kernel - Order ipfw3 module before other ipfw3_* modules
[dragonfly.git] / sys / kern / lwkt_thread.c
blob5e2cc4efadf398d8abb883d164cad379624ba7d6
1 /*
2 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/spinlock.h>
54 #include <sys/ktr.h>
56 #include <sys/thread2.h>
57 #include <sys/spinlock2.h>
59 #include <sys/dsched.h>
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_map.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_extern.h>
70 #include <machine/stdarg.h>
71 #include <machine/smp.h>
72 #include <machine/clock.h>
74 #ifdef _KERNEL_VIRTUAL
75 #include <pthread.h>
76 #endif
78 #define LOOPMASK
80 #if !defined(KTR_CTXSW)
81 #define KTR_CTXSW KTR_ALL
82 #endif
83 KTR_INFO_MASTER(ctxsw);
84 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p", int cpu, struct thread *td);
85 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p", int cpu, struct thread *td);
86 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s", struct thread *td, char *comm);
87 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", struct thread *td);
89 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
91 #ifdef INVARIANTS
92 static int panic_on_cscount = 0;
93 #endif
94 static int64_t switch_count = 0;
95 static int64_t preempt_hit = 0;
96 static int64_t preempt_miss = 0;
97 static int64_t preempt_weird = 0;
98 static int lwkt_use_spin_port;
99 static struct objcache *thread_cache;
100 int cpu_mwait_spin = 0;
102 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
103 static void lwkt_setcpu_remote(void *arg);
106 * We can make all thread ports use the spin backend instead of the thread
107 * backend. This should only be set to debug the spin backend.
109 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
111 #ifdef INVARIANTS
112 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0,
113 "Panic if attempting to switch lwkt's while mastering cpusync");
114 #endif
115 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0,
116 "Number of switched threads");
117 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
118 "Successful preemption events");
119 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
120 "Failed preemption events");
121 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0,
122 "Number of preempted threads.");
123 static int fairq_enable = 0;
124 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW,
125 &fairq_enable, 0, "Turn on fairq priority accumulators");
126 static int fairq_bypass = -1;
127 SYSCTL_INT(_lwkt, OID_AUTO, fairq_bypass, CTLFLAG_RW,
128 &fairq_bypass, 0, "Allow fairq to bypass td on token failure");
129 extern int lwkt_sched_debug;
130 int lwkt_sched_debug = 0;
131 SYSCTL_INT(_lwkt, OID_AUTO, sched_debug, CTLFLAG_RW,
132 &lwkt_sched_debug, 0, "Scheduler debug");
133 static u_int lwkt_spin_loops = 10;
134 SYSCTL_UINT(_lwkt, OID_AUTO, spin_loops, CTLFLAG_RW,
135 &lwkt_spin_loops, 0, "Scheduler spin loops until sorted decon");
136 static int preempt_enable = 1;
137 SYSCTL_INT(_lwkt, OID_AUTO, preempt_enable, CTLFLAG_RW,
138 &preempt_enable, 0, "Enable preemption");
139 static int lwkt_cache_threads = 0;
140 SYSCTL_INT(_lwkt, OID_AUTO, cache_threads, CTLFLAG_RD,
141 &lwkt_cache_threads, 0, "thread+kstack cache");
144 * These helper procedures handle the runq, they can only be called from
145 * within a critical section.
147 * WARNING! Prior to SMP being brought up it is possible to enqueue and
148 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
149 * instead of 'mycpu' when referencing the globaldata structure. Once
150 * SMP live enqueuing and dequeueing only occurs on the current cpu.
152 static __inline
153 void
154 _lwkt_dequeue(thread_t td)
156 if (td->td_flags & TDF_RUNQ) {
157 struct globaldata *gd = td->td_gd;
159 td->td_flags &= ~TDF_RUNQ;
160 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
161 --gd->gd_tdrunqcount;
162 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
163 atomic_clear_int(&gd->gd_reqflags, RQF_RUNNING);
168 * Priority enqueue.
170 * There are a limited number of lwkt threads runnable since user
171 * processes only schedule one at a time per cpu. However, there can
172 * be many user processes in kernel mode exiting from a tsleep() which
173 * become runnable.
175 * We scan the queue in both directions to help deal with degenerate
176 * situations when hundreds or thousands (or more) threads are runnable.
178 * NOTE: lwkt_schedulerclock() will force a round-robin based on td_pri and
179 * will ignore user priority. This is to ensure that user threads in
180 * kernel mode get cpu at some point regardless of what the user
181 * scheduler thinks.
183 static __inline
184 void
185 _lwkt_enqueue(thread_t td)
187 thread_t xtd; /* forward scan */
188 thread_t rtd; /* reverse scan */
190 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
191 struct globaldata *gd = td->td_gd;
193 td->td_flags |= TDF_RUNQ;
194 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
195 if (xtd == NULL) {
196 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
197 atomic_set_int(&gd->gd_reqflags, RQF_RUNNING);
198 } else {
200 * NOTE: td_upri - higher numbers more desireable, same sense
201 * as td_pri (typically reversed from lwp_upri).
203 * In the equal priority case we want the best selection
204 * at the beginning so the less desireable selections know
205 * that they have to setrunqueue/go-to-another-cpu, even
206 * though it means switching back to the 'best' selection.
207 * This also avoids degenerate situations when many threads
208 * are runnable or waking up at the same time.
210 * If upri matches exactly place at end/round-robin.
212 rtd = TAILQ_LAST(&gd->gd_tdrunq, lwkt_queue);
214 while (xtd &&
215 (xtd->td_pri > td->td_pri ||
216 (xtd->td_pri == td->td_pri &&
217 xtd->td_upri >= td->td_upri))) {
218 xtd = TAILQ_NEXT(xtd, td_threadq);
221 * Doing a reverse scan at the same time is an optimization
222 * for the insert-closer-to-tail case that avoids having to
223 * scan the entire list. This situation can occur when
224 * thousands of threads are woken up at the same time.
226 if (rtd->td_pri > td->td_pri ||
227 (rtd->td_pri == td->td_pri &&
228 rtd->td_upri >= td->td_upri)) {
229 TAILQ_INSERT_AFTER(&gd->gd_tdrunq, rtd, td, td_threadq);
230 goto skip;
232 rtd = TAILQ_PREV(rtd, lwkt_queue, td_threadq);
234 if (xtd)
235 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
236 else
237 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
239 skip:
240 ++gd->gd_tdrunqcount;
243 * Request a LWKT reschedule if we are now at the head of the queue.
