463 if (! rtx_equal_p (xdata.base, ydata.base))
2465 /* If bases are distinct symbolic constants, there is no overlap. */
2466 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2467 return 1;
2468 /* Constants and stack slots never overlap. */
2469 if (CONSTANT_P (xdata.base)
2470 && (ydata.base == frame_pointer_rtx
2471 || ydata.base == hard_frame_pointer_rtx
2472 || ydata.base == stack_pointer_rtx))
2473 return 1;
2474 if (CONSTANT_P (ydata.base)
2475 && (xdata.base == frame_pointer_rtx
2476 || xdata.base == hard_frame_pointer_rtx
2477 || xdata.base == stack_pointer_rtx))
2478 return 1;
2479 /* If either base is variable, we don't know anything. */
2480 return 0;
2483 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2486 /* Similar, but calls decompose. */
2489 safe_from_earlyclobber (rtx op, rtx clobber)
2491 struct decomposition early_data;
2493 early_data = decompose (clobber);
2494 return immune_p (op, clobber, early_data);
2497 /* Main entry point of this file: search the body of INSN
2498 for values that need reloading and record them with push_reload.
2499 REPLACE nonzero means record also where the values occur
2500 so that subst_reloads can be used.
2502 IND_LEVELS says how many levels of indirection are supported by this
2503 machine; a value of zero means that a memory reference is not a valid
2504 memory address.
2506 LIVE_KNOWN says we have valid information about which hard
2507 regs are live at each point in the program; this is true when
2508 we are called from global_alloc but false when stupid register
2509 allocation has been done.
2511 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2512 which is nonnegative if the reg has been commandeered for reloading into.
2513 It is copied into STATIC_RELOAD_REG_P and referenced from there
2514 by various subroutines.
2516 Return TRUE if some operands need to be changed, because of swapping
2517 commutative operands, reg_equiv_address substitution, or whatever. */
2520 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2521 short *reload_reg_p)
2523 int insn_code_number;
2524 int i, j;
2525 int noperands;
2526 /* These start out as the constraints for the insn
2527 and they are chewed up as we consider alternatives. */
2528 char *constraints[MAX_RECOG_OPERANDS];
2529 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2530 a register. */
2531 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2532 char pref_or_nothing[MAX_RECOG_OPERANDS];
2533 /* Nonzero for a MEM operand whose entire address needs a reload.
2534 May be -1 to indicate the entire address may or may not need a reload. */
2535 int address_reloaded[MAX_RECOG_OPERANDS];
2536 /* Nonzero for an address operand that needs to be completely reloaded.
2537 May be -1 to indicate the entire operand may or may not need a reload. */
2538 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2539 /* Value of enum reload_type to use for operand. */
2540 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2541 /* Value of enum reload_type to use within address of operand. */
2542 enum reload_type address_type[MAX_RECOG_OPERANDS];
2543 /* Save the usage of each operand. */
2544 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2545 int no_input_reloads = 0, no_output_reloads = 0;
2546 int n_alternatives;
2547 int this_alternative[MAX_RECOG_OPERANDS];
2548 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2549 char this_alternative_win[MAX_RECOG_OPERANDS];
2550 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2551 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2552 int this_alternative_matches[MAX_RECOG_OPERANDS];
2553 int swapped;
2554 int goal_alternative[MAX_RECOG_OPERANDS];
2555 int this_alternative_number;
2556 int goal_alternative_number = 0;
2557 int operand_reloadnum[MAX_RECOG_OPERANDS];
2558 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2559 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2560 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2561 char goal_alternative_win[MAX_RECOG_OPERANDS];
2562 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2563 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2564 int goal_alternative_swapped;
2565 int best;
2566 int commutative;
2567 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2568 rtx substed_operand[MAX_RECOG_OPERANDS];
2569 rtx body = PATTERN (insn);
2570 rtx set = single_set (insn);
2571 int goal_earlyclobber = 0, this_earlyclobber;
2572 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2573 int retval = 0;
2575 this_insn = insn;
2576 n_reloads = 0;
2577 n_replacements = 0;
2578 n_earlyclobbers = 0;
2579 replace_reloads = replace;
2580 hard_regs_live_known = live_known;
2581 static_reload_reg_p = reload_reg_p;
2583 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2584 neither are insns that SET cc0. Insns that use CC0 are not allowed
2585 to have any input reloads. */
2586 if (JUMP_P (insn) || CALL_P (insn))
2587 no_output_reloads = 1;
2589 #ifdef HAVE_cc0
2590 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2591 no_input_reloads = 1;
2592 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2593 no_output_reloads = 1;
2594 #endif
2596 #ifdef SECONDARY_MEMORY_NEEDED
2597 /* The eliminated forms of any secondary memory locations are per-insn, so
2598 clear them out here. */
2600 if (secondary_memlocs_elim_used)
2602 memset (secondary_memlocs_elim, 0,
2603 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2604 secondary_memlocs_elim_used = 0;
2606 #endif
2608 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2609 is cheap to move between them. If it is not, there may not be an insn
2610 to do the copy, so we may need a reload. */
2611 if (GET_CODE (body) == SET
2612 && REG_P (SET_DEST (body))
2613 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2614 && REG_P (SET_SRC (body))
2615 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2616 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2617 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2618 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2619 return 0;
2621 extract_insn (insn);
2623 noperands = reload_n_operands = recog_data.n_operands;
2624 n_alternatives = recog_data.n_alternatives;
2626 /* Just return "no reloads" if insn has no operands with constraints. */
2627 if (noperands == 0 || n_alternatives == 0)
2628 return 0;
2630 insn_code_number = INSN_CODE (insn);
2631 this_insn_is_asm = insn_code_number < 0;
2633 memcpy (operand_mode, recog_data.operand_mode,
2634 noperands * sizeof (enum machine_mode));
2635 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2637 commutative = -1;
2639 /* If we will need to know, later, whether some pair of operands
2640 are the same, we must compare them now and save the result.
2641 Reloading the base and index registers will clobber them
2642 and afterward they will fail to match. */
2644 for (i = 0; i < noperands; i++)
2646 char *p;
2647 int c;
2649 substed_operand[i] = recog_data.operand[i];
2650 p = constraints[i];
2652 modified[i] = RELOAD_READ;
2654 /* Scan this operand's constraint to see if it is an output operand,
2655 an in-out operand, is commutative, or should match another. */
2657 while ((c = *p))
2659 p += CONSTRAINT_LEN (c, p);
2660 switch (c)
2662 case '=':
2663 modified[i] = RELOAD_WRITE;
2664 break;
2665 case '+':
2666 modified[i] = RELOAD_READ_WRITE;
2667 break;
2668 case '%':
2670 /* The last operand should not be marked commutative. */
2671 gcc_assert (i != noperands - 1);
2673 /* We currently only support one commutative pair of
2674 operands. Some existing asm code currently uses more
2675 than one pair. Previously, that would usually work,
2676 but sometimes it would crash the compiler. We
2677 continue supporting that case as well as we can by
2678 silently ignoring all but the first pair. In the
2679 future we may handle it correctly. */
2680 if (commutative < 0)
2681 commutative = i;
2682 else
2683 gcc_assert (this_insn_is_asm);
2685 break;
2686 /* Use of ISDIGIT is tempting here, but it may get expensive because
2687 of locale support we don't want. */
2688 case '0': case '1': case '2': case '3': case '4':
2689 case '5': case '6': case '7': case '8': case '9':
2691 c = strtoul (p - 1, &p, 10);
2693 operands_match[c][i]
2694 = operands_match_p (recog_data.operand[c],
2695 recog_data.operand[i]);
2697 /* An operand may not match itself. */
2698 gcc_assert (c != i);
2700 /* If C can be commuted with C+1, and C might need to match I,
2701 then C+1 might also need to match I. */
2702 if (commutative >= 0)
2704 if (c == commutative || c == commutative + 1)
2706 int other = c + (c == commutative ? 1 : -1);
2707 operands_match[other][i]
2708 = operands_match_p (recog_data.operand[other],
2709 recog_data.operand[i]);
2711 if (i == commutative || i == commutative + 1)
2713 int other = i + (i == commutative ? 1 : -1);
2714 operands_match[c][other]
2715 = operands_match_p (recog_data.operand[c],
2716 recog_data.operand[other]);
2718 /* Note that C is supposed to be less than I.
2719 No need to consider altering both C and I because in
2720 that case we would alter one into the other. */
2727 /* Examine each operand that is a memory reference or memory address
2728 and reload parts of the addresses into index registers.
2729 Also here any references to pseudo regs that didn't get hard regs
2730 but are equivalent to constants get replaced in the insn itself
2731 with those constants. Nobody will ever see them again.
2733 Finally, set up the preferred classes of each operand. */
2735 for (i = 0; i < noperands; i++)
2737 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2739 address_reloaded[i] = 0;
2740 address_operand_reloaded[i] = 0;
2741 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2742 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2743 : RELOAD_OTHER);
2744 address_type[i]
2745 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2746 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2747 : RELOAD_OTHER);
2749 if (*constraints[i] == 0)
2750 /* Ignore things like match_operator operands. */
2752 else if (constraints[i][0] == 'p'
2753 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2755 address_operand_reloaded[i]
2756 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2757 recog_data.operand[i],
2758 recog_data.operand_loc[i],
2759 i, operand_type[i], ind_levels, insn);
2761 /* If we now have a simple operand where we used to have a
2762 PLUS or MULT, re-recognize and try again. */
2763 if ((OBJECT_P (*recog_data.operand_loc[i])
2764 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2765 && (GET_CODE (recog_data.operand[i]) == MULT
2766 || GET_CODE (recog_data.operand[i]) == PLUS))
2768 INSN_CODE (insn) = -1;
2769 retval = find_reloads (insn, replace, ind_levels, live_known,
2770 reload_reg_p);
2771 return retval;
2774 recog_data.operand[i] = *recog_data.operand_loc[i];
2775 substed_operand[i] = recog_data.operand[i];
2777 /* Address operands are reloaded in their existing mode,
2778 no matter what is specified in the machine description. */
2779 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2781 else if (code == MEM)
2783 address_reloaded[i]
2784 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2785 recog_data.operand_loc[i],
2786 XEXP (recog_data.operand[i], 0),
2787 &XEXP (recog_data.operand[i], 0),
2788 i, address_type[i], ind_levels, insn);
2789 recog_data.operand[i] = *recog_data.operand_loc[i];
2790 substed_operand[i] = recog_data.operand[i];
2792 else if (code == SUBREG)
2794 rtx reg = SUBREG_REG (recog_data.operand[i]);
2795 rtx op
2796 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2797 ind_levels,
2798 set != 0
2799 && &SET_DEST (set) == recog_data.operand_loc[i],
2800 insn,
2801 &address_reloaded[i]);
2803 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2804 that didn't get a hard register, emit a USE with a REG_EQUAL
2805 note in front so that we might inherit a previous, possibly
2806 wider reload. */
2808 if (replace
2809 && MEM_P (op)
2810 && REG_P (reg)
2811 && (GET_MODE_SIZE (GET_MODE (reg))
2812 >= GET_MODE_SIZE (GET_MODE (op))))
2813 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2814 insn),
2815 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2817 substed_operand[i] = recog_data.operand[i] = op;
2819 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2820 /* We can get a PLUS as an "operand" as a result of register
2821 elimination. See eliminate_regs and gen_reload. We handle
2822 a unary operator by reloading the operand. */
2823 substed_operand[i] = recog_data.operand[i]
2824 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2825 ind_levels, 0, insn,
2826 &address_reloaded[i]);
2827 else if (code == REG)
2829 /* This is equivalent to calling find_reloads_toplev.
2830 The code is duplicated for speed.
2831 When we find a pseudo always equivalent to a constant,
2832 we replace it by the constant. We must be sure, however,
2833 that we don't try to replace it in the insn in which it
2834 is being set. */
2835 int regno = REGNO (recog_data.operand[i]);
2836 if (reg_equiv_constant[regno] != 0
2837 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2839 /* Record the existing mode so that the check if constants are
2840 allowed will work when operand_mode isn't specified. */
2842 if (operand_mode[i] == VOIDmode)
2843 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2845 substed_operand[i] = recog_data.operand[i]
2846 = reg_equiv_constant[regno];
2848 if (reg_equiv_memory_loc[regno] != 0
2849 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2850 /* We need not give a valid is_set_dest argument since the case
2851 of a constant equivalence was checked above. */
2852 substed_operand[i] = recog_data.operand[i]
2853 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2854 ind_levels, 0, insn,
2855 &address_reloaded[i]);
2857 /* If the operand is still a register (we didn't replace it with an
2858 equivalent), get the preferred class to reload it into. */
2859 code = GET_CODE (recog_data.operand[i]);
2860 preferred_class[i]
2861 = ((code == REG && REGNO (recog_data.operand[i])
2862 >= FIRST_PSEUDO_REGISTER)
2863 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2864 : NO_REGS);
2865 pref_or_nothing[i]
2866 = (code == REG
2867 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2868 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2871 /* If this is simply a copy from operand 1 to operand 0, merge the
2872 preferred classes for the operands. */
2873 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2874 && recog_data.operand[1] == SET_SRC (set))
2876 preferred_class[0] = preferred_class[1]
2877 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2878 pref_or_nothing[0] |= pref_or_nothing[1];
2879 pref_or_nothing[1] |= pref_or_nothing[0];
2882 /* Now see what we need for pseudo-regs that didn't get hard regs
2883 or got the wrong kind of hard reg. For this, we must consider
2884 all the operands together against the register constraints. */
2886 best = MAX_RECOG_OPERANDS * 2 + 600;
2888 swapped = 0;
2889 goal_alternative_swapped = 0;
2890 try_swapped:
2892 /* The constraints are made of several alternatives.
2893 Each operand's constraint looks like foo,bar,... with commas
2894 separating the alternatives. The first alternatives for all
2895 operands go together, the second alternatives go together, etc.
2897 First loop over alternatives. */
2899 for (this_alternative_number = 0;
2900 this_alternative_number < n_alternatives;
2901 this_alternative_number++)
2903 /* Loop over operands for one constraint alternative. */
2904 /* LOSERS counts those that don't fit this alternative
2905 and would require loading. */
2906 int losers = 0;
2907 /* BAD is set to 1 if it some operand can't fit this alternative
2908 even after reloading. */
2909 int bad = 0;
2910 /* REJECT is a count of how undesirable this alternative says it is
2911 if any reloading is required. If the alternative matches exactly
2912 then REJECT is ignored, but otherwise it gets this much
2913 counted against it in addition to the reloading needed. Each
2914 ? counts three times here since we want the disparaging caused by
2915 a bad register class to only count 1/3 as much. */
2916 int reject = 0;
2918 this_earlyclobber = 0;
2920 for (i = 0; i < noperands; i++)
2922 char *p = constraints[i];
2923 char *end;
2924 int len;
2925 int win = 0;
2926 int did_match = 0;
2927 /* 0 => this operand can be reloaded somehow for this alternative. */
2928 int badop = 1;
2929 /* 0 => this operand can be reloaded if the alternative allows regs. */
2930 int winreg = 0;
2931 int c;
2932 int m;
2933 rtx operand = recog_data.operand[i];
2934 int offset = 0;
2935 /* Nonzero means this is a MEM that must be reloaded into a reg
2936 regardless of what the constraint says. */
2937 int force_reload = 0;
2938 int offmemok = 0;
2939 /* Nonzero if a constant forced into memory would be OK for this
2940 operand. */
2941 int constmemok = 0;
2942 int earlyclobber = 0;
2944 #ifndef KEEP_UNARY_OPERATORS_AT_CONSTRAINT_CHECKING
2945 /* See comment at similar #ifndef in recog.c. */
2947 /* If the predicate accepts a unary operator, it means that
2948 we need to reload the operand, but do not do this for
2949 match_operator and friends. */
2950 if (UNARY_P (operand) && *p != 0)
2951 operand = XEXP (operand, 0);
2952 #endif
2954 /* If the operand is a SUBREG, extract
2955 the REG or MEM (or maybe even a constant) within.
2956 (Constants can occur as a result of reg_equiv_constant.) */
2958 while (GET_CODE (operand) == SUBREG)
2960 /* Offset only matters when operand is a REG and
2961 it is a hard reg. This is because it is passed
2962 to reg_fits_class_p if it is a REG and all pseudos
2963 return 0 from that function. */
2964 if (REG_P (SUBREG_REG (operand))
2965 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2967 if (!subreg_offset_representable_p
2968 (REGNO (SUBREG_REG (operand)),
2969 GET_MODE (SUBREG_REG (operand)),
2970 SUBREG_BYTE (operand),
2971 GET_MODE (operand)))
2972 force_reload = 1;
2973 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2974 GET_MODE (SUBREG_REG (operand)),
2975 SUBREG_BYTE (operand),
2976 GET_MODE (operand));
2978 operand = SUBREG_REG (operand);
2979 /* Force reload if this is a constant or PLUS or if there may
2980 be a problem accessing OPERAND in the outer mode. */
2981 if (CONSTANT_P (operand)
2982 || GET_CODE (operand) == PLUS
2983 /* We must force a reload of paradoxical SUBREGs
2984 of a MEM because the alignment of the inner value
2985 may not be enough to do the outer reference. On
2986 big-endian machines, it may also reference outside
2987 the object.
2989 On machines that extend byte operations and we have a
2990 SUBREG where both the inner and outer modes are no wider
2991 than a word and the inner mode is narrower, is integral,
2992 and gets extended when loaded from memory, combine.c has
2993 made assumptions about the behavior of the machine in such
2994 register access. If the data is, in fact, in memory we
2995 must always load using the size assumed to be in the
2996 register and let the insn do the different-sized
2997 accesses.
2999 This is doubly true if WORD_REGISTER_OPERATIONS. In
3000 this case eliminate_regs has left non-paradoxical
3001 subregs for push_reload to see. Make sure it does
3002 by forcing the reload.
