kernel - Order ipfw3 module before other ipfw3_* modules
[dragonfly.git] / sys / kern / vfs_bio.c
bloba572d4588d778db80390dec40677da3264b47c51
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme. Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
23 * Author: John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
27 * see man buf(9) for more info. Note that man buf(9) doesn't reflect
28 * the actual buf/bio implementation in DragonFly.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/devicestat.h>
36 #include <sys/eventhandler.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/reboot.h>
44 #include <sys/resourcevar.h>
45 #include <sys/sysctl.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 #include <sys/dsched.h>
49 #include <vm/vm.h>
50 #include <vm/vm_param.h>
51 #include <vm/vm_kern.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_pager.h>
58 #include <vm/swap_pager.h>
60 #include <sys/buf2.h>
61 #include <sys/thread2.h>
62 #include <sys/spinlock2.h>
63 #include <vm/vm_page2.h>
65 #include "opt_ddb.h"
66 #ifdef DDB
67 #include <ddb/ddb.h>
68 #endif
71 * Buffer queues.
73 enum bufq_type {
74 BQUEUE_NONE, /* not on any queue */
75 BQUEUE_LOCKED, /* locked buffers */
76 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
77 BQUEUE_DIRTY, /* B_DELWRI buffers */
78 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
79 BQUEUE_EMPTY, /* empty buffer headers */
81 BUFFER_QUEUES /* number of buffer queues */
84 typedef enum bufq_type bufq_type_t;
86 #define BD_WAKE_SIZE 16384
87 #define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
89 TAILQ_HEAD(bqueues, buf);
91 struct bufpcpu {
92 struct spinlock spin;
93 struct bqueues bufqueues[BUFFER_QUEUES];
94 } __cachealign;
96 struct bufpcpu bufpcpu[MAXCPU];
98 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
100 struct buf *buf; /* buffer header pool */
102 static void vfs_clean_pages(struct buf *bp);
103 static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
104 #if 0
105 static void vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m);
106 #endif
107 static void vfs_vmio_release(struct buf *bp);
108 static int flushbufqueues(struct buf *marker, bufq_type_t q);
109 static void repurposebuf(struct buf *bp, int size);
110 static vm_page_t bio_page_alloc(struct buf *bp, vm_object_t obj,
111 vm_pindex_t pg, int deficit);
113 static void bd_signal(long totalspace);
114 static void buf_daemon(void);
115 static void buf_daemon_hw(void);
118 * bogus page -- for I/O to/from partially complete buffers
119 * this is a temporary solution to the problem, but it is not
120 * really that bad. it would be better to split the buffer
121 * for input in the case of buffers partially already in memory,
122 * but the code is intricate enough already.
124 vm_page_t bogus_page;
127 * These are all static, but make the ones we export globals so we do
128 * not need to use compiler magic.
130 long bufspace; /* atomic ops */
131 long maxbufspace;
132 static long bufmallocspace; /* atomic ops */
133 long maxbufmallocspace, lobufspace, hibufspace;
134 static long lorunningspace;
135 static long hirunningspace;
136 static long dirtykvaspace; /* atomic */
137 long dirtybufspace; /* atomic (global for systat) */
138 static long dirtybufcount; /* atomic */
139 static long dirtybufspacehw; /* atomic */
140 static long dirtybufcounthw; /* atomic */
141 static long runningbufspace; /* atomic */
142 static long runningbufcount; /* atomic */
143 static long repurposedspace;
144 long lodirtybufspace;
145 long hidirtybufspace;
146 static int getnewbufcalls;
147 static int recoverbufcalls;
148 static int needsbuffer; /* atomic */
149 static int runningbufreq; /* atomic */
150 static int bd_request; /* atomic */
151 static int bd_request_hw; /* atomic */
152 static u_int bd_wake_ary[BD_WAKE_SIZE];
153 static u_int bd_wake_index;
154 static u_int vm_cycle_point = 40; /* 23-36 will migrate more act->inact */
155 static int debug_commit;
156 static int debug_bufbio;
157 static long bufcache_bw = 200 * 1024 * 1024;
158 static long bufcache_bw_accum;
159 static int bufcache_bw_ticks;
161 static struct thread *bufdaemon_td;
162 static struct thread *bufdaemonhw_td;
163 static u_int lowmempgallocs;
164 static u_int lowmempgfails;
165 static u_int flushperqueue = 1024;
166 static int repurpose_enable;
169 * Sysctls for operational control of the buffer cache.
171 SYSCTL_UINT(_vfs, OID_AUTO, flushperqueue, CTLFLAG_RW, &flushperqueue, 0,
172 "Number of buffers to flush from each per-cpu queue");
173 SYSCTL_LONG(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
174 "Number of dirty buffers to flush before bufdaemon becomes inactive");
175 SYSCTL_LONG(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
176 "High watermark used to trigger explicit flushing of dirty buffers");
177 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
178 "Minimum amount of buffer space required for active I/O");
179 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
180 "Maximum amount of buffer space to usable for active I/O");
181 SYSCTL_LONG(_vfs, OID_AUTO, bufcache_bw, CTLFLAG_RW, &bufcache_bw, 0,
182 "Buffer-cache -> VM page cache transfer bandwidth");
183 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgallocs, CTLFLAG_RW, &lowmempgallocs, 0,
184 "Page allocations done during periods of very low free memory");
185 SYSCTL_UINT(_vfs, OID_AUTO, lowmempgfails, CTLFLAG_RW, &lowmempgfails, 0,
186 "Page allocations which failed during periods of very low free memory");
187 SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
188 "Recycle pages to active or inactive queue transition pt 0-64");
189 SYSCTL_UINT(_vfs, OID_AUTO, repurpose_enable, CTLFLAG_RW, &repurpose_enable, 0,
190 "Enable buffer cache VM repurposing for high-I/O");
192 * Sysctls determining current state of the buffer cache.
194 SYSCTL_LONG(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
195 "Total number of buffers in buffer cache");
196 SYSCTL_LONG(_vfs, OID_AUTO, dirtykvaspace, CTLFLAG_RD, &dirtykvaspace, 0,
197 "KVA reserved by dirty buffers (all)");
198 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
199 "Pending bytes of dirty buffers (all)");
200 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
201 "Pending bytes of dirty buffers (heavy weight)");
202 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
203 "Pending number of dirty buffers");
204 SYSCTL_LONG(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
205 "Pending number of dirty buffers (heavy weight)");
206 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
207 "I/O bytes currently in progress due to asynchronous writes");
208 SYSCTL_LONG(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
209 "I/O buffers currently in progress due to asynchronous writes");
210 SYSCTL_LONG(_vfs, OID_AUTO, repurposedspace, CTLFLAG_RD, &repurposedspace, 0,
211 "Buffer-cache memory repurposed in-place");
212 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
213 "Hard limit on maximum amount of memory usable for buffer space");
214 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
215 "Soft limit on maximum amount of memory usable for buffer space");
216 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
217 "Minimum amount of memory to reserve for system buffer space");
218 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
219 "Amount of memory available for buffers");
220 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
221 0, "Maximum amount of memory reserved for buffers using malloc");
222 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
223 "Amount of memory left for buffers using malloc-scheme");
224 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
225 "New buffer header acquisition requests");
226 SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
227 "Recover VM space in an emergency");
228 SYSCTL_INT(_vfs, OID_AUTO, debug_commit, CTLFLAG_RW, &debug_commit, 0, "");
229 SYSCTL_INT(_vfs, OID_AUTO, debug_bufbio, CTLFLAG_RW, &debug_bufbio, 0, "");
230 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
231 "sizeof(struct buf)");
233 char *buf_wmesg = BUF_WMESG;
235 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
236 #define VFS_BIO_NEED_UNUSED02 0x02
237 #define VFS_BIO_NEED_UNUSED04 0x04
238 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
241 * Called when buffer space is potentially available for recovery.
242 * getnewbuf() will block on this flag when it is unable to free
243 * sufficient buffer space. Buffer space becomes recoverable when
244 * bp's get placed back in the queues.
246 static __inline void
247 bufspacewakeup(void)
250 * If someone is waiting for BUF space, wake them up. Even
251 * though we haven't freed the kva space yet, the waiting
252 * process will be able to now.
254 for (;;) {
255 int flags = needsbuffer;
256 cpu_ccfence();
257 if ((flags & VFS_BIO_NEED_BUFSPACE) == 0)
258 break;
259 if (atomic_cmpset_int(&needsbuffer, flags,
260 flags & ~VFS_BIO_NEED_BUFSPACE)) {
261 wakeup(&needsbuffer);
262 break;
264 /* retry */
269 * runningbufwakeup:
271 * Accounting for I/O in progress.
274 static __inline void
275 runningbufwakeup(struct buf *bp)
277 long totalspace;
278 long flags;
280 if ((totalspace = bp->b_runningbufspace) != 0) {
281 atomic_add_long(&runningbufspace, -totalspace);
282 atomic_add_long(&runningbufcount, -1);
283 bp->b_runningbufspace = 0;
286 * see waitrunningbufspace() for limit test.
288 for (;;) {
289 flags = runningbufreq;
290 cpu_ccfence();
291 if (flags == 0)
292 break;
293 if (atomic_cmpset_int(&runningbufreq, flags, 0)) {
294 wakeup(&runningbufreq);
295 break;
297 /* retry */
299 bd_signal(totalspace);
304 * bufcountwakeup:
306 * Called when a buffer has been added to one of the free queues to
307 * account for the buffer and to wakeup anyone waiting for free buffers.
308 * This typically occurs when large amounts of metadata are being handled
309 * by the buffer cache ( else buffer space runs out first, usually ).
311 static __inline void
312 bufcountwakeup(void)
314 long flags;
316 for (;;) {
317 flags = needsbuffer;
318 if (flags == 0)
319 break;
320 if (atomic_cmpset_int(&needsbuffer, flags,
321 (flags & ~VFS_BIO_NEED_ANY))) {
322 wakeup(&needsbuffer);
323 break;
325 /* retry */
330 * waitrunningbufspace()
332 * If runningbufspace exceeds 4/6 hirunningspace we block until
333 * runningbufspace drops to 3/6 hirunningspace. We also block if another
334 * thread blocked here in order to be fair, even if runningbufspace
335 * is now lower than the limit.
337 * The caller may be using this function to block in a tight loop, we
338 * must block while runningbufspace is greater than at least
339 * hirunningspace * 3 / 6.
341 void
342 waitrunningbufspace(void)
344 long limit = hirunningspace * 4 / 6;
345 long flags;
347 while (runningbufspace > limit || runningbufreq) {
348 tsleep_interlock(&runningbufreq, 0);
349 flags = atomic_fetchadd_int(&runningbufreq, 1);
350 if (runningbufspace > limit || flags)
351 tsleep(&runningbufreq, PINTERLOCKED, "wdrn1", hz);
356 * buf_dirty_count_severe:
358 * Return true if we have too many dirty buffers.
361 buf_dirty_count_severe(void)
363 return (runningbufspace + dirtykvaspace >= hidirtybufspace ||
364 dirtybufcount >= nbuf / 2);
368 * Return true if the amount of running I/O is severe and BIOQ should
369 * start bursting.
372 buf_runningbufspace_severe(void)
374 return (runningbufspace >= hirunningspace * 4 / 6);
378 * vfs_buf_test_cache:
380 * Called when a buffer is extended. This function clears the B_CACHE
381 * bit if the newly extended portion of the buffer does not contain
382 * valid data.
384 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
385 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
386 * them while a clean buffer was present.
388 static __inline__
389 void
390 vfs_buf_test_cache(struct buf *bp,
391 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
392 vm_page_t m)
394 if (bp->b_flags & B_CACHE) {
395 int base = (foff + off) & PAGE_MASK;
396 if (vm_page_is_valid(m, base, size) == 0)
397 bp->b_flags &= ~B_CACHE;
402 * bd_speedup()
404 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
405 * low water mark.
407 static __inline__
408 void
409 bd_speedup(void)
411 if (dirtykvaspace < lodirtybufspace && dirtybufcount < nbuf / 2)
412 return;
414 if (bd_request == 0 &&
415 (dirtykvaspace > lodirtybufspace / 2 ||
416 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
417 if (atomic_fetchadd_int(&bd_request, 1) == 0)
418 wakeup(&bd_request);
420 if (bd_request_hw == 0 &&
421 (dirtykvaspace > lodirtybufspace / 2 ||
422 dirtybufcounthw >= nbuf / 2)) {
423 if (atomic_fetchadd_int(&bd_request_hw, 1) == 0)
424 wakeup(&bd_request_hw);
429 * bd_heatup()
431 * Get the buf_daemon heated up when the number of running and dirty
432 * buffers exceeds the mid-point.
434 * Return the total number of dirty bytes past the second mid point
435 * as a measure of how much excess dirty data there is in the system.
437 long
438 bd_heatup(void)
440 long mid1;
441 long mid2;
442 long totalspace;
444 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
446 totalspace = runningbufspace + dirtykvaspace;
447 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
448 bd_speedup();
449 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
450 if (totalspace >= mid2)
451 return(totalspace - mid2);
453 return(0);
457 * bd_wait()
459 * Wait for the buffer cache to flush (totalspace) bytes worth of
460 * buffers, then return.
462 * Regardless this function blocks while the number of dirty buffers
463 * exceeds hidirtybufspace.
465 void
466 bd_wait(long totalspace)
468 u_int i;
469 u_int j;
470 u_int mi;
471 int count;
473 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
474 return;
476 while (totalspace > 0) {
477 bd_heatup();
480 * Order is important. Suppliers adjust bd_wake_index after
481 * updating runningbufspace/dirtykvaspace. We want to fetch
482 * bd_wake_index before accessing. Any error should thus
483 * be in our favor.
485 i = atomic_fetchadd_int(&bd_wake_index, 0);
486 if (totalspace > runningbufspace + dirtykvaspace)
487 totalspace = runningbufspace + dirtykvaspace;
488 count = totalspace / MAXBSIZE;
489 if (count >= BD_WAKE_SIZE / 2)
490 count = BD_WAKE_SIZE / 2;
491 i = i + count;
492 mi = i & BD_WAKE_MASK;
495 * This is not a strict interlock, so we play a bit loose
496 * with locking access to dirtybufspace*. We have to re-check
497 * bd_wake_index to ensure that it hasn't passed us.
499 tsleep_interlock(&bd_wake_ary[mi], 0);
500 atomic_add_int(&bd_wake_ary[mi], 1);
501 j = atomic_fetchadd_int(&bd_wake_index, 0);
502 if ((int)(i - j) >= 0)
503 tsleep(&bd_wake_ary[mi], PINTERLOCKED, "flstik", hz);
505 totalspace = runningbufspace + dirtykvaspace - hidirtybufspace;
510 * bd_signal()
512 * This function is called whenever runningbufspace or dirtykvaspace
513 * is reduced. Track threads waiting for run+dirty buffer I/O
514 * complete.
516 static void
517 bd_signal(long totalspace)
519 u_int i;
521 if (totalspace > 0) {
522 if (totalspace > MAXBSIZE * BD_WAKE_SIZE)
523 totalspace = MAXBSIZE * BD_WAKE_SIZE;
524 while (totalspace > 0) {
525 i = atomic_fetchadd_int(&bd_wake_index, 1);
526 i &= BD_WAKE_MASK;
527 if (atomic_readandclear_int(&bd_wake_ary[i]))
528 wakeup(&bd_wake_ary[i]);
529 totalspace -= MAXBSIZE;
535 * BIO tracking support routines.
537 * Release a ref on a bio_track. Wakeup requests are atomically released
538 * along with the last reference so bk_active will never wind up set to
539 * only 0x80000000.
541 static
542 void
543 bio_track_rel(struct bio_track *track)
545 int active;
546 int desired;
549 * Shortcut
551 active = track->bk_active;
552 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
553 return;
556 * Full-on. Note that the wait flag is only atomically released on
557 * the 1->0 count transition.
559 * We check for a negative count transition using bit 30 since bit 31
560 * has a different meaning.
562 for (;;) {
563 desired = (active & 0x7FFFFFFF) - 1;
564 if (desired)
565 desired |= active & 0x80000000;
566 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
567 if (desired & 0x40000000)
568 panic("bio_track_rel: bad count: %p", track);
569 if (active & 0x80000000)
570 wakeup(track);
571 break;
573 active = track->bk_active;
578 * Wait for the tracking count to reach 0.
580 * Use atomic ops such that the wait flag is only set atomically when
581 * bk_active is non-zero.
584 bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
586 int active;
587 int desired;
588 int error;
591 * Shortcut
593 if (track->bk_active == 0)
594 return(0);
597 * Full-on. Note that the wait flag may only be atomically set if
598 * the active count is non-zero.
600 * NOTE: We cannot optimize active == desired since a wakeup could
601 * clear active prior to our tsleep_interlock().
603 error = 0;
604 while ((active = track->bk_active) != 0) {
605 cpu_ccfence();
606 desired = active | 0x80000000;
607 tsleep_interlock(track, slp_flags);
608 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
609 error = tsleep(track, slp_flags | PINTERLOCKED,
610 "trwait", slp_timo);
611 if (error)
612 break;
615 return (error);
619 * bufinit:
621 * Load time initialisation of the buffer cache, called from machine
622 * dependant initialization code.
624 static
625 void
626 bufinit(void *dummy __unused)
628 struct bufpcpu *pcpu;
629 struct buf *bp;
630 vm_offset_t bogus_offset;
631 int i;
632 int j;
633 long n;
635 /* next, make a null set of free lists */
636 for (i = 0; i < ncpus; ++i) {
637 pcpu = &bufpcpu[i];
638 spin_init(&pcpu->spin, "bufinit");
639 for (j = 0; j < BUFFER_QUEUES; j++)
640 TAILQ_INIT(&pcpu->bufqueues[j]);
644 * Finally, initialize each buffer header and stick on empty q.
645 * Each buffer gets its own KVA reservation.
647 i = 0;
648 pcpu = &bufpcpu[i];
650 for (n = 0; n < nbuf; n++) {
651 bp = &buf[n];
652 bzero(bp, sizeof *bp);
653 bp->b_flags = B_INVAL; /* we're just an empty header */
654 bp->b_cmd = BUF_CMD_DONE;
655 bp->b_qindex = BQUEUE_EMPTY;
656 bp->b_qcpu = i;
657 bp->b_kvabase = (void *)(vm_map_min(&buffer_map) +
658 MAXBSIZE * n);
659 bp->b_kvasize = MAXBSIZE;
660 initbufbio(bp);
661 xio_init(&bp->b_xio);
662 buf_dep_init(bp);
663 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
664 bp, b_freelist);
666 i = (i + 1) % ncpus;
667 pcpu = &bufpcpu[i];
671 * maxbufspace is the absolute maximum amount of buffer space we are
672 * allowed to reserve in KVM and in real terms. The absolute maximum
673 * is nominally used by buf_daemon. hibufspace is the nominal maximum
674 * used by most other processes. The differential is required to
675 * ensure that buf_daemon is able to run when other processes might
676 * be blocked waiting for buffer space.