245 if (TAILQ_FIRST(&gd->gd_tdrunq) == td)
246 need_lwkt_resched();
250 static boolean_t
251 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
253 struct thread *td = (struct thread *)obj;
255 td->td_kstack = NULL;
256 td->td_kstack_size = 0;
257 td->td_flags = TDF_ALLOCATED_THREAD;
258 td->td_mpflags = 0;
259 return (1);
262 static void
263 _lwkt_thread_dtor(void *obj, void *privdata)
265 struct thread *td = (struct thread *)obj;
267 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
268 ("_lwkt_thread_dtor: not allocated from objcache"));
269 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
270 td->td_kstack_size > 0,
271 ("_lwkt_thread_dtor: corrupted stack"));
272 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
273 td->td_kstack = NULL;
274 td->td_flags = 0;
278 * Initialize the lwkt s/system.
280 * Nominally cache up to 32 thread + kstack structures. Cache more on
281 * systems with a lot of cpu cores.
283 static void
284 lwkt_init(void)
286 TUNABLE_INT("lwkt.cache_threads", &lwkt_cache_threads);
287 if (lwkt_cache_threads == 0) {
288 lwkt_cache_threads = ncpus * 4;
289 if (lwkt_cache_threads < 32)
290 lwkt_cache_threads = 32;
292 thread_cache = objcache_create_mbacked(
293 M_THREAD, sizeof(struct thread),
294 0, lwkt_cache_threads,
295 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
297 SYSINIT(lwkt_init, SI_BOOT2_LWKT_INIT, SI_ORDER_FIRST, lwkt_init, NULL);
300 * Schedule a thread to run. As the current thread we can always safely
301 * schedule ourselves, and a shortcut procedure is provided for that
302 * function.
304 * (non-blocking, self contained on a per cpu basis)
306 void
307 lwkt_schedule_self(thread_t td)
309 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
310 crit_enter_quick(td);
311 KASSERT(td != &td->td_gd->gd_idlethread,
312 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
313 KKASSERT(td->td_lwp == NULL ||
314 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
315 _lwkt_enqueue(td);
316 crit_exit_quick(td);
320 * Deschedule a thread.
322 * (non-blocking, self contained on a per cpu basis)
324 void
325 lwkt_deschedule_self(thread_t td)
327 crit_enter_quick(td);
328 _lwkt_dequeue(td);
329 crit_exit_quick(td);
333 * LWKTs operate on a per-cpu basis
335 * WARNING! Called from early boot, 'mycpu' may not work yet.
337 void
338 lwkt_gdinit(struct globaldata *gd)
340 TAILQ_INIT(&gd->gd_tdrunq);
341 TAILQ_INIT(&gd->gd_tdallq);
345 * Create a new thread. The thread must be associated with a process context
346 * or LWKT start address before it can be scheduled. If the target cpu is
347 * -1 the thread will be created on the current cpu.
349 * If you intend to create a thread without a process context this function
350 * does everything except load the startup and switcher function.
352 thread_t
353 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
355 static int cpu_rotator;
356 globaldata_t gd = mycpu;
357 void *stack;
360 * If static thread storage is not supplied allocate a thread. Reuse
361 * a cached free thread if possible. gd_freetd is used to keep an exiting
362 * thread intact through the exit.
364 if (td == NULL) {
365 crit_enter_gd(gd);
366 if ((td = gd->gd_freetd) != NULL) {
367 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
368 TDF_RUNQ)) == 0);
369 gd->gd_freetd = NULL;
370 } else {
371 td = objcache_get(thread_cache, M_WAITOK);
372 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
373 TDF_RUNQ)) == 0);
375 crit_exit_gd(gd);
376 KASSERT((td->td_flags &
377 (TDF_ALLOCATED_THREAD|TDF_RUNNING|TDF_PREEMPT_LOCK)) ==
378 TDF_ALLOCATED_THREAD,
379 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
380 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
384 * Try to reuse cached stack.
386 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
387 if (flags & TDF_ALLOCATED_STACK) {
388 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
389 stack = NULL;
392 if (stack == NULL) {
393 if (cpu < 0)
394 stack = (void *)kmem_alloc_stack(&kernel_map, stksize, 0);
395 else
396 stack = (void *)kmem_alloc_stack(&kernel_map, stksize,
397 KM_CPU(cpu));
398 flags |= TDF_ALLOCATED_STACK;
400 if (cpu < 0) {
401 cpu = ++cpu_rotator;
402 cpu_ccfence();
403 cpu %= ncpus;
405 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
406 return(td);
410 * Initialize a preexisting thread structure. This function is used by
411 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
413 * All threads start out in a critical section at a priority of
414 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
415 * appropriate. This function may send an IPI message when the
416 * requested cpu is not the current cpu and consequently gd_tdallq may
417 * not be initialized synchronously from the point of view of the originating
418 * cpu.
420 * NOTE! we have to be careful in regards to creating threads for other cpus
421 * if SMP has not yet been activated.
423 static void
424 lwkt_init_thread_remote(void *arg)
426 thread_t td = arg;
429 * Protected by critical section held by IPI dispatch
431 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
435 * lwkt core thread structural initialization.
437 * NOTE: All threads are initialized as mpsafe threads.
439 void
440 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
441 struct globaldata *gd)
443 globaldata_t mygd = mycpu;
445 bzero(td, sizeof(struct thread));
446 td->td_kstack = stack;
447 td->td_kstack_size = stksize;
448 td->td_flags = flags;
449 td->td_mpflags = 0;
450 td->td_type = TD_TYPE_GENERIC;
451 td->td_gd = gd;
452 td->td_pri = TDPRI_KERN_DAEMON;
453 td->td_critcount = 1;
454 td->td_toks_have = NULL;
455 td->td_toks_stop = &td->td_toks_base;
456 if (lwkt_use_spin_port || (flags & TDF_FORCE_SPINPORT)) {
457 lwkt_initport_spin(&td->td_msgport, td,
458 (flags & TDF_FIXEDCPU) ? TRUE : FALSE);
459 } else {
460 lwkt_initport_thread(&td->td_msgport, td);
462 pmap_init_thread(td);
464 * Normally initializing a thread for a remote cpu requires sending an
465 * IPI. However, the idlethread is setup before the other cpus are
466 * activated so we have to treat it as a special case. XXX manipulation
467 * of gd_tdallq requires the BGL.
