kernel - Remove mplock from KTRACE paths
[dragonfly.git] / sys / net / radix.c
blobe72338a62ca5053303373d1daed412067f478a92
1 /*
2 * Copyright (c) 1988, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)radix.c 8.4 (Berkeley) 11/2/94
30 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $
34 * Routines to build and maintain radix trees for routing lookups.
36 #include <sys/param.h>
37 #ifdef _KERNEL
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/domain.h>
41 #include <sys/globaldata.h>
42 #include <sys/thread.h>
43 #else
44 #include <stdlib.h>
45 #endif
46 #include <sys/syslog.h>
47 #include <net/radix.h>
50 * The arguments to the radix functions are really counted byte arrays with
51 * the length in the first byte. struct sockaddr's fit this type structurally.
53 #define clen(c) (*(u_char *)(c))
55 static int rn_walktree_from(struct radix_node_head *h, char *a, char *m,
56 walktree_f_t *f, void *w);
57 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
58 static int rn_walktree_at(struct radix_node_head *h, const char *a,
59 const char *m, walktree_f_t *f, void *w);
61 static struct radix_node
62 *rn_insert(char *, struct radix_node_head *, boolean_t *,
63 struct radix_node [2]),
64 *rn_newpair(char *, int, struct radix_node[2]),
65 *rn_search(const char *, struct radix_node *),
66 *rn_search_m(const char *, struct radix_node *, const char *);
68 static struct radix_mask *rn_mkfreelist[MAXCPU];
69 static struct radix_node_head *mask_rnheads[MAXCPU];
71 static char rn_zeros[RN_MAXKEYLEN];
72 static char rn_ones[RN_MAXKEYLEN] = RN_MAXKEYONES;
74 static boolean_t rn_lexobetter(char *m, char *n);
75 static struct radix_mask *
76 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask);
77 static boolean_t
78 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip);
80 static __inline struct radix_mask *
81 MKGet(struct radix_mask **l)
83 struct radix_mask *m;
85 if (*l != NULL) {
86 m = *l;
87 *l = m->rm_next;
88 } else {
89 R_Malloc(m, struct radix_mask *, sizeof *m);
91 return m;
94 static __inline void
95 MKFree(struct radix_mask **l, struct radix_mask *m)
97 m->rm_next = *l;
98 *l = m;
102 * The data structure for the keys is a radix tree with one way
103 * branching removed. The index rn_bit at an internal node n represents a bit
104 * position to be tested. The tree is arranged so that all descendants
105 * of a node n have keys whose bits all agree up to position rn_bit - 1.
106 * (We say the index of n is rn_bit.)
108 * There is at least one descendant which has a one bit at position rn_bit,
109 * and at least one with a zero there.
111 * A route is determined by a pair of key and mask. We require that the
112 * bit-wise logical and of the key and mask to be the key.
113 * We define the index of a route to associated with the mask to be
114 * the first bit number in the mask where 0 occurs (with bit number 0
115 * representing the highest order bit).
117 * We say a mask is normal if every bit is 0, past the index of the mask.
118 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
119 * and m is a normal mask, then the route applies to every descendant of n.
120 * If the index(m) < rn_bit, this implies the trailing last few bits of k
121 * before bit b are all 0, (and hence consequently true of every descendant
122 * of n), so the route applies to all descendants of the node as well.
124 * Similar logic shows that a non-normal mask m such that
125 * index(m) <= index(n) could potentially apply to many children of n.
126 * Thus, for each non-host route, we attach its mask to a list at an internal
127 * node as high in the tree as we can go.
129 * The present version of the code makes use of normal routes in short-
130 * circuiting an explict mask and compare operation when testing whether
131 * a key satisfies a normal route, and also in remembering the unique leaf
132 * that governs a subtree.