3004 ??? When is it right at this stage to have a subreg
3005 of a mem that is _not_ to be handled specially? IMO
3006 those should have been reduced to just a mem. */
3007 || ((MEM_P (operand)
3008 || (REG_P (operand)
3009 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3010 #ifndef WORD_REGISTER_OPERATIONS
3011 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3012 < BIGGEST_ALIGNMENT)
3013 && (GET_MODE_SIZE (operand_mode[i])
3014 > GET_MODE_SIZE (GET_MODE (operand))))
3015 || BYTES_BIG_ENDIAN
3016 #ifdef LOAD_EXTEND_OP
3017 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3018 && (GET_MODE_SIZE (GET_MODE (operand))
3019 <= UNITS_PER_WORD)
3020 && (GET_MODE_SIZE (operand_mode[i])
3021 > GET_MODE_SIZE (GET_MODE (operand)))
3022 && INTEGRAL_MODE_P (GET_MODE (operand))
3023 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3024 #endif
3026 #endif
3029 force_reload = 1;
3032 this_alternative[i] = (int) NO_REGS;
3033 this_alternative_win[i] = 0;
3034 this_alternative_match_win[i] = 0;
3035 this_alternative_offmemok[i] = 0;
3036 this_alternative_earlyclobber[i] = 0;
3037 this_alternative_matches[i] = -1;
3039 /* An empty constraint or empty alternative
3040 allows anything which matched the pattern. */
3041 if (*p == 0 || *p == ',')
3042 win = 1, badop = 0;
3044 /* Scan this alternative's specs for this operand;
3045 set WIN if the operand fits any letter in this alternative.
3046 Otherwise, clear BADOP if this operand could
3047 fit some letter after reloads,
3048 or set WINREG if this operand could fit after reloads
3049 provided the constraint allows some registers. */
3052 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3054 case '\0':
3055 len = 0;
3056 break;
3057 case ',':
3058 c = '\0';
3059 break;
3061 case '=': case '+': case '*':
3062 break;
3064 case '%':
3065 /* We only support one commutative marker, the first
3066 one. We already set commutative above. */
3067 break;
3069 case '?':
3070 reject += 6;
3071 break;
3073 case '!':
3074 reject = 600;
3075 break;
3077 case '#':
3078 /* Ignore rest of this alternative as far as
3079 reloading is concerned. */
3081 p++;
3082 while (*p && *p != ',');
3083 len = 0;
3084 break;
3086 case '0': case '1': case '2': case '3': case '4':
3087 case '5': case '6': case '7': case '8': case '9':
3088 m = strtoul (p, &end, 10);
3089 p = end;
3090 len = 0;
3092 this_alternative_matches[i] = m;
3093 /* We are supposed to match a previous operand.
3094 If we do, we win if that one did.
3095 If we do not, count both of the operands as losers.
3096 (This is too conservative, since most of the time
3097 only a single reload insn will be needed to make
3098 the two operands win. As a result, this alternative
3099 may be rejected when it is actually desirable.) */
3100 if ((swapped && (m != commutative || i != commutative + 1))
3101 /* If we are matching as if two operands were swapped,
3102 also pretend that operands_match had been computed
3103 with swapped.
3104 But if I is the second of those and C is the first,
3105 don't exchange them, because operands_match is valid
3106 only on one side of its diagonal. */
3107 ? (operands_match
3108 [(m == commutative || m == commutative + 1)
3109 ? 2 * commutative + 1 - m : m]
3110 [(i == commutative || i == commutative + 1)
3111 ? 2 * commutative + 1 - i : i])
3112 : operands_match[m][i])
3114 /* If we are matching a non-offsettable address where an
3115 offsettable address was expected, then we must reject
3116 this combination, because we can't reload it. */
3117 if (this_alternative_offmemok[m]
3118 && MEM_P (recog_data.operand[m])
3119 && this_alternative[m] == (int) NO_REGS
3120 && ! this_alternative_win[m])
3121 bad = 1;
3123 did_match = this_alternative_win[m];
3125 else
3127 /* Operands don't match. */
3128 rtx value;
3129 int loc1, loc2;
3130 /* Retroactively mark the operand we had to match
3131 as a loser, if it wasn't already. */
3132 if (this_alternative_win[m])
3133 losers++;
3134 this_alternative_win[m] = 0;
3135 if (this_alternative[m] == (int) NO_REGS)
3136 bad = 1;
3137 /* But count the pair only once in the total badness of
3138 this alternative, if the pair can be a dummy reload.
3139 The pointers in operand_loc are not swapped; swap
3140 them by hand if necessary. */
3141 if (swapped && i == commutative)
3142 loc1 = commutative + 1;
3143 else if (swapped && i == commutative + 1)
3144 loc1 = commutative;
3145 else
3146 loc1 = i;
3147 if (swapped && m == commutative)
3148 loc2 = commutative + 1;
3149 else if (swapped && m == commutative + 1)
3150 loc2 = commutative;
3151 else
3152 loc2 = m;
3153 value
3154 = find_dummy_reload (recog_data.operand[i],
3155 recog_data.operand[m],
3156 recog_data.operand_loc[loc1],
3157 recog_data.operand_loc[loc2],
3158 operand_mode[i], operand_mode[m],
3159 this_alternative[m], -1,
3160 this_alternative_earlyclobber[m]);
3162 if (value != 0)
3163 losers--;
3165 /* This can be fixed with reloads if the operand
3166 we are supposed to match can be fixed with reloads. */
3167 badop = 0;
3168 this_alternative[i] = this_alternative[m];
3170 /* If we have to reload this operand and some previous
3171 operand also had to match the same thing as this
3172 operand, we don't know how to do that. So reject this
3173 alternative. */
3174 if (! did_match || force_reload)
3175 for (j = 0; j < i; j++)
3176 if (this_alternative_matches[j]
3177 == this_alternative_matches[i])
3178 badop = 1;
3179 break;
3181 case 'p':
3182 /* All necessary reloads for an address_operand
3183 were handled in find_reloads_address. */
3184 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3185 win = 1;
3186 badop = 0;
3187 break;
3189 case 'm':
3190 if (force_reload)
3191 break;
3192 if (MEM_P (operand)
3193 || (REG_P (operand)
3194 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3195 && reg_renumber[REGNO (operand)] < 0))
3196 win = 1;
3197 if (CONST_POOL_OK_P (operand))
3198 badop = 0;
3199 constmemok = 1;
3200 break;
3202 case '<':
3203 if (MEM_P (operand)
3204 && ! address_reloaded[i]
3205 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3206 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3207 win = 1;
3208 break;
3210 case '>':
3211 if (MEM_P (operand)
3212 && ! address_reloaded[i]
3213 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3214 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3215 win = 1;
3216 break;
3218 /* Memory operand whose address is not offsettable. */
3219 case 'V':
3220 if (force_reload)
3221 break;
3222 if (MEM_P (operand)
3223 && ! (ind_levels ? offsettable_memref_p (operand)
3224 : offsettable_nonstrict_memref_p (operand))
3225 /* Certain mem addresses will become offsettable
3226 after they themselves are reloaded. This is important;
3227 we don't want our own handling of unoffsettables
3228 to override the handling of reg_equiv_address. */
3229 && !(REG_P (XEXP (operand, 0))
3230 && (ind_levels == 0
3231 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3232 win = 1;
3233 break;
3235 /* Memory operand whose address is offsettable. */
3236 case 'o':
3237 if (force_reload)
3238 break;
3239 if ((MEM_P (operand)
3240 /* If IND_LEVELS, find_reloads_address won't reload a
3241 pseudo that didn't get a hard reg, so we have to
3242 reject that case. */
3243 && ((ind_levels ? offsettable_memref_p (operand)
3244 : offsettable_nonstrict_memref_p (operand))
3245 /* A reloaded address is offsettable because it is now
3246 just a simple register indirect. */
3247 || address_reloaded[i] == 1))
3248 || (REG_P (operand)
3249 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3250 && reg_renumber[REGNO (operand)] < 0
3251 /* If reg_equiv_address is nonzero, we will be
3252 loading it into a register; hence it will be
3253 offsettable, but we cannot say that reg_equiv_mem
3254 is offsettable without checking. */
3255 && ((reg_equiv_mem[REGNO (operand)] != 0
3256 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3257 || (reg_equiv_address[REGNO (operand)] != 0))))
3258 win = 1;
3259 if (CONST_POOL_OK_P (operand)
3260 || MEM_P (operand))
3261 badop = 0;
3262 constmemok = 1;
3263 offmemok = 1;
3264 break;
3266 case '&':
3267 /* Output operand that is stored before the need for the
3268 input operands (and their index registers) is over. */
3269 earlyclobber = 1, this_earlyclobber = 1;
3270 break;
3272 case 'E':
3273 case 'F':
3274 if (GET_CODE (operand) == CONST_DOUBLE
3275 || (GET_CODE (operand) == CONST_VECTOR
3276 && (GET_MODE_CLASS (GET_MODE (operand))
3277 == MODE_VECTOR_FLOAT)))
3278 win = 1;
3279 break;
3281 case 'G':
3282 case 'H':
3283 if (GET_CODE (operand) == CONST_DOUBLE
3284 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3285 win = 1;
3286 break;
3288 case 's':
3289 if (GET_CODE (operand) == CONST_INT
3290 || (GET_CODE (operand) == CONST_DOUBLE
3291 && GET_MODE (operand) == VOIDmode))
3292 break;
3293 case 'i':
3294 if (CONSTANT_P (operand)
3295 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3296 win = 1;
3297 break;
3299 case 'n':
3300 if (GET_CODE (operand) == CONST_INT
3301 || (GET_CODE (operand) == CONST_DOUBLE
3302 && GET_MODE (operand) == VOIDmode))
3303 win = 1;
3304 break;
3306 case 'I':
3307 case 'J':
3308 case 'K':
3309 case 'L':
3310 case 'M':
3311 case 'N':
3312 case 'O':
3313 case 'P':
3314 if (GET_CODE (operand) == CONST_INT
3315 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3316 win = 1;
3317 break;
3319 case 'X':
3320 win = 1;
3321 break;
3323 case 'g':
3324 if (! force_reload
3325 /* A PLUS is never a valid operand, but reload can make
3326 it from a register when eliminating registers. */
3327 && GET_CODE (operand) != PLUS
3328 /* A SCRATCH is not a valid operand. */
3329 && GET_CODE (operand) != SCRATCH
3330 && (! CONSTANT_P (operand)
3331 || ! flag_pic
3332 || LEGITIMATE_PIC_OPERAND_P (operand))
3333 && (GENERAL_REGS == ALL_REGS
3334 || !REG_P (operand)
3335 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3336 && reg_renumber[REGNO (operand)] < 0)))
3337 win = 1;
3338 /* Drop through into 'r' case. */
3340 case 'r':
3341 this_alternative[i]
3342 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3343 goto reg;
3345 default:
3346 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3348 #ifdef EXTRA_CONSTRAINT_STR
3349 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3351 if (force_reload)
3352 break;
3353 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3354 win = 1;
3355 /* If the address was already reloaded,
3356 we win as well. */
3357 else if (MEM_P (operand)
3358 && address_reloaded[i] == 1)
3359 win = 1;
3360 /* Likewise if the address will be reloaded because
3361 reg_equiv_address is nonzero. For reg_equiv_mem
3362 we have to check. */
3363 else if (REG_P (operand)
3364 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3365 && reg_renumber[REGNO (operand)] < 0
3366 && ((reg_equiv_mem[REGNO (operand)] != 0
3367 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3368 || (reg_equiv_address[REGNO (operand)] != 0)))
3369 win = 1;
3371 /* If we didn't already win, we can reload
3372 constants via force_const_mem, and other
3373 MEMs by reloading the address like for 'o'. */
3374 if (CONST_POOL_OK_P (operand)
3375 || MEM_P (operand))
3376 badop = 0;
3377 constmemok = 1;
3378 offmemok = 1;
3379 break;
3381 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3383 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3384 win = 1;
3386 /* If we didn't already win, we can reload
3387 the address into a base register. */
3388 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3389 badop = 0;
3390 break;
3393 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3394 win = 1;
3395 #endif
3396 break;
3399 this_alternative[i]
3400 = (int) (reg_class_subunion
3401 [this_alternative[i]]
3402 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3403 reg:
3404 if (GET_MODE (operand) == BLKmode)
3405 break;
3406 winreg = 1;
3407 if (REG_P (operand)
3408 && reg_fits_class_p (operand, this_alternative[i],
3409 offset, GET_MODE (recog_data.operand[i])))
3410 win = 1;
3411 break;
3413 while ((p += len), c);
3415 constraints[i] = p;
3417 /* If this operand could be handled with a reg,
3418 and some reg is allowed, then this operand can be handled. */
3419 if (winreg && this_alternative[i] != (int) NO_REGS)
3420 badop = 0;
3422 /* Record which operands fit this alternative. */
3423 this_alternative_earlyclobber[i] = earlyclobber;
3424 if (win && ! force_reload)
3425 this_alternative_win[i] = 1;
3426 else if (did_match && ! force_reload)
3427 this_alternative_match_win[i] = 1;
3428 else
3430 int const_to_mem = 0;
3432 this_alternative_offmemok[i] = offmemok;
3433 losers++;
3434 if (badop)
3435 bad = 1;
3436 /* Alternative loses if it has no regs for a reg operand. */
3437 if (REG_P (operand)
3438 && this_alternative[i] == (int) NO_REGS
3439 && this_alternative_matches[i] < 0)
3440 bad = 1;
3442 /* If this is a constant that is reloaded into the desired
3443 class by copying it to memory first, count that as another
3444 reload. This is consistent with other code and is
3445 required to avoid choosing another alternative when
3446 the constant is moved into memory by this function on
3447 an early reload pass. Note that the test here is
3448 precisely the same as in the code below that calls
3449 force_const_mem. */
3450 if (CONST_POOL_OK_P (operand)
3451 && ((PREFERRED_RELOAD_CLASS (operand,
3452 (enum reg_class) this_alternative[i])
3453 == NO_REGS)
3454 || no_input_reloads)
3455 && operand_mode[i] != VOIDmode)
3457 const_to_mem = 1;
3458 if (this_alternative[i] != (int) NO_REGS)
3459 losers++;
3462 /* If we can't reload this value at all, reject this
3463 alternative. Note that we could also lose due to
3464 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3465 here. */
3467 if (! CONSTANT_P (operand)
3468 && (enum reg_class) this_alternative[i] != NO_REGS
3469 && (PREFERRED_RELOAD_CLASS (operand,
3470 (enum reg_class) this_alternative[i])
3471 == NO_REGS))
3472 bad = 1;
3474 /* Alternative loses if it requires a type of reload not
3475 permitted for this insn. We can always reload SCRATCH
3476 and objects with a REG_UNUSED note. */
3477 else if (GET_CODE (operand) != SCRATCH
3478 && modified[i] != RELOAD_READ && no_output_reloads
3479 && ! find_reg_note (insn, REG_UNUSED, operand))
3480 bad = 1;
3481 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3482 && ! const_to_mem)
3483 bad = 1;
3485 /* We prefer to reload pseudos over reloading other things,
3486 since such reloads may be able to be eliminated later.
3487 If we are reloading a SCRATCH, we won't be generating any
3488 insns, just using a register, so it is also preferred.
3489 So bump REJECT in other cases. Don't do this in the
3490 case where we are forcing a constant into memory and
3491 it will then win since we don't want to have a different
3492 alternative match then. */
3493 if (! (REG_P (operand)
3494 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3495 && GET_CODE (operand) != SCRATCH
3496 && ! (const_to_mem && constmemok))
3497 reject += 2;
3499 /* Input reloads can be inherited more often than output
3500 reloads can be removed, so penalize output reloads. */
3501 if (operand_type[i] != RELOAD_FOR_INPUT
3502 && GET_CODE (operand) != SCRATCH)
3503 reject++;
3506 /* If this operand is a pseudo register that didn't get a hard
3507 reg and this alternative accepts some register, see if the
3508 class that we want is a subset of the preferred class for this
3509 register. If not, but it intersects that class, use the
3510 preferred class instead. If it does not intersect the preferred
3511 class, show that usage of this alternative should be discouraged;
3512 it will be discouraged more still if the register is `preferred
3513 or nothing'. We do this because it increases the chance of
3514 reusing our spill register in a later insn and avoiding a pair
3515 of memory stores and loads.
3517 Don't bother with this if this alternative will accept this
3518 operand.
3520 Don't do this for a multiword operand, since it is only a
3521 small win and has the risk of requiring more spill registers,
3522 which could cause a large loss.
