kernel - Order ipfw3 module before other ipfw3_* modules
[dragonfly.git] / sys / kern / vfs_cluster.c
blob8d8bf2b8592041d10bdabcf15cc6744a8958241a
1 /*-
2 * Copyright (c) 1993
3 * The Regents of the University of California. All rights reserved.
4 * Modifications/enhancements:
5 * Copyright (c) 1995 John S. Dyson. All rights reserved.
6 * Copyright (c) 2012-2013 Matthew Dillon. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
33 #include "opt_debug_cluster.h"
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/proc.h>
39 #include <sys/buf.h>
40 #include <sys/vnode.h>
41 #include <sys/malloc.h>
42 #include <sys/mount.h>
43 #include <sys/resourcevar.h>
44 #include <sys/vmmeter.h>
45 #include <vm/vm.h>
46 #include <vm/vm_object.h>
47 #include <vm/vm_page.h>
48 #include <sys/sysctl.h>
50 #include <sys/buf2.h>
51 #include <vm/vm_page2.h>
53 #include <machine/limits.h>
56 * Cluster tracking cache - replaces the original vnode v_* fields which had
57 * limited utility and were not MP safe.
59 * The cluster tracking cache is a simple 4-way set-associative non-chained
60 * cache. It is capable of tracking up to four zones separated by 1MB or
61 * more per vnode.
63 * NOTE: We want this structure to be cache-line friendly so the iterator
64 * is embedded rather than in a separate array.
66 * NOTE: A cluster cache entry can become stale when a vnode is recycled.
67 * For now we treat the values as heuristical but also self-consistent.
68 * i.e. the values cannot be completely random and cannot be SMP unsafe
69 * or the cluster code might end-up clustering non-contiguous buffers
70 * at the wrong offsets.
72 struct cluster_cache {
73 struct vnode *vp;
74 u_int locked;
75 off_t v_lastw; /* last write (end) (write cluster) */
76 off_t v_cstart; /* start block (beg) of cluster */
77 off_t v_lasta; /* last allocation (end) */
78 u_int v_clen; /* length of current cluster */
79 u_int iterator;
80 } __cachealign;
82 typedef struct cluster_cache cluster_cache_t;
84 #define CLUSTER_CACHE_SIZE 512
85 #define CLUSTER_CACHE_MASK (CLUSTER_CACHE_SIZE - 1)
87 #define CLUSTER_ZONE ((off_t)(1024 * 1024))
89 cluster_cache_t cluster_array[CLUSTER_CACHE_SIZE];
91 #if defined(CLUSTERDEBUG)
92 #include <sys/sysctl.h>
93 static int rcluster= 0;
94 SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0, "");
95 #endif
97 static MALLOC_DEFINE(M_SEGMENT, "cluster_save", "cluster_save buffer");
99 static struct cluster_save *
100 cluster_collectbufs (cluster_cache_t *cc, struct vnode *vp,
101 struct buf *last_bp, int blksize);
102 static struct buf *
103 cluster_rbuild (struct vnode *vp, off_t filesize, off_t loffset,
104 off_t doffset, int blksize, int run,
105 struct buf *fbp, int *srp);
106 static void cluster_callback (struct bio *);
107 static void cluster_setram (struct buf *);
108 static void cluster_clrram (struct buf *);
109 static int cluster_wbuild(struct vnode *vp, struct buf **bpp, int blksize,
110 off_t start_loffset, int bytes);
112 static int write_behind = 1;
113 SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
114 "Cluster write-behind setting");
115 static quad_t write_behind_minfilesize = 10 * 1024 * 1024;
116 SYSCTL_QUAD(_vfs, OID_AUTO, write_behind_minfilesize, CTLFLAG_RW,
117 &write_behind_minfilesize, 0, "Cluster write-behind setting");
118 static int max_readahead = 2 * 1024 * 1024;
119 SYSCTL_INT(_vfs, OID_AUTO, max_readahead, CTLFLAG_RW, &max_readahead, 0,
120 "Limit in bytes for desired cluster read-ahead");
122 extern vm_page_t bogus_page;
125 * nblks is our cluster_rbuild request size. The approximate number of
126 * physical read-ahead requests is maxra / nblks. The physical request
127 * size is limited by the device (maxrbuild). We also do not want to make
128 * the request size too big or it will mess up the B_RAM streaming.
130 static __inline
132 calc_rbuild_reqsize(int maxra, int maxrbuild)
134 int nblks;
136 if ((nblks = maxra / 4) > maxrbuild)
137 nblks = maxrbuild;
138 if (nblks < 1)
139 nblks = maxra;
140 return nblks;
144 * Acquire/release cluster cache (can return dummy entry)
146 static
147 cluster_cache_t *
148 cluster_getcache(cluster_cache_t *dummy, struct vnode *vp, off_t loffset)
150 cluster_cache_t *cc;
151 size_t hv;
152 int i;
153 int xact;
155 hv = (size_t)(intptr_t)vp ^ (size_t)(intptr_t)vp / sizeof(*vp);
156 hv &= CLUSTER_CACHE_MASK & ~3;
157 cc = &cluster_array[hv];
159 xact = -1;
160 for (i = 0; i < 4; ++i) {
161 if (cc[i].vp != vp)
162 continue;
163 if (((cc[i].v_cstart ^ loffset) & ~(CLUSTER_ZONE - 1)) == 0) {
164 xact = i;
165 break;
168 if (xact >= 0 && atomic_swap_int(&cc[xact].locked, 1) == 0) {
169 if (cc[xact].vp == vp &&
170 ((cc[i].v_cstart ^ loffset) & ~(CLUSTER_ZONE - 1)) == 0) {
171 return(&cc[xact]);
173 atomic_swap_int(&cc[xact].locked, 0);
177 * New entry. If we can't acquire the cache line then use the
178 * passed-in dummy element and reset all fields.
180 * When we are able to acquire the cache line we only clear the
181 * fields if the vp does not match. This allows us to multi-zone
182 * a vp and for excessive zones / partial clusters to be retired.
184 i = cc->iterator++ & 3;
185 cc += i;
186 if (atomic_swap_int(&cc->locked, 1) != 0) {
187 cc = dummy;
188 cc->locked = 1;
189 cc->vp = NULL;
191 if (cc->vp != vp) {
192 cc->vp = vp;
193 cc->v_lasta = 0;
194 cc->v_clen = 0;
195 cc->v_cstart = 0;
196 cc->v_lastw = 0;
198 return(cc);
201 static
202 void
203 cluster_putcache(cluster_cache_t *cc)
205 atomic_swap_int(&cc->locked, 0);
209 * This replaces bread(), providing a synchronous read of the requested
210 * buffer plus asynchronous read-ahead within the specified bounds.
212 * The caller may pre-populate *bpp if it already has the requested buffer
213 * in-hand, else must set *bpp to NULL. Note that the cluster_read() inline
214 * sets *bpp to NULL and then calls cluster_readx() for compatibility.
216 * filesize - read-ahead @ blksize will not cross this boundary
217 * loffset - loffset for returned *bpp
218 * blksize - blocksize for returned *bpp and read-ahead bps
219 * minreq - minimum (not a hard minimum) in bytes, typically reflects
220 * a higher level uio resid.