135 static struct radix_node *
136 rn_search(const char *v, struct radix_node *head)
138 struct radix_node *x;
140 x = head;
141 while (x->rn_bit >= 0) {
142 if (x->rn_bmask & v[x->rn_offset])
143 x = x->rn_right;
144 else
145 x = x->rn_left;
147 return (x);
150 static struct radix_node *
151 rn_search_m(const char *v, struct radix_node *head, const char *m)
153 struct radix_node *x;
155 for (x = head; x->rn_bit >= 0;) {
156 if ((x->rn_bmask & m[x->rn_offset]) &&
157 (x->rn_bmask & v[x->rn_offset]))
158 x = x->rn_right;
159 else
160 x = x->rn_left;
162 return x;
165 boolean_t
166 rn_refines(char *m, char *n)
168 char *lim, *lim2;
169 int longer = clen(n++) - clen(m++);
170 boolean_t masks_are_equal = TRUE;
172 lim2 = lim = n + clen(n);
173 if (longer > 0)
174 lim -= longer;
175 while (n < lim) {
176 if (*n & ~(*m))
177 return FALSE;
178 if (*n++ != *m++)
179 masks_are_equal = FALSE;
181 while (n < lim2)
182 if (*n++)
183 return FALSE;
184 if (masks_are_equal && (longer < 0))
185 for (lim2 = m - longer; m < lim2; )
186 if (*m++)
187 return TRUE;
188 return (!masks_are_equal);
191 struct radix_node *
192 rn_lookup(char *key, char *mask, struct radix_node_head *head)
194 struct radix_node *x;
195 char *netmask = NULL;
197 if (mask != NULL) {
198 x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset,
199 head->rnh_maskhead);
200 if (x == NULL)
201 return (NULL);
202 netmask = x->rn_key;
204 x = rn_match(key, head);
205 if (x != NULL && netmask != NULL) {
206 while (x != NULL && x->rn_mask != netmask)
207 x = x->rn_dupedkey;
209 return x;
212 static boolean_t
213 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
215 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
216 char *cplim;
217 int length = min(clen(cp), clen(cp2));
219 if (cp3 == NULL)
220 cp3 = rn_ones;
221 else
222 length = min(length, clen(cp3));
223 cplim = cp + length;
224 cp3 += skip;
225 cp2 += skip;
226 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
227 if ((*cp ^ *cp2) & *cp3)
228 return FALSE;
229 return TRUE;
232 struct radix_node *
233 rn_match(char *key, struct radix_node_head *head)
235 struct radix_node *t, *x;
236 char *cp = key, *cp2;
237 char *cplim;
238 struct radix_node *saved_t, *top = head->rnh_treetop;
239 int off = top->rn_offset, klen, matched_off;
240 int test, b, rn_bit;
242 t = rn_search(key, top);
244 * See if we match exactly as a host destination
245 * or at least learn how many bits match, for normal mask finesse.
247 * It doesn't hurt us to limit how many bytes to check
248 * to the length of the mask, since if it matches we had a genuine
249 * match and the leaf we have is the most specific one anyway;
250 * if it didn't match with a shorter length it would fail
251 * with a long one. This wins big for class B&C netmasks which
252 * are probably the most common case...
254 if (t->rn_mask != NULL)
255 klen = clen(t->rn_mask);
256 else
257 klen = clen(key);
258 cp += off; cp2 = t->rn_key + off; cplim = key + klen;
259 for (; cp < cplim; cp++, cp2++)
260 if (*cp != *cp2)
261 goto on1;
263 * This extra grot is in case we are explicitly asked
264 * to look up the default. Ugh!
266 * Never return the root node itself, it seems to cause a
267 * lot of confusion.
269 if (t->rn_flags & RNF_ROOT)
270 t = t->rn_dupedkey;
271 return t;
272 on1:
273 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
274 for (b = 7; (test >>= 1) > 0;)
275 b--;
276 matched_off = cp - key;
277 b += matched_off << 3;
278 rn_bit = -1 - b;
280 * If there is a host route in a duped-key chain, it will be first.
282 if ((saved_t = t)->rn_mask == NULL)
283 t = t->rn_dupedkey;
284 for (; t; t = t->rn_dupedkey) {
286 * Even if we don't match exactly as a host,
287 * we may match if the leaf we wound up at is
288 * a route to a net.
