kernel/i915: Fix double assignment (Linux' ed58570f55e2c5755).
[dragonfly.git] / sys / dev / drm / i915 / intel_display.c
blob648bc92d93939153b108e3144122ec43051b7d41
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <drm/drm_edid.h>
32 #include <drm/drmP.h>
33 #include "intel_drv.h"
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "intel_dsi.h"
37 #include "i915_trace.h"
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45 #include <linux/reservation.h>
46 #include <linux/dma-buf.h>
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 DRM_FORMAT_YUYV,
76 DRM_FORMAT_YVYU,
77 DRM_FORMAT_UYVY,
78 DRM_FORMAT_VYUY,
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83 DRM_FORMAT_ARGB8888,
86 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
87 struct intel_crtc_state *pipe_config);
88 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
89 struct intel_crtc_state *pipe_config);
91 static int intel_framebuffer_init(struct drm_device *dev,
92 struct intel_framebuffer *ifb,
93 struct drm_mode_fb_cmd2 *mode_cmd,
94 struct drm_i915_gem_object *obj);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
98 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
99 struct intel_link_m_n *m_n,
100 struct intel_link_m_n *m2_n2);
101 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
102 static void haswell_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipemisc(struct drm_crtc *crtc);
104 static void vlv_prepare_pll(struct intel_crtc *crtc,
105 const struct intel_crtc_state *pipe_config);
106 static void chv_prepare_pll(struct intel_crtc *crtc,
107 const struct intel_crtc_state *pipe_config);
108 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
109 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
111 struct intel_crtc_state *crtc_state);
112 static void skylake_pfit_enable(struct intel_crtc *crtc);
113 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
114 static void ironlake_pfit_enable(struct intel_crtc *crtc);
115 static void intel_modeset_setup_hw_state(struct drm_device *dev);
116 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
118 typedef struct {
119 int min, max;
120 } intel_range_t;
122 typedef struct {
123 int dot_limit;
124 int p2_slow, p2_fast;
125 } intel_p2_t;
127 typedef struct intel_limit intel_limit_t;
128 struct intel_limit {
129 intel_range_t dot, vco, n, m, m1, m2, p, p1;
130 intel_p2_t p2;
133 /* returns HPLL frequency in kHz */
134 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
136 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
138 /* Obtain SKU information */
139 mutex_lock(&dev_priv->sb_lock);
140 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
141 CCK_FUSE_HPLL_FREQ_MASK;
142 mutex_unlock(&dev_priv->sb_lock);
144 return vco_freq[hpll_freq] * 1000;
147 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
148 const char *name, u32 reg, int ref_freq)
150 u32 val;
151 int divider;
153 mutex_lock(&dev_priv->sb_lock);
154 val = vlv_cck_read(dev_priv, reg);
155 mutex_unlock(&dev_priv->sb_lock);
157 divider = val & CCK_FREQUENCY_VALUES;
159 WARN((val & CCK_FREQUENCY_STATUS) !=
160 (divider << CCK_FREQUENCY_STATUS_SHIFT),
161 "%s change in progress\n", name);
163 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
166 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
167 const char *name, u32 reg)
169 if (dev_priv->hpll_freq == 0)
170 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
172 return vlv_get_cck_clock(dev_priv, name, reg,
173 dev_priv->hpll_freq);
176 static int
177 intel_pch_rawclk(struct drm_i915_private *dev_priv)
179 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
182 static int
183 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
185 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
186 CCK_DISPLAY_REF_CLOCK_CONTROL);
189 static int
190 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
192 uint32_t clkcfg;
194 /* hrawclock is 1/4 the FSB frequency */
195 clkcfg = I915_READ(CLKCFG);
196 switch (clkcfg & CLKCFG_FSB_MASK) {
197 case CLKCFG_FSB_400:
198 return 100000;
199 case CLKCFG_FSB_533:
200 return 133333;
201 case CLKCFG_FSB_667:
202 return 166667;
203 case CLKCFG_FSB_800:
204 return 200000;
205 case CLKCFG_FSB_1067:
206 return 266667;
207 case CLKCFG_FSB_1333:
208 return 333333;
209 /* these two are just a guess; one of them might be right */
210 case CLKCFG_FSB_1600:
211 case CLKCFG_FSB_1600_ALT:
212 return 400000;
213 default:
214 return 133333;
218 static void intel_update_rawclk(struct drm_i915_private *dev_priv)
220 if (HAS_PCH_SPLIT(dev_priv))
221 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
222 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
223 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
224 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
225 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
226 else
227 return; /* no rawclk on other platforms, or no need to know it */
229 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
232 static void intel_update_czclk(struct drm_i915_private *dev_priv)
234 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
235 return;
237 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
238 CCK_CZ_CLOCK_CONTROL);
240 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
243 static inline u32 /* units of 100MHz */
244 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
245 const struct intel_crtc_state *pipe_config)
247 if (HAS_DDI(dev_priv))
248 return pipe_config->port_clock; /* SPLL */
249 else if (IS_GEN5(dev_priv))
250 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
251 else
252 return 270000;
255 static const intel_limit_t intel_limits_i8xx_dac = {
256 .dot = { .min = 25000, .max = 350000 },
257 .vco = { .min = 908000, .max = 1512000 },
258 .n = { .min = 2, .max = 16 },
259 .m = { .min = 96, .max = 140 },
260 .m1 = { .min = 18, .max = 26 },
261 .m2 = { .min = 6, .max = 16 },
262 .p = { .min = 4, .max = 128 },
263 .p1 = { .min = 2, .max = 33 },
264 .p2 = { .dot_limit = 165000,
265 .p2_slow = 4, .p2_fast = 2 },
268 static const intel_limit_t intel_limits_i8xx_dvo = {
269 .dot = { .min = 25000, .max = 350000 },
270 .vco = { .min = 908000, .max = 1512000 },
271 .n = { .min = 2, .max = 16 },
272 .m = { .min = 96, .max = 140 },
273 .m1 = { .min = 18, .max = 26 },
274 .m2 = { .min = 6, .max = 16 },
275 .p = { .min = 4, .max = 128 },
276 .p1 = { .min = 2, .max = 33 },
277 .p2 = { .dot_limit = 165000,
278 .p2_slow = 4, .p2_fast = 4 },
281 static const intel_limit_t intel_limits_i8xx_lvds = {
282 .dot = { .min = 25000, .max = 350000 },
283 .vco = { .min = 908000, .max = 1512000 },
284 .n = { .min = 2, .max = 16 },
285 .m = { .min = 96, .max = 140 },
286 .m1 = { .min = 18, .max = 26 },
287 .m2 = { .min = 6, .max = 16 },
288 .p = { .min = 4, .max = 128 },
289 .p1 = { .min = 1, .max = 6 },
290 .p2 = { .dot_limit = 165000,
291 .p2_slow = 14, .p2_fast = 7 },
294 static const intel_limit_t intel_limits_i9xx_sdvo = {
295 .dot = { .min = 20000, .max = 400000 },
296 .vco = { .min = 1400000, .max = 2800000 },
297 .n = { .min = 1, .max = 6 },
298 .m = { .min = 70, .max = 120 },
299 .m1 = { .min = 8, .max = 18 },
300 .m2 = { .min = 3, .max = 7 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 200000,
304 .p2_slow = 10, .p2_fast = 5 },
307 static const intel_limit_t intel_limits_i9xx_lvds = {
308 .dot = { .min = 20000, .max = 400000 },
309 .vco = { .min = 1400000, .max = 2800000 },
310 .n = { .min = 1, .max = 6 },
311 .m = { .min = 70, .max = 120 },
312 .m1 = { .min = 8, .max = 18 },
313 .m2 = { .min = 3, .max = 7 },
314 .p = { .min = 7, .max = 98 },
315 .p1 = { .min = 1, .max = 8 },
316 .p2 = { .dot_limit = 112000,
317 .p2_slow = 14, .p2_fast = 7 },
321 static const intel_limit_t intel_limits_g4x_sdvo = {
322 .dot = { .min = 25000, .max = 270000 },
323 .vco = { .min = 1750000, .max = 3500000},
324 .n = { .min = 1, .max = 4 },
325 .m = { .min = 104, .max = 138 },
326 .m1 = { .min = 17, .max = 23 },
327 .m2 = { .min = 5, .max = 11 },
328 .p = { .min = 10, .max = 30 },
329 .p1 = { .min = 1, .max = 3},
330 .p2 = { .dot_limit = 270000,
331 .p2_slow = 10,
332 .p2_fast = 10
336 static const intel_limit_t intel_limits_g4x_hdmi = {
337 .dot = { .min = 22000, .max = 400000 },
338 .vco = { .min = 1750000, .max = 3500000},
339 .n = { .min = 1, .max = 4 },
340 .m = { .min = 104, .max = 138 },
341 .m1 = { .min = 16, .max = 23 },
342 .m2 = { .min = 5, .max = 11 },
343 .p = { .min = 5, .max = 80 },
344 .p1 = { .min = 1, .max = 8},
345 .p2 = { .dot_limit = 165000,
346 .p2_slow = 10, .p2_fast = 5 },
349 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
350 .dot = { .min = 20000, .max = 115000 },
351 .vco = { .min = 1750000, .max = 3500000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 104, .max = 138 },
354 .m1 = { .min = 17, .max = 23 },
355 .m2 = { .min = 5, .max = 11 },
356 .p = { .min = 28, .max = 112 },
357 .p1 = { .min = 2, .max = 8 },
358 .p2 = { .dot_limit = 0,
359 .p2_slow = 14, .p2_fast = 14
363 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
364 .dot = { .min = 80000, .max = 224000 },
365 .vco = { .min = 1750000, .max = 3500000 },
366 .n = { .min = 1, .max = 3 },
367 .m = { .min = 104, .max = 138 },
368 .m1 = { .min = 17, .max = 23 },
369 .m2 = { .min = 5, .max = 11 },
370 .p = { .min = 14, .max = 42 },
371 .p1 = { .min = 2, .max = 6 },
372 .p2 = { .dot_limit = 0,
373 .p2_slow = 7, .p2_fast = 7
377 static const intel_limit_t intel_limits_pineview_sdvo = {
378 .dot = { .min = 20000, .max = 400000},
379 .vco = { .min = 1700000, .max = 3500000 },
380 /* Pineview's Ncounter is a ring counter */
381 .n = { .min = 3, .max = 6 },
382 .m = { .min = 2, .max = 256 },
383 /* Pineview only has one combined m divider, which we treat as m2. */
384 .m1 = { .min = 0, .max = 0 },
385 .m2 = { .min = 0, .max = 254 },
386 .p = { .min = 5, .max = 80 },
387 .p1 = { .min = 1, .max = 8 },
388 .p2 = { .dot_limit = 200000,
389 .p2_slow = 10, .p2_fast = 5 },
392 static const intel_limit_t intel_limits_pineview_lvds = {
393 .dot = { .min = 20000, .max = 400000 },
394 .vco = { .min = 1700000, .max = 3500000 },
395 .n = { .min = 3, .max = 6 },
396 .m = { .min = 2, .max = 256 },
397 .m1 = { .min = 0, .max = 0 },
398 .m2 = { .min = 0, .max = 254 },
399 .p = { .min = 7, .max = 112 },
400 .p1 = { .min = 1, .max = 8 },
401 .p2 = { .dot_limit = 112000,
402 .p2_slow = 14, .p2_fast = 14 },
405 /* Ironlake / Sandybridge
407 * We calculate clock using (register_value + 2) for N/M1/M2, so here
408 * the range value for them is (actual_value - 2).
410 static const intel_limit_t intel_limits_ironlake_dac = {
411 .dot = { .min = 25000, .max = 350000 },
412 .vco = { .min = 1760000, .max = 3510000 },
413 .n = { .min = 1, .max = 5 },
414 .m = { .min = 79, .max = 127 },
415 .m1 = { .min = 12, .max = 22 },
416 .m2 = { .min = 5, .max = 9 },
417 .p = { .min = 5, .max = 80 },
418 .p1 = { .min = 1, .max = 8 },
419 .p2 = { .dot_limit = 225000,
420 .p2_slow = 10, .p2_fast = 5 },
423 static const intel_limit_t intel_limits_ironlake_single_lvds = {
424 .dot = { .min = 25000, .max = 350000 },
425 .vco = { .min = 1760000, .max = 3510000 },
426 .n = { .min = 1, .max = 3 },
427 .m = { .min = 79, .max = 118 },
428 .m1 = { .min = 12, .max = 22 },
429 .m2 = { .min = 5, .max = 9 },
430 .p = { .min = 28, .max = 112 },
431 .p1 = { .min = 2, .max = 8 },
432 .p2 = { .dot_limit = 225000,
433 .p2_slow = 14, .p2_fast = 14 },
436 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
437 .dot = { .min = 25000, .max = 350000 },
438 .vco = { .min = 1760000, .max = 3510000 },
439 .n = { .min = 1, .max = 3 },
440 .m = { .min = 79, .max = 127 },
441 .m1 = { .min = 12, .max = 22 },
442 .m2 = { .min = 5, .max = 9 },
443 .p = { .min = 14, .max = 56 },
444 .p1 = { .min = 2, .max = 8 },
445 .p2 = { .dot_limit = 225000,
446 .p2_slow = 7, .p2_fast = 7 },
449 /* LVDS 100mhz refclk limits. */
450 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
451 .dot = { .min = 25000, .max = 350000 },
452 .vco = { .min = 1760000, .max = 3510000 },
453 .n = { .min = 1, .max = 2 },
454 .m = { .min = 79, .max = 126 },
455 .m1 = { .min = 12, .max = 22 },
456 .m2 = { .min = 5, .max = 9 },
457 .p = { .min = 28, .max = 112 },
458 .p1 = { .min = 2, .max = 8 },
459 .p2 = { .dot_limit = 225000,
460 .p2_slow = 14, .p2_fast = 14 },
463 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
464 .dot = { .min = 25000, .max = 350000 },
465 .vco = { .min = 1760000, .max = 3510000 },
466 .n = { .min = 1, .max = 3 },
467 .m = { .min = 79, .max = 126 },
468 .m1 = { .min = 12, .max = 22 },
469 .m2 = { .min = 5, .max = 9 },
470 .p = { .min = 14, .max = 42 },
471 .p1 = { .min = 2, .max = 6 },
472 .p2 = { .dot_limit = 225000,
473 .p2_slow = 7, .p2_fast = 7 },
476 static const intel_limit_t intel_limits_vlv = {
478 * These are the data rate limits (measured in fast clocks)
479 * since those are the strictest limits we have. The fast
480 * clock and actual rate limits are more relaxed, so checking
481 * them would make no difference.
483 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
484 .vco = { .min = 4000000, .max = 6000000 },
485 .n = { .min = 1, .max = 7 },
486 .m1 = { .min = 2, .max = 3 },
487 .m2 = { .min = 11, .max = 156 },
488 .p1 = { .min = 2, .max = 3 },
489 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
492 static const intel_limit_t intel_limits_chv = {
494 * These are the data rate limits (measured in fast clocks)
495 * since those are the strictest limits we have. The fast
496 * clock and actual rate limits are more relaxed, so checking
497 * them would make no difference.
499 .dot = { .min = 25000 * 5, .max = 540000 * 5},
500 .vco = { .min = 4800000, .max = 6480000 },
501 .n = { .min = 1, .max = 1 },
502 .m1 = { .min = 2, .max = 2 },
503 .m2 = { .min = 24 << 22, .max = 175 << 22 },
504 .p1 = { .min = 2, .max = 4 },
505 .p2 = { .p2_slow = 1, .p2_fast = 14 },
508 static const intel_limit_t intel_limits_bxt = {
509 /* FIXME: find real dot limits */
510 .dot = { .min = 0, .max = INT_MAX },
511 .vco = { .min = 4800000, .max = 6700000 },
512 .n = { .min = 1, .max = 1 },
513 .m1 = { .min = 2, .max = 2 },
514 /* FIXME: find real m2 limits */
515 .m2 = { .min = 2 << 22, .max = 255 << 22 },
516 .p1 = { .min = 2, .max = 4 },
517 .p2 = { .p2_slow = 1, .p2_fast = 20 },
520 static bool
521 needs_modeset(struct drm_crtc_state *state)
523 return drm_atomic_crtc_needs_modeset(state);
527 * Returns whether any output on the specified pipe is of the specified type
529 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
531 struct drm_device *dev = crtc->base.dev;
532 struct intel_encoder *encoder;
534 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
535 if (encoder->type == type)
536 return true;
538 return false;
542 * Returns whether any output on the specified pipe will have the specified
543 * type after a staged modeset is complete, i.e., the same as
544 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
545 * encoder->crtc.
547 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
548 int type)
550 struct drm_atomic_state *state = crtc_state->base.state;
551 struct drm_connector *connector;
552 struct drm_connector_state *connector_state;
553 struct intel_encoder *encoder;
554 int i, num_connectors = 0;
556 for_each_connector_in_state(state, connector, connector_state, i) {
557 if (connector_state->crtc != crtc_state->base.crtc)
558 continue;
560 num_connectors++;
562 encoder = to_intel_encoder(connector_state->best_encoder);
563 if (encoder->type == type)
564 return true;
567 WARN_ON(num_connectors == 0);
569 return false;
573 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
574 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
575 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
576 * The helpers' return value is the rate of the clock that is fed to the
577 * display engine's pipe which can be the above fast dot clock rate or a
578 * divided-down version of it.
580 /* m1 is reserved as 0 in Pineview, n is a ring counter */
581 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
583 clock->m = clock->m2 + 2;
584 clock->p = clock->p1 * clock->p2;
585 if (WARN_ON(clock->n == 0 || clock->p == 0))
586 return 0;
587 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
588 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
590 return clock->dot;
593 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
595 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
598 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
600 clock->m = i9xx_dpll_compute_m(clock);
601 clock->p = clock->p1 * clock->p2;
602 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
603 return 0;
604 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
605 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
607 return clock->dot;
610 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
612 clock->m = clock->m1 * clock->m2;
613 clock->p = clock->p1 * clock->p2;
614 if (WARN_ON(clock->n == 0 || clock->p == 0))
615 return 0;
616 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
617 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
619 return clock->dot / 5;
622 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
624 clock->m = clock->m1 * clock->m2;
625 clock->p = clock->p1 * clock->p2;
626 if (WARN_ON(clock->n == 0 || clock->p == 0))
627 return 0;
628 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
629 clock->n << 22);
630 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
632 return clock->dot / 5;
635 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
637 * Returns whether the given set of divisors are valid for a given refclk with
638 * the given connectors.
641 static bool intel_PLL_is_valid(struct drm_device *dev,
642 const intel_limit_t *limit,
643 const intel_clock_t *clock)
645 if (clock->n < limit->n.min || limit->n.max < clock->n)
646 INTELPllInvalid("n out of range\n");
647 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
648 INTELPllInvalid("p1 out of range\n");
649 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
650 INTELPllInvalid("m2 out of range\n");
651 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
652 INTELPllInvalid("m1 out of range\n");
654 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
655 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
656 if (clock->m1 <= clock->m2)
657 INTELPllInvalid("m1 <= m2\n");
659 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
660 if (clock->p < limit->p.min || limit->p.max < clock->p)
661 INTELPllInvalid("p out of range\n");
662 if (clock->m < limit->m.min || limit->m.max < clock->m)
663 INTELPllInvalid("m out of range\n");
666 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667 INTELPllInvalid("vco out of range\n");
668 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669 * connector, etc., rather than just a single range.
671 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672 INTELPllInvalid("dot out of range\n");
674 return true;
677 static int
678 i9xx_select_p2_div(const intel_limit_t *limit,
679 const struct intel_crtc_state *crtc_state,
680 int target)
682 struct drm_device *dev = crtc_state->base.crtc->dev;
684 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
686 * For LVDS just rely on its current settings for dual-channel.
687 * We haven't figured out how to reliably set up different
688 * single/dual channel state, if we even can.
690 if (intel_is_dual_link_lvds(dev))
691 return limit->p2.p2_fast;
692 else
693 return limit->p2.p2_slow;
694 } else {
695 if (target < limit->p2.dot_limit)
696 return limit->p2.p2_slow;
697 else
698 return limit->p2.p2_fast;
703 * Returns a set of divisors for the desired target clock with the given
704 * refclk, or FALSE. The returned values represent the clock equation:
705 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
707 * Target and reference clocks are specified in kHz.
709 * If match_clock is provided, then best_clock P divider must match the P
710 * divider from @match_clock used for LVDS downclocking.
712 static bool
713 i9xx_find_best_dpll(const intel_limit_t *limit,
714 struct intel_crtc_state *crtc_state,
715 int target, int refclk, intel_clock_t *match_clock,
716 intel_clock_t *best_clock)
718 struct drm_device *dev = crtc_state->base.crtc->dev;
719 intel_clock_t clock;
720 int err = target;
722 memset(best_clock, 0, sizeof(*best_clock));
724 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
726 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
727 clock.m1++) {
728 for (clock.m2 = limit->m2.min;
729 clock.m2 <= limit->m2.max; clock.m2++) {
730 if (clock.m2 >= clock.m1)
731 break;
732 for (clock.n = limit->n.min;
733 clock.n <= limit->n.max; clock.n++) {
734 for (clock.p1 = limit->p1.min;
735 clock.p1 <= limit->p1.max; clock.p1++) {
736 int this_err;
738 i9xx_calc_dpll_params(refclk, &clock);
739 if (!intel_PLL_is_valid(dev, limit,
740 &clock))
741 continue;
742 if (match_clock &&
743 clock.p != match_clock->p)
744 continue;
746 this_err = abs(clock.dot - target);
747 if (this_err < err) {
748 *best_clock = clock;
749 err = this_err;
756 return (err != target);
760 * Returns a set of divisors for the desired target clock with the given
761 * refclk, or FALSE. The returned values represent the clock equation:
762 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
764 * Target and reference clocks are specified in kHz.
766 * If match_clock is provided, then best_clock P divider must match the P
767 * divider from @match_clock used for LVDS downclocking.
769 static bool
770 pnv_find_best_dpll(const intel_limit_t *limit,
771 struct intel_crtc_state *crtc_state,
772 int target, int refclk, intel_clock_t *match_clock,
773 intel_clock_t *best_clock)
775 struct drm_device *dev = crtc_state->base.crtc->dev;
776 intel_clock_t clock;
777 int err = target;
779 memset(best_clock, 0, sizeof(*best_clock));
781 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
784 clock.m1++) {
785 for (clock.m2 = limit->m2.min;
786 clock.m2 <= limit->m2.max; clock.m2++) {
787 for (clock.n = limit->n.min;
788 clock.n <= limit->n.max; clock.n++) {
789 for (clock.p1 = limit->p1.min;
790 clock.p1 <= limit->p1.max; clock.p1++) {
791 int this_err;
793 pnv_calc_dpll_params(refclk, &clock);
794 if (!intel_PLL_is_valid(dev, limit,
795 &clock))
796 continue;
797 if (match_clock &&
798 clock.p != match_clock->p)
799 continue;
801 this_err = abs(clock.dot - target);
802 if (this_err < err) {
803 *best_clock = clock;
804 err = this_err;
811 return (err != target);
815 * Returns a set of divisors for the desired target clock with the given
816 * refclk, or FALSE. The returned values represent the clock equation:
817 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
819 * Target and reference clocks are specified in kHz.
821 * If match_clock is provided, then best_clock P divider must match the P
822 * divider from @match_clock used for LVDS downclocking.
824 static bool
825 g4x_find_best_dpll(const intel_limit_t *limit,
826 struct intel_crtc_state *crtc_state,
827 int target, int refclk, intel_clock_t *match_clock,
828 intel_clock_t *best_clock)
830 struct drm_device *dev = crtc_state->base.crtc->dev;
831 intel_clock_t clock;
832 int max_n;
833 bool found = false;
834 /* approximately equals target * 0.00585 */
835 int err_most = (target >> 8) + (target >> 9);
837 memset(best_clock, 0, sizeof(*best_clock));
839 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
841 max_n = limit->n.max;
842 /* based on hardware requirement, prefer smaller n to precision */
843 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
844 /* based on hardware requirement, prefere larger m1,m2 */
845 for (clock.m1 = limit->m1.max;
846 clock.m1 >= limit->m1.min; clock.m1--) {
847 for (clock.m2 = limit->m2.max;
848 clock.m2 >= limit->m2.min; clock.m2--) {
849 for (clock.p1 = limit->p1.max;
850 clock.p1 >= limit->p1.min; clock.p1--) {
851 int this_err;
853 i9xx_calc_dpll_params(refclk, &clock);
854 if (!intel_PLL_is_valid(dev, limit,
855 &clock))
856 continue;
858 this_err = abs(clock.dot - target);
859 if (this_err < err_most) {
860 *best_clock = clock;
861 err_most = this_err;
862 max_n = clock.n;
863 found = true;
869 return found;
873 * Check if the calculated PLL configuration is more optimal compared to the
874 * best configuration and error found so far. Return the calculated error.
876 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
877 const intel_clock_t *calculated_clock,
878 const intel_clock_t *best_clock,
879 unsigned int best_error_ppm,
880 unsigned int *error_ppm)
883 * For CHV ignore the error and consider only the P value.
884 * Prefer a bigger P value based on HW requirements.
886 if (IS_CHERRYVIEW(dev)) {
887 *error_ppm = 0;
889 return calculated_clock->p > best_clock->p;
892 if (WARN_ON_ONCE(!target_freq))
893 return false;
895 *error_ppm = div_u64(1000000ULL *
896 abs(target_freq - calculated_clock->dot),
897 target_freq);
899 * Prefer a better P value over a better (smaller) error if the error
900 * is small. Ensure this preference for future configurations too by
901 * setting the error to 0.
903 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
904 *error_ppm = 0;
906 return true;
909 return *error_ppm + 10 < best_error_ppm;
913 * Returns a set of divisors for the desired target clock with the given
914 * refclk, or FALSE. The returned values represent the clock equation:
915 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
917 static bool
918 vlv_find_best_dpll(const intel_limit_t *limit,
919 struct intel_crtc_state *crtc_state,
920 int target, int refclk, intel_clock_t *match_clock,
921 intel_clock_t *best_clock)
923 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
924 struct drm_device *dev = crtc->base.dev;
925 intel_clock_t clock;
926 unsigned int bestppm = 1000000;
927 /* min update 19.2 MHz */
928 int max_n = min(limit->n.max, refclk / 19200);
929 bool found = false;
931 target *= 5; /* fast clock */
933 memset(best_clock, 0, sizeof(*best_clock));
935 /* based on hardware requirement, prefer smaller n to precision */
936 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
937 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
938 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
939 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
940 clock.p = clock.p1 * clock.p2;
941 /* based on hardware requirement, prefer bigger m1,m2 values */
942 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
943 unsigned int ppm;
945 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
946 refclk * clock.m1);
948 vlv_calc_dpll_params(refclk, &clock);
950 if (!intel_PLL_is_valid(dev, limit,
951 &clock))
952 continue;
954 if (!vlv_PLL_is_optimal(dev, target,
955 &clock,
956 best_clock,
957 bestppm, &ppm))
958 continue;
960 *best_clock = clock;
961 bestppm = ppm;
962 found = true;
968 return found;
972 * Returns a set of divisors for the desired target clock with the given
973 * refclk, or FALSE. The returned values represent the clock equation:
974 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
976 static bool
977 chv_find_best_dpll(const intel_limit_t *limit,
978 struct intel_crtc_state *crtc_state,
979 int target, int refclk, intel_clock_t *match_clock,
980 intel_clock_t *best_clock)
982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
983 struct drm_device *dev = crtc->base.dev;
984 unsigned int best_error_ppm;
985 intel_clock_t clock;
986 uint64_t m2;
987 int found = false;
989 memset(best_clock, 0, sizeof(*best_clock));
990 best_error_ppm = 1000000;
993 * Based on hardware doc, the n always set to 1, and m1 always
994 * set to 2. If requires to support 200Mhz refclk, we need to
995 * revisit this because n may not 1 anymore.
997 clock.n = 1, clock.m1 = 2;
998 target *= 5; /* fast clock */
1000 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001 for (clock.p2 = limit->p2.p2_fast;
1002 clock.p2 >= limit->p2.p2_slow;
1003 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004 unsigned int error_ppm;
1006 clock.p = clock.p1 * clock.p2;
1008 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1009 clock.n) << 22, refclk * clock.m1);
1011 if (m2 > INT_MAX/clock.m1)
1012 continue;
1014 clock.m2 = m2;
1016 chv_calc_dpll_params(refclk, &clock);
1018 if (!intel_PLL_is_valid(dev, limit, &clock))
1019 continue;
1021 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022 best_error_ppm, &error_ppm))
1023 continue;
1025 *best_clock = clock;
1026 best_error_ppm = error_ppm;
1027 found = true;
1031 return found;
1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1035 intel_clock_t *best_clock)
1037 int refclk = 100000;
1038 const intel_limit_t *limit = &intel_limits_bxt;
1040 return chv_find_best_dpll(limit, crtc_state,
1041 target_clock, refclk, NULL, best_clock);
1044 bool intel_crtc_active(struct drm_crtc *crtc)
1046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1048 /* Be paranoid as we can arrive here with only partial
1049 * state retrieved from the hardware during setup.
1051 * We can ditch the adjusted_mode.crtc_clock check as soon
1052 * as Haswell has gained clock readout/fastboot support.
1054 * We can ditch the crtc->primary->fb check as soon as we can
1055 * properly reconstruct framebuffers.
1057 * FIXME: The intel_crtc->active here should be switched to
1058 * crtc->state->active once we have proper CRTC states wired up
1059 * for atomic.
1061 return intel_crtc->active && crtc->primary->state->fb &&
1062 intel_crtc->config->base.adjusted_mode.crtc_clock;
1065 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1066 enum i915_pipe pipe)
1068 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1071 return intel_crtc->config->cpu_transcoder;
1074 static bool pipe_dsl_stopped(struct drm_device *dev, enum i915_pipe pipe)
1076 struct drm_i915_private *dev_priv = dev->dev_private;
1077 i915_reg_t reg = PIPEDSL(pipe);
1078 u32 line1, line2;
1079 u32 line_mask;
1081 if (IS_GEN2(dev))
1082 line_mask = DSL_LINEMASK_GEN2;
1083 else
1084 line_mask = DSL_LINEMASK_GEN3;
1086 line1 = I915_READ(reg) & line_mask;
1087 msleep(5);
1088 line2 = I915_READ(reg) & line_mask;
1090 return line1 == line2;
1094 * intel_wait_for_pipe_off - wait for pipe to turn off
1095 * @crtc: crtc whose pipe to wait for
1097 * After disabling a pipe, we can't wait for vblank in the usual way,
1098 * spinning on the vblank interrupt status bit, since we won't actually
1099 * see an interrupt when the pipe is disabled.
1101 * On Gen4 and above:
1102 * wait for the pipe register state bit to turn off
1104 * Otherwise:
1105 * wait for the display line value to settle (it usually
1106 * ends up stopping at the start of the next frame).
1109 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1111 struct drm_device *dev = crtc->base.dev;
1112 struct drm_i915_private *dev_priv = dev->dev_private;
1113 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1114 enum i915_pipe pipe = crtc->pipe;
1116 if (INTEL_INFO(dev)->gen >= 4) {
1117 i915_reg_t reg = PIPECONF(cpu_transcoder);
1119 /* Wait for the Pipe State to go off */
1120 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1121 100))
1122 WARN(1, "pipe_off wait timed out\n");
1123 } else {
1124 /* Wait for the display line to settle */
1125 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1126 WARN(1, "pipe_off wait timed out\n");
1130 /* Only for pre-ILK configs */
1131 void assert_pll(struct drm_i915_private *dev_priv,
1132 enum i915_pipe pipe, bool state)
1134 u32 val;
1135 bool cur_state;
1137 val = I915_READ(DPLL(pipe));
1138 cur_state = !!(val & DPLL_VCO_ENABLE);
1139 I915_STATE_WARN(cur_state != state,
1140 "PLL state assertion failure (expected %s, current %s)\n",
1141 onoff(state), onoff(cur_state));
1144 /* XXX: the dsi pll is shared between MIPI DSI ports */
1145 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1147 u32 val;
1148 bool cur_state;
1150 mutex_lock(&dev_priv->sb_lock);
1151 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1152 mutex_unlock(&dev_priv->sb_lock);
1154 cur_state = val & DSI_PLL_VCO_EN;
1155 I915_STATE_WARN(cur_state != state,
1156 "DSI PLL state assertion failure (expected %s, current %s)\n",
1157 onoff(state), onoff(cur_state));
1160 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1161 enum i915_pipe pipe, bool state)
1163 bool cur_state;
1164 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1165 pipe);
1167 if (HAS_DDI(dev_priv)) {
1168 /* DDI does not have a specific FDI_TX register */
1169 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1170 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1171 } else {
1172 u32 val = I915_READ(FDI_TX_CTL(pipe));
1173 cur_state = !!(val & FDI_TX_ENABLE);
1175 I915_STATE_WARN(cur_state != state,
1176 "FDI TX state assertion failure (expected %s, current %s)\n",
1177 onoff(state), onoff(cur_state));
1179 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1180 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1182 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1183 enum i915_pipe pipe, bool state)
1185 u32 val;
1186 bool cur_state;
1188 val = I915_READ(FDI_RX_CTL(pipe));
1189 cur_state = !!(val & FDI_RX_ENABLE);
1190 I915_STATE_WARN(cur_state != state,
1191 "FDI RX state assertion failure (expected %s, current %s)\n",
1192 onoff(state), onoff(cur_state));
1194 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1195 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1197 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1198 enum i915_pipe pipe)
1200 u32 val;
1202 /* ILK FDI PLL is always enabled */
1203 if (INTEL_INFO(dev_priv)->gen == 5)
1204 return;
1206 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1207 if (HAS_DDI(dev_priv))
1208 return;
1210 val = I915_READ(FDI_TX_CTL(pipe));
1211 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1214 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1215 enum i915_pipe pipe, bool state)
1217 u32 val;
1218 bool cur_state;
1220 val = I915_READ(FDI_RX_CTL(pipe));
1221 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1222 I915_STATE_WARN(cur_state != state,
1223 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1224 onoff(state), onoff(cur_state));
1227 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1228 enum i915_pipe pipe)
1230 struct drm_device *dev = dev_priv->dev;
1231 i915_reg_t pp_reg;
1232 u32 val;
1233 enum i915_pipe panel_pipe = PIPE_A;
1234 bool locked = true;
1236 if (WARN_ON(HAS_DDI(dev)))
1237 return;
1239 if (HAS_PCH_SPLIT(dev)) {
1240 u32 port_sel;
1242 pp_reg = PCH_PP_CONTROL;
1243 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1245 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1246 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1247 panel_pipe = PIPE_B;
1248 /* XXX: else fix for eDP */
1249 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1250 /* presumably write lock depends on pipe, not port select */
1251 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1252 panel_pipe = pipe;
1253 } else {
1254 pp_reg = PP_CONTROL;
1255 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1256 panel_pipe = PIPE_B;
1259 val = I915_READ(pp_reg);
1260 if (!(val & PANEL_POWER_ON) ||
1261 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1262 locked = false;
1264 I915_STATE_WARN(panel_pipe == pipe && locked,
1265 "panel assertion failure, pipe %c regs locked\n",
1266 pipe_name(pipe));
1269 static void assert_cursor(struct drm_i915_private *dev_priv,
1270 enum i915_pipe pipe, bool state)
1272 struct drm_device *dev = dev_priv->dev;
1273 bool cur_state;
1275 if (IS_845G(dev) || IS_I865G(dev))
1276 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1277 else
1278 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1280 I915_STATE_WARN(cur_state != state,
1281 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1282 pipe_name(pipe), onoff(state), onoff(cur_state));
1284 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1285 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1287 void assert_pipe(struct drm_i915_private *dev_priv,
1288 enum i915_pipe pipe, bool state)
1290 bool cur_state;
1291 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1292 pipe);
1293 enum intel_display_power_domain power_domain;
1295 /* if we need the pipe quirk it must be always on */
1296 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1297 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1298 state = true;
1300 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1301 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1302 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1303 cur_state = !!(val & PIPECONF_ENABLE);
1305 intel_display_power_put(dev_priv, power_domain);
1306 } else {
1307 cur_state = false;
1310 I915_STATE_WARN(cur_state != state,
1311 "pipe %c assertion failure (expected %s, current %s)\n",
1312 pipe_name(pipe), onoff(state), onoff(cur_state));
1315 static void assert_plane(struct drm_i915_private *dev_priv,
1316 enum plane plane, bool state)
1318 u32 val;
1319 bool cur_state;
1321 val = I915_READ(DSPCNTR(plane));
1322 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1323 I915_STATE_WARN(cur_state != state,
1324 "plane %c assertion failure (expected %s, current %s)\n",
1325 plane_name(plane), onoff(state), onoff(cur_state));
1328 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1329 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1331 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1332 enum i915_pipe pipe)
1334 struct drm_device *dev = dev_priv->dev;
1335 int i;
1337 /* Primary planes are fixed to pipes on gen4+ */
1338 if (INTEL_INFO(dev)->gen >= 4) {
1339 u32 val = I915_READ(DSPCNTR(pipe));
1340 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1341 "plane %c assertion failure, should be disabled but not\n",
1342 plane_name(pipe));
1343 return;
1346 /* Need to check both planes against the pipe */
1347 for_each_pipe(dev_priv, i) {
1348 u32 val = I915_READ(DSPCNTR(i));
1349 enum i915_pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1350 DISPPLANE_SEL_PIPE_SHIFT;
1351 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1352 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1353 plane_name(i), pipe_name(pipe));
1357 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1358 enum i915_pipe pipe)
1360 struct drm_device *dev = dev_priv->dev;
1361 int sprite;
1363 if (INTEL_INFO(dev)->gen >= 9) {
1364 for_each_sprite(dev_priv, pipe, sprite) {
1365 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1366 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1367 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1368 sprite, pipe_name(pipe));
1370 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1371 for_each_sprite(dev_priv, pipe, sprite) {
1372 u32 val = I915_READ(SPCNTR(pipe, sprite));
1373 I915_STATE_WARN(val & SP_ENABLE,
1374 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1375 sprite_name(pipe, sprite), pipe_name(pipe));
1377 } else if (INTEL_INFO(dev)->gen >= 7) {
1378 u32 val = I915_READ(SPRCTL(pipe));
1379 I915_STATE_WARN(val & SPRITE_ENABLE,
1380 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1381 plane_name(pipe), pipe_name(pipe));
1382 } else if (INTEL_INFO(dev)->gen >= 5) {
1383 u32 val = I915_READ(DVSCNTR(pipe));
1384 I915_STATE_WARN(val & DVS_ENABLE,
1385 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1386 plane_name(pipe), pipe_name(pipe));
1390 static void assert_vblank_disabled(struct drm_crtc *crtc)
1392 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1393 drm_crtc_vblank_put(crtc);
1396 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1397 enum i915_pipe pipe)
1399 u32 val;
1400 bool enabled;
1402 val = I915_READ(PCH_TRANSCONF(pipe));
1403 enabled = !!(val & TRANS_ENABLE);
1404 I915_STATE_WARN(enabled,
1405 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1406 pipe_name(pipe));
1409 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum i915_pipe pipe, u32 port_sel, u32 val)
1412 if ((val & DP_PORT_EN) == 0)
1413 return false;
1415 if (HAS_PCH_CPT(dev_priv)) {
1416 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1417 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1418 return false;
1419 } else if (IS_CHERRYVIEW(dev_priv)) {
1420 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1421 return false;
1422 } else {
1423 if ((val & DP_PIPE_MASK) != (pipe << 30))
1424 return false;
1426 return true;
1429 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1430 enum i915_pipe pipe, u32 val)
1432 if ((val & SDVO_ENABLE) == 0)
1433 return false;
1435 if (HAS_PCH_CPT(dev_priv)) {
1436 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1437 return false;
1438 } else if (IS_CHERRYVIEW(dev_priv)) {
1439 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1440 return false;
1441 } else {
1442 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1443 return false;
1445 return true;
1448 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1449 enum i915_pipe pipe, u32 val)
1451 if ((val & LVDS_PORT_EN) == 0)
1452 return false;
1454 if (HAS_PCH_CPT(dev_priv)) {
1455 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1456 return false;
1457 } else {
1458 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1459 return false;
1461 return true;
1464 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1465 enum i915_pipe pipe, u32 val)
1467 if ((val & ADPA_DAC_ENABLE) == 0)
1468 return false;
1469 if (HAS_PCH_CPT(dev_priv)) {
1470 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1471 return false;
1472 } else {
1473 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1474 return false;
1476 return true;
1479 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1480 enum i915_pipe pipe, i915_reg_t reg,
1481 u32 port_sel)
1483 u32 val = I915_READ(reg);
1484 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1485 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1486 i915_mmio_reg_offset(reg), pipe_name(pipe));
1488 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1489 && (val & DP_PIPEB_SELECT),
1490 "IBX PCH dp port still using transcoder B\n");
1493 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1494 enum i915_pipe pipe, i915_reg_t reg)
1496 u32 val = I915_READ(reg);
1497 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1498 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1499 i915_mmio_reg_offset(reg), pipe_name(pipe));
1501 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1502 && (val & SDVO_PIPE_B_SELECT),
1503 "IBX PCH hdmi port still using transcoder B\n");
1506 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1507 enum i915_pipe pipe)
1509 u32 val;
1511 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1512 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1513 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1515 val = I915_READ(PCH_ADPA);
1516 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1517 "PCH VGA enabled on transcoder %c, should be disabled\n",
1518 pipe_name(pipe));
1520 val = I915_READ(PCH_LVDS);
1521 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1522 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1523 pipe_name(pipe));
1525 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1526 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1527 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1530 static void _vlv_enable_pll(struct intel_crtc *crtc,
1531 const struct intel_crtc_state *pipe_config)
1533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1534 enum i915_pipe pipe = crtc->pipe;
1536 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1537 POSTING_READ(DPLL(pipe));
1538 udelay(150);
1540 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1541 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1544 static void vlv_enable_pll(struct intel_crtc *crtc,
1545 const struct intel_crtc_state *pipe_config)
1547 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1548 enum i915_pipe pipe = crtc->pipe;
1550 assert_pipe_disabled(dev_priv, pipe);
1552 /* PLL is protected by panel, make sure we can write it */
1553 assert_panel_unlocked(dev_priv, pipe);
1555 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1556 _vlv_enable_pll(crtc, pipe_config);
1558 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1559 POSTING_READ(DPLL_MD(pipe));
1563 static void _chv_enable_pll(struct intel_crtc *crtc,
1564 const struct intel_crtc_state *pipe_config)
1566 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1567 enum i915_pipe pipe = crtc->pipe;
1568 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1569 u32 tmp;
1571 mutex_lock(&dev_priv->sb_lock);
1573 /* Enable back the 10bit clock to display controller */
1574 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1575 tmp |= DPIO_DCLKP_EN;
1576 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1578 mutex_unlock(&dev_priv->sb_lock);
1581 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1583 udelay(1);
1585 /* Enable PLL */
1586 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1588 /* Check PLL is locked */
1589 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1590 DRM_ERROR("PLL %d failed to lock\n", pipe);
1593 static void chv_enable_pll(struct intel_crtc *crtc,
1594 const struct intel_crtc_state *pipe_config)
1596 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1597 enum i915_pipe pipe = crtc->pipe;
1599 assert_pipe_disabled(dev_priv, pipe);
1601 /* PLL is protected by panel, make sure we can write it */
1602 assert_panel_unlocked(dev_priv, pipe);
1604 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1605 _chv_enable_pll(crtc, pipe_config);
1607 if (pipe != PIPE_A) {
1609 * WaPixelRepeatModeFixForC0:chv
1611 * DPLLCMD is AWOL. Use chicken bits to propagate
1612 * the value from DPLLBMD to either pipe B or C.