678 * Calculate hysteresis (lobufspace, hibufspace). Don't make it
679 * too large or we might lockup a cpu for too long a period of
680 * time in our tight loop.
682 maxbufspace = nbuf * NBUFCALCSIZE;
683 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
684 lobufspace = hibufspace * 7 / 8;
685 if (hibufspace - lobufspace > 64 * 1024 * 1024)
686 lobufspace = hibufspace - 64 * 1024 * 1024;
687 if (lobufspace > hibufspace - MAXBSIZE)
688 lobufspace = hibufspace - MAXBSIZE;
690 lorunningspace = 512 * 1024;
691 /* hirunningspace -- see below */
694 * Limit the amount of malloc memory since it is wired permanently
695 * into the kernel space. Even though this is accounted for in
696 * the buffer allocation, we don't want the malloced region to grow
697 * uncontrolled. The malloc scheme improves memory utilization
698 * significantly on average (small) directories.
700 maxbufmallocspace = hibufspace / 20;
703 * Reduce the chance of a deadlock occuring by limiting the number
704 * of delayed-write dirty buffers we allow to stack up.
706 * We don't want too much actually queued to the device at once
707 * (XXX this needs to be per-mount!), because the buffers will
708 * wind up locked for a very long period of time while the I/O
709 * drains.
711 hidirtybufspace = hibufspace / 2; /* dirty + running */
712 hirunningspace = hibufspace / 16; /* locked & queued to device */
713 if (hirunningspace < 1024 * 1024)
714 hirunningspace = 1024 * 1024;
716 dirtykvaspace = 0;
717 dirtybufspace = 0;
718 dirtybufspacehw = 0;
720 lodirtybufspace = hidirtybufspace / 2;
723 * Maximum number of async ops initiated per buf_daemon loop. This is
724 * somewhat of a hack at the moment, we really need to limit ourselves
725 * based on the number of bytes of I/O in-transit that were initiated
726 * from buf_daemon.
729 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE,
730 VM_SUBSYS_BOGUS);
731 vm_object_hold(&kernel_object);
732 bogus_page = vm_page_alloc(&kernel_object,
733 (bogus_offset >> PAGE_SHIFT),
734 VM_ALLOC_NORMAL);
735 vm_object_drop(&kernel_object);
736 vmstats.v_wire_count++;
740 SYSINIT(do_bufinit, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, bufinit, NULL);
743 * Initialize the embedded bio structures, typically used by
744 * deprecated code which tries to allocate its own struct bufs.
746 void
747 initbufbio(struct buf *bp)
749 bp->b_bio1.bio_buf = bp;
750 bp->b_bio1.bio_prev = NULL;
751 bp->b_bio1.bio_offset = NOOFFSET;
752 bp->b_bio1.bio_next = &bp->b_bio2;
753 bp->b_bio1.bio_done = NULL;
754 bp->b_bio1.bio_flags = 0;
756 bp->b_bio2.bio_buf = bp;
757 bp->b_bio2.bio_prev = &bp->b_bio1;
758 bp->b_bio2.bio_offset = NOOFFSET;
759 bp->b_bio2.bio_next = NULL;
760 bp->b_bio2.bio_done = NULL;
761 bp->b_bio2.bio_flags = 0;
763 BUF_LOCKINIT(bp);
767 * Reinitialize the embedded bio structures as well as any additional
768 * translation cache layers.
770 void
771 reinitbufbio(struct buf *bp)
773 struct bio *bio;
775 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
776 bio->bio_done = NULL;
777 bio->bio_offset = NOOFFSET;
782 * Undo the effects of an initbufbio().
784 void
785 uninitbufbio(struct buf *bp)
787 dsched_buf_exit(bp);
788 BUF_LOCKFREE(bp);
792 * Push another BIO layer onto an existing BIO and return it. The new
793 * BIO layer may already exist, holding cached translation data.
795 struct bio *
796 push_bio(struct bio *bio)
798 struct bio *nbio;
800 if ((nbio = bio->bio_next) == NULL) {
801 int index = bio - &bio->bio_buf->b_bio_array[0];
802 if (index >= NBUF_BIO - 1) {
803 panic("push_bio: too many layers %d for bp %p",
804 index, bio->bio_buf);
806 nbio = &bio->bio_buf->b_bio_array[index + 1];
807 bio->bio_next = nbio;
808 nbio->bio_prev = bio;
809 nbio->bio_buf = bio->bio_buf;
810 nbio->bio_offset = NOOFFSET;
811 nbio->bio_done = NULL;
812 nbio->bio_next = NULL;
814 KKASSERT(nbio->bio_done == NULL);
815 return(nbio);
819 * Pop a BIO translation layer, returning the previous layer. The
820 * must have been previously pushed.
822 struct bio *
823 pop_bio(struct bio *bio)
825 return(bio->bio_prev);
828 void
829 clearbiocache(struct bio *bio)
831 while (bio) {
832 bio->bio_offset = NOOFFSET;
833 bio = bio->bio_next;
838 * Remove the buffer from the appropriate free list.
839 * (caller must be locked)
841 static __inline void
842 _bremfree(struct buf *bp)
844 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
846 if (bp->b_qindex != BQUEUE_NONE) {
847 KASSERT(BUF_REFCNTNB(bp) == 1,
848 ("bremfree: bp %p not locked",bp));
849 TAILQ_REMOVE(&pcpu->bufqueues[bp->b_qindex], bp, b_freelist);
850 bp->b_qindex = BQUEUE_NONE;
851 } else {
852 if (BUF_REFCNTNB(bp) <= 1)
853 panic("bremfree: removing a buffer not on a queue");
858 * bremfree() - must be called with a locked buffer
860 void
861 bremfree(struct buf *bp)
863 struct bufpcpu *pcpu = &bufpcpu[bp->b_qcpu];
865 spin_lock(&pcpu->spin);
866 _bremfree(bp);
867 spin_unlock(&pcpu->spin);
871 * bremfree_locked - must be called with pcpu->spin locked
873 static void
874 bremfree_locked(struct buf *bp)
876 _bremfree(bp);
880 * This version of bread issues any required I/O asyncnronously and
881 * makes a callback on completion.
883 * The callback must check whether BIO_DONE is set in the bio and issue
884 * the bpdone(bp, 0) if it isn't. The callback is responsible for clearing
885 * BIO_DONE and disposing of the I/O (bqrelse()ing it).
887 void
888 breadcb(struct vnode *vp, off_t loffset, int size, int bflags,
889 void (*func)(struct bio *), void *arg)
891 struct buf *bp;
893 bp = getblk(vp, loffset, size, 0, 0);
895 /* if not found in cache, do some I/O */
896 if ((bp->b_flags & B_CACHE) == 0) {
897 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA);
898 bp->b_flags |= bflags;
899 bp->b_cmd = BUF_CMD_READ;
900 bp->b_bio1.bio_done = func;
901 bp->b_bio1.bio_caller_info1.ptr = arg;
902 vfs_busy_pages(vp, bp);
903 BUF_KERNPROC(bp);
904 vn_strategy(vp, &bp->b_bio1);
905 } else if (func) {
907 * Since we are issuing the callback synchronously it cannot
908 * race the BIO_DONE, so no need for atomic ops here.
910 /*bp->b_bio1.bio_done = func;*/
911 bp->b_bio1.bio_caller_info1.ptr = arg;
912 bp->b_bio1.bio_flags |= BIO_DONE;
913 func(&bp->b_bio1);
914 } else {
915 bqrelse(bp);
920 * breadnx() - Terminal function for bread() and breadn().
922 * This function will start asynchronous I/O on read-ahead blocks as well
923 * as satisfy the primary request.
925 * We must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE is
926 * set, the buffer is valid and we do not have to do anything.
929 breadnx(struct vnode *vp, off_t loffset, int size, int bflags,
930 off_t *raoffset, int *rabsize,
931 int cnt, struct buf **bpp)
933 struct buf *bp, *rabp;
934 int i;
935 int rv = 0, readwait = 0;
937 if (*bpp)
938 bp = *bpp;
939 else
940 *bpp = bp = getblk(vp, loffset, size, 0, 0);
942 /* if not found in cache, do some I/O */
943 if ((bp->b_flags & B_CACHE) == 0) {
944 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL | B_NOTMETA);
945 bp->b_flags |= bflags;
946 bp->b_cmd = BUF_CMD_READ;
947 bp->b_bio1.bio_done = biodone_sync;
948 bp->b_bio1.bio_flags |= BIO_SYNC;
949 vfs_busy_pages(vp, bp);
950 vn_strategy(vp, &bp->b_bio1);
951 ++readwait;
954 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
955 if (inmem(vp, *raoffset))
956 continue;
957 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
959 if ((rabp->b_flags & B_CACHE) == 0) {
960 rabp->b_flags &= ~(B_ERROR | B_EINTR |
961 B_INVAL | B_NOTMETA);
962 rabp->b_flags |= bflags;
963 rabp->b_cmd = BUF_CMD_READ;
964 vfs_busy_pages(vp, rabp);
965 BUF_KERNPROC(rabp);
966 vn_strategy(vp, &rabp->b_bio1);
967 } else {
968 brelse(rabp);
971 if (readwait)
972 rv = biowait(&bp->b_bio1, "biord");
973 return (rv);
977 * bwrite:
979 * Synchronous write, waits for completion.
981 * Write, release buffer on completion. (Done by iodone
982 * if async). Do not bother writing anything if the buffer
983 * is invalid.
985 * Note that we set B_CACHE here, indicating that buffer is
986 * fully valid and thus cacheable. This is true even of NFS
987 * now so we set it generally. This could be set either here
988 * or in biodone() since the I/O is synchronous. We put it
989 * here.
992 bwrite(struct buf *bp)
994 int error;
996 if (bp->b_flags & B_INVAL) {
997 brelse(bp);
998 return (0);
1000 if (BUF_REFCNTNB(bp) == 0)
1001 panic("bwrite: buffer is not busy???");
1004 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1005 * call because it will remove the buffer from the vnode's
1006 * dirty buffer list prematurely and possibly cause filesystem
1007 * checks to race buffer flushes. This is now handled in
1008 * bpdone().
1010 * bundirty(bp); REMOVED
1013 bp->b_flags &= ~(B_ERROR | B_EINTR);
1014 bp->b_flags |= B_CACHE;
1015 bp->b_cmd = BUF_CMD_WRITE;
1016 bp->b_bio1.bio_done = biodone_sync;
1017 bp->b_bio1.bio_flags |= BIO_SYNC;
1018 vfs_busy_pages(bp->b_vp, bp);
1021 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1022 * valid for vnode-backed buffers.
1024 bsetrunningbufspace(bp, bp->b_bufsize);
1025 vn_strategy(bp->b_vp, &bp->b_bio1);
1026 error = biowait(&bp->b_bio1, "biows");
1027 brelse(bp);
1029 return (error);
1033 * bawrite:
1035 * Asynchronous write. Start output on a buffer, but do not wait for
1036 * it to complete. The buffer is released when the output completes.
1038 * bwrite() ( or the VOP routine anyway ) is responsible for handling
1039 * B_INVAL buffers. Not us.
1041 void
1042 bawrite(struct buf *bp)
1044 if (bp->b_flags & B_INVAL) {
1045 brelse(bp);
1046 return;
1048 if (BUF_REFCNTNB(bp) == 0)
1049 panic("bawrite: buffer is not busy???");
1052 * NOTE: We no longer mark the buffer clear prior to the vn_strategy()
1053 * call because it will remove the buffer from the vnode's
1054 * dirty buffer list prematurely and possibly cause filesystem
1055 * checks to race buffer flushes. This is now handled in
1056 * bpdone().
1058 * bundirty(bp); REMOVED
1060 bp->b_flags &= ~(B_ERROR | B_EINTR);
1061 bp->b_flags |= B_CACHE;
1062 bp->b_cmd = BUF_CMD_WRITE;
1063 KKASSERT(bp->b_bio1.bio_done == NULL);
1064 vfs_busy_pages(bp->b_vp, bp);
1067 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
1068 * valid for vnode-backed buffers.
1070 bsetrunningbufspace(bp, bp->b_bufsize);
1071 BUF_KERNPROC(bp);
1072 vn_strategy(bp->b_vp, &bp->b_bio1);
1076 * bdwrite:
1078 * Delayed write. (Buffer is marked dirty). Do not bother writing
1079 * anything if the buffer is marked invalid.
1081 * Note that since the buffer must be completely valid, we can safely
1082 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1083 * biodone() in order to prevent getblk from writing the buffer
1084 * out synchronously.
1086 void
1087 bdwrite(struct buf *bp)
1089 if (BUF_REFCNTNB(bp) == 0)
1090 panic("bdwrite: buffer is not busy");
1092 if (bp->b_flags & B_INVAL) {
1093 brelse(bp);
1094 return;
1096 bdirty(bp);
1098 dsched_buf_enter(bp); /* might stack */
1101 * Set B_CACHE, indicating that the buffer is fully valid. This is
1102 * true even of NFS now.
1104 bp->b_flags |= B_CACHE;
1107 * This bmap keeps the system from needing to do the bmap later,
1108 * perhaps when the system is attempting to do a sync. Since it
1109 * is likely that the indirect block -- or whatever other datastructure
1110 * that the filesystem needs is still in memory now, it is a good
1111 * thing to do this. Note also, that if the pageout daemon is
1112 * requesting a sync -- there might not be enough memory to do
1113 * the bmap then... So, this is important to do.
1115 if (bp->b_bio2.bio_offset == NOOFFSET) {
1116 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1117 NULL, NULL, BUF_CMD_WRITE);
1121 * Because the underlying pages may still be mapped and
1122 * writable trying to set the dirty buffer (b_dirtyoff/end)
1123 * range here will be inaccurate.
1125 * However, we must still clean the pages to satisfy the
1126 * vnode_pager and pageout daemon, so they think the pages
1127 * have been "cleaned". What has really occured is that
1128 * they've been earmarked for later writing by the buffer
1129 * cache.
1131 * So we get the b_dirtyoff/end update but will not actually
1132 * depend on it (NFS that is) until the pages are busied for
1133 * writing later on.
1135 vfs_clean_pages(bp);
1136 bqrelse(bp);
1139 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1140 * due to the softdep code.
1145 * Fake write - return pages to VM system as dirty, leave the buffer clean.
1146 * This is used by tmpfs.
1148 * It is important for any VFS using this routine to NOT use it for
1149 * IO_SYNC or IO_ASYNC operations which occur when the system really
1150 * wants to flush VM pages to backing store.
1152 void
1153 buwrite(struct buf *bp)
1155 vm_page_t m;
1156 int i;
1159 * Only works for VMIO buffers. If the buffer is already
1160 * marked for delayed-write we can't avoid the bdwrite().
1162 if ((bp->b_flags & B_VMIO) == 0 || (bp->b_flags & B_DELWRI)) {
1163 bdwrite(bp);
1164 return;
1168 * Mark as needing a commit.
1170 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1171 m = bp->b_xio.xio_pages[i];
1172 vm_page_need_commit(m);
1174 bqrelse(bp);
1178 * bdirty:
1180 * Turn buffer into delayed write request by marking it B_DELWRI.
1181 * B_RELBUF and B_NOCACHE must be cleared.
1183 * We reassign the buffer to itself to properly update it in the
1184 * dirty/clean lists.
1186 * Must be called from a critical section.
1187 * The buffer must be on BQUEUE_NONE.
1189 void
1190 bdirty(struct buf *bp)
1192 KASSERT(bp->b_qindex == BQUEUE_NONE,
1193 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1194 if (bp->b_flags & B_NOCACHE) {
1195 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1196 bp->b_flags &= ~B_NOCACHE;
1198 if (bp->b_flags & B_INVAL) {
1199 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1201 bp->b_flags &= ~B_RELBUF;
1203 if ((bp->b_flags & B_DELWRI) == 0) {
1204 lwkt_gettoken(&bp->b_vp->v_token);
1205 bp->b_flags |= B_DELWRI;
1206 reassignbuf(bp);
1207 lwkt_reltoken(&bp->b_vp->v_token);
1209 atomic_add_long(&dirtybufcount, 1);
1210 atomic_add_long(&dirtykvaspace, bp->b_kvasize);
1211 atomic_add_long(&dirtybufspace, bp->b_bufsize);
1212 if (bp->b_flags & B_HEAVY) {
1213 atomic_add_long(&dirtybufcounthw, 1);
1214 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1216 bd_heatup();
1221 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1222 * needs to be flushed with a different buf_daemon thread to avoid
1223 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1225 void
1226 bheavy(struct buf *bp)
1228 if ((bp->b_flags & B_HEAVY) == 0) {
1229 bp->b_flags |= B_HEAVY;
1230 if (bp->b_flags & B_DELWRI) {
1231 atomic_add_long(&dirtybufcounthw, 1);
1232 atomic_add_long(&dirtybufspacehw, bp->b_bufsize);
1238 * bundirty:
1240 * Clear B_DELWRI for buffer.
1242 * Must be called from a critical section.
1244 * The buffer is typically on BQUEUE_NONE but there is one case in
1245 * brelse() that calls this function after placing the buffer on
1246 * a different queue.
1248 void
1249 bundirty(struct buf *bp)
1251 if (bp->b_flags & B_DELWRI) {
1252 lwkt_gettoken(&bp->b_vp->v_token);
1253 bp->b_flags &= ~B_DELWRI;
1254 reassignbuf(bp);
1255 lwkt_reltoken(&bp->b_vp->v_token);
1257 atomic_add_long(&dirtybufcount, -1);
1258 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1259 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1260 if (bp->b_flags & B_HEAVY) {
1261 atomic_add_long(&dirtybufcounthw, -1);
1262 atomic_add_long(&dirtybufspacehw, -bp->b_bufsize);
1264 bd_signal(bp->b_bufsize);
1267 * Since it is now being written, we can clear its deferred write flag.
1269 bp->b_flags &= ~B_DEFERRED;
1273 * Set the b_runningbufspace field, used to track how much I/O is
1274 * in progress at any given moment.
1276 void
1277 bsetrunningbufspace(struct buf *bp, int bytes)
1279 bp->b_runningbufspace = bytes;
1280 if (bytes) {
1281 atomic_add_long(&runningbufspace, bytes);
1282 atomic_add_long(&runningbufcount, 1);
1287 * brelse:
1289 * Release a busy buffer and, if requested, free its resources. The
1290 * buffer will be stashed in the appropriate bufqueue[] allowing it
1291 * to be accessed later as a cache entity or reused for other purposes.