469 if (gd == mygd || td == &gd->gd_idlethread) {
470 crit_enter_gd(mygd);
471 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
472 crit_exit_gd(mygd);
473 } else {
474 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
476 dsched_enter_thread(td);
479 void
480 lwkt_set_comm(thread_t td, const char *ctl, ...)
482 __va_list va;
484 __va_start(va, ctl);
485 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
486 __va_end(va);
487 KTR_LOG(ctxsw_newtd, td, td->td_comm);
491 * Prevent the thread from getting destroyed. Note that unlike PHOLD/PRELE
492 * this does not prevent the thread from migrating to another cpu so the
493 * gd_tdallq state is not protected by this.
495 void
496 lwkt_hold(thread_t td)
498 atomic_add_int(&td->td_refs, 1);
501 void
502 lwkt_rele(thread_t td)
504 KKASSERT(td->td_refs > 0);
505 atomic_add_int(&td->td_refs, -1);
508 void
509 lwkt_free_thread(thread_t td)
511 KKASSERT(td->td_refs == 0);
512 KKASSERT((td->td_flags & (TDF_RUNNING | TDF_PREEMPT_LOCK |
513 TDF_RUNQ | TDF_TSLEEPQ)) == 0);
514 if (td->td_flags & TDF_ALLOCATED_THREAD) {
515 objcache_put(thread_cache, td);
516 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
517 /* client-allocated struct with internally allocated stack */
518 KASSERT(td->td_kstack && td->td_kstack_size > 0,
519 ("lwkt_free_thread: corrupted stack"));
520 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
521 td->td_kstack = NULL;
522 td->td_kstack_size = 0;
525 KTR_LOG(ctxsw_deadtd, td);
530 * Switch to the next runnable lwkt. If no LWKTs are runnable then
531 * switch to the idlethread. Switching must occur within a critical
532 * section to avoid races with the scheduling queue.
534 * We always have full control over our cpu's run queue. Other cpus
535 * that wish to manipulate our queue must use the cpu_*msg() calls to
536 * talk to our cpu, so a critical section is all that is needed and
537 * the result is very, very fast thread switching.
539 * The LWKT scheduler uses a fixed priority model and round-robins at
540 * each priority level. User process scheduling is a totally
541 * different beast and LWKT priorities should not be confused with
542 * user process priorities.
544 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
545 * is not called by the current thread in the preemption case, only when
546 * the preempting thread blocks (in order to return to the original thread).
548 * SPECIAL NOTE ON SWITCH ATOMICY: Certain operations such as thread
549 * migration and tsleep deschedule the current lwkt thread and call
550 * lwkt_switch(). In particular, the target cpu of the migration fully
551 * expects the thread to become non-runnable and can deadlock against
552 * cpusync operations if we run any IPIs prior to switching the thread out.
554 * WE MUST BE VERY CAREFUL NOT TO RUN SPLZ DIRECTLY OR INDIRECTLY IF
555 * THE CURRENT THREAD HAS BEEN DESCHEDULED!
557 void
558 lwkt_switch(void)
560 globaldata_t gd = mycpu;
561 thread_t td = gd->gd_curthread;
562 thread_t ntd;
563 thread_t xtd;
564 int upri;
565 #ifdef LOOPMASK
566 uint64_t tsc_base = rdtsc();
567 #endif
569 KKASSERT(gd->gd_processing_ipiq == 0);
570 KKASSERT(td->td_flags & TDF_RUNNING);
573 * Switching from within a 'fast' (non thread switched) interrupt or IPI
574 * is illegal. However, we may have to do it anyway if we hit a fatal
575 * kernel trap or we have paniced.
577 * If this case occurs save and restore the interrupt nesting level.
579 if (gd->gd_intr_nesting_level) {
580 int savegdnest;
581 int savegdtrap;
583 if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
584 panic("lwkt_switch: Attempt to switch from a "
585 "fast interrupt, ipi, or hard code section, "
586 "td %p\n",
587 td);
588 } else {
589 savegdnest = gd->gd_intr_nesting_level;
590 savegdtrap = gd->gd_trap_nesting_level;
591 gd->gd_intr_nesting_level = 0;
592 gd->gd_trap_nesting_level = 0;
593 if ((td->td_flags & TDF_PANICWARN) == 0) {
594 td->td_flags |= TDF_PANICWARN;
595 kprintf("Warning: thread switch from interrupt, IPI, "
596 "or hard code section.\n"
597 "thread %p (%s)\n", td, td->td_comm);
598 print_backtrace(-1);
600 lwkt_switch();
601 gd->gd_intr_nesting_level = savegdnest;
602 gd->gd_trap_nesting_level = savegdtrap;
603 return;
608 * Release our current user process designation if we are blocking
609 * or if a user reschedule was requested.
611 * NOTE: This function is NOT called if we are switching into or
612 * returning from a preemption.
614 * NOTE: Releasing our current user process designation may cause
615 * it to be assigned to another thread, which in turn will
616 * cause us to block in the usched acquire code when we attempt
617 * to return to userland.
619 * NOTE: On SMP systems this can be very nasty when heavy token
620 * contention is present so we want to be careful not to
621 * release the designation gratuitously.
623 if (td->td_release &&
624 (user_resched_wanted() || (td->td_flags & TDF_RUNQ) == 0)) {
625 td->td_release(td);
629 * Release all tokens. Once we do this we must remain in the critical
630 * section and cannot run IPIs or other interrupts until we switch away
631 * because they may implode if they try to get a token using our thread
632 * context.
634 crit_enter_gd(gd);
635 if (TD_TOKS_HELD(td))
636 lwkt_relalltokens(td);
639 * We had better not be holding any spin locks, but don't get into an
640 * endless panic loop.