221 * maxreq - maximum (sequential heuristic) in bytes (highet typ ~2MB)
222 * bpp - return buffer (*bpp) for (loffset,blksize)
225 cluster_readx(struct vnode *vp, off_t filesize, off_t loffset, int blksize,
226 int bflags, size_t minreq, size_t maxreq,
227 struct buf **bpp)
229 struct buf *bp, *rbp, *reqbp;
230 off_t origoffset;
231 off_t doffset;
232 int error;
233 int i;
234 int maxra;
235 int maxrbuild;
236 int sr;
238 sr = 0;
241 * Calculate the desired read-ahead in blksize'd blocks (maxra).
242 * To do this we calculate maxreq.
244 * maxreq typically starts out as a sequential heuristic. If the
245 * high level uio/resid is bigger (minreq), we pop maxreq up to
246 * minreq. This represents the case where random I/O is being
247 * performed by the userland is issuing big read()'s.
249 * Then we limit maxreq to max_readahead to ensure it is a reasonable
250 * value.
252 * Finally we must ensure that (loffset + maxreq) does not cross the
253 * boundary (filesize) for the current blocksize. If we allowed it
254 * to cross we could end up with buffers past the boundary with the
255 * wrong block size (HAMMER large-data areas use mixed block sizes).
256 * minreq is also absolutely limited to filesize.
258 if (maxreq < minreq)
259 maxreq = minreq;
260 /* minreq not used beyond this point */
262 if (maxreq > max_readahead) {
263 maxreq = max_readahead;
264 if (maxreq > 16 * 1024 * 1024)
265 maxreq = 16 * 1024 * 1024;
267 if (maxreq < blksize)
268 maxreq = blksize;
269 if (loffset + maxreq > filesize) {
270 if (loffset > filesize)
271 maxreq = 0;
272 else
273 maxreq = filesize - loffset;
276 maxra = (int)(maxreq / blksize);
279 * Get the requested block.
281 if (*bpp)
282 reqbp = bp = *bpp;
283 else
284 *bpp = reqbp = bp = getblk(vp, loffset, blksize, 0, 0);
285 origoffset = loffset;
288 * Calculate the maximum cluster size for a single I/O, used
289 * by cluster_rbuild().
291 maxrbuild = vmaxiosize(vp) / blksize;
294 * If it is in the cache, then check to see if the reads have been
295 * sequential. If they have, then try some read-ahead, otherwise
296 * back-off on prospective read-aheads.
298 if (bp->b_flags & B_CACHE) {
300 * Not sequential, do not do any read-ahead
302 if (maxra <= 1)
303 return 0;
306 * No read-ahead mark, do not do any read-ahead
307 * yet.
309 if ((bp->b_flags & B_RAM) == 0)
310 return 0;
313 * We hit a read-ahead-mark, figure out how much read-ahead
314 * to do (maxra) and where to start (loffset).
316 * Typically the way this works is that B_RAM is set in the
317 * middle of the cluster and triggers an overlapping
318 * read-ahead of 1/2 a cluster more blocks. This ensures
319 * that the cluster read-ahead scales with the read-ahead
320 * count and is thus better-able to absorb the caller's
321 * latency.
323 * Estimate where the next unread block will be by assuming
324 * that the B_RAM's are placed at the half-way point.
326 bp->b_flags &= ~B_RAM;
328 i = maxra / 2;
329 rbp = findblk(vp, loffset + i * blksize, FINDBLK_TEST);
330 if (rbp == NULL || (rbp->b_flags & B_CACHE) == 0) {
331 while (i) {
332 --i;
333 rbp = findblk(vp, loffset + i * blksize,
334 FINDBLK_TEST);
335 if (rbp) {
336 ++i;
337 break;
340 } else {
341 while (i < maxra) {
342 rbp = findblk(vp, loffset + i * blksize,
343 FINDBLK_TEST);
344 if (rbp == NULL)
345 break;
346 ++i;
351 * We got everything or everything is in the cache, no
352 * point continuing.
354 if (i >= maxra)
355 return 0;
358 * Calculate where to start the read-ahead and how much
359 * to do. Generally speaking we want to read-ahead by
360 * (maxra) when we've found a read-ahead mark. We do
361 * not want to reduce maxra here as it will cause
362 * successive read-ahead I/O's to be smaller and smaller.
364 * However, we have to make sure we don't break the
365 * filesize limitation for the clustered operation.
367 loffset += i * blksize;
368 reqbp = bp = NULL;
370 if (loffset >= filesize)
371 return 0;
372 if (loffset + maxra * blksize > filesize) {
373 maxreq = filesize - loffset;
374 maxra = (int)(maxreq / blksize);
378 * Set RAM on first read-ahead block since we still have
379 * approximate maxra/2 blocks ahead of us that are already
380 * cached or in-progress.
382 sr = 1;
383 } else {
385 * Start block is not valid, we will want to do a
386 * full read-ahead.
388 __debugvar off_t firstread = bp->b_loffset;
389 int nblks;
392 * Set-up synchronous read for bp.
394 bp->b_cmd = BUF_CMD_READ;
395 bp->b_bio1.bio_done = biodone_sync;
396 bp->b_bio1.bio_flags |= BIO_SYNC;
398 KASSERT(firstread != NOOFFSET,
399 ("cluster_read: no buffer offset"));
401 nblks = calc_rbuild_reqsize(maxra, maxrbuild);
404 * Set RAM half-way through the full-cluster.
406 sr = (maxra + 1) / 2;
408 if (nblks > 1) {
409 int burstbytes;
411 error = VOP_BMAP(vp, loffset, &doffset,
412 &burstbytes, NULL, BUF_CMD_READ);
413 if (error)
414 goto single_block_read;
415 if (nblks > burstbytes / blksize)
416 nblks = burstbytes / blksize;
417 if (doffset == NOOFFSET)
418 goto single_block_read;
419 if (nblks <= 1)
420 goto single_block_read;
422 bp = cluster_rbuild(vp, filesize, loffset,
423 doffset, blksize, nblks, bp, &sr);
424 loffset += bp->b_bufsize;
425 maxra -= bp->b_bufsize / blksize;
426 } else {
427 single_block_read:
429 * If it isn't in the cache, then get a chunk from
430 * disk if sequential, otherwise just get the block.
432 loffset += blksize;
433 --maxra;
438 * If B_CACHE was not set issue bp. bp will either be an
439 * asynchronous cluster buf or a synchronous single-buf.
440 * If it is a single buf it will be the same as reqbp.
442 * NOTE: Once an async cluster buf is issued bp becomes invalid.
444 if (bp) {
445 #if defined(CLUSTERDEBUG)
446 if (rcluster)
447 kprintf("S(%012jx,%d,%d)\n",
448 (intmax_t)bp->b_loffset, bp->b_bcount, maxra);
449 #endif
450 if ((bp->b_flags & B_CLUSTER) == 0)
451 vfs_busy_pages(vp, bp);
452 bp->b_flags &= ~(B_ERROR | B_INVAL | B_NOTMETA);
453 bp->b_flags |= bflags;
454 vn_strategy(vp, &bp->b_bio1);
455 /* bp invalid now */
456 bp = NULL;
459 #if defined(CLUSTERDEBUG)
460 if (rcluster)
461 kprintf("cluster_rd %016jx/%d maxra=%d sr=%d\n",
462 loffset, blksize, maxra, sr);
463 #endif
466 * If we have been doing sequential I/O, then do some read-ahead.
467 * The code above us should have positioned us at the next likely
468 * offset.
470 * Only mess with buffers which we can immediately lock. HAMMER
471 * will do device-readahead irrespective of what the blocks
472 * represent.