1293 void
1294 brelse(struct buf *bp)
1296 struct bufpcpu *pcpu;
1297 #ifdef INVARIANTS
1298 int saved_flags = bp->b_flags;
1299 #endif
1301 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1302 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1305 * If B_NOCACHE is set we are being asked to destroy the buffer and
1306 * its backing store. Clear B_DELWRI.
1308 * B_NOCACHE is set in two cases: (1) when the caller really wants
1309 * to destroy the buffer and backing store and (2) when the caller
1310 * wants to destroy the buffer and backing store after a write
1311 * completes.
1313 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1314 bundirty(bp);
1317 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1319 * A re-dirtied buffer is only subject to destruction
1320 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1322 /* leave buffer intact */
1323 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1324 (bp->b_bufsize <= 0)) {
1326 * Either a failed read or we were asked to free or not
1327 * cache the buffer. This path is reached with B_DELWRI
1328 * set only if B_INVAL is already set. B_NOCACHE governs
1329 * backing store destruction.
1331 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1332 * buffer cannot be immediately freed.
1334 bp->b_flags |= B_INVAL;
1335 if (LIST_FIRST(&bp->b_dep) != NULL)
1336 buf_deallocate(bp);
1337 if (bp->b_flags & B_DELWRI) {
1338 atomic_add_long(&dirtybufcount, -1);
1339 atomic_add_long(&dirtykvaspace, -bp->b_kvasize);
1340 atomic_add_long(&dirtybufspace, -bp->b_bufsize);
1341 if (bp->b_flags & B_HEAVY) {
1342 atomic_add_long(&dirtybufcounthw, -1);
1343 atomic_add_long(&dirtybufspacehw,
1344 -bp->b_bufsize);
1346 bd_signal(bp->b_bufsize);
1348 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1352 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set,
1353 * or if b_refs is non-zero.
1355 * If vfs_vmio_release() is called with either bit set, the
1356 * underlying pages may wind up getting freed causing a previous
1357 * write (bdwrite()) to get 'lost' because pages associated with
1358 * a B_DELWRI bp are marked clean. Pages associated with a
1359 * B_LOCKED buffer may be mapped by the filesystem.
1361 * If we want to release the buffer ourselves (rather then the
1362 * originator asking us to release it), give the originator a
1363 * chance to countermand the release by setting B_LOCKED.
1365 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1366 * if B_DELWRI is set.
1368 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1369 * on pages to return pages to the VM page queues.
1371 if ((bp->b_flags & (B_DELWRI | B_LOCKED)) || bp->b_refs) {
1372 bp->b_flags &= ~B_RELBUF;
1373 } else if (vm_page_count_min(0)) {
1374 if (LIST_FIRST(&bp->b_dep) != NULL)
1375 buf_deallocate(bp); /* can set B_LOCKED */
1376 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1377 bp->b_flags &= ~B_RELBUF;
1378 else
1379 bp->b_flags |= B_RELBUF;
1383 * Make sure b_cmd is clear. It may have already been cleared by
1384 * biodone().
1386 * At this point destroying the buffer is governed by the B_INVAL
1387 * or B_RELBUF flags.
1389 bp->b_cmd = BUF_CMD_DONE;
1390 dsched_buf_exit(bp);
1393 * VMIO buffer rundown. Make sure the VM page array is restored
1394 * after an I/O may have replaces some of the pages with bogus pages
1395 * in order to not destroy dirty pages in a fill-in read.
1397 * Note that due to the code above, if a buffer is marked B_DELWRI
1398 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1399 * B_INVAL may still be set, however.
1401 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1402 * but not the backing store. B_NOCACHE will destroy the backing
1403 * store.
1405 * Note that dirty NFS buffers contain byte-granular write ranges
1406 * and should not be destroyed w/ B_INVAL even if the backing store
1407 * is left intact.
1409 if (bp->b_flags & B_VMIO) {
1411 * Rundown for VMIO buffers which are not dirty NFS buffers.
1413 int i, j, resid;
1414 vm_page_t m;
1415 off_t foff;
1416 vm_pindex_t poff;
1417 vm_object_t obj;
1418 struct vnode *vp;
1420 vp = bp->b_vp;
1423 * Get the base offset and length of the buffer. Note that
1424 * in the VMIO case if the buffer block size is not
1425 * page-aligned then b_data pointer may not be page-aligned.
1426 * But our b_xio.xio_pages array *IS* page aligned.
1428 * block sizes less then DEV_BSIZE (usually 512) are not
1429 * supported due to the page granularity bits (m->valid,
1430 * m->dirty, etc...).
1432 * See man buf(9) for more information
1435 resid = bp->b_bufsize;
1436 foff = bp->b_loffset;
1438 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1439 m = bp->b_xio.xio_pages[i];
1442 * If we hit a bogus page, fixup *all* of them
1443 * now. Note that we left these pages wired
1444 * when we removed them so they had better exist,
1445 * and they cannot be ripped out from under us so
1446 * no critical section protection is necessary.
1448 if (m == bogus_page) {
1449 obj = vp->v_object;
1450 poff = OFF_TO_IDX(bp->b_loffset);
1452 vm_object_hold(obj);
1453 for (j = i; j < bp->b_xio.xio_npages; j++) {
1454 vm_page_t mtmp;
1456 mtmp = bp->b_xio.xio_pages[j];
1457 if (mtmp == bogus_page) {
1458 if ((bp->b_flags & B_HASBOGUS) == 0)
1459 panic("brelse: bp %p corrupt bogus", bp);
1460 mtmp = vm_page_lookup(obj, poff + j);
1461 if (!mtmp)
1462 panic("brelse: bp %p page %d missing", bp, j);
1463 bp->b_xio.xio_pages[j] = mtmp;
1466 vm_object_drop(obj);
1468 if ((bp->b_flags & B_HASBOGUS) || (bp->b_flags & B_INVAL) == 0) {
1469 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1470 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1471 bp->b_flags &= ~B_HASBOGUS;
1473 m = bp->b_xio.xio_pages[i];
1477 * Invalidate the backing store if B_NOCACHE is set
1478 * (e.g. used with vinvalbuf()). If this is NFS
1479 * we impose a requirement that the block size be
1480 * a multiple of PAGE_SIZE and create a temporary
1481 * hack to basically invalidate the whole page. The
1482 * problem is that NFS uses really odd buffer sizes
1483 * especially when tracking piecemeal writes and
1484 * it also vinvalbuf()'s a lot, which would result
1485 * in only partial page validation and invalidation
1486 * here. If the file page is mmap()'d, however,
1487 * all the valid bits get set so after we invalidate
1488 * here we would end up with weird m->valid values
1489 * like 0xfc. nfs_getpages() can't handle this so
1490 * we clear all the valid bits for the NFS case
1491 * instead of just some of them.
1493 * The real bug is the VM system having to set m->valid
1494 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1495 * itself is an artifact of the whole 512-byte
1496 * granular mess that exists to support odd block
1497 * sizes and UFS meta-data block sizes (e.g. 6144).
1498 * A complete rewrite is required.
1500 * XXX
1502 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1503 int poffset = foff & PAGE_MASK;
1504 int presid;
1506 presid = PAGE_SIZE - poffset;
1507 if (bp->b_vp->v_tag == VT_NFS &&
1508 bp->b_vp->v_type == VREG) {
1509 ; /* entire page */
1510 } else if (presid > resid) {
1511 presid = resid;
1513 KASSERT(presid >= 0, ("brelse: extra page"));
1514 vm_page_set_invalid(m, poffset, presid);
1517 * Also make sure any swap cache is removed
1518 * as it is now stale (HAMMER in particular
1519 * uses B_NOCACHE to deal with buffer
1520 * aliasing).
1522 swap_pager_unswapped(m);
1524 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1525 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1527 if (bp->b_flags & (B_INVAL | B_RELBUF))
1528 vfs_vmio_release(bp);
1529 } else {
1531 * Rundown for non-VMIO buffers.
1533 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1534 if (bp->b_bufsize)
1535 allocbuf(bp, 0);
1536 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1537 if (bp->b_vp)
1538 brelvp(bp);
1542 if (bp->b_qindex != BQUEUE_NONE)
1543 panic("brelse: free buffer onto another queue???");
1544 if (BUF_REFCNTNB(bp) > 1) {
1545 /* Temporary panic to verify exclusive locking */
1546 /* This panic goes away when we allow shared refs */
1547 panic("brelse: multiple refs");
1548 /* NOT REACHED */
1549 return;
1553 * Figure out the correct queue to place the cleaned up buffer on.
1554 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1555 * disassociated from their vnode.
1557 * Return the buffer to its original pcpu area
1559 pcpu = &bufpcpu[bp->b_qcpu];
1560 spin_lock(&pcpu->spin);
1562 if (bp->b_flags & B_LOCKED) {
1564 * Buffers that are locked are placed in the locked queue
1565 * immediately, regardless of their state.
1567 bp->b_qindex = BQUEUE_LOCKED;
1568 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1569 bp, b_freelist);
1570 } else if (bp->b_bufsize == 0) {
1572 * Buffers with no memory. Due to conditionals near the top
1573 * of brelse() such buffers should probably already be
1574 * marked B_INVAL and disassociated from their vnode.
1576 bp->b_flags |= B_INVAL;
1577 KASSERT(bp->b_vp == NULL,
1578 ("bp1 %p flags %08x/%08x vnode %p "
1579 "unexpectededly still associated!",
1580 bp, saved_flags, bp->b_flags, bp->b_vp));
1581 KKASSERT((bp->b_flags & B_HASHED) == 0);
1582 bp->b_qindex = BQUEUE_EMPTY;
1583 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1584 bp, b_freelist);
1585 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1587 * Buffers with junk contents. Again these buffers had better
1588 * already be disassociated from their vnode.
1590 KASSERT(bp->b_vp == NULL,
1591 ("bp2 %p flags %08x/%08x vnode %p unexpectededly "
1592 "still associated!",
1593 bp, saved_flags, bp->b_flags, bp->b_vp));
1594 KKASSERT((bp->b_flags & B_HASHED) == 0);
1595 bp->b_flags |= B_INVAL;
1596 bp->b_qindex = BQUEUE_CLEAN;
1597 TAILQ_INSERT_HEAD(&pcpu->bufqueues[bp->b_qindex],
1598 bp, b_freelist);
1599 } else {
1601 * Remaining buffers. These buffers are still associated with
1602 * their vnode.
1604 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1605 case B_DELWRI:
1606 bp->b_qindex = BQUEUE_DIRTY;
1607 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1608 bp, b_freelist);
1609 break;
1610 case B_DELWRI | B_HEAVY:
1611 bp->b_qindex = BQUEUE_DIRTY_HW;
1612 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1613 bp, b_freelist);
1614 break;
1615 default:
1617 * NOTE: Buffers are always placed at the end of the
1618 * queue. If B_AGE is not set the buffer will cycle
1619 * through the queue twice.
1621 bp->b_qindex = BQUEUE_CLEAN;
1622 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1623 bp, b_freelist);
1624 break;
1627 spin_unlock(&pcpu->spin);
1630 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1631 * on the correct queue but we have not yet unlocked it.
1633 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1634 bundirty(bp);
1637 * The bp is on an appropriate queue unless locked. If it is not
1638 * locked or dirty we can wakeup threads waiting for buffer space.
1640 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1641 * if B_INVAL is set ).
1643 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1644 bufcountwakeup();
1647 * Something we can maybe free or reuse
1649 if (bp->b_bufsize || bp->b_kvasize)
1650 bufspacewakeup();
1653 * Clean up temporary flags and unlock the buffer.
1655 bp->b_flags &= ~(B_NOCACHE | B_RELBUF | B_DIRECT);
1656 BUF_UNLOCK(bp);
1660 * bqrelse:
1662 * Release a buffer back to the appropriate queue but do not try to free
1663 * it. The buffer is expected to be used again soon.
1665 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1666 * biodone() to requeue an async I/O on completion. It is also used when
1667 * known good buffers need to be requeued but we think we may need the data
1668 * again soon.
1670 * XXX we should be able to leave the B_RELBUF hint set on completion.
1672 void
1673 bqrelse(struct buf *bp)
1675 struct bufpcpu *pcpu;
1677 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1678 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1680 if (bp->b_qindex != BQUEUE_NONE)
1681 panic("bqrelse: free buffer onto another queue???");
1682 if (BUF_REFCNTNB(bp) > 1) {
1683 /* do not release to free list */
1684 panic("bqrelse: multiple refs");
1685 return;
1688 buf_act_advance(bp);
1690 pcpu = &bufpcpu[bp->b_qcpu];
1691 spin_lock(&pcpu->spin);
1693 if (bp->b_flags & B_LOCKED) {
1695 * Locked buffers are released to the locked queue. However,
1696 * if the buffer is dirty it will first go into the dirty
1697 * queue and later on after the I/O completes successfully it
1698 * will be released to the locked queue.
1700 bp->b_qindex = BQUEUE_LOCKED;
1701 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1702 bp, b_freelist);
1703 } else if (bp->b_flags & B_DELWRI) {
1704 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1705 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1706 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1707 bp, b_freelist);
1708 } else if (vm_page_count_min(0)) {
1710 * We are too low on memory, we have to try to free the
1711 * buffer (most importantly: the wired pages making up its
1712 * backing store) *now*.
1714 spin_unlock(&pcpu->spin);
1715 brelse(bp);
1716 return;
1717 } else {
1718 bp->b_qindex = BQUEUE_CLEAN;
1719 TAILQ_INSERT_TAIL(&pcpu->bufqueues[bp->b_qindex],
1720 bp, b_freelist);
1722 spin_unlock(&pcpu->spin);
1725 * We have now placed the buffer on the proper queue, but have yet
1726 * to unlock it.
1728 if ((bp->b_flags & B_LOCKED) == 0 &&
1729 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1730 bufcountwakeup();
1734 * Something we can maybe free or reuse.
1736 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1737 bufspacewakeup();
1740 * Final cleanup and unlock. Clear bits that are only used while a
1741 * buffer is actively locked.
1743 bp->b_flags &= ~(B_NOCACHE | B_RELBUF);
1744 dsched_buf_exit(bp);
1745 BUF_UNLOCK(bp);
1749 * Hold a buffer, preventing it from being reused. This will prevent
1750 * normal B_RELBUF operations on the buffer but will not prevent B_INVAL
1751 * operations. If a B_INVAL operation occurs the buffer will remain held
1752 * but the underlying pages may get ripped out.
1754 * These functions are typically used in VOP_READ/VOP_WRITE functions
1755 * to hold a buffer during a copyin or copyout, preventing deadlocks
1756 * or recursive lock panics when read()/write() is used over mmap()'d
1757 * space.
1759 * NOTE: bqhold() requires that the buffer be locked at the time of the
1760 * hold. bqdrop() has no requirements other than the buffer having
1761 * previously been held.
1763 void
1764 bqhold(struct buf *bp)
1766 atomic_add_int(&bp->b_refs, 1);
1769 void
1770 bqdrop(struct buf *bp)
1772 KKASSERT(bp->b_refs > 0);
1773 atomic_add_int(&bp->b_refs, -1);
1777 * Return backing pages held by the buffer 'bp' back to the VM system.
1778 * This routine is called when the bp is invalidated, released, or
1779 * reused.
1781 * The KVA mapping (b_data) for the underlying pages is removed by
1782 * this function.
1784 * WARNING! This routine is integral to the low memory critical path
1785 * when a buffer is B_RELBUF'd. If the system has a severe page
1786 * deficit we need to get the page(s) onto the PQ_FREE or PQ_CACHE
1787 * queues so they can be reused in the current pageout daemon
1788 * pass.
1790 static void
1791 vfs_vmio_release(struct buf *bp)
1793 int i;
1794 vm_page_t m;
1796 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1797 m = bp->b_xio.xio_pages[i];
1798 bp->b_xio.xio_pages[i] = NULL;
1801 * We need to own the page in order to safely unwire it.
1803 vm_page_busy_wait(m, FALSE, "vmiopg");
1806 * The VFS is telling us this is not a meta-data buffer
1807 * even if it is backed by a block device.
1809 if (bp->b_flags & B_NOTMETA)
1810 vm_page_flag_set(m, PG_NOTMETA);
1813 * This is a very important bit of code. We try to track
1814 * VM page use whether the pages are wired into the buffer
1815 * cache or not. While wired into the buffer cache the
1816 * bp tracks the act_count.
1818 * We can choose to place unwired pages on the inactive
1819 * queue (0) or active queue (1). If we place too many
1820 * on the active queue the queue will cycle the act_count
1821 * on pages we'd like to keep, just from single-use pages
1822 * (such as when doing a tar-up or file scan).
1824 if (bp->b_act_count < vm_cycle_point)
1825 vm_page_unwire(m, 0);
1826 else
1827 vm_page_unwire(m, 1);
1830 * If the wire_count has dropped to 0 we may need to take
1831 * further action before unbusying the page.
1833 * WARNING: vm_page_try_*() also checks PG_NEED_COMMIT for us.
1835 if (m->wire_count == 0) {
1836 if (bp->b_flags & B_DIRECT) {
1838 * Attempt to free the page if B_DIRECT is
1839 * set, the caller does not desire the page
1840 * to be cached.
1842 vm_page_wakeup(m);
1843 vm_page_try_to_free(m);
1844 } else if ((bp->b_flags & B_NOTMETA) ||
1845 vm_page_count_min(0)) {
1847 * Attempt to move the page to PQ_CACHE
1848 * if B_NOTMETA is set. This flag is set
1849 * by HAMMER to remove one of the two pages
1850 * present when double buffering is enabled.
1852 * Attempt to move the page to PQ_CACHE
1853 * If we have a severe page deficit. This
1854 * will cause buffer cache operations related
1855 * to pageouts to recycle the related pages
1856 * in order to avoid a low memory deadlock.
1858 m->act_count = bp->b_act_count;
1859 vm_page_try_to_cache(m);
1860 } else {
1862 * Nominal case, leave the page on the
1863 * queue the original unwiring placed it on
1864 * (active or inactive).
1866 m->act_count = bp->b_act_count;
1867 vm_page_wakeup(m);
1869 } else {
1870 vm_page_wakeup(m);
1875 * Zero out the pmap pte's for the mapping, but don't bother
1876 * invalidating the TLB. The range will be properly invalidating
1877 * when new pages are entered into the mapping.
1879 * This in particular reduces tmpfs tear-down overhead and reduces
1880 * buffer cache re-use overhead (one invalidation sequence instead
1881 * of two per re-use).
1883 pmap_qremove_noinval(trunc_page((vm_offset_t) bp->b_data),
1884 bp->b_xio.xio_npages);
1885 if (bp->b_bufsize) {
1886 atomic_add_long(&bufspace, -bp->b_bufsize);
1887 bp->b_bufsize = 0;
1888 bufspacewakeup();
1890 bp->b_xio.xio_npages = 0;
1891 bp->b_flags &= ~B_VMIO;
1892 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1893 if (bp->b_vp)
1894 brelvp(bp);
1898 * Find and initialize a new buffer header, freeing up existing buffers
1899 * in the bufqueues as necessary. The new buffer is returned locked.