290 if (t->rn_flags & RNF_NORMAL) {
291 if (rn_bit <= t->rn_bit)
292 return t;
293 } else if (rn_satisfies_leaf(key, t, matched_off))
294 return t;
296 t = saved_t;
297 /* start searching up the tree */
298 do {
299 struct radix_mask *m;
301 t = t->rn_parent;
303 * If non-contiguous masks ever become important
304 * we can restore the masking and open coding of
305 * the search and satisfaction test and put the
306 * calculation of "off" back before the "do".
308 m = t->rn_mklist;
309 while (m != NULL) {
310 if (m->rm_flags & RNF_NORMAL) {
311 if (rn_bit <= m->rm_bit)
312 return (m->rm_leaf);
313 } else {
314 off = min(t->rn_offset, matched_off);
315 x = rn_search_m(key, t, m->rm_mask);
316 while (x != NULL && x->rn_mask != m->rm_mask)
317 x = x->rn_dupedkey;
318 if (x && rn_satisfies_leaf(key, x, off))
319 return x;
321 m = m->rm_next;
323 } while (t != top);
324 return NULL;
327 #ifdef RN_DEBUG
328 int rn_nodenum;
329 struct radix_node *rn_clist;
330 int rn_saveinfo;
331 boolean_t rn_debug = TRUE;
332 #endif
334 static struct radix_node *
335 rn_newpair(char *key, int indexbit, struct radix_node nodes[2])
337 struct radix_node *leaf = &nodes[0], *interior = &nodes[1];
339 interior->rn_bit = indexbit;
340 interior->rn_bmask = 0x80 >> (indexbit & 0x7);
341 interior->rn_offset = indexbit >> 3;
342 interior->rn_left = leaf;
343 interior->rn_mklist = NULL;
345 leaf->rn_bit = -1;
346 leaf->rn_key = key;
347 leaf->rn_parent = interior;
348 leaf->rn_flags = interior->rn_flags = RNF_ACTIVE;
349 leaf->rn_mklist = NULL;
351 #ifdef RN_DEBUG
352 leaf->rn_info = rn_nodenum++;
353 interior->rn_info = rn_nodenum++;
354 leaf->rn_twin = interior;
355 leaf->rn_ybro = rn_clist;
356 rn_clist = leaf;
357 #endif
358 return interior;
361 static struct radix_node *
362 rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry,
363 struct radix_node nodes[2])
365 struct radix_node *top = head->rnh_treetop;
366 int head_off = top->rn_offset, klen = clen(key);
367 struct radix_node *t = rn_search(key, top);
368 char *cp = key + head_off;
369 int b;
370 struct radix_node *tt;
373 * Find first bit at which the key and t->rn_key differ
376 char *cp2 = t->rn_key + head_off;
377 int cmp_res;
378 char *cplim = key + klen;
380 while (cp < cplim)
381 if (*cp2++ != *cp++)
382 goto on1;
383 *dupentry = TRUE;
384 return t;
385 on1:
386 *dupentry = FALSE;
387 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
388 for (b = (cp - key) << 3; cmp_res; b--)
389 cmp_res >>= 1;
392 struct radix_node *p, *x = top;
394 cp = key;
395 do {
396 p = x;
397 if (cp[x->rn_offset] & x->rn_bmask)
398 x = x->rn_right;
399 else
400 x = x->rn_left;
401 } while (b > (unsigned) x->rn_bit);
402 /* x->rn_bit < b && x->rn_bit >= 0 */
403 #ifdef RN_DEBUG
404 if (rn_debug)
405 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
406 #endif
407 t = rn_newpair(key, b, nodes);
408 tt = t->rn_left;
409 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
410 p->rn_left = t;
411 else
412 p->rn_right = t;
413 x->rn_parent = t;
414 t->rn_parent = p; /* frees x, p as temp vars below */
415 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
416 t->rn_right = x;
417 } else {
418 t->rn_right = tt;
419 t->rn_left = x;
421 #ifdef RN_DEBUG
422 if (rn_debug)
423 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
424 #endif
426 return (tt);
429 struct radix_node *
430 rn_addmask(char *netmask, boolean_t search, int skip,
431 struct radix_node_head *mask_rnh)
433 struct radix_node *x, *saved_x;
434 char *cp, *cplim;
435 int b = 0, mlen, m0, j;
436 boolean_t maskduplicated, isnormal;
437 char *addmask_key;
439 if ((mlen = clen(netmask)) > RN_MAXKEYLEN)
440 mlen = RN_MAXKEYLEN;
441 if (skip == 0)
442 skip = 1;
443 if (mlen <= skip)
444 return (mask_rnh->rnh_nodes);
445 R_Malloc(addmask_key, char *, RN_MAXKEYLEN);
446 if (addmask_key == NULL)
447 return NULL;
448 if (skip > 1)
449 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
450 if ((m0 = mlen) > skip)
451 bcopy(netmask + skip, addmask_key + skip, mlen - skip);
453 * Trim trailing zeroes.