1614 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1615 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1616 I915_WRITE(CBR4_VLV, 0);
1617 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1620 * DPLLB VGA mode also seems to cause problems.
1621 * We should always have it disabled.
1623 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1624 } else {
1625 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1626 POSTING_READ(DPLL_MD(pipe));
1630 static int intel_num_dvo_pipes(struct drm_device *dev)
1632 struct intel_crtc *crtc;
1633 int count = 0;
1635 for_each_intel_crtc(dev, crtc)
1636 count += crtc->base.state->active &&
1637 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1639 return count;
1642 static void i9xx_enable_pll(struct intel_crtc *crtc)
1644 struct drm_device *dev = crtc->base.dev;
1645 struct drm_i915_private *dev_priv = dev->dev_private;
1646 i915_reg_t reg = DPLL(crtc->pipe);
1647 u32 dpll = crtc->config->dpll_hw_state.dpll;
1649 assert_pipe_disabled(dev_priv, crtc->pipe);
1651 /* PLL is protected by panel, make sure we can write it */
1652 if (IS_MOBILE(dev) && !IS_I830(dev))
1653 assert_panel_unlocked(dev_priv, crtc->pipe);
1655 /* Enable DVO 2x clock on both PLLs if necessary */
1656 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1658 * It appears to be important that we don't enable this
1659 * for the current pipe before otherwise configuring the
1660 * PLL. No idea how this should be handled if multiple
1661 * DVO outputs are enabled simultaneosly.
1663 dpll |= DPLL_DVO_2X_MODE;
1664 I915_WRITE(DPLL(!crtc->pipe),
1665 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1669 * Apparently we need to have VGA mode enabled prior to changing
1670 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1671 * dividers, even though the register value does change.
1673 I915_WRITE(reg, 0);
1675 I915_WRITE(reg, dpll);
1677 /* Wait for the clocks to stabilize. */
1678 POSTING_READ(reg);
1679 udelay(150);
1681 if (INTEL_INFO(dev)->gen >= 4) {
1682 I915_WRITE(DPLL_MD(crtc->pipe),
1683 crtc->config->dpll_hw_state.dpll_md);
1684 } else {
1685 /* The pixel multiplier can only be updated once the
1686 * DPLL is enabled and the clocks are stable.
1688 * So write it again.
1690 I915_WRITE(reg, dpll);
1693 /* We do this three times for luck */
1694 I915_WRITE(reg, dpll);
1695 POSTING_READ(reg);
1696 udelay(150); /* wait for warmup */
1697 I915_WRITE(reg, dpll);
1698 POSTING_READ(reg);
1699 udelay(150); /* wait for warmup */
1700 I915_WRITE(reg, dpll);
1701 POSTING_READ(reg);
1702 udelay(150); /* wait for warmup */
1706 * i9xx_disable_pll - disable a PLL
1707 * @dev_priv: i915 private structure
1708 * @pipe: pipe PLL to disable
1710 * Disable the PLL for @pipe, making sure the pipe is off first.
1712 * Note! This is for pre-ILK only.
1714 static void i9xx_disable_pll(struct intel_crtc *crtc)
1716 struct drm_device *dev = crtc->base.dev;
1717 struct drm_i915_private *dev_priv = dev->dev_private;
1718 enum i915_pipe pipe = crtc->pipe;
1720 /* Disable DVO 2x clock on both PLLs if necessary */
1721 if (IS_I830(dev) &&
1722 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1723 !intel_num_dvo_pipes(dev)) {
1724 I915_WRITE(DPLL(PIPE_B),
1725 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1726 I915_WRITE(DPLL(PIPE_A),
1727 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1730 /* Don't disable pipe or pipe PLLs if needed */
1731 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1732 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1733 return;
1735 /* Make sure the pipe isn't still relying on us */
1736 assert_pipe_disabled(dev_priv, pipe);
1738 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1739 POSTING_READ(DPLL(pipe));
1742 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1744 u32 val;
1746 /* Make sure the pipe isn't still relying on us */
1747 assert_pipe_disabled(dev_priv, pipe);
1749 val = DPLL_INTEGRATED_REF_CLK_VLV |
1750 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1751 if (pipe != PIPE_A)
1752 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1754 I915_WRITE(DPLL(pipe), val);
1755 POSTING_READ(DPLL(pipe));
1758 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum i915_pipe pipe)
1760 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1761 u32 val;
1763 /* Make sure the pipe isn't still relying on us */
1764 assert_pipe_disabled(dev_priv, pipe);
1766 val = DPLL_SSC_REF_CLK_CHV |
1767 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1768 if (pipe != PIPE_A)
1769 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1771 I915_WRITE(DPLL(pipe), val);
1772 POSTING_READ(DPLL(pipe));
1774 mutex_lock(&dev_priv->sb_lock);
1776 /* Disable 10bit clock to display controller */
1777 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1778 val &= ~DPIO_DCLKP_EN;
1779 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1781 mutex_unlock(&dev_priv->sb_lock);
1784 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1785 struct intel_digital_port *dport,
1786 unsigned int expected_mask)
1788 u32 port_mask;
1789 i915_reg_t dpll_reg;
1791 switch (dport->port) {
1792 case PORT_B:
1793 port_mask = DPLL_PORTB_READY_MASK;
1794 dpll_reg = DPLL(0);
1795 break;
1796 case PORT_C:
1797 port_mask = DPLL_PORTC_READY_MASK;
1798 dpll_reg = DPLL(0);
1799 expected_mask <<= 4;
1800 break;
1801 case PORT_D:
1802 port_mask = DPLL_PORTD_READY_MASK;
1803 dpll_reg = DPIO_PHY_STATUS;
1804 break;
1805 default:
1806 BUG();
1809 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1810 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1811 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1814 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1815 enum i915_pipe pipe)
1817 struct drm_device *dev = dev_priv->dev;
1818 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1819 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1820 i915_reg_t reg;
1821 uint32_t val, pipeconf_val;
1823 /* Make sure PCH DPLL is enabled */
1824 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1826 /* FDI must be feeding us bits for PCH ports */
1827 assert_fdi_tx_enabled(dev_priv, pipe);
1828 assert_fdi_rx_enabled(dev_priv, pipe);
1830 if (HAS_PCH_CPT(dev)) {
1831 /* Workaround: Set the timing override bit before enabling the
1832 * pch transcoder. */
1833 reg = TRANS_CHICKEN2(pipe);
1834 val = I915_READ(reg);
1835 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1836 I915_WRITE(reg, val);
1839 reg = PCH_TRANSCONF(pipe);
1840 val = I915_READ(reg);
1841 pipeconf_val = I915_READ(PIPECONF(pipe));
1843 if (HAS_PCH_IBX(dev_priv)) {
1845 * Make the BPC in transcoder be consistent with
1846 * that in pipeconf reg. For HDMI we must use 8bpc
1847 * here for both 8bpc and 12bpc.
1849 val &= ~PIPECONF_BPC_MASK;
1850 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1851 val |= PIPECONF_8BPC;
1852 else
1853 val |= pipeconf_val & PIPECONF_BPC_MASK;
1856 val &= ~TRANS_INTERLACE_MASK;
1857 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1858 if (HAS_PCH_IBX(dev_priv) &&
1859 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1860 val |= TRANS_LEGACY_INTERLACED_ILK;
1861 else
1862 val |= TRANS_INTERLACED;
1863 else
1864 val |= TRANS_PROGRESSIVE;
1866 I915_WRITE(reg, val | TRANS_ENABLE);
1867 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1868 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1871 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1872 enum transcoder cpu_transcoder)
1874 u32 val, pipeconf_val;
1876 /* FDI must be feeding us bits for PCH ports */
1877 assert_fdi_tx_enabled(dev_priv, (enum i915_pipe) cpu_transcoder);
1878 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1880 /* Workaround: set timing override bit. */
1881 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1882 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1883 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1885 val = TRANS_ENABLE;
1886 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1888 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1889 PIPECONF_INTERLACED_ILK)
1890 val |= TRANS_INTERLACED;
1891 else
1892 val |= TRANS_PROGRESSIVE;
1894 I915_WRITE(LPT_TRANSCONF, val);
1895 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1896 DRM_ERROR("Failed to enable PCH transcoder\n");
1899 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1900 enum i915_pipe pipe)
1902 struct drm_device *dev = dev_priv->dev;
1903 i915_reg_t reg;
1904 uint32_t val;
1906 /* FDI relies on the transcoder */
1907 assert_fdi_tx_disabled(dev_priv, pipe);
1908 assert_fdi_rx_disabled(dev_priv, pipe);
1910 /* Ports must be off as well */
1911 assert_pch_ports_disabled(dev_priv, pipe);
1913 reg = PCH_TRANSCONF(pipe);
1914 val = I915_READ(reg);
1915 val &= ~TRANS_ENABLE;
1916 I915_WRITE(reg, val);
1917 /* wait for PCH transcoder off, transcoder state */
1918 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1919 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1921 if (HAS_PCH_CPT(dev)) {
1922 /* Workaround: Clear the timing override chicken bit again. */
1923 reg = TRANS_CHICKEN2(pipe);
1924 val = I915_READ(reg);
1925 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 I915_WRITE(reg, val);
1930 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1932 u32 val;
1934 val = I915_READ(LPT_TRANSCONF);
1935 val &= ~TRANS_ENABLE;
1936 I915_WRITE(LPT_TRANSCONF, val);
1937 /* wait for PCH transcoder off, transcoder state */
1938 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1939 DRM_ERROR("Failed to disable PCH transcoder\n");
1941 /* Workaround: clear timing override bit. */
1942 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1943 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1944 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1948 * intel_enable_pipe - enable a pipe, asserting requirements
1949 * @crtc: crtc responsible for the pipe
1951 * Enable @crtc's pipe, making sure that various hardware specific requirements
1952 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1954 static void intel_enable_pipe(struct intel_crtc *crtc)
1956 struct drm_device *dev = crtc->base.dev;
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 enum i915_pipe pipe = crtc->pipe;
1959 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1960 enum i915_pipe pch_transcoder;
1961 i915_reg_t reg;
1962 u32 val;
1964 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1966 assert_planes_disabled(dev_priv, pipe);
1967 assert_cursor_disabled(dev_priv, pipe);
1968 assert_sprites_disabled(dev_priv, pipe);
1970 if (HAS_PCH_LPT(dev_priv))
1971 pch_transcoder = TRANSCODER_A;
1972 else
1973 pch_transcoder = pipe;
1976 * A pipe without a PLL won't actually be able to drive bits from
1977 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1978 * need the check.
1980 if (HAS_GMCH_DISPLAY(dev_priv))
1981 if (crtc->config->has_dsi_encoder)
1982 assert_dsi_pll_enabled(dev_priv);
1983 else
1984 assert_pll_enabled(dev_priv, pipe);
1985 else {
1986 if (crtc->config->has_pch_encoder) {
1987 /* if driving the PCH, we need FDI enabled */
1988 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1989 assert_fdi_tx_pll_enabled(dev_priv,
1990 (enum i915_pipe) cpu_transcoder);
1992 /* FIXME: assert CPU port conditions for SNB+ */
1995 reg = PIPECONF(cpu_transcoder);
1996 val = I915_READ(reg);
1997 if (val & PIPECONF_ENABLE) {
1998 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1999 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2000 return;
2003 I915_WRITE(reg, val | PIPECONF_ENABLE);
2004 POSTING_READ(reg);
2007 * Until the pipe starts DSL will read as 0, which would cause
2008 * an apparent vblank timestamp jump, which messes up also the
2009 * frame count when it's derived from the timestamps. So let's
2010 * wait for the pipe to start properly before we call
2011 * drm_crtc_vblank_on()
2013 if (dev->max_vblank_count == 0 &&
2014 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2015 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2019 * intel_disable_pipe - disable a pipe, asserting requirements
2020 * @crtc: crtc whose pipes is to be disabled
2022 * Disable the pipe of @crtc, making sure that various hardware
2023 * specific requirements are met, if applicable, e.g. plane
2024 * disabled, panel fitter off, etc.
2026 * Will wait until the pipe has shut down before returning.
2028 static void intel_disable_pipe(struct intel_crtc *crtc)
2030 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2031 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2032 enum i915_pipe pipe = crtc->pipe;
2033 i915_reg_t reg;
2034 u32 val;
2036 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2039 * Make sure planes won't keep trying to pump pixels to us,
2040 * or we might hang the display.
2042 assert_planes_disabled(dev_priv, pipe);
2043 assert_cursor_disabled(dev_priv, pipe);
2044 assert_sprites_disabled(dev_priv, pipe);
2046 reg = PIPECONF(cpu_transcoder);
2047 val = I915_READ(reg);
2048 if ((val & PIPECONF_ENABLE) == 0)
2049 return;
2052 * Double wide has implications for planes
2053 * so best keep it disabled when not needed.
2055 if (crtc->config->double_wide)
2056 val &= ~PIPECONF_DOUBLE_WIDE;
2058 /* Don't disable pipe or pipe PLLs if needed */
2059 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2060 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2061 val &= ~PIPECONF_ENABLE;
2063 I915_WRITE(reg, val);
2064 if ((val & PIPECONF_ENABLE) == 0)
2065 intel_wait_for_pipe_off(crtc);
2068 static bool need_vtd_wa(struct drm_device *dev)
2070 #ifdef CONFIG_INTEL_IOMMU
2071 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2072 return true;
2073 #endif
2074 return false;
2077 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2079 return IS_GEN2(dev_priv) ? 2048 : 4096;
2082 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2083 uint64_t fb_modifier, unsigned int cpp)
2085 switch (fb_modifier) {
2086 case DRM_FORMAT_MOD_NONE:
2087 return cpp;
2088 case I915_FORMAT_MOD_X_TILED:
2089 if (IS_GEN2(dev_priv))
2090 return 128;
2091 else
2092 return 512;
2093 case I915_FORMAT_MOD_Y_TILED:
2094 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2095 return 128;
2096 else
2097 return 512;
2098 case I915_FORMAT_MOD_Yf_TILED:
2099 switch (cpp) {
2100 case 1:
2101 return 64;
2102 case 2:
2103 case 4:
2104 return 128;
2105 case 8:
2106 case 16:
2107 return 256;
2108 default:
2109 MISSING_CASE(cpp);
2110 return cpp;
2112 break;
2113 default:
2114 MISSING_CASE(fb_modifier);
2115 return cpp;
2119 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2120 uint64_t fb_modifier, unsigned int cpp)
2122 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2123 return 1;
2124 else
2125 return intel_tile_size(dev_priv) /
2126 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2129 /* Return the tile dimensions in pixel units */
2130 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2131 unsigned int *tile_width,
2132 unsigned int *tile_height,
2133 uint64_t fb_modifier,
2134 unsigned int cpp)
2136 unsigned int tile_width_bytes =
2137 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2139 *tile_width = tile_width_bytes / cpp;
2140 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2143 unsigned int
2144 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2145 uint32_t pixel_format, uint64_t fb_modifier)
2147 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2148 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2150 return ALIGN(height, tile_height);
2153 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2155 unsigned int size = 0;
2156 int i;
2158 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2159 size += rot_info->plane[i].width * rot_info->plane[i].height;
2161 return size;
2164 static void
2165 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2166 struct drm_framebuffer *fb,
2167 unsigned int rotation)
2169 if (intel_rotation_90_or_270(rotation)) {
2170 *view = i915_ggtt_view_rotated;
2171 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2172 } else {
2173 *view = i915_ggtt_view_normal;
2177 static void
2178 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2179 struct drm_framebuffer *fb)
2181 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2182 unsigned int tile_size, tile_width, tile_height, cpp;
2184 tile_size = intel_tile_size(dev_priv);
2186 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2187 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2188 fb->modifier[0], cpp);
2190 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2191 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2193 if (info->pixel_format == DRM_FORMAT_NV12) {
2194 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2195 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2196 fb->modifier[1], cpp);
2198 info->uv_offset = fb->offsets[1];
2199 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2200 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2204 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2206 if (INTEL_INFO(dev_priv)->gen >= 9)
2207 return 256 * 1024;
2208 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2209 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2210 return 128 * 1024;
2211 else if (INTEL_INFO(dev_priv)->gen >= 4)
2212 return 4 * 1024;
2213 else
2214 return 0;
2217 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2218 uint64_t fb_modifier)
2220 switch (fb_modifier) {
2221 case DRM_FORMAT_MOD_NONE:
2222 return intel_linear_alignment(dev_priv);
2223 case I915_FORMAT_MOD_X_TILED:
2224 if (INTEL_INFO(dev_priv)->gen >= 9)
2225 return 256 * 1024;
2226 return 0;
2227 case I915_FORMAT_MOD_Y_TILED:
2228 case I915_FORMAT_MOD_Yf_TILED:
2229 return 1 * 1024 * 1024;
2230 default:
2231 MISSING_CASE(fb_modifier);
2232 return 0;
2237 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2238 unsigned int rotation)
2240 struct drm_device *dev = fb->dev;
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2243 struct i915_ggtt_view view;
2244 u32 alignment;
2245 int ret;
2247 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2249 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2251 intel_fill_fb_ggtt_view(&view, fb, rotation);
2253 /* Note that the w/a also requires 64 PTE of padding following the
2254 * bo. We currently fill all unused PTE with the shadow page and so
2255 * we should always have valid PTE following the scanout preventing
2256 * the VT-d warning.
2258 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2259 alignment = 256 * 1024;
2262 * Global gtt pte registers are special registers which actually forward
2263 * writes to a chunk of system memory. Which means that there is no risk
2264 * that the register values disappear as soon as we call
2265 * intel_runtime_pm_put(), so it is correct to wrap only the
2266 * pin/unpin/fence and not more.
2268 intel_runtime_pm_get(dev_priv);
2270 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2271 &view);
2272 if (ret)
2273 goto err_pm;
2275 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2276 * fence, whereas 965+ only requires a fence if using
2277 * framebuffer compression. For simplicity, we always install
2278 * a fence as the cost is not that onerous.
2280 if (view.type == I915_GGTT_VIEW_NORMAL) {
2281 ret = i915_gem_object_get_fence(obj);
2282 if (ret == -EDEADLK) {
2284 * -EDEADLK means there are no free fences
2285 * no pending flips.
2287 * This is propagated to atomic, but it uses
2288 * -EDEADLK to force a locking recovery, so
2289 * change the returned error to -EBUSY.
2291 ret = -EBUSY;
2292 goto err_unpin;
2293 } else if (ret)
2294 goto err_unpin;
2296 i915_gem_object_pin_fence(obj);
2299 intel_runtime_pm_put(dev_priv);
2300 return 0;
2302 err_unpin:
2303 i915_gem_object_unpin_from_display_plane(obj, &view);
2304 err_pm:
2305 intel_runtime_pm_put(dev_priv);
2306 return ret;
2309 static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2311 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2312 struct i915_ggtt_view view;
2314 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2316 intel_fill_fb_ggtt_view(&view, fb, rotation);
2318 if (view.type == I915_GGTT_VIEW_NORMAL)
2319 i915_gem_object_unpin_fence(obj);
2321 i915_gem_object_unpin_from_display_plane(obj, &view);
2325 * Adjust the tile offset by moving the difference into
2326 * the x/y offsets.
2328 * Input tile dimensions and pitch must already be
2329 * rotated to match x and y, and in pixel units.
2331 static u32 intel_adjust_tile_offset(int *x, int *y,
2332 unsigned int tile_width,
2333 unsigned int tile_height,
2334 unsigned int tile_size,
2335 unsigned int pitch_tiles,
2336 u32 old_offset,
2337 u32 new_offset)
2339 unsigned int tiles;
2341 WARN_ON(old_offset & (tile_size - 1));
2342 WARN_ON(new_offset & (tile_size - 1));
2343 WARN_ON(new_offset > old_offset);
2345 tiles = (old_offset - new_offset) / tile_size;
2347 *y += tiles / pitch_tiles * tile_height;
2348 *x += tiles % pitch_tiles * tile_width;
2350 return new_offset;
2354 * Computes the linear offset to the base tile and adjusts
2355 * x, y. bytes per pixel is assumed to be a power-of-two.
2357 * In the 90/270 rotated case, x and y are assumed
2358 * to be already rotated to match the rotated GTT view, and
2359 * pitch is the tile_height aligned framebuffer height.
2361 u32 intel_compute_tile_offset(int *x, int *y,
2362 const struct drm_framebuffer *fb, int plane,
2363 unsigned int pitch,
2364 unsigned int rotation)
2366 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2367 uint64_t fb_modifier = fb->modifier[plane];
2368 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2369 u32 offset, offset_aligned, alignment;
2371 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2372 if (alignment)
2373 alignment--;
2375 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2376 unsigned int tile_size, tile_width, tile_height;
2377 unsigned int tile_rows, tiles, pitch_tiles;
2379 tile_size = intel_tile_size(dev_priv);
2380 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2381 fb_modifier, cpp);
2383 if (intel_rotation_90_or_270(rotation)) {
2384 pitch_tiles = pitch / tile_height;
2385 swap(tile_width, tile_height);
2386 } else {
2387 pitch_tiles = pitch / (tile_width * cpp);
2390 tile_rows = *y / tile_height;
2391 *y %= tile_height;
2393 tiles = *x / tile_width;
2394 *x %= tile_width;
2396 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2397 offset_aligned = offset & ~alignment;
2399 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2400 tile_size, pitch_tiles,
2401 offset, offset_aligned);
2402 } else {
2403 offset = *y * pitch + *x * cpp;
2404 offset_aligned = offset & ~alignment;
2406 *y = (offset & alignment) / pitch;
2407 *x = ((offset & alignment) - *y * pitch) / cpp;
2410 return offset_aligned;
2413 static int i9xx_format_to_fourcc(int format)
2415 switch (format) {
2416 case DISPPLANE_8BPP:
2417 return DRM_FORMAT_C8;
2418 case DISPPLANE_BGRX555:
2419 return DRM_FORMAT_XRGB1555;
2420 case DISPPLANE_BGRX565:
2421 return DRM_FORMAT_RGB565;
2422 default:
2423 case DISPPLANE_BGRX888:
2424 return DRM_FORMAT_XRGB8888;
2425 case DISPPLANE_RGBX888:
2426 return DRM_FORMAT_XBGR8888;
2427 case DISPPLANE_BGRX101010:
2428 return DRM_FORMAT_XRGB2101010;
2429 case DISPPLANE_RGBX101010:
2430 return DRM_FORMAT_XBGR2101010;
2434 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2436 switch (format) {
2437 case PLANE_CTL_FORMAT_RGB_565:
2438 return DRM_FORMAT_RGB565;
2439 default:
2440 case PLANE_CTL_FORMAT_XRGB_8888:
2441 if (rgb_order) {
2442 if (alpha)
2443 return DRM_FORMAT_ABGR8888;
2444 else
2445 return DRM_FORMAT_XBGR8888;
2446 } else {
2447 if (alpha)
2448 return DRM_FORMAT_ARGB8888;
2449 else
2450 return DRM_FORMAT_XRGB8888;
2452 case PLANE_CTL_FORMAT_XRGB_2101010:
2453 if (rgb_order)
2454 return DRM_FORMAT_XBGR2101010;
2455 else
2456 return DRM_FORMAT_XRGB2101010;
2460 static bool
2461 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2462 struct intel_initial_plane_config *plane_config)
2464 struct drm_device *dev = crtc->base.dev;
2465 struct drm_i915_private *dev_priv = to_i915(dev);
2466 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2467 struct drm_i915_gem_object *obj = NULL;
2468 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2469 struct drm_framebuffer *fb = &plane_config->fb->base;
2470 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2471 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2472 PAGE_SIZE);
2474 size_aligned -= base_aligned;
2476 if (plane_config->size == 0)
2477 return false;
2479 /* If the FB is too big, just don't use it since fbdev is not very
2480 * important and we should probably use that space with FBC or other
2481 * features. */
2482 if (size_aligned * 2 > ggtt->stolen_usable_size)
2483 return false;
2485 mutex_lock(&dev->struct_mutex);
2487 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2488 base_aligned,
2489 base_aligned,
2490 size_aligned);
2491 if (!obj) {
2492 mutex_unlock(&dev->struct_mutex);
2493 return false;
2496 obj->tiling_mode = plane_config->tiling;
2497 if (obj->tiling_mode == I915_TILING_X)
2498 obj->stride = fb->pitches[0];
2500 mode_cmd.pixel_format = fb->pixel_format;
2501 mode_cmd.width = fb->width;
2502 mode_cmd.height = fb->height;
2503 mode_cmd.pitches[0] = fb->pitches[0];
2504 mode_cmd.modifier[0] = fb->modifier[0];
2505 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2507 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2508 &mode_cmd, obj)) {
2509 DRM_DEBUG_KMS("intel fb init failed\n");
2510 goto out_unref_obj;
2513 mutex_unlock(&dev->struct_mutex);
2515 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2516 return true;
2518 out_unref_obj:
2519 drm_gem_object_unreference(&obj->base);
2520 mutex_unlock(&dev->struct_mutex);
2521 return false;
2524 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2525 static void
2526 update_state_fb(struct drm_plane *plane)
2528 if (plane->fb == plane->state->fb)
2529 return;
2531 if (plane->state->fb)
2532 drm_framebuffer_unreference(plane->state->fb);
2533 plane->state->fb = plane->fb;
2534 if (plane->state->fb)
2535 drm_framebuffer_reference(plane->state->fb);
2538 static void
2539 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2540 struct intel_initial_plane_config *plane_config)
2542 struct drm_device *dev = intel_crtc->base.dev;
2543 struct drm_i915_private *dev_priv = dev->dev_private;
2544 struct drm_crtc *c;
2545 struct intel_crtc *i;
2546 struct drm_i915_gem_object *obj;
2547 struct drm_plane *primary = intel_crtc->base.primary;
2548 struct drm_plane_state *plane_state = primary->state;
2549 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2550 struct intel_plane *intel_plane = to_intel_plane(primary);
2551 struct intel_plane_state *intel_state =
2552 to_intel_plane_state(plane_state);
2553 struct drm_framebuffer *fb;
2555 if (!plane_config->fb)
2556 return;
2558 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2559 fb = &plane_config->fb->base;
2560 goto valid_fb;
2563 kfree(plane_config->fb);
2566 * Failed to alloc the obj, check to see if we should share
2567 * an fb with another CRTC instead
2569 for_each_crtc(dev, c) {
2570 i = to_intel_crtc(c);
2572 if (c == &intel_crtc->base)
2573 continue;
2575 if (!i->active)
2576 continue;
2578 fb = c->primary->fb;
2579 if (!fb)
2580 continue;
2582 obj = intel_fb_obj(fb);
2583 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2584 drm_framebuffer_reference(fb);
2585 goto valid_fb;
2590 * We've failed to reconstruct the BIOS FB. Current display state
2591 * indicates that the primary plane is visible, but has a NULL FB,
2592 * which will lead to problems later if we don't fix it up. The
2593 * simplest solution is to just disable the primary plane now and
2594 * pretend the BIOS never had it enabled.
2596 to_intel_plane_state(plane_state)->visible = false;
2597 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2598 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2599 intel_plane->disable_plane(primary, &intel_crtc->base);
2601 return;
2603 valid_fb:
2604 plane_state->src_x = 0;
2605 plane_state->src_y = 0;
2606 plane_state->src_w = fb->width << 16;
2607 plane_state->src_h = fb->height << 16;
2609 plane_state->crtc_x = 0;
2610 plane_state->crtc_y = 0;
2611 plane_state->crtc_w = fb->width;
2612 plane_state->crtc_h = fb->height;
2614 intel_state->src.x1 = plane_state->src_x;
2615 intel_state->src.y1 = plane_state->src_y;
2616 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2617 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2618 intel_state->dst.x1 = plane_state->crtc_x;
2619 intel_state->dst.y1 = plane_state->crtc_y;
2620 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2621 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2623 obj = intel_fb_obj(fb);
2624 if (obj->tiling_mode != I915_TILING_NONE)
2625 dev_priv->preserve_bios_swizzle = true;
2627 drm_framebuffer_reference(fb);
2628 primary->fb = primary->state->fb = fb;
2629 primary->crtc = primary->state->crtc = &intel_crtc->base;
2630 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2631 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2634 static void i9xx_update_primary_plane(struct drm_plane *primary,
2635 const struct intel_crtc_state *crtc_state,
2636 const struct intel_plane_state *plane_state)
2638 struct drm_device *dev = primary->dev;
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2641 struct drm_framebuffer *fb = plane_state->base.fb;
2642 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2643 int plane = intel_crtc->plane;
2644 u32 linear_offset;
2645 u32 dspcntr;
2646 i915_reg_t reg = DSPCNTR(plane);
2647 unsigned int rotation = plane_state->base.rotation;
2648 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2649 int x = plane_state->src.x1 >> 16;
2650 int y = plane_state->src.y1 >> 16;
2652 dspcntr = DISPPLANE_GAMMA_ENABLE;
2654 dspcntr |= DISPLAY_PLANE_ENABLE;
2656 if (INTEL_INFO(dev)->gen < 4) {
2657 if (intel_crtc->pipe == PIPE_B)
2658 dspcntr |= DISPPLANE_SEL_PIPE_B;
2660 /* pipesrc and dspsize control the size that is scaled from,
2661 * which should always be the user's requested size.
2663 I915_WRITE(DSPSIZE(plane),
2664 ((crtc_state->pipe_src_h - 1) << 16) |
2665 (crtc_state->pipe_src_w - 1));
2666 I915_WRITE(DSPPOS(plane), 0);
2667 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2668 I915_WRITE(PRIMSIZE(plane),
2669 ((crtc_state->pipe_src_h - 1) << 16) |
2670 (crtc_state->pipe_src_w - 1));
2671 I915_WRITE(PRIMPOS(plane), 0);
2672 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2675 switch (fb->pixel_format) {
2676 case DRM_FORMAT_C8:
2677 dspcntr |= DISPPLANE_8BPP;
2678 break;
2679 case DRM_FORMAT_XRGB1555:
2680 dspcntr |= DISPPLANE_BGRX555;
2681 break;
2682 case DRM_FORMAT_RGB565:
2683 dspcntr |= DISPPLANE_BGRX565;
2684 break;
2685 case DRM_FORMAT_XRGB8888:
2686 dspcntr |= DISPPLANE_BGRX888;
2687 break;
2688 case DRM_FORMAT_XBGR8888:
2689 dspcntr |= DISPPLANE_RGBX888;
2690 break;
2691 case DRM_FORMAT_XRGB2101010:
2692 dspcntr |= DISPPLANE_BGRX101010;
2693 break;
2694 case DRM_FORMAT_XBGR2101010:
2695 dspcntr |= DISPPLANE_RGBX101010;
2696 break;
2697 default:
2698 BUG();
2701 if (INTEL_INFO(dev)->gen >= 4 &&
2702 obj->tiling_mode != I915_TILING_NONE)
2703 dspcntr |= DISPPLANE_TILED;
2705 if (IS_G4X(dev))
2706 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2708 linear_offset = y * fb->pitches[0] + x * cpp;
2710 if (INTEL_INFO(dev)->gen >= 4) {
2711 intel_crtc->dspaddr_offset =
2712 intel_compute_tile_offset(&x, &y, fb, 0,
2713 fb->pitches[0], rotation);
2714 linear_offset -= intel_crtc->dspaddr_offset;
2715 } else {
2716 intel_crtc->dspaddr_offset = linear_offset;
2719 if (rotation == BIT(DRM_ROTATE_180)) {
2720 dspcntr |= DISPPLANE_ROTATE_180;
2722 x += (crtc_state->pipe_src_w - 1);
2723 y += (crtc_state->pipe_src_h - 1);
2725 /* Finding the last pixel of the last line of the display
2726 data and adding to linear_offset*/
2727 linear_offset +=
2728 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2729 (crtc_state->pipe_src_w - 1) * cpp;
2732 intel_crtc->adjusted_x = x;
2733 intel_crtc->adjusted_y = y;
2735 I915_WRITE(reg, dspcntr);
2737 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2738 if (INTEL_INFO(dev)->gen >= 4) {
2739 I915_WRITE(DSPSURF(plane),
2740 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2741 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2742 I915_WRITE(DSPLINOFF(plane), linear_offset);
2743 } else
2744 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2745 POSTING_READ(reg);
2748 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2749 struct drm_crtc *crtc)
2751 struct drm_device *dev = crtc->dev;
2752 struct drm_i915_private *dev_priv = dev->dev_private;
2753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2754 int plane = intel_crtc->plane;
2756 I915_WRITE(DSPCNTR(plane), 0);
2757 if (INTEL_INFO(dev_priv)->gen >= 4)
2758 I915_WRITE(DSPSURF(plane), 0);
2759 else
2760 I915_WRITE(DSPADDR(plane), 0);
2761 POSTING_READ(DSPCNTR(plane));
2764 static void ironlake_update_primary_plane(struct drm_plane *primary,
2765 const struct intel_crtc_state *crtc_state,
2766 const struct intel_plane_state *plane_state)
2768 struct drm_device *dev = primary->dev;
2769 struct drm_i915_private *dev_priv = dev->dev_private;
2770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2771 struct drm_framebuffer *fb = plane_state->base.fb;
2772 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2773 int plane = intel_crtc->plane;
2774 u32 linear_offset;
2775 u32 dspcntr;
2776 i915_reg_t reg = DSPCNTR(plane);
2777 unsigned int rotation = plane_state->base.rotation;
2778 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2779 int x = plane_state->src.x1 >> 16;
2780 int y = plane_state->src.y1 >> 16;
2782 dspcntr = DISPPLANE_GAMMA_ENABLE;
2783 dspcntr |= DISPLAY_PLANE_ENABLE;
2785 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2786 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2788 switch (fb->pixel_format) {
2789 case DRM_FORMAT_C8:
2790 dspcntr |= DISPPLANE_8BPP;
2791 break;
2792 case DRM_FORMAT_RGB565:
2793 dspcntr |= DISPPLANE_BGRX565;
2794 break;
2795 case DRM_FORMAT_XRGB8888:
2796 dspcntr |= DISPPLANE_BGRX888;
2797 break;
2798 case DRM_FORMAT_XBGR8888:
2799 dspcntr |= DISPPLANE_RGBX888;
2800 break;
2801 case DRM_FORMAT_XRGB2101010:
2802 dspcntr |= DISPPLANE_BGRX101010;
2803 break;
2804 case DRM_FORMAT_XBGR2101010:
2805 dspcntr |= DISPPLANE_RGBX101010;
2806 break;
2807 default:
2808 BUG();
2811 if (obj->tiling_mode != I915_TILING_NONE)
2812 dspcntr |= DISPPLANE_TILED;
2814 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2815 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2817 linear_offset = y * fb->pitches[0] + x * cpp;
2818 intel_crtc->dspaddr_offset =
2819 intel_compute_tile_offset(&x, &y, fb, 0,
2820 fb->pitches[0], rotation);
2821 linear_offset -= intel_crtc->dspaddr_offset;
2822 if (rotation == BIT(DRM_ROTATE_180)) {
2823 dspcntr |= DISPPLANE_ROTATE_180;
2825 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2826 x += (crtc_state->pipe_src_w - 1);
2827 y += (crtc_state->pipe_src_h - 1);
2829 /* Finding the last pixel of the last line of the display
2830 data and adding to linear_offset*/
2831 linear_offset +=
2832 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2833 (crtc_state->pipe_src_w - 1) * cpp;
2837 intel_crtc->adjusted_x = x;
2838 intel_crtc->adjusted_y = y;
2840 I915_WRITE(reg, dspcntr);
2842 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2843 I915_WRITE(DSPSURF(plane),
2844 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2845 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2846 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2847 } else {
2848 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2849 I915_WRITE(DSPLINOFF(plane), linear_offset);
2851 POSTING_READ(reg);
2854 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2855 uint64_t fb_modifier, uint32_t pixel_format)
2857 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2858 return 64;
2859 } else {
2860 int cpp = drm_format_plane_cpp(pixel_format, 0);
2862 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2866 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2867 struct drm_i915_gem_object *obj,
2868 unsigned int plane)
2870 struct i915_ggtt_view view;
2871 struct i915_vma *vma;
2872 u64 offset;
2874 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2875 intel_plane->base.state->rotation);
2877 vma = i915_gem_obj_to_ggtt_view(obj, &view);
2878 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2879 view.type))
2880 return -1;
2882 offset = vma->node.start;
2884 if (plane == 1) {
2885 offset += vma->ggtt_view.params.rotated.uv_start_page *
2886 PAGE_SIZE;
2889 WARN_ON(upper_32_bits(offset));
2891 return lower_32_bits(offset);
2894 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2896 struct drm_device *dev = intel_crtc->base.dev;
2897 struct drm_i915_private *dev_priv = dev->dev_private;
2899 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2900 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2901 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2905 * This function detaches (aka. unbinds) unused scalers in hardware
2907 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2909 struct intel_crtc_scaler_state *scaler_state;
2910 int i;
2912 scaler_state = &intel_crtc->config->scaler_state;
2914 /* loop through and disable scalers that aren't in use */
2915 for (i = 0; i < intel_crtc->num_scalers; i++) {
2916 if (!scaler_state->scalers[i].in_use)
2917 skl_detach_scaler(intel_crtc, i);
2921 u32 skl_plane_ctl_format(uint32_t pixel_format)
2923 switch (pixel_format) {
2924 case DRM_FORMAT_C8:
2925 return PLANE_CTL_FORMAT_INDEXED;
2926 case DRM_FORMAT_RGB565:
2927 return PLANE_CTL_FORMAT_RGB_565;
2928 case DRM_FORMAT_XBGR8888:
2929 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2930 case DRM_FORMAT_XRGB8888:
2931 return PLANE_CTL_FORMAT_XRGB_8888;
2933 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2934 * to be already pre-multiplied. We need to add a knob (or a different
2935 * DRM_FORMAT) for user-space to configure that.