1901 * If repurpose is non-NULL getnewbuf() is allowed to re-purpose an existing
1902 * buffer. The buffer will be disassociated, its page and page mappings
1903 * left intact, and returned with *repurpose set to 1. Else *repurpose is set
1904 * to 0. If 1, the caller must repurpose the underlying VM pages.
1906 * If repurpose is NULL getnewbuf() is not allowed to re-purpose an
1907 * existing buffer. That is, it must completely initialize the returned
1908 * buffer.
1910 * Important: B_INVAL is not set. If the caller wishes to throw the
1911 * buffer away, the caller must set B_INVAL prior to calling brelse().
1913 * We block if:
1914 * We have insufficient buffer headers
1915 * We have insufficient buffer space
1917 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1918 * Instead we ask the buf daemon to do it for us. We attempt to
1919 * avoid piecemeal wakeups of the pageout daemon.
1921 struct buf *
1922 getnewbuf(int blkflags, int slptimeo, int size, int maxsize,
1923 struct vm_object **repurposep)
1925 struct bufpcpu *pcpu;
1926 struct buf *bp;
1927 struct buf *nbp;
1928 int nqindex;
1929 int nqcpu;
1930 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1931 int maxloops = 200000;
1932 int restart_reason = 0;
1933 struct buf *restart_bp = NULL;
1934 static char flushingbufs[MAXCPU];
1935 char *flushingp;
1938 * We can't afford to block since we might be holding a vnode lock,
1939 * which may prevent system daemons from running. We deal with
1940 * low-memory situations by proactively returning memory and running
1941 * async I/O rather then sync I/O.
1944 ++getnewbufcalls;
1945 nqcpu = mycpu->gd_cpuid;
1946 flushingp = &flushingbufs[nqcpu];
1947 restart:
1948 if (bufspace < lobufspace)
1949 *flushingp = 0;
1951 if (debug_bufbio && --maxloops == 0)
1952 panic("getnewbuf, excessive loops on cpu %d restart %d (%p)",
1953 mycpu->gd_cpuid, restart_reason, restart_bp);
1956 * Setup for scan. If we do not have enough free buffers,
1957 * we setup a degenerate case that immediately fails. Note
1958 * that if we are specially marked process, we are allowed to
1959 * dip into our reserves.
1961 * The scanning sequence is nominally: EMPTY->CLEAN
1963 pcpu = &bufpcpu[nqcpu];
1964 spin_lock(&pcpu->spin);
1967 * Determine if repurposing should be disallowed. Generally speaking
1968 * do not repurpose buffers if the buffer cache hasn't capped. Also
1969 * control repurposing based on buffer-cache -> main-memory bandwidth.
1970 * That is, we want to recycle buffers normally up until the buffer
1971 * cache bandwidth (new-buffer bw) exceeds bufcache_bw.
1973 * (This is heuristical, SMP collisions are ok)
1975 if (repurposep) {
1976 int delta = ticks - bufcache_bw_ticks;
1977 if (delta < 0 || delta >= hz) {
1978 atomic_swap_long(&bufcache_bw_accum, 0);
1979 atomic_swap_int(&bufcache_bw_ticks, ticks);
1981 atomic_add_long(&bufcache_bw_accum, size);
1982 if (bufspace < lobufspace) {
1983 repurposep = NULL;
1984 } else if (bufcache_bw_accum < bufcache_bw) {
1985 repurposep = NULL;
1990 * Prime the scan for this cpu. Locate the first buffer to
1991 * check. If we are flushing buffers we must skip the
1992 * EMPTY queue.
1994 nqindex = BQUEUE_EMPTY;
1995 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_EMPTY]);
1996 if (nbp == NULL || *flushingp || repurposep) {
1997 nqindex = BQUEUE_CLEAN;
1998 nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN]);
2002 * Run scan, possibly freeing data and/or kva mappings on the fly,
2003 * depending.
2005 * WARNING! spin is held!
2007 while ((bp = nbp) != NULL) {
2008 int qindex = nqindex;
2010 nbp = TAILQ_NEXT(bp, b_freelist);
2013 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2014 * cycles through the queue twice before being selected.
2016 if (qindex == BQUEUE_CLEAN &&
2017 (bp->b_flags & B_AGE) == 0 && nbp) {
2018 bp->b_flags |= B_AGE;
2019 TAILQ_REMOVE(&pcpu->bufqueues[qindex],
2020 bp, b_freelist);
2021 TAILQ_INSERT_TAIL(&pcpu->bufqueues[qindex],
2022 bp, b_freelist);
2023 continue;
2027 * Calculate next bp ( we can only use it if we do not block
2028 * or do other fancy things ).
2030 if (nbp == NULL) {
2031 switch(qindex) {
2032 case BQUEUE_EMPTY:
2033 nqindex = BQUEUE_CLEAN;
2034 if ((nbp = TAILQ_FIRST(&pcpu->bufqueues[BQUEUE_CLEAN])))
2035 break;
2036 /* fall through */
2037 case BQUEUE_CLEAN:
2039 * nbp is NULL.
2041 break;
2046 * Sanity Checks
2048 KASSERT(bp->b_qindex == qindex,
2049 ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2052 * Note: we no longer distinguish between VMIO and non-VMIO
2053 * buffers.
2055 KASSERT((bp->b_flags & B_DELWRI) == 0,
2056 ("delwri buffer %p found in queue %d", bp, qindex));
2059 * Do not try to reuse a buffer with a non-zero b_refs.
2060 * This is an unsynchronized test. A synchronized test
2061 * is also performed after we lock the buffer.
2063 if (bp->b_refs)
2064 continue;
2067 * Start freeing the bp. This is somewhat involved. nbp
2068 * remains valid only for BQUEUE_EMPTY bp's. Buffers
2069 * on the clean list must be disassociated from their
2070 * current vnode. Buffers on the empty lists have
2071 * already been disassociated.
2073 * b_refs is checked after locking along with queue changes.
2074 * We must check here to deal with zero->nonzero transitions
2075 * made by the owner of the buffer lock, which is used by
2076 * VFS's to hold the buffer while issuing an unlocked
2077 * uiomove()s. We cannot invalidate the buffer's pages
2078 * for this case. Once we successfully lock a buffer the
2079 * only 0->1 transitions of b_refs will occur via findblk().
2081 * We must also check for queue changes after successful
2082 * locking as the current lock holder may dispose of the
2083 * buffer and change its queue.
2085 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2086 spin_unlock(&pcpu->spin);
2087 tsleep(&bd_request, 0, "gnbxxx", (hz + 99) / 100);
2088 restart_reason = 1;
2089 restart_bp = bp;
2090 goto restart;
2092 if (bp->b_qindex != qindex || bp->b_refs) {
2093 spin_unlock(&pcpu->spin);
2094 BUF_UNLOCK(bp);
2095 restart_reason = 2;
2096 restart_bp = bp;
2097 goto restart;
2099 bremfree_locked(bp);
2100 spin_unlock(&pcpu->spin);
2103 * Dependancies must be handled before we disassociate the
2104 * vnode.
2106 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2107 * be immediately disassociated. HAMMER then becomes
2108 * responsible for releasing the buffer.
2110 * NOTE: spin is UNLOCKED now.
2112 if (LIST_FIRST(&bp->b_dep) != NULL) {
2113 buf_deallocate(bp);
2114 if (bp->b_flags & B_LOCKED) {
2115 bqrelse(bp);
2116 restart_reason = 3;
2117 restart_bp = bp;
2118 goto restart;
2120 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2124 * CLEAN buffers have content or associations that must be
2125 * cleaned out if not repurposing.
2127 if (qindex == BQUEUE_CLEAN) {
2128 if (bp->b_flags & B_VMIO) {
2129 if (repurpose_enable &&
2130 repurposep && bp->b_bufsize &&
2131 (bp->b_flags & (B_DELWRI | B_MALLOC)) == 0) {
2132 *repurposep = bp->b_vp->v_object;
2133 vm_object_hold(*repurposep);
2134 } else {
2135 vfs_vmio_release(bp);
2138 if (bp->b_vp)
2139 brelvp(bp);
2143 * NOTE: nbp is now entirely invalid. We can only restart
2144 * the scan from this point on.
2146 * Get the rest of the buffer freed up. b_kva* is still
2147 * valid after this operation.
2149 KASSERT(bp->b_vp == NULL,
2150 ("bp3 %p flags %08x vnode %p qindex %d "
2151 "unexpectededly still associated!",
2152 bp, bp->b_flags, bp->b_vp, qindex));
2153 KKASSERT((bp->b_flags & B_HASHED) == 0);
2155 if (repurposep == NULL || *repurposep == NULL) {
2156 if (bp->b_bufsize)
2157 allocbuf(bp, 0);
2160 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN | B_HASHED)) {
2161 kprintf("getnewbuf: caught bug vp queue "
2162 "%p/%08x qidx %d\n",
2163 bp, bp->b_flags, qindex);
2164 brelvp(bp);
2166 bp->b_flags = B_BNOCLIP;
2167 bp->b_cmd = BUF_CMD_DONE;
2168 bp->b_vp = NULL;
2169 bp->b_error = 0;
2170 bp->b_resid = 0;
2171 bp->b_bcount = 0;
2172 if (repurposep == NULL || *repurposep == NULL)
2173 bp->b_xio.xio_npages = 0;
2174 bp->b_dirtyoff = bp->b_dirtyend = 0;
2175 bp->b_act_count = ACT_INIT;
2176 reinitbufbio(bp);
2177 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2178 buf_dep_init(bp);
2179 if (blkflags & GETBLK_BHEAVY)
2180 bp->b_flags |= B_HEAVY;
2182 if (bufspace >= hibufspace)
2183 *flushingp = 1;
2184 if (bufspace < lobufspace)
2185 *flushingp = 0;
2186 if (*flushingp) {
2187 if (repurposep && *repurposep != NULL) {
2188 bp->b_flags |= B_VMIO;
2189 vfs_vmio_release(bp);
2190 if (bp->b_bufsize)
2191 allocbuf(bp, 0);
2192 vm_object_drop(*repurposep);
2193 *repurposep = NULL;
2195 bp->b_flags |= B_INVAL;
2196 brelse(bp);
2197 restart_reason = 5;
2198 restart_bp = bp;
2199 goto restart;
2203 * b_refs can transition to a non-zero value while we hold
2204 * the buffer locked due to a findblk(). Our brelvp() above
2205 * interlocked any future possible transitions due to
2206 * findblk()s.
2208 * If we find b_refs to be non-zero we can destroy the
2209 * buffer's contents but we cannot yet reuse the buffer.
2211 if (bp->b_refs) {
2212 if (repurposep && *repurposep != NULL) {
2213 bp->b_flags |= B_VMIO;
2214 vfs_vmio_release(bp);
2215 if (bp->b_bufsize)
2216 allocbuf(bp, 0);
2217 vm_object_drop(*repurposep);
2218 *repurposep = NULL;
2220 bp->b_flags |= B_INVAL;
2221 brelse(bp);
2222 restart_reason = 6;
2223 restart_bp = bp;
2225 goto restart;
2229 * We found our buffer!
2231 break;
2235 * If we exhausted our list, iterate other cpus. If that fails,
2236 * sleep as appropriate. We may have to wakeup various daemons
2237 * and write out some dirty buffers.
2239 * Generally we are sleeping due to insufficient buffer space.
2241 * NOTE: spin is held if bp is NULL, else it is not held.
2243 if (bp == NULL) {
2244 int flags;
2245 char *waitmsg;
2247 spin_unlock(&pcpu->spin);
2249 nqcpu = (nqcpu + 1) % ncpus;
2250 if (nqcpu != mycpu->gd_cpuid) {
2251 restart_reason = 7;
2252 restart_bp = bp;
2253 goto restart;
2256 if (bufspace >= hibufspace) {
2257 waitmsg = "bufspc";
2258 flags = VFS_BIO_NEED_BUFSPACE;
2259 } else {
2260 waitmsg = "newbuf";
2261 flags = VFS_BIO_NEED_ANY;
2264 bd_speedup(); /* heeeelp */
2265 atomic_set_int(&needsbuffer, flags);
2266 while (needsbuffer & flags) {
2267 int value;
2269 tsleep_interlock(&needsbuffer, 0);
2270 value = atomic_fetchadd_int(&needsbuffer, 0);
2271 if (value & flags) {
2272 if (tsleep(&needsbuffer, PINTERLOCKED|slpflags,
2273 waitmsg, slptimeo)) {
2274 return (NULL);
2278 } else {
2280 * We finally have a valid bp. Reset b_data.
2282 * (spin is not held)
2284 bp->b_data = bp->b_kvabase;
2286 return(bp);
2290 * buf_daemon:
2292 * Buffer flushing daemon. Buffers are normally flushed by the
2293 * update daemon but if it cannot keep up this process starts to
2294 * take the load in an attempt to prevent getnewbuf() from blocking.
2296 * Once a flush is initiated it does not stop until the number
2297 * of buffers falls below lodirtybuffers, but we will wake up anyone
2298 * waiting at the mid-point.
2300 static struct kproc_desc buf_kp = {
2301 "bufdaemon",
2302 buf_daemon,
2303 &bufdaemon_td
2305 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2306 kproc_start, &buf_kp);
2308 static struct kproc_desc bufhw_kp = {
2309 "bufdaemon_hw",
2310 buf_daemon_hw,
2311 &bufdaemonhw_td
2313 SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2314 kproc_start, &bufhw_kp);
2316 static void
2317 buf_daemon1(struct thread *td, int queue, int (*buf_limit_fn)(long),
2318 int *bd_req)
2320 long limit;
2321 struct buf *marker;
2323 marker = kmalloc(sizeof(*marker), M_BIOBUF, M_WAITOK | M_ZERO);
2324 marker->b_flags |= B_MARKER;
2325 marker->b_qindex = BQUEUE_NONE;
2326 marker->b_qcpu = 0;
2329 * This process needs to be suspended prior to shutdown sync.
2331 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2332 td, SHUTDOWN_PRI_LAST);
2333 curthread->td_flags |= TDF_SYSTHREAD;
2336 * This process is allowed to take the buffer cache to the limit
2338 for (;;) {
2339 kproc_suspend_loop();
2342 * Do the flush as long as the number of dirty buffers
2343 * (including those running) exceeds lodirtybufspace.
2345 * When flushing limit running I/O to hirunningspace
2346 * Do the flush. Limit the amount of in-transit I/O we
2347 * allow to build up, otherwise we would completely saturate
2348 * the I/O system. Wakeup any waiting processes before we
2349 * normally would so they can run in parallel with our drain.
2351 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2352 * but because we split the operation into two threads we
2353 * have to cut it in half for each thread.
2355 waitrunningbufspace();
2356 limit = lodirtybufspace / 2;
2357 while (buf_limit_fn(limit)) {
2358 if (flushbufqueues(marker, queue) == 0)
2359 break;
2360 if (runningbufspace < hirunningspace)
2361 continue;
2362 waitrunningbufspace();
2366 * We reached our low water mark, reset the
2367 * request and sleep until we are needed again.
2368 * The sleep is just so the suspend code works.
2370 tsleep_interlock(bd_req, 0);
2371 if (atomic_swap_int(bd_req, 0) == 0)
2372 tsleep(bd_req, PINTERLOCKED, "psleep", hz);
2374 /* NOT REACHED */
2375 /*kfree(marker, M_BIOBUF);*/
2378 static int
2379 buf_daemon_limit(long limit)
2381 return (runningbufspace + dirtykvaspace > limit ||
2382 dirtybufcount - dirtybufcounthw >= nbuf / 2);
2385 static int
2386 buf_daemon_hw_limit(long limit)
2388 return (runningbufspace + dirtykvaspace > limit ||
2389 dirtybufcounthw >= nbuf / 2);
2392 static void
2393 buf_daemon(void)
2395 buf_daemon1(bufdaemon_td, BQUEUE_DIRTY, buf_daemon_limit,
2396 &bd_request);
2399 static void
2400 buf_daemon_hw(void)
2402 buf_daemon1(bufdaemonhw_td, BQUEUE_DIRTY_HW, buf_daemon_hw_limit,
2403 &bd_request_hw);
2407 * Flush up to (flushperqueue) buffers in the dirty queue. Each cpu has a
2408 * localized version of the queue. Each call made to this function iterates
2409 * to another cpu. It is desireable to flush several buffers from the same
2410 * cpu's queue at once, as these are likely going to be linear.
2412 * We must be careful to free up B_INVAL buffers instead of write them, which
2413 * NFS is particularly sensitive to.
2415 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate that we
2416 * really want to try to get the buffer out and reuse it due to the write
2417 * load on the machine.
2419 * We must lock the buffer in order to check its validity before we can mess
2420 * with its contents. spin isn't enough.
2422 static int
2423 flushbufqueues(struct buf *marker, bufq_type_t q)
2425 struct bufpcpu *pcpu;
2426 struct buf *bp;
2427 int r = 0;
2428 u_int loops = flushperqueue;
2429 int lcpu = marker->b_qcpu;
2431 KKASSERT(marker->b_qindex == BQUEUE_NONE);
2432 KKASSERT(marker->b_flags & B_MARKER);
2434 again:
2436 * Spinlock needed to perform operations on the queue and may be
2437 * held through a non-blocking BUF_LOCK(), but cannot be held when
2438 * BUF_UNLOCK()ing or through any other major operation.
2440 pcpu = &bufpcpu[marker->b_qcpu];
2441 spin_lock(&pcpu->spin);
2442 marker->b_qindex = q;
2443 TAILQ_INSERT_HEAD(&pcpu->bufqueues[q], marker, b_freelist);
2444 bp = marker;
2446 while ((bp = TAILQ_NEXT(bp, b_freelist)) != NULL) {
2448 * NOTE: spinlock is always held at the top of the loop
2450 if (bp->b_flags & B_MARKER)
2451 continue;
2452 if ((bp->b_flags & B_DELWRI) == 0) {
2453 kprintf("Unexpected clean buffer %p\n", bp);
2454 continue;
2456 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2457 continue;
2458 KKASSERT(bp->b_qcpu == marker->b_qcpu && bp->b_qindex == q);
2461 * Once the buffer is locked we will have no choice but to
2462 * unlock the spinlock around a later BUF_UNLOCK and re-set
2463 * bp = marker when looping. Move the marker now to make
2464 * things easier.
2466 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2467 TAILQ_INSERT_AFTER(&pcpu->bufqueues[q], bp, marker, b_freelist);
2470 * Must recheck B_DELWRI after successfully locking
2471 * the buffer.
2473 if ((bp->b_flags & B_DELWRI) == 0) {
2474 spin_unlock(&pcpu->spin);
2475 BUF_UNLOCK(bp);
2476 spin_lock(&pcpu->spin);
2477 bp = marker;
2478 continue;
2482 * Remove the buffer from its queue. We still own the
2483 * spinlock here.