642 KASSERT(gd->gd_spinlocks == 0 || panicstr != NULL,
643 ("lwkt_switch: still holding %d exclusive spinlocks!",
644 gd->gd_spinlocks));
646 #ifdef INVARIANTS
647 if (td->td_cscount) {
648 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
649 td);
650 if (panic_on_cscount)
651 panic("switching while mastering cpusync");
653 #endif
656 * If we had preempted another thread on this cpu, resume the preempted
657 * thread. This occurs transparently, whether the preempted thread
658 * was scheduled or not (it may have been preempted after descheduling
659 * itself).
661 * We have to setup the MP lock for the original thread after backing
662 * out the adjustment that was made to curthread when the original
663 * was preempted.
665 if ((ntd = td->td_preempted) != NULL) {
666 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
667 ntd->td_flags |= TDF_PREEMPT_DONE;
668 ntd->td_contended = 0; /* reset contended */
671 * The interrupt may have woken a thread up, we need to properly
672 * set the reschedule flag if the originally interrupted thread is
673 * at a lower priority.
675 * NOTE: The interrupt may not have descheduled ntd.
677 * NOTE: We do not reschedule if there are no threads on the runq.
678 * (ntd could be the idlethread).
680 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
681 if (xtd && xtd != ntd)
682 need_lwkt_resched();
683 goto havethread_preempted;
687 * Figure out switch target. If we cannot switch to our desired target
688 * look for a thread that we can switch to.
690 * NOTE! The limited spin loop and related parameters are extremely
691 * important for system performance, particularly for pipes and
692 * concurrent conflicting VM faults.
694 clear_lwkt_resched();
695 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
697 if (ntd) {
698 do {
699 if (TD_TOKS_NOT_HELD(ntd) ||
700 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops)))
702 goto havethread;
704 ++gd->gd_cnt.v_lock_colls;
705 ++ntd->td_contended; /* overflow ok */
706 #ifdef LOOPMASK
707 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
708 kprintf("lwkt_switch: excessive contended %d "
709 "thread %p\n", ntd->td_contended, ntd);
710 tsc_base = rdtsc();
712 #endif
713 } while (ntd->td_contended < (lwkt_spin_loops >> 1));
714 upri = ntd->td_upri;
717 * Bleh, the thread we wanted to switch to has a contended token.
718 * See if we can switch to another thread.
720 * We generally don't want to do this because it represents a
721 * priority inversion. Do not allow the case if the thread
722 * is returning to userland (not a kernel thread) AND the thread
723 * has a lower upri.
725 while ((ntd = TAILQ_NEXT(ntd, td_threadq)) != NULL) {
726 if (ntd->td_pri < TDPRI_KERN_LPSCHED && upri > ntd->td_upri)
727 break;
728 upri = ntd->td_upri;
731 * Try this one.
733 if (TD_TOKS_NOT_HELD(ntd) ||
734 lwkt_getalltokens(ntd, (ntd->td_contended > lwkt_spin_loops))) {
735 goto havethread;
737 ++ntd->td_contended; /* overflow ok */
738 ++gd->gd_cnt.v_lock_colls;
742 * Fall through, switch to idle thread to get us out of the current
743 * context. Since we were contended, prevent HLT by flagging a
744 * LWKT reschedule.
746 need_lwkt_resched();
750 * We either contended on ntd or the runq is empty. We must switch
751 * through the idle thread to get out of the current context.
753 ntd = &gd->gd_idlethread;
754 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
755 ASSERT_NO_TOKENS_HELD(ntd);
756 cpu_time.cp_msg[0] = 0;
757 goto haveidle;
759 havethread:
761 * Clear gd_idle_repeat when doing a normal switch to a non-idle
762 * thread.
764 ntd->td_wmesg = NULL;
765 ntd->td_contended = 0; /* reset once scheduled */
766 ++gd->gd_cnt.v_swtch;
767 gd->gd_idle_repeat = 0;
769 havethread_preempted:
771 * If the new target does not need the MP lock and we are holding it,
772 * release the MP lock. If the new target requires the MP lock we have
773 * already acquired it for the target.
776 haveidle:
777 KASSERT(ntd->td_critcount,
778 ("priority problem in lwkt_switch %d %d",
779 td->td_critcount, ntd->td_critcount));
781 if (td != ntd) {
783 * Execute the actual thread switch operation. This function
784 * returns to the current thread and returns the previous thread
785 * (which may be different from the thread we switched to).
787 * We are responsible for marking ntd as TDF_RUNNING.
789 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
790 ++switch_count;
791 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
792 ntd->td_flags |= TDF_RUNNING;
793 lwkt_switch_return(td->td_switch(ntd));
794 /* ntd invalid, td_switch() can return a different thread_t */
798 * catch-all. XXX is this strictly needed?
800 splz_check();
802 /* NOTE: current cpu may have changed after switch */
803 crit_exit_quick(td);
807 * Called by assembly in the td_switch (thread restore path) for thread
808 * bootstrap cases which do not 'return' to lwkt_switch().
810 void
811 lwkt_switch_return(thread_t otd)
813 globaldata_t rgd;
814 #ifdef LOOPMASK
815 uint64_t tsc_base = rdtsc();
816 #endif
817 int exiting;
819 exiting = otd->td_flags & TDF_EXITING;
820 cpu_ccfence();
823 * Check if otd was migrating. Now that we are on ntd we can finish
824 * up the migration. This is a bit messy but it is the only place
825 * where td is known to be fully descheduled.
827 * We can only activate the migration if otd was migrating but not
828 * held on the cpu due to a preemption chain. We still have to
829 * clear TDF_RUNNING on the old thread either way.
831 * We are responsible for clearing the previously running thread's
832 * TDF_RUNNING.
834 if ((rgd = otd->td_migrate_gd) != NULL &&
835 (otd->td_flags & TDF_PREEMPT_LOCK) == 0) {
836 KKASSERT((otd->td_flags & (TDF_MIGRATING | TDF_RUNNING)) ==
837 (TDF_MIGRATING | TDF_RUNNING));
838 otd->td_migrate_gd = NULL;
839 otd->td_flags &= ~TDF_RUNNING;
840 lwkt_send_ipiq(rgd, lwkt_setcpu_remote, otd);
841 } else {
842 otd->td_flags &= ~TDF_RUNNING;
846 * Final exit validations (see lwp_wait()). Note that otd becomes
847 * invalid the *instant* we set TDF_MP_EXITSIG.