474 * Set B_RAM on the first buffer (the next likely offset needing
475 * read-ahead), under the assumption that there are still
476 * approximately maxra/2 blocks good ahead of us.
478 while (maxra > 0) {
479 int burstbytes;
480 int nblks;
482 rbp = getblk(vp, loffset, blksize,
483 GETBLK_SZMATCH|GETBLK_NOWAIT, 0);
484 #if defined(CLUSTERDEBUG)
485 if (rcluster) {
486 kprintf("read-ahead %016jx rbp=%p ",
487 loffset, rbp);
489 #endif
490 if (rbp == NULL)
491 goto no_read_ahead;
492 if ((rbp->b_flags & B_CACHE)) {
493 bqrelse(rbp);
494 goto no_read_ahead;
498 * If BMAP is not supported or has an issue, we still do
499 * (maxra) read-ahead, but we do not try to use rbuild.
501 error = VOP_BMAP(vp, loffset, &doffset,
502 &burstbytes, NULL, BUF_CMD_READ);
503 if (error || doffset == NOOFFSET) {
504 nblks = 1;
505 doffset = NOOFFSET;
506 } else {
507 nblks = calc_rbuild_reqsize(maxra, maxrbuild);
508 if (nblks > burstbytes / blksize)
509 nblks = burstbytes / blksize;
511 rbp->b_cmd = BUF_CMD_READ;
513 if (nblks > 1) {
514 rbp = cluster_rbuild(vp, filesize, loffset,
515 doffset, blksize,
516 nblks, rbp, &sr);
517 } else {
518 rbp->b_bio2.bio_offset = doffset;
519 if (--sr == 0)
520 cluster_setram(rbp);
523 rbp->b_flags &= ~(B_ERROR | B_INVAL | B_NOTMETA);
524 rbp->b_flags |= bflags;
526 if ((rbp->b_flags & B_CLUSTER) == 0)
527 vfs_busy_pages(vp, rbp);
528 BUF_KERNPROC(rbp);
529 loffset += rbp->b_bufsize;
530 maxra -= rbp->b_bufsize / blksize;
531 vn_strategy(vp, &rbp->b_bio1);
532 /* rbp invalid now */
536 * Wait for our original buffer to complete its I/O. reqbp will
537 * be NULL if the original buffer was B_CACHE. We are returning
538 * (*bpp) which is the same as reqbp when reqbp != NULL.
540 no_read_ahead:
541 if (reqbp) {
542 KKASSERT(reqbp->b_bio1.bio_flags & BIO_SYNC);
543 error = biowait(&reqbp->b_bio1, "clurd");
544 } else {
545 error = 0;
547 return (error);
551 * This replaces breadcb(), providing an asynchronous read of the requested
552 * buffer with a callback, plus an asynchronous read-ahead within the
553 * specified bounds.
555 * The callback must check whether BIO_DONE is set in the bio and issue
556 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
557 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
559 * filesize - read-ahead @ blksize will not cross this boundary
560 * loffset - loffset for returned *bpp
561 * blksize - blocksize for returned *bpp and read-ahead bps
562 * minreq - minimum (not a hard minimum) in bytes, typically reflects
563 * a higher level uio resid.
564 * maxreq - maximum (sequential heuristic) in bytes (highet typ ~2MB)
565 * bpp - return buffer (*bpp) for (loffset,blksize)
567 void
568 cluster_readcb(struct vnode *vp, off_t filesize, off_t loffset, int blksize,
569 int bflags, size_t minreq, size_t maxreq,
570 void (*func)(struct bio *), void *arg)
572 struct buf *bp, *rbp, *reqbp;
573 off_t origoffset;
574 off_t doffset;
575 int i;
576 int maxra;
577 int maxrbuild;
578 int sr;
580 sr = 0;
583 * Calculate the desired read-ahead in blksize'd blocks (maxra).
584 * To do this we calculate maxreq.
586 * maxreq typically starts out as a sequential heuristic. If the
587 * high level uio/resid is bigger (minreq), we pop maxreq up to
588 * minreq. This represents the case where random I/O is being
589 * performed by the userland is issuing big read()'s.
591 * Then we limit maxreq to max_readahead to ensure it is a reasonable
592 * value.
594 * Finally we must ensure that (loffset + maxreq) does not cross the
595 * boundary (filesize) for the current blocksize. If we allowed it
596 * to cross we could end up with buffers past the boundary with the
597 * wrong block size (HAMMER large-data areas use mixed block sizes).
598 * minreq is also absolutely limited to filesize.
600 if (maxreq < minreq)
601 maxreq = minreq;
602 /* minreq not used beyond this point */
604 if (maxreq > max_readahead) {
605 maxreq = max_readahead;
606 if (maxreq > 16 * 1024 * 1024)
607 maxreq = 16 * 1024 * 1024;
609 if (maxreq < blksize)
610 maxreq = blksize;
611 if (loffset + maxreq > filesize) {
612 if (loffset > filesize)
613 maxreq = 0;
614 else
615 maxreq = filesize - loffset;
618 maxra = (int)(maxreq / blksize);
621 * Get the requested block.
623 reqbp = bp = getblk(vp, loffset, blksize, 0, 0);
624 origoffset = loffset;
627 * Calculate the maximum cluster size for a single I/O, used
628 * by cluster_rbuild().
630 maxrbuild = vmaxiosize(vp) / blksize;
633 * if it is in the cache, then check to see if the reads have been
634 * sequential. If they have, then try some read-ahead, otherwise
635 * back-off on prospective read-aheads.
637 if (bp->b_flags & B_CACHE) {
639 * Setup for func() call whether we do read-ahead or not.
641 bp->b_bio1.bio_caller_info1.ptr = arg;
642 bp->b_bio1.bio_flags |= BIO_DONE;
645 * Not sequential, do not do any read-ahead
647 if (maxra <= 1)
648 goto no_read_ahead;
651 * No read-ahead mark, do not do any read-ahead
652 * yet.
654 if ((bp->b_flags & B_RAM) == 0)
655 goto no_read_ahead;
656 bp->b_flags &= ~B_RAM;
659 * We hit a read-ahead-mark, figure out how much read-ahead
660 * to do (maxra) and where to start (loffset).
662 * Shortcut the scan. Typically the way this works is that
663 * we've built up all the blocks inbetween except for the
664 * last in previous iterations, so if the second-to-last
665 * block is present we just skip ahead to it.
667 * This algorithm has O(1) cpu in the steady state no
668 * matter how large maxra is.
670 if (findblk(vp, loffset + (maxra - 2) * blksize, FINDBLK_TEST))
671 i = maxra - 1;
672 else
673 i = 1;
674 while (i < maxra) {
675 if (findblk(vp, loffset + i * blksize,
676 FINDBLK_TEST) == NULL) {
677 break;
679 ++i;
683 * We got everything or everything is in the cache, no
684 * point continuing.
686 if (i >= maxra)
687 goto no_read_ahead;
690 * Calculate where to start the read-ahead and how much
691 * to do. Generally speaking we want to read-ahead by
692 * (maxra) when we've found a read-ahead mark. We do
693 * not want to reduce maxra here as it will cause
694 * successive read-ahead I/O's to be smaller and smaller.
696 * However, we have to make sure we don't break the
697 * filesize limitation for the clustered operation.
699 loffset += i * blksize;
700 bp = NULL;
701 /* leave reqbp intact to force function callback */
703 if (loffset >= filesize)
704 goto no_read_ahead;
705 if (loffset + maxra * blksize > filesize) {
706 maxreq = filesize - loffset;
707 maxra = (int)(maxreq / blksize);
709 sr = 1;
710 } else {
712 * bp is not valid, no prior cluster in progress so get a
713 * full cluster read-ahead going.