3524 Don't do this if the preferred class has only one register
3525 because we might otherwise exhaust the class. */
3527 if (! win && ! did_match
3528 && this_alternative[i] != (int) NO_REGS
3529 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3530 && reg_class_size [(int) preferred_class[i]] > 0
3531 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3533 if (! reg_class_subset_p (this_alternative[i],
3534 preferred_class[i]))
3536 /* Since we don't have a way of forming the intersection,
3537 we just do something special if the preferred class
3538 is a subset of the class we have; that's the most
3539 common case anyway. */
3540 if (reg_class_subset_p (preferred_class[i],
3541 this_alternative[i]))
3542 this_alternative[i] = (int) preferred_class[i];
3543 else
3544 reject += (2 + 2 * pref_or_nothing[i]);
3549 /* Now see if any output operands that are marked "earlyclobber"
3550 in this alternative conflict with any input operands
3551 or any memory addresses. */
3553 for (i = 0; i < noperands; i++)
3554 if (this_alternative_earlyclobber[i]
3555 && (this_alternative_win[i] || this_alternative_match_win[i]))
3557 struct decomposition early_data;
3559 early_data = decompose (recog_data.operand[i]);
3561 gcc_assert (modified[i] != RELOAD_READ);
3563 if (this_alternative[i] == NO_REGS)
3565 this_alternative_earlyclobber[i] = 0;
3566 gcc_assert (this_insn_is_asm);
3567 error_for_asm (this_insn,
3568 "%<&%> constraint used with no register class");
3571 for (j = 0; j < noperands; j++)
3572 /* Is this an input operand or a memory ref? */
3573 if ((MEM_P (recog_data.operand[j])
3574 || modified[j] != RELOAD_WRITE)
3575 && j != i
3576 /* Ignore things like match_operator operands. */
3577 && *recog_data.constraints[j] != 0
3578 /* Don't count an input operand that is constrained to match
3579 the early clobber operand. */
3580 && ! (this_alternative_matches[j] == i
3581 && rtx_equal_p (recog_data.operand[i],
3582 recog_data.operand[j]))
3583 /* Is it altered by storing the earlyclobber operand? */
3584 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3585 early_data))
3587 /* If the output is in a non-empty few-regs class,
3588 it's costly to reload it, so reload the input instead. */
3589 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3590 && (REG_P (recog_data.operand[j])
3591 || GET_CODE (recog_data.operand[j]) == SUBREG))
3593 losers++;
3594 this_alternative_win[j] = 0;
3595 this_alternative_match_win[j] = 0;
3597 else
3598 break;
3600 /* If an earlyclobber operand conflicts with something,
3601 it must be reloaded, so request this and count the cost. */
3602 if (j != noperands)
3604 losers++;
3605 this_alternative_win[i] = 0;
3606 this_alternative_match_win[j] = 0;
3607 for (j = 0; j < noperands; j++)
3608 if (this_alternative_matches[j] == i
3609 && this_alternative_match_win[j])
3611 this_alternative_win[j] = 0;
3612 this_alternative_match_win[j] = 0;
3613 losers++;
3618 /* If one alternative accepts all the operands, no reload required,
3619 choose that alternative; don't consider the remaining ones. */
3620 if (losers == 0)
3622 /* Unswap these so that they are never swapped at `finish'. */
3623 if (commutative >= 0)
3625 recog_data.operand[commutative] = substed_operand[commutative];
3626 recog_data.operand[commutative + 1]
3627 = substed_operand[commutative + 1];
3629 for (i = 0; i < noperands; i++)
3631 goal_alternative_win[i] = this_alternative_win[i];
3632 goal_alternative_match_win[i] = this_alternative_match_win[i];
3633 goal_alternative[i] = this_alternative[i];
3634 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3635 goal_alternative_matches[i] = this_alternative_matches[i];
3636 goal_alternative_earlyclobber[i]
3637 = this_alternative_earlyclobber[i];
3639 goal_alternative_number = this_alternative_number;
3640 goal_alternative_swapped = swapped;
3641 goal_earlyclobber = this_earlyclobber;
3642 goto finish;
3645 /* REJECT, set by the ! and ? constraint characters and when a register
3646 would be reloaded into a non-preferred class, discourages the use of
3647 this alternative for a reload goal. REJECT is incremented by six
3648 for each ? and two for each non-preferred class. */
3649 losers = losers * 6 + reject;
3651 /* If this alternative can be made to work by reloading,
3652 and it needs less reloading than the others checked so far,
3653 record it as the chosen goal for reloading. */
3654 if (! bad && best > losers)
3656 for (i = 0; i < noperands; i++)
3658 goal_alternative[i] = this_alternative[i];
3659 goal_alternative_win[i] = this_alternative_win[i];
3660 goal_alternative_match_win[i] = this_alternative_match_win[i];
3661 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3662 goal_alternative_matches[i] = this_alternative_matches[i];
3663 goal_alternative_earlyclobber[i]
3664 = this_alternative_earlyclobber[i];
3666 goal_alternative_swapped = swapped;
3667 best = losers;
3668 goal_alternative_number = this_alternative_number;
3669 goal_earlyclobber = this_earlyclobber;
3673 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3674 then we need to try each alternative twice,
3675 the second time matching those two operands
3676 as if we had exchanged them.
3677 To do this, really exchange them in operands.
3679 If we have just tried the alternatives the second time,
3680 return operands to normal and drop through. */
3682 if (commutative >= 0)
3684 swapped = !swapped;
3685 if (swapped)
3687 enum reg_class tclass;
3688 int t;
3690 recog_data.operand[commutative] = substed_operand[commutative + 1];
3691 recog_data.operand[commutative + 1] = substed_operand[commutative];
3692 /* Swap the duplicates too. */
3693 for (i = 0; i < recog_data.n_dups; i++)
3694 if (recog_data.dup_num[i] == commutative
3695 || recog_data.dup_num[i] == commutative + 1)
3696 *recog_data.dup_loc[i]
3697 = recog_data.operand[(int) recog_data.dup_num[i]];
3699 tclass = preferred_class[commutative];
3700 preferred_class[commutative] = preferred_class[commutative + 1];
3701 preferred_class[commutative + 1] = tclass;
3703 t = pref_or_nothing[commutative];
3704 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3705 pref_or_nothing[commutative + 1] = t;
3707 t = address_reloaded[commutative];
3708 address_reloaded[commutative] = address_reloaded[commutative + 1];
3709 address_reloaded[commutative + 1] = t;
3711 memcpy (constraints, recog_data.constraints,
3712 noperands * sizeof (char *));
3713 goto try_swapped;
3715 else
3717 recog_data.operand[commutative] = substed_operand[commutative];
3718 recog_data.operand[commutative + 1]
3719 = substed_operand[commutative + 1];
3720 /* Unswap the duplicates too. */
3721 for (i = 0; i < recog_data.n_dups; i++)
3722 if (recog_data.dup_num[i] == commutative
3723 || recog_data.dup_num[i] == commutative + 1)
3724 *recog_data.dup_loc[i]
3725 = recog_data.operand[(int) recog_data.dup_num[i]];
3729 /* The operands don't meet the constraints.
3730 goal_alternative describes the alternative
3731 that we could reach by reloading the fewest operands.
3732 Reload so as to fit it. */
3734 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3736 /* No alternative works with reloads?? */
3737 if (insn_code_number >= 0)
3738 fatal_insn ("unable to generate reloads for:", insn);
3739 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3740 /* Avoid further trouble with this insn. */
3741 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3742 n_reloads = 0;
3743 return 0;
3746 /* Jump to `finish' from above if all operands are valid already.
3747 In that case, goal_alternative_win is all 1. */
3748 finish:
3750 /* Right now, for any pair of operands I and J that are required to match,
3751 with I < J,
3752 goal_alternative_matches[J] is I.
3753 Set up goal_alternative_matched as the inverse function:
3754 goal_alternative_matched[I] = J. */
3756 for (i = 0; i < noperands; i++)
3757 goal_alternative_matched[i] = -1;
3759 for (i = 0; i < noperands; i++)
3760 if (! goal_alternative_win[i]
3761 && goal_alternative_matches[i] >= 0)
3762 goal_alternative_matched[goal_alternative_matches[i]] = i;
3764 for (i = 0; i < noperands; i++)
3765 goal_alternative_win[i] |= goal_alternative_match_win[i];
3767 /* If the best alternative is with operands 1 and 2 swapped,
3768 consider them swapped before reporting the reloads. Update the
3769 operand numbers of any reloads already pushed. */
3771 if (goal_alternative_swapped)
3773 rtx tem;
3775 tem = substed_operand[commutative];
3776 substed_operand[commutative] = substed_operand[commutative + 1];
3777 substed_operand[commutative + 1] = tem;
3778 tem = recog_data.operand[commutative];
3779 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3780 recog_data.operand[commutative + 1] = tem;
3781 tem = *recog_data.operand_loc[commutative];
3782 *recog_data.operand_loc[commutative]
3783 = *recog_data.operand_loc[commutative + 1];
3784 *recog_data.operand_loc[commutative + 1] = tem;
3786 for (i = 0; i < n_reloads; i++)
3788 if (rld[i].opnum == commutative)
3789 rld[i].opnum = commutative + 1;
3790 else if (rld[i].opnum == commutative + 1)
3791 rld[i].opnum = commutative;
3795 for (i = 0; i < noperands; i++)
3797 operand_reloadnum[i] = -1;
3799 /* If this is an earlyclobber operand, we need to widen the scope.
3800 The reload must remain valid from the start of the insn being
3801 reloaded until after the operand is stored into its destination.
3802 We approximate this with RELOAD_OTHER even though we know that we
3803 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3805 One special case that is worth checking is when we have an
3806 output that is earlyclobber but isn't used past the insn (typically
3807 a SCRATCH). In this case, we only need have the reload live
3808 through the insn itself, but not for any of our input or output
3809 reloads.
3810 But we must not accidentally narrow the scope of an existing
3811 RELOAD_OTHER reload - leave these alone.
3813 In any case, anything needed to address this operand can remain
3814 however they were previously categorized. */
3816 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3817 operand_type[i]
3818 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3819 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3822 /* Any constants that aren't allowed and can't be reloaded
3823 into registers are here changed into memory references. */
3824 for (i = 0; i < noperands; i++)
3825 if (! goal_alternative_win[i]
3826 && CONST_POOL_OK_P (recog_data.operand[i])
3827 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3828 (enum reg_class) goal_alternative[i])
3829 == NO_REGS)
3830 || no_input_reloads)
3831 && operand_mode[i] != VOIDmode)
3833 substed_operand[i] = recog_data.operand[i]
3834 = find_reloads_toplev (force_const_mem (operand_mode[i],
3835 recog_data.operand[i]),
3836 i, address_type[i], ind_levels, 0, insn,
3837 NULL);
3838 if (alternative_allows_memconst (recog_data.constraints[i],
3839 goal_alternative_number))
3840 goal_alternative_win[i] = 1;
3843 /* Likewise any invalid constants appearing as operand of a PLUS
3844 that is to be reloaded. */
3845 for (i = 0; i < noperands; i++)
3846 if (! goal_alternative_win[i]
3847 && GET_CODE (recog_data.operand[i]) == PLUS
3848 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3849 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3850 (enum reg_class) goal_alternative[i])
3851 == NO_REGS)
3852 && operand_mode[i] != VOIDmode)
3854 rtx tem = force_const_mem (operand_mode[i],
3855 XEXP (recog_data.operand[i], 1));
3856 tem = gen_rtx_PLUS (operand_mode[i],
3857 XEXP (recog_data.operand[i], 0), tem);
3859 substed_operand[i] = recog_data.operand[i]
3860 = find_reloads_toplev (tem, i, address_type[i],
3861 ind_levels, 0, insn, NULL);
3864 /* Record the values of the earlyclobber operands for the caller. */
3865 if (goal_earlyclobber)
3866 for (i = 0; i < noperands; i++)
3867 if (goal_alternative_earlyclobber[i])
3868 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3870 /* Now record reloads for all the operands that need them. */
3871 for (i = 0; i < noperands; i++)
3872 if (! goal_alternative_win[i])
3874 /* Operands that match previous ones have already been handled. */
3875 if (goal_alternative_matches[i] >= 0)
3877 /* Handle an operand with a nonoffsettable address
3878 appearing where an offsettable address will do
3879 by reloading the address into a base register.
3881 ??? We can also do this when the operand is a register and
3882 reg_equiv_mem is not offsettable, but this is a bit tricky,
3883 so we don't bother with it. It may not be worth doing. */
3884 else if (goal_alternative_matched[i] == -1
3885 && goal_alternative_offmemok[i]
3886 && MEM_P (recog_data.operand[i]))
3888 operand_reloadnum[i]
3889 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3890 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3891 MODE_BASE_REG_CLASS (VOIDmode),
3892 GET_MODE (XEXP (recog_data.operand[i], 0)),
3893 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3894 rld[operand_reloadnum[i]].inc
3895 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3897 /* If this operand is an output, we will have made any
3898 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3899 now we are treating part of the operand as an input, so
3900 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3902 if (modified[i] == RELOAD_WRITE)
3904 for (j = 0; j < n_reloads; j++)
3906 if (rld[j].opnum == i)
3908 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3909 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3910 else if (rld[j].when_needed
3911 == RELOAD_FOR_OUTADDR_ADDRESS)
3912 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3917 else if (goal_alternative_matched[i] == -1)
3919 operand_reloadnum[i]
3920 = push_reload ((modified[i] != RELOAD_WRITE
3921 ? recog_data.operand[i] : 0),
3922 (modified[i] != RELOAD_READ
3923 ? recog_data.operand[i] : 0),
3924 (modified[i] != RELOAD_WRITE
3925 ? recog_data.operand_loc[i] : 0),
3926 (modified[i] != RELOAD_READ
3927 ? recog_data.operand_loc[i] : 0),
3928 (enum reg_class) goal_alternative[i],
3929 (modified[i] == RELOAD_WRITE
3930 ? VOIDmode : operand_mode[i]),
3931 (modified[i] == RELOAD_READ
3932 ? VOIDmode : operand_mode[i]),
3933 (insn_code_number < 0 ? 0
3934 : insn_data[insn_code_number].operand[i].strict_low),
3935 0, i, operand_type[i]);
3937 /* In a matching pair of operands, one must be input only
3938 and the other must be output only.
3939 Pass the input operand as IN and the other as OUT. */
3940 else if (modified[i] == RELOAD_READ
3941 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3943 operand_reloadnum[i]
3944 = push_reload (recog_data.operand[i],
3945 recog_data.operand[goal_alternative_matched[i]],
3946 recog_data.operand_loc[i],
3947 recog_data.operand_loc[goal_alternative_matched[i]],
3948 (enum reg_class) goal_alternative[i],
3949 operand_mode[i],
3950 operand_mode[goal_alternative_matched[i]],
3951 0, 0, i, RELOAD_OTHER);
3952 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3954 else if (modified[i] == RELOAD_WRITE
3955 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3957 operand_reloadnum[goal_alternative_matched[i]]
3958 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3959 recog_data.operand[i],
3960 recog_data.operand_loc[goal_alternative_matched[i]],
3961 recog_data.operand_loc[i],
3962 (enum reg_class) goal_alternative[i],
3963 operand_mode[goal_alternative_matched[i]],
3964 operand_mode[i],
3965 0, 0, i, RELOAD_OTHER);
3966 operand_reloadnum[i] = output_reloadnum;
3968 else
3970 gcc_assert (insn_code_number < 0);
3971 error_for_asm (insn, "inconsistent operand constraints "
3972 "in an %<asm%>");
3973 /* Avoid further trouble with this insn. */
3974 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3975 n_reloads = 0;
3976 return 0;
3979 else if (goal_alternative_matched[i] < 0
3980 && goal_alternative_matches[i] < 0
3981 && address_operand_reloaded[i] != 1
3982 && optimize)
3984 /* For each non-matching operand that's a MEM or a pseudo-register
3985 that didn't get a hard register, make an optional reload.
3986 This may get done even if the insn needs no reloads otherwise. */
3988 rtx operand = recog_data.operand[i];
3990 while (GET_CODE (operand) == SUBREG)
3991 operand = SUBREG_REG (operand);
3992 if ((MEM_P (operand)
3993 || (REG_P (operand)
3994 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3995 /* If this is only for an output, the optional reload would not
3996 actually cause us to use a register now, just note that
3997 something is stored here. */
3998 && ((enum reg_class) goal_alternative[i] != NO_REGS
3999 || modified[i] == RELOAD_WRITE)
4000 && ! no_input_reloads
4001 /* An optional output reload might allow to delete INSN later.
4002 We mustn't make in-out reloads on insns that are not permitted
4003 output reloads.
4004 If this is an asm, we can't delete it; we must not even call
4005 push_reload for an optional output reload in this case,
4006 because we can't be sure that the constraint allows a register,
4007 and push_reload verifies the constraints for asms. */
4008 && (modified[i] == RELOAD_READ
4009 || (! no_output_reloads && ! this_insn_is_asm)))
4010 operand_reloadnum[i]
4011 = push_reload ((modified[i] != RELOAD_WRITE
4012 ? recog_data.operand[i] : 0),
4013 (modified[i] != RELOAD_READ
4014 ? recog_data.operand[i] : 0),
4015 (modified[i] != RELOAD_WRITE
4016 ? recog_data.operand_loc[i] : 0),
4017 (modified[i] != RELOAD_READ
4018 ? recog_data.operand_loc[i] : 0),
4019 (enum reg_class) goal_alternative[i],
4020 (modified[i] == RELOAD_WRITE
4021 ? VOIDmode : operand_mode[i]),
4022 (modified[i] == RELOAD_READ
4023 ? VOIDmode : operand_mode[i]),
4024 (insn_code_number < 0 ? 0
4025 : insn_data[insn_code_number].operand[i].strict_low),
4026 1, i, operand_type[i]);
4027 /* If a memory reference remains (either as a MEM or a pseudo that
4028 did not get a hard register), yet we can't make an optional
4029 reload, check if this is actually a pseudo register reference;
4030 we then need to emit a USE and/or a CLOBBER so that reload
4031 inheritance will do the right thing. */
4032 else if (replace
4033 && (MEM_P (operand)
4034 || (REG_P (operand)
4035 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4036 && reg_renumber [REGNO (operand)] < 0)))
4038 operand = *recog_data.operand_loc[i];
4040 while (GET_CODE (operand) == SUBREG)
4041 operand = SUBREG_REG (operand);
4042 if (REG_P (operand))
4044 if (modified[i] != RELOAD_WRITE)
4045 /* We mark the USE with QImode so that we recognize
4046 it as one that can be safely deleted at the end
4047 of reload. */
4048 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4049 insn), QImode);
4050 if (modified[i] != RELOAD_READ)
4051 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4055 else if (goal_alternative_matches[i] >= 0
4056 && goal_alternative_win[goal_alternative_matches[i]]
4057 && modified[i] == RELOAD_READ
4058 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4059 && ! no_input_reloads && ! no_output_reloads
4060 && optimize)
4062 /* Similarly, make an optional reload for a pair of matching
4063 objects that are in MEM or a pseudo that didn't get a hard reg. */
4065 rtx operand = recog_data.operand[i];
4067 while (GET_CODE (operand) == SUBREG)
4068 operand = SUBREG_REG (operand);
4069 if ((MEM_P (operand)
4070 || (REG_P (operand)
4071 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4072 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4073 != NO_REGS))
4074 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4075 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4076 recog_data.operand[i],
4077 recog_data.operand_loc[goal_alternative_matches[i]],
4078 recog_data.operand_loc[i],
4079 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4080 operand_mode[goal_alternative_matches[i]],
4081 operand_mode[i],
4082 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4085 /* Perform whatever substitutions on the operands we are supposed
4086 to make due to commutativity or replacement of registers
4087 with equivalent constants or memory slots. */
4089 for (i = 0; i < noperands; i++)
4091 /* We only do this on the last pass through reload, because it is
4092 possible for some data (like reg_equiv_address) to be changed during
4093 later passes. Moreover, we loose the opportunity to get a useful
4094 reload_{in,out}_reg when we do these replacements. */
4096 if (replace)
4098 rtx substitution = substed_operand[i];
4100 *recog_data.operand_loc[i] = substitution;
4102 /* If we're replacing an operand with a LABEL_REF, we need
4103 to make sure that there's a REG_LABEL note attached to
4104 this instruction. */
4105 if (!JUMP_P (insn)
4106 && GET_CODE (substitution) == LABEL_REF
4107 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4108 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4109 XEXP (substitution, 0),
4110 REG_NOTES (insn));
4112 else
4113 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4116 /* If this insn pattern contains any MATCH_DUP's, make sure that
4117 they will be substituted if the operands they match are substituted.