455 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
456 cp--;
457 mlen = cp - addmask_key;
458 if (mlen <= skip) {
459 if (m0 >= mask_rnh->rnh_last_zeroed)
460 mask_rnh->rnh_last_zeroed = mlen;
461 Free(addmask_key);
462 return (mask_rnh->rnh_nodes);
464 if (m0 < mask_rnh->rnh_last_zeroed)
465 bzero(addmask_key + m0, mask_rnh->rnh_last_zeroed - m0);
466 *addmask_key = mask_rnh->rnh_last_zeroed = mlen;
467 x = rn_search(addmask_key, mask_rnh->rnh_treetop);
468 if (x->rn_key == NULL) {
469 kprintf("WARNING: radix_node->rn_key is NULL rn=%p\n", x);
470 print_backtrace(-1);
471 x = NULL;
472 } else if (bcmp(addmask_key, x->rn_key, mlen) != 0) {
473 x = NULL;
475 if (x != NULL || search)
476 goto out;
477 R_Malloc(x, struct radix_node *, RN_MAXKEYLEN + 2 * (sizeof *x));
478 if ((saved_x = x) == NULL)
479 goto out;
480 bzero(x, RN_MAXKEYLEN + 2 * (sizeof *x));
481 netmask = cp = (char *)(x + 2);
482 bcopy(addmask_key, cp, mlen);
483 x = rn_insert(cp, mask_rnh, &maskduplicated, x);
484 if (maskduplicated) {
485 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
486 Free(saved_x);
487 goto out;
490 * Calculate index of mask, and check for normalcy.
492 isnormal = TRUE;
493 cplim = netmask + mlen;
494 for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;)
495 cp++;
496 if (cp != cplim) {
497 static const char normal_chars[] = {
498 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
501 for (j = 0x80; (j & *cp) != 0; j >>= 1)
502 b++;
503 if (*cp != normal_chars[b] || cp != (cplim - 1))
504 isnormal = FALSE;
506 b += (cp - netmask) << 3;
507 x->rn_bit = -1 - b;
508 if (isnormal)
509 x->rn_flags |= RNF_NORMAL;
510 out:
511 Free(addmask_key);
512 return (x);
515 /* XXX: arbitrary ordering for non-contiguous masks */
516 static boolean_t
517 rn_lexobetter(char *mp, char *np)
519 char *lim;
521 if ((unsigned) *mp > (unsigned) *np)
522 return TRUE;/* not really, but need to check longer one first */
523 if (*mp == *np)
524 for (lim = mp + clen(mp); mp < lim;)
525 if (*mp++ > *np++)
526 return TRUE;
527 return FALSE;
530 static struct radix_mask *
531 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask)
533 struct radix_mask *m;
535 m = MKGet(&rn_mkfreelist[mycpuid]);
536 if (m == NULL) {
537 log(LOG_ERR, "Mask for route not entered\n");
538 return (NULL);
540 bzero(m, sizeof *m);
541 m->rm_bit = tt->rn_bit;
542 m->rm_flags = tt->rn_flags;
543 if (tt->rn_flags & RNF_NORMAL)
544 m->rm_leaf = tt;
545 else
546 m->rm_mask = tt->rn_mask;
547 m->rm_next = nextmask;
548 tt->rn_mklist = m;
549 return m;
552 struct radix_node *
553 rn_addroute(char *key, char *netmask, struct radix_node_head *head,
554 struct radix_node treenodes[2])
556 struct radix_node *t, *x = NULL, *tt;
557 struct radix_node *saved_tt, *top = head->rnh_treetop;
558 short b = 0, b_leaf = 0;
559 boolean_t keyduplicated;
560 char *mmask;
561 struct radix_mask *m, **mp;
564 * In dealing with non-contiguous masks, there may be
565 * many different routes which have the same mask.