2485 _bremfree(bp);
2488 * Disposing of an invalid buffer counts as a flush op
2490 if (bp->b_flags & B_INVAL) {
2491 spin_unlock(&pcpu->spin);
2492 brelse(bp);
2493 goto doloop;
2497 * Release the spinlock for the more complex ops we
2498 * are now going to do.
2500 spin_unlock(&pcpu->spin);
2501 lwkt_yield();
2504 * This is a bit messy
2506 if (LIST_FIRST(&bp->b_dep) != NULL &&
2507 (bp->b_flags & B_DEFERRED) == 0 &&
2508 buf_countdeps(bp, 0)) {
2509 spin_lock(&pcpu->spin);
2510 TAILQ_INSERT_TAIL(&pcpu->bufqueues[q], bp, b_freelist);
2511 bp->b_qindex = q;
2512 bp->b_flags |= B_DEFERRED;
2513 spin_unlock(&pcpu->spin);
2514 BUF_UNLOCK(bp);
2515 spin_lock(&pcpu->spin);
2516 bp = marker;
2517 continue;
2521 * spinlock not held here.
2523 * If the buffer has a dependancy, buf_checkwrite() must
2524 * also return 0 for us to be able to initate the write.
2526 * If the buffer is flagged B_ERROR it may be requeued
2527 * over and over again, we try to avoid a live lock.
2529 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
2530 brelse(bp);
2531 } else if (bp->b_flags & B_ERROR) {
2532 tsleep(bp, 0, "bioer", 1);
2533 bp->b_flags &= ~B_AGE;
2534 cluster_awrite(bp);
2535 } else {
2536 bp->b_flags |= B_AGE;
2537 cluster_awrite(bp);
2539 /* bp invalid but needs to be NULL-tested if we break out */
2540 doloop:
2541 spin_lock(&pcpu->spin);
2542 ++r;
2543 if (--loops == 0)
2544 break;
2545 bp = marker;
2547 /* bp is invalid here but can be NULL-tested to advance */
2549 TAILQ_REMOVE(&pcpu->bufqueues[q], marker, b_freelist);
2550 marker->b_qindex = BQUEUE_NONE;
2551 spin_unlock(&pcpu->spin);
2554 * Advance the marker to be fair.
2556 marker->b_qcpu = (marker->b_qcpu + 1) % ncpus;
2557 if (bp == NULL) {
2558 if (marker->b_qcpu != lcpu)
2559 goto again;
2562 return (r);
2566 * inmem:
2568 * Returns true if no I/O is needed to access the associated VM object.
2569 * This is like findblk except it also hunts around in the VM system for
2570 * the data.
2572 * Note that we ignore vm_page_free() races from interrupts against our
2573 * lookup, since if the caller is not protected our return value will not
2574 * be any more valid then otherwise once we exit the critical section.
2577 inmem(struct vnode *vp, off_t loffset)
2579 vm_object_t obj;
2580 vm_offset_t toff, tinc, size;
2581 vm_page_t m;
2582 int res = 1;
2584 if (findblk(vp, loffset, FINDBLK_TEST))
2585 return 1;
2586 if (vp->v_mount == NULL)
2587 return 0;
2588 if ((obj = vp->v_object) == NULL)
2589 return 0;
2591 size = PAGE_SIZE;
2592 if (size > vp->v_mount->mnt_stat.f_iosize)
2593 size = vp->v_mount->mnt_stat.f_iosize;
2595 vm_object_hold(obj);
2596 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2597 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2598 if (m == NULL) {
2599 res = 0;
2600 break;
2602 tinc = size;
2603 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2604 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2605 if (vm_page_is_valid(m,
2606 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0) {
2607 res = 0;
2608 break;
2611 vm_object_drop(obj);
2612 return (res);
2616 * findblk:
2618 * Locate and return the specified buffer. Unless flagged otherwise,
2619 * a locked buffer will be returned if it exists or NULL if it does not.
2621 * findblk()'d buffers are still on the bufqueues and if you intend
2622 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2623 * and possibly do other stuff to it.
2625 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2626 * for locking the buffer and ensuring that it remains
2627 * the desired buffer after locking.
2629 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2630 * to acquire the lock we return NULL, even if the
2631 * buffer exists.
2633 * FINDBLK_REF - Returns the buffer ref'd, which prevents normal
2634 * reuse by getnewbuf() but does not prevent
2635 * disassociation (B_INVAL). Used to avoid deadlocks
2636 * against random (vp,loffset)s due to reassignment.
2638 * (0) - Lock the buffer blocking.
2640 struct buf *
2641 findblk(struct vnode *vp, off_t loffset, int flags)
2643 struct buf *bp;
2644 int lkflags;
2646 lkflags = LK_EXCLUSIVE;
2647 if (flags & FINDBLK_NBLOCK)
2648 lkflags |= LK_NOWAIT;
2650 for (;;) {
2652 * Lookup. Ref the buf while holding v_token to prevent
2653 * reuse (but does not prevent diassociation).
2655 lwkt_gettoken_shared(&vp->v_token);
2656 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2657 if (bp == NULL) {
2658 lwkt_reltoken(&vp->v_token);
2659 return(NULL);
2661 bqhold(bp);
2662 lwkt_reltoken(&vp->v_token);
2665 * If testing only break and return bp, do not lock.
2667 if (flags & FINDBLK_TEST)
2668 break;
2671 * Lock the buffer, return an error if the lock fails.
2672 * (only FINDBLK_NBLOCK can cause the lock to fail).
2674 if (BUF_LOCK(bp, lkflags)) {
2675 atomic_subtract_int(&bp->b_refs, 1);
2676 /* bp = NULL; not needed */
2677 return(NULL);
2681 * Revalidate the locked buf before allowing it to be
2682 * returned.
2684 if (bp->b_vp == vp && bp->b_loffset == loffset)
2685 break;
2686 atomic_subtract_int(&bp->b_refs, 1);
2687 BUF_UNLOCK(bp);
2691 * Success
2693 if ((flags & FINDBLK_REF) == 0)
2694 atomic_subtract_int(&bp->b_refs, 1);
2695 return(bp);
2699 * getcacheblk:
2701 * Similar to getblk() except only returns the buffer if it is
2702 * B_CACHE and requires no other manipulation. Otherwise NULL
2703 * is returned. NULL is also returned if GETBLK_NOWAIT is set
2704 * and the getblk() would block.
2706 * If B_RAM is set the buffer might be just fine, but we return
2707 * NULL anyway because we want the code to fall through to the
2708 * cluster read to issue more read-aheads. Otherwise read-ahead breaks.
2710 * If blksize is 0 the buffer cache buffer must already be fully
2711 * cached.
2713 * If blksize is non-zero getblk() will be used, allowing a buffer
2714 * to be reinstantiated from its VM backing store. The buffer must
2715 * still be fully cached after reinstantiation to be returned.
2717 struct buf *
2718 getcacheblk(struct vnode *vp, off_t loffset, int blksize, int blkflags)
2720 struct buf *bp;
2721 int fndflags = (blkflags & GETBLK_NOWAIT) ? FINDBLK_NBLOCK : 0;
2723 if (blksize) {
2724 bp = getblk(vp, loffset, blksize, blkflags, 0);
2725 if (bp) {
2726 if ((bp->b_flags & (B_INVAL | B_CACHE)) == B_CACHE) {
2727 bp->b_flags &= ~B_AGE;
2728 if (bp->b_flags & B_RAM) {
2729 bqrelse(bp);
2730 bp = NULL;
2732 } else {
2733 brelse(bp);
2734 bp = NULL;
2737 } else {
2738 bp = findblk(vp, loffset, fndflags);
2739 if (bp) {
2740 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) ==
2741 B_CACHE) {
2742 bp->b_flags &= ~B_AGE;
2743 bremfree(bp);
2744 } else {
2745 BUF_UNLOCK(bp);
2746 bp = NULL;
2750 return (bp);
2754 * getblk:
2756 * Get a block given a specified block and offset into a file/device.
2757 * B_INVAL may or may not be set on return. The caller should clear
2758 * B_INVAL prior to initiating a READ.
2760 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2761 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2762 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2763 * without doing any of those things the system will likely believe
2764 * the buffer to be valid (especially if it is not B_VMIO), and the
2765 * next getblk() will return the buffer with B_CACHE set.
2767 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2768 * an existing buffer.
2770 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2771 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2772 * and then cleared based on the backing VM. If the previous buffer is
2773 * non-0-sized but invalid, B_CACHE will be cleared.
2775 * If getblk() must create a new buffer, the new buffer is returned with
2776 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2777 * case it is returned with B_INVAL clear and B_CACHE set based on the
2778 * backing VM.
2780 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2781 * B_CACHE bit is clear.
2783 * What this means, basically, is that the caller should use B_CACHE to
2784 * determine whether the buffer is fully valid or not and should clear
2785 * B_INVAL prior to issuing a read. If the caller intends to validate
2786 * the buffer by loading its data area with something, the caller needs
2787 * to clear B_INVAL. If the caller does this without issuing an I/O,
2788 * the caller should set B_CACHE ( as an optimization ), else the caller
2789 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2790 * a write attempt or if it was a successfull read. If the caller
2791 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2792 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2794 * getblk flags:
2796 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2797 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2799 struct buf *
2800 getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2802 struct buf *bp;
2803 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2804 int error;
2805 int lkflags;
2807 if (size > MAXBSIZE)
2808 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2809 if (vp->v_object == NULL)
2810 panic("getblk: vnode %p has no object!", vp);
2812 loop:
2813 if ((bp = findblk(vp, loffset, FINDBLK_REF | FINDBLK_TEST)) != NULL) {
2815 * The buffer was found in the cache, but we need to lock it.
2816 * We must acquire a ref on the bp to prevent reuse, but
2817 * this will not prevent disassociation (brelvp()) so we
2818 * must recheck (vp,loffset) after acquiring the lock.
2820 * Without the ref the buffer could potentially be reused
2821 * before we acquire the lock and create a deadlock
2822 * situation between the thread trying to reuse the buffer
2823 * and us due to the fact that we would wind up blocking
2824 * on a random (vp,loffset).
2826 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2827 if (blkflags & GETBLK_NOWAIT) {
2828 bqdrop(bp);
2829 return(NULL);
2831 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2832 if (blkflags & GETBLK_PCATCH)
2833 lkflags |= LK_PCATCH;
2834 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2835 if (error) {
2836 bqdrop(bp);
2837 if (error == ENOLCK)
2838 goto loop;
2839 return (NULL);
2841 /* buffer may have changed on us */
2843 bqdrop(bp);
2846 * Once the buffer has been locked, make sure we didn't race
2847 * a buffer recyclement. Buffers that are no longer hashed
2848 * will have b_vp == NULL, so this takes care of that check
2849 * as well.
2851 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2852 #if 0
2853 kprintf("Warning buffer %p (vp %p loffset %lld) "
2854 "was recycled\n",
2855 bp, vp, (long long)loffset);
2856 #endif
2857 BUF_UNLOCK(bp);
2858 goto loop;
2862 * If SZMATCH any pre-existing buffer must be of the requested
2863 * size or NULL is returned. The caller absolutely does not
2864 * want getblk() to bwrite() the buffer on a size mismatch.
2866 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2867 BUF_UNLOCK(bp);
2868 return(NULL);
2872 * All vnode-based buffers must be backed by a VM object.
2874 KKASSERT(bp->b_flags & B_VMIO);
2875 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2876 bp->b_flags &= ~B_AGE;
2879 * Make sure that B_INVAL buffers do not have a cached
2880 * block number translation.
2882 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2883 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2884 " did not have cleared bio_offset cache\n",
2885 bp, vp, (long long)loffset);
2886 clearbiocache(&bp->b_bio2);
2890 * The buffer is locked. B_CACHE is cleared if the buffer is
2891 * invalid.
2893 if (bp->b_flags & B_INVAL)
2894 bp->b_flags &= ~B_CACHE;
2895 bremfree(bp);
2898 * Any size inconsistancy with a dirty buffer or a buffer
2899 * with a softupdates dependancy must be resolved. Resizing
2900 * the buffer in such circumstances can lead to problems.
2902 * Dirty or dependant buffers are written synchronously.
2903 * Other types of buffers are simply released and
2904 * reconstituted as they may be backed by valid, dirty VM
2905 * pages (but not marked B_DELWRI).
2907 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2908 * and may be left over from a prior truncation (and thus
2909 * no longer represent the actual EOF point), so we
2910 * definitely do not want to B_NOCACHE the backing store.
2912 if (size != bp->b_bcount) {
2913 if (bp->b_flags & B_DELWRI) {
2914 bp->b_flags |= B_RELBUF;
2915 bwrite(bp);
2916 } else if (LIST_FIRST(&bp->b_dep)) {
2917 bp->b_flags |= B_RELBUF;
2918 bwrite(bp);
2919 } else {
2920 bp->b_flags |= B_RELBUF;
2921 brelse(bp);
2923 goto loop;
2925 KKASSERT(size <= bp->b_kvasize);
2926 KASSERT(bp->b_loffset != NOOFFSET,
2927 ("getblk: no buffer offset"));
2930 * A buffer with B_DELWRI set and B_CACHE clear must
2931 * be committed before we can return the buffer in
2932 * order to prevent the caller from issuing a read
2933 * ( due to B_CACHE not being set ) and overwriting
2934 * it.
2936 * Most callers, including NFS and FFS, need this to
2937 * operate properly either because they assume they
2938 * can issue a read if B_CACHE is not set, or because
2939 * ( for example ) an uncached B_DELWRI might loop due
2940 * to softupdates re-dirtying the buffer. In the latter
2941 * case, B_CACHE is set after the first write completes,
2942 * preventing further loops.
2944 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2945 * above while extending the buffer, we cannot allow the
2946 * buffer to remain with B_CACHE set after the write
2947 * completes or it will represent a corrupt state. To
2948 * deal with this we set B_NOCACHE to scrap the buffer
2949 * after the write.
2951 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2952 * I'm not even sure this state is still possible
2953 * now that getblk() writes out any dirty buffers
2954 * on size changes.
2956 * We might be able to do something fancy, like setting
2957 * B_CACHE in bwrite() except if B_DELWRI is already set,
2958 * so the below call doesn't set B_CACHE, but that gets real
2959 * confusing. This is much easier.
2962 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2963 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2964 "and CACHE clear, b_flags %08x\n",
2965 bp, (uintmax_t)bp->b_loffset, bp->b_flags);
2966 bp->b_flags |= B_NOCACHE;
2967 bwrite(bp);
2968 goto loop;
2970 } else {
2972 * Buffer is not in-core, create new buffer. The buffer
2973 * returned by getnewbuf() is locked. Note that the returned
2974 * buffer is also considered valid (not marked B_INVAL).
2976 * Calculating the offset for the I/O requires figuring out
2977 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2978 * the mount's f_iosize otherwise. If the vnode does not
2979 * have an associated mount we assume that the passed size is
2980 * the block size.
2982 * Note that vn_isdisk() cannot be used here since it may
2983 * return a failure for numerous reasons. Note that the
2984 * buffer size may be larger then the block size (the caller
2985 * will use block numbers with the proper multiple). Beware
2986 * of using any v_* fields which are part of unions. In
2987 * particular, in DragonFly the mount point overloading
2988 * mechanism uses the namecache only and the underlying
2989 * directory vnode is not a special case.
2991 int bsize, maxsize;
2992 vm_object_t repurpose;
2994 if (vp->v_type == VBLK || vp->v_type == VCHR)
2995 bsize = DEV_BSIZE;
2996 else if (vp->v_mount)
2997 bsize = vp->v_mount->mnt_stat.f_iosize;
2998 else
2999 bsize = size;
3001 maxsize = size + (loffset & PAGE_MASK);
3002 maxsize = imax(maxsize, bsize);
3003 repurpose = NULL;
3006 * Allow repurposing. The returned buffer may contain VM
3007 * pages associated with its previous incarnation. These
3008 * pages must be repurposed for the new buffer (hopefully
3009 * without disturbing the KVM mapping).
3011 * WARNING! If repurpose != NULL on return, the buffer will
3012 * still contain some data from its prior
3013 * incarnation. We MUST properly dispose of this
3014 * data.
3016 bp = getnewbuf(blkflags, slptimeo, size, maxsize, &repurpose);
3017 if (bp == NULL) {
3018 if (slpflags || slptimeo)
3019 return NULL;
3020 goto loop;
3024 * Atomically insert the buffer into the hash, so that it can
3025 * be found by findblk().
3027 * If bgetvp() returns non-zero a collision occured, and the
3028 * bp will not be associated with the vnode.
3030 * Make sure the translation layer has been cleared.
3032 bp->b_loffset = loffset;
3033 bp->b_bio2.bio_offset = NOOFFSET;
3034 /* bp->b_bio2.bio_next = NULL; */
3036 if (bgetvp(vp, bp, size)) {
3037 if (repurpose) {
3038 bp->b_flags |= B_VMIO;
3039 repurposebuf(bp, 0);
3040 vm_object_drop(repurpose);
3042 bp->b_flags |= B_INVAL;
3043 brelse(bp);
3044 goto loop;
3048 * All vnode-based buffers must be backed by a VM object.
3050 KKASSERT(vp->v_object != NULL);
3051 bp->b_flags |= B_VMIO;
3052 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3055 * If we allowed repurposing of the buffer it will contain
3056 * free-but-held vm_page's, already kmapped, that can be
3057 * repurposed. The repurposebuf() code handles reassigning
3058 * those pages to the new (object, offsets) and dealing with
3059 * the case where the pages already exist.
3061 if (repurpose) {
3062 repurposebuf(bp, size);
3063 vm_object_drop(repurpose);
3064 } else {
3065 allocbuf(bp, size);
3068 return (bp);
3072 * regetblk(bp)
3074 * Reacquire a buffer that was previously released to the locked queue,
3075 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
3076 * set B_LOCKED (which handles the acquisition race).
3078 * To this end, either B_LOCKED must be set or the dependancy list must be
3079 * non-empty.
3081 void
3082 regetblk(struct buf *bp)
3084 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
3085 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
3086 bremfree(bp);
3090 * geteblk:
3092 * Get an empty, disassociated buffer of given size. The buffer is
3093 * initially set to B_INVAL.
3095 * critical section protection is not required for the allocbuf()
3096 * call because races are impossible here.
3098 struct buf *
3099 geteblk(int size)
3101 struct buf *bp;
3103 while ((bp = getnewbuf(0, 0, size, MAXBSIZE, NULL)) == NULL)
3105 allocbuf(bp, size);
3106 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
3108 return (bp);
3112 * allocbuf:
3114 * This code constitutes the buffer memory from either anonymous system
3115 * memory (in the case of non-VMIO operations) or from an associated
3116 * VM object (in the case of VMIO operations). This code is able to
3117 * resize a buffer up or down.