715 __debugvar off_t firstread = bp->b_loffset;
716 int nblks;
717 int error;
720 * Set-up synchronous read for bp.
722 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA);
723 bp->b_flags |= bflags;
724 bp->b_cmd = BUF_CMD_READ;
725 bp->b_bio1.bio_done = func;
726 bp->b_bio1.bio_caller_info1.ptr = arg;
727 BUF_KERNPROC(bp);
728 reqbp = NULL; /* don't func() reqbp, it's running async */
730 KASSERT(firstread != NOOFFSET,
731 ("cluster_read: no buffer offset"));
734 * nblks is our cluster_rbuild request size, limited
735 * primarily by the device.
737 nblks = calc_rbuild_reqsize(maxra, maxrbuild);
740 * Set RAM half-way through the full-cluster.
742 sr = (maxra + 1) / 2;
744 if (nblks > 1) {
745 int burstbytes;
747 error = VOP_BMAP(vp, loffset, &doffset,
748 &burstbytes, NULL, BUF_CMD_READ);
749 if (error)
750 goto single_block_read;
751 if (nblks > burstbytes / blksize)
752 nblks = burstbytes / blksize;
753 if (doffset == NOOFFSET)
754 goto single_block_read;
755 if (nblks <= 1)
756 goto single_block_read;
758 bp = cluster_rbuild(vp, filesize, loffset,
759 doffset, blksize, nblks, bp, &sr);
760 loffset += bp->b_bufsize;
761 maxra -= bp->b_bufsize / blksize;
762 } else {
763 single_block_read:
765 * If it isn't in the cache, then get a chunk from
766 * disk if sequential, otherwise just get the block.
768 loffset += blksize;
769 --maxra;
774 * If bp != NULL then B_CACHE was *NOT* set and bp must be issued.
775 * bp will either be an asynchronous cluster buf or an asynchronous
776 * single-buf.
778 * NOTE: Once an async cluster buf is issued bp becomes invalid.
780 if (bp) {
781 #if defined(CLUSTERDEBUG)
782 if (rcluster)
783 kprintf("S(%012jx,%d,%d)\n",
784 (intmax_t)bp->b_loffset, bp->b_bcount, maxra);
785 #endif
786 if ((bp->b_flags & B_CLUSTER) == 0)
787 vfs_busy_pages(vp, bp);
788 bp->b_flags &= ~(B_ERROR | B_INVAL | B_NOTMETA);
789 bp->b_flags |= bflags;
790 vn_strategy(vp, &bp->b_bio1);
791 /* bp invalid now */
792 bp = NULL;
795 #if defined(CLUSTERDEBUG)
796 if (rcluster)
797 kprintf("cluster_rd %016jx/%d maxra=%d sr=%d\n",
798 loffset, blksize, maxra, sr);
799 #endif
802 * If we have been doing sequential I/O, then do some read-ahead.
803 * The code above us should have positioned us at the next likely
804 * offset.
806 * Only mess with buffers which we can immediately lock. HAMMER
807 * will do device-readahead irrespective of what the blocks
808 * represent.
810 while (maxra > 0) {
811 int burstbytes;
812 int error;
813 int nblks;
815 rbp = getblk(vp, loffset, blksize,
816 GETBLK_SZMATCH|GETBLK_NOWAIT, 0);
817 if (rbp == NULL)
818 goto no_read_ahead;
819 if ((rbp->b_flags & B_CACHE)) {
820 bqrelse(rbp);
821 goto no_read_ahead;
825 * If BMAP is not supported or has an issue, we still do
826 * (maxra) read-ahead, but we do not try to use rbuild.
828 error = VOP_BMAP(vp, loffset, &doffset,
829 &burstbytes, NULL, BUF_CMD_READ);
830 if (error || doffset == NOOFFSET) {
831 nblks = 1;
832 doffset = NOOFFSET;
833 } else {
834 nblks = calc_rbuild_reqsize(maxra, maxrbuild);
835 if (nblks > burstbytes / blksize)
836 nblks = burstbytes / blksize;
838 rbp->b_cmd = BUF_CMD_READ;
840 if (nblks > 1) {
841 rbp = cluster_rbuild(vp, filesize, loffset,
842 doffset, blksize,
843 nblks, rbp, &sr);
844 } else {
845 rbp->b_bio2.bio_offset = doffset;
846 if (--sr == 0)
847 cluster_setram(rbp);
850 rbp->b_flags &= ~(B_ERROR | B_INVAL | B_NOTMETA);
851 rbp->b_flags |= bflags;
853 if ((rbp->b_flags & B_CLUSTER) == 0)
854 vfs_busy_pages(vp, rbp);
855 BUF_KERNPROC(rbp);
856 loffset += rbp->b_bufsize;
857 maxra -= rbp->b_bufsize / blksize;
858 vn_strategy(vp, &rbp->b_bio1);
859 /* rbp invalid now */
863 * If reqbp is non-NULL it had B_CACHE set and we issue the
864 * function callback synchronously.
866 * Note that we may start additional asynchronous I/O before doing
867 * the func() callback for the B_CACHE case
869 no_read_ahead:
870 if (reqbp)
871 func(&reqbp->b_bio1);
875 * If blocks are contiguous on disk, use this to provide clustered
876 * read ahead. We will read as many blocks as possible sequentially
877 * and then parcel them up into logical blocks in the buffer hash table.
879 * This function either returns a cluster buf or it returns fbp. fbp is
880 * already expected to be set up as a synchronous or asynchronous request.
882 * If a cluster buf is returned it will always be async.
884 * (*srp) counts down original blocks to determine where B_RAM should be set.
885 * Set B_RAM when *srp drops to 0. If (*srp) starts at 0, B_RAM will not be
886 * set on any buffer. Make sure B_RAM is cleared on any other buffers to
887 * prevent degenerate read-aheads from being generated.
889 static struct buf *
890 cluster_rbuild(struct vnode *vp, off_t filesize, off_t loffset, off_t doffset,
891 int blksize, int run, struct buf *fbp, int *srp)
893 struct buf *bp, *tbp;
894 off_t boffset;
895 int i, j;
896 int maxiosize = vmaxiosize(vp);
899 * avoid a division
901 while (loffset + run * blksize > filesize) {
902 --run;
905 tbp = fbp;
906 tbp->b_bio2.bio_offset = doffset;
907 if((tbp->b_flags & B_MALLOC) ||
908 ((tbp->b_flags & B_VMIO) == 0) || (run <= 1)) {
909 if (--*srp == 0)
910 cluster_setram(tbp);
911 else
912 cluster_clrram(tbp);
913 return tbp;
917 * Get a pbuf, limit cluster I/O on a per-device basis. If
918 * doing cluster I/O for a file, limit cluster I/O on a
919 * per-mount basis.
921 if (vp->v_type == VCHR || vp->v_type == VBLK)
922 bp = trypbuf_kva(&vp->v_pbuf_count);
923 else
924 bp = trypbuf_kva(&vp->v_mount->mnt_pbuf_count);
926 if (bp == NULL)
927 return tbp;
930 * We are synthesizing a buffer out of vm_page_t's, but
931 * if the block size is not page aligned then the starting
932 * address may not be either. Inherit the b_data offset
933 * from the original buffer.