566 * We will find it useful to have a unique pointer to
567 * the mask to speed avoiding duplicate references at
568 * nodes and possibly save time in calculating indices.
570 if (netmask != NULL) {
571 if ((x = rn_addmask(netmask, FALSE, top->rn_offset,
572 head->rnh_maskhead)) == NULL)
573 return (NULL);
574 b_leaf = x->rn_bit;
575 b = -1 - x->rn_bit;
576 netmask = x->rn_key;
579 * Deal with duplicated keys: attach node to previous instance
581 saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes);
582 if (keyduplicated) {
583 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
584 if (tt->rn_mask == netmask)
585 return (NULL);
586 if (netmask == NULL ||
587 (tt->rn_mask &&
588 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
589 || rn_refines(netmask, tt->rn_mask)
590 || rn_lexobetter(netmask, tt->rn_mask))))
591 break;
594 * If the mask is not duplicated, we wouldn't
595 * find it among possible duplicate key entries
596 * anyway, so the above test doesn't hurt.
598 * We sort the masks for a duplicated key the same way as
599 * in a masklist -- most specific to least specific.
600 * This may require the unfortunate nuisance of relocating
601 * the head of the list.
603 if (tt == saved_tt) {
604 struct radix_node *xx = x;
605 /* link in at head of list */
606 (tt = treenodes)->rn_dupedkey = t;
607 tt->rn_flags = t->rn_flags;
608 tt->rn_parent = x = t->rn_parent;
609 t->rn_parent = tt; /* parent */
610 if (x->rn_left == t)
611 x->rn_left = tt;
612 else
613 x->rn_right = tt;
614 saved_tt = tt; x = xx;
615 } else {
616 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
617 t->rn_dupedkey = tt;
618 tt->rn_parent = t; /* parent */
619 if (tt->rn_dupedkey != NULL) /* parent */
620 tt->rn_dupedkey->rn_parent = tt; /* parent */
622 #ifdef RN_DEBUG
623 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
624 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
625 #endif
626 tt->rn_key = key;
627 tt->rn_bit = -1;
628 tt->rn_flags = RNF_ACTIVE;
631 * Put mask in tree.
633 if (netmask != NULL) {
634 tt->rn_mask = netmask;
635 tt->rn_bit = x->rn_bit;
636 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
638 t = saved_tt->rn_parent;
639 if (keyduplicated)
640 goto on2;
641 b_leaf = -1 - t->rn_bit;
642 if (t->rn_right == saved_tt)
643 x = t->rn_left;
644 else
645 x = t->rn_right;
646 /* Promote general routes from below */
647 if (x->rn_bit < 0) {
648 mp = &t->rn_mklist;
649 while (x != NULL) {
650 if (x->rn_mask != NULL &&
651 x->rn_bit >= b_leaf &&
652 x->rn_mklist == NULL) {
653 *mp = m = rn_new_radix_mask(x, NULL);
654 if (m != NULL)
655 mp = &m->rm_next;
657 x = x->rn_dupedkey;
659 } else if (x->rn_mklist != NULL) {
661 * Skip over masks whose index is > that of new node
663 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
664 if (m->rm_bit >= b_leaf)
665 break;
666 t->rn_mklist = m;
667 *mp = NULL;
669 on2:
670 /* Add new route to highest possible ancestor's list */
671 if ((netmask == NULL) || (b > t->rn_bit ))
672 return tt; /* can't lift at all */
673 b_leaf = tt->rn_bit;
674 do {
675 x = t;
676 t = t->rn_parent;
677 } while (b <= t->rn_bit && x != top);
679 * Search through routes associated with node to
680 * insert new route according to index.
681 * Need same criteria as when sorting dupedkeys to avoid
682 * double loop on deletion.