2937 case DRM_FORMAT_ABGR8888:
2938 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2939 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2940 case DRM_FORMAT_ARGB8888:
2941 return PLANE_CTL_FORMAT_XRGB_8888 |
2942 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2943 case DRM_FORMAT_XRGB2101010:
2944 return PLANE_CTL_FORMAT_XRGB_2101010;
2945 case DRM_FORMAT_XBGR2101010:
2946 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2947 case DRM_FORMAT_YUYV:
2948 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2949 case DRM_FORMAT_YVYU:
2950 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2951 case DRM_FORMAT_UYVY:
2952 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2953 case DRM_FORMAT_VYUY:
2954 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2955 default:
2956 MISSING_CASE(pixel_format);
2959 return 0;
2962 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2964 switch (fb_modifier) {
2965 case DRM_FORMAT_MOD_NONE:
2966 break;
2967 case I915_FORMAT_MOD_X_TILED:
2968 return PLANE_CTL_TILED_X;
2969 case I915_FORMAT_MOD_Y_TILED:
2970 return PLANE_CTL_TILED_Y;
2971 case I915_FORMAT_MOD_Yf_TILED:
2972 return PLANE_CTL_TILED_YF;
2973 default:
2974 MISSING_CASE(fb_modifier);
2977 return 0;
2980 u32 skl_plane_ctl_rotation(unsigned int rotation)
2982 switch (rotation) {
2983 case BIT(DRM_ROTATE_0):
2984 break;
2986 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2987 * while i915 HW rotation is clockwise, thats why this swapping.
2989 case BIT(DRM_ROTATE_90):
2990 return PLANE_CTL_ROTATE_270;
2991 case BIT(DRM_ROTATE_180):
2992 return PLANE_CTL_ROTATE_180;
2993 case BIT(DRM_ROTATE_270):
2994 return PLANE_CTL_ROTATE_90;
2995 default:
2996 MISSING_CASE(rotation);
2999 return 0;
3002 static void skylake_update_primary_plane(struct drm_plane *plane,
3003 const struct intel_crtc_state *crtc_state,
3004 const struct intel_plane_state *plane_state)
3006 struct drm_device *dev = plane->dev;
3007 struct drm_i915_private *dev_priv = dev->dev_private;
3008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3009 struct drm_framebuffer *fb = plane_state->base.fb;
3010 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3011 int pipe = intel_crtc->pipe;
3012 u32 plane_ctl, stride_div, stride;
3013 u32 tile_height, plane_offset, plane_size;
3014 unsigned int rotation = plane_state->base.rotation;
3015 int x_offset, y_offset;
3016 u32 surf_addr;
3017 int scaler_id = plane_state->scaler_id;
3018 int src_x = plane_state->src.x1 >> 16;
3019 int src_y = plane_state->src.y1 >> 16;
3020 int src_w = drm_rect_width(&plane_state->src) >> 16;
3021 int src_h = drm_rect_height(&plane_state->src) >> 16;
3022 int dst_x = plane_state->dst.x1;
3023 int dst_y = plane_state->dst.y1;
3024 int dst_w = drm_rect_width(&plane_state->dst);
3025 int dst_h = drm_rect_height(&plane_state->dst);
3027 plane_ctl = PLANE_CTL_ENABLE |
3028 PLANE_CTL_PIPE_GAMMA_ENABLE |
3029 PLANE_CTL_PIPE_CSC_ENABLE;
3031 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3032 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3033 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3034 plane_ctl |= skl_plane_ctl_rotation(rotation);
3036 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3037 fb->pixel_format);
3038 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3040 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3042 if (intel_rotation_90_or_270(rotation)) {
3043 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3045 /* stride = Surface height in tiles */
3046 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3047 stride = DIV_ROUND_UP(fb->height, tile_height);
3048 x_offset = stride * tile_height - src_y - src_h;
3049 y_offset = src_x;
3050 plane_size = (src_w - 1) << 16 | (src_h - 1);
3051 } else {
3052 stride = fb->pitches[0] / stride_div;
3053 x_offset = src_x;
3054 y_offset = src_y;
3055 plane_size = (src_h - 1) << 16 | (src_w - 1);
3057 plane_offset = y_offset << 16 | x_offset;
3059 intel_crtc->adjusted_x = x_offset;
3060 intel_crtc->adjusted_y = y_offset;
3062 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3063 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3064 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3065 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3067 if (scaler_id >= 0) {
3068 uint32_t ps_ctrl = 0;
3070 WARN_ON(!dst_w || !dst_h);
3071 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3072 crtc_state->scaler_state.scalers[scaler_id].mode;
3073 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3074 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3075 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3076 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3077 I915_WRITE(PLANE_POS(pipe, 0), 0);
3078 } else {
3079 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3082 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3084 POSTING_READ(PLANE_SURF(pipe, 0));
3087 static void skylake_disable_primary_plane(struct drm_plane *primary,
3088 struct drm_crtc *crtc)
3090 struct drm_device *dev = crtc->dev;
3091 struct drm_i915_private *dev_priv = dev->dev_private;
3092 int pipe = to_intel_crtc(crtc)->pipe;
3094 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3095 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3096 POSTING_READ(PLANE_SURF(pipe, 0));
3099 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3100 static int
3101 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3102 int x, int y, enum mode_set_atomic state)
3104 /* Support for kgdboc is disabled, this needs a major rework. */
3105 DRM_ERROR("legacy panic handler not supported any more.\n");
3107 return -ENODEV;
3110 static void intel_complete_page_flips(struct drm_device *dev)
3112 struct drm_crtc *crtc;
3114 for_each_crtc(dev, crtc) {
3115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3116 enum plane plane = intel_crtc->plane;
3118 intel_prepare_page_flip(dev, plane);
3119 intel_finish_page_flip_plane(dev, plane);
3123 static void intel_update_primary_planes(struct drm_device *dev)
3125 struct drm_crtc *crtc;
3127 for_each_crtc(dev, crtc) {
3128 struct intel_plane *plane = to_intel_plane(crtc->primary);
3129 struct intel_plane_state *plane_state;
3131 drm_modeset_lock_crtc(crtc, &plane->base);
3132 plane_state = to_intel_plane_state(plane->base.state);
3134 if (plane_state->visible)
3135 plane->update_plane(&plane->base,
3136 to_intel_crtc_state(crtc->state),
3137 plane_state);
3139 drm_modeset_unlock_crtc(crtc);
3143 void intel_prepare_reset(struct drm_device *dev)
3145 /* no reset support for gen2 */
3146 if (IS_GEN2(dev))
3147 return;
3149 /* reset doesn't touch the display */
3150 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3151 return;
3153 drm_modeset_lock_all(dev);
3155 * Disabling the crtcs gracefully seems nicer. Also the
3156 * g33 docs say we should at least disable all the planes.
3158 intel_display_suspend(dev);
3161 void intel_finish_reset(struct drm_device *dev)
3163 struct drm_i915_private *dev_priv = to_i915(dev);
3166 * Flips in the rings will be nuked by the reset,
3167 * so complete all pending flips so that user space
3168 * will get its events and not get stuck.
3170 intel_complete_page_flips(dev);
3172 /* no reset support for gen2 */
3173 if (IS_GEN2(dev))
3174 return;
3176 /* reset doesn't touch the display */
3177 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3179 * Flips in the rings have been nuked by the reset,
3180 * so update the base address of all primary
3181 * planes to the the last fb to make sure we're
3182 * showing the correct fb after a reset.
3184 * FIXME: Atomic will make this obsolete since we won't schedule
3185 * CS-based flips (which might get lost in gpu resets) any more.
3187 intel_update_primary_planes(dev);
3188 return;
3192 * The display has been reset as well,
3193 * so need a full re-initialization.
3195 intel_runtime_pm_disable_interrupts(dev_priv);
3196 intel_runtime_pm_enable_interrupts(dev_priv);
3198 intel_modeset_init_hw(dev);
3200 spin_lock_irq(&dev_priv->irq_lock);
3201 if (dev_priv->display.hpd_irq_setup)
3202 dev_priv->display.hpd_irq_setup(dev);
3203 spin_unlock_irq(&dev_priv->irq_lock);
3205 intel_display_resume(dev);
3207 intel_hpd_init(dev_priv);
3209 drm_modeset_unlock_all(dev);
3212 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3214 struct drm_device *dev = crtc->dev;
3215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3216 unsigned reset_counter;
3217 bool pending;
3219 reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3220 if (intel_crtc->reset_counter != reset_counter)
3221 return false;
3223 spin_lock_irq(&dev->event_lock);
3224 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3225 spin_unlock_irq(&dev->event_lock);
3227 return pending;
3230 static void intel_update_pipe_config(struct intel_crtc *crtc,
3231 struct intel_crtc_state *old_crtc_state)
3233 struct drm_device *dev = crtc->base.dev;
3234 struct drm_i915_private *dev_priv = dev->dev_private;
3235 struct intel_crtc_state *pipe_config =
3236 to_intel_crtc_state(crtc->base.state);
3238 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3239 crtc->base.mode = crtc->base.state->mode;
3241 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3242 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3243 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3246 * Update pipe size and adjust fitter if needed: the reason for this is
3247 * that in compute_mode_changes we check the native mode (not the pfit
3248 * mode) to see if we can flip rather than do a full mode set. In the
3249 * fastboot case, we'll flip, but if we don't update the pipesrc and
3250 * pfit state, we'll end up with a big fb scanned out into the wrong
3251 * sized surface.
3254 I915_WRITE(PIPESRC(crtc->pipe),
3255 ((pipe_config->pipe_src_w - 1) << 16) |
3256 (pipe_config->pipe_src_h - 1));
3258 /* on skylake this is done by detaching scalers */
3259 if (INTEL_INFO(dev)->gen >= 9) {
3260 skl_detach_scalers(crtc);
3262 if (pipe_config->pch_pfit.enabled)
3263 skylake_pfit_enable(crtc);
3264 } else if (HAS_PCH_SPLIT(dev)) {
3265 if (pipe_config->pch_pfit.enabled)
3266 ironlake_pfit_enable(crtc);
3267 else if (old_crtc_state->pch_pfit.enabled)
3268 ironlake_pfit_disable(crtc, true);
3272 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3274 struct drm_device *dev = crtc->dev;
3275 struct drm_i915_private *dev_priv = dev->dev_private;
3276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3277 int pipe = intel_crtc->pipe;
3278 i915_reg_t reg;
3279 u32 temp;
3281 /* enable normal train */
3282 reg = FDI_TX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 if (IS_IVYBRIDGE(dev)) {
3285 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3286 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3287 } else {
3288 temp &= ~FDI_LINK_TRAIN_NONE;
3289 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3291 I915_WRITE(reg, temp);
3293 reg = FDI_RX_CTL(pipe);
3294 temp = I915_READ(reg);
3295 if (HAS_PCH_CPT(dev)) {
3296 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3297 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3298 } else {
3299 temp &= ~FDI_LINK_TRAIN_NONE;
3300 temp |= FDI_LINK_TRAIN_NONE;
3302 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3304 /* wait one idle pattern time */
3305 POSTING_READ(reg);
3306 udelay(1000);
3308 /* IVB wants error correction enabled */
3309 if (IS_IVYBRIDGE(dev))
3310 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3311 FDI_FE_ERRC_ENABLE);
3314 /* The FDI link training functions for ILK/Ibexpeak. */
3315 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3317 struct drm_device *dev = crtc->dev;
3318 struct drm_i915_private *dev_priv = dev->dev_private;
3319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3320 int pipe = intel_crtc->pipe;
3321 i915_reg_t reg;
3322 u32 temp, tries;
3324 /* FDI needs bits from pipe first */
3325 assert_pipe_enabled(dev_priv, pipe);
3327 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3328 for train result */
3329 reg = FDI_RX_IMR(pipe);
3330 temp = I915_READ(reg);
3331 temp &= ~FDI_RX_SYMBOL_LOCK;
3332 temp &= ~FDI_RX_BIT_LOCK;
3333 I915_WRITE(reg, temp);
3334 I915_READ(reg);
3335 udelay(150);
3337 /* enable CPU FDI TX and PCH FDI RX */
3338 reg = FDI_TX_CTL(pipe);
3339 temp = I915_READ(reg);
3340 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3341 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3342 temp &= ~FDI_LINK_TRAIN_NONE;
3343 temp |= FDI_LINK_TRAIN_PATTERN_1;
3344 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3346 reg = FDI_RX_CTL(pipe);
3347 temp = I915_READ(reg);
3348 temp &= ~FDI_LINK_TRAIN_NONE;
3349 temp |= FDI_LINK_TRAIN_PATTERN_1;
3350 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3352 POSTING_READ(reg);
3353 udelay(150);
3355 /* Ironlake workaround, enable clock pointer after FDI enable*/
3356 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3357 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3358 FDI_RX_PHASE_SYNC_POINTER_EN);
3360 reg = FDI_RX_IIR(pipe);
3361 for (tries = 0; tries < 5; tries++) {
3362 temp = I915_READ(reg);
3363 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3365 if ((temp & FDI_RX_BIT_LOCK)) {
3366 DRM_DEBUG_KMS("FDI train 1 done.\n");
3367 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3368 break;
3371 if (tries == 5)
3372 DRM_ERROR("FDI train 1 fail!\n");
3374 /* Train 2 */
3375 reg = FDI_TX_CTL(pipe);
3376 temp = I915_READ(reg);
3377 temp &= ~FDI_LINK_TRAIN_NONE;
3378 temp |= FDI_LINK_TRAIN_PATTERN_2;
3379 I915_WRITE(reg, temp);
3381 reg = FDI_RX_CTL(pipe);
3382 temp = I915_READ(reg);
3383 temp &= ~FDI_LINK_TRAIN_NONE;
3384 temp |= FDI_LINK_TRAIN_PATTERN_2;
3385 I915_WRITE(reg, temp);
3387 POSTING_READ(reg);
3388 udelay(150);
3390 reg = FDI_RX_IIR(pipe);
3391 for (tries = 0; tries < 5; tries++) {
3392 temp = I915_READ(reg);
3393 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3395 if (temp & FDI_RX_SYMBOL_LOCK) {
3396 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3397 DRM_DEBUG_KMS("FDI train 2 done.\n");
3398 break;
3401 if (tries == 5)
3402 DRM_ERROR("FDI train 2 fail!\n");
3404 DRM_DEBUG_KMS("FDI train done\n");
3408 static const int snb_b_fdi_train_param[] = {
3409 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3410 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3411 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3412 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3415 /* The FDI link training functions for SNB/Cougarpoint. */
3416 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3418 struct drm_device *dev = crtc->dev;
3419 struct drm_i915_private *dev_priv = dev->dev_private;
3420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3421 int pipe = intel_crtc->pipe;
3422 i915_reg_t reg;
3423 u32 temp, i, retry;
3425 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3426 for train result */
3427 reg = FDI_RX_IMR(pipe);
3428 temp = I915_READ(reg);
3429 temp &= ~FDI_RX_SYMBOL_LOCK;
3430 temp &= ~FDI_RX_BIT_LOCK;
3431 I915_WRITE(reg, temp);
3433 POSTING_READ(reg);
3434 udelay(150);
3436 /* enable CPU FDI TX and PCH FDI RX */
3437 reg = FDI_TX_CTL(pipe);
3438 temp = I915_READ(reg);
3439 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3440 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3441 temp &= ~FDI_LINK_TRAIN_NONE;
3442 temp |= FDI_LINK_TRAIN_PATTERN_1;
3443 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3444 /* SNB-B */
3445 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3446 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3448 I915_WRITE(FDI_RX_MISC(pipe),
3449 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3451 reg = FDI_RX_CTL(pipe);
3452 temp = I915_READ(reg);
3453 if (HAS_PCH_CPT(dev)) {
3454 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3455 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3456 } else {
3457 temp &= ~FDI_LINK_TRAIN_NONE;
3458 temp |= FDI_LINK_TRAIN_PATTERN_1;
3460 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3462 POSTING_READ(reg);
3463 udelay(150);
3465 for (i = 0; i < 4; i++) {
3466 reg = FDI_TX_CTL(pipe);
3467 temp = I915_READ(reg);
3468 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3469 temp |= snb_b_fdi_train_param[i];
3470 I915_WRITE(reg, temp);
3472 POSTING_READ(reg);
3473 udelay(500);
3475 for (retry = 0; retry < 5; retry++) {
3476 reg = FDI_RX_IIR(pipe);
3477 temp = I915_READ(reg);
3478 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3479 if (temp & FDI_RX_BIT_LOCK) {
3480 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3481 DRM_DEBUG_KMS("FDI train 1 done.\n");
3482 break;
3484 udelay(50);
3486 if (retry < 5)
3487 break;
3489 if (i == 4)
3490 DRM_ERROR("FDI train 1 fail!\n");
3492 /* Train 2 */
3493 reg = FDI_TX_CTL(pipe);
3494 temp = I915_READ(reg);
3495 temp &= ~FDI_LINK_TRAIN_NONE;
3496 temp |= FDI_LINK_TRAIN_PATTERN_2;
3497 if (IS_GEN6(dev)) {
3498 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3499 /* SNB-B */
3500 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3502 I915_WRITE(reg, temp);
3504 reg = FDI_RX_CTL(pipe);
3505 temp = I915_READ(reg);
3506 if (HAS_PCH_CPT(dev)) {
3507 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3508 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3509 } else {
3510 temp &= ~FDI_LINK_TRAIN_NONE;
3511 temp |= FDI_LINK_TRAIN_PATTERN_2;
3513 I915_WRITE(reg, temp);
3515 POSTING_READ(reg);
3516 udelay(150);
3518 for (i = 0; i < 4; i++) {
3519 reg = FDI_TX_CTL(pipe);
3520 temp = I915_READ(reg);
3521 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3522 temp |= snb_b_fdi_train_param[i];
3523 I915_WRITE(reg, temp);
3525 POSTING_READ(reg);
3526 udelay(500);
3528 for (retry = 0; retry < 5; retry++) {
3529 reg = FDI_RX_IIR(pipe);
3530 temp = I915_READ(reg);
3531 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3532 if (temp & FDI_RX_SYMBOL_LOCK) {
3533 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3534 DRM_DEBUG_KMS("FDI train 2 done.\n");
3535 break;
3537 udelay(50);
3539 if (retry < 5)
3540 break;
3542 if (i == 4)
3543 DRM_ERROR("FDI train 2 fail!\n");
3545 DRM_DEBUG_KMS("FDI train done.\n");
3548 /* Manual link training for Ivy Bridge A0 parts */
3549 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3551 struct drm_device *dev = crtc->dev;
3552 struct drm_i915_private *dev_priv = dev->dev_private;
3553 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3554 int pipe = intel_crtc->pipe;
3555 i915_reg_t reg;
3556 u32 temp, i, j;
3558 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3559 for train result */
3560 reg = FDI_RX_IMR(pipe);
3561 temp = I915_READ(reg);
3562 temp &= ~FDI_RX_SYMBOL_LOCK;
3563 temp &= ~FDI_RX_BIT_LOCK;
3564 I915_WRITE(reg, temp);
3566 POSTING_READ(reg);
3567 udelay(150);
3569 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3570 I915_READ(FDI_RX_IIR(pipe)));
3572 /* Try each vswing and preemphasis setting twice before moving on */
3573 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3574 /* disable first in case we need to retry */
3575 reg = FDI_TX_CTL(pipe);
3576 temp = I915_READ(reg);
3577 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3578 temp &= ~FDI_TX_ENABLE;
3579 I915_WRITE(reg, temp);
3581 reg = FDI_RX_CTL(pipe);
3582 temp = I915_READ(reg);
3583 temp &= ~FDI_LINK_TRAIN_AUTO;
3584 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3585 temp &= ~FDI_RX_ENABLE;
3586 I915_WRITE(reg, temp);
3588 /* enable CPU FDI TX and PCH FDI RX */
3589 reg = FDI_TX_CTL(pipe);
3590 temp = I915_READ(reg);
3591 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3592 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3593 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3594 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3595 temp |= snb_b_fdi_train_param[j/2];
3596 temp |= FDI_COMPOSITE_SYNC;
3597 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3599 I915_WRITE(FDI_RX_MISC(pipe),
3600 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3602 reg = FDI_RX_CTL(pipe);
3603 temp = I915_READ(reg);
3604 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3605 temp |= FDI_COMPOSITE_SYNC;
3606 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3608 POSTING_READ(reg);
3609 udelay(1); /* should be 0.5us */
3611 for (i = 0; i < 4; i++) {
3612 reg = FDI_RX_IIR(pipe);
3613 temp = I915_READ(reg);
3614 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3616 if (temp & FDI_RX_BIT_LOCK ||
3617 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3618 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3619 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3621 break;
3623 udelay(1); /* should be 0.5us */
3625 if (i == 4) {
3626 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3627 continue;
3630 /* Train 2 */
3631 reg = FDI_TX_CTL(pipe);
3632 temp = I915_READ(reg);
3633 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3634 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3635 I915_WRITE(reg, temp);
3637 reg = FDI_RX_CTL(pipe);
3638 temp = I915_READ(reg);
3639 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3640 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3641 I915_WRITE(reg, temp);
3643 POSTING_READ(reg);
3644 udelay(2); /* should be 1.5us */
3646 for (i = 0; i < 4; i++) {
3647 reg = FDI_RX_IIR(pipe);
3648 temp = I915_READ(reg);
3649 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3651 if (temp & FDI_RX_SYMBOL_LOCK ||
3652 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3653 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3654 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3656 goto train_done;
3658 udelay(2); /* should be 1.5us */
3660 if (i == 4)
3661 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3664 train_done:
3665 DRM_DEBUG_KMS("FDI train done.\n");
3668 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3670 struct drm_device *dev = intel_crtc->base.dev;
3671 struct drm_i915_private *dev_priv = dev->dev_private;
3672 int pipe = intel_crtc->pipe;
3673 i915_reg_t reg;
3674 u32 temp;
3676 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3677 reg = FDI_RX_CTL(pipe);
3678 temp = I915_READ(reg);
3679 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3680 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3681 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3682 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3684 POSTING_READ(reg);
3685 udelay(200);
3687 /* Switch from Rawclk to PCDclk */
3688 temp = I915_READ(reg);
3689 I915_WRITE(reg, temp | FDI_PCDCLK);
3691 POSTING_READ(reg);
3692 udelay(200);
3694 /* Enable CPU FDI TX PLL, always on for Ironlake */
3695 reg = FDI_TX_CTL(pipe);
3696 temp = I915_READ(reg);
3697 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3698 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3700 POSTING_READ(reg);
3701 udelay(100);
3705 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3707 struct drm_device *dev = intel_crtc->base.dev;
3708 struct drm_i915_private *dev_priv = dev->dev_private;
3709 int pipe = intel_crtc->pipe;
3710 i915_reg_t reg;
3711 u32 temp;
3713 /* Switch from PCDclk to Rawclk */
3714 reg = FDI_RX_CTL(pipe);
3715 temp = I915_READ(reg);
3716 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3718 /* Disable CPU FDI TX PLL */
3719 reg = FDI_TX_CTL(pipe);
3720 temp = I915_READ(reg);
3721 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3723 POSTING_READ(reg);
3724 udelay(100);
3726 reg = FDI_RX_CTL(pipe);
3727 temp = I915_READ(reg);
3728 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3730 /* Wait for the clocks to turn off. */
3731 POSTING_READ(reg);
3732 udelay(100);
3735 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3737 struct drm_device *dev = crtc->dev;
3738 struct drm_i915_private *dev_priv = dev->dev_private;
3739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3740 int pipe = intel_crtc->pipe;
3741 i915_reg_t reg;
3742 u32 temp;
3744 /* disable CPU FDI tx and PCH FDI rx */
3745 reg = FDI_TX_CTL(pipe);
3746 temp = I915_READ(reg);
3747 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3748 POSTING_READ(reg);
3750 reg = FDI_RX_CTL(pipe);
3751 temp = I915_READ(reg);
3752 temp &= ~(0x7 << 16);
3753 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3754 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3756 POSTING_READ(reg);
3757 udelay(100);
3759 /* Ironlake workaround, disable clock pointer after downing FDI */
3760 if (HAS_PCH_IBX(dev))
3761 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3763 /* still set train pattern 1 */
3764 reg = FDI_TX_CTL(pipe);
3765 temp = I915_READ(reg);
3766 temp &= ~FDI_LINK_TRAIN_NONE;
3767 temp |= FDI_LINK_TRAIN_PATTERN_1;
3768 I915_WRITE(reg, temp);
3770 reg = FDI_RX_CTL(pipe);
3771 temp = I915_READ(reg);
3772 if (HAS_PCH_CPT(dev)) {
3773 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3774 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3775 } else {
3776 temp &= ~FDI_LINK_TRAIN_NONE;
3777 temp |= FDI_LINK_TRAIN_PATTERN_1;
3779 /* BPC in FDI rx is consistent with that in PIPECONF */
3780 temp &= ~(0x07 << 16);
3781 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3782 I915_WRITE(reg, temp);
3784 POSTING_READ(reg);
3785 udelay(100);
3788 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3790 struct intel_crtc *crtc;
3792 /* Note that we don't need to be called with mode_config.lock here
3793 * as our list of CRTC objects is static for the lifetime of the
3794 * device and so cannot disappear as we iterate. Similarly, we can
3795 * happily treat the predicates as racy, atomic checks as userspace
3796 * cannot claim and pin a new fb without at least acquring the
3797 * struct_mutex and so serialising with us.
3799 for_each_intel_crtc(dev, crtc) {
3800 if (atomic_read(&crtc->unpin_work_count) == 0)
3801 continue;
3803 if (crtc->unpin_work)
3804 intel_wait_for_vblank(dev, crtc->pipe);
3806 return true;
3809 return false;
3812 static void page_flip_completed(struct intel_crtc *intel_crtc)
3814 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3815 struct intel_unpin_work *work = intel_crtc->unpin_work;
3817 /* ensure that the unpin work is consistent wrt ->pending. */
3818 smp_rmb();
3819 intel_crtc->unpin_work = NULL;
3821 if (work->event)
3822 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3824 drm_crtc_vblank_put(&intel_crtc->base);
3826 wake_up_all(&dev_priv->pending_flip_queue);
3827 queue_work(dev_priv->wq, &work->work);
3829 trace_i915_flip_complete(intel_crtc->plane,
3830 work->pending_flip_obj);
3833 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3835 struct drm_device *dev = crtc->dev;
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 long ret;
3839 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3841 ret = wait_event_interruptible_timeout(
3842 dev_priv->pending_flip_queue,
3843 !intel_crtc_has_pending_flip(crtc),
3844 60*HZ);
3846 if (ret < 0)
3847 return ret;
3849 if (ret == 0) {
3850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3852 spin_lock_irq(&dev->event_lock);
3853 if (intel_crtc->unpin_work) {
3854 WARN_ONCE(1, "Removing stuck page flip\n");
3855 page_flip_completed(intel_crtc);
3857 spin_unlock_irq(&dev->event_lock);
3860 return 0;
3863 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3865 u32 temp;
3867 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3869 mutex_lock(&dev_priv->sb_lock);
3871 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3872 temp |= SBI_SSCCTL_DISABLE;
3873 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3875 mutex_unlock(&dev_priv->sb_lock);
3878 /* Program iCLKIP clock to the desired frequency */
3879 static void lpt_program_iclkip(struct drm_crtc *crtc)
3881 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3882 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3883 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3884 u32 temp;
3886 lpt_disable_iclkip(dev_priv);
3888 /* The iCLK virtual clock root frequency is in MHz,
3889 * but the adjusted_mode->crtc_clock in in KHz. To get the
3890 * divisors, it is necessary to divide one by another, so we
3891 * convert the virtual clock precision to KHz here for higher
3892 * precision.
3894 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3895 u32 iclk_virtual_root_freq = 172800 * 1000;
3896 u32 iclk_pi_range = 64;
3897 u32 desired_divisor;
3899 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3900 clock << auxdiv);
3901 divsel = (desired_divisor / iclk_pi_range) - 2;
3902 phaseinc = desired_divisor % iclk_pi_range;
3905 * Near 20MHz is a corner case which is
3906 * out of range for the 7-bit divisor
3908 if (divsel <= 0x7f)
3909 break;
3912 /* This should not happen with any sane values */
3913 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3914 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3915 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3916 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3918 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3919 clock,
3920 auxdiv,
3921 divsel,
3922 phasedir,
3923 phaseinc);
3925 mutex_lock(&dev_priv->sb_lock);
3927 /* Program SSCDIVINTPHASE6 */
3928 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3929 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3930 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3931 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3932 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3933 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3934 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3935 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3937 /* Program SSCAUXDIV */
3938 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3939 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3940 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3941 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3943 /* Enable modulator and associated divider */
3944 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3945 temp &= ~SBI_SSCCTL_DISABLE;
3946 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3948 mutex_unlock(&dev_priv->sb_lock);
3950 /* Wait for initialization time */
3951 udelay(24);
3953 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3956 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3958 u32 divsel, phaseinc, auxdiv;
3959 u32 iclk_virtual_root_freq = 172800 * 1000;
3960 u32 iclk_pi_range = 64;
3961 u32 desired_divisor;
3962 u32 temp;
3964 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3965 return 0;
3967 mutex_lock(&dev_priv->sb_lock);
3969 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3970 if (temp & SBI_SSCCTL_DISABLE) {
3971 mutex_unlock(&dev_priv->sb_lock);
3972 return 0;
3975 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3976 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3977 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3978 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3979 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3981 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3982 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3983 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3985 mutex_unlock(&dev_priv->sb_lock);
3987 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3989 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3990 desired_divisor << auxdiv);
3993 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3994 enum i915_pipe pch_transcoder)
3996 struct drm_device *dev = crtc->base.dev;
3997 struct drm_i915_private *dev_priv = dev->dev_private;
3998 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4000 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4001 I915_READ(HTOTAL(cpu_transcoder)));
4002 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4003 I915_READ(HBLANK(cpu_transcoder)));
4004 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4005 I915_READ(HSYNC(cpu_transcoder)));
4007 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4008 I915_READ(VTOTAL(cpu_transcoder)));
4009 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4010 I915_READ(VBLANK(cpu_transcoder)));
4011 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4012 I915_READ(VSYNC(cpu_transcoder)));
4013 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4014 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4017 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4019 struct drm_i915_private *dev_priv = dev->dev_private;
4020 uint32_t temp;
4022 temp = I915_READ(SOUTH_CHICKEN1);
4023 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4024 return;
4026 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4027 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4029 temp &= ~FDI_BC_BIFURCATION_SELECT;
4030 if (enable)
4031 temp |= FDI_BC_BIFURCATION_SELECT;
4033 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4034 I915_WRITE(SOUTH_CHICKEN1, temp);
4035 POSTING_READ(SOUTH_CHICKEN1);
4038 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4040 struct drm_device *dev = intel_crtc->base.dev;
4042 switch (intel_crtc->pipe) {
4043 case PIPE_A:
4044 break;
4045 case PIPE_B:
4046 if (intel_crtc->config->fdi_lanes > 2)
4047 cpt_set_fdi_bc_bifurcation(dev, false);
4048 else
4049 cpt_set_fdi_bc_bifurcation(dev, true);
4051 break;
4052 case PIPE_C:
4053 cpt_set_fdi_bc_bifurcation(dev, true);
4055 break;
4056 default:
4057 BUG();
4061 /* Return which DP Port should be selected for Transcoder DP control */
4062 static enum port
4063 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4065 struct drm_device *dev = crtc->dev;
4066 struct intel_encoder *encoder;
4068 for_each_encoder_on_crtc(dev, crtc, encoder) {
4069 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4070 encoder->type == INTEL_OUTPUT_EDP)
4071 return enc_to_dig_port(&encoder->base)->port;
4074 return -1;
4078 * Enable PCH resources required for PCH ports:
4079 * - PCH PLLs
4080 * - FDI training & RX/TX
4081 * - update transcoder timings
4082 * - DP transcoding bits
4083 * - transcoder
4085 static void ironlake_pch_enable(struct drm_crtc *crtc)
4087 struct drm_device *dev = crtc->dev;
4088 struct drm_i915_private *dev_priv = dev->dev_private;
4089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4090 int pipe = intel_crtc->pipe;
4091 u32 temp;
4093 assert_pch_transcoder_disabled(dev_priv, pipe);
4095 if (IS_IVYBRIDGE(dev))
4096 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4098 /* Write the TU size bits before fdi link training, so that error
4099 * detection works. */
4100 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4101 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4103 /* For PCH output, training FDI link */
4104 dev_priv->display.fdi_link_train(crtc);
4106 /* We need to program the right clock selection before writing the pixel
4107 * mutliplier into the DPLL. */
4108 if (HAS_PCH_CPT(dev)) {
4109 u32 sel;
4111 temp = I915_READ(PCH_DPLL_SEL);
4112 temp |= TRANS_DPLL_ENABLE(pipe);
4113 sel = TRANS_DPLLB_SEL(pipe);
4114 if (intel_crtc->config->shared_dpll ==
4115 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4116 temp |= sel;
4117 else
4118 temp &= ~sel;
4119 I915_WRITE(PCH_DPLL_SEL, temp);
4122 /* XXX: pch pll's can be enabled any time before we enable the PCH
4123 * transcoder, and we actually should do this to not upset any PCH
4124 * transcoder that already use the clock when we share it.
4126 * Note that enable_shared_dpll tries to do the right thing, but
4127 * get_shared_dpll unconditionally resets the pll - we need that to have
4128 * the right LVDS enable sequence. */
4129 intel_enable_shared_dpll(intel_crtc);
4131 /* set transcoder timing, panel must allow it */
4132 assert_panel_unlocked(dev_priv, pipe);
4133 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4135 intel_fdi_normal_train(crtc);
4137 /* For PCH DP, enable TRANS_DP_CTL */
4138 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4139 const struct drm_display_mode *adjusted_mode =
4140 &intel_crtc->config->base.adjusted_mode;
4141 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4142 i915_reg_t reg = TRANS_DP_CTL(pipe);
4143 temp = I915_READ(reg);
4144 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4145 TRANS_DP_SYNC_MASK |
4146 TRANS_DP_BPC_MASK);
4147 temp |= TRANS_DP_OUTPUT_ENABLE;
4148 temp |= bpc << 9; /* same format but at 11:9 */
4150 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4151 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4152 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4153 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4155 switch (intel_trans_dp_port_sel(crtc)) {
4156 case PORT_B:
4157 temp |= TRANS_DP_PORT_SEL_B;
4158 break;
4159 case PORT_C:
4160 temp |= TRANS_DP_PORT_SEL_C;
4161 break;
4162 case PORT_D:
4163 temp |= TRANS_DP_PORT_SEL_D;
4164 break;
4165 default:
4166 BUG();
4169 I915_WRITE(reg, temp);
4172 ironlake_enable_pch_transcoder(dev_priv, pipe);
4175 static void lpt_pch_enable(struct drm_crtc *crtc)
4177 struct drm_device *dev = crtc->dev;
4178 struct drm_i915_private *dev_priv = dev->dev_private;
4179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4180 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4182 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4184 lpt_program_iclkip(crtc);
4186 /* Set transcoder timing. */
4187 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4189 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4192 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4194 struct drm_i915_private *dev_priv = dev->dev_private;
4195 i915_reg_t dslreg = PIPEDSL(pipe);
4196 u32 temp;
4198 temp = I915_READ(dslreg);
4199 udelay(500);
4200 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4201 if (wait_for(I915_READ(dslreg) != temp, 5))
4202 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4206 static int
4207 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4208 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4209 int src_w, int src_h, int dst_w, int dst_h)
4211 struct intel_crtc_scaler_state *scaler_state =
4212 &crtc_state->scaler_state;
4213 struct intel_crtc *intel_crtc =
4214 to_intel_crtc(crtc_state->base.crtc);
4215 int need_scaling;
4217 need_scaling = intel_rotation_90_or_270(rotation) ?
4218 (src_h != dst_w || src_w != dst_h):
4219 (src_w != dst_w || src_h != dst_h);
4222 * if plane is being disabled or scaler is no more required or force detach
4223 * - free scaler binded to this plane/crtc
4224 * - in order to do this, update crtc->scaler_usage
4226 * Here scaler state in crtc_state is set free so that
4227 * scaler can be assigned to other user. Actual register
4228 * update to free the scaler is done in plane/panel-fit programming.
4229 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4231 if (force_detach || !need_scaling) {
4232 if (*scaler_id >= 0) {
4233 scaler_state->scaler_users &= ~(1 << scaler_user);
4234 scaler_state->scalers[*scaler_id].in_use = 0;
4236 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4237 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4238 intel_crtc->pipe, scaler_user, *scaler_id,
4239 scaler_state->scaler_users);
4240 *scaler_id = -1;
4242 return 0;
4245 /* range checks */
4246 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4247 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4249 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4250 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4251 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4252 "size is out of scaler range\n",
4253 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4254 return -EINVAL;
4257 /* mark this plane as a scaler user in crtc_state */
4258 scaler_state->scaler_users |= (1 << scaler_user);
4259 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4260 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4261 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4262 scaler_state->scaler_users);
4264 return 0;
4268 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4270 * @state: crtc's scaler state
4272 * Return
4273 * 0 - scaler_usage updated successfully
4274 * error - requested scaling cannot be supported or other error condition
4276 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4278 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4279 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4281 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4282 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4284 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4285 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4286 state->pipe_src_w, state->pipe_src_h,
4287 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4291 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4293 * @state: crtc's scaler state
4294 * @plane_state: atomic plane state to update
4296 * Return
4297 * 0 - scaler_usage updated successfully
4298 * error - requested scaling cannot be supported or other error condition
4300 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4301 struct intel_plane_state *plane_state)
4304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4305 struct intel_plane *intel_plane =
4306 to_intel_plane(plane_state->base.plane);
4307 struct drm_framebuffer *fb = plane_state->base.fb;
4308 int ret;
4310 bool force_detach = !fb || !plane_state->visible;
4312 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4313 intel_plane->base.base.id, intel_crtc->pipe,
4314 drm_plane_index(&intel_plane->base));
4316 ret = skl_update_scaler(crtc_state, force_detach,
4317 drm_plane_index(&intel_plane->base),
4318 &plane_state->scaler_id,
4319 plane_state->base.rotation,
4320 drm_rect_width(&plane_state->src) >> 16,
4321 drm_rect_height(&plane_state->src) >> 16,
4322 drm_rect_width(&plane_state->dst),
4323 drm_rect_height(&plane_state->dst));
4325 if (ret || plane_state->scaler_id < 0)
4326 return ret;
4328 /* check colorkey */
4329 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4330 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4331 intel_plane->base.base.id);
4332 return -EINVAL;
4335 /* Check src format */
4336 switch (fb->pixel_format) {
4337 case DRM_FORMAT_RGB565:
4338 case DRM_FORMAT_XBGR8888:
4339 case DRM_FORMAT_XRGB8888:
4340 case DRM_FORMAT_ABGR8888:
4341 case DRM_FORMAT_ARGB8888:
4342 case DRM_FORMAT_XRGB2101010:
4343 case DRM_FORMAT_XBGR2101010:
4344 case DRM_FORMAT_YUYV:
4345 case DRM_FORMAT_YVYU:
4346 case DRM_FORMAT_UYVY:
4347 case DRM_FORMAT_VYUY:
4348 break;
4349 default:
4350 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4351 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4352 return -EINVAL;
4355 return 0;
4358 static void skylake_scaler_disable(struct intel_crtc *crtc)
4360 int i;
4362 for (i = 0; i < crtc->num_scalers; i++)
4363 skl_detach_scaler(crtc, i);
4366 static void skylake_pfit_enable(struct intel_crtc *crtc)
4368 struct drm_device *dev = crtc->base.dev;
4369 struct drm_i915_private *dev_priv = dev->dev_private;
4370 int pipe = crtc->pipe;
4371 struct intel_crtc_scaler_state *scaler_state =
4372 &crtc->config->scaler_state;
4374 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4376 if (crtc->config->pch_pfit.enabled) {
4377 int id;
4379 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4380 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4381 return;
4384 id = scaler_state->scaler_id;
4385 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4386 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4387 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4388 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4390 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4394 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4396 struct drm_device *dev = crtc->base.dev;
4397 struct drm_i915_private *dev_priv = dev->dev_private;
4398 int pipe = crtc->pipe;
4400 if (crtc->config->pch_pfit.enabled) {
4401 /* Force use of hard-coded filter coefficients
4402 * as some pre-programmed values are broken,
4403 * e.g. x201.
4405 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4406 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4407 PF_PIPE_SEL_IVB(pipe));
4408 else
4409 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4410 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4411 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4415 void hsw_enable_ips(struct intel_crtc *crtc)
4417 struct drm_device *dev = crtc->base.dev;
4418 struct drm_i915_private *dev_priv = dev->dev_private;
4420 if (!crtc->config->ips_enabled)
4421 return;
4424 * We can only enable IPS after we enable a plane and wait for a vblank
4425 * This function is called from post_plane_update, which is run after
4426 * a vblank wait.