935 bp->b_vp = vp;
936 bp->b_data = (char *)((vm_offset_t)bp->b_data |
937 ((vm_offset_t)tbp->b_data & PAGE_MASK));
938 bp->b_flags |= B_CLUSTER | B_VMIO;
939 bp->b_cmd = BUF_CMD_READ;
940 bp->b_bio1.bio_done = cluster_callback; /* default to async */
941 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
942 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
943 bp->b_loffset = loffset;
944 bp->b_bio2.bio_offset = doffset;
945 KASSERT(bp->b_loffset != NOOFFSET,
946 ("cluster_rbuild: no buffer offset"));
948 bp->b_bcount = 0;
949 bp->b_bufsize = 0;
950 bp->b_xio.xio_npages = 0;
952 for (boffset = doffset, i = 0; i < run; ++i, boffset += blksize) {
953 if (i) {
954 if ((bp->b_xio.xio_npages * PAGE_SIZE) +
955 round_page(blksize) > maxiosize) {
956 break;
960 * Shortcut some checks and try to avoid buffers that
961 * would block in the lock. The same checks have to
962 * be made again after we officially get the buffer.
964 tbp = getblk(vp, loffset + i * blksize, blksize,
965 GETBLK_SZMATCH|GETBLK_NOWAIT, 0);
966 if (tbp == NULL)
967 break;
968 for (j = 0; j < tbp->b_xio.xio_npages; j++) {
969 if (tbp->b_xio.xio_pages[j]->valid)
970 break;
972 if (j != tbp->b_xio.xio_npages) {
973 bqrelse(tbp);
974 break;
978 * Stop scanning if the buffer is fuly valid
979 * (marked B_CACHE), or locked (may be doing a
980 * background write), or if the buffer is not
981 * VMIO backed. The clustering code can only deal
982 * with VMIO-backed buffers.
984 if ((tbp->b_flags & (B_CACHE|B_LOCKED)) ||
985 (tbp->b_flags & B_VMIO) == 0 ||
986 (LIST_FIRST(&tbp->b_dep) != NULL &&
987 buf_checkread(tbp))
989 bqrelse(tbp);
990 break;
994 * The buffer must be completely invalid in order to
995 * take part in the cluster. If it is partially valid
996 * then we stop.
998 for (j = 0;j < tbp->b_xio.xio_npages; j++) {
999 if (tbp->b_xio.xio_pages[j]->valid)
1000 break;
1002 if (j != tbp->b_xio.xio_npages) {
1003 bqrelse(tbp);
1004 break;
1008 * Depress the priority of buffers not explicitly
1009 * requested.
1011 /* tbp->b_flags |= B_AGE; */
1014 * Set the block number if it isn't set, otherwise
1015 * if it is make sure it matches the block number we
1016 * expect.
1018 if (tbp->b_bio2.bio_offset == NOOFFSET) {
1019 tbp->b_bio2.bio_offset = boffset;
1020 } else if (tbp->b_bio2.bio_offset != boffset) {
1021 brelse(tbp);
1022 break;
1027 * Set B_RAM if (*srp) is 1. B_RAM is only set on one buffer
1028 * in the cluster, including potentially the first buffer
1029 * once we start streaming the read-aheads.
1031 if (--*srp == 0)
1032 cluster_setram(tbp);
1033 else
1034 cluster_clrram(tbp);
1037 * The passed-in tbp (i == 0) will already be set up for
1038 * async or sync operation. All other tbp's acquire in
1039 * our loop are set up for async operation.
1041 tbp->b_cmd = BUF_CMD_READ;
1042 BUF_KERNPROC(tbp);
1043 cluster_append(&bp->b_bio1, tbp);
1044 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
1045 vm_page_t m;
1047 m = tbp->b_xio.xio_pages[j];
1048 vm_page_busy_wait(m, FALSE, "clurpg");
1049 vm_page_io_start(m);
1050 vm_page_wakeup(m);
1051 vm_object_pip_add(m->object, 1);
1052 if ((bp->b_xio.xio_npages == 0) ||
1053 (bp->b_xio.xio_pages[bp->b_xio.xio_npages-1] != m)) {
1054 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
1055 bp->b_xio.xio_npages++;
1057 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
1058 tbp->b_xio.xio_pages[j] = bogus_page;
1059 tbp->b_flags |= B_HASBOGUS;
1063 * XXX shouldn't this be += size for both, like in
1064 * cluster_wbuild()?
1066 * Don't inherit tbp->b_bufsize as it may be larger due to
1067 * a non-page-aligned size. Instead just aggregate using
1068 * 'size'.
1070 if (tbp->b_bcount != blksize)
1071 kprintf("warning: tbp->b_bcount wrong %d vs %d\n", tbp->b_bcount, blksize);
1072 if (tbp->b_bufsize != blksize)
1073 kprintf("warning: tbp->b_bufsize wrong %d vs %d\n", tbp->b_bufsize, blksize);
1074 bp->b_bcount += blksize;
1075 bp->b_bufsize += blksize;
1079 * Fully valid pages in the cluster are already good and do not need
1080 * to be re-read from disk. Replace the page with bogus_page
1082 for (j = 0; j < bp->b_xio.xio_npages; j++) {
1083 if ((bp->b_xio.xio_pages[j]->valid & VM_PAGE_BITS_ALL) ==
1084 VM_PAGE_BITS_ALL) {
1085 bp->b_xio.xio_pages[j] = bogus_page;
1086 bp->b_flags |= B_HASBOGUS;
1089 if (bp->b_bufsize > bp->b_kvasize) {
1090 panic("cluster_rbuild: b_bufsize(%d) > b_kvasize(%d)",
1091 bp->b_bufsize, bp->b_kvasize);
1093 pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
1094 (vm_page_t *)bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1095 BUF_KERNPROC(bp);
1096 return (bp);
1100 * Cleanup after a clustered read or write.
1101 * This is complicated by the fact that any of the buffers might have
1102 * extra memory (if there were no empty buffer headers at allocbuf time)
1103 * that we will need to shift around.
1105 * The returned bio is &bp->b_bio1
1107 static void
1108 cluster_callback(struct bio *bio)
1110 struct buf *bp = bio->bio_buf;
1111 struct buf *tbp;
1112 struct vnode *vp;
1113 int error = 0;
1116 * Must propogate errors to all the components. A short read (EOF)
1117 * is a critical error.
1119 if (bp->b_flags & B_ERROR) {
1120 error = bp->b_error;
1121 } else if (bp->b_bcount != bp->b_bufsize) {
1122 panic("cluster_callback: unexpected EOF on cluster %p!", bio);
1125 pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
1126 bp->b_xio.xio_npages);
1128 * Move memory from the large cluster buffer into the component
1129 * buffers and mark IO as done on these. Since the memory map
1130 * is the same, no actual copying is required.
1132 while ((tbp = bio->bio_caller_info1.cluster_head) != NULL) {
1133 bio->bio_caller_info1.cluster_head = tbp->b_cluster_next;
1134 if (error) {
1135 tbp->b_flags |= B_ERROR | B_IOISSUED;
1136 tbp->b_error = error;
1137 } else {
1138 tbp->b_dirtyoff = tbp->b_dirtyend = 0;
1139 tbp->b_flags &= ~(B_ERROR | B_INVAL);
1140 if (tbp->b_cmd == BUF_CMD_READ) {
1141 tbp->b_flags = (tbp->b_flags & ~B_NOTMETA) |
1142 (bp->b_flags & B_NOTMETA);
1144 tbp->b_flags |= B_IOISSUED;
1146 * XXX the bdwrite()/bqrelse() issued during
1147 * cluster building clears B_RELBUF (see bqrelse()
1148 * comment). If direct I/O was specified, we have
1149 * to restore it here to allow the buffer and VM
1150 * to be freed.