3119 * Note that this code is tricky, and has many complications to resolve
3120 * deadlock or inconsistant data situations. Tread lightly!!!
3121 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3122 * the caller. Calling this code willy nilly can result in the loss of
3123 * data.
3125 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
3126 * B_CACHE for the non-VMIO case.
3128 * This routine does not need to be called from a critical section but you
3129 * must own the buffer.
3131 void
3132 allocbuf(struct buf *bp, int size)
3134 int newbsize, mbsize;
3135 int i;
3137 if (BUF_REFCNT(bp) == 0)
3138 panic("allocbuf: buffer not busy");
3140 if (bp->b_kvasize < size)
3141 panic("allocbuf: buffer too small");
3143 if ((bp->b_flags & B_VMIO) == 0) {
3144 caddr_t origbuf;
3145 int origbufsize;
3147 * Just get anonymous memory from the kernel. Don't
3148 * mess with B_CACHE.
3150 mbsize = roundup2(size, DEV_BSIZE);
3151 if (bp->b_flags & B_MALLOC)
3152 newbsize = mbsize;
3153 else
3154 newbsize = round_page(size);
3156 if (newbsize < bp->b_bufsize) {
3158 * Malloced buffers are not shrunk
3160 if (bp->b_flags & B_MALLOC) {
3161 if (newbsize) {
3162 bp->b_bcount = size;
3163 } else {
3164 kfree(bp->b_data, M_BIOBUF);
3165 if (bp->b_bufsize) {
3166 atomic_subtract_long(&bufmallocspace, bp->b_bufsize);
3167 bp->b_bufsize = 0;
3168 bufspacewakeup();
3170 bp->b_data = bp->b_kvabase;
3171 bp->b_bcount = 0;
3172 bp->b_flags &= ~B_MALLOC;
3174 return;
3176 vm_hold_free_pages(
3178 (vm_offset_t) bp->b_data + newbsize,
3179 (vm_offset_t) bp->b_data + bp->b_bufsize);
3180 } else if (newbsize > bp->b_bufsize) {
3182 * We only use malloced memory on the first allocation.
3183 * and revert to page-allocated memory when the buffer
3184 * grows.
3186 if ((bufmallocspace < maxbufmallocspace) &&
3187 (bp->b_bufsize == 0) &&
3188 (mbsize <= PAGE_SIZE/2)) {
3190 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3191 bp->b_bufsize = mbsize;
3192 bp->b_bcount = size;
3193 bp->b_flags |= B_MALLOC;
3194 atomic_add_long(&bufmallocspace, mbsize);
3195 return;
3197 origbuf = NULL;
3198 origbufsize = 0;
3200 * If the buffer is growing on its other-than-first
3201 * allocation, then we revert to the page-allocation
3202 * scheme.
3204 if (bp->b_flags & B_MALLOC) {
3205 origbuf = bp->b_data;
3206 origbufsize = bp->b_bufsize;
3207 bp->b_data = bp->b_kvabase;
3208 if (bp->b_bufsize) {
3209 atomic_subtract_long(&bufmallocspace,
3210 bp->b_bufsize);
3211 bp->b_bufsize = 0;
3212 bufspacewakeup();
3214 bp->b_flags &= ~B_MALLOC;
3215 newbsize = round_page(newbsize);
3217 vm_hold_load_pages(
3219 (vm_offset_t) bp->b_data + bp->b_bufsize,
3220 (vm_offset_t) bp->b_data + newbsize);
3221 if (origbuf) {
3222 bcopy(origbuf, bp->b_data, origbufsize);
3223 kfree(origbuf, M_BIOBUF);
3226 } else {
3227 vm_page_t m;
3228 int desiredpages;
3230 newbsize = roundup2(size, DEV_BSIZE);
3231 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3232 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3233 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3235 if (bp->b_flags & B_MALLOC)
3236 panic("allocbuf: VMIO buffer can't be malloced");
3238 * Set B_CACHE initially if buffer is 0 length or will become
3239 * 0-length.
3241 if (size == 0 || bp->b_bufsize == 0)
3242 bp->b_flags |= B_CACHE;
3244 if (newbsize < bp->b_bufsize) {
3246 * DEV_BSIZE aligned new buffer size is less then the
3247 * DEV_BSIZE aligned existing buffer size. Figure out
3248 * if we have to remove any pages.
3250 if (desiredpages < bp->b_xio.xio_npages) {
3251 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3253 * the page is not freed here -- it
3254 * is the responsibility of
3255 * vnode_pager_setsize
3257 m = bp->b_xio.xio_pages[i];
3258 KASSERT(m != bogus_page,
3259 ("allocbuf: bogus page found"));
3260 vm_page_busy_wait(m, TRUE, "biodep");
3261 bp->b_xio.xio_pages[i] = NULL;
3262 vm_page_unwire(m, 0);
3263 vm_page_wakeup(m);
3265 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3266 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3267 bp->b_xio.xio_npages = desiredpages;
3269 } else if (size > bp->b_bcount) {
3271 * We are growing the buffer, possibly in a
3272 * byte-granular fashion.
3274 struct vnode *vp;
3275 vm_object_t obj;
3276 vm_offset_t toff;
3277 vm_offset_t tinc;
3280 * Step 1, bring in the VM pages from the object,
3281 * allocating them if necessary. We must clear
3282 * B_CACHE if these pages are not valid for the
3283 * range covered by the buffer.
3285 vp = bp->b_vp;
3286 obj = vp->v_object;
3288 vm_object_hold(obj);
3289 while (bp->b_xio.xio_npages < desiredpages) {
3290 vm_page_t m;
3291 vm_pindex_t pi;
3292 int error;
3294 pi = OFF_TO_IDX(bp->b_loffset) +
3295 bp->b_xio.xio_npages;
3298 * Blocking on m->busy might lead to a
3299 * deadlock:
3301 * vm_fault->getpages->cluster_read->allocbuf
3303 m = vm_page_lookup_busy_try(obj, pi, FALSE,
3304 &error);
3305 if (error) {
3306 vm_page_sleep_busy(m, FALSE, "pgtblk");
3307 continue;
3309 if (m == NULL) {
3311 * note: must allocate system pages
3312 * since blocking here could intefere
3313 * with paging I/O, no matter which
3314 * process we are.
3316 m = bio_page_alloc(bp, obj, pi, desiredpages - bp->b_xio.xio_npages);
3317 if (m) {
3318 vm_page_wire(m);
3319 vm_page_wakeup(m);
3320 bp->b_flags &= ~B_CACHE;
3321 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3322 ++bp->b_xio.xio_npages;
3324 continue;
3328 * We found a page and were able to busy it.
3330 vm_page_wire(m);
3331 vm_page_wakeup(m);
3332 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3333 ++bp->b_xio.xio_npages;
3334 if (bp->b_act_count < m->act_count)
3335 bp->b_act_count = m->act_count;
3337 vm_object_drop(obj);
3340 * Step 2. We've loaded the pages into the buffer,
3341 * we have to figure out if we can still have B_CACHE
3342 * set. Note that B_CACHE is set according to the
3343 * byte-granular range ( bcount and size ), not the
3344 * aligned range ( newbsize ).
3346 * The VM test is against m->valid, which is DEV_BSIZE
3347 * aligned. Needless to say, the validity of the data
3348 * needs to also be DEV_BSIZE aligned. Note that this
3349 * fails with NFS if the server or some other client
3350 * extends the file's EOF. If our buffer is resized,
3351 * B_CACHE may remain set! XXX
3354 toff = bp->b_bcount;
3355 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3357 while ((bp->b_flags & B_CACHE) && toff < size) {
3358 vm_pindex_t pi;
3360 if (tinc > (size - toff))
3361 tinc = size - toff;
3363 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3364 PAGE_SHIFT;
3366 vfs_buf_test_cache(
3367 bp,
3368 bp->b_loffset,
3369 toff,
3370 tinc,
3371 bp->b_xio.xio_pages[pi]
3373 toff += tinc;
3374 tinc = PAGE_SIZE;
3378 * Step 3, fixup the KVM pmap. Remember that
3379 * bp->b_data is relative to bp->b_loffset, but
3380 * bp->b_loffset may be offset into the first page.
3382 bp->b_data = (caddr_t)
3383 trunc_page((vm_offset_t)bp->b_data);
3384 pmap_qenter((vm_offset_t)bp->b_data,
3385 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3386 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3387 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3389 atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3392 /* adjust space use on already-dirty buffer */
3393 if (bp->b_flags & B_DELWRI) {
3394 /* dirtykvaspace unchanged */
3395 atomic_add_long(&dirtybufspace, newbsize - bp->b_bufsize);
3396 if (bp->b_flags & B_HEAVY) {
3397 atomic_add_long(&dirtybufspacehw,
3398 newbsize - bp->b_bufsize);
3401 bp->b_bufsize = newbsize; /* actual buffer allocation */
3402 bp->b_bcount = size; /* requested buffer size */
3403 bufspacewakeup();
3407 * repurposebuf() (VMIO only)
3409 * This performs a function similar to allocbuf() but the passed-in buffer
3410 * may contain some detrius from its previous incarnation in the form of
3411 * the page array. We try to repurpose the underlying pages.
3413 * This code is nominally called to recycle buffer cache buffers AND (if
3414 * they are clean) to also recycle their underlying pages. We currently
3415 * can only recycle unmapped, clean pages. The code is called when buffer
3416 * cache 'newbuf' bandwidth exceeds (bufrate_cache) bytes per second.
3418 static
3419 void
3420 repurposebuf(struct buf *bp, int size)
3422 int newbsize;
3423 int desiredpages;
3424 vm_offset_t toff;
3425 vm_offset_t tinc;
3426 vm_object_t obj;
3427 vm_page_t m;
3428 int i;
3429 int must_reenter = 0;
3430 long deaccumulate = 0;
3433 KKASSERT((bp->b_flags & (B_VMIO | B_DELWRI | B_MALLOC)) == B_VMIO);
3434 if (BUF_REFCNT(bp) == 0)
3435 panic("repurposebuf: buffer not busy");
3437 if (bp->b_kvasize < size)
3438 panic("repurposebuf: buffer too small");
3440 newbsize = roundup2(size, DEV_BSIZE);
3441 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3442 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3443 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3446 * Buffer starts out 0-length with B_CACHE set. We will clear
3447 * As we check the backing store we will clear B_CACHE if necessary.
3449 atomic_add_long(&bufspace, newbsize - bp->b_bufsize);
3450 bp->b_bufsize = 0;
3451 bp->b_bcount = 0;
3452 bp->b_flags |= B_CACHE;
3454 if (desiredpages) {
3455 obj = bp->b_vp->v_object;
3456 vm_object_hold(obj);
3457 } else {
3458 obj = NULL;
3462 * Step 1, bring in the VM pages from the object, repurposing or
3463 * allocating them if necessary. We must clear B_CACHE if these
3464 * pages are not valid for the range covered by the buffer.
3466 * We are growing the buffer, possibly in a byte-granular fashion.
3468 for (i = 0; i < desiredpages; ++i) {
3469 vm_pindex_t pi;
3470 int error;
3471 int iswired;
3473 pi = OFF_TO_IDX(bp->b_loffset) + i;
3476 * Blocking on m->busy might lead to a
3477 * deadlock:
3479 * vm_fault->getpages->cluster_read->allocbuf
3481 m = (i < bp->b_xio.xio_npages) ? bp->b_xio.xio_pages[i] : NULL;
3482 bp->b_xio.xio_pages[i] = NULL;
3483 KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3484 m = vm_page_repurpose(obj, pi, FALSE, &error, m,
3485 &must_reenter, &iswired);
3487 if (error) {
3488 vm_page_sleep_busy(m, FALSE, "pgtblk");
3489 --i; /* retry */
3490 continue;
3492 if (m == NULL) {
3494 * note: must allocate system pages
3495 * since blocking here could intefere
3496 * with paging I/O, no matter which
3497 * process we are.
3499 must_reenter = 1;
3500 m = bio_page_alloc(bp, obj, pi, desiredpages - i);
3501 if (m) {
3502 vm_page_wire(m);
3503 vm_page_wakeup(m);
3504 bp->b_flags &= ~B_CACHE;
3505 bp->b_xio.xio_pages[i] = m;
3506 if (m->valid)
3507 deaccumulate += PAGE_SIZE;
3508 } else {
3509 --i; /* retry */
3511 continue;
3513 if (m->valid)
3514 deaccumulate += PAGE_SIZE;
3517 * We found a page and were able to busy it.
3519 if (!iswired)
3520 vm_page_wire(m);
3521 vm_page_wakeup(m);
3522 bp->b_xio.xio_pages[i] = m;
3523 if (bp->b_act_count < m->act_count)
3524 bp->b_act_count = m->act_count;
3526 if (desiredpages)
3527 vm_object_drop(obj);
3530 * Even though its a new buffer, any pages already in the VM
3531 * page cache should not count towards I/O bandwidth.
3533 if (deaccumulate)
3534 atomic_add_long(&bufcache_bw_accum, -deaccumulate);
3537 * Clean-up any loose pages.
3539 while (i < bp->b_xio.xio_npages) {
3540 m = bp->b_xio.xio_pages[i];
3541 KASSERT(m != bogus_page, ("repurposebuf: bogus page found"));
3542 vm_page_busy_wait(m, TRUE, "biodep");
3543 bp->b_xio.xio_pages[i] = NULL;
3544 vm_page_unwire(m, 0);
3545 vm_page_wakeup(m);
3546 ++i;
3548 if (desiredpages < bp->b_xio.xio_npages) {
3549 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3550 (desiredpages << PAGE_SHIFT),
3551 (bp->b_xio.xio_npages - desiredpages));
3553 bp->b_xio.xio_npages = desiredpages;
3556 * Step 2. We've loaded the pages into the buffer,
3557 * we have to figure out if we can still have B_CACHE
3558 * set. Note that B_CACHE is set according to the
3559 * byte-granular range ( bcount and size ), not the
3560 * aligned range ( newbsize ).
3562 * The VM test is against m->valid, which is DEV_BSIZE
3563 * aligned. Needless to say, the validity of the data
3564 * needs to also be DEV_BSIZE aligned. Note that this
3565 * fails with NFS if the server or some other client
3566 * extends the file's EOF. If our buffer is resized,
3567 * B_CACHE may remain set! XXX
3569 toff = bp->b_bcount;
3570 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3572 while ((bp->b_flags & B_CACHE) && toff < size) {
3573 vm_pindex_t pi;
3575 if (tinc > (size - toff))
3576 tinc = size - toff;
3578 pi = ((bp->b_loffset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3580 vfs_buf_test_cache(bp, bp->b_loffset, toff,
3581 tinc, bp->b_xio.xio_pages[pi]);
3582 toff += tinc;
3583 tinc = PAGE_SIZE;
3587 * Step 3, fixup the KVM pmap. Remember that
3588 * bp->b_data is relative to bp->b_loffset, but
3589 * bp->b_loffset may be offset into the first page.
3591 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
3592 if (must_reenter) {
3593 pmap_qenter((vm_offset_t)bp->b_data,
3594 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3595 } else {
3596 atomic_add_long(&repurposedspace, newbsize);
3598 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3599 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3601 if (newbsize < bp->b_bufsize)
3602 bufspacewakeup();
3603 bp->b_bufsize = newbsize; /* actual buffer allocation */
3604 bp->b_bcount = size; /* requested buffer size */
3608 * biowait:
3610 * Wait for buffer I/O completion, returning error status. B_EINTR
3611 * is converted into an EINTR error but not cleared (since a chain
3612 * of biowait() calls may occur).
3614 * On return bpdone() will have been called but the buffer will remain
3615 * locked and will not have been brelse()'d.
3617 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3618 * likely still in progress on return.
3620 * NOTE! This operation is on a BIO, not a BUF.
3622 * NOTE! BIO_DONE is cleared by vn_strategy()
3624 static __inline int
3625 _biowait(struct bio *bio, const char *wmesg, int to)
3627 struct buf *bp = bio->bio_buf;
3628 u_int32_t flags;
3629 u_int32_t nflags;
3630 int error;
3632 KKASSERT(bio == &bp->b_bio1);
3633 for (;;) {
3634 flags = bio->bio_flags;
3635 if (flags & BIO_DONE)
3636 break;
3637 nflags = flags | BIO_WANT;
3638 tsleep_interlock(bio, 0);
3639 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3640 if (wmesg)
3641 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3642 else if (bp->b_cmd == BUF_CMD_READ)
3643 error = tsleep(bio, PINTERLOCKED, "biord", to);
3644 else
3645 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3646 if (error) {
3647 kprintf("tsleep error biowait %d\n", error);
3648 return (error);
3654 * Finish up.
3656 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3657 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3658 if (bp->b_flags & B_EINTR)
3659 return (EINTR);
3660 if (bp->b_flags & B_ERROR)
3661 return (bp->b_error ? bp->b_error : EIO);
3662 return (0);
3666 biowait(struct bio *bio, const char *wmesg)
3668 return(_biowait(bio, wmesg, 0));
3672 biowait_timeout(struct bio *bio, const char *wmesg, int to)
3674 return(_biowait(bio, wmesg, to));
3678 * This associates a tracking count with an I/O. vn_strategy() and
3679 * dev_dstrategy() do this automatically but there are a few cases
3680 * where a vnode or device layer is bypassed when a block translation
3681 * is cached. In such cases bio_start_transaction() may be called on
3682 * the bypassed layers so the system gets an I/O in progress indication
3683 * for those higher layers.
3685 void
3686 bio_start_transaction(struct bio *bio, struct bio_track *track)
3688 bio->bio_track = track;
3689 bio_track_ref(track);
3690 dsched_buf_enter(bio->bio_buf); /* might stack */
3694 * Initiate I/O on a vnode.
3696 * SWAPCACHE OPERATION:
3698 * Real buffer cache buffers have a non-NULL bp->b_vp. Unfortunately
3699 * devfs also uses b_vp for fake buffers so we also have to check
3700 * that B_PAGING is 0. In this case the passed 'vp' is probably the
3701 * underlying block device. The swap assignments are related to the
3702 * buffer cache buffer's b_vp, not the passed vp.
3704 * The passed vp == bp->b_vp only in the case where the strategy call
3705 * is made on the vp itself for its own buffers (a regular file or
3706 * block device vp). The filesystem usually then re-calls vn_strategy()
3707 * after translating the request to an underlying device.
3709 * Cluster buffers set B_CLUSTER and the passed vp is the vp of the
3710 * underlying buffer cache buffers.
3712 * We can only deal with page-aligned buffers at the moment, because
3713 * we can't tell what the real dirty state for pages straddling a buffer
3714 * are.
3716 * In order to call swap_pager_strategy() we must provide the VM object
3717 * and base offset for the underlying buffer cache pages so it can find
3718 * the swap blocks.