684 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) {
685 if (m->rm_bit < b_leaf)
686 continue;
687 if (m->rm_bit > b_leaf)
688 break;
689 if (m->rm_flags & RNF_NORMAL) {
690 mmask = m->rm_leaf->rn_mask;
691 if (tt->rn_flags & RNF_NORMAL) {
692 log(LOG_ERR,
693 "Non-unique normal route, mask not entered\n");
694 return tt;
696 } else
697 mmask = m->rm_mask;
698 if (mmask == netmask) {
699 m->rm_refs++;
700 tt->rn_mklist = m;
701 return tt;
703 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
704 break;
706 *mp = rn_new_radix_mask(tt, *mp);
707 return tt;
710 struct radix_node *
711 rn_delete(char *key, char *netmask, struct radix_node_head *head)
713 struct radix_node *t, *p, *x, *tt;
714 struct radix_mask *m, *saved_m, **mp;
715 struct radix_node *dupedkey, *saved_tt, *top;
716 int b, head_off, klen;
717 int cpu = mycpuid;
719 x = head->rnh_treetop;
720 tt = rn_search(key, x);
721 head_off = x->rn_offset;
722 klen = clen(key);
723 saved_tt = tt;
724 top = x;
725 if (tt == NULL ||
726 bcmp(key + head_off, tt->rn_key + head_off, klen - head_off))
727 return (NULL);
729 * Delete our route from mask lists.
731 if (netmask != NULL) {
732 if ((x = rn_addmask(netmask, TRUE, head_off,
733 head->rnh_maskhead)) == NULL)
734 return (NULL);
735 netmask = x->rn_key;
736 while (tt->rn_mask != netmask)
737 if ((tt = tt->rn_dupedkey) == NULL)
738 return (NULL);
740 if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
741 goto on1;
742 if (tt->rn_flags & RNF_NORMAL) {
743 if (m->rm_leaf != tt || m->rm_refs > 0) {
744 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
745 return (NULL); /* dangling ref could cause disaster */
747 } else {
748 if (m->rm_mask != tt->rn_mask) {
749 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
750 goto on1;
752 if (--m->rm_refs >= 0)
753 goto on1;
755 b = -1 - tt->rn_bit;
756 t = saved_tt->rn_parent;
757 if (b > t->rn_bit)
758 goto on1; /* Wasn't lifted at all */
759 do {
760 x = t;
761 t = t->rn_parent;
762 } while (b <= t->rn_bit && x != top);
763 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next)
764 if (m == saved_m) {
765 *mp = m->rm_next;
766 MKFree(&rn_mkfreelist[cpu], m);
767 break;
769 if (m == NULL) {
770 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
771 if (tt->rn_flags & RNF_NORMAL)
772 return (NULL); /* Dangling ref to us */
774 on1:
776 * Eliminate us from tree
778 if (tt->rn_flags & RNF_ROOT)
779 return (NULL);
780 #ifdef RN_DEBUG
781 /* Get us out of the creation list */
782 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
783 if (t) t->rn_ybro = tt->rn_ybro;
784 #endif
785 t = tt->rn_parent;
786 dupedkey = saved_tt->rn_dupedkey;
787 if (dupedkey != NULL) {
789 * at this point, tt is the deletion target and saved_tt
790 * is the head of the dupekey chain
792 if (tt == saved_tt) {
793 /* remove from head of chain */
794 x = dupedkey; x->rn_parent = t;
795 if (t->rn_left == tt)
796 t->rn_left = x;
797 else
798 t->rn_right = x;
799 } else {
800 /* find node in front of tt on the chain */
801 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
802 p = p->rn_dupedkey;
803 if (p) {
804 p->rn_dupedkey = tt->rn_dupedkey;
805 if (tt->rn_dupedkey) /* parent */
806 tt->rn_dupedkey->rn_parent = p;
807 /* parent */
808 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
810 t = tt + 1;
811 if (t->rn_flags & RNF_ACTIVE) {
812 #ifndef RN_DEBUG
813 *++x = *t;
814 p = t->rn_parent;
815 #else
816 b = t->rn_info;
817 *++x = *t;
818 t->rn_info = b;
819 p = t->rn_parent;
820 #endif
821 if (p->rn_left == t)
822 p->rn_left = x;
823 else
824 p->rn_right = x;
825 x->rn_left->rn_parent = x;
826 x->rn_right->rn_parent = x;
828 goto out;
830 if (t->rn_left == tt)
831 x = t->rn_right;
832 else
833 x = t->rn_left;
834 p = t->rn_parent;
835 if (p->rn_right == t)
836 p->rn_right = x;
837 else
838 p->rn_left = x;
839 x->rn_parent = p;
841 * Demote routes attached to us.