849 * Use the EXITING status loaded from before we clear TDF_RUNNING,
850 * because if it is not set otd becomes invalid the instant we clear
851 * TDF_RUNNING on it (otherwise, if the system is fast enough, we
852 * might 'steal' TDF_EXITING from another switch-return!).
854 while (exiting) {
855 u_int mpflags;
857 mpflags = otd->td_mpflags;
858 cpu_ccfence();
860 if (mpflags & TDF_MP_EXITWAIT) {
861 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
862 mpflags | TDF_MP_EXITSIG)) {
863 wakeup(otd);
864 break;
866 } else {
867 if (atomic_cmpset_int(&otd->td_mpflags, mpflags,
868 mpflags | TDF_MP_EXITSIG)) {
869 wakeup(otd);
870 break;
874 #ifdef LOOPMASK
875 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
876 kprintf("lwkt_switch_return: excessive TDF_EXITING "
877 "thread %p\n", otd);
878 tsc_base = rdtsc();
880 #endif
885 * Request that the target thread preempt the current thread. Preemption
886 * can only occur only:
888 * - If our critical section is the one that we were called with
889 * - The relative priority of the target thread is higher
890 * - The target is not excessively interrupt-nested via td_nest_count
891 * - The target thread holds no tokens.
892 * - The target thread is not already scheduled and belongs to the
893 * current cpu.
894 * - The current thread is not holding any spin-locks.
896 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
897 * this is called via lwkt_schedule() through the td_preemptable callback.
898 * critcount is the managed critical priority that we should ignore in order
899 * to determine whether preemption is possible (aka usually just the crit
900 * priority of lwkt_schedule() itself).
902 * Preemption is typically limited to interrupt threads.
904 * Operation works in a fairly straight-forward manner. The normal
905 * scheduling code is bypassed and we switch directly to the target
906 * thread. When the target thread attempts to block or switch away
907 * code at the base of lwkt_switch() will switch directly back to our
908 * thread. Our thread is able to retain whatever tokens it holds and
909 * if the target needs one of them the target will switch back to us
910 * and reschedule itself normally.
912 void
913 lwkt_preempt(thread_t ntd, int critcount)
915 struct globaldata *gd = mycpu;
916 thread_t xtd;
917 thread_t td;
918 int save_gd_intr_nesting_level;
921 * The caller has put us in a critical section. We can only preempt
922 * if the caller of the caller was not in a critical section (basically
923 * a local interrupt), as determined by the 'critcount' parameter. We
924 * also can't preempt if the caller is holding any spinlocks (even if
925 * he isn't in a critical section). This also handles the tokens test.
927 * YYY The target thread must be in a critical section (else it must
928 * inherit our critical section? I dunno yet).
930 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
932 td = gd->gd_curthread;
933 if (preempt_enable == 0) {
934 ++preempt_miss;
935 return;
937 if (ntd->td_pri <= td->td_pri) {
938 ++preempt_miss;
939 return;
941 if (td->td_critcount > critcount) {
942 ++preempt_miss;
943 return;
945 if (td->td_nest_count >= 2) {
946 ++preempt_miss;
947 return;
949 if (td->td_cscount) {
950 ++preempt_miss;
951 return;
953 if (ntd->td_gd != gd) {
954 ++preempt_miss;
955 return;
959 * We don't have to check spinlocks here as they will also bump
960 * td_critcount.
962 * Do not try to preempt if the target thread is holding any tokens.
963 * We could try to acquire the tokens but this case is so rare there
964 * is no need to support it.
966 KKASSERT(gd->gd_spinlocks == 0);
968 if (TD_TOKS_HELD(ntd)) {
969 ++preempt_miss;
970 return;
972 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
973 ++preempt_weird;
974 return;
976 if (ntd->td_preempted) {
977 ++preempt_hit;
978 return;
980 KKASSERT(gd->gd_processing_ipiq == 0);
983 * Since we are able to preempt the current thread, there is no need to
984 * call need_lwkt_resched().
986 * We must temporarily clear gd_intr_nesting_level around the switch
987 * since switchouts from the target thread are allowed (they will just
988 * return to our thread), and since the target thread has its own stack.
990 * A preemption must switch back to the original thread, assert the
991 * case.
993 ++preempt_hit;
994 ntd->td_preempted = td;
995 td->td_flags |= TDF_PREEMPT_LOCK;
996 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
997 save_gd_intr_nesting_level = gd->gd_intr_nesting_level;
998 gd->gd_intr_nesting_level = 0;
1000 KKASSERT((ntd->td_flags & TDF_RUNNING) == 0);
1001 ntd->td_flags |= TDF_RUNNING;
1002 xtd = td->td_switch(ntd);
1003 KKASSERT(xtd == ntd);
1004 lwkt_switch_return(xtd);
1005 gd->gd_intr_nesting_level = save_gd_intr_nesting_level;
1007 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1008 ntd->td_preempted = NULL;
1009 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1013 * Conditionally call splz() if gd_reqflags indicates work is pending.
1014 * This will work inside a critical section but not inside a hard code
1015 * section.
1017 * (self contained on a per cpu basis)
1019 void
1020 splz_check(void)
1022 globaldata_t gd = mycpu;
1023 thread_t td = gd->gd_curthread;
1025 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1026 gd->gd_intr_nesting_level == 0 &&
1027 td->td_nest_count < 2)
1029 splz();
1034 * This version is integrated into crit_exit, reqflags has already
1035 * been tested but td_critcount has not.
1037 * We only want to execute the splz() on the 1->0 transition of
1038 * critcount and not in a hard code section or if too deeply nested.
1040 * NOTE: gd->gd_spinlocks is implied to be 0 when td_critcount is 0.
1042 void
1043 lwkt_maybe_splz(thread_t td)
1045 globaldata_t gd = td->td_gd;
1047 if (td->td_critcount == 0 &&
1048 gd->gd_intr_nesting_level == 0 &&
1049 td->td_nest_count < 2)
1051 splz();
1056 * Drivers which set up processing co-threads can call this function to
1057 * run the co-thread at a higher priority and to allow it to preempt
1058 * normal threads.
1060 void
1061 lwkt_set_interrupt_support_thread(void)
1063 thread_t td = curthread;
1065 lwkt_setpri_self(TDPRI_INT_SUPPORT);
1066 td->td_flags |= TDF_INTTHREAD;
1067 td->td_preemptable = lwkt_preempt;
1072 * This function is used to negotiate a passive release of the current
1073 * process/lwp designation with the user scheduler, allowing the user
1074 * scheduler to schedule another user thread. The related kernel thread
1075 * (curthread) continues running in the released state.