3720 void
3721 vn_strategy(struct vnode *vp, struct bio *bio)
3723 struct bio_track *track;
3724 struct buf *bp = bio->bio_buf;
3726 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3729 * Set when an I/O is issued on the bp. Cleared by consumers
3730 * (aka HAMMER), allowing the consumer to determine if I/O had
3731 * actually occurred.
3733 bp->b_flags |= B_IOISSUED;
3736 * Handle the swap cache intercept.
3738 if (vn_cache_strategy(vp, bio))
3739 return;
3742 * Otherwise do the operation through the filesystem
3744 if (bp->b_cmd == BUF_CMD_READ)
3745 track = &vp->v_track_read;
3746 else
3747 track = &vp->v_track_write;
3748 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3749 bio->bio_track = track;
3750 bio_track_ref(track);
3751 dsched_buf_enter(bp); /* might stack */
3752 vop_strategy(*vp->v_ops, vp, bio);
3755 static void vn_cache_strategy_callback(struct bio *bio);
3758 vn_cache_strategy(struct vnode *vp, struct bio *bio)
3760 struct buf *bp = bio->bio_buf;
3761 struct bio *nbio;
3762 vm_object_t object;
3763 vm_page_t m;
3764 int i;
3767 * Stop using swapcache if paniced, dumping, or dumped
3769 if (panicstr || dumping)
3770 return(0);
3773 * Is this buffer cache buffer suitable for reading from
3774 * the swap cache?
3776 if (vm_swapcache_read_enable == 0 ||
3777 bp->b_cmd != BUF_CMD_READ ||
3778 ((bp->b_flags & B_CLUSTER) == 0 &&
3779 (bp->b_vp == NULL || (bp->b_flags & B_PAGING))) ||
3780 ((int)bp->b_loffset & PAGE_MASK) != 0 ||
3781 (bp->b_bcount & PAGE_MASK) != 0) {
3782 return(0);
3786 * Figure out the original VM object (it will match the underlying
3787 * VM pages). Note that swap cached data uses page indices relative
3788 * to that object, not relative to bio->bio_offset.
3790 if (bp->b_flags & B_CLUSTER)
3791 object = vp->v_object;
3792 else
3793 object = bp->b_vp->v_object;
3796 * In order to be able to use the swap cache all underlying VM
3797 * pages must be marked as such, and we can't have any bogus pages.
3799 for (i = 0; i < bp->b_xio.xio_npages; ++i) {
3800 m = bp->b_xio.xio_pages[i];
3801 if ((m->flags & PG_SWAPPED) == 0)
3802 break;
3803 if (m == bogus_page)
3804 break;
3808 * If we are good then issue the I/O using swap_pager_strategy().
3810 * We can only do this if the buffer actually supports object-backed
3811 * I/O. If it doesn't npages will be 0.
3813 if (i && i == bp->b_xio.xio_npages) {
3814 m = bp->b_xio.xio_pages[0];
3815 nbio = push_bio(bio);
3816 nbio->bio_done = vn_cache_strategy_callback;
3817 nbio->bio_offset = ptoa(m->pindex);
3818 KKASSERT(m->object == object);
3819 swap_pager_strategy(object, nbio);
3820 return(1);
3822 return(0);
3826 * This is a bit of a hack but since the vn_cache_strategy() function can
3827 * override a VFS's strategy function we must make sure that the bio, which
3828 * is probably bio2, doesn't leak an unexpected offset value back to the
3829 * filesystem. The filesystem (e.g. UFS) might otherwise assume that the
3830 * bio went through its own file strategy function and the the bio2 offset
3831 * is a cached disk offset when, in fact, it isn't.
3833 static void
3834 vn_cache_strategy_callback(struct bio *bio)
3836 bio->bio_offset = NOOFFSET;
3837 biodone(pop_bio(bio));
3841 * bpdone:
3843 * Finish I/O on a buffer after all BIOs have been processed.
3844 * Called when the bio chain is exhausted or by biowait. If called
3845 * by biowait, elseit is typically 0.
3847 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3848 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3849 * assuming B_INVAL is clear.
3851 * For the VMIO case, we set B_CACHE if the op was a read and no
3852 * read error occured, or if the op was a write. B_CACHE is never
3853 * set if the buffer is invalid or otherwise uncacheable.
3855 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3856 * initiator to leave B_INVAL set to brelse the buffer out of existance
3857 * in the biodone routine.
3859 * bpdone is responsible for calling bundirty() on the buffer after a
3860 * successful write. We previously did this prior to initiating the
3861 * write under the assumption that the buffer might be dirtied again
3862 * while the write was in progress, however doing it before-hand creates
3863 * a race condition prior to the call to vn_strategy() where the
3864 * filesystem may not be aware that a dirty buffer is present.
3865 * It should not be possible for the buffer or its underlying pages to
3866 * be redirtied prior to bpdone()'s unbusying of the underlying VM
3867 * pages.
3869 void
3870 bpdone(struct buf *bp, int elseit)
3872 buf_cmd_t cmd;
3874 KASSERT(BUF_REFCNTNB(bp) > 0,
3875 ("bpdone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3876 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3877 ("bpdone: bp %p already done!", bp));
3880 * No more BIOs are left. All completion functions have been dealt
3881 * with, now we clean up the buffer.
3883 cmd = bp->b_cmd;
3884 bp->b_cmd = BUF_CMD_DONE;
3887 * Only reads and writes are processed past this point.
3889 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3890 if (cmd == BUF_CMD_FREEBLKS)
3891 bp->b_flags |= B_NOCACHE;
3892 if (elseit)
3893 brelse(bp);
3894 return;
3898 * A failed write must re-dirty the buffer unless B_INVAL
3899 * was set.
3901 * A successful write must clear the dirty flag. This is done after
3902 * the write to ensure that the buffer remains on the vnode's dirty
3903 * list for filesystem interlocks / checks until the write is actually
3904 * complete. HAMMER2 is sensitive to this issue.
3906 * Only applicable to normal buffers (with VPs). vinum buffers may
3907 * not have a vp.
3909 * Must be done prior to calling buf_complete() as the callback might
3910 * re-dirty the buffer.
3912 if (cmd == BUF_CMD_WRITE) {
3913 if ((bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3914 bp->b_flags &= ~B_NOCACHE;
3915 if (bp->b_vp)
3916 bdirty(bp);
3917 } else {
3918 if (bp->b_vp)
3919 bundirty(bp);
3924 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3925 * a lot worse. XXX - move this above the clearing of b_cmd
3927 if (LIST_FIRST(&bp->b_dep) != NULL)
3928 buf_complete(bp);
3930 if (bp->b_flags & B_VMIO) {
3931 int i;
3932 vm_ooffset_t foff;
3933 vm_page_t m;
3934 vm_object_t obj;
3935 int iosize;
3936 struct vnode *vp = bp->b_vp;
3938 obj = vp->v_object;
3940 #if defined(VFS_BIO_DEBUG)
3941 if (vp->v_auxrefs == 0)
3942 panic("bpdone: zero vnode hold count");
3943 if ((vp->v_flag & VOBJBUF) == 0)
3944 panic("bpdone: vnode is not setup for merged cache");
3945 #endif
3947 foff = bp->b_loffset;
3948 KASSERT(foff != NOOFFSET, ("bpdone: no buffer offset"));
3949 KASSERT(obj != NULL, ("bpdone: missing VM object"));
3951 #if defined(VFS_BIO_DEBUG)
3952 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3953 kprintf("bpdone: paging in progress(%d) < "
3954 "bp->b_xio.xio_npages(%d)\n",
3955 obj->paging_in_progress,
3956 bp->b_xio.xio_npages);
3958 #endif
3961 * Set B_CACHE if the op was a normal read and no error
3962 * occured. B_CACHE is set for writes in the b*write()
3963 * routines.
3965 iosize = bp->b_bcount - bp->b_resid;
3966 if (cmd == BUF_CMD_READ &&
3967 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3968 bp->b_flags |= B_CACHE;
3971 vm_object_hold(obj);
3972 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3973 int resid;
3974 int isbogus;
3976 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3977 if (resid > iosize)
3978 resid = iosize;
3981 * cleanup bogus pages, restoring the originals. Since
3982 * the originals should still be wired, we don't have
3983 * to worry about interrupt/freeing races destroying
3984 * the VM object association.
3986 m = bp->b_xio.xio_pages[i];
3987 if (m == bogus_page) {
3988 if ((bp->b_flags & B_HASBOGUS) == 0)
3989 panic("bpdone: bp %p corrupt bogus", bp);
3990 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3991 if (m == NULL)
3992 panic("bpdone: page disappeared");
3993 bp->b_xio.xio_pages[i] = m;
3994 isbogus = 1;
3995 } else {
3996 isbogus = 0;
3998 #if defined(VFS_BIO_DEBUG)
3999 if (OFF_TO_IDX(foff) != m->pindex) {
4000 kprintf("bpdone: foff(%lu)/m->pindex(%ld) "
4001 "mismatch\n",
4002 (unsigned long)foff, (long)m->pindex);
4004 #endif
4007 * In the write case, the valid and clean bits are
4008 * already changed correctly (see bdwrite()), so we
4009 * only need to do this here in the read case.
4011 vm_page_busy_wait(m, FALSE, "bpdpgw");
4012 if (cmd == BUF_CMD_READ && isbogus == 0 && resid > 0)
4013 vfs_clean_one_page(bp, i, m);
4016 * when debugging new filesystems or buffer I/O
4017 * methods, this is the most common error that pops
4018 * up. if you see this, you have not set the page
4019 * busy flag correctly!!!
4021 if (m->busy == 0) {
4022 kprintf("bpdone: page busy < 0, "
4023 "pindex: %d, foff: 0x(%x,%x), "
4024 "resid: %d, index: %d\n",
4025 (int) m->pindex, (int)(foff >> 32),
4026 (int) foff & 0xffffffff, resid, i);
4027 if (!vn_isdisk(vp, NULL))
4028 kprintf(" iosize: %ld, loffset: %lld, "
4029 "flags: 0x%08x, npages: %d\n",
4030 bp->b_vp->v_mount->mnt_stat.f_iosize,
4031 (long long)bp->b_loffset,
4032 bp->b_flags, bp->b_xio.xio_npages);
4033 else
4034 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
4035 (long long)bp->b_loffset,
4036 bp->b_flags, bp->b_xio.xio_npages);
4037 kprintf(" valid: 0x%x, dirty: 0x%x, "
4038 "wired: %d\n",
4039 m->valid, m->dirty,
4040 m->wire_count);
4041 panic("bpdone: page busy < 0");
4043 vm_page_io_finish(m);
4044 vm_page_wakeup(m);
4045 vm_object_pip_wakeup(obj);
4046 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4047 iosize -= resid;
4049 if (bp->b_flags & B_HASBOGUS) {
4050 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4051 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4052 bp->b_flags &= ~B_HASBOGUS;
4054 vm_object_drop(obj);
4058 * Finish up by releasing the buffer. There are no more synchronous
4059 * or asynchronous completions, those were handled by bio_done
4060 * callbacks.
4062 if (elseit) {
4063 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
4064 brelse(bp);
4065 else
4066 bqrelse(bp);
4071 * Normal biodone.
4073 void
4074 biodone(struct bio *bio)
4076 struct buf *bp = bio->bio_buf;
4078 runningbufwakeup(bp);
4081 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
4083 while (bio) {
4084 biodone_t *done_func;
4085 struct bio_track *track;
4088 * BIO tracking. Most but not all BIOs are tracked.
4090 if ((track = bio->bio_track) != NULL) {
4091 bio_track_rel(track);
4092 bio->bio_track = NULL;
4096 * A bio_done function terminates the loop. The function
4097 * will be responsible for any further chaining and/or
4098 * buffer management.
4100 * WARNING! The done function can deallocate the buffer!
4102 if ((done_func = bio->bio_done) != NULL) {
4103 bio->bio_done = NULL;
4104 done_func(bio);
4105 return;
4107 bio = bio->bio_prev;
4111 * If we've run out of bio's do normal [a]synchronous completion.
4113 bpdone(bp, 1);
4117 * Synchronous biodone - this terminates a synchronous BIO.
4119 * bpdone() is called with elseit=FALSE, leaving the buffer completed
4120 * but still locked. The caller must brelse() the buffer after waiting
4121 * for completion.
4123 void
4124 biodone_sync(struct bio *bio)
4126 struct buf *bp = bio->bio_buf;
4127 int flags;
4128 int nflags;
4130 KKASSERT(bio == &bp->b_bio1);
4131 bpdone(bp, 0);
4133 for (;;) {
4134 flags = bio->bio_flags;
4135 nflags = (flags | BIO_DONE) & ~BIO_WANT;
4137 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
4138 if (flags & BIO_WANT)
4139 wakeup(bio);
4140 break;
4146 * vfs_unbusy_pages:
4148 * This routine is called in lieu of iodone in the case of
4149 * incomplete I/O. This keeps the busy status for pages
4150 * consistant.
4152 void
4153 vfs_unbusy_pages(struct buf *bp)
4155 int i;
4157 runningbufwakeup(bp);
4159 if (bp->b_flags & B_VMIO) {
4160 struct vnode *vp = bp->b_vp;
4161 vm_object_t obj;
4163 obj = vp->v_object;
4164 vm_object_hold(obj);
4166 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4167 vm_page_t m = bp->b_xio.xio_pages[i];
4170 * When restoring bogus changes the original pages
4171 * should still be wired, so we are in no danger of
4172 * losing the object association and do not need
4173 * critical section protection particularly.
4175 if (m == bogus_page) {
4176 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
4177 if (!m) {
4178 panic("vfs_unbusy_pages: page missing");
4180 bp->b_xio.xio_pages[i] = m;
4182 vm_page_busy_wait(m, FALSE, "bpdpgw");
4183 vm_page_io_finish(m);
4184 vm_page_wakeup(m);
4185 vm_object_pip_wakeup(obj);
4187 if (bp->b_flags & B_HASBOGUS) {
4188 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4189 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4190 bp->b_flags &= ~B_HASBOGUS;
4192 vm_object_drop(obj);
4197 * vfs_busy_pages:
4199 * This routine is called before a device strategy routine.
4200 * It is used to tell the VM system that paging I/O is in
4201 * progress, and treat the pages associated with the buffer
4202 * almost as being PG_BUSY. Also the object 'paging_in_progress'
4203 * flag is handled to make sure that the object doesn't become
4204 * inconsistant.
4206 * Since I/O has not been initiated yet, certain buffer flags
4207 * such as B_ERROR or B_INVAL may be in an inconsistant state
4208 * and should be ignored.
4210 void
4211 vfs_busy_pages(struct vnode *vp, struct buf *bp)
4213 int i, bogus;
4214 struct lwp *lp = curthread->td_lwp;
4217 * The buffer's I/O command must already be set. If reading,
4218 * B_CACHE must be 0 (double check against callers only doing
4219 * I/O when B_CACHE is 0).
4221 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4222 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
4224 if (bp->b_flags & B_VMIO) {
4225 vm_object_t obj;
4227 obj = vp->v_object;
4228 KASSERT(bp->b_loffset != NOOFFSET,
4229 ("vfs_busy_pages: no buffer offset"));
4232 * Busy all the pages. We have to busy them all at once
4233 * to avoid deadlocks.
4235 retry:
4236 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4237 vm_page_t m = bp->b_xio.xio_pages[i];
4239 if (vm_page_busy_try(m, FALSE)) {
4240 vm_page_sleep_busy(m, FALSE, "vbpage");
4241 while (--i >= 0)
4242 vm_page_wakeup(bp->b_xio.xio_pages[i]);
4243 goto retry;
4248 * Setup for I/O, soft-busy the page right now because
4249 * the next loop may block.
4251 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4252 vm_page_t m = bp->b_xio.xio_pages[i];
4254 if ((bp->b_flags & B_CLUSTER) == 0) {
4255 vm_object_pip_add(obj, 1);
4256 vm_page_io_start(m);
4261 * Adjust protections for I/O and do bogus-page mapping.
4262 * Assume that vm_page_protect() can block (it can block
4263 * if VM_PROT_NONE, don't take any chances regardless).
4265 * In particular note that for writes we must incorporate
4266 * page dirtyness from the VM system into the buffer's
4267 * dirty range.
4269 * For reads we theoretically must incorporate page dirtyness
4270 * from the VM system to determine if the page needs bogus
4271 * replacement, but we shortcut the test by simply checking
4272 * that all m->valid bits are set, indicating that the page
4273 * is fully valid and does not need to be re-read. For any
4274 * VM system dirtyness the page will also be fully valid
4275 * since it was mapped at one point.
4277 bogus = 0;
4278 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4279 vm_page_t m = bp->b_xio.xio_pages[i];
4281 if (bp->b_cmd == BUF_CMD_WRITE) {
4283 * When readying a vnode-backed buffer for
4284 * a write we must zero-fill any invalid
4285 * portions of the backing VM pages, mark
4286 * it valid and clear related dirty bits.
4288 * vfs_clean_one_page() incorporates any
4289 * VM dirtyness and updates the b_dirtyoff
4290 * range (after we've made the page RO).
4292 * It is also expected that the pmap modified
4293 * bit has already been cleared by the
4294 * vm_page_protect(). We may not be able
4295 * to clear all dirty bits for a page if it
4296 * was also memory mapped (NFS).
4298 * Finally be sure to unassign any swap-cache
4299 * backing store as it is now stale.
4301 vm_page_protect(m, VM_PROT_READ);
4302 vfs_clean_one_page(bp, i, m);
4303 swap_pager_unswapped(m);
4304 } else if (m->valid == VM_PAGE_BITS_ALL) {
4306 * When readying a vnode-backed buffer for
4307 * read we must replace any dirty pages with
4308 * a bogus page so dirty data is not destroyed
4309 * when filling gaps.
4311 * To avoid testing whether the page is
4312 * dirty we instead test that the page was
4313 * at some point mapped (m->valid fully
4314 * valid) with the understanding that
4315 * this also covers the dirty case.
4317 bp->b_xio.xio_pages[i] = bogus_page;
4318 bp->b_flags |= B_HASBOGUS;
4319 bogus++;
4320 } else if (m->valid & m->dirty) {
4322 * This case should not occur as partial
4323 * dirtyment can only happen if the buffer
4324 * is B_CACHE, and this code is not entered
4325 * if the buffer is B_CACHE.
4327 kprintf("Warning: vfs_busy_pages - page not "
4328 "fully valid! loff=%jx bpf=%08x "
4329 "idx=%d val=%02x dir=%02x\n",
4330 (uintmax_t)bp->b_loffset, bp->b_flags,
4331 i, m->valid, m->dirty);
4332 vm_page_protect(m, VM_PROT_NONE);
4333 } else {
4335 * The page is not valid and can be made
4336 * part of the read.