4118 Also do now any substitutions we already did on the operands.
4120 Don't do this if we aren't making replacements because we might be
4121 propagating things allocated by frame pointer elimination into places
4122 it doesn't expect. */
4124 if (insn_code_number >= 0 && replace)
4125 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4127 int opno = recog_data.dup_num[i];
4128 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4129 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4132 #if 0
4133 /* This loses because reloading of prior insns can invalidate the equivalence
4134 (or at least find_equiv_reg isn't smart enough to find it any more),
4135 causing this insn to need more reload regs than it needed before.
4136 It may be too late to make the reload regs available.
4137 Now this optimization is done safely in choose_reload_regs. */
4139 /* For each reload of a reg into some other class of reg,
4140 search for an existing equivalent reg (same value now) in the right class.
4141 We can use it as long as we don't need to change its contents. */
4142 for (i = 0; i < n_reloads; i++)
4143 if (rld[i].reg_rtx == 0
4144 && rld[i].in != 0
4145 && REG_P (rld[i].in)
4146 && rld[i].out == 0)
4148 rld[i].reg_rtx
4149 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4150 static_reload_reg_p, 0, rld[i].inmode);
4151 /* Prevent generation of insn to load the value
4152 because the one we found already has the value. */
4153 if (rld[i].reg_rtx)
4154 rld[i].in = rld[i].reg_rtx;
4156 #endif
4158 /* Perhaps an output reload can be combined with another
4159 to reduce needs by one. */
4160 if (!goal_earlyclobber)
4161 combine_reloads ();
4163 /* If we have a pair of reloads for parts of an address, they are reloading
4164 the same object, the operands themselves were not reloaded, and they
4165 are for two operands that are supposed to match, merge the reloads and
4166 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4168 for (i = 0; i < n_reloads; i++)
4170 int k;
4172 for (j = i + 1; j < n_reloads; j++)
4173 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4174 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4175 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4176 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4177 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4178 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4179 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4180 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4181 && rtx_equal_p (rld[i].in, rld[j].in)
4182 && (operand_reloadnum[rld[i].opnum] < 0
4183 || rld[operand_reloadnum[rld[i].opnum]].optional)
4184 && (operand_reloadnum[rld[j].opnum] < 0
4185 || rld[operand_reloadnum[rld[j].opnum]].optional)
4186 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4187 || (goal_alternative_matches[rld[j].opnum]
4188 == rld[i].opnum)))
4190 for (k = 0; k < n_replacements; k++)
4191 if (replacements[k].what == j)
4192 replacements[k].what = i;
4194 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4195 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4196 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4197 else
4198 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4199 rld[j].in = 0;
4203 /* Scan all the reloads and update their type.
4204 If a reload is for the address of an operand and we didn't reload
4205 that operand, change the type. Similarly, change the operand number
4206 of a reload when two operands match. If a reload is optional, treat it
4207 as though the operand isn't reloaded.
4209 ??? This latter case is somewhat odd because if we do the optional
4210 reload, it means the object is hanging around. Thus we need only
4211 do the address reload if the optional reload was NOT done.
4213 Change secondary reloads to be the address type of their operand, not
4214 the normal type.
4216 If an operand's reload is now RELOAD_OTHER, change any
4217 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4218 RELOAD_FOR_OTHER_ADDRESS. */
4220 for (i = 0; i < n_reloads; i++)
4222 if (rld[i].secondary_p
4223 && rld[i].when_needed == operand_type[rld[i].opnum])
4224 rld[i].when_needed = address_type[rld[i].opnum];
4226 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4227 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4228 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4229 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4230 && (operand_reloadnum[rld[i].opnum] < 0
4231 || rld[operand_reloadnum[rld[i].opnum]].optional))
4233 /* If we have a secondary reload to go along with this reload,
4234 change its type to RELOAD_FOR_OPADDR_ADDR. */
4236 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4237 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4238 && rld[i].secondary_in_reload != -1)
4240 int secondary_in_reload = rld[i].secondary_in_reload;
4242 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4244 /* If there's a tertiary reload we have to change it also. */
4245 if (secondary_in_reload > 0
4246 && rld[secondary_in_reload].secondary_in_reload != -1)
4247 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4248 = RELOAD_FOR_OPADDR_ADDR;
4251 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4252 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4253 && rld[i].secondary_out_reload != -1)
4255 int secondary_out_reload = rld[i].secondary_out_reload;
4257 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4259 /* If there's a tertiary reload we have to change it also. */
4260 if (secondary_out_reload
4261 && rld[secondary_out_reload].secondary_out_reload != -1)
4262 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4263 = RELOAD_FOR_OPADDR_ADDR;
4266 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4267 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4268 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4269 else
4270 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4273 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4274 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4275 && operand_reloadnum[rld[i].opnum] >= 0
4276 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4277 == RELOAD_OTHER))
4278 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4280 if (goal_alternative_matches[rld[i].opnum] >= 0)
4281 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4284 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4285 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4286 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4288 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4289 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4290 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4291 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4292 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4293 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4294 This is complicated by the fact that a single operand can have more
4295 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4296 choose_reload_regs without affecting code quality, and cases that
4297 actually fail are extremely rare, so it turns out to be better to fix
4298 the problem here by not generating cases that choose_reload_regs will
4299 fail for. */
4300 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4301 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4302 a single operand.
4303 We can reduce the register pressure by exploiting that a
4304 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4305 does not conflict with any of them, if it is only used for the first of
4306 the RELOAD_FOR_X_ADDRESS reloads. */
4308 int first_op_addr_num = -2;
4309 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4310 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4311 int need_change = 0;
4312 /* We use last_op_addr_reload and the contents of the above arrays
4313 first as flags - -2 means no instance encountered, -1 means exactly
4314 one instance encountered.
4315 If more than one instance has been encountered, we store the reload
4316 number of the first reload of the kind in question; reload numbers
4317 are known to be non-negative. */
4318 for (i = 0; i < noperands; i++)
4319 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4320 for (i = n_reloads - 1; i >= 0; i--)
4322 switch (rld[i].when_needed)
4324 case RELOAD_FOR_OPERAND_ADDRESS:
4325 if (++first_op_addr_num >= 0)
4327 first_op_addr_num = i;
4328 need_change = 1;
4330 break;
4331 case RELOAD_FOR_INPUT_ADDRESS:
4332 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4334 first_inpaddr_num[rld[i].opnum] = i;
4335 need_change = 1;
4337 break;
4338 case RELOAD_FOR_OUTPUT_ADDRESS:
4339 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4341 first_outpaddr_num[rld[i].opnum] = i;
4342 need_change = 1;
4344 break;
4345 default:
4346 break;
4350 if (need_change)
4352 for (i = 0; i < n_reloads; i++)
4354 int first_num;
4355 enum reload_type type;
4357 switch (rld[i].when_needed)
4359 case RELOAD_FOR_OPADDR_ADDR:
4360 first_num = first_op_addr_num;
4361 type = RELOAD_FOR_OPERAND_ADDRESS;
4362 break;
4363 case RELOAD_FOR_INPADDR_ADDRESS:
4364 first_num = first_inpaddr_num[rld[i].opnum];
4365 type = RELOAD_FOR_INPUT_ADDRESS;
4366 break;
4367 case RELOAD_FOR_OUTADDR_ADDRESS:
4368 first_num = first_outpaddr_num[rld[i].opnum];
4369 type = RELOAD_FOR_OUTPUT_ADDRESS;
4370 break;
4371 default:
4372 continue;
4374 if (first_num < 0)
4375 continue;
4376 else if (i > first_num)
4377 rld[i].when_needed = type;
4378 else
4380 /* Check if the only TYPE reload that uses reload I is
4381 reload FIRST_NUM. */
4382 for (j = n_reloads - 1; j > first_num; j--)
4384 if (rld[j].when_needed == type
4385 && (rld[i].secondary_p
4386 ? rld[j].secondary_in_reload == i
4387 : reg_mentioned_p (rld[i].in, rld[j].in)))
4389 rld[i].when_needed = type;
4390 break;
4398 /* See if we have any reloads that are now allowed to be merged
4399 because we've changed when the reload is needed to
4400 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4401 check for the most common cases. */
4403 for (i = 0; i < n_reloads; i++)
4404 if (rld[i].in != 0 && rld[i].out == 0
4405 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4406 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4407 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4408 for (j = 0; j < n_reloads; j++)
4409 if (i != j && rld[j].in != 0 && rld[j].out == 0
4410 && rld[j].when_needed == rld[i].when_needed
4411 && MATCHES (rld[i].in, rld[j].in)
4412 && rld[i].class == rld[j].class
4413 && !rld[i].nocombine && !rld[j].nocombine
4414 && rld[i].reg_rtx == rld[j].reg_rtx)
4416 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4417 transfer_replacements (i, j);
4418 rld[j].in = 0;
4421 #ifdef HAVE_cc0
4422 /* If we made any reloads for addresses, see if they violate a
4423 "no input reloads" requirement for this insn. But loads that we
4424 do after the insn (such as for output addresses) are fine. */
4425 if (no_input_reloads)
4426 for (i = 0; i < n_reloads; i++)
4427 gcc_assert (rld[i].in == 0
4428 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4429 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4430 #endif
4432 /* Compute reload_mode and reload_nregs. */
4433 for (i = 0; i < n_reloads; i++)
4435 rld[i].mode
4436 = (rld[i].inmode == VOIDmode
4437 || (GET_MODE_SIZE (rld[i].outmode)
4438 > GET_MODE_SIZE (rld[i].inmode)))
4439 ? rld[i].outmode : rld[i].inmode;
4441 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4444 /* Special case a simple move with an input reload and a
4445 destination of a hard reg, if the hard reg is ok, use it. */
4446 for (i = 0; i < n_reloads; i++)
4447 if (rld[i].when_needed == RELOAD_FOR_INPUT
4448 && GET_CODE (PATTERN (insn)) == SET
4449 && REG_P (SET_DEST (PATTERN (insn)))
4450 && SET_SRC (PATTERN (insn)) == rld[i].in)
4452 rtx dest = SET_DEST (PATTERN (insn));
4453 unsigned int regno = REGNO (dest);
4455 if (regno < FIRST_PSEUDO_REGISTER
4456 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4457 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4459 int nr = hard_regno_nregs[regno][rld[i].mode];
4460 int ok = 1, nri;
4462 for (nri = 1; nri < nr; nri ++)
4463 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4464 ok = 0;
4466 if (ok)
4467 rld[i].reg_rtx = dest;
4471 return retval;
4474 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4475 accepts a memory operand with constant address. */
4477 static int
4478 alternative_allows_memconst (const char *constraint, int altnum)
4480 int c;
4481 /* Skip alternatives before the one requested. */
4482 while (altnum > 0)
4484 while (*constraint++ != ',');
4485 altnum--;
4487 /* Scan the requested alternative for 'm' or 'o'.
4488 If one of them is present, this alternative accepts memory constants. */
4489 for (; (c = *constraint) && c != ',' && c != '#';
4490 constraint += CONSTRAINT_LEN (c, constraint))
4491 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4492 return 1;
4493 return 0;
4496 /* Scan X for memory references and scan the addresses for reloading.
4497 Also checks for references to "constant" regs that we want to eliminate
4498 and replaces them with the values they stand for.
4499 We may alter X destructively if it contains a reference to such.
4500 If X is just a constant reg, we return the equivalent value
4501 instead of X.
4503 IND_LEVELS says how many levels of indirect addressing this machine
4504 supports.
4506 OPNUM and TYPE identify the purpose of the reload.
4508 IS_SET_DEST is true if X is the destination of a SET, which is not
4509 appropriate to be replaced by a constant.
4511 INSN, if nonzero, is the insn in which we do the reload. It is used
4512 to determine if we may generate output reloads, and where to put USEs
4513 for pseudos that we have to replace with stack slots.
4515 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4516 result of find_reloads_address. */
4518 static rtx
4519 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4520 int ind_levels, int is_set_dest, rtx insn,
4521 int *address_reloaded)
4523 RTX_CODE code = GET_CODE (x);
4525 const char *fmt = GET_RTX_FORMAT (code);
4526 int i;
4527 int copied;
4529 if (code == REG)
4531 /* This code is duplicated for speed in find_reloads. */
4532 int regno = REGNO (x);
4533 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4534 x = reg_equiv_constant[regno];
4535 #if 0
4536 /* This creates (subreg (mem...)) which would cause an unnecessary
4537 reload of the mem. */
4538 else if (reg_equiv_mem[regno] != 0)
4539 x = reg_equiv_mem[regno];
4540 #endif
4541 else if (reg_equiv_memory_loc[regno]
4542 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4544 rtx mem = make_memloc (x, regno);
4545 if (reg_equiv_address[regno]
4546 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4548 /* If this is not a toplevel operand, find_reloads doesn't see
4549 this substitution. We have to emit a USE of the pseudo so
4550 that delete_output_reload can see it. */
4551 if (replace_reloads && recog_data.operand[opnum] != x)
4552 /* We mark the USE with QImode so that we recognize it
4553 as one that can be safely deleted at the end of
4554 reload. */
4555 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4556 QImode);
4557 x = mem;
4558 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4559 opnum, type, ind_levels, insn);
4560 if (address_reloaded)
4561 *address_reloaded = i;
4564 return x;
4566 if (code == MEM)
4568 rtx tem = x;
4570 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4571 opnum, type, ind_levels, insn);
4572 if (address_reloaded)
4573 *address_reloaded = i;
4575 return tem;
4578 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4580 /* Check for SUBREG containing a REG that's equivalent to a
4581 constant. If the constant has a known value, truncate it
4582 right now. Similarly if we are extracting a single-word of a
4583 multi-word constant. If the constant is symbolic, allow it
4584 to be substituted normally. push_reload will strip the
4585 subreg later. The constant must not be VOIDmode, because we
4586 will lose the mode of the register (this should never happen
4587 because one of the cases above should handle it). */
4589 int regno = REGNO (SUBREG_REG (x));
4590 rtx tem;
4592 if (subreg_lowpart_p (x)
4593 && regno >= FIRST_PSEUDO_REGISTER
4594 && reg_renumber[regno] < 0
4595 && reg_equiv_constant[regno] != 0
4596 && (tem = gen_lowpart_common (GET_MODE (x),
4597 reg_equiv_constant[regno])) != 0)
4598 return tem;
4600 if (regno >= FIRST_PSEUDO_REGISTER
4601 && reg_renumber[regno] < 0
4602 && reg_equiv_constant[regno] != 0)
4604 tem =
4605 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4606 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4607 gcc_assert (tem);
4608 return tem;
4611 /* If the subreg contains a reg that will be converted to a mem,
4612 convert the subreg to a narrower memref now.
4613 Otherwise, we would get (subreg (mem ...) ...),
4614 which would force reload of the mem.
4616 We also need to do this if there is an equivalent MEM that is
4617 not offsettable. In that case, alter_subreg would produce an
4618 invalid address on big-endian machines.
4620 For machines that extend byte loads, we must not reload using
4621 a wider mode if we have a paradoxical SUBREG. find_reloads will
4622 force a reload in that case. So we should not do anything here. */
4624 if (regno >= FIRST_PSEUDO_REGISTER
4625 #ifdef LOAD_EXTEND_OP
4626 && (GET_MODE_SIZE (GET_MODE (x))
4627 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4628 #endif
4629 && (reg_equiv_address[regno] != 0
4630 || (reg_equiv_mem[regno] != 0
4631 && (! strict_memory_address_p (GET_MODE (x),
4632 XEXP (reg_equiv_mem[regno], 0))
4633 || ! offsettable_memref_p (reg_equiv_mem[regno])
4634 || num_not_at_initial_offset))))
4635 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4636 insn);
4639 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4641 if (fmt[i] == 'e')
4643 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4644 ind_levels, is_set_dest, insn,
4645 address_reloaded);
4646 /* If we have replaced a reg with it's equivalent memory loc -
4647 that can still be handled here e.g. if it's in a paradoxical
4648 subreg - we must make the change in a copy, rather than using
4649 a destructive change. This way, find_reloads can still elect
4650 not to do the change. */
4651 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4653 x = shallow_copy_rtx (x);
4654 copied = 1;
4656 XEXP (x, i) = new_part;
4659 return x;
4662 /* Return a mem ref for the memory equivalent of reg REGNO.