4429 assert_plane_enabled(dev_priv, crtc->plane);
4430 if (IS_BROADWELL(dev)) {
4431 mutex_lock(&dev_priv->rps.hw_lock);
4432 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4433 mutex_unlock(&dev_priv->rps.hw_lock);
4434 /* Quoting Art Runyan: "its not safe to expect any particular
4435 * value in IPS_CTL bit 31 after enabling IPS through the
4436 * mailbox." Moreover, the mailbox may return a bogus state,
4437 * so we need to just enable it and continue on.
4439 } else {
4440 I915_WRITE(IPS_CTL, IPS_ENABLE);
4441 /* The bit only becomes 1 in the next vblank, so this wait here
4442 * is essentially intel_wait_for_vblank. If we don't have this
4443 * and don't wait for vblanks until the end of crtc_enable, then
4444 * the HW state readout code will complain that the expected
4445 * IPS_CTL value is not the one we read. */
4446 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4447 DRM_ERROR("Timed out waiting for IPS enable\n");
4451 void hsw_disable_ips(struct intel_crtc *crtc)
4453 struct drm_device *dev = crtc->base.dev;
4454 struct drm_i915_private *dev_priv = dev->dev_private;
4456 if (!crtc->config->ips_enabled)
4457 return;
4459 assert_plane_enabled(dev_priv, crtc->plane);
4460 if (IS_BROADWELL(dev)) {
4461 mutex_lock(&dev_priv->rps.hw_lock);
4462 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4463 mutex_unlock(&dev_priv->rps.hw_lock);
4464 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4465 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4466 DRM_ERROR("Timed out waiting for IPS disable\n");
4467 } else {
4468 I915_WRITE(IPS_CTL, 0);
4469 POSTING_READ(IPS_CTL);
4472 /* We need to wait for a vblank before we can disable the plane. */
4473 intel_wait_for_vblank(dev, crtc->pipe);
4476 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4478 if (intel_crtc->overlay) {
4479 struct drm_device *dev = intel_crtc->base.dev;
4480 struct drm_i915_private *dev_priv = dev->dev_private;
4482 mutex_lock(&dev->struct_mutex);
4483 dev_priv->mm.interruptible = false;
4484 (void) intel_overlay_switch_off(intel_crtc->overlay);
4485 dev_priv->mm.interruptible = true;
4486 mutex_unlock(&dev->struct_mutex);
4489 /* Let userspace switch the overlay on again. In most cases userspace
4490 * has to recompute where to put it anyway.
4495 * intel_post_enable_primary - Perform operations after enabling primary plane
4496 * @crtc: the CRTC whose primary plane was just enabled
4498 * Performs potentially sleeping operations that must be done after the primary
4499 * plane is enabled, such as updating FBC and IPS. Note that this may be
4500 * called due to an explicit primary plane update, or due to an implicit
4501 * re-enable that is caused when a sprite plane is updated to no longer
4502 * completely hide the primary plane.
4504 static void
4505 intel_post_enable_primary(struct drm_crtc *crtc)
4507 struct drm_device *dev = crtc->dev;
4508 struct drm_i915_private *dev_priv = dev->dev_private;
4509 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4510 int pipe = intel_crtc->pipe;
4513 * FIXME IPS should be fine as long as one plane is
4514 * enabled, but in practice it seems to have problems
4515 * when going from primary only to sprite only and vice
4516 * versa.
4518 hsw_enable_ips(intel_crtc);
4521 * Gen2 reports pipe underruns whenever all planes are disabled.
4522 * So don't enable underrun reporting before at least some planes
4523 * are enabled.
4524 * FIXME: Need to fix the logic to work when we turn off all planes
4525 * but leave the pipe running.
4527 if (IS_GEN2(dev))
4528 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4530 /* Underruns don't always raise interrupts, so check manually. */
4531 intel_check_cpu_fifo_underruns(dev_priv);
4532 intel_check_pch_fifo_underruns(dev_priv);
4535 /* FIXME move all this to pre_plane_update() with proper state tracking */
4536 static void
4537 intel_pre_disable_primary(struct drm_crtc *crtc)
4539 struct drm_device *dev = crtc->dev;
4540 struct drm_i915_private *dev_priv = dev->dev_private;
4541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4542 int pipe = intel_crtc->pipe;
4545 * Gen2 reports pipe underruns whenever all planes are disabled.
4546 * So diasble underrun reporting before all the planes get disabled.
4547 * FIXME: Need to fix the logic to work when we turn off all planes
4548 * but leave the pipe running.
4550 if (IS_GEN2(dev))
4551 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4554 * FIXME IPS should be fine as long as one plane is
4555 * enabled, but in practice it seems to have problems
4556 * when going from primary only to sprite only and vice
4557 * versa.
4559 hsw_disable_ips(intel_crtc);
4562 /* FIXME get rid of this and use pre_plane_update */
4563 static void
4564 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4566 struct drm_device *dev = crtc->dev;
4567 struct drm_i915_private *dev_priv = dev->dev_private;
4568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4569 int pipe = intel_crtc->pipe;
4571 intel_pre_disable_primary(crtc);
4574 * Vblank time updates from the shadow to live plane control register
4575 * are blocked if the memory self-refresh mode is active at that
4576 * moment. So to make sure the plane gets truly disabled, disable
4577 * first the self-refresh mode. The self-refresh enable bit in turn
4578 * will be checked/applied by the HW only at the next frame start
4579 * event which is after the vblank start event, so we need to have a
4580 * wait-for-vblank between disabling the plane and the pipe.
4582 if (HAS_GMCH_DISPLAY(dev)) {
4583 intel_set_memory_cxsr(dev_priv, false);
4584 dev_priv->wm.vlv.cxsr = false;
4585 intel_wait_for_vblank(dev, pipe);
4589 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4591 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4592 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4593 struct intel_crtc_state *pipe_config =
4594 to_intel_crtc_state(crtc->base.state);
4595 struct drm_device *dev = crtc->base.dev;
4596 struct drm_plane *primary = crtc->base.primary;
4597 struct drm_plane_state *old_pri_state =
4598 drm_atomic_get_existing_plane_state(old_state, primary);
4600 intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4602 crtc->wm.cxsr_allowed = true;
4604 if (pipe_config->update_wm_post && pipe_config->base.active)
4605 intel_update_watermarks(&crtc->base);
4607 if (old_pri_state) {
4608 struct intel_plane_state *primary_state =
4609 to_intel_plane_state(primary->state);
4610 struct intel_plane_state *old_primary_state =
4611 to_intel_plane_state(old_pri_state);
4613 intel_fbc_post_update(crtc);
4615 if (primary_state->visible &&
4616 (needs_modeset(&pipe_config->base) ||
4617 !old_primary_state->visible))
4618 intel_post_enable_primary(&crtc->base);
4622 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4624 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4625 struct drm_device *dev = crtc->base.dev;
4626 struct drm_i915_private *dev_priv = dev->dev_private;
4627 struct intel_crtc_state *pipe_config =
4628 to_intel_crtc_state(crtc->base.state);
4629 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4630 struct drm_plane *primary = crtc->base.primary;
4631 struct drm_plane_state *old_pri_state =
4632 drm_atomic_get_existing_plane_state(old_state, primary);
4633 bool modeset = needs_modeset(&pipe_config->base);
4635 if (old_pri_state) {
4636 struct intel_plane_state *primary_state =
4637 to_intel_plane_state(primary->state);
4638 struct intel_plane_state *old_primary_state =
4639 to_intel_plane_state(old_pri_state);
4641 intel_fbc_pre_update(crtc);
4643 if (old_primary_state->visible &&
4644 (modeset || !primary_state->visible))
4645 intel_pre_disable_primary(&crtc->base);
4648 if (pipe_config->disable_cxsr) {
4649 crtc->wm.cxsr_allowed = false;
4652 * Vblank time updates from the shadow to live plane control register
4653 * are blocked if the memory self-refresh mode is active at that
4654 * moment. So to make sure the plane gets truly disabled, disable
4655 * first the self-refresh mode. The self-refresh enable bit in turn
4656 * will be checked/applied by the HW only at the next frame start
4657 * event which is after the vblank start event, so we need to have a
4658 * wait-for-vblank between disabling the plane and the pipe.
4660 if (old_crtc_state->base.active) {
4661 intel_set_memory_cxsr(dev_priv, false);
4662 dev_priv->wm.vlv.cxsr = false;
4663 intel_wait_for_vblank(dev, crtc->pipe);
4668 * IVB workaround: must disable low power watermarks for at least
4669 * one frame before enabling scaling. LP watermarks can be re-enabled
4670 * when scaling is disabled.
4672 * WaCxSRDisabledForSpriteScaling:ivb
4674 if (pipe_config->disable_lp_wm) {
4675 ilk_disable_lp_wm(dev);
4676 intel_wait_for_vblank(dev, crtc->pipe);
4680 * If we're doing a modeset, we're done. No need to do any pre-vblank
4681 * watermark programming here.
4683 if (needs_modeset(&pipe_config->base))
4684 return;
4687 * For platforms that support atomic watermarks, program the
4688 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4689 * will be the intermediate values that are safe for both pre- and
4690 * post- vblank; when vblank happens, the 'active' values will be set
4691 * to the final 'target' values and we'll do this again to get the
4692 * optimal watermarks. For gen9+ platforms, the values we program here
4693 * will be the final target values which will get automatically latched
4694 * at vblank time; no further programming will be necessary.
4696 * If a platform hasn't been transitioned to atomic watermarks yet,
4697 * we'll continue to update watermarks the old way, if flags tell
4698 * us to.
4700 if (dev_priv->display.initial_watermarks != NULL)
4701 dev_priv->display.initial_watermarks(pipe_config);
4702 else if (pipe_config->update_wm_pre)
4703 intel_update_watermarks(&crtc->base);
4706 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4708 struct drm_device *dev = crtc->dev;
4709 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4710 struct drm_plane *p;
4711 int pipe = intel_crtc->pipe;
4713 intel_crtc_dpms_overlay_disable(intel_crtc);
4715 drm_for_each_plane_mask(p, dev, plane_mask)
4716 to_intel_plane(p)->disable_plane(p, crtc);
4719 * FIXME: Once we grow proper nuclear flip support out of this we need
4720 * to compute the mask of flip planes precisely. For the time being
4721 * consider this a flip to a NULL plane.
4723 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4726 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4728 struct drm_device *dev = crtc->dev;
4729 struct drm_i915_private *dev_priv = dev->dev_private;
4730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4731 struct intel_encoder *encoder;
4732 int pipe = intel_crtc->pipe;
4733 struct intel_crtc_state *pipe_config =
4734 to_intel_crtc_state(crtc->state);
4736 if (WARN_ON(intel_crtc->active))
4737 return;
4740 * Sometimes spurious CPU pipe underruns happen during FDI
4741 * training, at least with VGA+HDMI cloning. Suppress them.
4743 * On ILK we get an occasional spurious CPU pipe underruns
4744 * between eDP port A enable and vdd enable. Also PCH port
4745 * enable seems to result in the occasional CPU pipe underrun.
4747 * Spurious PCH underruns also occur during PCH enabling.
4749 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4750 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4751 if (intel_crtc->config->has_pch_encoder)
4752 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4754 if (intel_crtc->config->has_pch_encoder)
4755 intel_prepare_shared_dpll(intel_crtc);
4757 if (intel_crtc->config->has_dp_encoder)
4758 intel_dp_set_m_n(intel_crtc, M1_N1);
4760 intel_set_pipe_timings(intel_crtc);
4761 intel_set_pipe_src_size(intel_crtc);
4763 if (intel_crtc->config->has_pch_encoder) {
4764 intel_cpu_transcoder_set_m_n(intel_crtc,
4765 &intel_crtc->config->fdi_m_n, NULL);
4768 ironlake_set_pipeconf(crtc);
4770 intel_crtc->active = true;
4772 for_each_encoder_on_crtc(dev, crtc, encoder)
4773 if (encoder->pre_enable)
4774 encoder->pre_enable(encoder);
4776 if (intel_crtc->config->has_pch_encoder) {
4777 /* Note: FDI PLL enabling _must_ be done before we enable the
4778 * cpu pipes, hence this is separate from all the other fdi/pch
4779 * enabling. */
4780 ironlake_fdi_pll_enable(intel_crtc);
4781 } else {
4782 assert_fdi_tx_disabled(dev_priv, pipe);
4783 assert_fdi_rx_disabled(dev_priv, pipe);
4786 ironlake_pfit_enable(intel_crtc);
4789 * On ILK+ LUT must be loaded before the pipe is running but with
4790 * clocks enabled
4792 intel_color_load_luts(&pipe_config->base);
4794 if (dev_priv->display.initial_watermarks != NULL)
4795 dev_priv->display.initial_watermarks(intel_crtc->config);
4796 intel_enable_pipe(intel_crtc);
4798 if (intel_crtc->config->has_pch_encoder)
4799 ironlake_pch_enable(crtc);
4801 assert_vblank_disabled(crtc);
4802 drm_crtc_vblank_on(crtc);
4804 for_each_encoder_on_crtc(dev, crtc, encoder)
4805 encoder->enable(encoder);
4807 if (HAS_PCH_CPT(dev))
4808 cpt_verify_modeset(dev, intel_crtc->pipe);
4810 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4811 if (intel_crtc->config->has_pch_encoder)
4812 intel_wait_for_vblank(dev, pipe);
4813 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4814 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4817 /* IPS only exists on ULT machines and is tied to pipe A. */
4818 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4820 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4823 static void haswell_crtc_enable(struct drm_crtc *crtc)
4825 struct drm_device *dev = crtc->dev;
4826 struct drm_i915_private *dev_priv = dev->dev_private;
4827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4828 struct intel_encoder *encoder;
4829 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4830 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4831 struct intel_crtc_state *pipe_config =
4832 to_intel_crtc_state(crtc->state);
4834 if (WARN_ON(intel_crtc->active))
4835 return;
4837 if (intel_crtc->config->has_pch_encoder)
4838 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4839 false);
4841 if (intel_crtc->config->shared_dpll)
4842 intel_enable_shared_dpll(intel_crtc);
4844 if (intel_crtc->config->has_dp_encoder)
4845 intel_dp_set_m_n(intel_crtc, M1_N1);
4847 if (!intel_crtc->config->has_dsi_encoder)
4848 intel_set_pipe_timings(intel_crtc);
4850 intel_set_pipe_src_size(intel_crtc);
4852 if (cpu_transcoder != TRANSCODER_EDP &&
4853 !transcoder_is_dsi(cpu_transcoder)) {
4854 I915_WRITE(PIPE_MULT(cpu_transcoder),
4855 intel_crtc->config->pixel_multiplier - 1);
4858 if (intel_crtc->config->has_pch_encoder) {
4859 intel_cpu_transcoder_set_m_n(intel_crtc,
4860 &intel_crtc->config->fdi_m_n, NULL);
4863 if (!intel_crtc->config->has_dsi_encoder)
4864 haswell_set_pipeconf(crtc);
4866 haswell_set_pipemisc(crtc);
4868 intel_color_set_csc(&pipe_config->base);
4870 intel_crtc->active = true;
4872 if (intel_crtc->config->has_pch_encoder)
4873 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4874 else
4875 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4877 for_each_encoder_on_crtc(dev, crtc, encoder) {
4878 if (encoder->pre_enable)
4879 encoder->pre_enable(encoder);
4882 if (intel_crtc->config->has_pch_encoder)
4883 dev_priv->display.fdi_link_train(crtc);
4885 if (!intel_crtc->config->has_dsi_encoder)
4886 intel_ddi_enable_pipe_clock(intel_crtc);
4888 if (INTEL_INFO(dev)->gen >= 9)
4889 skylake_pfit_enable(intel_crtc);
4890 else
4891 ironlake_pfit_enable(intel_crtc);
4894 * On ILK+ LUT must be loaded before the pipe is running but with
4895 * clocks enabled
4897 intel_color_load_luts(&pipe_config->base);
4899 intel_ddi_set_pipe_settings(crtc);
4900 if (!intel_crtc->config->has_dsi_encoder)
4901 intel_ddi_enable_transcoder_func(crtc);
4903 if (dev_priv->display.initial_watermarks != NULL)
4904 dev_priv->display.initial_watermarks(pipe_config);
4905 else
4906 intel_update_watermarks(crtc);
4908 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4909 if (!intel_crtc->config->has_dsi_encoder)
4910 intel_enable_pipe(intel_crtc);
4912 if (intel_crtc->config->has_pch_encoder)
4913 lpt_pch_enable(crtc);
4915 if (intel_crtc->config->dp_encoder_is_mst)
4916 intel_ddi_set_vc_payload_alloc(crtc, true);
4918 assert_vblank_disabled(crtc);
4919 drm_crtc_vblank_on(crtc);
4921 for_each_encoder_on_crtc(dev, crtc, encoder) {
4922 encoder->enable(encoder);
4923 intel_opregion_notify_encoder(encoder, true);
4926 if (intel_crtc->config->has_pch_encoder) {
4927 intel_wait_for_vblank(dev, pipe);
4928 intel_wait_for_vblank(dev, pipe);
4929 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4930 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4931 true);
4934 /* If we change the relative order between pipe/planes enabling, we need
4935 * to change the workaround. */
4936 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4937 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4938 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4939 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4943 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4945 struct drm_device *dev = crtc->base.dev;
4946 struct drm_i915_private *dev_priv = dev->dev_private;
4947 int pipe = crtc->pipe;
4949 /* To avoid upsetting the power well on haswell only disable the pfit if
4950 * it's in use. The hw state code will make sure we get this right. */
4951 if (force || crtc->config->pch_pfit.enabled) {
4952 I915_WRITE(PF_CTL(pipe), 0);
4953 I915_WRITE(PF_WIN_POS(pipe), 0);
4954 I915_WRITE(PF_WIN_SZ(pipe), 0);
4958 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4960 struct drm_device *dev = crtc->dev;
4961 struct drm_i915_private *dev_priv = dev->dev_private;
4962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4963 struct intel_encoder *encoder;
4964 int pipe = intel_crtc->pipe;
4967 * Sometimes spurious CPU pipe underruns happen when the
4968 * pipe is already disabled, but FDI RX/TX is still enabled.
4969 * Happens at least with VGA+HDMI cloning. Suppress them.
4971 if (intel_crtc->config->has_pch_encoder) {
4972 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4973 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4976 for_each_encoder_on_crtc(dev, crtc, encoder)
4977 encoder->disable(encoder);
4979 drm_crtc_vblank_off(crtc);
4980 assert_vblank_disabled(crtc);
4982 intel_disable_pipe(intel_crtc);
4984 ironlake_pfit_disable(intel_crtc, false);
4986 if (intel_crtc->config->has_pch_encoder)
4987 ironlake_fdi_disable(crtc);
4989 for_each_encoder_on_crtc(dev, crtc, encoder)
4990 if (encoder->post_disable)
4991 encoder->post_disable(encoder);
4993 if (intel_crtc->config->has_pch_encoder) {
4994 ironlake_disable_pch_transcoder(dev_priv, pipe);
4996 if (HAS_PCH_CPT(dev)) {
4997 i915_reg_t reg;
4998 u32 temp;
5000 /* disable TRANS_DP_CTL */
5001 reg = TRANS_DP_CTL(pipe);
5002 temp = I915_READ(reg);
5003 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5004 TRANS_DP_PORT_SEL_MASK);
5005 temp |= TRANS_DP_PORT_SEL_NONE;
5006 I915_WRITE(reg, temp);
5008 /* disable DPLL_SEL */
5009 temp = I915_READ(PCH_DPLL_SEL);
5010 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5011 I915_WRITE(PCH_DPLL_SEL, temp);
5014 ironlake_fdi_pll_disable(intel_crtc);
5017 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5018 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5021 static void haswell_crtc_disable(struct drm_crtc *crtc)
5023 struct drm_device *dev = crtc->dev;
5024 struct drm_i915_private *dev_priv = dev->dev_private;
5025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5026 struct intel_encoder *encoder;
5027 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5029 if (intel_crtc->config->has_pch_encoder)
5030 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5031 false);
5033 for_each_encoder_on_crtc(dev, crtc, encoder) {
5034 intel_opregion_notify_encoder(encoder, false);
5035 encoder->disable(encoder);
5038 drm_crtc_vblank_off(crtc);
5039 assert_vblank_disabled(crtc);
5041 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5042 if (!intel_crtc->config->has_dsi_encoder)
5043 intel_disable_pipe(intel_crtc);
5045 if (intel_crtc->config->dp_encoder_is_mst)
5046 intel_ddi_set_vc_payload_alloc(crtc, false);
5048 if (!intel_crtc->config->has_dsi_encoder)
5049 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5051 if (INTEL_INFO(dev)->gen >= 9)
5052 skylake_scaler_disable(intel_crtc);
5053 else
5054 ironlake_pfit_disable(intel_crtc, false);
5056 if (!intel_crtc->config->has_dsi_encoder)
5057 intel_ddi_disable_pipe_clock(intel_crtc);
5059 for_each_encoder_on_crtc(dev, crtc, encoder)
5060 if (encoder->post_disable)
5061 encoder->post_disable(encoder);
5063 if (intel_crtc->config->has_pch_encoder) {
5064 lpt_disable_pch_transcoder(dev_priv);
5065 lpt_disable_iclkip(dev_priv);
5066 intel_ddi_fdi_disable(crtc);
5068 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5069 true);
5073 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5075 struct drm_device *dev = crtc->base.dev;
5076 struct drm_i915_private *dev_priv = dev->dev_private;
5077 struct intel_crtc_state *pipe_config = crtc->config;
5079 if (!pipe_config->gmch_pfit.control)
5080 return;
5083 * The panel fitter should only be adjusted whilst the pipe is disabled,
5084 * according to register description and PRM.
5086 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5087 assert_pipe_disabled(dev_priv, crtc->pipe);
5089 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5090 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5092 /* Border color in case we don't scale up to the full screen. Black by
5093 * default, change to something else for debugging. */
5094 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5097 static enum intel_display_power_domain port_to_power_domain(enum port port)
5099 switch (port) {
5100 case PORT_A:
5101 return POWER_DOMAIN_PORT_DDI_A_LANES;
5102 case PORT_B:
5103 return POWER_DOMAIN_PORT_DDI_B_LANES;
5104 case PORT_C:
5105 return POWER_DOMAIN_PORT_DDI_C_LANES;
5106 case PORT_D:
5107 return POWER_DOMAIN_PORT_DDI_D_LANES;
5108 case PORT_E:
5109 return POWER_DOMAIN_PORT_DDI_E_LANES;
5110 default:
5111 MISSING_CASE(port);
5112 return POWER_DOMAIN_PORT_OTHER;
5116 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5118 switch (port) {
5119 case PORT_A:
5120 return POWER_DOMAIN_AUX_A;
5121 case PORT_B:
5122 return POWER_DOMAIN_AUX_B;
5123 case PORT_C:
5124 return POWER_DOMAIN_AUX_C;
5125 case PORT_D:
5126 return POWER_DOMAIN_AUX_D;
5127 case PORT_E:
5128 /* FIXME: Check VBT for actual wiring of PORT E */
5129 return POWER_DOMAIN_AUX_D;
5130 default:
5131 MISSING_CASE(port);
5132 return POWER_DOMAIN_AUX_A;
5136 enum intel_display_power_domain
5137 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5139 struct drm_device *dev = intel_encoder->base.dev;
5140 struct intel_digital_port *intel_dig_port;
5142 switch (intel_encoder->type) {
5143 case INTEL_OUTPUT_UNKNOWN:
5144 /* Only DDI platforms should ever use this output type */
5145 WARN_ON_ONCE(!HAS_DDI(dev));
5146 case INTEL_OUTPUT_DISPLAYPORT:
5147 case INTEL_OUTPUT_HDMI:
5148 case INTEL_OUTPUT_EDP:
5149 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5150 return port_to_power_domain(intel_dig_port->port);
5151 case INTEL_OUTPUT_DP_MST:
5152 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5153 return port_to_power_domain(intel_dig_port->port);
5154 case INTEL_OUTPUT_ANALOG:
5155 return POWER_DOMAIN_PORT_CRT;
5156 case INTEL_OUTPUT_DSI:
5157 return POWER_DOMAIN_PORT_DSI;
5158 default:
5159 return POWER_DOMAIN_PORT_OTHER;
5163 enum intel_display_power_domain
5164 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5166 struct drm_device *dev = intel_encoder->base.dev;
5167 struct intel_digital_port *intel_dig_port;
5169 switch (intel_encoder->type) {
5170 case INTEL_OUTPUT_UNKNOWN:
5171 case INTEL_OUTPUT_HDMI:
5173 * Only DDI platforms should ever use these output types.
5174 * We can get here after the HDMI detect code has already set
5175 * the type of the shared encoder. Since we can't be sure
5176 * what's the status of the given connectors, play safe and
5177 * run the DP detection too.
5179 WARN_ON_ONCE(!HAS_DDI(dev));
5180 case INTEL_OUTPUT_DISPLAYPORT:
5181 case INTEL_OUTPUT_EDP:
5182 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5183 return port_to_aux_power_domain(intel_dig_port->port);
5184 case INTEL_OUTPUT_DP_MST:
5185 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5186 return port_to_aux_power_domain(intel_dig_port->port);
5187 default:
5188 MISSING_CASE(intel_encoder->type);
5189 return POWER_DOMAIN_AUX_A;
5193 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5194 struct intel_crtc_state *crtc_state)
5196 struct drm_device *dev = crtc->dev;
5197 struct drm_encoder *encoder;
5198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5199 enum i915_pipe pipe = intel_crtc->pipe;
5200 unsigned long mask;
5201 enum transcoder transcoder = crtc_state->cpu_transcoder;
5203 if (!crtc_state->base.active)
5204 return 0;
5206 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5207 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5208 if (crtc_state->pch_pfit.enabled ||
5209 crtc_state->pch_pfit.force_thru)
5210 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5212 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5213 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5215 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5218 if (crtc_state->shared_dpll)
5219 mask |= BIT(POWER_DOMAIN_PLLS);
5221 return mask;
5224 static unsigned long
5225 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5226 struct intel_crtc_state *crtc_state)
5228 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5230 enum intel_display_power_domain domain;
5231 unsigned long domains, new_domains, old_domains;
5233 old_domains = intel_crtc->enabled_power_domains;
5234 intel_crtc->enabled_power_domains = new_domains =
5235 get_crtc_power_domains(crtc, crtc_state);
5237 domains = new_domains & ~old_domains;
5239 for_each_power_domain(domain, domains)
5240 intel_display_power_get(dev_priv, domain);
5242 return old_domains & ~new_domains;
5245 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5246 unsigned long domains)
5248 enum intel_display_power_domain domain;
5250 for_each_power_domain(domain, domains)
5251 intel_display_power_put(dev_priv, domain);
5254 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5256 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5258 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5259 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5260 return max_cdclk_freq;
5261 else if (IS_CHERRYVIEW(dev_priv))
5262 return max_cdclk_freq*95/100;
5263 else if (INTEL_INFO(dev_priv)->gen < 4)
5264 return 2*max_cdclk_freq*90/100;
5265 else
5266 return max_cdclk_freq*90/100;
5269 static void intel_update_max_cdclk(struct drm_device *dev)
5271 struct drm_i915_private *dev_priv = dev->dev_private;
5273 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5274 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5276 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5277 dev_priv->max_cdclk_freq = 675000;
5278 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5279 dev_priv->max_cdclk_freq = 540000;
5280 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5281 dev_priv->max_cdclk_freq = 450000;
5282 else
5283 dev_priv->max_cdclk_freq = 337500;
5284 } else if (IS_BROXTON(dev)) {
5285 dev_priv->max_cdclk_freq = 624000;
5286 } else if (IS_BROADWELL(dev)) {
5288 * FIXME with extra cooling we can allow
5289 * 540 MHz for ULX and 675 Mhz for ULT.
5290 * How can we know if extra cooling is
5291 * available? PCI ID, VTB, something else?
5293 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5294 dev_priv->max_cdclk_freq = 450000;
5295 else if (IS_BDW_ULX(dev))
5296 dev_priv->max_cdclk_freq = 450000;
5297 else if (IS_BDW_ULT(dev))
5298 dev_priv->max_cdclk_freq = 540000;
5299 else
5300 dev_priv->max_cdclk_freq = 675000;
5301 } else if (IS_CHERRYVIEW(dev)) {
5302 dev_priv->max_cdclk_freq = 320000;
5303 } else if (IS_VALLEYVIEW(dev)) {
5304 dev_priv->max_cdclk_freq = 400000;
5305 } else {
5306 /* otherwise assume cdclk is fixed */
5307 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5310 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5312 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5313 dev_priv->max_cdclk_freq);
5315 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5316 dev_priv->max_dotclk_freq);
5319 static void intel_update_cdclk(struct drm_device *dev)
5321 struct drm_i915_private *dev_priv = dev->dev_private;
5323 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5324 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5325 dev_priv->cdclk_freq);
5328 * Program the gmbus_freq based on the cdclk frequency.
5329 * BSpec erroneously claims we should aim for 4MHz, but
5330 * in fact 1MHz is the correct frequency.
5332 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5334 * Program the gmbus_freq based on the cdclk frequency.
5335 * BSpec erroneously claims we should aim for 4MHz, but
5336 * in fact 1MHz is the correct frequency.
5338 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5341 if (dev_priv->max_cdclk_freq == 0)
5342 intel_update_max_cdclk(dev);
5345 static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int frequency)
5347 uint32_t divider;
5348 uint32_t ratio;
5349 uint32_t current_freq;
5350 int ret;
5352 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5353 switch (frequency) {
5354 case 144000:
5355 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5356 ratio = BXT_DE_PLL_RATIO(60);
5357 break;
5358 case 288000:
5359 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5360 ratio = BXT_DE_PLL_RATIO(60);
5361 break;
5362 case 384000:
5363 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5364 ratio = BXT_DE_PLL_RATIO(60);
5365 break;
5366 case 576000:
5367 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5368 ratio = BXT_DE_PLL_RATIO(60);
5369 break;
5370 case 624000:
5371 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5372 ratio = BXT_DE_PLL_RATIO(65);
5373 break;
5374 case 19200:
5376 * Bypass frequency with DE PLL disabled. Init ratio, divider
5377 * to suppress GCC warning.
5379 ratio = 0;
5380 divider = 0;
5381 break;
5382 default:
5383 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5385 return;
5388 mutex_lock(&dev_priv->rps.hw_lock);
5389 /* Inform power controller of upcoming frequency change */
5390 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5391 0x80000000);
5392 mutex_unlock(&dev_priv->rps.hw_lock);
5394 if (ret) {
5395 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5396 ret, frequency);
5397 return;
5400 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5401 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5402 current_freq = current_freq * 500 + 1000;
5405 * DE PLL has to be disabled when
5406 * - setting to 19.2MHz (bypass, PLL isn't used)
5407 * - before setting to 624MHz (PLL needs toggling)
5408 * - before setting to any frequency from 624MHz (PLL needs toggling)
5410 if (frequency == 19200 || frequency == 624000 ||
5411 current_freq == 624000) {
5412 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5413 /* Timeout 200us */
5414 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5416 DRM_ERROR("timout waiting for DE PLL unlock\n");
5419 if (frequency != 19200) {
5420 uint32_t val;
5422 val = I915_READ(BXT_DE_PLL_CTL);
5423 val &= ~BXT_DE_PLL_RATIO_MASK;
5424 val |= ratio;
5425 I915_WRITE(BXT_DE_PLL_CTL, val);
5427 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5428 /* Timeout 200us */
5429 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5430 DRM_ERROR("timeout waiting for DE PLL lock\n");
5432 val = I915_READ(CDCLK_CTL);
5433 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5434 val |= divider;
5436 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5437 * enable otherwise.
5439 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5440 if (frequency >= 500000)
5441 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5443 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5444 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5445 val |= (frequency - 1000) / 500;
5446 I915_WRITE(CDCLK_CTL, val);
5449 mutex_lock(&dev_priv->rps.hw_lock);
5450 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5451 DIV_ROUND_UP(frequency, 25000));
5452 mutex_unlock(&dev_priv->rps.hw_lock);
5454 if (ret) {
5455 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5456 ret, frequency);
5457 return;
5460 intel_update_cdclk(dev_priv->dev);
5463 static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5465 if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5466 return false;
5468 /* TODO: Check for a valid CDCLK rate */
5470 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5471 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5473 return false;
5476 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5477 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5479 return false;
5482 return true;
5485 bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5487 return broxton_cdclk_is_enabled(dev_priv);
5490 void broxton_init_cdclk(struct drm_i915_private *dev_priv)
5492 /* check if cd clock is enabled */
5493 if (broxton_cdclk_is_enabled(dev_priv)) {
5494 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
5495 return;
5498 DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5501 * FIXME:
5502 * - The initial CDCLK needs to be read from VBT.
5503 * Need to make this change after VBT has changes for BXT.
5504 * - check if setting the max (or any) cdclk freq is really necessary
5505 * here, it belongs to modeset time
5507 broxton_set_cdclk(dev_priv, 624000);
5509 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5510 POSTING_READ(DBUF_CTL);
5512 udelay(10);
5514 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5515 DRM_ERROR("DBuf power enable timeout!\n");
5518 void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
5520 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5521 POSTING_READ(DBUF_CTL);
5523 udelay(10);
5525 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5526 DRM_ERROR("DBuf power disable timeout!\n");
5528 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5529 broxton_set_cdclk(dev_priv, 19200);
5532 static const struct skl_cdclk_entry {
5533 unsigned int freq;
5534 unsigned int vco;
5535 } skl_cdclk_frequencies[] = {
5536 { .freq = 308570, .vco = 8640 },
5537 { .freq = 337500, .vco = 8100 },
5538 { .freq = 432000, .vco = 8640 },
5539 { .freq = 450000, .vco = 8100 },
5540 { .freq = 540000, .vco = 8100 },
5541 { .freq = 617140, .vco = 8640 },
5542 { .freq = 675000, .vco = 8100 },
5545 static unsigned int skl_cdclk_decimal(unsigned int freq)
5547 return (freq - 1000) / 500;
5550 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5552 unsigned int i;
5554 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5555 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5557 if (e->freq == freq)
5558 return e->vco;
5561 return 8100;
5564 static void
5565 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5567 unsigned int min_freq;
5568 u32 val;
5570 /* select the minimum CDCLK before enabling DPLL 0 */
5571 val = I915_READ(CDCLK_CTL);
5572 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5573 val |= CDCLK_FREQ_337_308;
5575 if (required_vco == 8640)
5576 min_freq = 308570;
5577 else
5578 min_freq = 337500;
5580 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5582 I915_WRITE(CDCLK_CTL, val);
5583 POSTING_READ(CDCLK_CTL);
5586 * We always enable DPLL0 with the lowest link rate possible, but still
5587 * taking into account the VCO required to operate the eDP panel at the
5588 * desired frequency. The usual DP link rates operate with a VCO of
5589 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5590 * The modeset code is responsible for the selection of the exact link
5591 * rate later on, with the constraint of choosing a frequency that
5592 * works with required_vco.
5594 val = I915_READ(DPLL_CTRL1);
5596 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5597 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5598 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5599 if (required_vco == 8640)
5600 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5601 SKL_DPLL0);
5602 else
5603 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5604 SKL_DPLL0);
5606 I915_WRITE(DPLL_CTRL1, val);
5607 POSTING_READ(DPLL_CTRL1);
5609 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5611 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5612 DRM_ERROR("DPLL0 not locked\n");
5615 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5617 int ret;
5618 u32 val;
5620 /* inform PCU we want to change CDCLK */
5621 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5622 mutex_lock(&dev_priv->rps.hw_lock);
5623 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5624 mutex_unlock(&dev_priv->rps.hw_lock);
5626 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5629 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5631 unsigned int i;
5633 for (i = 0; i < 15; i++) {
5634 if (skl_cdclk_pcu_ready(dev_priv))
5635 return true;
5636 udelay(10);
5639 return false;
5642 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5644 struct drm_device *dev = dev_priv->dev;
5645 u32 freq_select, pcu_ack;
5647 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5649 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5650 DRM_ERROR("failed to inform PCU about cdclk change\n");
5651 return;
5654 /* set CDCLK_CTL */
5655 switch(freq) {
5656 case 450000:
5657 case 432000:
5658 freq_select = CDCLK_FREQ_450_432;
5659 pcu_ack = 1;
5660 break;
5661 case 540000:
5662 freq_select = CDCLK_FREQ_540;
5663 pcu_ack = 2;
5664 break;
5665 case 308570:
5666 case 337500:
5667 default:
5668 freq_select = CDCLK_FREQ_337_308;
5669 pcu_ack = 0;
5670 break;
5671 case 617140:
5672 case 675000:
5673 freq_select = CDCLK_FREQ_675_617;
5674 pcu_ack = 3;
5675 break;
5678 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5679 POSTING_READ(CDCLK_CTL);
5681 /* inform PCU of the change */
5682 mutex_lock(&dev_priv->rps.hw_lock);
5683 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5684 mutex_unlock(&dev_priv->rps.hw_lock);
5686 intel_update_cdclk(dev);
5689 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5691 /* disable DBUF power */
5692 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5693 POSTING_READ(DBUF_CTL);
5695 udelay(10);
5697 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5698 DRM_ERROR("DBuf power disable timeout\n");
5700 /* disable DPLL0 */
5701 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5702 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5703 DRM_ERROR("Couldn't disable DPLL0\n");
5706 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5708 unsigned int required_vco;
5710 /* DPLL0 not enabled (happens on early BIOS versions) */
5711 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5712 /* enable DPLL0 */
5713 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5714 skl_dpll0_enable(dev_priv, required_vco);
5717 /* set CDCLK to the frequency the BIOS chose */
5718 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5720 /* enable DBUF power */
5721 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5722 POSTING_READ(DBUF_CTL);
5724 udelay(10);
5726 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5727 DRM_ERROR("DBuf power enable timeout\n");
5730 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5732 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5733 uint32_t cdctl = I915_READ(CDCLK_CTL);
5734 int freq = dev_priv->skl_boot_cdclk;
5737 * check if the pre-os intialized the display
5738 * There is SWF18 scratchpad register defined which is set by the
5739 * pre-os which can be used by the OS drivers to check the status
5741 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5742 goto sanitize;
5744 /* Is PLL enabled and locked ? */
5745 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5746 goto sanitize;
5748 /* DPLL okay; verify the cdclock
5750 * Noticed in some instances that the freq selection is correct but
5751 * decimal part is programmed wrong from BIOS where pre-os does not
5752 * enable display. Verify the same as well.
5754 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5755 /* All well; nothing to sanitize */
5756 return false;
5757 sanitize:
5759 * As of now initialize with max cdclk till
5760 * we get dynamic cdclk support
5761 * */
5762 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5763 skl_init_cdclk(dev_priv);
5765 /* we did have to sanitize */
5766 return true;
5769 /* Adjust CDclk dividers to allow high res or save power if possible */
5770 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5772 struct drm_i915_private *dev_priv = dev->dev_private;
5773 u32 val, cmd;
5775 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5776 != dev_priv->cdclk_freq);
5778 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5779 cmd = 2;
5780 else if (cdclk == 266667)
5781 cmd = 1;
5782 else
5783 cmd = 0;
5785 mutex_lock(&dev_priv->rps.hw_lock);
5786 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5787 val &= ~DSPFREQGUAR_MASK;
5788 val |= (cmd << DSPFREQGUAR_SHIFT);
5789 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5790 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5791 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5792 50)) {
5793 DRM_ERROR("timed out waiting for CDclk change\n");
5795 mutex_unlock(&dev_priv->rps.hw_lock);
5797 mutex_lock(&dev_priv->sb_lock);
5799 if (cdclk == 400000) {
5800 u32 divider;
5802 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5804 /* adjust cdclk divider */
5805 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5806 val &= ~CCK_FREQUENCY_VALUES;
5807 val |= divider;
5808 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5810 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5811 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5812 50))
5813 DRM_ERROR("timed out waiting for CDclk change\n");
5816 /* adjust self-refresh exit latency value */
5817 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5818 val &= ~0x7f;
5821 * For high bandwidth configs, we set a higher latency in the bunit
5822 * so that the core display fetch happens in time to avoid underruns.
5824 if (cdclk == 400000)
5825 val |= 4500 / 250; /* 4.5 usec */
5826 else
5827 val |= 3000 / 250; /* 3.0 usec */
5828 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5830 mutex_unlock(&dev_priv->sb_lock);
5832 intel_update_cdclk(dev);
5835 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5837 struct drm_i915_private *dev_priv = dev->dev_private;
5838 u32 val, cmd;
5840 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5841 != dev_priv->cdclk_freq);
5843 switch (cdclk) {
5844 case 333333:
5845 case 320000:
5846 case 266667:
5847 case 200000:
5848 break;
5849 default:
5850 MISSING_CASE(cdclk);
5851 return;
5855 * Specs are full of misinformation, but testing on actual
5856 * hardware has shown that we just need to write the desired
5857 * CCK divider into the Punit register.