843 if (t->rn_mklist != NULL) {
844 if (x->rn_bit >= 0) {
845 for (mp = &x->rn_mklist; (m = *mp);)
846 mp = &m->rm_next;
847 *mp = t->rn_mklist;
848 } else {
850 * If there are any (key, mask) pairs in a sibling
851 * duped-key chain, some subset will appear sorted
852 * in the same order attached to our mklist.
854 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
855 if (m == x->rn_mklist) {
856 struct radix_mask *mm = m->rm_next;
858 x->rn_mklist = NULL;
859 if (--(m->rm_refs) < 0)
860 MKFree(&rn_mkfreelist[cpu], m);
861 m = mm;
863 if (m)
864 log(LOG_ERR,
865 "rn_delete: Orphaned Mask %p at %p\n",
866 (void *)m, (void *)x);
870 * We may be holding an active internal node in the tree.
872 x = tt + 1;
873 if (t != x) {
874 #ifndef RN_DEBUG
875 *t = *x;
876 #else
877 b = t->rn_info;
878 *t = *x;
879 t->rn_info = b;
880 #endif
881 t->rn_left->rn_parent = t;
882 t->rn_right->rn_parent = t;
883 p = x->rn_parent;
884 if (p->rn_left == x)
885 p->rn_left = t;
886 else
887 p->rn_right = t;
889 out:
890 tt->rn_flags &= ~RNF_ACTIVE;
891 tt[1].rn_flags &= ~RNF_ACTIVE;
892 return (tt);
896 * This is the same as rn_walktree() except for the parameters and the
897 * exit.
899 static int
900 rn_walktree_from(struct radix_node_head *h, char *xa, char *xm,
901 walktree_f_t *f, void *w)
903 struct radix_node *base, *next;
904 struct radix_node *rn, *last = NULL /* shut up gcc */;
905 boolean_t stopping = FALSE;
906 int lastb, error;
909 * rn_search_m is sort-of-open-coded here.
911 /* kprintf("about to search\n"); */
912 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
913 last = rn;
914 /* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
915 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
916 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
917 break;
919 if (rn->rn_bmask & xa[rn->rn_offset]) {
920 rn = rn->rn_right;
921 } else {
922 rn = rn->rn_left;
925 /* kprintf("done searching\n"); */
928 * Two cases: either we stepped off the end of our mask,
929 * in which case last == rn, or we reached a leaf, in which
930 * case we want to start from the last node we looked at.
931 * Either way, last is the node we want to start from.
933 rn = last;
934 lastb = rn->rn_bit;
936 /* kprintf("rn %p, lastb %d\n", rn, lastb);*/
939 * This gets complicated because we may delete the node
940 * while applying the function f to it, so we need to calculate
941 * the successor node in advance.