4663 This mem ref is not shared with anything. */
4665 static rtx
4666 make_memloc (rtx ad, int regno)
4668 /* We must rerun eliminate_regs, in case the elimination
4669 offsets have changed. */
4670 rtx tem
4671 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4673 /* If TEM might contain a pseudo, we must copy it to avoid
4674 modifying it when we do the substitution for the reload. */
4675 if (rtx_varies_p (tem, 0))
4676 tem = copy_rtx (tem);
4678 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4679 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4681 /* Copy the result if it's still the same as the equivalence, to avoid
4682 modifying it when we do the substitution for the reload. */
4683 if (tem == reg_equiv_memory_loc[regno])
4684 tem = copy_rtx (tem);
4685 return tem;
4688 /* Returns true if AD could be turned into a valid memory reference
4689 to mode MODE by reloading the part pointed to by PART into a
4690 register. */
4692 static int
4693 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4695 int retv;
4696 rtx tem = *part;
4697 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4699 *part = reg;
4700 retv = memory_address_p (mode, ad);
4701 *part = tem;
4703 return retv;
4706 /* Record all reloads needed for handling memory address AD
4707 which appears in *LOC in a memory reference to mode MODE
4708 which itself is found in location *MEMREFLOC.
4709 Note that we take shortcuts assuming that no multi-reg machine mode
4710 occurs as part of an address.
4712 OPNUM and TYPE specify the purpose of this reload.
4714 IND_LEVELS says how many levels of indirect addressing this machine
4715 supports.
4717 INSN, if nonzero, is the insn in which we do the reload. It is used
4718 to determine if we may generate output reloads, and where to put USEs
4719 for pseudos that we have to replace with stack slots.
4721 Value is one if this address is reloaded or replaced as a whole; it is
4722 zero if the top level of this address was not reloaded or replaced, and
4723 it is -1 if it may or may not have been reloaded or replaced.
4725 Note that there is no verification that the address will be valid after
4726 this routine does its work. Instead, we rely on the fact that the address
4727 was valid when reload started. So we need only undo things that reload
4728 could have broken. These are wrong register types, pseudos not allocated
4729 to a hard register, and frame pointer elimination. */
4731 static int
4732 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4733 rtx *loc, int opnum, enum reload_type type,
4734 int ind_levels, rtx insn)
4736 int regno;
4737 int removed_and = 0;
4738 int op_index;
4739 rtx tem;
4741 /* If the address is a register, see if it is a legitimate address and
4742 reload if not. We first handle the cases where we need not reload
4743 or where we must reload in a non-standard way. */
4745 if (REG_P (ad))
4747 regno = REGNO (ad);
4749 /* If the register is equivalent to an invariant expression, substitute
4750 the invariant, and eliminate any eliminable register references. */
4751 tem = reg_equiv_constant[regno];
4752 if (tem != 0
4753 && (tem = eliminate_regs (tem, mode, insn))
4754 && strict_memory_address_p (mode, tem))
4756 *loc = ad = tem;
4757 return 0;
4760 tem = reg_equiv_memory_loc[regno];
4761 if (tem != 0)
4763 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4765 tem = make_memloc (ad, regno);
4766 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4768 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4769 &XEXP (tem, 0), opnum,
4770 ADDR_TYPE (type), ind_levels, insn);
4772 /* We can avoid a reload if the register's equivalent memory
4773 expression is valid as an indirect memory address.
4774 But not all addresses are valid in a mem used as an indirect
4775 address: only reg or reg+constant. */
4777 if (ind_levels > 0
4778 && strict_memory_address_p (mode, tem)
4779 && (REG_P (XEXP (tem, 0))
4780 || (GET_CODE (XEXP (tem, 0)) == PLUS
4781 && REG_P (XEXP (XEXP (tem, 0), 0))
4782 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4784 /* TEM is not the same as what we'll be replacing the
4785 pseudo with after reload, put a USE in front of INSN
4786 in the final reload pass. */
4787 if (replace_reloads
4788 && num_not_at_initial_offset
4789 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4791 *loc = tem;
4792 /* We mark the USE with QImode so that we
4793 recognize it as one that can be safely
4794 deleted at the end of reload. */
4795 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4796 insn), QImode);
4798 /* This doesn't really count as replacing the address
4799 as a whole, since it is still a memory access. */
4801 return 0;
4803 ad = tem;
4807 /* The only remaining case where we can avoid a reload is if this is a
4808 hard register that is valid as a base register and which is not the
4809 subject of a CLOBBER in this insn. */
4811 else if (regno < FIRST_PSEUDO_REGISTER
4812 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4813 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4814 return 0;
4816 /* If we do not have one of the cases above, we must do the reload. */
4817 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4818 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4819 return 1;
4822 if (strict_memory_address_p (mode, ad))
4824 /* The address appears valid, so reloads are not needed.
4825 But the address may contain an eliminable register.
4826 This can happen because a machine with indirect addressing
4827 may consider a pseudo register by itself a valid address even when
4828 it has failed to get a hard reg.
4829 So do a tree-walk to find and eliminate all such regs. */
4831 /* But first quickly dispose of a common case. */
4832 if (GET_CODE (ad) == PLUS
4833 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4834 && REG_P (XEXP (ad, 0))
4835 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4836 return 0;
4838 subst_reg_equivs_changed = 0;
4839 *loc = subst_reg_equivs (ad, insn);
4841 if (! subst_reg_equivs_changed)
4842 return 0;
4844 /* Check result for validity after substitution. */
4845 if (strict_memory_address_p (mode, ad))
4846 return 0;
4849 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4852 if (memrefloc)
4854 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4855 ind_levels, win);
4857 break;
4858 win:
4859 *memrefloc = copy_rtx (*memrefloc);
4860 XEXP (*memrefloc, 0) = ad;
4861 move_replacements (&ad, &XEXP (*memrefloc, 0));
4862 return -1;
4864 while (0);
4865 #endif
4867 /* The address is not valid. We have to figure out why. First see if
4868 we have an outer AND and remove it if so. Then analyze what's inside. */
4870 if (GET_CODE (ad) == AND)
4872 removed_and = 1;
4873 loc = &XEXP (ad, 0);
4874 ad = *loc;
4877 /* One possibility for why the address is invalid is that it is itself
4878 a MEM. This can happen when the frame pointer is being eliminated, a
4879 pseudo is not allocated to a hard register, and the offset between the
4880 frame and stack pointers is not its initial value. In that case the
4881 pseudo will have been replaced by a MEM referring to the
4882 stack pointer. */
4883 if (MEM_P (ad))
4885 /* First ensure that the address in this MEM is valid. Then, unless
4886 indirect addresses are valid, reload the MEM into a register. */
4887 tem = ad;
4888 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4889 opnum, ADDR_TYPE (type),
4890 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4892 /* If tem was changed, then we must create a new memory reference to
4893 hold it and store it back into memrefloc. */
4894 if (tem != ad && memrefloc)
4896 *memrefloc = copy_rtx (*memrefloc);
4897 copy_replacements (tem, XEXP (*memrefloc, 0));
4898 loc = &XEXP (*memrefloc, 0);
4899 if (removed_and)
4900 loc = &XEXP (*loc, 0);
4903 /* Check similar cases as for indirect addresses as above except
4904 that we can allow pseudos and a MEM since they should have been
4905 taken care of above. */
4907 if (ind_levels == 0
4908 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4909 || MEM_P (XEXP (tem, 0))
4910 || ! (REG_P (XEXP (tem, 0))
4911 || (GET_CODE (XEXP (tem, 0)) == PLUS
4912 && REG_P (XEXP (XEXP (tem, 0), 0))
4913 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4915 /* Must use TEM here, not AD, since it is the one that will
4916 have any subexpressions reloaded, if needed. */
4917 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4918 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4919 VOIDmode, 0,
4920 0, opnum, type);
4921 return ! removed_and;
4923 else
4924 return 0;
4927 /* If we have address of a stack slot but it's not valid because the
4928 displacement is too large, compute the sum in a register.
4929 Handle all base registers here, not just fp/ap/sp, because on some
4930 targets (namely SH) we can also get too large displacements from
4931 big-endian corrections. */
4932 else if (GET_CODE (ad) == PLUS
4933 && REG_P (XEXP (ad, 0))
4934 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4935 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4936 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4938 /* Unshare the MEM rtx so we can safely alter it. */
4939 if (memrefloc)
4941 *memrefloc = copy_rtx (*memrefloc);
4942 loc = &XEXP (*memrefloc, 0);
4943 if (removed_and)
4944 loc = &XEXP (*loc, 0);
4947 if (double_reg_address_ok)
4949 /* Unshare the sum as well. */
4950 *loc = ad = copy_rtx (ad);
4952 /* Reload the displacement into an index reg.
4953 We assume the frame pointer or arg pointer is a base reg. */
4954 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4955 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4956 type, ind_levels);
4957 return 0;
4959 else
4961 /* If the sum of two regs is not necessarily valid,
4962 reload the sum into a base reg.
4963 That will at least work. */
4964 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4965 Pmode, opnum, type, ind_levels);
4967 return ! removed_and;
4970 /* If we have an indexed stack slot, there are three possible reasons why
4971 it might be invalid: The index might need to be reloaded, the address
4972 might have been made by frame pointer elimination and hence have a
4973 constant out of range, or both reasons might apply.
4975 We can easily check for an index needing reload, but even if that is the
4976 case, we might also have an invalid constant. To avoid making the
4977 conservative assumption and requiring two reloads, we see if this address
4978 is valid when not interpreted strictly. If it is, the only problem is
4979 that the index needs a reload and find_reloads_address_1 will take care
4980 of it.
4982 Handle all base registers here, not just fp/ap/sp, because on some
4983 targets (namely SPARC) we can also get invalid addresses from preventive
4984 subreg big-endian corrections made by find_reloads_toplev. We
4985 can also get expressions involving LO_SUM (rather than PLUS) from
4986 find_reloads_subreg_address.
4988 If we decide to do something, it must be that `double_reg_address_ok'
4989 is true. We generate a reload of the base register + constant and
4990 rework the sum so that the reload register will be added to the index.
4991 This is safe because we know the address isn't shared.
4993 We check for the base register as both the first and second operand of
4994 the innermost PLUS and/or LO_SUM. */
4996 for (op_index = 0; op_index < 2; ++op_index)
4998 rtx operand;
5000 if (!(GET_CODE (ad) == PLUS
5001 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5002 && (GET_CODE (XEXP (ad, 0)) == PLUS
5003 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
5004 continue;
5006 operand = XEXP (XEXP (ad, 0), op_index);
5007 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5008 continue;
5010 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
5011 || operand == frame_pointer_rtx
5012 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5013 || operand == hard_frame_pointer_rtx
5014 #endif
5015 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5016 || operand == arg_pointer_rtx
5017 #endif
5018 || operand == stack_pointer_rtx)
5019 && ! maybe_memory_address_p (mode, ad,
5020 &XEXP (XEXP (ad, 0), 1 - op_index)))
5022 rtx offset_reg;
5023 rtx addend;
5025 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5026 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5028 /* Form the adjusted address. */
5029 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5030 ad = gen_rtx_PLUS (GET_MODE (ad),
5031 op_index == 0 ? offset_reg : addend,
5032 op_index == 0 ? addend : offset_reg);
5033 else
5034 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5035 op_index == 0 ? offset_reg : addend,
5036 op_index == 0 ? addend : offset_reg);
5037 *loc = ad;
5039 find_reloads_address_part (XEXP (ad, op_index),
5040 &XEXP (ad, op_index),
5041 MODE_BASE_REG_CLASS (mode),
5042 GET_MODE (ad), opnum, type, ind_levels);
5043 find_reloads_address_1 (mode,
5044 XEXP (ad, 1 - op_index), 1,
5045 &XEXP (ad, 1 - op_index), opnum,
5046 type, 0, insn);
5048 return 0;
5052 /* See if address becomes valid when an eliminable register
5053 in a sum is replaced. */
5055 tem = ad;
5056 if (GET_CODE (ad) == PLUS)
5057 tem = subst_indexed_address (ad);
5058 if (tem != ad && strict_memory_address_p (mode, tem))
5060 /* Ok, we win that way. Replace any additional eliminable
5061 registers. */
5063 subst_reg_equivs_changed = 0;
5064 tem = subst_reg_equivs (tem, insn);
5066 /* Make sure that didn't make the address invalid again. */
5068 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5070 *loc = tem;
5071 return 0;
5075 /* If constants aren't valid addresses, reload the constant address
5076 into a register. */
5077 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5079 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5080 Unshare it so we can safely alter it. */
5081 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5082 && CONSTANT_POOL_ADDRESS_P (ad))
5084 *memrefloc = copy_rtx (*memrefloc);
5085 loc = &XEXP (*memrefloc, 0);
5086 if (removed_and)
5087 loc = &XEXP (*loc, 0);
5090 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5091 Pmode, opnum, type, ind_levels);
5092 return ! removed_and;
5095 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5096 insn);
5099 /* Find all pseudo regs appearing in AD
5100 that are eliminable in favor of equivalent values
5101 and do not have hard regs; replace them by their equivalents.
5102 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5103 front of it for pseudos that we have to replace with stack slots. */
5105 static rtx
5106 subst_reg_equivs (rtx ad, rtx insn)
5108 RTX_CODE code = GET_CODE (ad);
5109 int i;
5110 const char *fmt;
5112 switch (code)
5114 case HIGH:
5115 case CONST_INT:
5116 case CONST:
5117 case CONST_DOUBLE:
5118 case CONST_VECTOR:
5119 case SYMBOL_REF:
5120 case LABEL_REF:
5121 case PC:
5122 case CC0:
5123 return ad;
5125 case REG:
5127 int regno = REGNO (ad);
5129 if (reg_equiv_constant[regno] != 0)
5131 subst_reg_equivs_changed = 1;
5132 return reg_equiv_constant[regno];
5134 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5136 rtx mem = make_memloc (ad, regno);
5137 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5139 subst_reg_equivs_changed = 1;
5140 /* We mark the USE with QImode so that we recognize it
5141 as one that can be safely deleted at the end of
5142 reload. */
5143 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5144 QImode);
5145 return mem;
5149 return ad;
5151 case PLUS:
5152 /* Quickly dispose of a common case. */
5153 if (XEXP (ad, 0) == frame_pointer_rtx
5154 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5155 return ad;
5156 break;
5158 default:
5159 break;
5162 fmt = GET_RTX_FORMAT (code);
5163 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5164 if (fmt[i] == 'e')
5165 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5166 return ad;
5169 /* Compute the sum of X and Y, making canonicalizations assumed in an
5170 address, namely: sum constant integers, surround the sum of two
5171 constants with a CONST, put the constant as the second operand, and
5172 group the constant on the outermost sum.
5174 This routine assumes both inputs are already in canonical form. */
5177 form_sum (rtx x, rtx y)
5179 rtx tem;
5180 enum machine_mode mode = GET_MODE (x);
5182 if (mode == VOIDmode)
5183 mode = GET_MODE (y);
5185 if (mode == VOIDmode)
5186 mode = Pmode;
5188 if (GET_CODE (x) == CONST_INT)
5189 return plus_constant (y, INTVAL (x));
5190 else if (GET_CODE (y) == CONST_INT)
5191 return plus_constant (x, INTVAL (y));
5192 else if (CONSTANT_P (x))
5193 tem = x, x = y, y = tem;
5195 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5196 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5198 /* Note that if the operands of Y are specified in the opposite
5199 order in the recursive calls below, infinite recursion will occur. */
5200 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5201 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5203 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5204 constant will have been placed second. */
5205 if (CONSTANT_P (x) && CONSTANT_P (y))
5207 if (GET_CODE (x) == CONST)
5208 x = XEXP (x, 0);
5209 if (GET_CODE (y) == CONST)
5210 y = XEXP (y, 0);
5212 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5215 return gen_rtx_PLUS (mode, x, y);
5218 /* If ADDR is a sum containing a pseudo register that should be
5219 replaced with a constant (from reg_equiv_constant),
5220 return the result of doing so, and also apply the associative
5221 law so that the result is more likely to be a valid address.
5222 (But it is not guaranteed to be one.)
5224 Note that at most one register is replaced, even if more are
5225 replaceable. Also, we try to put the result into a canonical form
5226 so it is more likely to be a valid address.
5228 In all other cases, return ADDR. */
5230 static rtx
5231 subst_indexed_address (rtx addr)
5233 rtx op0 = 0, op1 = 0, op2 = 0;
5234 rtx tem;
5235 int regno;
5237 if (GET_CODE (addr) == PLUS)
5239 /* Try to find a register to replace. */
5240 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5241 if (REG_P (op0)
5242 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5243 && reg_renumber[regno] < 0
5244 && reg_equiv_constant[regno] != 0)
5245 op0 = reg_equiv_constant[regno];
5246 else if (REG_P (op1)
5247 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5248 && reg_renumber[regno] < 0
5249 && reg_equiv_constant[regno] != 0)
5250 op1 = reg_equiv_constant[regno];
5251 else if (GET_CODE (op0) == PLUS
5252 && (tem = subst_indexed_address (op0)) != op0)
5253 op0 = tem;
5254 else if (GET_CODE (op1) == PLUS
5255 && (tem = subst_indexed_address (op1)) != op1)
5256 op1 = tem;
5257 else
5258 return addr;
5260 /* Pick out up to three things to add. */
5261 if (GET_CODE (op1) == PLUS)
5262 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5263 else if (GET_CODE (op0) == PLUS)
5264 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5266 /* Compute the sum. */
5267 if (op2 != 0)
5268 op1 = form_sum (op1, op2);
5269 if (op1 != 0)
5270 op0 = form_sum (op0, op1);
5272 return op0;
5274 return addr;
5277 /* Update the REG_INC notes for an insn. It updates all REG_INC
5278 notes for the instruction which refer to REGNO the to refer
5279 to the reload number.