1152 if (tbp->b_flags & B_DIRECT)
1153 tbp->b_flags |= B_RELBUF;
1156 * XXX I think biodone() below will do this, but do
1157 * it here anyway for consistency.
1159 if (tbp->b_cmd == BUF_CMD_WRITE)
1160 bundirty(tbp);
1162 biodone(&tbp->b_bio1);
1164 vp = bp->b_vp;
1165 bp->b_vp = NULL;
1166 if (vp->v_type == VCHR || vp->v_type == VBLK)
1167 relpbuf(bp, &vp->v_pbuf_count);
1168 else
1169 relpbuf(bp, &vp->v_mount->mnt_pbuf_count);
1173 * Implement modified write build for cluster.
1175 * write_behind = 0 write behind disabled
1176 * write_behind = 1 write behind normal (default)
1177 * write_behind = 2 write behind backed-off
1179 * In addition, write_behind is only activated for files that have
1180 * grown past a certain size (default 10MB). Otherwise temporary files
1181 * wind up generating a lot of unnecessary disk I/O.
1183 static __inline int
1184 cluster_wbuild_wb(struct vnode *vp, int blksize, off_t start_loffset, int len)
1186 int r = 0;
1188 switch(write_behind) {
1189 case 2:
1190 if (start_loffset < len)
1191 break;
1192 start_loffset -= len;
1193 /* fall through */
1194 case 1:
1195 if (vp->v_filesize >= write_behind_minfilesize) {
1196 r = cluster_wbuild(vp, NULL, blksize,
1197 start_loffset, len);
1199 /* fall through */
1200 default:
1201 /* fall through */
1202 break;
1204 return(r);
1208 * Do clustered write for FFS.
1210 * Three cases:
1211 * 1. Write is not sequential (write asynchronously)
1212 * Write is sequential:
1213 * 2. beginning of cluster - begin cluster
1214 * 3. middle of a cluster - add to cluster
1215 * 4. end of a cluster - asynchronously write cluster
1217 * WARNING! vnode fields are not locked and must ONLY be used heuristically.
1219 void
1220 cluster_write(struct buf *bp, off_t filesize, int blksize, int seqcount)
1222 struct vnode *vp;
1223 off_t loffset;
1224 int maxclen, cursize;
1225 int async;
1226 cluster_cache_t dummy;
1227 cluster_cache_t *cc;
1229 vp = bp->b_vp;
1230 if (vp->v_type == VREG)
1231 async = vp->v_mount->mnt_flag & MNT_ASYNC;
1232 else
1233 async = 0;
1234 loffset = bp->b_loffset;
1235 KASSERT(bp->b_loffset != NOOFFSET,
1236 ("cluster_write: no buffer offset"));
1238 cc = cluster_getcache(&dummy, vp, loffset);
1241 * Initialize vnode to beginning of file.
1243 if (loffset == 0)
1244 cc->v_lasta = cc->v_clen = cc->v_cstart = cc->v_lastw = 0;
1246 if (cc->v_clen == 0 || loffset != cc->v_lastw ||
1247 (bp->b_bio2.bio_offset != NOOFFSET &&
1248 (bp->b_bio2.bio_offset != cc->v_lasta))) {
1250 * Next block is not logically sequential, or, if physical
1251 * block offsets are available, not physically sequential.
1253 * If physical block offsets are not available we only
1254 * get here if we weren't logically sequential.
1256 maxclen = vmaxiosize(vp);
1257 if (cc->v_clen != 0) {
1259 * Next block is not sequential.
1261 * If we are not writing at end of file, the process
1262 * seeked to another point in the file since its last
1263 * write, or we have reached our maximum cluster size,
1264 * then push the previous cluster. Otherwise try
1265 * reallocating to make it sequential.
1267 * Change to algorithm: only push previous cluster if
1268 * it was sequential from the point of view of the
1269 * seqcount heuristic, otherwise leave the buffer
1270 * intact so we can potentially optimize the I/O
1271 * later on in the buf_daemon or update daemon
1272 * flush.
1274 cursize = cc->v_lastw - cc->v_cstart;
1275 if (bp->b_loffset + blksize < filesize ||
1276 loffset != cc->v_lastw ||
1277 cc->v_clen <= cursize) {
1278 if (!async && seqcount > 0) {
1279 cluster_wbuild_wb(vp, blksize,
1280 cc->v_cstart, cursize);
1282 } else {
1283 struct buf **bpp, **endbp;
1284 struct cluster_save *buflist;
1286 buflist = cluster_collectbufs(cc, vp,
1287 bp, blksize);
1288 endbp = &buflist->bs_children
1289 [buflist->bs_nchildren - 1];
1290 if (VOP_REALLOCBLKS(vp, buflist)) {
1292 * Failed, push the previous cluster
1293 * if *really* writing sequentially
1294 * in the logical file (seqcount > 1),
1295 * otherwise delay it in the hopes that
1296 * the low level disk driver can
1297 * optimize the write ordering.
1299 * NOTE: We do not brelse the last
1300 * element which is bp, and we
1301 * do not return here.
1303 for (bpp = buflist->bs_children;
1304 bpp < endbp; bpp++)
1305 brelse(*bpp);
1306 kfree(buflist, M_SEGMENT);
1307 if (seqcount > 1) {
1308 cluster_wbuild_wb(vp,
1309 blksize, cc->v_cstart,
1310 cursize);
1312 } else {
1314 * Succeeded, keep building cluster.
1316 for (bpp = buflist->bs_children;
1317 bpp <= endbp; bpp++)
1318 bdwrite(*bpp);
1319 kfree(buflist, M_SEGMENT);
1320 cc->v_lastw = loffset + blksize;
1321 cc->v_lasta = bp->b_bio2.bio_offset +
1322 blksize;
1323 cluster_putcache(cc);
1324 return;
1330 * Consider beginning a cluster. If at end of file, make
1331 * cluster as large as possible, otherwise find size of
1332 * existing cluster.
1334 if ((vp->v_type == VREG) &&
1335 bp->b_loffset + blksize < filesize &&
1336 (bp->b_bio2.bio_offset == NOOFFSET) &&
1337 (VOP_BMAP(vp, loffset, &bp->b_bio2.bio_offset, &maxclen, NULL, BUF_CMD_WRITE) ||
1338 bp->b_bio2.bio_offset == NOOFFSET)) {
1339 bdwrite(bp);
1340 cc->v_clen = 0;
1341 cc->v_lasta = bp->b_bio2.bio_offset + blksize;
1342 cc->v_cstart = loffset;
1343 cc->v_lastw = loffset + blksize;
1344 cluster_putcache(cc);
1345 return;
1347 if (maxclen > blksize)
1348 cc->v_clen = maxclen;
1349 else
1350 cc->v_clen = blksize;
1351 if (!async && cc->v_clen == 0) { /* I/O not contiguous */
1352 cc->v_cstart = loffset;
1353 bdwrite(bp);
1354 } else { /* Wait for rest of cluster */
1355 cc->v_cstart = loffset;
1356 bdwrite(bp);
1358 } else if (loffset == cc->v_cstart + cc->v_clen) {
1360 * At end of cluster, write it out if seqcount tells us we
1361 * are operating sequentially, otherwise let the buf or
1362 * update daemon handle it.