943 while (rn->rn_bit >= 0)
944 rn = rn->rn_left;
946 while (!stopping) {
947 /* kprintf("node %p (%d)\n", rn, rn->rn_bit); */
948 base = rn;
949 /* If at right child go back up, otherwise, go right */
950 while (rn->rn_parent->rn_right == rn &&
951 !(rn->rn_flags & RNF_ROOT)) {
952 rn = rn->rn_parent;
954 /* if went up beyond last, stop */
955 if (rn->rn_bit < lastb) {
956 stopping = TRUE;
957 /* kprintf("up too far\n"); */
961 /* Find the next *leaf* since next node might vanish, too */
962 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
963 rn = rn->rn_left;
964 next = rn;
965 /* Process leaves */
966 while ((rn = base) != NULL) {
967 base = rn->rn_dupedkey;
968 /* kprintf("leaf %p\n", rn); */
969 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
970 return (error);
972 rn = next;
974 if (rn->rn_flags & RNF_ROOT) {
975 /* kprintf("root, stopping"); */
976 stopping = TRUE;
980 return 0;
983 static int
984 rn_walktree_at(struct radix_node_head *h, const char *a, const char *m,
985 walktree_f_t *f, void *w)
987 struct radix_node *base, *next;
988 struct radix_node *rn = h->rnh_treetop;
989 int error;
992 * This gets complicated because we may delete the node
993 * while applying the function f to it, so we need to calculate
994 * the successor node in advance.
996 if (a == NULL) {
997 /* First time through node, go left */
998 while (rn->rn_bit >= 0)
999 rn = rn->rn_left;
1000 } else {
1001 if (m != NULL)
1002 rn = rn_search_m(a, rn, m);
1003 else
1004 rn = rn_search(a, rn);
1006 for (;;) {
1007 base = rn;
1008 /* If at right child go back up, otherwise, go right */
1009 while (rn->rn_parent->rn_right == rn &&
1010 !(rn->rn_flags & RNF_ROOT))
1011 rn = rn->rn_parent;
1012 /* Find the next *leaf* since next node might vanish, too */
1013 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1014 rn = rn->rn_left;
1015 next = rn;
1016 /* Process leaves */
1017 while ((rn = base)) {
1018 base = rn->rn_dupedkey;
1019 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1020 return (error);
1022 rn = next;
1023 if (rn->rn_flags & RNF_ROOT)
1024 return (0);
1026 /* NOTREACHED */
1029 static int
1030 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1032 return rn_walktree_at(h, NULL, NULL, f, w);
1036 rn_inithead(void **head, struct radix_node_head *maskhead, int off)
1038 struct radix_node_head *rnh;
1039 struct radix_node *root, *left, *right;
1041 if (*head != NULL) /* already initialized */
1042 return (1);
1044 R_Malloc(rnh, struct radix_node_head *, sizeof *rnh);
1045 if (rnh == NULL)
1046 return (0);
1047 bzero(rnh, sizeof *rnh);
1048 *head = rnh;
1050 root = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1051 right = &rnh->rnh_nodes[2];
1052 root->rn_parent = root;
1053 root->rn_flags = RNF_ROOT | RNF_ACTIVE;
1054 root->rn_right = right;
1056 left = root->rn_left;
1057 left->rn_bit = -1 - off;
1058 left->rn_flags = RNF_ROOT | RNF_ACTIVE;
1060 *right = *left;
1061 right->rn_key = rn_ones;
1063 rnh->rnh_treetop = root;
1064 rnh->rnh_maskhead = maskhead;
1066 rnh->rnh_addaddr = rn_addroute;
1067 rnh->rnh_deladdr = rn_delete;
1068 rnh->rnh_matchaddr = rn_match;
1069 rnh->rnh_lookup = rn_lookup;
1070 rnh->rnh_walktree = rn_walktree;
1071 rnh->rnh_walktree_from = rn_walktree_from;
1072 rnh->rnh_walktree_at = rn_walktree_at;
1074 return (1);
1077 void
1078 rn_init(void)
1080 int cpu;
1081 #ifdef _KERNEL
1082 struct domain *dom;
1084 SLIST_FOREACH(dom, &domains, dom_next) {
1085 if (dom->dom_maxrtkey > RN_MAXKEYLEN) {
1086 panic("domain %s maxkey too big %d/%d",
1087 dom->dom_name, dom->dom_maxrtkey, RN_MAXKEYLEN);
1090 #endif
1091 for (cpu = 0; cpu < ncpus; ++cpu) {
1092 if (rn_inithead((void **)&mask_rnheads[cpu], NULL, 0) == 0)
1093 panic("rn_init 2");
1097 struct radix_node_head *
1098 rn_cpumaskhead(int cpu)
1100 KKASSERT(mask_rnheads[cpu] != NULL);
1101 return mask_rnheads[cpu];