5281 INSN is the insn for which any REG_INC notes need updating.
5283 REGNO is the register number which has been reloaded.
5285 RELOADNUM is the reload number. */
5287 static void
5288 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5289 int reloadnum ATTRIBUTE_UNUSED)
5291 #ifdef AUTO_INC_DEC
5292 rtx link;
5294 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5295 if (REG_NOTE_KIND (link) == REG_INC
5296 && (int) REGNO (XEXP (link, 0)) == regno)
5297 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5298 #endif
5301 /* Record the pseudo registers we must reload into hard registers in a
5302 subexpression of a would-be memory address, X referring to a value
5303 in mode MODE. (This function is not called if the address we find
5304 is strictly valid.)
5306 CONTEXT = 1 means we are considering regs as index regs,
5307 = 0 means we are considering them as base regs, = 2 means we
5308 are considering them as base regs for REG + REG.
5310 OPNUM and TYPE specify the purpose of any reloads made.
5312 IND_LEVELS says how many levels of indirect addressing are
5313 supported at this point in the address.
5315 INSN, if nonzero, is the insn in which we do the reload. It is used
5316 to determine if we may generate output reloads.
5318 We return nonzero if X, as a whole, is reloaded or replaced. */
5320 /* Note that we take shortcuts assuming that no multi-reg machine mode
5321 occurs as part of an address.
5322 Also, this is not fully machine-customizable; it works for machines
5323 such as VAXen and 68000's and 32000's, but other possible machines
5324 could have addressing modes that this does not handle right.
5325 If you add push_reload calls here, you need to make sure gen_reload
5326 handles those cases gracefully. */
5328 static int
5329 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5330 rtx *loc, int opnum, enum reload_type type,
5331 int ind_levels, rtx insn)
5333 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE) \
5334 ((CONTEXT) == 2 \
5335 ? REGNO_MODE_OK_FOR_REG_BASE_P (REGNO, MODE) \
5336 : (CONTEXT) == 1 \
5337 ? REGNO_OK_FOR_INDEX_P (REGNO) \
5338 : REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE))
5340 enum reg_class context_reg_class;
5341 RTX_CODE code = GET_CODE (x);
5343 if (context == 2)
5344 context_reg_class = MODE_BASE_REG_REG_CLASS (mode);
5345 else if (context == 1)
5346 context_reg_class = INDEX_REG_CLASS;
5347 else
5348 context_reg_class = MODE_BASE_REG_CLASS (mode);
5350 switch (code)
5352 case PLUS:
5354 rtx orig_op0 = XEXP (x, 0);
5355 rtx orig_op1 = XEXP (x, 1);
5356 RTX_CODE code0 = GET_CODE (orig_op0);
5357 RTX_CODE code1 = GET_CODE (orig_op1);
5358 rtx op0 = orig_op0;
5359 rtx op1 = orig_op1;
5361 if (GET_CODE (op0) == SUBREG)
5363 op0 = SUBREG_REG (op0);
5364 code0 = GET_CODE (op0);
5365 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5366 op0 = gen_rtx_REG (word_mode,
5367 (REGNO (op0) +
5368 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5369 GET_MODE (SUBREG_REG (orig_op0)),
5370 SUBREG_BYTE (orig_op0),
5371 GET_MODE (orig_op0))));
5374 if (GET_CODE (op1) == SUBREG)
5376 op1 = SUBREG_REG (op1);
5377 code1 = GET_CODE (op1);
5378 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5379 /* ??? Why is this given op1's mode and above for
5380 ??? op0 SUBREGs we use word_mode? */
5381 op1 = gen_rtx_REG (GET_MODE (op1),
5382 (REGNO (op1) +
5383 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5384 GET_MODE (SUBREG_REG (orig_op1)),
5385 SUBREG_BYTE (orig_op1),
5386 GET_MODE (orig_op1))));
5388 /* Plus in the index register may be created only as a result of
5389 register remateralization for expression like &localvar*4. Reload it.
5390 It may be possible to combine the displacement on the outer level,
5391 but it is probably not worthwhile to do so. */
5392 if (context == 1)
5394 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5395 opnum, ADDR_TYPE (type), ind_levels, insn);
5396 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5397 context_reg_class,
5398 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5399 return 1;
5402 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5403 || code0 == ZERO_EXTEND || code1 == MEM)
5405 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5406 type, ind_levels, insn);
5407 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5408 type, ind_levels, insn);
5411 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5412 || code1 == ZERO_EXTEND || code0 == MEM)
5414 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5415 type, ind_levels, insn);
5416 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5417 type, ind_levels, insn);
5420 else if (code0 == CONST_INT || code0 == CONST
5421 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5422 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5423 type, ind_levels, insn);
5425 else if (code1 == CONST_INT || code1 == CONST
5426 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5427 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5428 type, ind_levels, insn);
5430 else if (code0 == REG && code1 == REG)
5432 if (REG_OK_FOR_INDEX_P (op0)
5433 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5434 return 0;
5435 else if (REG_OK_FOR_INDEX_P (op1)
5436 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5437 return 0;
5438 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5439 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5440 type, ind_levels, insn);
5441 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5442 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5443 type, ind_levels, insn);
5444 else if (REG_OK_FOR_INDEX_P (op1))
5445 find_reloads_address_1 (mode, orig_op0, 2, &XEXP (x, 0), opnum,
5446 type, ind_levels, insn);
5447 else if (REG_OK_FOR_INDEX_P (op0))
5448 find_reloads_address_1 (mode, orig_op1, 2, &XEXP (x, 1), opnum,
5449 type, ind_levels, insn);
5450 else
5452 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5453 type, ind_levels, insn);
5454 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5455 type, ind_levels, insn);
5459 else if (code0 == REG)
5461 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5462 type, ind_levels, insn);
5463 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5464 type, ind_levels, insn);
5467 else if (code1 == REG)
5469 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5470 type, ind_levels, insn);
5471 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5472 type, ind_levels, insn);
5476 return 0;
5478 case POST_MODIFY:
5479 case PRE_MODIFY:
5481 rtx op0 = XEXP (x, 0);
5482 rtx op1 = XEXP (x, 1);
5483 int regno;
5484 int reloadnum;
5486 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5487 return 0;
5489 /* Currently, we only support {PRE,POST}_MODIFY constructs
5490 where a base register is {inc,dec}remented by the contents
5491 of another register or by a constant value. Thus, these
5492 operands must match. */
5493 gcc_assert (op0 == XEXP (op1, 0));
5495 /* Require index register (or constant). Let's just handle the
5496 register case in the meantime... If the target allows
5497 auto-modify by a constant then we could try replacing a pseudo
5498 register with its equivalent constant where applicable. */
5499 if (REG_P (XEXP (op1, 1)))
5500 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5501 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5502 opnum, type, ind_levels, insn);
5504 gcc_assert (REG_P (XEXP (op1, 0)));
5506 regno = REGNO (XEXP (op1, 0));
5508 /* A register that is incremented cannot be constant! */
5509 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5510 || reg_equiv_constant[regno] == 0);
5512 /* Handle a register that is equivalent to a memory location
5513 which cannot be addressed directly. */
5514 if (reg_equiv_memory_loc[regno] != 0
5515 && (reg_equiv_address[regno] != 0
5516 || num_not_at_initial_offset))
5518 rtx tem = make_memloc (XEXP (x, 0), regno);
5520 if (reg_equiv_address[regno]
5521 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5523 /* First reload the memory location's address.
5524 We can't use ADDR_TYPE (type) here, because we need to
5525 write back the value after reading it, hence we actually
5526 need two registers. */
5527 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5528 &XEXP (tem, 0), opnum,
5529 RELOAD_OTHER,
5530 ind_levels, insn);
5532 /* Then reload the memory location into a base
5533 register. */
5534 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5535 &XEXP (op1, 0),
5536 MODE_BASE_REG_CLASS (mode),
5537 GET_MODE (x), GET_MODE (x), 0,
5538 0, opnum, RELOAD_OTHER);
5540 update_auto_inc_notes (this_insn, regno, reloadnum);
5541 return 0;
5545 if (reg_renumber[regno] >= 0)
5546 regno = reg_renumber[regno];
5548 /* We require a base register here... */
5549 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5551 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5552 &XEXP (op1, 0), &XEXP (x, 0),
5553 MODE_BASE_REG_CLASS (mode),
5554 GET_MODE (x), GET_MODE (x), 0, 0,
5555 opnum, RELOAD_OTHER);
5557 update_auto_inc_notes (this_insn, regno, reloadnum);
5558 return 0;
5561 return 0;
5563 case POST_INC:
5564 case POST_DEC:
5565 case PRE_INC:
5566 case PRE_DEC:
5567 if (REG_P (XEXP (x, 0)))
5569 int regno = REGNO (XEXP (x, 0));
5570 int value = 0;
5571 rtx x_orig = x;
5573 /* A register that is incremented cannot be constant! */
5574 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5575 || reg_equiv_constant[regno] == 0);
5577 /* Handle a register that is equivalent to a memory location
5578 which cannot be addressed directly. */
5579 if (reg_equiv_memory_loc[regno] != 0
5580 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5582 rtx tem = make_memloc (XEXP (x, 0), regno);
5583 if (reg_equiv_address[regno]
5584 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5586 /* First reload the memory location's address.
5587 We can't use ADDR_TYPE (type) here, because we need to
5588 write back the value after reading it, hence we actually
5589 need two registers. */
5590 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5591 &XEXP (tem, 0), opnum, type,
5592 ind_levels, insn);
5593 /* Put this inside a new increment-expression. */
5594 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5595 /* Proceed to reload that, as if it contained a register. */
5599 /* If we have a hard register that is ok as an index,
5600 don't make a reload. If an autoincrement of a nice register
5601 isn't "valid", it must be that no autoincrement is "valid".
5602 If that is true and something made an autoincrement anyway,
5603 this must be a special context where one is allowed.
5604 (For example, a "push" instruction.)
5605 We can't improve this address, so leave it alone. */
5607 /* Otherwise, reload the autoincrement into a suitable hard reg
5608 and record how much to increment by. */
5610 if (reg_renumber[regno] >= 0)
5611 regno = reg_renumber[regno];
5612 if (regno >= FIRST_PSEUDO_REGISTER
5613 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5615 int reloadnum;
5617 /* If we can output the register afterwards, do so, this
5618 saves the extra update.
5619 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5620 CALL_INSN - and it does not set CC0.
5621 But don't do this if we cannot directly address the
5622 memory location, since this will make it harder to
5623 reuse address reloads, and increases register pressure.
5624 Also don't do this if we can probably update x directly. */
5625 rtx equiv = (MEM_P (XEXP (x, 0))
5626 ? XEXP (x, 0)
5627 : reg_equiv_mem[regno]);
5628 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5629 if (insn && NONJUMP_INSN_P (insn) && equiv
5630 && memory_operand (equiv, GET_MODE (equiv))
5631 #ifdef HAVE_cc0
5632 && ! sets_cc0_p (PATTERN (insn))
5633 #endif
5634 && ! (icode != CODE_FOR_nothing
5635 && ((*insn_data[icode].operand[0].predicate)
5636 (equiv, Pmode))
5637 && ((*insn_data[icode].operand[1].predicate)
5638 (equiv, Pmode))))
5640 /* We use the original pseudo for loc, so that
5641 emit_reload_insns() knows which pseudo this
5642 reload refers to and updates the pseudo rtx, not
5643 its equivalent memory location, as well as the
5644 corresponding entry in reg_last_reload_reg. */
5645 loc = &XEXP (x_orig, 0);
5646 x = XEXP (x, 0);
5647 reloadnum
5648 = push_reload (x, x, loc, loc,
5649 context_reg_class,
5650 GET_MODE (x), GET_MODE (x), 0, 0,
5651 opnum, RELOAD_OTHER);
5653 else
5655 reloadnum
5656 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5657 context_reg_class,
5658 GET_MODE (x), GET_MODE (x), 0, 0,
5659 opnum, type);
5660 rld[reloadnum].inc
5661 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5663 value = 1;
5666 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5667 reloadnum);
5669 return value;
5672 else if (MEM_P (XEXP (x, 0)))
5674 /* This is probably the result of a substitution, by eliminate_regs,
5675 of an equivalent address for a pseudo that was not allocated to a
5676 hard register. Verify that the specified address is valid and
5677 reload it into a register. */
5678 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5679 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5680 rtx link;
5681 int reloadnum;
5683 /* Since we know we are going to reload this item, don't decrement
5684 for the indirection level.
5686 Note that this is actually conservative: it would be slightly
5687 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5688 reload1.c here. */
5689 /* We can't use ADDR_TYPE (type) here, because we need to
5690 write back the value after reading it, hence we actually
5691 need two registers. */
5692 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5693 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5694 opnum, type, ind_levels, insn);
5696 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5697 context_reg_class,
5698 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5699 rld[reloadnum].inc
5700 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5702 link = FIND_REG_INC_NOTE (this_insn, tem);
5703 if (link != 0)
5704 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5706 return 1;
5708 return 0;
5710 case TRUNCATE:
5711 case SIGN_EXTEND:
5712 case ZERO_EXTEND:
5713 /* Look for parts to reload in the inner expression and reload them
5714 too, in addition to this operation. Reloading all inner parts in
5715 addition to this one shouldn't be necessary, but at this point,
5716 we don't know if we can possibly omit any part that *can* be
5717 reloaded. Targets that are better off reloading just either part
5718 (or perhaps even a different part of an outer expression), should
5719 define LEGITIMIZE_RELOAD_ADDRESS. */
5720 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5721 context, &XEXP (x, 0), opnum,
5722 type, ind_levels, insn);
5723 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5724 context_reg_class,
5725 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5726 return 1;
5728 case MEM:
5729 /* This is probably the result of a substitution, by eliminate_regs, of
5730 an equivalent address for a pseudo that was not allocated to a hard
5731 register. Verify that the specified address is valid and reload it
5732 into a register.
5734 Since we know we are going to reload this item, don't decrement for
5735 the indirection level.
5737 Note that this is actually conservative: it would be slightly more
5738 efficient to use the value of SPILL_INDIRECT_LEVELS from
5739 reload1.c here. */
5741 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5742 opnum, ADDR_TYPE (type), ind_levels, insn);
5743 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5744 context_reg_class,
5745 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5746 return 1;
5748 case REG:
5750 int regno = REGNO (x);
5752 if (reg_equiv_constant[regno] != 0)
5754 find_reloads_address_part (reg_equiv_constant[regno], loc,
5755 context_reg_class,
5756 GET_MODE (x), opnum, type, ind_levels);
5757 return 1;
5760 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5761 that feeds this insn. */
5762 if (reg_equiv_mem[regno] != 0)
5764 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5765 context_reg_class,
5766 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5767 return 1;
5769 #endif
5771 if (reg_equiv_memory_loc[regno]
5772 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5774 rtx tem = make_memloc (x, regno);
5775 if (reg_equiv_address[regno] != 0
5776 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5778 x = tem;
5779 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5780 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5781 ind_levels, insn);
5785 if (reg_renumber[regno] >= 0)
5786 regno = reg_renumber[regno];
5788 if (regno >= FIRST_PSEUDO_REGISTER
5789 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5791 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5792 context_reg_class,
5793 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5794 return 1;
5797 /* If a register appearing in an address is the subject of a CLOBBER
5798 in this insn, reload it into some other register to be safe.
5799 The CLOBBER is supposed to make the register unavailable
5800 from before this insn to after it. */
5801 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5803 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5804 context_reg_class,
5805 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5806 return 1;
5809 return 0;
5811 case SUBREG:
5812 if (REG_P (SUBREG_REG (x)))
5814 /* If this is a SUBREG of a hard register and the resulting register
5815 is of the wrong class, reload the whole SUBREG. This avoids
5816 needless copies if SUBREG_REG is multi-word. */
5817 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5819 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5821 if (! REG_OK_FOR_CONTEXT (context, regno, mode))
5823 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5824 context_reg_class,
5825 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5826 return 1;
5829 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5830 is larger than the class size, then reload the whole SUBREG. */
5831 else
5833 enum reg_class class = context_reg_class;
5834 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5835 > reg_class_size[class])
5837 x = find_reloads_subreg_address (x, 0, opnum,
5838 ADDR_TYPE (type),
5839 ind_levels, insn);
5840 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5841 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5842 return 1;
5846 break;
5848 default:
5849 break;
5853 const char *fmt = GET_RTX_FORMAT (code);
5854 int i;
5856 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5858 if (fmt[i] == 'e')
5859 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5860 opnum, type, ind_levels, insn);
5864 #undef REG_OK_FOR_CONTEXT
5865 return 0;
5868 /* X, which is found at *LOC, is a part of an address that needs to be
5869 reloaded into a register of class CLASS. If X is a constant, or if
5870 X is a PLUS that contains a constant, check that the constant is a
5871 legitimate operand and that we are supposed to be able to load
5872 it into the register.
5874 If not, force the constant into memory and reload the MEM instead.
5876 MODE is the mode to use, in case X is an integer constant.
5878 OPNUM and TYPE describe the purpose of any reloads made.
5880 IND_LEVELS says how many levels of indirect addressing this machine
5881 supports. */
5883 static void
5884 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5885 enum machine_mode mode, int opnum,
5886 enum reload_type type, int ind_levels)
5888 if (CONSTANT_P (x)
5889 && (! LEGITIMATE_CONSTANT_P (x)
5890 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5892 rtx tem;
5894 tem = x = force_const_mem (mode, x);
5895 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5896 opnum, type, ind_levels, 0);
5899 else if (GET_CODE (x) == PLUS
5900 && CONSTANT_P (XEXP (x, 1))
5901 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5902 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5904 rtx tem;
5906 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5907 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5908 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5909 opnum, type, ind_levels, 0);
5912 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5913 mode, VOIDmode, 0, 0, opnum, type);
5916 /* X, a subreg of a pseudo, is a part of an address that needs to be
5917 reloaded.