5859 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5861 mutex_lock(&dev_priv->rps.hw_lock);
5862 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5863 val &= ~DSPFREQGUAR_MASK_CHV;
5864 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5865 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5866 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5867 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5868 50)) {
5869 DRM_ERROR("timed out waiting for CDclk change\n");
5871 mutex_unlock(&dev_priv->rps.hw_lock);
5873 intel_update_cdclk(dev);
5876 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5877 int max_pixclk)
5879 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5880 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5883 * Really only a few cases to deal with, as only 4 CDclks are supported:
5884 * 200MHz
5885 * 267MHz
5886 * 320/333MHz (depends on HPLL freq)
5887 * 400MHz (VLV only)
5888 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5889 * of the lower bin and adjust if needed.
5891 * We seem to get an unstable or solid color picture at 200MHz.
5892 * Not sure what's wrong. For now use 200MHz only when all pipes
5893 * are off.
5895 if (!IS_CHERRYVIEW(dev_priv) &&
5896 max_pixclk > freq_320*limit/100)
5897 return 400000;
5898 else if (max_pixclk > 266667*limit/100)
5899 return freq_320;
5900 else if (max_pixclk > 0)
5901 return 266667;
5902 else
5903 return 200000;
5906 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5907 int max_pixclk)
5910 * FIXME:
5911 * - remove the guardband, it's not needed on BXT
5912 * - set 19.2MHz bypass frequency if there are no active pipes
5914 if (max_pixclk > 576000*9/10)
5915 return 624000;
5916 else if (max_pixclk > 384000*9/10)
5917 return 576000;
5918 else if (max_pixclk > 288000*9/10)
5919 return 384000;
5920 else if (max_pixclk > 144000*9/10)
5921 return 288000;
5922 else
5923 return 144000;
5926 /* Compute the max pixel clock for new configuration. */
5927 static int intel_mode_max_pixclk(struct drm_device *dev,
5928 struct drm_atomic_state *state)
5930 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5931 struct drm_i915_private *dev_priv = dev->dev_private;
5932 struct drm_crtc *crtc;
5933 struct drm_crtc_state *crtc_state;
5934 unsigned max_pixclk = 0, i;
5935 enum i915_pipe pipe;
5937 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5938 sizeof(intel_state->min_pixclk));
5940 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5941 int pixclk = 0;
5943 if (crtc_state->enable)
5944 pixclk = crtc_state->adjusted_mode.crtc_clock;
5946 intel_state->min_pixclk[i] = pixclk;
5949 for_each_pipe(dev_priv, pipe)
5950 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5952 return max_pixclk;
5955 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5957 struct drm_device *dev = state->dev;
5958 struct drm_i915_private *dev_priv = dev->dev_private;
5959 int max_pixclk = intel_mode_max_pixclk(dev, state);
5960 struct intel_atomic_state *intel_state =
5961 to_intel_atomic_state(state);
5963 if (max_pixclk < 0)
5964 return max_pixclk;
5966 intel_state->cdclk = intel_state->dev_cdclk =
5967 valleyview_calc_cdclk(dev_priv, max_pixclk);
5969 if (!intel_state->active_crtcs)
5970 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5972 return 0;
5975 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5977 struct drm_device *dev = state->dev;
5978 struct drm_i915_private *dev_priv = dev->dev_private;
5979 int max_pixclk = intel_mode_max_pixclk(dev, state);
5980 struct intel_atomic_state *intel_state =
5981 to_intel_atomic_state(state);
5983 if (max_pixclk < 0)
5984 return max_pixclk;
5986 intel_state->cdclk = intel_state->dev_cdclk =
5987 broxton_calc_cdclk(dev_priv, max_pixclk);
5989 if (!intel_state->active_crtcs)
5990 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
5992 return 0;
5995 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5997 unsigned int credits, default_credits;
5999 if (IS_CHERRYVIEW(dev_priv))
6000 default_credits = PFI_CREDIT(12);
6001 else
6002 default_credits = PFI_CREDIT(8);
6004 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6005 /* CHV suggested value is 31 or 63 */
6006 if (IS_CHERRYVIEW(dev_priv))
6007 credits = PFI_CREDIT_63;
6008 else
6009 credits = PFI_CREDIT(15);
6010 } else {
6011 credits = default_credits;
6015 * WA - write default credits before re-programming
6016 * FIXME: should we also set the resend bit here?
6018 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6019 default_credits);
6021 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6022 credits | PFI_CREDIT_RESEND);
6025 * FIXME is this guaranteed to clear
6026 * immediately or should we poll for it?
6028 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6031 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6033 struct drm_device *dev = old_state->dev;
6034 struct drm_i915_private *dev_priv = dev->dev_private;
6035 struct intel_atomic_state *old_intel_state =
6036 to_intel_atomic_state(old_state);
6037 unsigned req_cdclk = old_intel_state->dev_cdclk;
6040 * FIXME: We can end up here with all power domains off, yet
6041 * with a CDCLK frequency other than the minimum. To account
6042 * for this take the PIPE-A power domain, which covers the HW
6043 * blocks needed for the following programming. This can be
6044 * removed once it's guaranteed that we get here either with
6045 * the minimum CDCLK set, or the required power domains
6046 * enabled.
6048 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6050 if (IS_CHERRYVIEW(dev))
6051 cherryview_set_cdclk(dev, req_cdclk);
6052 else
6053 valleyview_set_cdclk(dev, req_cdclk);
6055 vlv_program_pfi_credits(dev_priv);
6057 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6060 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6062 struct drm_device *dev = crtc->dev;
6063 struct drm_i915_private *dev_priv = to_i915(dev);
6064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6065 struct intel_encoder *encoder;
6066 struct intel_crtc_state *pipe_config =
6067 to_intel_crtc_state(crtc->state);
6068 int pipe = intel_crtc->pipe;
6070 if (WARN_ON(intel_crtc->active))
6071 return;
6073 if (intel_crtc->config->has_dp_encoder)
6074 intel_dp_set_m_n(intel_crtc, M1_N1);
6076 intel_set_pipe_timings(intel_crtc);
6077 intel_set_pipe_src_size(intel_crtc);
6079 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6080 struct drm_i915_private *dev_priv = dev->dev_private;
6082 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6083 I915_WRITE(CHV_CANVAS(pipe), 0);
6086 i9xx_set_pipeconf(intel_crtc);
6088 intel_crtc->active = true;
6090 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6092 for_each_encoder_on_crtc(dev, crtc, encoder)
6093 if (encoder->pre_pll_enable)
6094 encoder->pre_pll_enable(encoder);
6096 if (IS_CHERRYVIEW(dev)) {
6097 chv_prepare_pll(intel_crtc, intel_crtc->config);
6098 chv_enable_pll(intel_crtc, intel_crtc->config);
6099 } else {
6100 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6101 vlv_enable_pll(intel_crtc, intel_crtc->config);
6104 for_each_encoder_on_crtc(dev, crtc, encoder)
6105 if (encoder->pre_enable)
6106 encoder->pre_enable(encoder);
6108 i9xx_pfit_enable(intel_crtc);
6110 intel_color_load_luts(&pipe_config->base);
6112 intel_update_watermarks(crtc);
6113 intel_enable_pipe(intel_crtc);
6115 assert_vblank_disabled(crtc);
6116 drm_crtc_vblank_on(crtc);
6118 for_each_encoder_on_crtc(dev, crtc, encoder)
6119 encoder->enable(encoder);
6122 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6124 struct drm_device *dev = crtc->base.dev;
6125 struct drm_i915_private *dev_priv = dev->dev_private;
6127 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6128 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6131 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6133 struct drm_device *dev = crtc->dev;
6134 struct drm_i915_private *dev_priv = to_i915(dev);
6135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6136 struct intel_encoder *encoder;
6137 struct intel_crtc_state *pipe_config =
6138 to_intel_crtc_state(crtc->state);
6139 enum i915_pipe pipe = intel_crtc->pipe;
6141 if (WARN_ON(intel_crtc->active))
6142 return;
6144 i9xx_set_pll_dividers(intel_crtc);
6146 if (intel_crtc->config->has_dp_encoder)
6147 intel_dp_set_m_n(intel_crtc, M1_N1);
6149 intel_set_pipe_timings(intel_crtc);
6150 intel_set_pipe_src_size(intel_crtc);
6152 i9xx_set_pipeconf(intel_crtc);
6154 intel_crtc->active = true;
6156 if (!IS_GEN2(dev))
6157 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6159 for_each_encoder_on_crtc(dev, crtc, encoder)
6160 if (encoder->pre_enable)
6161 encoder->pre_enable(encoder);
6163 i9xx_enable_pll(intel_crtc);
6165 i9xx_pfit_enable(intel_crtc);
6167 intel_color_load_luts(&pipe_config->base);
6169 intel_update_watermarks(crtc);
6170 intel_enable_pipe(intel_crtc);
6172 assert_vblank_disabled(crtc);
6173 drm_crtc_vblank_on(crtc);
6175 for_each_encoder_on_crtc(dev, crtc, encoder)
6176 encoder->enable(encoder);
6179 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6181 struct drm_device *dev = crtc->base.dev;
6182 struct drm_i915_private *dev_priv = dev->dev_private;
6184 if (!crtc->config->gmch_pfit.control)
6185 return;
6187 assert_pipe_disabled(dev_priv, crtc->pipe);
6189 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6190 I915_READ(PFIT_CONTROL));
6191 I915_WRITE(PFIT_CONTROL, 0);
6194 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6196 struct drm_device *dev = crtc->dev;
6197 struct drm_i915_private *dev_priv = dev->dev_private;
6198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6199 struct intel_encoder *encoder;
6200 int pipe = intel_crtc->pipe;
6203 * On gen2 planes are double buffered but the pipe isn't, so we must
6204 * wait for planes to fully turn off before disabling the pipe.
6206 if (IS_GEN2(dev))
6207 intel_wait_for_vblank(dev, pipe);
6209 for_each_encoder_on_crtc(dev, crtc, encoder)
6210 encoder->disable(encoder);
6212 drm_crtc_vblank_off(crtc);
6213 assert_vblank_disabled(crtc);
6215 intel_disable_pipe(intel_crtc);
6217 i9xx_pfit_disable(intel_crtc);
6219 for_each_encoder_on_crtc(dev, crtc, encoder)
6220 if (encoder->post_disable)
6221 encoder->post_disable(encoder);
6223 if (!intel_crtc->config->has_dsi_encoder) {
6224 if (IS_CHERRYVIEW(dev))
6225 chv_disable_pll(dev_priv, pipe);
6226 else if (IS_VALLEYVIEW(dev))
6227 vlv_disable_pll(dev_priv, pipe);
6228 else
6229 i9xx_disable_pll(intel_crtc);
6232 for_each_encoder_on_crtc(dev, crtc, encoder)
6233 if (encoder->post_pll_disable)
6234 encoder->post_pll_disable(encoder);
6236 if (!IS_GEN2(dev))
6237 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6240 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6242 struct intel_encoder *encoder;
6243 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6244 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6245 enum intel_display_power_domain domain;
6246 unsigned long domains;
6248 if (!intel_crtc->active)
6249 return;
6251 if (to_intel_plane_state(crtc->primary->state)->visible) {
6252 WARN_ON(intel_crtc->unpin_work);
6254 intel_pre_disable_primary_noatomic(crtc);
6256 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6257 to_intel_plane_state(crtc->primary->state)->visible = false;
6260 dev_priv->display.crtc_disable(crtc);
6262 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6263 crtc->base.id);
6265 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6266 crtc->state->active = false;
6267 intel_crtc->active = false;
6268 crtc->enabled = false;
6269 crtc->state->connector_mask = 0;
6270 crtc->state->encoder_mask = 0;
6272 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6273 encoder->base.crtc = NULL;
6275 intel_fbc_disable(intel_crtc);
6276 intel_update_watermarks(crtc);
6277 intel_disable_shared_dpll(intel_crtc);
6279 domains = intel_crtc->enabled_power_domains;
6280 for_each_power_domain(domain, domains)
6281 intel_display_power_put(dev_priv, domain);
6282 intel_crtc->enabled_power_domains = 0;
6284 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6285 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6289 * turn all crtc's off, but do not adjust state
6290 * This has to be paired with a call to intel_modeset_setup_hw_state.
6292 int intel_display_suspend(struct drm_device *dev)
6294 struct drm_i915_private *dev_priv = to_i915(dev);
6295 struct drm_atomic_state *state;
6296 int ret;
6298 state = drm_atomic_helper_suspend(dev);
6299 ret = PTR_ERR_OR_ZERO(state);
6300 if (ret)
6301 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6302 else
6303 dev_priv->modeset_restore_state = state;
6304 return ret;
6307 void intel_encoder_destroy(struct drm_encoder *encoder)
6309 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6311 drm_encoder_cleanup(encoder);
6312 kfree(intel_encoder);
6315 /* Cross check the actual hw state with our own modeset state tracking (and it's
6316 * internal consistency). */
6317 static void intel_connector_verify_state(struct intel_connector *connector)
6319 struct drm_crtc *crtc = connector->base.state->crtc;
6321 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6322 connector->base.base.id,
6323 connector->base.name);
6325 if (connector->get_hw_state(connector)) {
6326 struct intel_encoder *encoder = connector->encoder;
6327 struct drm_connector_state *conn_state = connector->base.state;
6329 I915_STATE_WARN(!crtc,
6330 "connector enabled without attached crtc\n");
6332 if (!crtc)
6333 return;
6335 I915_STATE_WARN(!crtc->state->active,
6336 "connector is active, but attached crtc isn't\n");
6338 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6339 return;
6341 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6342 "atomic encoder doesn't match attached encoder\n");
6344 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6345 "attached encoder crtc differs from connector crtc\n");
6346 } else {
6347 I915_STATE_WARN(crtc && crtc->state->active,
6348 "attached crtc is active, but connector isn't\n");
6349 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6350 "best encoder set without crtc!\n");
6354 int intel_connector_init(struct intel_connector *connector)
6356 drm_atomic_helper_connector_reset(&connector->base);
6358 if (!connector->base.state)
6359 return -ENOMEM;
6361 return 0;
6364 struct intel_connector *intel_connector_alloc(void)
6366 struct intel_connector *connector;
6368 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6369 if (!connector)
6370 return NULL;
6372 if (intel_connector_init(connector) < 0) {
6373 kfree(connector);
6374 return NULL;
6377 return connector;
6380 /* Simple connector->get_hw_state implementation for encoders that support only
6381 * one connector and no cloning and hence the encoder state determines the state
6382 * of the connector. */
6383 bool intel_connector_get_hw_state(struct intel_connector *connector)
6385 enum i915_pipe pipe = 0;
6386 struct intel_encoder *encoder = connector->encoder;
6388 return encoder->get_hw_state(encoder, &pipe);
6391 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6393 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6394 return crtc_state->fdi_lanes;
6396 return 0;
6399 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum i915_pipe pipe,
6400 struct intel_crtc_state *pipe_config)
6402 struct drm_atomic_state *state = pipe_config->base.state;
6403 struct intel_crtc *other_crtc;
6404 struct intel_crtc_state *other_crtc_state;
6406 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6407 pipe_name(pipe), pipe_config->fdi_lanes);
6408 if (pipe_config->fdi_lanes > 4) {
6409 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6410 pipe_name(pipe), pipe_config->fdi_lanes);
6411 return -EINVAL;
6414 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6415 if (pipe_config->fdi_lanes > 2) {
6416 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6417 pipe_config->fdi_lanes);
6418 return -EINVAL;
6419 } else {
6420 return 0;
6424 if (INTEL_INFO(dev)->num_pipes == 2)
6425 return 0;
6427 /* Ivybridge 3 pipe is really complicated */
6428 switch (pipe) {
6429 case PIPE_A:
6430 return 0;
6431 case PIPE_B:
6432 if (pipe_config->fdi_lanes <= 2)
6433 return 0;
6435 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6436 other_crtc_state =
6437 intel_atomic_get_crtc_state(state, other_crtc);
6438 if (IS_ERR(other_crtc_state))
6439 return PTR_ERR(other_crtc_state);
6441 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6442 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6443 pipe_name(pipe), pipe_config->fdi_lanes);
6444 return -EINVAL;
6446 return 0;
6447 case PIPE_C:
6448 if (pipe_config->fdi_lanes > 2) {
6449 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6450 pipe_name(pipe), pipe_config->fdi_lanes);
6451 return -EINVAL;
6454 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6455 other_crtc_state =
6456 intel_atomic_get_crtc_state(state, other_crtc);
6457 if (IS_ERR(other_crtc_state))
6458 return PTR_ERR(other_crtc_state);
6460 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6461 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6462 return -EINVAL;
6464 return 0;
6465 default:
6466 BUG();
6470 #define RETRY 1
6471 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6472 struct intel_crtc_state *pipe_config)
6474 struct drm_device *dev = intel_crtc->base.dev;
6475 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6476 int lane, link_bw, fdi_dotclock, ret;
6477 bool needs_recompute = false;
6479 retry:
6480 /* FDI is a binary signal running at ~2.7GHz, encoding
6481 * each output octet as 10 bits. The actual frequency
6482 * is stored as a divider into a 100MHz clock, and the
6483 * mode pixel clock is stored in units of 1KHz.
6484 * Hence the bw of each lane in terms of the mode signal
6485 * is:
6487 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6489 fdi_dotclock = adjusted_mode->crtc_clock;
6491 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6492 pipe_config->pipe_bpp);
6494 pipe_config->fdi_lanes = lane;
6496 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6497 link_bw, &pipe_config->fdi_m_n);
6499 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6500 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6501 pipe_config->pipe_bpp -= 2*3;
6502 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6503 pipe_config->pipe_bpp);
6504 needs_recompute = true;
6505 pipe_config->bw_constrained = true;
6507 goto retry;
6510 if (needs_recompute)
6511 return RETRY;
6513 return ret;
6516 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6517 struct intel_crtc_state *pipe_config)
6519 if (pipe_config->pipe_bpp > 24)
6520 return false;
6522 /* HSW can handle pixel rate up to cdclk? */
6523 if (IS_HASWELL(dev_priv))
6524 return true;
6527 * We compare against max which means we must take
6528 * the increased cdclk requirement into account when
6529 * calculating the new cdclk.
6531 * Should measure whether using a lower cdclk w/o IPS
6533 return ilk_pipe_pixel_rate(pipe_config) <=
6534 dev_priv->max_cdclk_freq * 95 / 100;
6537 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6538 struct intel_crtc_state *pipe_config)
6540 struct drm_device *dev = crtc->base.dev;
6541 struct drm_i915_private *dev_priv = dev->dev_private;
6543 pipe_config->ips_enabled = i915.enable_ips &&
6544 hsw_crtc_supports_ips(crtc) &&
6545 pipe_config_supports_ips(dev_priv, pipe_config);
6548 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6550 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6552 /* GDG double wide on either pipe, otherwise pipe A only */
6553 return INTEL_INFO(dev_priv)->gen < 4 &&
6554 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6557 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6558 struct intel_crtc_state *pipe_config)
6560 struct drm_device *dev = crtc->base.dev;
6561 struct drm_i915_private *dev_priv = dev->dev_private;
6562 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6564 /* FIXME should check pixel clock limits on all platforms */
6565 if (INTEL_INFO(dev)->gen < 4) {
6566 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6569 * Enable double wide mode when the dot clock
6570 * is > 90% of the (display) core speed.
6572 if (intel_crtc_supports_double_wide(crtc) &&
6573 adjusted_mode->crtc_clock > clock_limit) {
6574 clock_limit *= 2;
6575 pipe_config->double_wide = true;
6578 if (adjusted_mode->crtc_clock > clock_limit) {
6579 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6580 adjusted_mode->crtc_clock, clock_limit,
6581 yesno(pipe_config->double_wide));
6582 return -EINVAL;
6587 * Pipe horizontal size must be even in:
6588 * - DVO ganged mode
6589 * - LVDS dual channel mode
6590 * - Double wide pipe
6592 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6593 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6594 pipe_config->pipe_src_w &= ~1;
6596 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6597 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6599 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6600 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6601 return -EINVAL;
6603 if (HAS_IPS(dev))
6604 hsw_compute_ips_config(crtc, pipe_config);
6606 if (pipe_config->has_pch_encoder)
6607 return ironlake_fdi_compute_config(crtc, pipe_config);
6609 return 0;
6612 static int skylake_get_display_clock_speed(struct drm_device *dev)
6614 struct drm_i915_private *dev_priv = to_i915(dev);
6615 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6616 uint32_t cdctl = I915_READ(CDCLK_CTL);
6617 uint32_t linkrate;
6619 if (!(lcpll1 & LCPLL_PLL_ENABLE))
6620 return 24000; /* 24MHz is the cd freq with NSSC ref */
6622 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6623 return 540000;
6625 linkrate = (I915_READ(DPLL_CTRL1) &
6626 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6628 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6629 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6630 /* vco 8640 */
6631 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6632 case CDCLK_FREQ_450_432:
6633 return 432000;
6634 case CDCLK_FREQ_337_308:
6635 return 308570;
6636 case CDCLK_FREQ_675_617:
6637 return 617140;
6638 default:
6639 WARN(1, "Unknown cd freq selection\n");
6641 } else {
6642 /* vco 8100 */
6643 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6644 case CDCLK_FREQ_450_432:
6645 return 450000;
6646 case CDCLK_FREQ_337_308:
6647 return 337500;
6648 case CDCLK_FREQ_675_617:
6649 return 675000;
6650 default:
6651 WARN(1, "Unknown cd freq selection\n");
6655 /* error case, do as if DPLL0 isn't enabled */
6656 return 24000;
6659 static int broxton_get_display_clock_speed(struct drm_device *dev)
6661 struct drm_i915_private *dev_priv = to_i915(dev);
6662 uint32_t cdctl = I915_READ(CDCLK_CTL);
6663 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6664 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6665 int cdclk;
6667 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6668 return 19200;
6670 cdclk = 19200 * pll_ratio / 2;
6672 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6673 case BXT_CDCLK_CD2X_DIV_SEL_1:
6674 return cdclk; /* 576MHz or 624MHz */
6675 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6676 return cdclk * 2 / 3; /* 384MHz */
6677 case BXT_CDCLK_CD2X_DIV_SEL_2:
6678 return cdclk / 2; /* 288MHz */
6679 case BXT_CDCLK_CD2X_DIV_SEL_4:
6680 return cdclk / 4; /* 144MHz */
6683 /* error case, do as if DE PLL isn't enabled */
6684 return 19200;
6687 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6689 struct drm_i915_private *dev_priv = dev->dev_private;
6690 uint32_t lcpll = I915_READ(LCPLL_CTL);
6691 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6693 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6694 return 800000;
6695 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6696 return 450000;
6697 else if (freq == LCPLL_CLK_FREQ_450)
6698 return 450000;
6699 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6700 return 540000;
6701 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6702 return 337500;
6703 else
6704 return 675000;
6707 static int haswell_get_display_clock_speed(struct drm_device *dev)
6709 struct drm_i915_private *dev_priv = dev->dev_private;
6710 uint32_t lcpll = I915_READ(LCPLL_CTL);
6711 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6713 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6714 return 800000;
6715 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6716 return 450000;
6717 else if (freq == LCPLL_CLK_FREQ_450)
6718 return 450000;
6719 else if (IS_HSW_ULT(dev))
6720 return 337500;
6721 else
6722 return 540000;
6725 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6727 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6728 CCK_DISPLAY_CLOCK_CONTROL);
6731 static int ilk_get_display_clock_speed(struct drm_device *dev)
6733 return 450000;
6736 static int i945_get_display_clock_speed(struct drm_device *dev)
6738 return 400000;
6741 static int i915_get_display_clock_speed(struct drm_device *dev)
6743 return 333333;
6746 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6748 return 200000;
6751 static int pnv_get_display_clock_speed(struct drm_device *dev)
6753 u16 gcfgc = 0;
6755 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6757 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6758 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6759 return 266667;
6760 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6761 return 333333;
6762 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6763 return 444444;
6764 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6765 return 200000;
6766 default:
6767 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6768 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6769 return 133333;
6770 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6771 return 166667;
6775 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6777 u16 gcfgc = 0;
6779 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6781 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6782 return 133333;
6783 else {
6784 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6785 case GC_DISPLAY_CLOCK_333_MHZ:
6786 return 333333;
6787 default:
6788 case GC_DISPLAY_CLOCK_190_200_MHZ:
6789 return 190000;
6794 static int i865_get_display_clock_speed(struct drm_device *dev)
6796 return 266667;
6799 static int i85x_get_display_clock_speed(struct drm_device *dev)
6801 u16 hpllcc = 0;
6804 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6805 * encoding is different :(
6806 * FIXME is this the right way to detect 852GM/852GMV?
6808 if (dev->pdev->revision == 0x1)
6809 return 133333;
6811 #if 0
6812 pci_bus_read_config_word(dev->pdev->bus,
6813 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6814 #endif
6816 /* Assume that the hardware is in the high speed state. This
6817 * should be the default.
6819 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6820 case GC_CLOCK_133_200:
6821 case GC_CLOCK_133_200_2:
6822 case GC_CLOCK_100_200:
6823 return 200000;
6824 case GC_CLOCK_166_250:
6825 return 250000;
6826 case GC_CLOCK_100_133:
6827 return 133333;
6828 case GC_CLOCK_133_266:
6829 case GC_CLOCK_133_266_2:
6830 case GC_CLOCK_166_266:
6831 return 266667;
6834 /* Shouldn't happen */
6835 return 0;
6838 static int i830_get_display_clock_speed(struct drm_device *dev)
6840 return 133333;
6843 static unsigned int intel_hpll_vco(struct drm_device *dev)
6845 struct drm_i915_private *dev_priv = dev->dev_private;
6846 static const unsigned int blb_vco[8] = {
6847 [0] = 3200000,
6848 [1] = 4000000,
6849 [2] = 5333333,
6850 [3] = 4800000,
6851 [4] = 6400000,
6853 static const unsigned int pnv_vco[8] = {
6854 [0] = 3200000,
6855 [1] = 4000000,
6856 [2] = 5333333,
6857 [3] = 4800000,
6858 [4] = 2666667,
6860 static const unsigned int cl_vco[8] = {
6861 [0] = 3200000,
6862 [1] = 4000000,
6863 [2] = 5333333,
6864 [3] = 6400000,
6865 [4] = 3333333,
6866 [5] = 3566667,
6867 [6] = 4266667,
6869 static const unsigned int elk_vco[8] = {
6870 [0] = 3200000,
6871 [1] = 4000000,
6872 [2] = 5333333,
6873 [3] = 4800000,
6875 static const unsigned int ctg_vco[8] = {
6876 [0] = 3200000,
6877 [1] = 4000000,
6878 [2] = 5333333,
6879 [3] = 6400000,
6880 [4] = 2666667,
6881 [5] = 4266667,
6883 const unsigned int *vco_table;
6884 unsigned int vco;
6885 uint8_t tmp = 0;
6887 /* FIXME other chipsets? */
6888 if (IS_GM45(dev))
6889 vco_table = ctg_vco;
6890 else if (IS_G4X(dev))
6891 vco_table = elk_vco;
6892 else if (IS_CRESTLINE(dev))
6893 vco_table = cl_vco;
6894 else if (IS_PINEVIEW(dev))
6895 vco_table = pnv_vco;
6896 else if (IS_G33(dev))
6897 vco_table = blb_vco;
6898 else
6899 return 0;
6901 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6903 vco = vco_table[tmp & 0x7];
6904 if (vco == 0)
6905 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6906 else
6907 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6909 return vco;
6912 static int gm45_get_display_clock_speed(struct drm_device *dev)
6914 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6915 uint16_t tmp = 0;
6917 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6919 cdclk_sel = (tmp >> 12) & 0x1;
6921 switch (vco) {
6922 case 2666667:
6923 case 4000000:
6924 case 5333333:
6925 return cdclk_sel ? 333333 : 222222;
6926 case 3200000:
6927 return cdclk_sel ? 320000 : 228571;
6928 default:
6929 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6930 return 222222;
6934 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6936 static const uint8_t div_3200[] = { 16, 10, 8 };
6937 static const uint8_t div_4000[] = { 20, 12, 10 };
6938 static const uint8_t div_5333[] = { 24, 16, 14 };
6939 const uint8_t *div_table;
6940 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6941 uint16_t tmp = 0;
6943 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6945 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6947 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6948 goto fail;
6950 switch (vco) {
6951 case 3200000:
6952 div_table = div_3200;
6953 break;
6954 case 4000000:
6955 div_table = div_4000;
6956 break;
6957 case 5333333:
6958 div_table = div_5333;
6959 break;
6960 default:
6961 goto fail;
6964 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6966 fail:
6967 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6968 return 200000;
6971 static int g33_get_display_clock_speed(struct drm_device *dev)
6973 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6974 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6975 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6976 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6977 const uint8_t *div_table;
6978 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6979 uint16_t tmp = 0;
6981 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6983 cdclk_sel = (tmp >> 4) & 0x7;
6985 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6986 goto fail;
6988 switch (vco) {
6989 case 3200000:
6990 div_table = div_3200;
6991 break;
6992 case 4000000:
6993 div_table = div_4000;
6994 break;
6995 case 4800000:
6996 div_table = div_4800;
6997 break;
6998 case 5333333:
6999 div_table = div_5333;
7000 break;
7001 default:
7002 goto fail;
7005 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7007 fail:
7008 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7009 return 190476;
7012 static void
7013 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7015 while (*num > DATA_LINK_M_N_MASK ||
7016 *den > DATA_LINK_M_N_MASK) {
7017 *num >>= 1;
7018 *den >>= 1;
7022 static void compute_m_n(unsigned int m, unsigned int n,
7023 uint32_t *ret_m, uint32_t *ret_n)
7025 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7026 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7027 intel_reduce_m_n_ratio(ret_m, ret_n);
7030 void
7031 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7032 int pixel_clock, int link_clock,
7033 struct intel_link_m_n *m_n)
7035 m_n->tu = 64;
7037 compute_m_n(bits_per_pixel * pixel_clock,
7038 link_clock * nlanes * 8,
7039 &m_n->gmch_m, &m_n->gmch_n);
7041 compute_m_n(pixel_clock, link_clock,
7042 &m_n->link_m, &m_n->link_n);
7045 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7047 if (i915.panel_use_ssc >= 0)
7048 return i915.panel_use_ssc != 0;
7049 return dev_priv->vbt.lvds_use_ssc
7050 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7053 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7055 return (1 << dpll->n) << 16 | dpll->m2;
7058 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7060 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7063 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7064 struct intel_crtc_state *crtc_state,
7065 intel_clock_t *reduced_clock)
7067 struct drm_device *dev = crtc->base.dev;
7068 u32 fp, fp2 = 0;
7070 if (IS_PINEVIEW(dev)) {
7071 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7072 if (reduced_clock)
7073 fp2 = pnv_dpll_compute_fp(reduced_clock);
7074 } else {
7075 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7076 if (reduced_clock)
7077 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7080 crtc_state->dpll_hw_state.fp0 = fp;
7082 crtc->lowfreq_avail = false;
7083 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7084 reduced_clock) {
7085 crtc_state->dpll_hw_state.fp1 = fp2;
7086 crtc->lowfreq_avail = true;
7087 } else {
7088 crtc_state->dpll_hw_state.fp1 = fp;
7092 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum i915_pipe
7093 pipe)
7095 u32 reg_val;
7098 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7099 * and set it to a reasonable value instead.
7101 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7102 reg_val &= 0xffffff00;
7103 reg_val |= 0x00000030;
7104 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7106 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7107 reg_val &= 0x00ffffff;
7108 reg_val |= 0x8c000000;
7109 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7111 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7112 reg_val &= 0xffffff00;
7113 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7115 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7116 reg_val &= 0x00ffffff;
7117 reg_val |= 0xb0000000;
7118 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7121 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7122 struct intel_link_m_n *m_n)
7124 struct drm_device *dev = crtc->base.dev;
7125 struct drm_i915_private *dev_priv = dev->dev_private;
7126 int pipe = crtc->pipe;
7128 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7129 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7130 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7131 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7134 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7135 struct intel_link_m_n *m_n,
7136 struct intel_link_m_n *m2_n2)
7138 struct drm_device *dev = crtc->base.dev;
7139 struct drm_i915_private *dev_priv = dev->dev_private;
7140 int pipe = crtc->pipe;
7141 enum transcoder transcoder = crtc->config->cpu_transcoder;
7143 if (INTEL_INFO(dev)->gen >= 5) {
7144 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7145 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7146 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7147 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7148 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7149 * for gen < 8) and if DRRS is supported (to make sure the
7150 * registers are not unnecessarily accessed).
7152 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7153 crtc->config->has_drrs) {
7154 I915_WRITE(PIPE_DATA_M2(transcoder),
7155 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7156 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7157 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7158 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7160 } else {
7161 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7162 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7163 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7164 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7168 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7170 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7172 if (m_n == M1_N1) {
7173 dp_m_n = &crtc->config->dp_m_n;
7174 dp_m2_n2 = &crtc->config->dp_m2_n2;
7175 } else if (m_n == M2_N2) {
7178 * M2_N2 registers are not supported. Hence m2_n2 divider value
7179 * needs to be programmed into M1_N1.
7181 dp_m_n = &crtc->config->dp_m2_n2;
7182 } else {
7183 DRM_ERROR("Unsupported divider value\n");
7184 return;
7187 if (crtc->config->has_pch_encoder)
7188 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7189 else
7190 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7193 static void vlv_compute_dpll(struct intel_crtc *crtc,
7194 struct intel_crtc_state *pipe_config)
7196 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7197 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7198 if (crtc->pipe != PIPE_A)
7199 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7201 /* DPLL not used with DSI, but still need the rest set up */
7202 if (!pipe_config->has_dsi_encoder)
7203 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7204 DPLL_EXT_BUFFER_ENABLE_VLV;
7206 pipe_config->dpll_hw_state.dpll_md =
7207 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7210 static void chv_compute_dpll(struct intel_crtc *crtc,
7211 struct intel_crtc_state *pipe_config)
7213 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7214 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7215 if (crtc->pipe != PIPE_A)
7216 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7218 /* DPLL not used with DSI, but still need the rest set up */
7219 if (!pipe_config->has_dsi_encoder)
7220 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7222 pipe_config->dpll_hw_state.dpll_md =
7223 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7226 static void vlv_prepare_pll(struct intel_crtc *crtc,
7227 const struct intel_crtc_state *pipe_config)
7229 struct drm_device *dev = crtc->base.dev;
7230 struct drm_i915_private *dev_priv = dev->dev_private;
7231 enum i915_pipe pipe = crtc->pipe;
7232 u32 mdiv;
7233 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7234 u32 coreclk, reg_val;
7236 /* Enable Refclk */
7237 I915_WRITE(DPLL(pipe),
7238 pipe_config->dpll_hw_state.dpll &
7239 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7241 /* No need to actually set up the DPLL with DSI */
7242 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7243 return;
7245 mutex_lock(&dev_priv->sb_lock);
7247 bestn = pipe_config->dpll.n;
7248 bestm1 = pipe_config->dpll.m1;
7249 bestm2 = pipe_config->dpll.m2;
7250 bestp1 = pipe_config->dpll.p1;
7251 bestp2 = pipe_config->dpll.p2;
7253 /* See eDP HDMI DPIO driver vbios notes doc */
7255 /* PLL B needs special handling */
7256 if (pipe == PIPE_B)
7257 vlv_pllb_recal_opamp(dev_priv, pipe);
7259 /* Set up Tx target for periodic Rcomp update */
7260 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7262 /* Disable target IRef on PLL */
7263 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7264 reg_val &= 0x00ffffff;
7265 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7267 /* Disable fast lock */
7268 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7270 /* Set idtafcrecal before PLL is enabled */
7271 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7272 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7273 mdiv |= ((bestn << DPIO_N_SHIFT));
7274 mdiv |= (1 << DPIO_K_SHIFT);
7277 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7278 * but we don't support that).
7279 * Note: don't use the DAC post divider as it seems unstable.
7281 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7282 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7284 mdiv |= DPIO_ENABLE_CALIBRATION;
7285 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7287 /* Set HBR and RBR LPF coefficients */
7288 if (pipe_config->port_clock == 162000 ||
7289 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7290 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7291 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7292 0x009f0003);
7293 else
7294 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7295 0x00d0000f);
7297 if (pipe_config->has_dp_encoder) {
7298 /* Use SSC source */
7299 if (pipe == PIPE_A)
7300 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7301 0x0df40000);
7302 else
7303 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7304 0x0df70000);
7305 } else { /* HDMI or VGA */
7306 /* Use bend source */
7307 if (pipe == PIPE_A)
7308 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7309 0x0df70000);
7310 else
7311 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7312 0x0df40000);
7315 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7316 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7317 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7318 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7319 coreclk |= 0x01000000;
7320 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7322 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7323 mutex_unlock(&dev_priv->sb_lock);
7326 static void chv_prepare_pll(struct intel_crtc *crtc,
7327 const struct intel_crtc_state *pipe_config)
7329 struct drm_device *dev = crtc->base.dev;
7330 struct drm_i915_private *dev_priv = dev->dev_private;
7331 enum i915_pipe pipe = crtc->pipe;
7332 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7333 u32 loopfilter, tribuf_calcntr;
7334 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7335 u32 dpio_val;
7336 int vco;
7338 /* Enable Refclk and SSC */
7339 I915_WRITE(DPLL(pipe),
7340 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7342 /* No need to actually set up the DPLL with DSI */
7343 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7344 return;
7346 bestn = pipe_config->dpll.n;
7347 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7348 bestm1 = pipe_config->dpll.m1;
7349 bestm2 = pipe_config->dpll.m2 >> 22;
7350 bestp1 = pipe_config->dpll.p1;
7351 bestp2 = pipe_config->dpll.p2;
7352 vco = pipe_config->dpll.vco;
7353 dpio_val = 0;
7354 loopfilter = 0;
7356 mutex_lock(&dev_priv->sb_lock);
7358 /* p1 and p2 divider */
7359 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7360 5 << DPIO_CHV_S1_DIV_SHIFT |
7361 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7362 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7363 1 << DPIO_CHV_K_DIV_SHIFT);
7365 /* Feedback post-divider - m2 */
7366 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7368 /* Feedback refclk divider - n and m1 */
7369 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7370 DPIO_CHV_M1_DIV_BY_2 |
7371 1 << DPIO_CHV_N_DIV_SHIFT);
7373 /* M2 fraction division */
7374 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7376 /* M2 fraction division enable */
7377 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7378 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7379 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7380 if (bestm2_frac)
7381 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7382 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7384 /* Program digital lock detect threshold */
7385 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7386 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7387 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7388 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7389 if (!bestm2_frac)
7390 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7391 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7393 /* Loop filter */
7394 if (vco == 5400000) {
7395 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7396 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7397 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7398 tribuf_calcntr = 0x9;
7399 } else if (vco <= 6200000) {
7400 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7401 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7402 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7403 tribuf_calcntr = 0x9;
7404 } else if (vco <= 6480000) {
7405 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7406 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7407 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7408 tribuf_calcntr = 0x8;
7409 } else {
7410 /* Not supported. Apply the same limits as in the max case */
7411 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7412 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7413 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7414 tribuf_calcntr = 0;
7416 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7418 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7419 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7420 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7421 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7423 /* AFC Recal */
7424 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7425 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7426 DPIO_AFC_RECAL);
7428 mutex_unlock(&dev_priv->sb_lock);
7432 * vlv_force_pll_on - forcibly enable just the PLL
7433 * @dev_priv: i915 private structure
7434 * @pipe: pipe PLL to enable
7435 * @dpll: PLL configuration
7437 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7438 * in cases where we need the PLL enabled even when @pipe is not going to
7439 * be enabled.
7441 int vlv_force_pll_on(struct drm_device *dev, enum i915_pipe pipe,
7442 const struct dpll *dpll)
7444 struct intel_crtc *crtc =
7445 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7446 struct intel_crtc_state *pipe_config;
7448 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7449 if (!pipe_config)
7450 return -ENOMEM;
7452 pipe_config->base.crtc = &crtc->base;
7453 pipe_config->pixel_multiplier = 1;
7454 pipe_config->dpll = *dpll;
7456 if (IS_CHERRYVIEW(dev)) {
7457 chv_compute_dpll(crtc, pipe_config);
7458 chv_prepare_pll(crtc, pipe_config);
7459 chv_enable_pll(crtc, pipe_config);
7460 } else {
7461 vlv_compute_dpll(crtc, pipe_config);
7462 vlv_prepare_pll(crtc, pipe_config);
7463 vlv_enable_pll(crtc, pipe_config);
7466 kfree(pipe_config);
7468 return 0;
7472 * vlv_force_pll_off - forcibly disable just the PLL
7473 * @dev_priv: i915 private structure
7474 * @pipe: pipe PLL to disable
7476 * Disable the PLL for @pipe. To be used in cases where we need
7477 * the PLL enabled even when @pipe is not going to be enabled.