1077 void
1078 lwkt_passive_release(struct thread *td)
1080 struct lwp *lp = td->td_lwp;
1082 td->td_release = NULL;
1083 lwkt_setpri_self(TDPRI_KERN_USER);
1085 lp->lwp_proc->p_usched->release_curproc(lp);
1090 * This implements a LWKT yield, allowing a kernel thread to yield to other
1091 * kernel threads at the same or higher priority. This function can be
1092 * called in a tight loop and will typically only yield once per tick.
1094 * Most kernel threads run at the same priority in order to allow equal
1095 * sharing.
1097 * (self contained on a per cpu basis)
1099 void
1100 lwkt_yield(void)
1102 globaldata_t gd = mycpu;
1103 thread_t td = gd->gd_curthread;
1106 * Should never be called with spinlocks held but there is a path
1107 * via ACPI where it might happen.
1109 if (gd->gd_spinlocks)
1110 return;
1113 * Safe to call splz if we are not too-heavily nested.
1115 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1116 splz();
1119 * Caller allows switching
1121 if (lwkt_resched_wanted()) {
1122 lwkt_schedule_self(curthread);
1123 lwkt_switch();
1128 * The quick version processes pending interrupts and higher-priority
1129 * LWKT threads but will not round-robin same-priority LWKT threads.
1131 * When called while attempting to return to userland the only same-pri
1132 * threads are the ones which have already tried to become the current
1133 * user process.
1135 void
1136 lwkt_yield_quick(void)
1138 globaldata_t gd = mycpu;
1139 thread_t td = gd->gd_curthread;
1141 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1142 splz();
1143 if (lwkt_resched_wanted()) {
1144 crit_enter();
1145 if (TAILQ_FIRST(&gd->gd_tdrunq) == td) {
1146 clear_lwkt_resched();
1147 } else {
1148 lwkt_schedule_self(curthread);
1149 lwkt_switch();
1151 crit_exit();
1156 * This yield is designed for kernel threads with a user context.
1158 * The kernel acting on behalf of the user is potentially cpu-bound,
1159 * this function will efficiently allow other threads to run and also
1160 * switch to other processes by releasing.
1162 * The lwkt_user_yield() function is designed to have very low overhead
1163 * if no yield is determined to be needed.
1165 void
1166 lwkt_user_yield(void)
1168 globaldata_t gd = mycpu;
1169 thread_t td = gd->gd_curthread;
1172 * Should never be called with spinlocks held but there is a path
1173 * via ACPI where it might happen.
1175 if (gd->gd_spinlocks)
1176 return;
1179 * Always run any pending interrupts in case we are in a critical
1180 * section.
1182 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1183 splz();
1186 * Switch (which forces a release) if another kernel thread needs
1187 * the cpu, if userland wants us to resched, or if our kernel
1188 * quantum has run out.
1190 if (lwkt_resched_wanted() ||
1191 user_resched_wanted())
1193 lwkt_switch();
1196 #if 0
1198 * Reacquire the current process if we are released.
1200 * XXX not implemented atm. The kernel may be holding locks and such,
1201 * so we want the thread to continue to receive cpu.
1203 if (td->td_release == NULL && lp) {
1204 lp->lwp_proc->p_usched->acquire_curproc(lp);
1205 td->td_release = lwkt_passive_release;
1206 lwkt_setpri_self(TDPRI_USER_NORM);
1208 #endif
1212 * Generic schedule. Possibly schedule threads belonging to other cpus and
1213 * deal with threads that might be blocked on a wait queue.
1215 * We have a little helper inline function which does additional work after
1216 * the thread has been enqueued, including dealing with preemption and
1217 * setting need_lwkt_resched() (which prevents the kernel from returning
1218 * to userland until it has processed higher priority threads).
1220 * It is possible for this routine to be called after a failed _enqueue
1221 * (due to the target thread migrating, sleeping, or otherwise blocked).
1222 * We have to check that the thread is actually on the run queue!
1224 static __inline
1225 void
1226 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount)
1228 if (ntd->td_flags & TDF_RUNQ) {
1229 if (ntd->td_preemptable) {
1230 ntd->td_preemptable(ntd, ccount); /* YYY +token */
1235 static __inline
1236 void
1237 _lwkt_schedule(thread_t td)
1239 globaldata_t mygd = mycpu;
1241 KASSERT(td != &td->td_gd->gd_idlethread,
1242 ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1243 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
1244 crit_enter_gd(mygd);
1245 KKASSERT(td->td_lwp == NULL ||
1246 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1248 if (td == mygd->gd_curthread) {
1249 _lwkt_enqueue(td);
1250 } else {
1252 * If we own the thread, there is no race (since we are in a
1253 * critical section). If we do not own the thread there might
1254 * be a race but the target cpu will deal with it.
1256 if (td->td_gd == mygd) {
1257 _lwkt_enqueue(td);
1258 _lwkt_schedule_post(mygd, td, 1);
1259 } else {
1260 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1263 crit_exit_gd(mygd);
1266 void
1267 lwkt_schedule(thread_t td)
1269 _lwkt_schedule(td);
1272 void
1273 lwkt_schedule_noresched(thread_t td) /* XXX not impl */
1275 _lwkt_schedule(td);
1279 * When scheduled remotely if frame != NULL the IPIQ is being
1280 * run via doreti or an interrupt then preemption can be allowed.
1282 * To allow preemption we have to drop the critical section so only
1283 * one is present in _lwkt_schedule_post.
1285 static void
1286 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1288 thread_t td = curthread;
1289 thread_t ntd = arg;
1291 if (frame && ntd->td_preemptable) {
1292 crit_exit_noyield(td);
1293 _lwkt_schedule(ntd);
1294 crit_enter_quick(td);
1295 } else {
1296 _lwkt_schedule(ntd);
1301 * Thread migration using a 'Pull' method. The thread may or may not be
1302 * the current thread. It MUST be descheduled and in a stable state.
1303 * lwkt_giveaway() must be called on the cpu owning the thread.