5919 If the pseudo is equivalent to a memory location that cannot be directly
5920 addressed, make the necessary address reloads.
5922 If address reloads have been necessary, or if the address is changed
5923 by register elimination, return the rtx of the memory location;
5924 otherwise, return X.
5926 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5927 memory location.
5929 OPNUM and TYPE identify the purpose of the reload.
5931 IND_LEVELS says how many levels of indirect addressing are
5932 supported at this point in the address.
5934 INSN, if nonzero, is the insn in which we do the reload. It is used
5935 to determine where to put USEs for pseudos that we have to replace with
5936 stack slots. */
5938 static rtx
5939 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5940 enum reload_type type, int ind_levels, rtx insn)
5942 int regno = REGNO (SUBREG_REG (x));
5944 if (reg_equiv_memory_loc[regno])
5946 /* If the address is not directly addressable, or if the address is not
5947 offsettable, then it must be replaced. */
5948 if (! force_replace
5949 && (reg_equiv_address[regno]
5950 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5951 force_replace = 1;
5953 if (force_replace || num_not_at_initial_offset)
5955 rtx tem = make_memloc (SUBREG_REG (x), regno);
5957 /* If the address changes because of register elimination, then
5958 it must be replaced. */
5959 if (force_replace
5960 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5962 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5963 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5964 int offset;
5966 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5967 hold the correct (negative) byte offset. */
5968 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5969 offset = inner_size - outer_size;
5970 else
5971 offset = SUBREG_BYTE (x);
5973 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5974 PUT_MODE (tem, GET_MODE (x));
5976 /* If this was a paradoxical subreg that we replaced, the
5977 resulting memory must be sufficiently aligned to allow
5978 us to widen the mode of the memory. */
5979 if (outer_size > inner_size)
5981 rtx base;
5983 base = XEXP (tem, 0);
5984 if (GET_CODE (base) == PLUS)
5986 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5987 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5988 return x;
5989 base = XEXP (base, 0);
5991 if (!REG_P (base)
5992 || (REGNO_POINTER_ALIGN (REGNO (base))
5993 < outer_size * BITS_PER_UNIT))
5994 return x;
5997 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5998 &XEXP (tem, 0), opnum, type,
5999 ind_levels, insn);
6001 /* If this is not a toplevel operand, find_reloads doesn't see
6002 this substitution. We have to emit a USE of the pseudo so
6003 that delete_output_reload can see it. */
6004 if (replace_reloads && recog_data.operand[opnum] != x)
6005 /* We mark the USE with QImode so that we recognize it
6006 as one that can be safely deleted at the end of
6007 reload. */
6008 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6009 SUBREG_REG (x)),
6010 insn), QImode);
6011 x = tem;
6015 return x;
6018 /* Substitute into the current INSN the registers into which we have reloaded
6019 the things that need reloading. The array `replacements'
6020 contains the locations of all pointers that must be changed
6021 and says what to replace them with.
6023 Return the rtx that X translates into; usually X, but modified. */
6025 void
6026 subst_reloads (rtx insn)
6028 int i;
6030 for (i = 0; i < n_replacements; i++)
6032 struct replacement *r = &replacements[i];
6033 rtx reloadreg = rld[r->what].reg_rtx;
6034 if (reloadreg)
6036 #ifdef ENABLE_CHECKING
6037 /* Internal consistency test. Check that we don't modify
6038 anything in the equivalence arrays. Whenever something from
6039 those arrays needs to be reloaded, it must be unshared before
6040 being substituted into; the equivalence must not be modified.
6041 Otherwise, if the equivalence is used after that, it will
6042 have been modified, and the thing substituted (probably a
6043 register) is likely overwritten and not a usable equivalence. */
6044 int check_regno;
6046 for (check_regno = 0; check_regno < max_regno; check_regno++)
6048 #define CHECK_MODF(ARRAY) \
6049 gcc_assert (!ARRAY[check_regno] \
6050 || !loc_mentioned_in_p (r->where, \
6051 ARRAY[check_regno]))
6053 CHECK_MODF (reg_equiv_constant);
6054 CHECK_MODF (reg_equiv_memory_loc);
6055 CHECK_MODF (reg_equiv_address);
6056 CHECK_MODF (reg_equiv_mem);
6057 #undef CHECK_MODF
6059 #endif /* ENABLE_CHECKING */
6061 /* If we're replacing a LABEL_REF with a register, add a
6062 REG_LABEL note to indicate to flow which label this
6063 register refers to. */
6064 if (GET_CODE (*r->where) == LABEL_REF
6065 && JUMP_P (insn))
6067 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6068 XEXP (*r->where, 0),
6069 REG_NOTES (insn));
6070 JUMP_LABEL (insn) = XEXP (*r->where, 0);
6073 /* Encapsulate RELOADREG so its machine mode matches what
6074 used to be there. Note that gen_lowpart_common will
6075 do the wrong thing if RELOADREG is multi-word. RELOADREG
6076 will always be a REG here. */
6077 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6078 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6080 /* If we are putting this into a SUBREG and RELOADREG is a
6081 SUBREG, we would be making nested SUBREGs, so we have to fix
6082 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6084 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6086 if (GET_MODE (*r->subreg_loc)
6087 == GET_MODE (SUBREG_REG (reloadreg)))
6088 *r->subreg_loc = SUBREG_REG (reloadreg);
6089 else
6091 int final_offset =
6092 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6094 /* When working with SUBREGs the rule is that the byte
6095 offset must be a multiple of the SUBREG's mode. */
6096 final_offset = (final_offset /
6097 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6098 final_offset = (final_offset *
6099 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6101 *r->where = SUBREG_REG (reloadreg);
6102 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6105 else
6106 *r->where = reloadreg;
6108 /* If reload got no reg and isn't optional, something's wrong. */
6109 else
6110 gcc_assert (rld[r->what].optional);
6114 /* Make a copy of any replacements being done into X and move those
6115 copies to locations in Y, a copy of X. */
6117 void
6118 copy_replacements (rtx x, rtx y)
6120 /* We can't support X being a SUBREG because we might then need to know its
6121 location if something inside it was replaced. */
6122 gcc_assert (GET_CODE (x) != SUBREG);
6124 copy_replacements_1 (&x, &y, n_replacements);
6127 static void
6128 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6130 int i, j;
6131 rtx x, y;
6132 struct replacement *r;
6133 enum rtx_code code;
6134 const char *fmt;
6136 for (j = 0; j < orig_replacements; j++)
6138 if (replacements[j].subreg_loc == px)
6140 r = &replacements[n_replacements++];
6141 r->where = replacements[j].where;
6142 r->subreg_loc = py;
6143 r->what = replacements[j].what;
6144 r->mode = replacements[j].mode;
6146 else if (replacements[j].where == px)
6148 r = &replacements[n_replacements++];
6149 r->where = py;
6150 r->subreg_loc = 0;
6151 r->what = replacements[j].what;
6152 r->mode = replacements[j].mode;
6156 x = *px;
6157 y = *py;
6158 code = GET_CODE (x);
6159 fmt = GET_RTX_FORMAT (code);
6161 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6163 if (fmt[i] == 'e')
6164 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6165 else if (fmt[i] == 'E')
6166 for (j = XVECLEN (x, i); --j >= 0; )
6167 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6168 orig_replacements);
6172 /* Change any replacements being done to *X to be done to *Y. */
6174 void
6175 move_replacements (rtx *x, rtx *y)
6177 int i;
6179 for (i = 0; i < n_replacements; i++)
6180 if (replacements[i].subreg_loc == x)
6181 replacements[i].subreg_loc = y;
6182 else if (replacements[i].where == x)
6184 replacements[i].where = y;
6185 replacements[i].subreg_loc = 0;
6189 /* If LOC was scheduled to be replaced by something, return the replacement.
6190 Otherwise, return *LOC. */
6193 find_replacement (rtx *loc)
6195 struct replacement *r;
6197 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6199 rtx reloadreg = rld[r->what].reg_rtx;
6201 if (reloadreg && r->where == loc)
6203 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6204 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6206 return reloadreg;
6208 else if (reloadreg && r->subreg_loc == loc)
6210 /* RELOADREG must be either a REG or a SUBREG.
6212 ??? Is it actually still ever a SUBREG? If so, why? */
6214 if (REG_P (reloadreg))
6215 return gen_rtx_REG (GET_MODE (*loc),
6216 (REGNO (reloadreg) +
6217 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6218 GET_MODE (SUBREG_REG (*loc)),
6219 SUBREG_BYTE (*loc),
6220 GET_MODE (*loc))));
6221 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6222 return reloadreg;
6223 else
6225 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6227 /* When working with SUBREGs the rule is that the byte
6228 offset must be a multiple of the SUBREG's mode. */
6229 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6230 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6231 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6232 final_offset);
6237 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6238 what's inside and make a new rtl if so. */
6239 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6240 || GET_CODE (*loc) == MULT)
6242 rtx x = find_replacement (&XEXP (*loc, 0));
6243 rtx y = find_replacement (&XEXP (*loc, 1));
6245 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6246 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6249 return *loc;
6252 /* Return nonzero if register in range [REGNO, ENDREGNO)
6253 appears either explicitly or implicitly in X
6254 other than being stored into (except for earlyclobber operands).
6256 References contained within the substructure at LOC do not count.
6257 LOC may be zero, meaning don't ignore anything.
6259 This is similar to refers_to_regno_p in rtlanal.c except that we
6260 look at equivalences for pseudos that didn't get hard registers. */
6262 static int
6263 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6264 rtx x, rtx *loc)
6266 int i;
6267 unsigned int r;
6268 RTX_CODE code;
6269 const char *fmt;
6271 if (x == 0)
6272 return 0;
6274 repeat:
6275 code = GET_CODE (x);
6277 switch (code)
6279 case REG:
6280 r = REGNO (x);
6282 /* If this is a pseudo, a hard register must not have been allocated.
6283 X must therefore either be a constant or be in memory. */
6284 if (r >= FIRST_PSEUDO_REGISTER)
6286 if (reg_equiv_memory_loc[r])
6287 return refers_to_regno_for_reload_p (regno, endregno,
6288 reg_equiv_memory_loc[r],
6289 (rtx*) 0);
6291 gcc_assert (reg_equiv_constant[r]
6292 || (reg_equiv_invariant[r] && reg_equiv_init[r]));
6293 return 0;
6296 return (endregno > r
6297 && regno < r + (r < FIRST_PSEUDO_REGISTER
6298 ? hard_regno_nregs[r][GET_MODE (x)]
6299 : 1));
6301 case SUBREG:
6302 /* If this is a SUBREG of a hard reg, we can see exactly which
6303 registers are being modified. Otherwise, handle normally. */
6304 if (REG_P (SUBREG_REG (x))
6305 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6307 unsigned int inner_regno = subreg_regno (x);
6308 unsigned int inner_endregno
6309 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6310 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6312 return endregno > inner_regno && regno < inner_endregno;
6314 break;
6316 case CLOBBER:
6317 case SET:
6318 if (&SET_DEST (x) != loc
6319 /* Note setting a SUBREG counts as referring to the REG it is in for
6320 a pseudo but not for hard registers since we can
6321 treat each word individually. */
6322 && ((GET_CODE (SET_DEST (x)) == SUBREG
6323 && loc != &SUBREG_REG (SET_DEST (x))
6324 && REG_P (SUBREG_REG (SET_DEST (x)))
6325 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6326 && refers_to_regno_for_reload_p (regno, endregno,
6327 SUBREG_REG (SET_DEST (x)),
6328 loc))
6329 /* If the output is an earlyclobber operand, this is
6330 a conflict. */
6331 || ((!REG_P (SET_DEST (x))
6332 || earlyclobber_operand_p (SET_DEST (x)))
6333 && refers_to_regno_for_reload_p (regno, endregno,
6334 SET_DEST (x), loc))))
6335 return 1;
6337 if (code == CLOBBER || loc == &SET_SRC (x))
6338 return 0;
6339 x = SET_SRC (x);
6340 goto repeat;
6342 default:
6343 break;
6346 /* X does not match, so try its subexpressions. */
6348 fmt = GET_RTX_FORMAT (code);
6349 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6351 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6353 if (i == 0)
6355 x = XEXP (x, 0);
6356 goto repeat;
6358 else
6359 if (refers_to_regno_for_reload_p (regno, endregno,
6360 XEXP (x, i), loc))
6361 return 1;
6363 else if (fmt[i] == 'E')
6365 int j;
6366 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6367 if (loc != &XVECEXP (x, i, j)
6368 && refers_to_regno_for_reload_p (regno, endregno,
6369 XVECEXP (x, i, j), loc))
6370 return 1;
6373 return 0;
6376 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6377 we check if any register number in X conflicts with the relevant register
6378 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6379 contains a MEM (we don't bother checking for memory addresses that can't
6380 conflict because we expect this to be a rare case.
6382 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6383 that we look at equivalences for pseudos that didn't get hard registers. */
6386 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6388 int regno, endregno;
6390 /* Overly conservative. */
6391 if (GET_CODE (x) == STRICT_LOW_PART
6392 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6393 x = XEXP (x, 0);
6395 /* If either argument is a constant, then modifying X can not affect IN. */
6396 if (CONSTANT_P (x) || CONSTANT_P (in))
6397 return 0;
6398 else if (GET_CODE (x) == SUBREG)
6400 regno = REGNO (SUBREG_REG (x));
6401 if (regno < FIRST_PSEUDO_REGISTER)
6402 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6403 GET_MODE (SUBREG_REG (x)),
6404 SUBREG_BYTE (x),
6405 GET_MODE (x));
6407 else if (REG_P (x))
6409 regno = REGNO (x);
6411 /* If this is a pseudo, it must not have been assigned a hard register.
6412 Therefore, it must either be in memory or be a constant. */
6414 if (regno >= FIRST_PSEUDO_REGISTER)
6416 if (reg_equiv_memory_loc[regno])
6417 return refers_to_mem_for_reload_p (in);
6418 gcc_assert (reg_equiv_constant[regno]);
6419 return 0;
6422 else if (MEM_P (x))
6423 return refers_to_mem_for_reload_p (in);
6424 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6425 || GET_CODE (x) == CC0)
6426 return reg_mentioned_p (x, in);
6427 else
6429 gcc_assert (GET_CODE (x) == PLUS);
6431 /* We actually want to know if X is mentioned somewhere inside IN.
6432 We must not say that (plus (sp) (const_int 124)) is in
6433 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6434 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6435 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6436 while (MEM_P (in))
6437 in = XEXP (in, 0);
6438 if (REG_P (in))
6439 return 0;
6440 else if (GET_CODE (in) == PLUS)
6441 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6442 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6443 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6444 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6447 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6448 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6450 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6453 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6454 registers. */
6456 static int
6457 refers_to_mem_for_reload_p (rtx x)
6459 const char *fmt;
6460 int i;
6462 if (MEM_P (x))
6463 return 1;
6465 if (REG_P (x))
6466 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6467 && reg_equiv_memory_loc[REGNO (x)]);
6469 fmt = GET_RTX_FORMAT (GET_CODE (x));
6470 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6471 if (fmt[i] == 'e'
6472 && (MEM_P (XEXP (x, i))
6473 || refers_to_mem_for_reload_p (XEXP (x, i))))
6474 return 1;
6476 return 0;
6479 /* Check the insns before INSN to see if there is a suitable register
6480 containing the same value as GOAL.
6481 If OTHER is -1, look for a register in class CLASS.
6482 Otherwise, just see if register number OTHER shares GOAL's value.
6484 Return an rtx for the register found, or zero if none is found.
6486 If RELOAD_REG_P is (short *)1,
6487 we reject any hard reg that appears in reload_reg_rtx
6488 because such a hard reg is also needed coming into this insn.
6490 If RELOAD_REG_P is any other nonzero value,
6491 it is a vector indexed by hard reg number
6492 and we reject any hard reg whose element in the vector is nonnegative
6493 as well as any that appears in reload_reg_rtx.
6495 If GOAL is zero, then GOALREG is a register number; we look
6496 for an equivalent for that register.
6498 MODE is the machine mode of the value we want an equivalence for.
6499 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6501 This function is used by jump.c as well as in the reload pass.
6503 If GOAL is the sum of the stack pointer and a constant, we treat it
6504 as if it were a constant except that sp is required to be unchanging. */
6507 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6508 short *reload_reg_p, int goalreg, enum machine_mode mode)
6510 rtx p = insn;
6511 rtx goaltry, valtry, value, where;
6512 rtx pat;
6513 int regno = -1;
6514 int valueno;
6515 int goal_mem = 0;
6516 int goal_const = 0;
6517 int goal_mem_addr_varies = 0;
6518 int need_stable_sp = 0;
6519 int nregs;
6520 int valuenregs;
6521 int num = 0;
6523 if (goal == 0)
6524 regno = goalreg;
6525 else if (REG_P (goal))
6526 regno = REGNO (goal);
6527 else if (MEM_P (goal))
6529 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6530 if (MEM_VOLATILE_P (goal))
6531 return 0;
6532 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6533 return 0;
6534 /* An address with side effects must be reexecuted. */
6535 switch (code)
6537 case POST_INC:
6538 case PRE_INC:
6539 case POST_DEC:
6540 case PRE_DEC:
6541 case POST_MODIFY:
6542 case PRE_MODIFY:
6543 return 0;
6544 default:
6545 break;
6547 goal_mem = 1;
6549 else if (CONSTANT_P (goal))
6550 goal_const = 1;
6551 else if (GET_CODE (goal) == PLUS
6552 && XEXP (goal, 0) == stack_pointer_rtx
6553 && CONSTANT_P (XEXP (goal, 1)))
6554 goal_const = need_stable_sp = 1;
6555 else if (GET_CODE (goal) == PLUS
6556 && XEXP (goal, 0) == frame_pointer_rtx
6557 && CONSTANT_P (XEXP (goal, 1)))
6558 goal_const = 1;
6559 else
6560 return 0;
6562 num = 0;
6563 /* Scan insns back from INSN, looking for one that copies
6564 a value into or out of GOAL.