7479 void vlv_force_pll_off(struct drm_device *dev, enum i915_pipe pipe)
7481 if (IS_CHERRYVIEW(dev))
7482 chv_disable_pll(to_i915(dev), pipe);
7483 else
7484 vlv_disable_pll(to_i915(dev), pipe);
7487 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7488 struct intel_crtc_state *crtc_state,
7489 intel_clock_t *reduced_clock)
7491 struct drm_device *dev = crtc->base.dev;
7492 struct drm_i915_private *dev_priv = dev->dev_private;
7493 u32 dpll;
7494 bool is_sdvo;
7495 struct dpll *clock = &crtc_state->dpll;
7497 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7499 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7500 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7502 dpll = DPLL_VGA_MODE_DIS;
7504 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7505 dpll |= DPLLB_MODE_LVDS;
7506 else
7507 dpll |= DPLLB_MODE_DAC_SERIAL;
7509 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7510 dpll |= (crtc_state->pixel_multiplier - 1)
7511 << SDVO_MULTIPLIER_SHIFT_HIRES;
7514 if (is_sdvo)
7515 dpll |= DPLL_SDVO_HIGH_SPEED;
7517 if (crtc_state->has_dp_encoder)
7518 dpll |= DPLL_SDVO_HIGH_SPEED;
7520 /* compute bitmask from p1 value */
7521 if (IS_PINEVIEW(dev))
7522 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7523 else {
7524 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7525 if (IS_G4X(dev) && reduced_clock)
7526 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7528 switch (clock->p2) {
7529 case 5:
7530 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7531 break;
7532 case 7:
7533 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7534 break;
7535 case 10:
7536 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7537 break;
7538 case 14:
7539 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7540 break;
7542 if (INTEL_INFO(dev)->gen >= 4)
7543 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7545 if (crtc_state->sdvo_tv_clock)
7546 dpll |= PLL_REF_INPUT_TVCLKINBC;
7547 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7548 intel_panel_use_ssc(dev_priv))
7549 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7550 else
7551 dpll |= PLL_REF_INPUT_DREFCLK;
7553 dpll |= DPLL_VCO_ENABLE;
7554 crtc_state->dpll_hw_state.dpll = dpll;
7556 if (INTEL_INFO(dev)->gen >= 4) {
7557 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7558 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7559 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7563 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7564 struct intel_crtc_state *crtc_state,
7565 intel_clock_t *reduced_clock)
7567 struct drm_device *dev = crtc->base.dev;
7568 struct drm_i915_private *dev_priv = dev->dev_private;
7569 u32 dpll;
7570 struct dpll *clock = &crtc_state->dpll;
7572 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7574 dpll = DPLL_VGA_MODE_DIS;
7576 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7577 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7578 } else {
7579 if (clock->p1 == 2)
7580 dpll |= PLL_P1_DIVIDE_BY_TWO;
7581 else
7582 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7583 if (clock->p2 == 4)
7584 dpll |= PLL_P2_DIVIDE_BY_4;
7587 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7588 dpll |= DPLL_DVO_2X_MODE;
7590 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7591 intel_panel_use_ssc(dev_priv))
7592 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7593 else
7594 dpll |= PLL_REF_INPUT_DREFCLK;
7596 dpll |= DPLL_VCO_ENABLE;
7597 crtc_state->dpll_hw_state.dpll = dpll;
7600 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7602 struct drm_device *dev = intel_crtc->base.dev;
7603 struct drm_i915_private *dev_priv = dev->dev_private;
7604 enum i915_pipe pipe = intel_crtc->pipe;
7605 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7606 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7607 uint32_t crtc_vtotal, crtc_vblank_end;
7608 int vsyncshift = 0;
7610 /* We need to be careful not to changed the adjusted mode, for otherwise
7611 * the hw state checker will get angry at the mismatch. */
7612 crtc_vtotal = adjusted_mode->crtc_vtotal;
7613 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7615 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7616 /* the chip adds 2 halflines automatically */
7617 crtc_vtotal -= 1;
7618 crtc_vblank_end -= 1;
7620 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7621 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7622 else
7623 vsyncshift = adjusted_mode->crtc_hsync_start -
7624 adjusted_mode->crtc_htotal / 2;
7625 if (vsyncshift < 0)
7626 vsyncshift += adjusted_mode->crtc_htotal;
7629 if (INTEL_INFO(dev)->gen > 3)
7630 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7632 I915_WRITE(HTOTAL(cpu_transcoder),
7633 (adjusted_mode->crtc_hdisplay - 1) |
7634 ((adjusted_mode->crtc_htotal - 1) << 16));
7635 I915_WRITE(HBLANK(cpu_transcoder),
7636 (adjusted_mode->crtc_hblank_start - 1) |
7637 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7638 I915_WRITE(HSYNC(cpu_transcoder),
7639 (adjusted_mode->crtc_hsync_start - 1) |
7640 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7642 I915_WRITE(VTOTAL(cpu_transcoder),
7643 (adjusted_mode->crtc_vdisplay - 1) |
7644 ((crtc_vtotal - 1) << 16));
7645 I915_WRITE(VBLANK(cpu_transcoder),
7646 (adjusted_mode->crtc_vblank_start - 1) |
7647 ((crtc_vblank_end - 1) << 16));
7648 I915_WRITE(VSYNC(cpu_transcoder),
7649 (adjusted_mode->crtc_vsync_start - 1) |
7650 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7652 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7653 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7654 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7655 * bits. */
7656 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7657 (pipe == PIPE_B || pipe == PIPE_C))
7658 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7662 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7664 struct drm_device *dev = intel_crtc->base.dev;
7665 struct drm_i915_private *dev_priv = dev->dev_private;
7666 enum i915_pipe pipe = intel_crtc->pipe;
7668 /* pipesrc controls the size that is scaled from, which should
7669 * always be the user's requested size.
7671 I915_WRITE(PIPESRC(pipe),
7672 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7673 (intel_crtc->config->pipe_src_h - 1));
7676 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7677 struct intel_crtc_state *pipe_config)
7679 struct drm_device *dev = crtc->base.dev;
7680 struct drm_i915_private *dev_priv = dev->dev_private;
7681 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7682 uint32_t tmp;
7684 tmp = I915_READ(HTOTAL(cpu_transcoder));
7685 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7686 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7687 tmp = I915_READ(HBLANK(cpu_transcoder));
7688 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7689 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7690 tmp = I915_READ(HSYNC(cpu_transcoder));
7691 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7692 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7694 tmp = I915_READ(VTOTAL(cpu_transcoder));
7695 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7696 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7697 tmp = I915_READ(VBLANK(cpu_transcoder));
7698 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7699 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7700 tmp = I915_READ(VSYNC(cpu_transcoder));
7701 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7702 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7704 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7705 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7706 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7707 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7711 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7712 struct intel_crtc_state *pipe_config)
7714 struct drm_device *dev = crtc->base.dev;
7715 struct drm_i915_private *dev_priv = dev->dev_private;
7716 u32 tmp;
7718 tmp = I915_READ(PIPESRC(crtc->pipe));
7719 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7720 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7722 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7723 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7726 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7727 struct intel_crtc_state *pipe_config)
7729 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7730 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7731 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7732 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7734 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7735 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7736 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7737 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7739 mode->flags = pipe_config->base.adjusted_mode.flags;
7740 mode->type = DRM_MODE_TYPE_DRIVER;
7742 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7743 mode->flags |= pipe_config->base.adjusted_mode.flags;
7745 mode->hsync = drm_mode_hsync(mode);
7746 mode->vrefresh = drm_mode_vrefresh(mode);
7747 drm_mode_set_name(mode);
7750 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7752 struct drm_device *dev = intel_crtc->base.dev;
7753 struct drm_i915_private *dev_priv = dev->dev_private;
7754 uint32_t pipeconf;
7756 pipeconf = 0;
7758 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7759 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7760 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7762 if (intel_crtc->config->double_wide)
7763 pipeconf |= PIPECONF_DOUBLE_WIDE;
7765 /* only g4x and later have fancy bpc/dither controls */
7766 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7767 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7768 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7769 pipeconf |= PIPECONF_DITHER_EN |
7770 PIPECONF_DITHER_TYPE_SP;
7772 switch (intel_crtc->config->pipe_bpp) {
7773 case 18:
7774 pipeconf |= PIPECONF_6BPC;
7775 break;
7776 case 24:
7777 pipeconf |= PIPECONF_8BPC;
7778 break;
7779 case 30:
7780 pipeconf |= PIPECONF_10BPC;
7781 break;
7782 default:
7783 /* Case prevented by intel_choose_pipe_bpp_dither. */
7784 BUG();
7788 if (HAS_PIPE_CXSR(dev)) {
7789 if (intel_crtc->lowfreq_avail) {
7790 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7791 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7792 } else {
7793 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7797 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7798 if (INTEL_INFO(dev)->gen < 4 ||
7799 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7800 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7801 else
7802 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7803 } else
7804 pipeconf |= PIPECONF_PROGRESSIVE;
7806 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7807 intel_crtc->config->limited_color_range)
7808 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7810 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7811 POSTING_READ(PIPECONF(intel_crtc->pipe));
7814 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7815 struct intel_crtc_state *crtc_state)
7817 struct drm_device *dev = crtc->base.dev;
7818 struct drm_i915_private *dev_priv = dev->dev_private;
7819 const intel_limit_t *limit;
7820 int refclk = 48000;
7822 memset(&crtc_state->dpll_hw_state, 0,
7823 sizeof(crtc_state->dpll_hw_state));
7825 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7826 if (intel_panel_use_ssc(dev_priv)) {
7827 refclk = dev_priv->vbt.lvds_ssc_freq;
7828 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7831 limit = &intel_limits_i8xx_lvds;
7832 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7833 limit = &intel_limits_i8xx_dvo;
7834 } else {
7835 limit = &intel_limits_i8xx_dac;
7838 if (!crtc_state->clock_set &&
7839 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7840 refclk, NULL, &crtc_state->dpll)) {
7841 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7842 return -EINVAL;
7845 i8xx_compute_dpll(crtc, crtc_state, NULL);
7847 return 0;
7850 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7851 struct intel_crtc_state *crtc_state)
7853 struct drm_device *dev = crtc->base.dev;
7854 struct drm_i915_private *dev_priv = dev->dev_private;
7855 const intel_limit_t *limit;
7856 int refclk = 96000;
7858 memset(&crtc_state->dpll_hw_state, 0,
7859 sizeof(crtc_state->dpll_hw_state));
7861 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7862 if (intel_panel_use_ssc(dev_priv)) {
7863 refclk = dev_priv->vbt.lvds_ssc_freq;
7864 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7867 if (intel_is_dual_link_lvds(dev))
7868 limit = &intel_limits_g4x_dual_channel_lvds;
7869 else
7870 limit = &intel_limits_g4x_single_channel_lvds;
7871 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7872 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7873 limit = &intel_limits_g4x_hdmi;
7874 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7875 limit = &intel_limits_g4x_sdvo;
7876 } else {
7877 /* The option is for other outputs */
7878 limit = &intel_limits_i9xx_sdvo;
7881 if (!crtc_state->clock_set &&
7882 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7883 refclk, NULL, &crtc_state->dpll)) {
7884 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7885 return -EINVAL;
7888 i9xx_compute_dpll(crtc, crtc_state, NULL);
7890 return 0;
7893 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7894 struct intel_crtc_state *crtc_state)
7896 struct drm_device *dev = crtc->base.dev;
7897 struct drm_i915_private *dev_priv = dev->dev_private;
7898 const intel_limit_t *limit;
7899 int refclk = 96000;
7901 memset(&crtc_state->dpll_hw_state, 0,
7902 sizeof(crtc_state->dpll_hw_state));
7904 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7905 if (intel_panel_use_ssc(dev_priv)) {
7906 refclk = dev_priv->vbt.lvds_ssc_freq;
7907 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7910 limit = &intel_limits_pineview_lvds;
7911 } else {
7912 limit = &intel_limits_pineview_sdvo;
7915 if (!crtc_state->clock_set &&
7916 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7917 refclk, NULL, &crtc_state->dpll)) {
7918 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7919 return -EINVAL;
7922 i9xx_compute_dpll(crtc, crtc_state, NULL);
7924 return 0;
7927 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7928 struct intel_crtc_state *crtc_state)
7930 struct drm_device *dev = crtc->base.dev;
7931 struct drm_i915_private *dev_priv = dev->dev_private;
7932 const intel_limit_t *limit;
7933 int refclk = 96000;
7935 memset(&crtc_state->dpll_hw_state, 0,
7936 sizeof(crtc_state->dpll_hw_state));
7938 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7939 if (intel_panel_use_ssc(dev_priv)) {
7940 refclk = dev_priv->vbt.lvds_ssc_freq;
7941 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7944 limit = &intel_limits_i9xx_lvds;
7945 } else {
7946 limit = &intel_limits_i9xx_sdvo;
7949 if (!crtc_state->clock_set &&
7950 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7951 refclk, NULL, &crtc_state->dpll)) {
7952 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7953 return -EINVAL;
7956 i9xx_compute_dpll(crtc, crtc_state, NULL);
7958 return 0;
7961 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7962 struct intel_crtc_state *crtc_state)
7964 int refclk = 100000;
7965 const intel_limit_t *limit = &intel_limits_chv;
7967 memset(&crtc_state->dpll_hw_state, 0,
7968 sizeof(crtc_state->dpll_hw_state));
7970 if (!crtc_state->clock_set &&
7971 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7972 refclk, NULL, &crtc_state->dpll)) {
7973 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7974 return -EINVAL;
7977 chv_compute_dpll(crtc, crtc_state);
7979 return 0;
7982 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7983 struct intel_crtc_state *crtc_state)
7985 int refclk = 100000;
7986 const intel_limit_t *limit = &intel_limits_vlv;
7988 memset(&crtc_state->dpll_hw_state, 0,
7989 sizeof(crtc_state->dpll_hw_state));
7991 if (!crtc_state->clock_set &&
7992 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7993 refclk, NULL, &crtc_state->dpll)) {
7994 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7995 return -EINVAL;
7998 vlv_compute_dpll(crtc, crtc_state);
8000 return 0;
8003 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8004 struct intel_crtc_state *pipe_config)
8006 struct drm_device *dev = crtc->base.dev;
8007 struct drm_i915_private *dev_priv = dev->dev_private;
8008 uint32_t tmp;
8010 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8011 return;
8013 tmp = I915_READ(PFIT_CONTROL);
8014 if (!(tmp & PFIT_ENABLE))
8015 return;
8017 /* Check whether the pfit is attached to our pipe. */
8018 if (INTEL_INFO(dev)->gen < 4) {
8019 if (crtc->pipe != PIPE_B)
8020 return;
8021 } else {
8022 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8023 return;
8026 pipe_config->gmch_pfit.control = tmp;
8027 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8030 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8031 struct intel_crtc_state *pipe_config)
8033 struct drm_device *dev = crtc->base.dev;
8034 struct drm_i915_private *dev_priv = dev->dev_private;
8035 int pipe = pipe_config->cpu_transcoder;
8036 intel_clock_t clock;
8037 u32 mdiv;
8038 int refclk = 100000;
8040 /* In case of DSI, DPLL will not be used */
8041 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8042 return;
8044 mutex_lock(&dev_priv->sb_lock);
8045 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8046 mutex_unlock(&dev_priv->sb_lock);
8048 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8049 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8050 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8051 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8052 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8054 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8057 static void
8058 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8059 struct intel_initial_plane_config *plane_config)
8061 struct drm_device *dev = crtc->base.dev;
8062 struct drm_i915_private *dev_priv = dev->dev_private;
8063 u32 val, base, offset;
8064 int pipe = crtc->pipe, plane = crtc->plane;
8065 int fourcc, pixel_format;
8066 unsigned int aligned_height;
8067 struct drm_framebuffer *fb;
8068 struct intel_framebuffer *intel_fb;
8070 val = I915_READ(DSPCNTR(plane));
8071 if (!(val & DISPLAY_PLANE_ENABLE))
8072 return;
8074 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8075 if (!intel_fb) {
8076 DRM_DEBUG_KMS("failed to alloc fb\n");
8077 return;
8080 fb = &intel_fb->base;
8082 if (INTEL_INFO(dev)->gen >= 4) {
8083 if (val & DISPPLANE_TILED) {
8084 plane_config->tiling = I915_TILING_X;
8085 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8089 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8090 fourcc = i9xx_format_to_fourcc(pixel_format);
8091 fb->pixel_format = fourcc;
8092 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8094 if (INTEL_INFO(dev)->gen >= 4) {
8095 if (plane_config->tiling)
8096 offset = I915_READ(DSPTILEOFF(plane));
8097 else
8098 offset = I915_READ(DSPLINOFF(plane));
8099 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8100 } else {
8101 base = I915_READ(DSPADDR(plane));
8103 plane_config->base = base;
8105 val = I915_READ(PIPESRC(pipe));
8106 fb->width = ((val >> 16) & 0xfff) + 1;
8107 fb->height = ((val >> 0) & 0xfff) + 1;
8109 val = I915_READ(DSPSTRIDE(pipe));
8110 fb->pitches[0] = val & 0xffffffc0;
8112 aligned_height = intel_fb_align_height(dev, fb->height,
8113 fb->pixel_format,
8114 fb->modifier[0]);
8116 plane_config->size = fb->pitches[0] * aligned_height;
8118 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8119 pipe_name(pipe), plane, fb->width, fb->height,
8120 fb->bits_per_pixel, base, fb->pitches[0],
8121 plane_config->size);
8123 plane_config->fb = intel_fb;
8126 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8127 struct intel_crtc_state *pipe_config)
8129 struct drm_device *dev = crtc->base.dev;
8130 struct drm_i915_private *dev_priv = dev->dev_private;
8131 int pipe = pipe_config->cpu_transcoder;
8132 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8133 intel_clock_t clock;
8134 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8135 int refclk = 100000;
8137 /* In case of DSI, DPLL will not be used */
8138 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8139 return;
8141 mutex_lock(&dev_priv->sb_lock);
8142 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8143 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8144 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8145 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8146 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8147 mutex_unlock(&dev_priv->sb_lock);
8149 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8150 clock.m2 = (pll_dw0 & 0xff) << 22;
8151 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8152 clock.m2 |= pll_dw2 & 0x3fffff;
8153 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8154 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8155 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8157 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8160 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8161 struct intel_crtc_state *pipe_config)
8163 struct drm_device *dev = crtc->base.dev;
8164 struct drm_i915_private *dev_priv = dev->dev_private;
8165 enum intel_display_power_domain power_domain;
8166 uint32_t tmp;
8167 bool ret;
8169 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8170 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8171 return false;
8173 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8174 pipe_config->shared_dpll = NULL;
8176 ret = false;
8178 tmp = I915_READ(PIPECONF(crtc->pipe));
8179 if (!(tmp & PIPECONF_ENABLE))
8180 goto out;
8182 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8183 switch (tmp & PIPECONF_BPC_MASK) {
8184 case PIPECONF_6BPC:
8185 pipe_config->pipe_bpp = 18;
8186 break;
8187 case PIPECONF_8BPC:
8188 pipe_config->pipe_bpp = 24;
8189 break;
8190 case PIPECONF_10BPC:
8191 pipe_config->pipe_bpp = 30;
8192 break;
8193 default:
8194 break;
8198 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8199 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8200 pipe_config->limited_color_range = true;
8202 if (INTEL_INFO(dev)->gen < 4)
8203 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8205 intel_get_pipe_timings(crtc, pipe_config);
8206 intel_get_pipe_src_size(crtc, pipe_config);
8208 i9xx_get_pfit_config(crtc, pipe_config);
8210 if (INTEL_INFO(dev)->gen >= 4) {
8211 /* No way to read it out on pipes B and C */
8212 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8213 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8214 else
8215 tmp = I915_READ(DPLL_MD(crtc->pipe));
8216 pipe_config->pixel_multiplier =
8217 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8218 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8219 pipe_config->dpll_hw_state.dpll_md = tmp;
8220 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8221 tmp = I915_READ(DPLL(crtc->pipe));
8222 pipe_config->pixel_multiplier =
8223 ((tmp & SDVO_MULTIPLIER_MASK)
8224 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8225 } else {
8226 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8227 * port and will be fixed up in the encoder->get_config
8228 * function. */
8229 pipe_config->pixel_multiplier = 1;
8231 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8232 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8234 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8235 * on 830. Filter it out here so that we don't
8236 * report errors due to that.
8238 if (IS_I830(dev))
8239 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8241 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8242 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8243 } else {
8244 /* Mask out read-only status bits. */
8245 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8246 DPLL_PORTC_READY_MASK |
8247 DPLL_PORTB_READY_MASK);
8250 if (IS_CHERRYVIEW(dev))
8251 chv_crtc_clock_get(crtc, pipe_config);
8252 else if (IS_VALLEYVIEW(dev))
8253 vlv_crtc_clock_get(crtc, pipe_config);
8254 else
8255 i9xx_crtc_clock_get(crtc, pipe_config);
8258 * Normally the dotclock is filled in by the encoder .get_config()
8259 * but in case the pipe is enabled w/o any ports we need a sane
8260 * default.
8262 pipe_config->base.adjusted_mode.crtc_clock =
8263 pipe_config->port_clock / pipe_config->pixel_multiplier;
8265 ret = true;
8267 out:
8268 intel_display_power_put(dev_priv, power_domain);
8270 return ret;
8273 static void ironlake_init_pch_refclk(struct drm_device *dev)
8275 struct drm_i915_private *dev_priv = dev->dev_private;
8276 struct intel_encoder *encoder;
8277 int i;
8278 u32 val, final;
8279 bool has_lvds = false;
8280 bool has_cpu_edp = false;
8281 bool has_panel = false;
8282 bool has_ck505 = false;
8283 bool can_ssc = false;
8284 bool using_ssc_source = false;
8286 /* We need to take the global config into account */
8287 for_each_intel_encoder(dev, encoder) {
8288 switch (encoder->type) {
8289 case INTEL_OUTPUT_LVDS:
8290 has_panel = true;
8291 has_lvds = true;
8292 break;
8293 case INTEL_OUTPUT_EDP:
8294 has_panel = true;
8295 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8296 has_cpu_edp = true;
8297 break;
8298 default:
8299 break;
8303 if (HAS_PCH_IBX(dev)) {
8304 has_ck505 = dev_priv->vbt.display_clock_mode;
8305 can_ssc = has_ck505;
8306 } else {
8307 has_ck505 = false;
8308 can_ssc = true;
8311 /* Check if any DPLLs are using the SSC source */
8312 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8313 u32 temp = I915_READ(PCH_DPLL(i));
8315 if (!(temp & DPLL_VCO_ENABLE))
8316 continue;
8318 if ((temp & PLL_REF_INPUT_MASK) ==
8319 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8320 using_ssc_source = true;
8321 break;
8325 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8326 has_panel, has_lvds, has_ck505, using_ssc_source);
8328 /* Ironlake: try to setup display ref clock before DPLL
8329 * enabling. This is only under driver's control after
8330 * PCH B stepping, previous chipset stepping should be
8331 * ignoring this setting.
8333 val = I915_READ(PCH_DREF_CONTROL);
8335 /* As we must carefully and slowly disable/enable each source in turn,
8336 * compute the final state we want first and check if we need to
8337 * make any changes at all.
8339 final = val;
8340 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8341 if (has_ck505)
8342 final |= DREF_NONSPREAD_CK505_ENABLE;
8343 else
8344 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8346 final &= ~DREF_SSC_SOURCE_MASK;
8347 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8348 final &= ~DREF_SSC1_ENABLE;
8350 if (has_panel) {
8351 final |= DREF_SSC_SOURCE_ENABLE;
8353 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8354 final |= DREF_SSC1_ENABLE;
8356 if (has_cpu_edp) {
8357 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8358 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8359 else
8360 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8361 } else
8362 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8363 } else if (using_ssc_source) {
8364 final |= DREF_SSC_SOURCE_ENABLE;
8365 final |= DREF_SSC1_ENABLE;
8368 if (final == val)
8369 return;
8371 /* Always enable nonspread source */
8372 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8374 if (has_ck505)
8375 val |= DREF_NONSPREAD_CK505_ENABLE;
8376 else
8377 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8379 if (has_panel) {
8380 val &= ~DREF_SSC_SOURCE_MASK;
8381 val |= DREF_SSC_SOURCE_ENABLE;
8383 /* SSC must be turned on before enabling the CPU output */
8384 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8385 DRM_DEBUG_KMS("Using SSC on panel\n");
8386 val |= DREF_SSC1_ENABLE;
8387 } else
8388 val &= ~DREF_SSC1_ENABLE;
8390 /* Get SSC going before enabling the outputs */
8391 I915_WRITE(PCH_DREF_CONTROL, val);
8392 POSTING_READ(PCH_DREF_CONTROL);
8393 udelay(200);
8395 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8397 /* Enable CPU source on CPU attached eDP */
8398 if (has_cpu_edp) {
8399 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8400 DRM_DEBUG_KMS("Using SSC on eDP\n");
8401 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8402 } else
8403 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8404 } else
8405 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8407 I915_WRITE(PCH_DREF_CONTROL, val);
8408 POSTING_READ(PCH_DREF_CONTROL);
8409 udelay(200);
8410 } else {
8411 DRM_DEBUG_KMS("Disabling CPU source output\n");
8413 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8415 /* Turn off CPU output */
8416 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8418 I915_WRITE(PCH_DREF_CONTROL, val);
8419 POSTING_READ(PCH_DREF_CONTROL);
8420 udelay(200);
8422 if (!using_ssc_source) {
8423 DRM_DEBUG_KMS("Disabling SSC source\n");
8425 /* Turn off the SSC source */
8426 val &= ~DREF_SSC_SOURCE_MASK;
8427 val |= DREF_SSC_SOURCE_DISABLE;
8429 /* Turn off SSC1 */
8430 val &= ~DREF_SSC1_ENABLE;
8432 I915_WRITE(PCH_DREF_CONTROL, val);
8433 POSTING_READ(PCH_DREF_CONTROL);
8434 udelay(200);
8438 BUG_ON(val != final);
8441 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8443 uint32_t tmp;
8445 tmp = I915_READ(SOUTH_CHICKEN2);
8446 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8447 I915_WRITE(SOUTH_CHICKEN2, tmp);
8449 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8450 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8451 DRM_ERROR("FDI mPHY reset assert timeout\n");
8453 tmp = I915_READ(SOUTH_CHICKEN2);
8454 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8455 I915_WRITE(SOUTH_CHICKEN2, tmp);
8457 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8458 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8459 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8462 /* WaMPhyProgramming:hsw */
8463 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8465 uint32_t tmp;
8467 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8468 tmp &= ~(0xFF << 24);
8469 tmp |= (0x12 << 24);
8470 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8472 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8473 tmp |= (1 << 11);
8474 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8476 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8477 tmp |= (1 << 11);
8478 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8480 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8481 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8482 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8484 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8485 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8486 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8488 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8489 tmp &= ~(7 << 13);
8490 tmp |= (5 << 13);
8491 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8493 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8494 tmp &= ~(7 << 13);
8495 tmp |= (5 << 13);
8496 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8498 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8499 tmp &= ~0xFF;
8500 tmp |= 0x1C;
8501 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8503 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8504 tmp &= ~0xFF;
8505 tmp |= 0x1C;
8506 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8508 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8509 tmp &= ~(0xFF << 16);
8510 tmp |= (0x1C << 16);
8511 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8513 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8514 tmp &= ~(0xFF << 16);
8515 tmp |= (0x1C << 16);
8516 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8518 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8519 tmp |= (1 << 27);
8520 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8522 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8523 tmp |= (1 << 27);
8524 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8526 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8527 tmp &= ~(0xF << 28);
8528 tmp |= (4 << 28);
8529 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8531 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8532 tmp &= ~(0xF << 28);
8533 tmp |= (4 << 28);
8534 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8537 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8538 * Programming" based on the parameters passed:
8539 * - Sequence to enable CLKOUT_DP
8540 * - Sequence to enable CLKOUT_DP without spread
8541 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8543 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8544 bool with_fdi)
8546 struct drm_i915_private *dev_priv = dev->dev_private;
8547 uint32_t reg, tmp;
8549 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8550 with_spread = true;
8551 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8552 with_fdi = false;
8554 mutex_lock(&dev_priv->sb_lock);
8556 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8557 tmp &= ~SBI_SSCCTL_DISABLE;
8558 tmp |= SBI_SSCCTL_PATHALT;
8559 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8561 udelay(24);
8563 if (with_spread) {
8564 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8565 tmp &= ~SBI_SSCCTL_PATHALT;
8566 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8568 if (with_fdi) {
8569 lpt_reset_fdi_mphy(dev_priv);
8570 lpt_program_fdi_mphy(dev_priv);
8574 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8575 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8576 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8577 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8579 mutex_unlock(&dev_priv->sb_lock);
8582 /* Sequence to disable CLKOUT_DP */
8583 static void lpt_disable_clkout_dp(struct drm_device *dev)
8585 struct drm_i915_private *dev_priv = dev->dev_private;
8586 uint32_t reg, tmp;
8588 mutex_lock(&dev_priv->sb_lock);
8590 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8591 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8592 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8593 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8595 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8596 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8597 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8598 tmp |= SBI_SSCCTL_PATHALT;
8599 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8600 udelay(32);
8602 tmp |= SBI_SSCCTL_DISABLE;
8603 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8606 mutex_unlock(&dev_priv->sb_lock);
8609 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8611 static const uint16_t sscdivintphase[] = {
8612 [BEND_IDX( 50)] = 0x3B23,
8613 [BEND_IDX( 45)] = 0x3B23,
8614 [BEND_IDX( 40)] = 0x3C23,
8615 [BEND_IDX( 35)] = 0x3C23,
8616 [BEND_IDX( 30)] = 0x3D23,
8617 [BEND_IDX( 25)] = 0x3D23,
8618 [BEND_IDX( 20)] = 0x3E23,
8619 [BEND_IDX( 15)] = 0x3E23,
8620 [BEND_IDX( 10)] = 0x3F23,
8621 [BEND_IDX( 5)] = 0x3F23,
8622 [BEND_IDX( 0)] = 0x0025,
8623 [BEND_IDX( -5)] = 0x0025,
8624 [BEND_IDX(-10)] = 0x0125,
8625 [BEND_IDX(-15)] = 0x0125,
8626 [BEND_IDX(-20)] = 0x0225,
8627 [BEND_IDX(-25)] = 0x0225,
8628 [BEND_IDX(-30)] = 0x0325,
8629 [BEND_IDX(-35)] = 0x0325,
8630 [BEND_IDX(-40)] = 0x0425,
8631 [BEND_IDX(-45)] = 0x0425,
8632 [BEND_IDX(-50)] = 0x0525,
8636 * Bend CLKOUT_DP
8637 * steps -50 to 50 inclusive, in steps of 5
8638 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8639 * change in clock period = -(steps / 10) * 5.787 ps
8641 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8643 uint32_t tmp;
8644 int idx = BEND_IDX(steps);
8646 if (WARN_ON(steps % 5 != 0))
8647 return;
8649 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8650 return;
8652 mutex_lock(&dev_priv->sb_lock);
8654 if (steps % 10 != 0)
8655 tmp = 0xAAAAAAAB;
8656 else
8657 tmp = 0x00000000;
8658 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8660 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8661 tmp &= 0xffff0000;
8662 tmp |= sscdivintphase[idx];
8663 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8665 mutex_unlock(&dev_priv->sb_lock);
8668 #undef BEND_IDX
8670 static void lpt_init_pch_refclk(struct drm_device *dev)
8672 struct intel_encoder *encoder;
8673 bool has_vga = false;
8675 for_each_intel_encoder(dev, encoder) {
8676 switch (encoder->type) {
8677 case INTEL_OUTPUT_ANALOG:
8678 has_vga = true;
8679 break;
8680 default:
8681 break;
8685 if (has_vga) {
8686 lpt_bend_clkout_dp(to_i915(dev), 0);
8687 lpt_enable_clkout_dp(dev, true, true);
8688 } else {
8689 lpt_disable_clkout_dp(dev);
8694 * Initialize reference clocks when the driver loads
8696 void intel_init_pch_refclk(struct drm_device *dev)
8698 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8699 ironlake_init_pch_refclk(dev);
8700 else if (HAS_PCH_LPT(dev))
8701 lpt_init_pch_refclk(dev);
8704 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8706 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8707 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8708 int pipe = intel_crtc->pipe;
8709 uint32_t val;
8711 val = 0;
8713 switch (intel_crtc->config->pipe_bpp) {
8714 case 18:
8715 val |= PIPECONF_6BPC;
8716 break;
8717 case 24:
8718 val |= PIPECONF_8BPC;
8719 break;
8720 case 30:
8721 val |= PIPECONF_10BPC;
8722 break;
8723 case 36:
8724 val |= PIPECONF_12BPC;
8725 break;
8726 default:
8727 /* Case prevented by intel_choose_pipe_bpp_dither. */
8728 BUG();
8731 if (intel_crtc->config->dither)
8732 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8734 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8735 val |= PIPECONF_INTERLACED_ILK;
8736 else
8737 val |= PIPECONF_PROGRESSIVE;
8739 if (intel_crtc->config->limited_color_range)
8740 val |= PIPECONF_COLOR_RANGE_SELECT;
8742 I915_WRITE(PIPECONF(pipe), val);
8743 POSTING_READ(PIPECONF(pipe));
8746 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8748 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8750 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8751 u32 val = 0;
8753 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8754 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8756 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8757 val |= PIPECONF_INTERLACED_ILK;
8758 else
8759 val |= PIPECONF_PROGRESSIVE;
8761 I915_WRITE(PIPECONF(cpu_transcoder), val);
8762 POSTING_READ(PIPECONF(cpu_transcoder));
8765 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8767 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8770 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8771 u32 val = 0;
8773 switch (intel_crtc->config->pipe_bpp) {
8774 case 18:
8775 val |= PIPEMISC_DITHER_6_BPC;
8776 break;
8777 case 24:
8778 val |= PIPEMISC_DITHER_8_BPC;
8779 break;
8780 case 30:
8781 val |= PIPEMISC_DITHER_10_BPC;
8782 break;
8783 case 36:
8784 val |= PIPEMISC_DITHER_12_BPC;
8785 break;
8786 default:
8787 /* Case prevented by pipe_config_set_bpp. */
8788 BUG();
8791 if (intel_crtc->config->dither)
8792 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8794 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8798 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8801 * Account for spread spectrum to avoid
8802 * oversubscribing the link. Max center spread
8803 * is 2.5%; use 5% for safety's sake.
8805 u32 bps = target_clock * bpp * 21 / 20;
8806 return DIV_ROUND_UP(bps, link_bw * 8);
8809 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8811 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8814 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8815 struct intel_crtc_state *crtc_state,
8816 intel_clock_t *reduced_clock)
8818 struct drm_crtc *crtc = &intel_crtc->base;
8819 struct drm_device *dev = crtc->dev;
8820 struct drm_i915_private *dev_priv = dev->dev_private;
8821 struct drm_atomic_state *state = crtc_state->base.state;
8822 struct drm_connector *connector;
8823 struct drm_connector_state *connector_state;
8824 struct intel_encoder *encoder;
8825 u32 dpll, fp, fp2;
8826 int factor, i;
8827 bool is_lvds = false, is_sdvo = false;
8829 for_each_connector_in_state(state, connector, connector_state, i) {
8830 if (connector_state->crtc != crtc_state->base.crtc)
8831 continue;
8833 encoder = to_intel_encoder(connector_state->best_encoder);
8835 switch (encoder->type) {
8836 case INTEL_OUTPUT_LVDS:
8837 is_lvds = true;
8838 break;
8839 case INTEL_OUTPUT_SDVO:
8840 case INTEL_OUTPUT_HDMI:
8841 is_sdvo = true;
8842 break;
8843 default:
8844 break;
8848 /* Enable autotuning of the PLL clock (if permissible) */
8849 factor = 21;
8850 if (is_lvds) {
8851 if ((intel_panel_use_ssc(dev_priv) &&
8852 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8853 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8854 factor = 25;
8855 } else if (crtc_state->sdvo_tv_clock)
8856 factor = 20;
8858 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8860 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8861 fp |= FP_CB_TUNE;
8863 if (reduced_clock) {
8864 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8866 if (reduced_clock->m < factor * reduced_clock->n)
8867 fp2 |= FP_CB_TUNE;
8868 } else {
8869 fp2 = fp;
8872 dpll = 0;
8874 if (is_lvds)
8875 dpll |= DPLLB_MODE_LVDS;
8876 else
8877 dpll |= DPLLB_MODE_DAC_SERIAL;
8879 dpll |= (crtc_state->pixel_multiplier - 1)
8880 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8882 if (is_sdvo)
8883 dpll |= DPLL_SDVO_HIGH_SPEED;
8884 if (crtc_state->has_dp_encoder)
8885 dpll |= DPLL_SDVO_HIGH_SPEED;
8887 /* compute bitmask from p1 value */
8888 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8889 /* also FPA1 */
8890 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8892 switch (crtc_state->dpll.p2) {
8893 case 5:
8894 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8895 break;
8896 case 7:
8897 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8898 break;
8899 case 10:
8900 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8901 break;
8902 case 14:
8903 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8904 break;
8907 if (is_lvds && intel_panel_use_ssc(dev_priv))
8908 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8909 else
8910 dpll |= PLL_REF_INPUT_DREFCLK;
8912 dpll |= DPLL_VCO_ENABLE;
8914 crtc_state->dpll_hw_state.dpll = dpll;
8915 crtc_state->dpll_hw_state.fp0 = fp;
8916 crtc_state->dpll_hw_state.fp1 = fp2;
8919 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8920 struct intel_crtc_state *crtc_state)
8922 struct drm_device *dev = crtc->base.dev;
8923 struct drm_i915_private *dev_priv = dev->dev_private;
8924 intel_clock_t reduced_clock;
8925 bool has_reduced_clock = false;
8926 struct intel_shared_dpll *pll;
8927 const intel_limit_t *limit;
8928 int refclk = 120000;
8930 memset(&crtc_state->dpll_hw_state, 0,
8931 sizeof(crtc_state->dpll_hw_state));
8933 crtc->lowfreq_avail = false;
8935 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8936 if (!crtc_state->has_pch_encoder)
8937 return 0;
8939 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8940 if (intel_panel_use_ssc(dev_priv)) {
8941 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8942 dev_priv->vbt.lvds_ssc_freq);
8943 refclk = dev_priv->vbt.lvds_ssc_freq;
8946 if (intel_is_dual_link_lvds(dev)) {
8947 if (refclk == 100000)
8948 limit = &intel_limits_ironlake_dual_lvds_100m;
8949 else
8950 limit = &intel_limits_ironlake_dual_lvds;
8951 } else {
8952 if (refclk == 100000)
8953 limit = &intel_limits_ironlake_single_lvds_100m;
8954 else
8955 limit = &intel_limits_ironlake_single_lvds;
8957 } else {
8958 limit = &intel_limits_ironlake_dac;
8961 if (!crtc_state->clock_set &&
8962 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8963 refclk, NULL, &crtc_state->dpll)) {
8964 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8965 return -EINVAL;
8968 ironlake_compute_dpll(crtc, crtc_state,
8969 has_reduced_clock ? &reduced_clock : NULL);
8971 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8972 if (pll == NULL) {
8973 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8974 pipe_name(crtc->pipe));
8975 return -EINVAL;
8978 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8979 has_reduced_clock)
8980 crtc->lowfreq_avail = true;
8982 return 0;
8985 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8986 struct intel_link_m_n *m_n)
8988 struct drm_device *dev = crtc->base.dev;
8989 struct drm_i915_private *dev_priv = dev->dev_private;
8990 enum i915_pipe pipe = crtc->pipe;
8992 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8993 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8994 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8995 & ~TU_SIZE_MASK;
8996 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8997 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8998 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9001 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9002 enum transcoder transcoder,
9003 struct intel_link_m_n *m_n,
9004 struct intel_link_m_n *m2_n2)
9006 struct drm_device *dev = crtc->base.dev;
9007 struct drm_i915_private *dev_priv = dev->dev_private;
9008 enum i915_pipe pipe = crtc->pipe;
9010 if (INTEL_INFO(dev)->gen >= 5) {
9011 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9012 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9013 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9014 & ~TU_SIZE_MASK;
9015 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9016 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9017 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9018 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9019 * gen < 8) and if DRRS is supported (to make sure the
9020 * registers are not unnecessarily read).