4338 vm_page_protect(m, VM_PROT_NONE);
4340 vm_page_wakeup(m);
4342 if (bogus) {
4343 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4344 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
4349 * This is the easiest place to put the process accounting for the I/O
4350 * for now.
4352 if (lp != NULL) {
4353 if (bp->b_cmd == BUF_CMD_READ)
4354 lp->lwp_ru.ru_inblock++;
4355 else
4356 lp->lwp_ru.ru_oublock++;
4361 * Tell the VM system that the pages associated with this buffer
4362 * are clean. This is used for delayed writes where the data is
4363 * going to go to disk eventually without additional VM intevention.
4365 * NOTE: While we only really need to clean through to b_bcount, we
4366 * just go ahead and clean through to b_bufsize.
4368 static void
4369 vfs_clean_pages(struct buf *bp)
4371 vm_page_t m;
4372 int i;
4374 if ((bp->b_flags & B_VMIO) == 0)
4375 return;
4377 KASSERT(bp->b_loffset != NOOFFSET,
4378 ("vfs_clean_pages: no buffer offset"));
4380 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4381 m = bp->b_xio.xio_pages[i];
4382 vfs_clean_one_page(bp, i, m);
4387 * vfs_clean_one_page:
4389 * Set the valid bits and clear the dirty bits in a page within a
4390 * buffer. The range is restricted to the buffer's size and the
4391 * buffer's logical offset might index into the first page.
4393 * The caller has busied or soft-busied the page and it is not mapped,
4394 * test and incorporate the dirty bits into b_dirtyoff/end before
4395 * clearing them. Note that we need to clear the pmap modified bits
4396 * after determining the the page was dirty, vm_page_set_validclean()
4397 * does not do it for us.
4399 * This routine is typically called after a read completes (dirty should
4400 * be zero in that case as we are not called on bogus-replace pages),
4401 * or before a write is initiated.
4403 static void
4404 vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
4406 int bcount;
4407 int xoff;
4408 int soff;
4409 int eoff;
4412 * Calculate offset range within the page but relative to buffer's
4413 * loffset. loffset might be offset into the first page.
4415 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4416 bcount = bp->b_bcount + xoff; /* offset adjusted */
4418 if (pageno == 0) {
4419 soff = xoff;
4420 eoff = PAGE_SIZE;
4421 } else {
4422 soff = (pageno << PAGE_SHIFT);
4423 eoff = soff + PAGE_SIZE;
4425 if (eoff > bcount)
4426 eoff = bcount;
4427 if (soff >= eoff)
4428 return;
4431 * Test dirty bits and adjust b_dirtyoff/end.
4433 * If dirty pages are incorporated into the bp any prior
4434 * B_NEEDCOMMIT state (NFS) must be cleared because the
4435 * caller has not taken into account the new dirty data.
4437 * If the page was memory mapped the dirty bits might go beyond the
4438 * end of the buffer, but we can't really make the assumption that
4439 * a file EOF straddles the buffer (even though this is the case for
4440 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
4441 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
4442 * This also saves some console spam.
4444 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
4445 * NFS can handle huge commits but not huge writes.
4447 vm_page_test_dirty(m);
4448 if (m->dirty) {
4449 if ((bp->b_flags & B_NEEDCOMMIT) &&
4450 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
4451 if (debug_commit)
4452 kprintf("Warning: vfs_clean_one_page: bp %p "
4453 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT"
4454 " cmd %d vd %02x/%02x x/s/e %d %d %d "
4455 "doff/end %d %d\n",
4456 bp, (uintmax_t)bp->b_loffset, bp->b_bcount,
4457 bp->b_flags, bp->b_cmd,
4458 m->valid, m->dirty, xoff, soff, eoff,
4459 bp->b_dirtyoff, bp->b_dirtyend);
4460 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
4461 if (debug_commit)
4462 print_backtrace(-1);
4465 * Only clear the pmap modified bits if ALL the dirty bits
4466 * are set, otherwise the system might mis-clear portions
4467 * of a page.
4469 if (m->dirty == VM_PAGE_BITS_ALL &&
4470 (bp->b_flags & B_NEEDCOMMIT) == 0) {
4471 pmap_clear_modify(m);
4473 if (bp->b_dirtyoff > soff - xoff)
4474 bp->b_dirtyoff = soff - xoff;
4475 if (bp->b_dirtyend < eoff - xoff)
4476 bp->b_dirtyend = eoff - xoff;
4480 * Set related valid bits, clear related dirty bits.
4481 * Does not mess with the pmap modified bit.
4483 * WARNING! We cannot just clear all of m->dirty here as the
4484 * buffer cache buffers may use a DEV_BSIZE'd aligned
4485 * block size, or have an odd size (e.g. NFS at file EOF).
4486 * The putpages code can clear m->dirty to 0.
4488 * If a VOP_WRITE generates a buffer cache buffer which
4489 * covers the same space as mapped writable pages the
4490 * buffer flush might not be able to clear all the dirty
4491 * bits and still require a putpages from the VM system
4492 * to finish it off.
4494 * WARNING! vm_page_set_validclean() currently assumes vm_token
4495 * is held. The page might not be busied (bdwrite() case).
4496 * XXX remove this comment once we've validated that this
4497 * is no longer an issue.
4499 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
4502 #if 0
4504 * Similar to vfs_clean_one_page() but sets the bits to valid and dirty.
4505 * The page data is assumed to be valid (there is no zeroing here).
4507 static void
4508 vfs_dirty_one_page(struct buf *bp, int pageno, vm_page_t m)
4510 int bcount;
4511 int xoff;
4512 int soff;
4513 int eoff;
4516 * Calculate offset range within the page but relative to buffer's
4517 * loffset. loffset might be offset into the first page.
4519 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
4520 bcount = bp->b_bcount + xoff; /* offset adjusted */
4522 if (pageno == 0) {
4523 soff = xoff;
4524 eoff = PAGE_SIZE;
4525 } else {
4526 soff = (pageno << PAGE_SHIFT);
4527 eoff = soff + PAGE_SIZE;
4529 if (eoff > bcount)
4530 eoff = bcount;
4531 if (soff >= eoff)
4532 return;
4533 vm_page_set_validdirty(m, soff & PAGE_MASK, eoff - soff);
4535 #endif
4538 * vfs_bio_clrbuf:
4540 * Clear a buffer. This routine essentially fakes an I/O, so we need
4541 * to clear B_ERROR and B_INVAL.
4543 * Note that while we only theoretically need to clear through b_bcount,
4544 * we go ahead and clear through b_bufsize.
4547 void
4548 vfs_bio_clrbuf(struct buf *bp)
4550 int i, mask = 0;
4551 caddr_t sa, ea;
4552 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
4553 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
4554 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4555 (bp->b_loffset & PAGE_MASK) == 0) {
4556 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4557 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
4558 bp->b_resid = 0;
4559 return;
4561 if ((bp->b_xio.xio_pages[0]->valid & mask) == 0) {
4562 bzero(bp->b_data, bp->b_bufsize);
4563 bp->b_xio.xio_pages[0]->valid |= mask;
4564 bp->b_resid = 0;
4565 return;
4568 sa = bp->b_data;
4569 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4570 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4571 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4572 ea = (caddr_t)(vm_offset_t)ulmin(
4573 (u_long)(vm_offset_t)ea,
4574 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4575 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4576 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4577 continue;
4578 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4579 bzero(sa, ea - sa);
4580 } else {
4581 for (; sa < ea; sa += DEV_BSIZE, j++) {
4582 if ((bp->b_xio.xio_pages[i]->valid &
4583 (1<<j)) == 0) {
4584 bzero(sa, DEV_BSIZE);
4588 bp->b_xio.xio_pages[i]->valid |= mask;
4590 bp->b_resid = 0;
4591 } else {
4592 clrbuf(bp);
4597 * vm_hold_load_pages:
4599 * Load pages into the buffer's address space. The pages are
4600 * allocated from the kernel object in order to reduce interference
4601 * with the any VM paging I/O activity. The range of loaded
4602 * pages will be wired.
4604 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4605 * retrieve the full range (to - from) of pages.
4607 void
4608 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4610 vm_offset_t pg;
4611 vm_page_t p;
4612 int index;
4614 to = round_page(to);
4615 from = round_page(from);
4616 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4618 pg = from;
4619 while (pg < to) {
4621 * Note: must allocate system pages since blocking here
4622 * could intefere with paging I/O, no matter which
4623 * process we are.
4625 vm_object_hold(&kernel_object);
4626 p = bio_page_alloc(bp, &kernel_object, pg >> PAGE_SHIFT,
4627 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4628 vm_object_drop(&kernel_object);
4629 if (p) {
4630 vm_page_wire(p);
4631 p->valid = VM_PAGE_BITS_ALL;
4632 pmap_kenter_noinval(pg, VM_PAGE_TO_PHYS(p));
4633 bp->b_xio.xio_pages[index] = p;
4634 vm_page_wakeup(p);
4636 pg += PAGE_SIZE;
4637 ++index;
4640 pmap_invalidate_range(&kernel_pmap, from, to);
4641 bp->b_xio.xio_npages = index;
4645 * Allocate a page for a buffer cache buffer.
4647 * If NULL is returned the caller is expected to retry (typically check if
4648 * the page already exists on retry before trying to allocate one).
4650 * NOTE! Low-memory handling is dealt with in b[q]relse(), not here. This
4651 * function will use the system reserve with the hope that the page
4652 * allocations can be returned to PQ_CACHE/PQ_FREE when the caller
4653 * is done with the buffer.
4655 * NOTE! However, TMPFS is a special case because flushing a dirty buffer
4656 * to TMPFS doesn't clean the page. For TMPFS, only the pagedaemon
4657 * is capable of retiring pages (to swap). For TMPFS we don't dig
4658 * into the system reserve because doing so could stall out pretty
4659 * much every process running on the system.
4661 static
4662 vm_page_t
4663 bio_page_alloc(struct buf *bp, vm_object_t obj, vm_pindex_t pg, int deficit)
4665 int vmflags = VM_ALLOC_NORMAL | VM_ALLOC_NULL_OK;
4666 vm_page_t p;
4668 ASSERT_LWKT_TOKEN_HELD(vm_object_token(obj));
4671 * Try a normal allocation first.
4673 p = vm_page_alloc(obj, pg, vmflags);
4674 if (p)
4675 return(p);
4676 if (vm_page_lookup(obj, pg))
4677 return(NULL);
4678 vm_pageout_deficit += deficit;
4681 * Try again, digging into the system reserve.
4683 * Trying to recover pages from the buffer cache here can deadlock
4684 * against other threads trying to busy underlying pages so we
4685 * depend on the code in brelse() and bqrelse() to free/cache the
4686 * underlying buffer cache pages when memory is low.
4688 if (curthread->td_flags & TDF_SYSTHREAD)
4689 vmflags |= VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT;
4690 else if (bp->b_vp && bp->b_vp->v_tag == VT_TMPFS)
4691 vmflags |= 0;
4692 else
4693 vmflags |= VM_ALLOC_SYSTEM;
4695 /*recoverbufpages();*/
4696 p = vm_page_alloc(obj, pg, vmflags);
4697 if (p)
4698 return(p);
4699 if (vm_page_lookup(obj, pg))
4700 return(NULL);
4703 * Wait for memory to free up and try again
4705 if (vm_page_count_severe())
4706 ++lowmempgallocs;
4707 vm_wait(hz / 20 + 1);
4709 p = vm_page_alloc(obj, pg, vmflags);
4710 if (p)
4711 return(p);
4712 if (vm_page_lookup(obj, pg))
4713 return(NULL);
4716 * Ok, now we are really in trouble.
4718 if (bootverbose) {
4719 static struct krate biokrate = { .freq = 1 };
4720 krateprintf(&biokrate,
4721 "Warning: bio_page_alloc: memory exhausted "
4722 "during buffer cache page allocation from %s\n",
4723 curthread->td_comm);
4725 if (curthread->td_flags & TDF_SYSTHREAD)
4726 vm_wait(hz / 20 + 1);
4727 else
4728 vm_wait(hz / 2 + 1);
4729 return (NULL);
4733 * vm_hold_free_pages:
4735 * Return pages associated with the buffer back to the VM system.
4737 * The range of pages underlying the buffer's address space will
4738 * be unmapped and un-wired.
4740 void
4741 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4743 vm_offset_t pg;
4744 vm_page_t p;
4745 int index, newnpages;
4747 from = round_page(from);
4748 to = round_page(to);
4749 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4750 newnpages = index;
4752 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4753 p = bp->b_xio.xio_pages[index];
4754 if (p && (index < bp->b_xio.xio_npages)) {
4755 if (p->busy) {
4756 kprintf("vm_hold_free_pages: doffset: %lld, "
4757 "loffset: %lld\n",
4758 (long long)bp->b_bio2.bio_offset,
4759 (long long)bp->b_loffset);
4761 bp->b_xio.xio_pages[index] = NULL;
4762 pmap_kremove_noinval(pg);
4763 vm_page_busy_wait(p, FALSE, "vmhldpg");
4764 vm_page_unwire(p, 0);
4765 vm_page_free(p);
4768 pmap_invalidate_range(&kernel_pmap, from, to);
4769 bp->b_xio.xio_npages = newnpages;
4773 * Scan all buffers in the system and issue the callback.
4776 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4778 int count = 0;
4779 int error;
4780 long n;
4782 for (n = 0; n < nbuf; ++n) {
4783 if ((error = callback(&buf[n], info)) < 0) {
4784 count = error;
4785 break;
4787 count += error;
4789 return (count);
4793 * nestiobuf_iodone: biodone callback for nested buffers and propagate
4794 * completion to the master buffer.
4796 static void
4797 nestiobuf_iodone(struct bio *bio)
4799 struct bio *mbio;
4800 struct buf *mbp, *bp;
4801 struct devstat *stats;
4802 int error;
4803 int donebytes;
4805 bp = bio->bio_buf;
4806 mbio = bio->bio_caller_info1.ptr;
4807 stats = bio->bio_caller_info2.ptr;
4808 mbp = mbio->bio_buf;
4810 KKASSERT(bp->b_bcount <= bp->b_bufsize);
4811 KKASSERT(mbp != bp);
4813 error = bp->b_error;
4814 if (bp->b_error == 0 &&
4815 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
4817 * Not all got transfered, raise an error. We have no way to
4818 * propagate these conditions to mbp.
4820 error = EIO;
4823 donebytes = bp->b_bufsize;
4825 relpbuf(bp, NULL);
4827 nestiobuf_done(mbio, donebytes, error, stats);
4830 void
4831 nestiobuf_done(struct bio *mbio, int donebytes, int error, struct devstat *stats)
4833 struct buf *mbp;
4835 mbp = mbio->bio_buf;
4837 KKASSERT((int)(intptr_t)mbio->bio_driver_info > 0);
4840 * If an error occured, propagate it to the master buffer.
4842 * Several biodone()s may wind up running concurrently so
4843 * use an atomic op to adjust b_flags.
4845 if (error) {
4846 mbp->b_error = error;
4847 atomic_set_int(&mbp->b_flags, B_ERROR);
4851 * Decrement the operations in progress counter and terminate the
4852 * I/O if this was the last bit.
4854 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4855 mbp->b_resid = 0;
4856 if (stats)
4857 devstat_end_transaction_buf(stats, mbp);
4858 biodone(mbio);
4863 * Initialize a nestiobuf for use. Set an initial count of 1 to prevent
4864 * the mbio from being biodone()'d while we are still adding sub-bios to
4865 * it.
4867 void
4868 nestiobuf_init(struct bio *bio)
4870 bio->bio_driver_info = (void *)1;
4874 * The BIOs added to the nestedio have already been started, remove the
4875 * count that placeheld our mbio and biodone() it if the count would
4876 * transition to 0.
4878 void
4879 nestiobuf_start(struct bio *mbio)
4881 struct buf *mbp = mbio->bio_buf;
4884 * Decrement the operations in progress counter and terminate the
4885 * I/O if this was the last bit.
4887 if (atomic_fetchadd_int((int *)&mbio->bio_driver_info, -1) == 1) {
4888 if (mbp->b_flags & B_ERROR)
4889 mbp->b_resid = mbp->b_bcount;
4890 else
4891 mbp->b_resid = 0;
4892 biodone(mbio);
4897 * Set an intermediate error prior to calling nestiobuf_start()
4899 void
4900 nestiobuf_error(struct bio *mbio, int error)
4902 struct buf *mbp = mbio->bio_buf;
4904 if (error) {
4905 mbp->b_error = error;
4906 atomic_set_int(&mbp->b_flags, B_ERROR);
4911 * nestiobuf_add: setup a "nested" buffer.
4913 * => 'mbp' is a "master" buffer which is being divided into sub pieces.
4914 * => 'bp' should be a buffer allocated by getiobuf.
4915 * => 'offset' is a byte offset in the master buffer.
4916 * => 'size' is a size in bytes of this nested buffer.
4918 void
4919 nestiobuf_add(struct bio *mbio, struct buf *bp, int offset, size_t size, struct devstat *stats)
4921 struct buf *mbp = mbio->bio_buf;
4922 struct vnode *vp = mbp->b_vp;
4924 KKASSERT(mbp->b_bcount >= offset + size);
4926 atomic_add_int((int *)&mbio->bio_driver_info, 1);
4928 /* kernel needs to own the lock for it to be released in biodone */
4929 BUF_KERNPROC(bp);
4930 bp->b_vp = vp;
4931 bp->b_cmd = mbp->b_cmd;
4932 bp->b_bio1.bio_done = nestiobuf_iodone;
4933 bp->b_data = (char *)mbp->b_data + offset;
4934 bp->b_resid = bp->b_bcount = size;
4935 bp->b_bufsize = bp->b_bcount;
4937 bp->b_bio1.bio_track = NULL;
4938 bp->b_bio1.bio_caller_info1.ptr = mbio;
4939 bp->b_bio1.bio_caller_info2.ptr = stats;
4942 #ifdef DDB
4944 DB_SHOW_COMMAND(buffer, db_show_buffer)
4946 /* get args */
4947 struct buf *bp = (struct buf *)addr;
4949 if (!have_addr) {
4950 db_printf("usage: show buffer <addr>\n");
4951 return;
4954 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4955 db_printf("b_cmd = %d\n", bp->b_cmd);
4956 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4957 "b_resid = %d\n, b_data = %p, "
4958 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4959 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4960 bp->b_data,
4961 (long long)bp->b_bio2.bio_offset,
4962 (long long)(bp->b_bio2.bio_next ?
4963 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4964 if (bp->b_xio.xio_npages) {
4965 int i;
4966 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4967 bp->b_xio.xio_npages);
4968 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4969 vm_page_t m;
4970 m = bp->b_xio.xio_pages[i];
4971 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4972 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4973 if ((i + 1) < bp->b_xio.xio_npages)
4974 db_printf(",");
4976 db_printf("\n");
4979 #endif /* DDB */