1364 bdwrite(bp);
1365 if (seqcount > 1)
1366 cluster_wbuild_wb(vp, blksize, cc->v_cstart,
1367 cc->v_clen + blksize);
1368 cc->v_clen = 0;
1369 cc->v_cstart = loffset;
1370 } else if (vm_page_count_severe() &&
1371 bp->b_loffset + blksize < filesize) {
1373 * We are low on memory, get it going NOW. However, do not
1374 * try to push out a partial block at the end of the file
1375 * as this could lead to extremely non-optimal write activity.
1377 bawrite(bp);
1378 } else {
1380 * In the middle of a cluster, so just delay the I/O for now.
1382 bdwrite(bp);
1384 cc->v_lastw = loffset + blksize;
1385 cc->v_lasta = bp->b_bio2.bio_offset + blksize;
1386 cluster_putcache(cc);
1390 * This is the clustered version of bawrite(). It works similarly to
1391 * cluster_write() except I/O on the buffer is guaranteed to occur.
1394 cluster_awrite(struct buf *bp)
1396 int total;
1399 * Don't bother if it isn't clusterable.
1401 if ((bp->b_flags & B_CLUSTEROK) == 0 ||
1402 bp->b_vp == NULL ||
1403 (bp->b_vp->v_flag & VOBJBUF) == 0) {
1404 total = bp->b_bufsize;
1405 bawrite(bp);
1406 return (total);
1409 total = cluster_wbuild(bp->b_vp, &bp, bp->b_bufsize,
1410 bp->b_loffset, vmaxiosize(bp->b_vp));
1413 * If bp is still non-NULL then cluster_wbuild() did not initiate
1414 * I/O on it and we must do so here to provide the API guarantee.
1416 if (bp)
1417 bawrite(bp);
1419 return total;
1423 * This is an awful lot like cluster_rbuild...wish they could be combined.
1424 * The last lbn argument is the current block on which I/O is being
1425 * performed. Check to see that it doesn't fall in the middle of
1426 * the current block (if last_bp == NULL).
1428 * cluster_wbuild() normally does not guarantee anything. If bpp is
1429 * non-NULL and cluster_wbuild() is able to incorporate it into the
1430 * I/O it will set *bpp to NULL, otherwise it will leave it alone and
1431 * the caller must dispose of *bpp.
1433 static int
1434 cluster_wbuild(struct vnode *vp, struct buf **bpp,
1435 int blksize, off_t start_loffset, int bytes)
1437 struct buf *bp, *tbp;
1438 int i, j;
1439 int totalwritten = 0;
1440 int must_initiate;
1441 int maxiosize = vmaxiosize(vp);
1443 while (bytes > 0) {
1445 * If the buffer matches the passed locked & removed buffer
1446 * we used the passed buffer (which might not be B_DELWRI).
1448 * Otherwise locate the buffer and determine if it is
1449 * compatible.
1451 if (bpp && (*bpp)->b_loffset == start_loffset) {
1452 tbp = *bpp;
1453 *bpp = NULL;
1454 bpp = NULL;
1455 } else {
1456 tbp = findblk(vp, start_loffset, FINDBLK_NBLOCK);
1457 if (tbp == NULL ||
1458 (tbp->b_flags & (B_LOCKED | B_INVAL | B_DELWRI)) !=
1459 B_DELWRI ||
1460 (LIST_FIRST(&tbp->b_dep) && buf_checkwrite(tbp))) {
1461 if (tbp)
1462 BUF_UNLOCK(tbp);
1463 start_loffset += blksize;
1464 bytes -= blksize;
1465 continue;
1467 bremfree(tbp);
1469 KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
1472 * Extra memory in the buffer, punt on this buffer.
1473 * XXX we could handle this in most cases, but we would
1474 * have to push the extra memory down to after our max
1475 * possible cluster size and then potentially pull it back
1476 * up if the cluster was terminated prematurely--too much
1477 * hassle.
1479 if (((tbp->b_flags & (B_CLUSTEROK|B_MALLOC)) != B_CLUSTEROK) ||
1480 (tbp->b_bcount != tbp->b_bufsize) ||
1481 (tbp->b_bcount != blksize) ||
1482 (bytes == blksize)) {
1483 totalwritten += tbp->b_bufsize;
1484 bawrite(tbp);
1485 start_loffset += blksize;
1486 bytes -= blksize;
1487 continue;
1491 * Get a pbuf, limit cluster I/O on a per-device basis. If
1492 * doing cluster I/O for a file, limit cluster I/O on a
1493 * per-mount basis.
1495 * HAMMER and other filesystems may attempt to queue a massive
1496 * amount of write I/O, using trypbuf() here easily results in
1497 * situation where the I/O stream becomes non-clustered.
1499 if (vp->v_type == VCHR || vp->v_type == VBLK)
1500 bp = getpbuf_kva(&vp->v_pbuf_count);
1501 else
1502 bp = getpbuf_kva(&vp->v_mount->mnt_pbuf_count);
1505 * Set up the pbuf. Track our append point with b_bcount
1506 * and b_bufsize. b_bufsize is not used by the device but
1507 * our caller uses it to loop clusters and we use it to
1508 * detect a premature EOF on the block device.
1510 bp->b_bcount = 0;
1511 bp->b_bufsize = 0;
1512 bp->b_xio.xio_npages = 0;
1513 bp->b_loffset = tbp->b_loffset;
1514 bp->b_bio2.bio_offset = tbp->b_bio2.bio_offset;
1515 bp->b_vp = vp;
1518 * We are synthesizing a buffer out of vm_page_t's, but
1519 * if the block size is not page aligned then the starting
1520 * address may not be either. Inherit the b_data offset
1521 * from the original buffer.
1523 bp->b_data = (char *)((vm_offset_t)bp->b_data |
1524 ((vm_offset_t)tbp->b_data & PAGE_MASK));
1525 bp->b_flags &= ~(B_ERROR | B_NOTMETA);
1526 bp->b_flags |= B_CLUSTER | B_BNOCLIP |
1527 (tbp->b_flags & (B_VMIO | B_NEEDCOMMIT |
1528 B_NOTMETA));
1529 bp->b_bio1.bio_caller_info1.cluster_head = NULL;
1530 bp->b_bio1.bio_caller_info2.cluster_tail = NULL;
1533 * From this location in the file, scan forward to see
1534 * if there are buffers with adjacent data that need to
1535 * be written as well.
1537 * IO *must* be initiated on index 0 at this point
1538 * (particularly when called from cluster_awrite()).
1540 for (i = 0; i < bytes; (i += blksize), (start_loffset += blksize)) {
1541 if (i == 0) {
1542 must_initiate = 1;
1543 } else {
1545 * Not first buffer.
1547 must_initiate = 0;
1548 tbp = findblk(vp, start_loffset,
1549 FINDBLK_NBLOCK);
1551 * Buffer not found or could not be locked
1552 * non-blocking.
1554 if (tbp == NULL)
1555 break;
1558 * If it IS in core, but has different
1559 * characteristics, then don't cluster
1560 * with it.
1562 if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
1563 B_INVAL | B_DELWRI | B_NEEDCOMMIT))
1564 != (B_DELWRI | B_CLUSTEROK |
1565 (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
1566 (tbp->b_flags & B_LOCKED)
1568 BUF_UNLOCK(tbp);
1569 break;
1573 * Check that the combined cluster
1574 * would make sense with regard to pages
1575 * and would not be too large
1577 * WARNING! buf_checkwrite() must be the last
1578 * check made. If it returns 0 then
1579 * we must initiate the I/O.