9022 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9023 crtc->config->has_drrs) {
9024 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9025 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9026 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9027 & ~TU_SIZE_MASK;
9028 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9029 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9030 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9032 } else {
9033 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9034 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9035 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9036 & ~TU_SIZE_MASK;
9037 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9038 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9039 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9043 void intel_dp_get_m_n(struct intel_crtc *crtc,
9044 struct intel_crtc_state *pipe_config)
9046 if (pipe_config->has_pch_encoder)
9047 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9048 else
9049 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9050 &pipe_config->dp_m_n,
9051 &pipe_config->dp_m2_n2);
9054 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9055 struct intel_crtc_state *pipe_config)
9057 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9058 &pipe_config->fdi_m_n, NULL);
9061 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9062 struct intel_crtc_state *pipe_config)
9064 struct drm_device *dev = crtc->base.dev;
9065 struct drm_i915_private *dev_priv = dev->dev_private;
9066 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9067 uint32_t ps_ctrl = 0;
9068 int id = -1;
9069 int i;
9071 /* find scaler attached to this pipe */
9072 for (i = 0; i < crtc->num_scalers; i++) {
9073 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9074 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9075 id = i;
9076 pipe_config->pch_pfit.enabled = true;
9077 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9078 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9079 break;
9083 scaler_state->scaler_id = id;
9084 if (id >= 0) {
9085 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9086 } else {
9087 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9091 static void
9092 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9093 struct intel_initial_plane_config *plane_config)
9095 struct drm_device *dev = crtc->base.dev;
9096 struct drm_i915_private *dev_priv = dev->dev_private;
9097 u32 val, base, offset, stride_mult, tiling;
9098 int pipe = crtc->pipe;
9099 int fourcc, pixel_format;
9100 unsigned int aligned_height;
9101 struct drm_framebuffer *fb;
9102 struct intel_framebuffer *intel_fb;
9104 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9105 if (!intel_fb) {
9106 DRM_DEBUG_KMS("failed to alloc fb\n");
9107 return;
9110 fb = &intel_fb->base;
9112 val = I915_READ(PLANE_CTL(pipe, 0));
9113 if (!(val & PLANE_CTL_ENABLE))
9114 goto error;
9116 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9117 fourcc = skl_format_to_fourcc(pixel_format,
9118 val & PLANE_CTL_ORDER_RGBX,
9119 val & PLANE_CTL_ALPHA_MASK);
9120 fb->pixel_format = fourcc;
9121 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9123 tiling = val & PLANE_CTL_TILED_MASK;
9124 switch (tiling) {
9125 case PLANE_CTL_TILED_LINEAR:
9126 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9127 break;
9128 case PLANE_CTL_TILED_X:
9129 plane_config->tiling = I915_TILING_X;
9130 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9131 break;
9132 case PLANE_CTL_TILED_Y:
9133 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9134 break;
9135 case PLANE_CTL_TILED_YF:
9136 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9137 break;
9138 default:
9139 MISSING_CASE(tiling);
9140 goto error;
9143 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9144 plane_config->base = base;
9146 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9148 val = I915_READ(PLANE_SIZE(pipe, 0));
9149 fb->height = ((val >> 16) & 0xfff) + 1;
9150 fb->width = ((val >> 0) & 0x1fff) + 1;
9152 val = I915_READ(PLANE_STRIDE(pipe, 0));
9153 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9154 fb->pixel_format);
9155 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9157 aligned_height = intel_fb_align_height(dev, fb->height,
9158 fb->pixel_format,
9159 fb->modifier[0]);
9161 plane_config->size = fb->pitches[0] * aligned_height;
9163 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9164 pipe_name(pipe), fb->width, fb->height,
9165 fb->bits_per_pixel, base, fb->pitches[0],
9166 plane_config->size);
9168 plane_config->fb = intel_fb;
9169 return;
9171 error:
9172 kfree(fb);
9175 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9176 struct intel_crtc_state *pipe_config)
9178 struct drm_device *dev = crtc->base.dev;
9179 struct drm_i915_private *dev_priv = dev->dev_private;
9180 uint32_t tmp;
9182 tmp = I915_READ(PF_CTL(crtc->pipe));
9184 if (tmp & PF_ENABLE) {
9185 pipe_config->pch_pfit.enabled = true;
9186 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9187 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9189 /* We currently do not free assignements of panel fitters on
9190 * ivb/hsw (since we don't use the higher upscaling modes which
9191 * differentiates them) so just WARN about this case for now. */
9192 if (IS_GEN7(dev)) {
9193 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9194 PF_PIPE_SEL_IVB(crtc->pipe));
9199 static void
9200 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9201 struct intel_initial_plane_config *plane_config)
9203 struct drm_device *dev = crtc->base.dev;
9204 struct drm_i915_private *dev_priv = dev->dev_private;
9205 u32 val, base, offset;
9206 int pipe = crtc->pipe;
9207 int fourcc, pixel_format;
9208 unsigned int aligned_height;
9209 struct drm_framebuffer *fb;
9210 struct intel_framebuffer *intel_fb;
9212 val = I915_READ(DSPCNTR(pipe));
9213 if (!(val & DISPLAY_PLANE_ENABLE))
9214 return;
9216 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9217 if (!intel_fb) {
9218 DRM_DEBUG_KMS("failed to alloc fb\n");
9219 return;
9222 fb = &intel_fb->base;
9224 if (INTEL_INFO(dev)->gen >= 4) {
9225 if (val & DISPPLANE_TILED) {
9226 plane_config->tiling = I915_TILING_X;
9227 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9231 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9232 fourcc = i9xx_format_to_fourcc(pixel_format);
9233 fb->pixel_format = fourcc;
9234 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9236 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9237 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9238 offset = I915_READ(DSPOFFSET(pipe));
9239 } else {
9240 if (plane_config->tiling)
9241 offset = I915_READ(DSPTILEOFF(pipe));
9242 else
9243 offset = I915_READ(DSPLINOFF(pipe));
9245 plane_config->base = base;
9247 val = I915_READ(PIPESRC(pipe));
9248 fb->width = ((val >> 16) & 0xfff) + 1;
9249 fb->height = ((val >> 0) & 0xfff) + 1;
9251 val = I915_READ(DSPSTRIDE(pipe));
9252 fb->pitches[0] = val & 0xffffffc0;
9254 aligned_height = intel_fb_align_height(dev, fb->height,
9255 fb->pixel_format,
9256 fb->modifier[0]);
9258 plane_config->size = fb->pitches[0] * aligned_height;
9260 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9261 pipe_name(pipe), fb->width, fb->height,
9262 fb->bits_per_pixel, base, fb->pitches[0],
9263 plane_config->size);
9265 plane_config->fb = intel_fb;
9268 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9269 struct intel_crtc_state *pipe_config)
9271 struct drm_device *dev = crtc->base.dev;
9272 struct drm_i915_private *dev_priv = dev->dev_private;
9273 enum intel_display_power_domain power_domain;
9274 uint32_t tmp;
9275 bool ret;
9277 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9278 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9279 return false;
9281 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9282 pipe_config->shared_dpll = NULL;
9284 ret = false;
9285 tmp = I915_READ(PIPECONF(crtc->pipe));
9286 if (!(tmp & PIPECONF_ENABLE))
9287 goto out;
9289 switch (tmp & PIPECONF_BPC_MASK) {
9290 case PIPECONF_6BPC:
9291 pipe_config->pipe_bpp = 18;
9292 break;
9293 case PIPECONF_8BPC:
9294 pipe_config->pipe_bpp = 24;
9295 break;
9296 case PIPECONF_10BPC:
9297 pipe_config->pipe_bpp = 30;
9298 break;
9299 case PIPECONF_12BPC:
9300 pipe_config->pipe_bpp = 36;
9301 break;
9302 default:
9303 break;
9306 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9307 pipe_config->limited_color_range = true;
9309 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9310 struct intel_shared_dpll *pll;
9311 enum intel_dpll_id pll_id;
9313 pipe_config->has_pch_encoder = true;
9315 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9316 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9317 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9319 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9321 if (HAS_PCH_IBX(dev_priv)) {
9322 pll_id = (enum intel_dpll_id) crtc->pipe;
9323 } else {
9324 tmp = I915_READ(PCH_DPLL_SEL);
9325 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9326 pll_id = DPLL_ID_PCH_PLL_B;
9327 else
9328 pll_id= DPLL_ID_PCH_PLL_A;
9331 pipe_config->shared_dpll =
9332 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9333 pll = pipe_config->shared_dpll;
9335 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9336 &pipe_config->dpll_hw_state));
9338 tmp = pipe_config->dpll_hw_state.dpll;
9339 pipe_config->pixel_multiplier =
9340 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9341 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9343 ironlake_pch_clock_get(crtc, pipe_config);
9344 } else {
9345 pipe_config->pixel_multiplier = 1;
9348 intel_get_pipe_timings(crtc, pipe_config);
9349 intel_get_pipe_src_size(crtc, pipe_config);
9351 ironlake_get_pfit_config(crtc, pipe_config);
9353 ret = true;
9355 out:
9356 intel_display_power_put(dev_priv, power_domain);
9358 return ret;
9361 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9363 struct drm_device *dev = dev_priv->dev;
9364 struct intel_crtc *crtc;
9366 for_each_intel_crtc(dev, crtc)
9367 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9368 pipe_name(crtc->pipe));
9370 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9371 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9372 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9373 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9374 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9375 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9376 "CPU PWM1 enabled\n");
9377 if (IS_HASWELL(dev))
9378 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9379 "CPU PWM2 enabled\n");
9380 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9381 "PCH PWM1 enabled\n");
9382 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9383 "Utility pin enabled\n");
9384 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9387 * In theory we can still leave IRQs enabled, as long as only the HPD
9388 * interrupts remain enabled. We used to check for that, but since it's
9389 * gen-specific and since we only disable LCPLL after we fully disable
9390 * the interrupts, the check below should be enough.
9392 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9395 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9397 struct drm_device *dev = dev_priv->dev;
9399 if (IS_HASWELL(dev))
9400 return I915_READ(D_COMP_HSW);
9401 else
9402 return I915_READ(D_COMP_BDW);
9405 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9407 struct drm_device *dev = dev_priv->dev;
9409 if (IS_HASWELL(dev)) {
9410 mutex_lock(&dev_priv->rps.hw_lock);
9411 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9412 val))
9413 DRM_ERROR("Failed to write to D_COMP\n");
9414 mutex_unlock(&dev_priv->rps.hw_lock);
9415 } else {
9416 I915_WRITE(D_COMP_BDW, val);
9417 POSTING_READ(D_COMP_BDW);
9422 * This function implements pieces of two sequences from BSpec:
9423 * - Sequence for display software to disable LCPLL
9424 * - Sequence for display software to allow package C8+
9425 * The steps implemented here are just the steps that actually touch the LCPLL
9426 * register. Callers should take care of disabling all the display engine
9427 * functions, doing the mode unset, fixing interrupts, etc.
9429 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9430 bool switch_to_fclk, bool allow_power_down)
9432 uint32_t val;
9434 assert_can_disable_lcpll(dev_priv);
9436 val = I915_READ(LCPLL_CTL);
9438 if (switch_to_fclk) {
9439 val |= LCPLL_CD_SOURCE_FCLK;
9440 I915_WRITE(LCPLL_CTL, val);
9442 if (wait_for_us(I915_READ(LCPLL_CTL) &
9443 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9444 DRM_ERROR("Switching to FCLK failed\n");
9446 val = I915_READ(LCPLL_CTL);
9449 val |= LCPLL_PLL_DISABLE;
9450 I915_WRITE(LCPLL_CTL, val);
9451 POSTING_READ(LCPLL_CTL);
9453 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9454 DRM_ERROR("LCPLL still locked\n");
9456 val = hsw_read_dcomp(dev_priv);
9457 val |= D_COMP_COMP_DISABLE;
9458 hsw_write_dcomp(dev_priv, val);
9459 ndelay(100);
9461 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9463 DRM_ERROR("D_COMP RCOMP still in progress\n");
9465 if (allow_power_down) {
9466 val = I915_READ(LCPLL_CTL);
9467 val |= LCPLL_POWER_DOWN_ALLOW;
9468 I915_WRITE(LCPLL_CTL, val);
9469 POSTING_READ(LCPLL_CTL);
9474 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9475 * source.
9477 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9479 uint32_t val;
9481 val = I915_READ(LCPLL_CTL);
9483 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9484 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9485 return;
9488 * Make sure we're not on PC8 state before disabling PC8, otherwise
9489 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9491 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9493 if (val & LCPLL_POWER_DOWN_ALLOW) {
9494 val &= ~LCPLL_POWER_DOWN_ALLOW;
9495 I915_WRITE(LCPLL_CTL, val);
9496 POSTING_READ(LCPLL_CTL);
9499 val = hsw_read_dcomp(dev_priv);
9500 val |= D_COMP_COMP_FORCE;
9501 val &= ~D_COMP_COMP_DISABLE;
9502 hsw_write_dcomp(dev_priv, val);
9504 val = I915_READ(LCPLL_CTL);
9505 val &= ~LCPLL_PLL_DISABLE;
9506 I915_WRITE(LCPLL_CTL, val);
9508 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9509 DRM_ERROR("LCPLL not locked yet\n");
9511 if (val & LCPLL_CD_SOURCE_FCLK) {
9512 val = I915_READ(LCPLL_CTL);
9513 val &= ~LCPLL_CD_SOURCE_FCLK;
9514 I915_WRITE(LCPLL_CTL, val);
9516 if (wait_for_us((I915_READ(LCPLL_CTL) &
9517 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9518 DRM_ERROR("Switching back to LCPLL failed\n");
9521 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9522 intel_update_cdclk(dev_priv->dev);
9526 * Package states C8 and deeper are really deep PC states that can only be
9527 * reached when all the devices on the system allow it, so even if the graphics
9528 * device allows PC8+, it doesn't mean the system will actually get to these
9529 * states. Our driver only allows PC8+ when going into runtime PM.
9531 * The requirements for PC8+ are that all the outputs are disabled, the power
9532 * well is disabled and most interrupts are disabled, and these are also
9533 * requirements for runtime PM. When these conditions are met, we manually do
9534 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9535 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9536 * hang the machine.
9538 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9539 * the state of some registers, so when we come back from PC8+ we need to
9540 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9541 * need to take care of the registers kept by RC6. Notice that this happens even
9542 * if we don't put the device in PCI D3 state (which is what currently happens
9543 * because of the runtime PM support).
9545 * For more, read "Display Sequences for Package C8" on the hardware
9546 * documentation.
9548 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9550 struct drm_device *dev = dev_priv->dev;
9551 uint32_t val;
9553 DRM_DEBUG_KMS("Enabling package C8+\n");
9555 if (HAS_PCH_LPT_LP(dev)) {
9556 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9557 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9558 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9561 lpt_disable_clkout_dp(dev);
9562 hsw_disable_lcpll(dev_priv, true, true);
9565 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9567 struct drm_device *dev = dev_priv->dev;
9568 uint32_t val;
9570 DRM_DEBUG_KMS("Disabling package C8+\n");
9572 hsw_restore_lcpll(dev_priv);
9573 lpt_init_pch_refclk(dev);
9575 if (HAS_PCH_LPT_LP(dev)) {
9576 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9577 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9578 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9582 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9584 struct drm_device *dev = old_state->dev;
9585 struct intel_atomic_state *old_intel_state =
9586 to_intel_atomic_state(old_state);
9587 unsigned int req_cdclk = old_intel_state->dev_cdclk;
9589 broxton_set_cdclk(to_i915(dev), req_cdclk);
9592 /* compute the max rate for new configuration */
9593 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9595 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9596 struct drm_i915_private *dev_priv = state->dev->dev_private;
9597 struct drm_crtc *crtc;
9598 struct drm_crtc_state *cstate;
9599 struct intel_crtc_state *crtc_state;
9600 unsigned max_pixel_rate = 0, i;
9601 enum i915_pipe pipe;
9603 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9604 sizeof(intel_state->min_pixclk));
9606 for_each_crtc_in_state(state, crtc, cstate, i) {
9607 int pixel_rate;
9609 crtc_state = to_intel_crtc_state(cstate);
9610 if (!crtc_state->base.enable) {
9611 intel_state->min_pixclk[i] = 0;
9612 continue;
9615 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9617 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9618 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9619 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9621 intel_state->min_pixclk[i] = pixel_rate;
9624 for_each_pipe(dev_priv, pipe)
9625 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9627 return max_pixel_rate;
9630 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9632 struct drm_i915_private *dev_priv = dev->dev_private;
9633 uint32_t val, data;
9634 int ret;
9636 if (WARN((I915_READ(LCPLL_CTL) &
9637 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9638 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9639 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9640 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9641 "trying to change cdclk frequency with cdclk not enabled\n"))
9642 return;
9644 mutex_lock(&dev_priv->rps.hw_lock);
9645 ret = sandybridge_pcode_write(dev_priv,
9646 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9647 mutex_unlock(&dev_priv->rps.hw_lock);
9648 if (ret) {
9649 DRM_ERROR("failed to inform pcode about cdclk change\n");
9650 return;
9653 val = I915_READ(LCPLL_CTL);
9654 val |= LCPLL_CD_SOURCE_FCLK;
9655 I915_WRITE(LCPLL_CTL, val);
9657 if (wait_for_us(I915_READ(LCPLL_CTL) &
9658 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9659 DRM_ERROR("Switching to FCLK failed\n");
9661 val = I915_READ(LCPLL_CTL);
9662 val &= ~LCPLL_CLK_FREQ_MASK;
9664 switch (cdclk) {
9665 case 450000:
9666 val |= LCPLL_CLK_FREQ_450;
9667 data = 0;
9668 break;
9669 case 540000:
9670 val |= LCPLL_CLK_FREQ_54O_BDW;
9671 data = 1;
9672 break;
9673 case 337500:
9674 val |= LCPLL_CLK_FREQ_337_5_BDW;
9675 data = 2;
9676 break;
9677 case 675000:
9678 val |= LCPLL_CLK_FREQ_675_BDW;
9679 data = 3;
9680 break;
9681 default:
9682 WARN(1, "invalid cdclk frequency\n");
9683 return;
9686 I915_WRITE(LCPLL_CTL, val);
9688 val = I915_READ(LCPLL_CTL);
9689 val &= ~LCPLL_CD_SOURCE_FCLK;
9690 I915_WRITE(LCPLL_CTL, val);
9692 if (wait_for_us((I915_READ(LCPLL_CTL) &
9693 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9694 DRM_ERROR("Switching back to LCPLL failed\n");
9696 mutex_lock(&dev_priv->rps.hw_lock);
9697 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9698 mutex_unlock(&dev_priv->rps.hw_lock);
9700 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9702 intel_update_cdclk(dev);
9704 WARN(cdclk != dev_priv->cdclk_freq,
9705 "cdclk requested %d kHz but got %d kHz\n",
9706 cdclk, dev_priv->cdclk_freq);
9709 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9711 struct drm_i915_private *dev_priv = to_i915(state->dev);
9712 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9713 int max_pixclk = ilk_max_pixel_rate(state);
9714 int cdclk;
9717 * FIXME should also account for plane ratio
9718 * once 64bpp pixel formats are supported.
9720 if (max_pixclk > 540000)
9721 cdclk = 675000;
9722 else if (max_pixclk > 450000)
9723 cdclk = 540000;
9724 else if (max_pixclk > 337500)
9725 cdclk = 450000;
9726 else
9727 cdclk = 337500;
9729 if (cdclk > dev_priv->max_cdclk_freq) {
9730 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9731 cdclk, dev_priv->max_cdclk_freq);
9732 return -EINVAL;
9735 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9736 if (!intel_state->active_crtcs)
9737 intel_state->dev_cdclk = 337500;
9739 return 0;
9742 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9744 struct drm_device *dev = old_state->dev;
9745 struct intel_atomic_state *old_intel_state =
9746 to_intel_atomic_state(old_state);
9747 unsigned req_cdclk = old_intel_state->dev_cdclk;
9749 broadwell_set_cdclk(dev, req_cdclk);
9752 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9753 struct intel_crtc_state *crtc_state)
9755 struct intel_encoder *intel_encoder =
9756 intel_ddi_get_crtc_new_encoder(crtc_state);
9758 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9759 if (!intel_ddi_pll_select(crtc, crtc_state))
9760 return -EINVAL;
9763 crtc->lowfreq_avail = false;
9765 return 0;
9768 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9769 enum port port,
9770 struct intel_crtc_state *pipe_config)
9772 enum intel_dpll_id id;
9774 switch (port) {
9775 case PORT_A:
9776 pipe_config->ddi_pll_sel = SKL_DPLL0;
9777 id = DPLL_ID_SKL_DPLL0;
9778 break;
9779 case PORT_B:
9780 pipe_config->ddi_pll_sel = SKL_DPLL1;
9781 id = DPLL_ID_SKL_DPLL1;
9782 break;
9783 case PORT_C:
9784 pipe_config->ddi_pll_sel = SKL_DPLL2;
9785 id = DPLL_ID_SKL_DPLL2;
9786 break;
9787 default:
9788 DRM_ERROR("Incorrect port type\n");
9789 return;
9792 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9795 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9796 enum port port,
9797 struct intel_crtc_state *pipe_config)
9799 enum intel_dpll_id id;
9800 u32 temp;
9802 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9803 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9805 switch (pipe_config->ddi_pll_sel) {
9806 case SKL_DPLL0:
9807 id = DPLL_ID_SKL_DPLL0;
9808 break;
9809 case SKL_DPLL1:
9810 id = DPLL_ID_SKL_DPLL1;
9811 break;
9812 case SKL_DPLL2:
9813 id = DPLL_ID_SKL_DPLL2;
9814 break;
9815 case SKL_DPLL3:
9816 id = DPLL_ID_SKL_DPLL3;
9817 break;
9818 default:
9819 MISSING_CASE(pipe_config->ddi_pll_sel);
9820 return;
9823 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9826 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9827 enum port port,
9828 struct intel_crtc_state *pipe_config)
9830 enum intel_dpll_id id;
9832 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9834 switch (pipe_config->ddi_pll_sel) {
9835 case PORT_CLK_SEL_WRPLL1:
9836 id = DPLL_ID_WRPLL1;
9837 break;
9838 case PORT_CLK_SEL_WRPLL2:
9839 id = DPLL_ID_WRPLL2;
9840 break;
9841 case PORT_CLK_SEL_SPLL:
9842 id = DPLL_ID_SPLL;
9843 break;
9844 case PORT_CLK_SEL_LCPLL_810:
9845 id = DPLL_ID_LCPLL_810;
9846 break;
9847 case PORT_CLK_SEL_LCPLL_1350:
9848 id = DPLL_ID_LCPLL_1350;
9849 break;
9850 case PORT_CLK_SEL_LCPLL_2700:
9851 id = DPLL_ID_LCPLL_2700;
9852 break;
9853 default:
9854 MISSING_CASE(pipe_config->ddi_pll_sel);
9855 /* fall through */
9856 case PORT_CLK_SEL_NONE:
9857 return;
9860 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9863 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9864 struct intel_crtc_state *pipe_config,
9865 unsigned long *power_domain_mask)
9867 struct drm_device *dev = crtc->base.dev;
9868 struct drm_i915_private *dev_priv = dev->dev_private;
9869 enum intel_display_power_domain power_domain;
9870 u32 tmp;
9872 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9875 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9876 * consistency and less surprising code; it's in always on power).
9878 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9879 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9880 enum i915_pipe trans_edp_pipe;
9881 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9882 default:
9883 WARN(1, "unknown pipe linked to edp transcoder\n");
9884 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9885 case TRANS_DDI_EDP_INPUT_A_ON:
9886 trans_edp_pipe = PIPE_A;
9887 break;
9888 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9889 trans_edp_pipe = PIPE_B;
9890 break;
9891 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9892 trans_edp_pipe = PIPE_C;
9893 break;
9896 if (trans_edp_pipe == crtc->pipe)
9897 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9900 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9901 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9902 return false;
9903 *power_domain_mask |= BIT(power_domain);
9905 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9907 return tmp & PIPECONF_ENABLE;
9910 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9911 struct intel_crtc_state *pipe_config,
9912 unsigned long *power_domain_mask)
9914 struct drm_device *dev = crtc->base.dev;
9915 struct drm_i915_private *dev_priv = dev->dev_private;
9916 enum intel_display_power_domain power_domain;
9917 enum port port;
9918 enum transcoder cpu_transcoder;
9919 u32 tmp;
9921 pipe_config->has_dsi_encoder = false;
9923 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9924 if (port == PORT_A)
9925 cpu_transcoder = TRANSCODER_DSI_A;
9926 else
9927 cpu_transcoder = TRANSCODER_DSI_C;
9929 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9930 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9931 continue;
9932 *power_domain_mask |= BIT(power_domain);
9935 * The PLL needs to be enabled with a valid divider
9936 * configuration, otherwise accessing DSI registers will hang
9937 * the machine. See BSpec North Display Engine
9938 * registers/MIPI[BXT]. We can break out here early, since we
9939 * need the same DSI PLL to be enabled for both DSI ports.
9941 if (!intel_dsi_pll_is_enabled(dev_priv))
9942 break;
9944 /* XXX: this works for video mode only */
9945 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9946 if (!(tmp & DPI_ENABLE))
9947 continue;
9949 tmp = I915_READ(MIPI_CTRL(port));
9950 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9951 continue;
9953 pipe_config->cpu_transcoder = cpu_transcoder;
9954 pipe_config->has_dsi_encoder = true;
9955 break;
9958 return pipe_config->has_dsi_encoder;
9961 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9962 struct intel_crtc_state *pipe_config)
9964 struct drm_device *dev = crtc->base.dev;
9965 struct drm_i915_private *dev_priv = dev->dev_private;
9966 struct intel_shared_dpll *pll;
9967 enum port port;
9968 uint32_t tmp;
9970 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9972 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9974 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9975 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9976 else if (IS_BROXTON(dev))
9977 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9978 else
9979 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9981 pll = pipe_config->shared_dpll;
9982 if (pll) {
9983 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9984 &pipe_config->dpll_hw_state));
9988 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9989 * DDI E. So just check whether this pipe is wired to DDI E and whether
9990 * the PCH transcoder is on.
9992 if (INTEL_INFO(dev)->gen < 9 &&
9993 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9994 pipe_config->has_pch_encoder = true;
9996 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9997 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9998 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10000 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10004 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10005 struct intel_crtc_state *pipe_config)
10007 struct drm_device *dev = crtc->base.dev;
10008 struct drm_i915_private *dev_priv = dev->dev_private;
10009 enum intel_display_power_domain power_domain;
10010 unsigned long power_domain_mask;
10011 bool active;
10013 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10014 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10015 return false;
10016 power_domain_mask = BIT(power_domain);
10018 pipe_config->shared_dpll = NULL;
10020 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10022 if (IS_BROXTON(dev_priv)) {
10023 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10024 &power_domain_mask);
10025 WARN_ON(active && pipe_config->has_dsi_encoder);
10026 if (pipe_config->has_dsi_encoder)
10027 active = true;
10030 if (!active)
10031 goto out;
10033 if (!pipe_config->has_dsi_encoder) {
10034 haswell_get_ddi_port_state(crtc, pipe_config);
10035 intel_get_pipe_timings(crtc, pipe_config);
10038 intel_get_pipe_src_size(crtc, pipe_config);
10040 pipe_config->gamma_mode =
10041 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10043 if (INTEL_INFO(dev)->gen >= 9) {
10044 skl_init_scalers(dev, crtc, pipe_config);
10047 if (INTEL_INFO(dev)->gen >= 9) {
10048 pipe_config->scaler_state.scaler_id = -1;
10049 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10052 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10053 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10054 power_domain_mask |= BIT(power_domain);
10055 if (INTEL_INFO(dev)->gen >= 9)
10056 skylake_get_pfit_config(crtc, pipe_config);
10057 else
10058 ironlake_get_pfit_config(crtc, pipe_config);
10061 if (IS_HASWELL(dev))
10062 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10063 (I915_READ(IPS_CTL) & IPS_ENABLE);
10065 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10066 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10067 pipe_config->pixel_multiplier =
10068 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10069 } else {
10070 pipe_config->pixel_multiplier = 1;
10073 out:
10074 for_each_power_domain(power_domain, power_domain_mask)
10075 intel_display_power_put(dev_priv, power_domain);
10077 return active;
10080 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10081 const struct intel_plane_state *plane_state)
10083 struct drm_device *dev = crtc->dev;
10084 struct drm_i915_private *dev_priv = dev->dev_private;
10085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10086 uint32_t cntl = 0, size = 0;
10088 if (plane_state && plane_state->visible) {
10089 unsigned int width = plane_state->base.crtc_w;
10090 unsigned int height = plane_state->base.crtc_h;
10091 unsigned int stride = roundup_pow_of_two(width) * 4;
10093 switch (stride) {
10094 default:
10095 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10096 width, stride);
10097 stride = 256;
10098 /* fallthrough */
10099 case 256:
10100 case 512:
10101 case 1024:
10102 case 2048:
10103 break;
10106 cntl |= CURSOR_ENABLE |
10107 CURSOR_GAMMA_ENABLE |
10108 CURSOR_FORMAT_ARGB |
10109 CURSOR_STRIDE(stride);
10111 size = (height << 12) | width;
10114 if (intel_crtc->cursor_cntl != 0 &&
10115 (intel_crtc->cursor_base != base ||
10116 intel_crtc->cursor_size != size ||
10117 intel_crtc->cursor_cntl != cntl)) {
10118 /* On these chipsets we can only modify the base/size/stride
10119 * whilst the cursor is disabled.
10121 I915_WRITE(CURCNTR(PIPE_A), 0);
10122 POSTING_READ(CURCNTR(PIPE_A));
10123 intel_crtc->cursor_cntl = 0;
10126 if (intel_crtc->cursor_base != base) {
10127 I915_WRITE(CURBASE(PIPE_A), base);
10128 intel_crtc->cursor_base = base;
10131 if (intel_crtc->cursor_size != size) {
10132 I915_WRITE(CURSIZE, size);
10133 intel_crtc->cursor_size = size;
10136 if (intel_crtc->cursor_cntl != cntl) {
10137 I915_WRITE(CURCNTR(PIPE_A), cntl);
10138 POSTING_READ(CURCNTR(PIPE_A));
10139 intel_crtc->cursor_cntl = cntl;
10143 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10144 const struct intel_plane_state *plane_state)
10146 struct drm_device *dev = crtc->dev;
10147 struct drm_i915_private *dev_priv = dev->dev_private;
10148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10149 int pipe = intel_crtc->pipe;
10150 uint32_t cntl = 0;
10152 if (plane_state && plane_state->visible) {
10153 cntl = MCURSOR_GAMMA_ENABLE;
10154 switch (plane_state->base.crtc_w) {
10155 case 64:
10156 cntl |= CURSOR_MODE_64_ARGB_AX;
10157 break;
10158 case 128:
10159 cntl |= CURSOR_MODE_128_ARGB_AX;
10160 break;
10161 case 256:
10162 cntl |= CURSOR_MODE_256_ARGB_AX;
10163 break;
10164 default:
10165 MISSING_CASE(plane_state->base.crtc_w);
10166 return;
10168 cntl |= pipe << 28; /* Connect to correct pipe */
10170 if (HAS_DDI(dev))
10171 cntl |= CURSOR_PIPE_CSC_ENABLE;
10173 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10174 cntl |= CURSOR_ROTATE_180;
10177 if (intel_crtc->cursor_cntl != cntl) {
10178 I915_WRITE(CURCNTR(pipe), cntl);
10179 POSTING_READ(CURCNTR(pipe));
10180 intel_crtc->cursor_cntl = cntl;
10183 /* and commit changes on next vblank */
10184 I915_WRITE(CURBASE(pipe), base);
10185 POSTING_READ(CURBASE(pipe));
10187 intel_crtc->cursor_base = base;
10190 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10191 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10192 const struct intel_plane_state *plane_state)
10194 struct drm_device *dev = crtc->dev;
10195 struct drm_i915_private *dev_priv = dev->dev_private;
10196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10197 int pipe = intel_crtc->pipe;
10198 u32 base = intel_crtc->cursor_addr;
10199 u32 pos = 0;
10201 if (plane_state) {
10202 int x = plane_state->base.crtc_x;
10203 int y = plane_state->base.crtc_y;
10205 if (x < 0) {
10206 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10207 x = -x;
10209 pos |= x << CURSOR_X_SHIFT;
10211 if (y < 0) {
10212 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10213 y = -y;
10215 pos |= y << CURSOR_Y_SHIFT;
10217 /* ILK+ do this automagically */
10218 if (HAS_GMCH_DISPLAY(dev) &&
10219 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10220 base += (plane_state->base.crtc_h *
10221 plane_state->base.crtc_w - 1) * 4;
10225 I915_WRITE(CURPOS(pipe), pos);
10227 if (IS_845G(dev) || IS_I865G(dev))
10228 i845_update_cursor(crtc, base, plane_state);
10229 else
10230 i9xx_update_cursor(crtc, base, plane_state);
10233 static bool cursor_size_ok(struct drm_device *dev,
10234 uint32_t width, uint32_t height)
10236 if (width == 0 || height == 0)
10237 return false;
10240 * 845g/865g are special in that they are only limited by
10241 * the width of their cursors, the height is arbitrary up to
10242 * the precision of the register. Everything else requires
10243 * square cursors, limited to a few power-of-two sizes.
10245 if (IS_845G(dev) || IS_I865G(dev)) {
10246 if ((width & 63) != 0)
10247 return false;
10249 if (width > (IS_845G(dev) ? 64 : 512))
10250 return false;
10252 if (height > 1023)
10253 return false;
10254 } else {
10255 switch (width | height) {
10256 case 256:
10257 case 128:
10258 if (IS_GEN2(dev))
10259 return false;
10260 case 64:
10261 break;
10262 default:
10263 return false;
10267 return true;
10270 /* VESA 640x480x72Hz mode to set on the pipe */
10271 static struct drm_display_mode load_detect_mode = {
10272 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10273 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10276 struct drm_framebuffer *
10277 __intel_framebuffer_create(struct drm_device *dev,
10278 struct drm_mode_fb_cmd2 *mode_cmd,
10279 struct drm_i915_gem_object *obj)
10281 struct intel_framebuffer *intel_fb;
10282 int ret;
10284 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10285 if (!intel_fb)
10286 return ERR_PTR(-ENOMEM);
10288 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10289 if (ret)
10290 goto err;
10292 return &intel_fb->base;
10294 err:
10295 kfree(intel_fb);
10296 return ERR_PTR(ret);
10299 static struct drm_framebuffer *
10300 intel_framebuffer_create(struct drm_device *dev,
10301 struct drm_mode_fb_cmd2 *mode_cmd,
10302 struct drm_i915_gem_object *obj)
10304 struct drm_framebuffer *fb;
10305 int ret;
10307 ret = i915_mutex_lock_interruptible(dev);
10308 if (ret)
10309 return ERR_PTR(ret);
10310 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10311 mutex_unlock(&dev->struct_mutex);
10313 return fb;
10316 static u32
10317 intel_framebuffer_pitch_for_width(int width, int bpp)
10319 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10320 return ALIGN(pitch, 64);
10323 static u32
10324 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10326 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10327 return PAGE_ALIGN(pitch * mode->vdisplay);
10330 static struct drm_framebuffer *
10331 intel_framebuffer_create_for_mode(struct drm_device *dev,
10332 struct drm_display_mode *mode,
10333 int depth, int bpp)
10335 struct drm_framebuffer *fb;
10336 struct drm_i915_gem_object *obj;
10337 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10339 obj = i915_gem_alloc_object(dev,
10340 intel_framebuffer_size_for_mode(mode, bpp));
10341 if (obj == NULL)
10342 return ERR_PTR(-ENOMEM);
10344 mode_cmd.width = mode->hdisplay;
10345 mode_cmd.height = mode->vdisplay;
10346 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10347 bpp);
10348 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10350 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10351 if (IS_ERR(fb))
10352 drm_gem_object_unreference_unlocked(&obj->base);
10354 return fb;
10357 static struct drm_framebuffer *
10358 mode_fits_in_fbdev(struct drm_device *dev,
10359 struct drm_display_mode *mode)
10361 #ifdef CONFIG_DRM_FBDEV_EMULATION
10362 struct drm_i915_private *dev_priv = dev->dev_private;
10363 struct drm_i915_gem_object *obj;
10364 struct drm_framebuffer *fb;
10366 if (!dev_priv->fbdev)
10367 return NULL;
10369 if (!dev_priv->fbdev->fb)
10370 return NULL;
10372 obj = dev_priv->fbdev->fb->obj;
10373 BUG_ON(!obj);
10375 fb = &dev_priv->fbdev->fb->base;
10376 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10377 fb->bits_per_pixel))
10378 return NULL;
10380 if (obj->base.size < mode->vdisplay * fb->pitches[0])
10381 return NULL;
10383 drm_framebuffer_reference(fb);
10384 return fb;
10385 #else
10386 return NULL;
10387 #endif
10390 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10391 struct drm_crtc *crtc,
10392 struct drm_display_mode *mode,
10393 struct drm_framebuffer *fb,
10394 int x, int y)
10396 struct drm_plane_state *plane_state;
10397 int hdisplay, vdisplay;
10398 int ret;
10400 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10401 if (IS_ERR(plane_state))
10402 return PTR_ERR(plane_state);
10404 if (mode)
10405 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10406 else
10407 hdisplay = vdisplay = 0;
10409 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10410 if (ret)
10411 return ret;
10412 drm_atomic_set_fb_for_plane(plane_state, fb);
10413 plane_state->crtc_x = 0;
10414 plane_state->crtc_y = 0;
10415 plane_state->crtc_w = hdisplay;
10416 plane_state->crtc_h = vdisplay;
10417 plane_state->src_x = x << 16;
10418 plane_state->src_y = y << 16;
10419 plane_state->src_w = hdisplay << 16;
10420 plane_state->src_h = vdisplay << 16;
10422 return 0;
10425 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10426 struct drm_display_mode *mode,
10427 struct intel_load_detect_pipe *old,
10428 struct drm_modeset_acquire_ctx *ctx)
10430 struct intel_crtc *intel_crtc;
10431 struct intel_encoder *intel_encoder =
10432 intel_attached_encoder(connector);
10433 struct drm_crtc *possible_crtc;
10434 struct drm_encoder *encoder = &intel_encoder->base;
10435 struct drm_crtc *crtc = NULL;
10436 struct drm_device *dev = encoder->dev;
10437 struct drm_framebuffer *fb;
10438 struct drm_mode_config *config = &dev->mode_config;
10439 struct drm_atomic_state *state = NULL, *restore_state = NULL;
10440 struct drm_connector_state *connector_state;
10441 struct intel_crtc_state *crtc_state;
10442 int ret, i = -1;
10444 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10445 connector->base.id, connector->name,
10446 encoder->base.id, encoder->name);
10448 old->restore_state = NULL;
10450 retry:
10451 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10452 if (ret)
10453 goto fail;
10456 * Algorithm gets a little messy:
10458 * - if the connector already has an assigned crtc, use it (but make
10459 * sure it's on first)
10461 * - try to find the first unused crtc that can drive this connector,
10462 * and use that if we find one
10465 /* See if we already have a CRTC for this connector */
10466 if (connector->state->crtc) {
10467 crtc = connector->state->crtc;
10469 ret = drm_modeset_lock(&crtc->mutex, ctx);
10470 if (ret)
10471 goto fail;
10473 /* Make sure the crtc and connector are running */
10474 goto found;
10477 /* Find an unused one (if possible) */
10478 for_each_crtc(dev, possible_crtc) {
10479 i++;
10480 if (!(encoder->possible_crtcs & (1 << i)))
10481 continue;
10483 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10484 if (ret)
10485 goto fail;
10487 if (possible_crtc->state->enable) {
10488 drm_modeset_unlock(&possible_crtc->mutex);
10489 continue;
10492 crtc = possible_crtc;
10493 break;
10497 * If we didn't find an unused CRTC, don't use any.
10499 if (!crtc) {
10500 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10501 goto fail;
10504 found:
10505 intel_crtc = to_intel_crtc(crtc);
10507 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10508 if (ret)
10509 goto fail;
10511 state = drm_atomic_state_alloc(dev);
10512 restore_state = drm_atomic_state_alloc(dev);
10513 if (!state || !restore_state) {
10514 ret = -ENOMEM;
10515 goto fail;
10518 state->acquire_ctx = ctx;
10519 restore_state->acquire_ctx = ctx;
10521 connector_state = drm_atomic_get_connector_state(state, connector);
10522 if (IS_ERR(connector_state)) {
10523 ret = PTR_ERR(connector_state);
10524 goto fail;
10527 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10528 if (ret)
10529 goto fail;
10531 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10532 if (IS_ERR(crtc_state)) {
10533 ret = PTR_ERR(crtc_state);
10534 goto fail;
10537 crtc_state->base.active = crtc_state->base.enable = true;
10539 if (!mode)
10540 mode = &load_detect_mode;
10542 /* We need a framebuffer large enough to accommodate all accesses
10543 * that the plane may generate whilst we perform load detection.