1305 * At any point after lwkt_giveaway() is called, the target cpu may
1306 * 'pull' the thread by calling lwkt_acquire().
1308 * We have to make sure the thread is not sitting on a per-cpu tsleep
1309 * queue or it will blow up when it moves to another cpu.
1311 * MPSAFE - must be called under very specific conditions.
1313 void
1314 lwkt_giveaway(thread_t td)
1316 globaldata_t gd = mycpu;
1318 crit_enter_gd(gd);
1319 if (td->td_flags & TDF_TSLEEPQ)
1320 tsleep_remove(td);
1321 KKASSERT(td->td_gd == gd);
1322 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1323 td->td_flags |= TDF_MIGRATING;
1324 crit_exit_gd(gd);
1327 void
1328 lwkt_acquire(thread_t td)
1330 globaldata_t gd;
1331 globaldata_t mygd;
1333 KKASSERT(td->td_flags & TDF_MIGRATING);
1334 gd = td->td_gd;
1335 mygd = mycpu;
1336 if (gd != mycpu) {
1337 #ifdef LOOPMASK
1338 uint64_t tsc_base = rdtsc();
1339 #endif
1340 cpu_lfence();
1341 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1342 crit_enter_gd(mygd);
1343 DEBUG_PUSH_INFO("lwkt_acquire");
1344 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1345 lwkt_process_ipiq();
1346 cpu_lfence();
1347 #ifdef _KERNEL_VIRTUAL
1348 pthread_yield();
1349 #endif
1350 #ifdef LOOPMASK
1351 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1352 kprintf("lwkt_acquire: stuck td %p td->td_flags %08x\n",
1353 td, td->td_flags);
1354 tsc_base = rdtsc();
1356 #endif
1358 DEBUG_POP_INFO();
1359 cpu_mfence();
1360 td->td_gd = mygd;
1361 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1362 td->td_flags &= ~TDF_MIGRATING;
1363 crit_exit_gd(mygd);
1364 } else {
1365 crit_enter_gd(mygd);
1366 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1367 td->td_flags &= ~TDF_MIGRATING;
1368 crit_exit_gd(mygd);
1373 * Generic deschedule. Descheduling threads other then your own should be
1374 * done only in carefully controlled circumstances. Descheduling is
1375 * asynchronous.
1377 * This function may block if the cpu has run out of messages.
1379 void
1380 lwkt_deschedule(thread_t td)
1382 crit_enter();
1383 if (td == curthread) {
1384 _lwkt_dequeue(td);
1385 } else {
1386 if (td->td_gd == mycpu) {
1387 _lwkt_dequeue(td);
1388 } else {
1389 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1392 crit_exit();
1396 * Set the target thread's priority. This routine does not automatically
1397 * switch to a higher priority thread, LWKT threads are not designed for
1398 * continuous priority changes. Yield if you want to switch.
1400 void
1401 lwkt_setpri(thread_t td, int pri)
1403 if (td->td_pri != pri) {
1404 KKASSERT(pri >= 0);
1405 crit_enter();
1406 if (td->td_flags & TDF_RUNQ) {
1407 KKASSERT(td->td_gd == mycpu);
1408 _lwkt_dequeue(td);
1409 td->td_pri = pri;
1410 _lwkt_enqueue(td);
1411 } else {
1412 td->td_pri = pri;
1414 crit_exit();
1419 * Set the initial priority for a thread prior to it being scheduled for
1420 * the first time. The thread MUST NOT be scheduled before or during
1421 * this call. The thread may be assigned to a cpu other then the current
1422 * cpu.
1424 * Typically used after a thread has been created with TDF_STOPPREQ,
1425 * and before the thread is initially scheduled.
1427 void
1428 lwkt_setpri_initial(thread_t td, int pri)
1430 KKASSERT(pri >= 0);
1431 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1432 td->td_pri = pri;
1435 void
1436 lwkt_setpri_self(int pri)
1438 thread_t td = curthread;
1440 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1441 crit_enter();
1442 if (td->td_flags & TDF_RUNQ) {
1443 _lwkt_dequeue(td);
1444 td->td_pri = pri;
1445 _lwkt_enqueue(td);
1446 } else {
1447 td->td_pri = pri;
1449 crit_exit();
1453 * hz tick scheduler clock for LWKT threads
1455 void
1456 lwkt_schedulerclock(thread_t td)
1458 globaldata_t gd = td->td_gd;
1459 thread_t xtd;
1461 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1462 if (xtd == td) {
1464 * If the current thread is at the head of the runq shift it to the
1465 * end of any equal-priority threads and request a LWKT reschedule
1466 * if it moved.
1468 * Ignore upri in this situation. There will only be one user thread
1469 * in user mode, all others will be user threads running in kernel
1470 * mode and we have to make sure they get some cpu.
1472 xtd = TAILQ_NEXT(td, td_threadq);
1473 if (xtd && xtd->td_pri == td->td_pri) {
1474 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
1475 while (xtd && xtd->td_pri == td->td_pri)
1476 xtd = TAILQ_NEXT(xtd, td_threadq);
1477 if (xtd)
1478 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
1479 else
1480 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
1481 need_lwkt_resched();
1483 } else if (xtd) {
1485 * If we scheduled a thread other than the one at the head of the
1486 * queue always request a reschedule every tick.
1488 need_lwkt_resched();
1490 /* else curthread probably the idle thread, no need to reschedule */
1494 * Migrate the current thread to the specified cpu.
1496 * This is accomplished by descheduling ourselves from the current cpu
1497 * and setting td_migrate_gd. The lwkt_switch() code will detect that the
1498 * 'old' thread wants to migrate after it has been completely switched out
1499 * and will complete the migration.
1501 * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1503 * We must be sure to release our current process designation (if a user
1504 * process) before clearing out any tsleepq we are on because the release
1505 * code may re-add us.
1507 * We must be sure to remove ourselves from the current cpu's tsleepq
1508 * before potentially moving to another queue. The thread can be on
1509 * a tsleepq due to a left-over tsleep_interlock().