1581 if ((tbp->b_bcount != blksize) ||
1582 ((bp->b_bio2.bio_offset + i) !=
1583 tbp->b_bio2.bio_offset) ||
1584 ((tbp->b_xio.xio_npages + bp->b_xio.xio_npages) >
1585 (maxiosize / PAGE_SIZE)) ||
1586 (LIST_FIRST(&tbp->b_dep) &&
1587 buf_checkwrite(tbp))
1589 BUF_UNLOCK(tbp);
1590 break;
1592 if (LIST_FIRST(&tbp->b_dep))
1593 must_initiate = 1;
1595 * Ok, it's passed all the tests,
1596 * so remove it from the free list
1597 * and mark it busy. We will use it.
1599 bremfree(tbp);
1600 KKASSERT(tbp->b_cmd == BUF_CMD_DONE);
1604 * If the IO is via the VM then we do some
1605 * special VM hackery (yuck). Since the buffer's
1606 * block size may not be page-aligned it is possible
1607 * for a page to be shared between two buffers. We
1608 * have to get rid of the duplication when building
1609 * the cluster.
1611 if (tbp->b_flags & B_VMIO) {
1612 vm_page_t m;
1615 * Try to avoid deadlocks with the VM system.
1616 * However, we cannot abort the I/O if
1617 * must_initiate is non-zero.
1619 if (must_initiate == 0) {
1620 for (j = 0;
1621 j < tbp->b_xio.xio_npages;
1622 ++j) {
1623 m = tbp->b_xio.xio_pages[j];
1624 if (m->flags & PG_BUSY) {
1625 bqrelse(tbp);
1626 goto finishcluster;
1631 for (j = 0; j < tbp->b_xio.xio_npages; ++j) {
1632 m = tbp->b_xio.xio_pages[j];
1633 vm_page_busy_wait(m, FALSE, "clurpg");
1634 vm_page_io_start(m);
1635 vm_page_wakeup(m);
1636 vm_object_pip_add(m->object, 1);
1637 if ((bp->b_xio.xio_npages == 0) ||
1638 (bp->b_xio.xio_pages[bp->b_xio.xio_npages - 1] != m)) {
1639 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
1640 bp->b_xio.xio_npages++;
1644 bp->b_bcount += blksize;
1645 bp->b_bufsize += blksize;
1648 * NOTE: see bwrite/bawrite code for why we no longer
1649 * undirty tbp here.
1651 * bundirty(tbp); REMOVED
1653 tbp->b_flags &= ~B_ERROR;
1654 tbp->b_cmd = BUF_CMD_WRITE;
1655 BUF_KERNPROC(tbp);
1656 cluster_append(&bp->b_bio1, tbp);
1659 * check for latent dependencies to be handled
1661 if (LIST_FIRST(&tbp->b_dep) != NULL)
1662 buf_start(tbp);
1664 finishcluster:
1665 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1666 (vm_page_t *)bp->b_xio.xio_pages,
1667 bp->b_xio.xio_npages);
1668 if (bp->b_bufsize > bp->b_kvasize) {
1669 panic("cluster_wbuild: b_bufsize(%d) "
1670 "> b_kvasize(%d)\n",
1671 bp->b_bufsize, bp->b_kvasize);
1673 totalwritten += bp->b_bufsize;
1674 bp->b_dirtyoff = 0;
1675 bp->b_dirtyend = bp->b_bufsize;
1676 bp->b_bio1.bio_done = cluster_callback;
1677 bp->b_cmd = BUF_CMD_WRITE;
1679 vfs_busy_pages(vp, bp);
1680 bsetrunningbufspace(bp, bp->b_bufsize);
1681 BUF_KERNPROC(bp);
1682 vn_strategy(vp, &bp->b_bio1);
1684 bytes -= i;
1686 return totalwritten;
1690 * Collect together all the buffers in a cluster, plus add one
1691 * additional buffer passed-in.
1693 * Only pre-existing buffers whos block size matches blksize are collected.
1694 * (this is primarily because HAMMER1 uses varying block sizes and we don't
1695 * want to override its choices).
1697 * This code will not try to collect buffers that it cannot lock, otherwise
1698 * it might deadlock against SMP-friendly filesystems.
1700 static struct cluster_save *
1701 cluster_collectbufs(cluster_cache_t *cc, struct vnode *vp,
1702 struct buf *last_bp, int blksize)
1704 struct cluster_save *buflist;
1705 struct buf *bp;
1706 off_t loffset;
1707 int i, len;
1708 int j;
1709 int k;
1711 len = (int)(cc->v_lastw - cc->v_cstart) / blksize;
1712 KKASSERT(len > 0);
1713 buflist = kmalloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
1714 M_SEGMENT, M_WAITOK);
1715 buflist->bs_nchildren = 0;
1716 buflist->bs_children = (struct buf **) (buflist + 1);
1717 for (loffset = cc->v_cstart, i = 0, j = 0;
1718 i < len;
1719 (loffset += blksize), i++) {
1720 bp = getcacheblk(vp, loffset,
1721 last_bp->b_bcount, GETBLK_SZMATCH |
1722 GETBLK_NOWAIT);
1723 buflist->bs_children[i] = bp;
1724 if (bp == NULL) {
1725 j = i + 1;
1726 } else if (bp->b_bio2.bio_offset == NOOFFSET) {
1727 VOP_BMAP(bp->b_vp, bp->b_loffset,
1728 &bp->b_bio2.bio_offset,
1729 NULL, NULL, BUF_CMD_WRITE);
1734 * Get rid of gaps
1736 for (k = 0; k < j; ++k) {
1737 if (buflist->bs_children[k]) {
1738 bqrelse(buflist->bs_children[k]);
1739 buflist->bs_children[k] = NULL;
1742 if (j != 0) {
1743 if (j != i) {
1744 bcopy(buflist->bs_children + j,
1745 buflist->bs_children + 0,
1746 sizeof(buflist->bs_children[0]) * (i - j));
1748 i -= j;
1750 buflist->bs_children[i] = bp = last_bp;
1751 if (bp->b_bio2.bio_offset == NOOFFSET) {
1752 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1753 NULL, NULL, BUF_CMD_WRITE);
1755 buflist->bs_nchildren = i + 1;
1756 return (buflist);
1759 void
1760 cluster_append(struct bio *bio, struct buf *tbp)
1762 tbp->b_cluster_next = NULL;
1763 if (bio->bio_caller_info1.cluster_head == NULL) {
1764 bio->bio_caller_info1.cluster_head = tbp;
1765 bio->bio_caller_info2.cluster_tail = tbp;
1766 } else {
1767 bio->bio_caller_info2.cluster_tail->b_cluster_next = tbp;
1768 bio->bio_caller_info2.cluster_tail = tbp;
1772 static
1773 void
1774 cluster_setram(struct buf *bp)
1776 bp->b_flags |= B_RAM;
1777 if (bp->b_xio.xio_npages)
1778 vm_page_flag_set(bp->b_xio.xio_pages[0], PG_RAM);
1781 static
1782 void
1783 cluster_clrram(struct buf *bp)
1785 bp->b_flags &= ~B_RAM;
1786 if (bp->b_xio.xio_npages)
1787 vm_page_flag_clear(bp->b_xio.xio_pages[0], PG_RAM);