6565 Stop and give up if we reach a label. */
6567 while (1)
6569 p = PREV_INSN (p);
6570 num++;
6571 if (p == 0 || LABEL_P (p)
6572 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6573 return 0;
6575 if (NONJUMP_INSN_P (p)
6576 /* If we don't want spill regs ... */
6577 && (! (reload_reg_p != 0
6578 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6579 /* ... then ignore insns introduced by reload; they aren't
6580 useful and can cause results in reload_as_needed to be
6581 different from what they were when calculating the need for
6582 spills. If we notice an input-reload insn here, we will
6583 reject it below, but it might hide a usable equivalent.
6584 That makes bad code. It may even fail: perhaps no reg was
6585 spilled for this insn because it was assumed we would find
6586 that equivalent. */
6587 || INSN_UID (p) < reload_first_uid))
6589 rtx tem;
6590 pat = single_set (p);
6592 /* First check for something that sets some reg equal to GOAL. */
6593 if (pat != 0
6594 && ((regno >= 0
6595 && true_regnum (SET_SRC (pat)) == regno
6596 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6598 (regno >= 0
6599 && true_regnum (SET_DEST (pat)) == regno
6600 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6602 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6603 /* When looking for stack pointer + const,
6604 make sure we don't use a stack adjust. */
6605 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6606 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6607 || (goal_mem
6608 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6609 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6610 || (goal_mem
6611 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6612 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6613 /* If we are looking for a constant,
6614 and something equivalent to that constant was copied
6615 into a reg, we can use that reg. */
6616 || (goal_const && REG_NOTES (p) != 0
6617 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6618 && ((rtx_equal_p (XEXP (tem, 0), goal)
6619 && (valueno
6620 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6621 || (REG_P (SET_DEST (pat))
6622 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6623 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6624 == MODE_FLOAT)
6625 && GET_CODE (goal) == CONST_INT
6626 && 0 != (goaltry
6627 = operand_subword (XEXP (tem, 0), 0, 0,
6628 VOIDmode))
6629 && rtx_equal_p (goal, goaltry)
6630 && (valtry
6631 = operand_subword (SET_DEST (pat), 0, 0,
6632 VOIDmode))
6633 && (valueno = true_regnum (valtry)) >= 0)))
6634 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6635 NULL_RTX))
6636 && REG_P (SET_DEST (pat))
6637 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6638 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6639 == MODE_FLOAT)
6640 && GET_CODE (goal) == CONST_INT
6641 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6642 VOIDmode))
6643 && rtx_equal_p (goal, goaltry)
6644 && (valtry
6645 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6646 && (valueno = true_regnum (valtry)) >= 0)))
6648 if (other >= 0)
6650 if (valueno != other)
6651 continue;
6653 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6654 continue;
6655 else
6657 int i;
6659 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6660 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6661 valueno + i))
6662 break;
6663 if (i >= 0)
6664 continue;
6666 value = valtry;
6667 where = p;
6668 break;
6673 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6674 (or copying VALUE into GOAL, if GOAL is also a register).
6675 Now verify that VALUE is really valid. */
6677 /* VALUENO is the register number of VALUE; a hard register. */
6679 /* Don't try to re-use something that is killed in this insn. We want
6680 to be able to trust REG_UNUSED notes. */
6681 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6682 return 0;
6684 /* If we propose to get the value from the stack pointer or if GOAL is
6685 a MEM based on the stack pointer, we need a stable SP. */
6686 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6687 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6688 goal)))
6689 need_stable_sp = 1;
6691 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6692 if (GET_MODE (value) != mode)
6693 return 0;
6695 /* Reject VALUE if it was loaded from GOAL
6696 and is also a register that appears in the address of GOAL. */
6698 if (goal_mem && value == SET_DEST (single_set (where))
6699 && refers_to_regno_for_reload_p (valueno,
6700 (valueno
6701 + hard_regno_nregs[valueno][mode]),
6702 goal, (rtx*) 0))
6703 return 0;
6705 /* Reject registers that overlap GOAL. */
6707 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6708 nregs = hard_regno_nregs[regno][mode];
6709 else
6710 nregs = 1;
6711 valuenregs = hard_regno_nregs[valueno][mode];
6713 if (!goal_mem && !goal_const
6714 && regno + nregs > valueno && regno < valueno + valuenregs)
6715 return 0;
6717 /* Reject VALUE if it is one of the regs reserved for reloads.
6718 Reload1 knows how to reuse them anyway, and it would get
6719 confused if we allocated one without its knowledge.
6720 (Now that insns introduced by reload are ignored above,
6721 this case shouldn't happen, but I'm not positive.) */
6723 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6725 int i;
6726 for (i = 0; i < valuenregs; ++i)
6727 if (reload_reg_p[valueno + i] >= 0)
6728 return 0;
6731 /* Reject VALUE if it is a register being used for an input reload
6732 even if it is not one of those reserved. */
6734 if (reload_reg_p != 0)
6736 int i;
6737 for (i = 0; i < n_reloads; i++)
6738 if (rld[i].reg_rtx != 0 && rld[i].in)
6740 int regno1 = REGNO (rld[i].reg_rtx);
6741 int nregs1 = hard_regno_nregs[regno1]
6742 [GET_MODE (rld[i].reg_rtx)];
6743 if (regno1 < valueno + valuenregs
6744 && regno1 + nregs1 > valueno)
6745 return 0;
6749 if (goal_mem)
6750 /* We must treat frame pointer as varying here,
6751 since it can vary--in a nonlocal goto as generated by expand_goto. */
6752 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6754 /* Now verify that the values of GOAL and VALUE remain unaltered
6755 until INSN is reached. */
6757 p = insn;
6758 while (1)
6760 p = PREV_INSN (p);
6761 if (p == where)
6762 return value;
6764 /* Don't trust the conversion past a function call
6765 if either of the two is in a call-clobbered register, or memory. */
6766 if (CALL_P (p))
6768 int i;
6770 if (goal_mem || need_stable_sp)
6771 return 0;
6773 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6774 for (i = 0; i < nregs; ++i)
6775 if (call_used_regs[regno + i]
6776 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6777 return 0;
6779 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6780 for (i = 0; i < valuenregs; ++i)
6781 if (call_used_regs[valueno + i]
6782 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6783 return 0;
6786 if (INSN_P (p))
6788 pat = PATTERN (p);
6790 /* Watch out for unspec_volatile, and volatile asms. */
6791 if (volatile_insn_p (pat))
6792 return 0;
6794 /* If this insn P stores in either GOAL or VALUE, return 0.
6795 If GOAL is a memory ref and this insn writes memory, return 0.
6796 If GOAL is a memory ref and its address is not constant,
6797 and this insn P changes a register used in GOAL, return 0. */
6799 if (GET_CODE (pat) == COND_EXEC)
6800 pat = COND_EXEC_CODE (pat);
6801 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6803 rtx dest = SET_DEST (pat);
6804 while (GET_CODE (dest) == SUBREG
6805 || GET_CODE (dest) == ZERO_EXTRACT
6806 || GET_CODE (dest) == STRICT_LOW_PART)
6807 dest = XEXP (dest, 0);
6808 if (REG_P (dest))
6810 int xregno = REGNO (dest);
6811 int xnregs;
6812 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6813 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6814 else
6815 xnregs = 1;
6816 if (xregno < regno + nregs && xregno + xnregs > regno)
6817 return 0;
6818 if (xregno < valueno + valuenregs
6819 && xregno + xnregs > valueno)
6820 return 0;
6821 if (goal_mem_addr_varies
6822 && reg_overlap_mentioned_for_reload_p (dest, goal))
6823 return 0;
6824 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6825 return 0;
6827 else if (goal_mem && MEM_P (dest)
6828 && ! push_operand (dest, GET_MODE (dest)))
6829 return 0;
6830 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6831 && reg_equiv_memory_loc[regno] != 0)
6832 return 0;
6833 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6834 return 0;
6836 else if (GET_CODE (pat) == PARALLEL)
6838 int i;
6839 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6841 rtx v1 = XVECEXP (pat, 0, i);
6842 if (GET_CODE (v1) == COND_EXEC)
6843 v1 = COND_EXEC_CODE (v1);
6844 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6846 rtx dest = SET_DEST (v1);
6847 while (GET_CODE (dest) == SUBREG
6848 || GET_CODE (dest) == ZERO_EXTRACT
6849 || GET_CODE (dest) == STRICT_LOW_PART)
6850 dest = XEXP (dest, 0);
6851 if (REG_P (dest))
6853 int xregno = REGNO (dest);
6854 int xnregs;
6855 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6856 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6857 else
6858 xnregs = 1;
6859 if (xregno < regno + nregs
6860 && xregno + xnregs > regno)
6861 return 0;
6862 if (xregno < valueno + valuenregs
6863 && xregno + xnregs > valueno)
6864 return 0;
6865 if (goal_mem_addr_varies
6866 && reg_overlap_mentioned_for_reload_p (dest,
6867 goal))
6868 return 0;
6869 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6870 return 0;
6872 else if (goal_mem && MEM_P (dest)
6873 && ! push_operand (dest, GET_MODE (dest)))
6874 return 0;
6875 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6876 && reg_equiv_memory_loc[regno] != 0)
6877 return 0;
6878 else if (need_stable_sp
6879 && push_operand (dest, GET_MODE (dest)))
6880 return 0;
6885 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6887 rtx link;
6889 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6890 link = XEXP (link, 1))
6892 pat = XEXP (link, 0);
6893 if (GET_CODE (pat) == CLOBBER)
6895 rtx dest = SET_DEST (pat);
6897 if (REG_P (dest))
6899 int xregno = REGNO (dest);
6900 int xnregs
6901 = hard_regno_nregs[xregno][GET_MODE (dest)];
6903 if (xregno < regno + nregs
6904 && xregno + xnregs > regno)
6905 return 0;
6906 else if (xregno < valueno + valuenregs
6907 && xregno + xnregs > valueno)
6908 return 0;
6909 else if (goal_mem_addr_varies
6910 && reg_overlap_mentioned_for_reload_p (dest,
6911 goal))
6912 return 0;
6915 else if (goal_mem && MEM_P (dest)
6916 && ! push_operand (dest, GET_MODE (dest)))
6917 return 0;
6918 else if (need_stable_sp
6919 && push_operand (dest, GET_MODE (dest)))
6920 return 0;
6925 #ifdef AUTO_INC_DEC
6926 /* If this insn auto-increments or auto-decrements
6927 either regno or valueno, return 0 now.
6928 If GOAL is a memory ref and its address is not constant,
6929 and this insn P increments a register used in GOAL, return 0. */
6931 rtx link;
6933 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6934 if (REG_NOTE_KIND (link) == REG_INC
6935 && REG_P (XEXP (link, 0)))
6937 int incno = REGNO (XEXP (link, 0));
6938 if (incno < regno + nregs && incno >= regno)
6939 return 0;
6940 if (incno < valueno + valuenregs && incno >= valueno)
6941 return 0;
6942 if (goal_mem_addr_varies
6943 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6944 goal))
6945 return 0;
6948 #endif
6953 /* Find a place where INCED appears in an increment or decrement operator
6954 within X, and return the amount INCED is incremented or decremented by.
6955 The value is always positive. */
6957 static int
6958 find_inc_amount (rtx x, rtx inced)
6960 enum rtx_code code = GET_CODE (x);
6961 const char *fmt;
6962 int i;
6964 if (code == MEM)
6966 rtx addr = XEXP (x, 0);
6967 if ((GET_CODE (addr) == PRE_DEC
6968 || GET_CODE (addr) == POST_DEC
6969 || GET_CODE (addr) == PRE_INC
6970 || GET_CODE (addr) == POST_INC)
6971 && XEXP (addr, 0) == inced)
6972 return GET_MODE_SIZE (GET_MODE (x));
6973 else if ((GET_CODE (addr) == PRE_MODIFY
6974 || GET_CODE (addr) == POST_MODIFY)
6975 && GET_CODE (XEXP (addr, 1)) == PLUS
6976 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6977 && XEXP (addr, 0) == inced
6978 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6980 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6981 return i < 0 ? -i : i;
6985 fmt = GET_RTX_FORMAT (code);
6986 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6988 if (fmt[i] == 'e')
6990 int tem = find_inc_amount (XEXP (x, i), inced);
6991 if (tem != 0)
6992 return tem;
6994 if (fmt[i] == 'E')
6996 int j;
6997 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6999 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7000 if (tem != 0)
7001 return tem;
7006 return 0;
7009 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7010 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7012 #ifdef AUTO_INC_DEC
7013 static int
7014 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7015 rtx insn)
7017 rtx link;
7019 gcc_assert (insn);
7021 if (! INSN_P (insn))
7022 return 0;
7024 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7025 if (REG_NOTE_KIND (link) == REG_INC)
7027 unsigned int test = (int) REGNO (XEXP (link, 0));
7028 if (test >= regno && test < endregno)
7029 return 1;
7031 return 0;
7033 #else
7035 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7037 #endif
7039 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7040 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7041 REG_INC. REGNO must refer to a hard register. */
7044 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7045 int sets)
7047 unsigned int nregs, endregno;
7049 /* regno must be a hard register. */
7050 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7052 nregs = hard_regno_nregs[regno][mode];
7053 endregno = regno + nregs;
7055 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7056 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7057 && REG_P (XEXP (PATTERN (insn), 0)))
7059 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7061 return test >= regno && test < endregno;
7064 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7065 return 1;
7067 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7069 int i = XVECLEN (PATTERN (insn), 0) - 1;
7071 for (; i >= 0; i--)
7073 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7074 if ((GET_CODE (elt) == CLOBBER
7075 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7076 && REG_P (XEXP (elt, 0)))
7078 unsigned int test = REGNO (XEXP (elt, 0));
7080 if (test >= regno && test < endregno)
7081 return 1;
7083 if (sets == 2
7084 && reg_inc_found_and_valid_p (regno, endregno, elt))
7085 return 1;
7089 return 0;
7092 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7094 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7096 int regno;
7098 if (GET_MODE (reloadreg) == mode)
7099 return reloadreg;
7101 regno = REGNO (reloadreg);
7103 if (WORDS_BIG_ENDIAN)
7104 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7105 - (int) hard_regno_nregs[regno][mode];
7107 return gen_rtx_REG (mode, regno);
7110 static const char *const reload_when_needed_name[] =
7112 "RELOAD_FOR_INPUT",
7113 "RELOAD_FOR_OUTPUT",
7114 "RELOAD_FOR_INSN",
7115 "RELOAD_FOR_INPUT_ADDRESS",
7116 "RELOAD_FOR_INPADDR_ADDRESS",
7117 "RELOAD_FOR_OUTPUT_ADDRESS",
7118 "RELOAD_FOR_OUTADDR_ADDRESS",
7119 "RELOAD_FOR_OPERAND_ADDRESS",
7120 "RELOAD_FOR_OPADDR_ADDR",
7121 "RELOAD_OTHER",
7122 "RELOAD_FOR_OTHER_ADDRESS"
7125 /* These functions are used to print the variables set by 'find_reloads' */
7127 void
7128 debug_reload_to_stream (FILE *f)
7130 int r;
7131 const char *prefix;
7133 if (! f)
7134 f = stderr;
7135 for (r = 0; r < n_reloads; r++)
7137 fprintf (f, "Reload %d: ", r);
7139 if (rld[r].in != 0)
7141 fprintf (f, "reload_in (%s) = ",
7142 GET_MODE_NAME (rld[r].inmode));
7143 print_inline_rtx (f, rld[r].in, 24);
7144 fprintf (f, "\n\t");
7147 if (rld[r].out != 0)
7149 fprintf (f, "reload_out (%s) = ",
7150 GET_MODE_NAME (rld[r].outmode));
7151 print_inline_rtx (f, rld[r].out, 24);
7152 fprintf (f, "\n\t");
7155 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7157 fprintf (f, "%s (opnum = %d)",
7158 reload_when_needed_name[(int) rld[r].when_needed],
7159 rld[r].opnum);
7161 if (rld[r].optional)
7162 fprintf (f, ", optional");
7164 if (rld[r].nongroup)
7165 fprintf (f, ", nongroup");
7167 if (rld[r].inc != 0)
7168 fprintf (f, ", inc by %d", rld[r].inc);
7170 if (rld[r].nocombine)
7171 fprintf (f, ", can't combine");
7173 if (rld[r].secondary_p)
7174 fprintf (f, ", secondary_reload_p");
7176 if (rld[r].in_reg != 0)
7178 fprintf (f, "\n\treload_in_reg: ");
7179 print_inline_rtx (f, rld[r].in_reg, 24);
7182 if (rld[r].out_reg != 0)
7184 fprintf (f, "\n\treload_out_reg: ");
7185 print_inline_rtx (f, rld[r].out_reg, 24);
7188 if (rld[r].reg_rtx != 0)
7190 fprintf (f, "\n\treload_reg_rtx: ");
7191 print_inline_rtx (f, rld[r].reg_rtx, 24);
7194 prefix = "\n\t";
7195 if (rld[r].secondary_in_reload != -1)
7197 fprintf (f, "%ssecondary_in_reload = %d",
7198 prefix, rld[r].secondary_in_reload);
7199 prefix = ", ";
7202 if (rld[r].secondary_out_reload != -1)
7203 fprintf (f, "%ssecondary_out_reload = %d\n",
7204 prefix, rld[r].secondary_out_reload);
7206 prefix = "\n\t";
7207 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7209 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7210 insn_data[rld[r].secondary_in_icode].name);
7211 prefix = ", ";
7214 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7215 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7216 insn_data[rld[r].secondary_out_icode].name);
7218 fprintf (f, "\n");
7222 void
7223 debug_reload (void)
7225 debug_reload_to_stream (stderr);