1512 void
1513 lwkt_setcpu_self(globaldata_t rgd)
1515 thread_t td = curthread;
1517 if (td->td_gd != rgd) {
1518 crit_enter_quick(td);
1520 if (td->td_release)
1521 td->td_release(td);
1522 if (td->td_flags & TDF_TSLEEPQ)
1523 tsleep_remove(td);
1526 * Set TDF_MIGRATING to prevent a spurious reschedule while we are
1527 * trying to deschedule ourselves and switch away, then deschedule
1528 * ourself, remove us from tdallq, and set td_migrate_gd. Finally,
1529 * call lwkt_switch() to complete the operation.
1531 td->td_flags |= TDF_MIGRATING;
1532 lwkt_deschedule_self(td);
1533 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1534 td->td_migrate_gd = rgd;
1535 lwkt_switch();
1538 * We are now on the target cpu
1540 KKASSERT(rgd == mycpu);
1541 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1542 crit_exit_quick(td);
1546 void
1547 lwkt_migratecpu(int cpuid)
1549 globaldata_t rgd;
1551 rgd = globaldata_find(cpuid);
1552 lwkt_setcpu_self(rgd);
1556 * Remote IPI for cpu migration (called while in a critical section so we
1557 * do not have to enter another one).
1559 * The thread (td) has already been completely descheduled from the
1560 * originating cpu and we can simply assert the case. The thread is
1561 * assigned to the new cpu and enqueued.
1563 * The thread will re-add itself to tdallq when it resumes execution.
1565 static void
1566 lwkt_setcpu_remote(void *arg)
1568 thread_t td = arg;
1569 globaldata_t gd = mycpu;
1571 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1572 td->td_gd = gd;
1573 cpu_mfence();
1574 td->td_flags &= ~TDF_MIGRATING;
1575 KKASSERT(td->td_migrate_gd == NULL);
1576 KKASSERT(td->td_lwp == NULL ||
1577 (td->td_lwp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1578 _lwkt_enqueue(td);
1581 struct lwp *
1582 lwkt_preempted_proc(void)
1584 thread_t td = curthread;
1585 while (td->td_preempted)
1586 td = td->td_preempted;
1587 return(td->td_lwp);
1591 * Create a kernel process/thread/whatever. It shares it's address space
1592 * with proc0 - ie: kernel only.
1594 * If the cpu is not specified one will be selected. In the future
1595 * specifying a cpu of -1 will enable kernel thread migration between
1596 * cpus.
1599 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1600 thread_t template, int tdflags, int cpu, const char *fmt, ...)
1602 thread_t td;
1603 __va_list ap;
1605 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1606 tdflags);
1607 if (tdp)
1608 *tdp = td;
1609 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1612 * Set up arg0 for 'ps' etc
1614 __va_start(ap, fmt);
1615 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1616 __va_end(ap);
1619 * Schedule the thread to run
1621 if (td->td_flags & TDF_NOSTART)
1622 td->td_flags &= ~TDF_NOSTART;
1623 else
1624 lwkt_schedule(td);
1625 return 0;
1629 * Destroy an LWKT thread. Warning! This function is not called when
1630 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1631 * uses a different reaping mechanism.
1633 void
1634 lwkt_exit(void)
1636 thread_t td = curthread;
1637 thread_t std;
1638 globaldata_t gd;
1641 * Do any cleanup that might block here
1643 if (td->td_flags & TDF_VERBOSE)
1644 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1645 biosched_done(td);
1646 dsched_exit_thread(td);
1649 * Get us into a critical section to interlock gd_freetd and loop
1650 * until we can get it freed.
1652 * We have to cache the current td in gd_freetd because objcache_put()ing
1653 * it would rip it out from under us while our thread is still active.
1655 * We are the current thread so of course our own TDF_RUNNING bit will
1656 * be set, so unlike the lwp reap code we don't wait for it to clear.
1658 gd = mycpu;
1659 crit_enter_quick(td);
1660 for (;;) {
1661 if (td->td_refs) {
1662 tsleep(td, 0, "tdreap", 1);
1663 continue;
1665 if ((std = gd->gd_freetd) != NULL) {
1666 KKASSERT((std->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) == 0);
1667 gd->gd_freetd = NULL;
1668 objcache_put(thread_cache, std);
1669 continue;
1671 break;
1675 * Remove thread resources from kernel lists and deschedule us for
1676 * the last time. We cannot block after this point or we may end
1677 * up with a stale td on the tsleepq.
1679 * None of this may block, the critical section is the only thing
1680 * protecting tdallq and the only thing preventing new lwkt_hold()
1681 * thread refs now.
1683 if (td->td_flags & TDF_TSLEEPQ)
1684 tsleep_remove(td);
1685 lwkt_deschedule_self(td);
1686 lwkt_remove_tdallq(td);
1687 KKASSERT(td->td_refs == 0);
1690 * Final cleanup
1692 KKASSERT(gd->gd_freetd == NULL);
1693 if (td->td_flags & TDF_ALLOCATED_THREAD)
1694 gd->gd_freetd = td;
1695 cpu_thread_exit();
1698 void
1699 lwkt_remove_tdallq(thread_t td)
1701 KKASSERT(td->td_gd == mycpu);
1702 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1706 * Code reduction and branch prediction improvements. Call/return
1707 * overhead on modern cpus often degenerates into 0 cycles due to
1708 * the cpu's branch prediction hardware and return pc cache. We
1709 * can take advantage of this by not inlining medium-complexity
1710 * functions and we can also reduce the branch prediction impact
1711 * by collapsing perfectly predictable branches into a single
1712 * procedure instead of duplicating it.
1714 * Is any of this noticeable? Probably not, so I'll take the
1715 * smaller code size.
1717 void
1718 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1720 _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1723 void
1724 crit_panic(void)
1726 thread_t td = curthread;
1727 int lcrit = td->td_critcount;
1729 td->td_critcount = 0;
1730 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1731 /* NOT REACHED */
1735 * Called from debugger/panic on cpus which have been stopped. We must still
1736 * process the IPIQ while stopped.
1738 * If we are dumping also try to process any pending interrupts. This may
1739 * or may not work depending on the state of the cpu at the point it was
1740 * stopped.
1742 void
1743 lwkt_smp_stopped(void)
1745 globaldata_t gd = mycpu;
1747 if (dumping) {
1748 lwkt_process_ipiq();
1749 --gd->gd_intr_nesting_level;
1750 splz();
1751 ++gd->gd_intr_nesting_level;
1752 } else {
1753 lwkt_process_ipiq();
1755 cpu_smp_stopped();