10544 * We can not rely on the fbcon either being present (we get called
10545 * during its initialisation to detect all boot displays, or it may
10546 * not even exist) or that it is large enough to satisfy the
10547 * requested mode.
10549 fb = mode_fits_in_fbdev(dev, mode);
10550 if (fb == NULL) {
10551 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10552 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10553 } else
10554 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10555 if (IS_ERR(fb)) {
10556 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10557 goto fail;
10560 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10561 if (ret)
10562 goto fail;
10564 drm_framebuffer_unreference(fb);
10566 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10567 if (ret)
10568 goto fail;
10570 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10571 if (!ret)
10572 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10573 if (!ret)
10574 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10575 if (ret) {
10576 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10577 goto fail;
10580 ret = drm_atomic_commit(state);
10581 if (ret) {
10582 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10583 goto fail;
10586 old->restore_state = restore_state;
10588 /* let the connector get through one full cycle before testing */
10589 intel_wait_for_vblank(dev, intel_crtc->pipe);
10590 return true;
10592 fail:
10593 drm_atomic_state_free(state);
10594 drm_atomic_state_free(restore_state);
10595 restore_state = state = NULL;
10597 if (ret == -EDEADLK) {
10598 drm_modeset_backoff(ctx);
10599 goto retry;
10602 return false;
10605 void intel_release_load_detect_pipe(struct drm_connector *connector,
10606 struct intel_load_detect_pipe *old,
10607 struct drm_modeset_acquire_ctx *ctx)
10609 struct intel_encoder *intel_encoder =
10610 intel_attached_encoder(connector);
10611 struct drm_encoder *encoder = &intel_encoder->base;
10612 struct drm_atomic_state *state = old->restore_state;
10613 int ret;
10615 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10616 connector->base.id, connector->name,
10617 encoder->base.id, encoder->name);
10619 if (!state)
10620 return;
10622 ret = drm_atomic_commit(state);
10623 if (ret) {
10624 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10625 drm_atomic_state_free(state);
10629 static int i9xx_pll_refclk(struct drm_device *dev,
10630 const struct intel_crtc_state *pipe_config)
10632 struct drm_i915_private *dev_priv = dev->dev_private;
10633 u32 dpll = pipe_config->dpll_hw_state.dpll;
10635 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10636 return dev_priv->vbt.lvds_ssc_freq;
10637 else if (HAS_PCH_SPLIT(dev))
10638 return 120000;
10639 else if (!IS_GEN2(dev))
10640 return 96000;
10641 else
10642 return 48000;
10645 /* Returns the clock of the currently programmed mode of the given pipe. */
10646 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10647 struct intel_crtc_state *pipe_config)
10649 struct drm_device *dev = crtc->base.dev;
10650 struct drm_i915_private *dev_priv = dev->dev_private;
10651 int pipe = pipe_config->cpu_transcoder;
10652 u32 dpll = pipe_config->dpll_hw_state.dpll;
10653 u32 fp;
10654 intel_clock_t clock;
10655 int port_clock;
10656 int refclk = i9xx_pll_refclk(dev, pipe_config);
10658 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10659 fp = pipe_config->dpll_hw_state.fp0;
10660 else
10661 fp = pipe_config->dpll_hw_state.fp1;
10663 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10664 if (IS_PINEVIEW(dev)) {
10665 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10666 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10667 } else {
10668 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10669 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10672 if (!IS_GEN2(dev)) {
10673 if (IS_PINEVIEW(dev))
10674 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10675 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10676 else
10677 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10678 DPLL_FPA01_P1_POST_DIV_SHIFT);
10680 switch (dpll & DPLL_MODE_MASK) {
10681 case DPLLB_MODE_DAC_SERIAL:
10682 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10683 5 : 10;
10684 break;
10685 case DPLLB_MODE_LVDS:
10686 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10687 7 : 14;
10688 break;
10689 default:
10690 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10691 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10692 return;
10695 if (IS_PINEVIEW(dev))
10696 port_clock = pnv_calc_dpll_params(refclk, &clock);
10697 else
10698 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10699 } else {
10700 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10701 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10703 if (is_lvds) {
10704 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10705 DPLL_FPA01_P1_POST_DIV_SHIFT);
10707 if (lvds & LVDS_CLKB_POWER_UP)
10708 clock.p2 = 7;
10709 else
10710 clock.p2 = 14;
10711 } else {
10712 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10713 clock.p1 = 2;
10714 else {
10715 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10716 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10718 if (dpll & PLL_P2_DIVIDE_BY_4)
10719 clock.p2 = 4;
10720 else
10721 clock.p2 = 2;
10724 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10728 * This value includes pixel_multiplier. We will use
10729 * port_clock to compute adjusted_mode.crtc_clock in the
10730 * encoder's get_config() function.
10732 pipe_config->port_clock = port_clock;
10735 int intel_dotclock_calculate(int link_freq,
10736 const struct intel_link_m_n *m_n)
10739 * The calculation for the data clock is:
10740 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10741 * But we want to avoid losing precison if possible, so:
10742 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10744 * and the link clock is simpler:
10745 * link_clock = (m * link_clock) / n
10748 if (!m_n->link_n)
10749 return 0;
10751 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10754 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10755 struct intel_crtc_state *pipe_config)
10757 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10759 /* read out port_clock from the DPLL */
10760 i9xx_crtc_clock_get(crtc, pipe_config);
10763 * In case there is an active pipe without active ports,
10764 * we may need some idea for the dotclock anyway.
10765 * Calculate one based on the FDI configuration.
10767 pipe_config->base.adjusted_mode.crtc_clock =
10768 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10769 &pipe_config->fdi_m_n);
10772 /** Returns the currently programmed mode of the given pipe. */
10773 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10774 struct drm_crtc *crtc)
10776 struct drm_i915_private *dev_priv = dev->dev_private;
10777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10778 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10779 struct drm_display_mode *mode;
10780 struct intel_crtc_state *pipe_config;
10781 int htot = I915_READ(HTOTAL(cpu_transcoder));
10782 int hsync = I915_READ(HSYNC(cpu_transcoder));
10783 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10784 int vsync = I915_READ(VSYNC(cpu_transcoder));
10785 enum i915_pipe pipe = intel_crtc->pipe;
10787 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10788 if (!mode)
10789 return NULL;
10791 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10792 if (!pipe_config) {
10793 kfree(mode);
10794 return NULL;
10798 * Construct a pipe_config sufficient for getting the clock info
10799 * back out of crtc_clock_get.
10801 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10802 * to use a real value here instead.
10804 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10805 pipe_config->pixel_multiplier = 1;
10806 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10807 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10808 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10809 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10811 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10812 mode->hdisplay = (htot & 0xffff) + 1;
10813 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10814 mode->hsync_start = (hsync & 0xffff) + 1;
10815 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10816 mode->vdisplay = (vtot & 0xffff) + 1;
10817 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10818 mode->vsync_start = (vsync & 0xffff) + 1;
10819 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10821 drm_mode_set_name(mode);
10823 kfree(pipe_config);
10825 return mode;
10828 void intel_mark_busy(struct drm_device *dev)
10830 struct drm_i915_private *dev_priv = dev->dev_private;
10832 if (dev_priv->mm.busy)
10833 return;
10835 intel_runtime_pm_get(dev_priv);
10836 i915_update_gfx_val(dev_priv);
10837 if (INTEL_INFO(dev)->gen >= 6)
10838 gen6_rps_busy(dev_priv);
10839 dev_priv->mm.busy = true;
10842 void intel_mark_idle(struct drm_device *dev)
10844 struct drm_i915_private *dev_priv = dev->dev_private;
10846 if (!dev_priv->mm.busy)
10847 return;
10849 dev_priv->mm.busy = false;
10851 if (INTEL_INFO(dev)->gen >= 6)
10852 gen6_rps_idle(dev->dev_private);
10854 intel_runtime_pm_put(dev_priv);
10857 static void intel_crtc_destroy(struct drm_crtc *crtc)
10859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10860 struct drm_device *dev = crtc->dev;
10861 struct intel_unpin_work *work;
10863 spin_lock_irq(&dev->event_lock);
10864 work = intel_crtc->unpin_work;
10865 intel_crtc->unpin_work = NULL;
10866 spin_unlock_irq(&dev->event_lock);
10868 if (work) {
10869 cancel_work_sync(&work->work);
10870 kfree(work);
10873 drm_crtc_cleanup(crtc);
10875 kfree(intel_crtc);
10878 static void intel_unpin_work_fn(struct work_struct *__work)
10880 struct intel_unpin_work *work =
10881 container_of(__work, struct intel_unpin_work, work);
10882 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10883 struct drm_device *dev = crtc->base.dev;
10884 struct drm_plane *primary = crtc->base.primary;
10886 mutex_lock(&dev->struct_mutex);
10887 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10888 drm_gem_object_unreference(&work->pending_flip_obj->base);
10890 if (work->flip_queued_req)
10891 i915_gem_request_assign(&work->flip_queued_req, NULL);
10892 mutex_unlock(&dev->struct_mutex);
10894 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10895 intel_fbc_post_update(crtc);
10896 drm_framebuffer_unreference(work->old_fb);
10898 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10899 atomic_dec(&crtc->unpin_work_count);
10901 kfree(work);
10904 static void do_intel_finish_page_flip(struct drm_device *dev,
10905 struct drm_crtc *crtc)
10907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10908 struct intel_unpin_work *work;
10909 unsigned long flags;
10911 /* Ignore early vblank irqs */
10912 if (intel_crtc == NULL)
10913 return;
10916 * This is called both by irq handlers and the reset code (to complete
10917 * lost pageflips) so needs the full irqsave spinlocks.
10919 spin_lock_irqsave(&dev->event_lock, flags);
10920 work = intel_crtc->unpin_work;
10922 /* Ensure we don't miss a work->pending update ... */
10923 smp_rmb();
10925 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10926 spin_unlock_irqrestore(&dev->event_lock, flags);
10927 return;
10930 page_flip_completed(intel_crtc);
10932 spin_unlock_irqrestore(&dev->event_lock, flags);
10935 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10937 struct drm_i915_private *dev_priv = dev->dev_private;
10938 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10940 do_intel_finish_page_flip(dev, crtc);
10943 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10945 struct drm_i915_private *dev_priv = dev->dev_private;
10946 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10948 do_intel_finish_page_flip(dev, crtc);
10951 /* Is 'a' after or equal to 'b'? */
10952 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10954 return !((a - b) & 0x80000000);
10957 static bool page_flip_finished(struct intel_crtc *crtc)
10959 struct drm_device *dev = crtc->base.dev;
10960 struct drm_i915_private *dev_priv = dev->dev_private;
10961 unsigned reset_counter;
10963 reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10964 if (crtc->reset_counter != reset_counter)
10965 return true;
10968 * The relevant registers doen't exist on pre-ctg.
10969 * As the flip done interrupt doesn't trigger for mmio
10970 * flips on gmch platforms, a flip count check isn't
10971 * really needed there. But since ctg has the registers,
10972 * include it in the check anyway.
10974 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10975 return true;
10978 * BDW signals flip done immediately if the plane
10979 * is disabled, even if the plane enable is already
10980 * armed to occur at the next vblank :(
10984 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10985 * used the same base address. In that case the mmio flip might
10986 * have completed, but the CS hasn't even executed the flip yet.
10988 * A flip count check isn't enough as the CS might have updated
10989 * the base address just after start of vblank, but before we
10990 * managed to process the interrupt. This means we'd complete the
10991 * CS flip too soon.
10993 * Combining both checks should get us a good enough result. It may
10994 * still happen that the CS flip has been executed, but has not
10995 * yet actually completed. But in case the base address is the same
10996 * anyway, we don't really care.
10998 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10999 crtc->unpin_work->gtt_offset &&
11000 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11001 crtc->unpin_work->flip_count);
11004 void intel_prepare_page_flip(struct drm_device *dev, int plane)
11006 struct drm_i915_private *dev_priv = dev->dev_private;
11007 struct intel_crtc *intel_crtc =
11008 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
11009 unsigned long flags;
11013 * This is called both by irq handlers and the reset code (to complete
11014 * lost pageflips) so needs the full irqsave spinlocks.
11016 * NB: An MMIO update of the plane base pointer will also
11017 * generate a page-flip completion irq, i.e. every modeset
11018 * is also accompanied by a spurious intel_prepare_page_flip().
11020 spin_lock_irqsave(&dev->event_lock, flags);
11021 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
11022 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
11023 spin_unlock_irqrestore(&dev->event_lock, flags);
11026 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11028 /* Ensure that the work item is consistent when activating it ... */
11029 smp_wmb();
11030 atomic_set(&work->pending, INTEL_FLIP_PENDING);
11031 /* and that it is marked active as soon as the irq could fire. */
11032 smp_wmb();
11035 static int intel_gen2_queue_flip(struct drm_device *dev,
11036 struct drm_crtc *crtc,
11037 struct drm_framebuffer *fb,
11038 struct drm_i915_gem_object *obj,
11039 struct drm_i915_gem_request *req,
11040 uint32_t flags)
11042 struct intel_engine_cs *engine = req->engine;
11043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11044 u32 flip_mask;
11045 int ret;
11047 ret = intel_ring_begin(req, 6);
11048 if (ret)
11049 return ret;
11051 /* Can't queue multiple flips, so wait for the previous
11052 * one to finish before executing the next.
11054 if (intel_crtc->plane)
11055 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11056 else
11057 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11058 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11059 intel_ring_emit(engine, MI_NOOP);
11060 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11061 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11062 intel_ring_emit(engine, fb->pitches[0]);
11063 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11064 intel_ring_emit(engine, 0); /* aux display base address, unused */
11066 intel_mark_page_flip_active(intel_crtc->unpin_work);
11067 return 0;
11070 static int intel_gen3_queue_flip(struct drm_device *dev,
11071 struct drm_crtc *crtc,
11072 struct drm_framebuffer *fb,
11073 struct drm_i915_gem_object *obj,
11074 struct drm_i915_gem_request *req,
11075 uint32_t flags)
11077 struct intel_engine_cs *engine = req->engine;
11078 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11079 u32 flip_mask;
11080 int ret;
11082 ret = intel_ring_begin(req, 6);
11083 if (ret)
11084 return ret;
11086 if (intel_crtc->plane)
11087 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11088 else
11089 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11090 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11091 intel_ring_emit(engine, MI_NOOP);
11092 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11093 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11094 intel_ring_emit(engine, fb->pitches[0]);
11095 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11096 intel_ring_emit(engine, MI_NOOP);
11098 intel_mark_page_flip_active(intel_crtc->unpin_work);
11099 return 0;
11102 static int intel_gen4_queue_flip(struct drm_device *dev,
11103 struct drm_crtc *crtc,
11104 struct drm_framebuffer *fb,
11105 struct drm_i915_gem_object *obj,
11106 struct drm_i915_gem_request *req,
11107 uint32_t flags)
11109 struct intel_engine_cs *engine = req->engine;
11110 struct drm_i915_private *dev_priv = dev->dev_private;
11111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11112 uint32_t pf, pipesrc;
11113 int ret;
11115 ret = intel_ring_begin(req, 4);
11116 if (ret)
11117 return ret;
11119 /* i965+ uses the linear or tiled offsets from the
11120 * Display Registers (which do not change across a page-flip)
11121 * so we need only reprogram the base address.
11123 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11124 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11125 intel_ring_emit(engine, fb->pitches[0]);
11126 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11127 obj->tiling_mode);
11129 /* XXX Enabling the panel-fitter across page-flip is so far
11130 * untested on non-native modes, so ignore it for now.
11131 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11133 pf = 0;
11134 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11135 intel_ring_emit(engine, pf | pipesrc);
11137 intel_mark_page_flip_active(intel_crtc->unpin_work);
11138 return 0;
11141 static int intel_gen6_queue_flip(struct drm_device *dev,
11142 struct drm_crtc *crtc,
11143 struct drm_framebuffer *fb,
11144 struct drm_i915_gem_object *obj,
11145 struct drm_i915_gem_request *req,
11146 uint32_t flags)
11148 struct intel_engine_cs *engine = req->engine;
11149 struct drm_i915_private *dev_priv = dev->dev_private;
11150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11151 uint32_t pf, pipesrc;
11152 int ret;
11154 ret = intel_ring_begin(req, 4);
11155 if (ret)
11156 return ret;
11158 intel_ring_emit(engine, MI_DISPLAY_FLIP |
11159 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11160 intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11161 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11163 /* Contrary to the suggestions in the documentation,
11164 * "Enable Panel Fitter" does not seem to be required when page
11165 * flipping with a non-native mode, and worse causes a normal
11166 * modeset to fail.
11167 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11169 pf = 0;
11170 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11171 intel_ring_emit(engine, pf | pipesrc);
11173 intel_mark_page_flip_active(intel_crtc->unpin_work);
11174 return 0;
11177 static int intel_gen7_queue_flip(struct drm_device *dev,
11178 struct drm_crtc *crtc,
11179 struct drm_framebuffer *fb,
11180 struct drm_i915_gem_object *obj,
11181 struct drm_i915_gem_request *req,
11182 uint32_t flags)
11184 struct intel_engine_cs *engine = req->engine;
11185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11186 uint32_t plane_bit = 0;
11187 int len, ret;
11189 switch (intel_crtc->plane) {
11190 case PLANE_A:
11191 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11192 break;
11193 case PLANE_B:
11194 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11195 break;
11196 case PLANE_C:
11197 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11198 break;
11199 default:
11200 WARN_ONCE(1, "unknown plane in flip command\n");
11201 return -ENODEV;
11204 len = 4;
11205 if (engine->id == RCS) {
11206 len += 6;
11208 * On Gen 8, SRM is now taking an extra dword to accommodate
11209 * 48bits addresses, and we need a NOOP for the batch size to
11210 * stay even.
11212 if (IS_GEN8(dev))
11213 len += 2;
11217 * BSpec MI_DISPLAY_FLIP for IVB:
11218 * "The full packet must be contained within the same cache line."
11220 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11221 * cacheline, if we ever start emitting more commands before
11222 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11223 * then do the cacheline alignment, and finally emit the
11224 * MI_DISPLAY_FLIP.
11226 ret = intel_ring_cacheline_align(req);
11227 if (ret)
11228 return ret;
11230 ret = intel_ring_begin(req, len);
11231 if (ret)
11232 return ret;
11234 /* Unmask the flip-done completion message. Note that the bspec says that
11235 * we should do this for both the BCS and RCS, and that we must not unmask
11236 * more than one flip event at any time (or ensure that one flip message
11237 * can be sent by waiting for flip-done prior to queueing new flips).
11238 * Experimentation says that BCS works despite DERRMR masking all
11239 * flip-done completion events and that unmasking all planes at once
11240 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11241 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11243 if (engine->id == RCS) {
11244 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11245 intel_ring_emit_reg(engine, DERRMR);
11246 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11247 DERRMR_PIPEB_PRI_FLIP_DONE |
11248 DERRMR_PIPEC_PRI_FLIP_DONE));
11249 if (IS_GEN8(dev))
11250 intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11251 MI_SRM_LRM_GLOBAL_GTT);
11252 else
11253 intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11254 MI_SRM_LRM_GLOBAL_GTT);
11255 intel_ring_emit_reg(engine, DERRMR);
11256 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11257 if (IS_GEN8(dev)) {
11258 intel_ring_emit(engine, 0);
11259 intel_ring_emit(engine, MI_NOOP);
11263 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11264 intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11265 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11266 intel_ring_emit(engine, (MI_NOOP));
11268 intel_mark_page_flip_active(intel_crtc->unpin_work);
11269 return 0;
11272 static bool use_mmio_flip(struct intel_engine_cs *engine,
11273 struct drm_i915_gem_object *obj)
11276 * This is not being used for older platforms, because
11277 * non-availability of flip done interrupt forces us to use
11278 * CS flips. Older platforms derive flip done using some clever
11279 * tricks involving the flip_pending status bits and vblank irqs.
11280 * So using MMIO flips there would disrupt this mechanism.
11283 if (engine == NULL)
11284 return true;
11286 if (INTEL_INFO(engine->dev)->gen < 5)
11287 return false;
11289 if (i915.use_mmio_flip < 0)
11290 return false;
11291 else if (i915.use_mmio_flip > 0)
11292 return true;
11293 else if (i915.enable_execlists)
11294 return true;
11295 #if 0
11296 else if (obj->base.dma_buf &&
11297 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11298 false))
11299 return true;
11300 #endif
11301 else
11302 return engine != i915_gem_request_get_engine(obj->last_write_req);
11305 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11306 unsigned int rotation,
11307 struct intel_unpin_work *work)
11309 struct drm_device *dev = intel_crtc->base.dev;
11310 struct drm_i915_private *dev_priv = dev->dev_private;
11311 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11312 const enum i915_pipe pipe = intel_crtc->pipe;
11313 u32 ctl, stride, tile_height;
11315 ctl = I915_READ(PLANE_CTL(pipe, 0));
11316 ctl &= ~PLANE_CTL_TILED_MASK;
11317 switch (fb->modifier[0]) {
11318 case DRM_FORMAT_MOD_NONE:
11319 break;
11320 case I915_FORMAT_MOD_X_TILED:
11321 ctl |= PLANE_CTL_TILED_X;
11322 break;
11323 case I915_FORMAT_MOD_Y_TILED:
11324 ctl |= PLANE_CTL_TILED_Y;
11325 break;
11326 case I915_FORMAT_MOD_Yf_TILED:
11327 ctl |= PLANE_CTL_TILED_YF;
11328 break;
11329 default:
11330 MISSING_CASE(fb->modifier[0]);
11334 * The stride is either expressed as a multiple of 64 bytes chunks for
11335 * linear buffers or in number of tiles for tiled buffers.
11337 if (intel_rotation_90_or_270(rotation)) {
11338 /* stride = Surface height in tiles */
11339 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11340 stride = DIV_ROUND_UP(fb->height, tile_height);
11341 } else {
11342 stride = fb->pitches[0] /
11343 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11344 fb->pixel_format);
11348 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11349 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11351 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11352 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11354 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11355 POSTING_READ(PLANE_SURF(pipe, 0));
11358 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11359 struct intel_unpin_work *work)
11361 struct drm_device *dev = intel_crtc->base.dev;
11362 struct drm_i915_private *dev_priv = dev->dev_private;
11363 struct intel_framebuffer *intel_fb =
11364 to_intel_framebuffer(intel_crtc->base.primary->fb);
11365 struct drm_i915_gem_object *obj = intel_fb->obj;
11366 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11367 u32 dspcntr;
11369 dspcntr = I915_READ(reg);
11371 if (obj->tiling_mode != I915_TILING_NONE)
11372 dspcntr |= DISPPLANE_TILED;
11373 else
11374 dspcntr &= ~DISPPLANE_TILED;
11376 I915_WRITE(reg, dspcntr);
11378 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11379 POSTING_READ(DSPSURF(intel_crtc->plane));
11383 * XXX: This is the temporary way to update the plane registers until we get
11384 * around to using the usual plane update functions for MMIO flips
11386 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11388 struct intel_crtc *crtc = mmio_flip->crtc;
11389 struct intel_unpin_work *work;
11391 spin_lock_irq(&crtc->base.dev->event_lock);
11392 work = crtc->unpin_work;
11393 spin_unlock_irq(&crtc->base.dev->event_lock);
11394 if (work == NULL)
11395 return;
11397 intel_mark_page_flip_active(work);
11399 intel_pipe_update_start(crtc);
11401 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11402 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11403 else
11404 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11405 ilk_do_mmio_flip(crtc, work);
11407 intel_pipe_update_end(crtc);
11410 static void intel_mmio_flip_work_func(struct work_struct *work)
11412 struct intel_mmio_flip *mmio_flip =
11413 container_of(work, struct intel_mmio_flip, work);
11414 #if 0
11415 struct intel_framebuffer *intel_fb =
11416 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11417 struct drm_i915_gem_object *obj = intel_fb->obj;
11418 #endif
11420 if (mmio_flip->req) {
11421 WARN_ON(__i915_wait_request(mmio_flip->req,
11422 false, NULL,
11423 &mmio_flip->i915->rps.mmioflips));
11424 i915_gem_request_unreference__unlocked(mmio_flip->req);
11427 /* For framebuffer backed by dmabuf, wait for fence */
11428 #if 0
11429 if (obj->base.dma_buf)
11430 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11431 false, false,
11432 MAX_SCHEDULE_TIMEOUT) < 0);
11433 #endif
11435 intel_do_mmio_flip(mmio_flip);
11436 kfree(mmio_flip);
11439 static int intel_queue_mmio_flip(struct drm_device *dev,
11440 struct drm_crtc *crtc,
11441 struct drm_i915_gem_object *obj)
11443 struct intel_mmio_flip *mmio_flip;
11445 mmio_flip = kmalloc(sizeof(*mmio_flip), M_DRM, M_WAITOK);
11446 if (mmio_flip == NULL)
11447 return -ENOMEM;
11449 mmio_flip->i915 = to_i915(dev);
11450 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11451 mmio_flip->crtc = to_intel_crtc(crtc);
11452 mmio_flip->rotation = crtc->primary->state->rotation;
11454 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11455 schedule_work(&mmio_flip->work);
11457 return 0;
11460 static int intel_default_queue_flip(struct drm_device *dev,
11461 struct drm_crtc *crtc,
11462 struct drm_framebuffer *fb,
11463 struct drm_i915_gem_object *obj,
11464 struct drm_i915_gem_request *req,
11465 uint32_t flags)
11467 return -ENODEV;
11470 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11471 struct drm_crtc *crtc)
11473 struct drm_i915_private *dev_priv = dev->dev_private;
11474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11475 struct intel_unpin_work *work = intel_crtc->unpin_work;
11476 u32 addr;
11478 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11479 return true;
11481 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11482 return false;
11484 if (!work->enable_stall_check)
11485 return false;
11487 if (work->flip_ready_vblank == 0) {
11488 if (work->flip_queued_req &&
11489 !i915_gem_request_completed(work->flip_queued_req, true))
11490 return false;
11492 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11495 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11496 return false;
11498 /* Potential stall - if we see that the flip has happened,
11499 * assume a missed interrupt. */
11500 if (INTEL_INFO(dev)->gen >= 4)
11501 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11502 else
11503 addr = I915_READ(DSPADDR(intel_crtc->plane));
11505 /* There is a potential issue here with a false positive after a flip
11506 * to the same address. We could address this by checking for a
11507 * non-incrementing frame counter.
11509 return addr == work->gtt_offset;
11512 void intel_check_page_flip(struct drm_device *dev, int pipe)
11514 struct drm_i915_private *dev_priv = dev->dev_private;
11515 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11517 struct intel_unpin_work *work;
11519 // WARN_ON(!in_interrupt());
11521 if (crtc == NULL)
11522 return;
11524 lockmgr(&dev->event_lock, LK_EXCLUSIVE);
11525 work = intel_crtc->unpin_work;
11526 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11527 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11528 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11529 page_flip_completed(intel_crtc);
11530 work = NULL;
11532 if (work != NULL &&
11533 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11534 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11535 lockmgr(&dev->event_lock, LK_RELEASE);
11538 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11539 struct drm_framebuffer *fb,
11540 struct drm_pending_vblank_event *event,
11541 uint32_t page_flip_flags)
11543 struct drm_device *dev = crtc->dev;
11544 struct drm_i915_private *dev_priv = dev->dev_private;
11545 struct drm_framebuffer *old_fb = crtc->primary->fb;
11546 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11547 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11548 struct drm_plane *primary = crtc->primary;
11549 enum i915_pipe pipe = intel_crtc->pipe;
11550 struct intel_unpin_work *work;
11551 struct intel_engine_cs *engine;
11552 bool mmio_flip;
11553 struct drm_i915_gem_request *request = NULL;
11554 int ret;
11557 * drm_mode_page_flip_ioctl() should already catch this, but double
11558 * check to be safe. In the future we may enable pageflipping from
11559 * a disabled primary plane.
11561 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11562 return -EBUSY;
11564 /* Can't change pixel format via MI display flips. */
11565 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11566 return -EINVAL;
11569 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11570 * Note that pitch changes could also affect these register.
11572 if (INTEL_INFO(dev)->gen > 3 &&
11573 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11574 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11575 return -EINVAL;
11577 if (i915_terminally_wedged(&dev_priv->gpu_error))
11578 goto out_hang;
11580 work = kzalloc(sizeof(*work), GFP_KERNEL);
11581 if (work == NULL)
11582 return -ENOMEM;
11584 work->event = event;
11585 work->crtc = crtc;
11586 work->old_fb = old_fb;
11587 INIT_WORK(&work->work, intel_unpin_work_fn);
11589 ret = drm_crtc_vblank_get(crtc);
11590 if (ret)
11591 goto free_work;
11593 /* We borrow the event spin lock for protecting unpin_work */
11594 spin_lock_irq(&dev->event_lock);
11595 if (intel_crtc->unpin_work) {
11596 /* Before declaring the flip queue wedged, check if
11597 * the hardware completed the operation behind our backs.
11599 if (__intel_pageflip_stall_check(dev, crtc)) {
11600 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11601 page_flip_completed(intel_crtc);
11602 } else {
11603 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11604 spin_unlock_irq(&dev->event_lock);
11606 drm_crtc_vblank_put(crtc);
11607 kfree(work);
11608 return -EBUSY;
11611 intel_crtc->unpin_work = work;
11612 spin_unlock_irq(&dev->event_lock);
11614 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11615 flush_workqueue(dev_priv->wq);
11617 /* Reference the objects for the scheduled work. */
11618 drm_framebuffer_reference(work->old_fb);
11619 drm_gem_object_reference(&obj->base);
11621 crtc->primary->fb = fb;
11622 update_state_fb(crtc->primary);
11623 intel_fbc_pre_update(intel_crtc);
11625 work->pending_flip_obj = obj;
11627 ret = i915_mutex_lock_interruptible(dev);
11628 if (ret)
11629 goto cleanup;
11631 intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11632 if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11633 ret = -EIO;
11634 goto cleanup;
11637 atomic_inc(&intel_crtc->unpin_work_count);
11639 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11640 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11642 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11643 engine = &dev_priv->engine[BCS];
11644 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11645 /* vlv: DISPLAY_FLIP fails to change tiling */
11646 engine = NULL;
11647 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11648 engine = &dev_priv->engine[BCS];
11649 } else if (INTEL_INFO(dev)->gen >= 7) {
11650 engine = i915_gem_request_get_engine(obj->last_write_req);
11651 if (engine == NULL || engine->id != RCS)
11652 engine = &dev_priv->engine[BCS];
11653 } else {
11654 engine = &dev_priv->engine[RCS];
11657 mmio_flip = use_mmio_flip(engine, obj);
11659 /* When using CS flips, we want to emit semaphores between rings.
11660 * However, when using mmio flips we will create a task to do the
11661 * synchronisation, so all we want here is to pin the framebuffer
11662 * into the display plane and skip any waits.
11664 if (!mmio_flip) {
11665 ret = i915_gem_object_sync(obj, engine, &request);
11666 if (ret)
11667 goto cleanup_pending;
11670 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11671 if (ret)
11672 goto cleanup_pending;
11674 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11675 obj, 0);
11676 work->gtt_offset += intel_crtc->dspaddr_offset;
11678 if (mmio_flip) {
11679 ret = intel_queue_mmio_flip(dev, crtc, obj);
11680 if (ret)
11681 goto cleanup_unpin;
11683 i915_gem_request_assign(&work->flip_queued_req,
11684 obj->last_write_req);
11685 } else {
11686 if (!request) {
11687 request = i915_gem_request_alloc(engine, NULL);
11688 if (IS_ERR(request)) {
11689 ret = PTR_ERR(request);
11690 goto cleanup_unpin;
11694 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11695 page_flip_flags);
11696 if (ret)
11697 goto cleanup_unpin;
11699 i915_gem_request_assign(&work->flip_queued_req, request);
11702 if (request)
11703 i915_add_request_no_flush(request);
11705 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11706 work->enable_stall_check = true;
11708 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11709 to_intel_plane(primary)->frontbuffer_bit);
11710 mutex_unlock(&dev->struct_mutex);
11712 intel_frontbuffer_flip_prepare(dev,
11713 to_intel_plane(primary)->frontbuffer_bit);
11715 trace_i915_flip_request(intel_crtc->plane, obj);
11717 return 0;
11719 cleanup_unpin:
11720 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11721 cleanup_pending:
11722 if (!IS_ERR_OR_NULL(request))
11723 i915_add_request_no_flush(request);
11724 atomic_dec(&intel_crtc->unpin_work_count);
11725 mutex_unlock(&dev->struct_mutex);
11726 cleanup:
11727 crtc->primary->fb = old_fb;
11728 update_state_fb(crtc->primary);
11730 drm_gem_object_unreference_unlocked(&obj->base);
11731 drm_framebuffer_unreference(work->old_fb);
11733 spin_lock_irq(&dev->event_lock);
11734 intel_crtc->unpin_work = NULL;
11735 spin_unlock_irq(&dev->event_lock);
11737 drm_crtc_vblank_put(crtc);
11738 free_work:
11739 kfree(work);
11741 if (ret == -EIO) {
11742 struct drm_atomic_state *state;
11743 struct drm_plane_state *plane_state;
11745 out_hang:
11746 state = drm_atomic_state_alloc(dev);
11747 if (!state)
11748 return -ENOMEM;
11749 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11751 retry:
11752 plane_state = drm_atomic_get_plane_state(state, primary);
11753 ret = PTR_ERR_OR_ZERO(plane_state);
11754 if (!ret) {
11755 drm_atomic_set_fb_for_plane(plane_state, fb);
11757 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11758 if (!ret)
11759 ret = drm_atomic_commit(state);
11762 if (ret == -EDEADLK) {
11763 drm_modeset_backoff(state->acquire_ctx);
11764 drm_atomic_state_clear(state);
11765 goto retry;
11768 if (ret)
11769 drm_atomic_state_free(state);
11771 if (ret == 0 && event) {
11772 spin_lock_irq(&dev->event_lock);
11773 drm_crtc_send_vblank_event(crtc, event);
11774 spin_unlock_irq(&dev->event_lock);
11777 return ret;
11782 * intel_wm_need_update - Check whether watermarks need updating
11783 * @plane: drm plane
11784 * @state: new plane state
11786 * Check current plane state versus the new one to determine whether
11787 * watermarks need to be recalculated.
11789 * Returns true or false.
11791 static bool intel_wm_need_update(struct drm_plane *plane,
11792 struct drm_plane_state *state)
11794 struct intel_plane_state *new = to_intel_plane_state(state);
11795 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11797 /* Update watermarks on tiling or size changes. */
11798 if (new->visible != cur->visible)
11799 return true;
11801 if (!cur->base.fb || !new->base.fb)
11802 return false;
11804 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11805 cur->base.rotation != new->base.rotation ||
11806 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11807 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11808 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11809 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11810 return true;
11812 return false;
11815 static bool needs_scaling(struct intel_plane_state *state)
11817 int src_w = drm_rect_width(&state->src) >> 16;
11818 int src_h = drm_rect_height(&state->src) >> 16;
11819 int dst_w = drm_rect_width(&state->dst);
11820 int dst_h = drm_rect_height(&state->dst);
11822 return (src_w != dst_w || src_h != dst_h);
11825 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11826 struct drm_plane_state *plane_state)
11828 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11829 struct drm_crtc *crtc = crtc_state->crtc;
11830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11831 struct drm_plane *plane = plane_state->plane;
11832 struct drm_device *dev = crtc->dev;
11833 struct drm_i915_private *dev_priv = to_i915(dev);
11834 struct intel_plane_state *old_plane_state =
11835 to_intel_plane_state(plane->state);
11836 int idx = intel_crtc->base.base.id, ret;
11837 bool mode_changed = needs_modeset(crtc_state);
11838 bool was_crtc_enabled = crtc->state->active;
11839 bool is_crtc_enabled = crtc_state->active;
11840 bool turn_off, turn_on, visible, was_visible;
11841 struct drm_framebuffer *fb = plane_state->fb;
11843 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11844 plane->type != DRM_PLANE_TYPE_CURSOR) {
11845 ret = skl_update_scaler_plane(
11846 to_intel_crtc_state(crtc_state),
11847 to_intel_plane_state(plane_state));
11848 if (ret)
11849 return ret;
11852 was_visible = old_plane_state->visible;
11853 visible = to_intel_plane_state(plane_state)->visible;
11855 if (!was_crtc_enabled && WARN_ON(was_visible))
11856 was_visible = false;
11859 * Visibility is calculated as if the crtc was on, but
11860 * after scaler setup everything depends on it being off
11861 * when the crtc isn't active.
11863 if (!is_crtc_enabled)
11864 to_intel_plane_state(plane_state)->visible = visible = false;
11866 if (!was_visible && !visible)
11867 return 0;
11869 if (fb != old_plane_state->base.fb)
11870 pipe_config->fb_changed = true;
11872 turn_off = was_visible && (!visible || mode_changed);
11873 turn_on = visible && (!was_visible || mode_changed);
11875 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11876 plane->base.id, fb ? fb->base.id : -1);
11878 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11879 plane->base.id, was_visible, visible,
11880 turn_off, turn_on, mode_changed);
11882 if (turn_on) {
11883 pipe_config->update_wm_pre = true;
11885 /* must disable cxsr around plane enable/disable */
11886 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11887 pipe_config->disable_cxsr = true;
11888 } else if (turn_off) {
11889 pipe_config->update_wm_post = true;
11891 /* must disable cxsr around plane enable/disable */
11892 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11893 pipe_config->disable_cxsr = true;
11894 } else if (intel_wm_need_update(plane, plane_state)) {
11895 /* FIXME bollocks */
11896 pipe_config->update_wm_pre = true;
11897 pipe_config->update_wm_post = true;
11900 /* Pre-gen9 platforms need two-step watermark updates */
11901 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11902 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11903 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11905 if (visible || was_visible)
11906 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11909 * WaCxSRDisabledForSpriteScaling:ivb
11911 * cstate->update_wm was already set above, so this flag will
11912 * take effect when we commit and program watermarks.
11914 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11915 needs_scaling(to_intel_plane_state(plane_state)) &&
11916 !needs_scaling(old_plane_state))
11917 pipe_config->disable_lp_wm = true;
11919 return 0;
11922 static bool encoders_cloneable(const struct intel_encoder *a,
11923 const struct intel_encoder *b)
11925 /* masks could be asymmetric, so check both ways */
11926 return a == b || (a->cloneable & (1 << b->type) &&
11927 b->cloneable & (1 << a->type));
11930 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11931 struct intel_crtc *crtc,
11932 struct intel_encoder *encoder)
11934 struct intel_encoder *source_encoder;
11935 struct drm_connector *connector;
11936 struct drm_connector_state *connector_state;
11937 int i;
11939 for_each_connector_in_state(state, connector, connector_state, i) {
11940 if (connector_state->crtc != &crtc->base)
11941 continue;
11943 source_encoder =
11944 to_intel_encoder(connector_state->best_encoder);
11945 if (!encoders_cloneable(encoder, source_encoder))
11946 return false;
11949 return true;
11952 static bool check_encoder_cloning(struct drm_atomic_state *state,
11953 struct intel_crtc *crtc)
11955 struct intel_encoder *encoder;
11956 struct drm_connector *connector;
11957 struct drm_connector_state *connector_state;
11958 int i;
11960 for_each_connector_in_state(state, connector, connector_state, i) {
11961 if (connector_state->crtc != &crtc->base)
11962 continue;
11964 encoder = to_intel_encoder(connector_state->best_encoder);
11965 if (!check_single_encoder_cloning(state, crtc, encoder))
11966 return false;
11969 return true;
11972 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11973 struct drm_crtc_state *crtc_state)
11975 struct drm_device *dev = crtc->dev;
11976 struct drm_i915_private *dev_priv = dev->dev_private;
11977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11978 struct intel_crtc_state *pipe_config =
11979 to_intel_crtc_state(crtc_state);
11980 struct drm_atomic_state *state = crtc_state->state;
11981 int ret;
11982 bool mode_changed = needs_modeset(crtc_state);
11984 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11985 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11986 return -EINVAL;
11989 if (mode_changed && !crtc_state->active)
11990 pipe_config->update_wm_post = true;
11992 if (mode_changed && crtc_state->enable &&
11993 dev_priv->display.crtc_compute_clock &&
11994 !WARN_ON(pipe_config->shared_dpll)) {
11995 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11996 pipe_config);
11997 if (ret)
11998 return ret;
12001 if (crtc_state->color_mgmt_changed) {
12002 ret = intel_color_check(crtc, crtc_state);
12003 if (ret)
12004 return ret;
12007 * Changing color management on Intel hardware is
12008 * handled as part of planes update.
12010 crtc_state->planes_changed = true;
12013 ret = 0;
12014 if (dev_priv->display.compute_pipe_wm) {
12015 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12016 if (ret) {
12017 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12018 return ret;
12022 if (dev_priv->display.compute_intermediate_wm &&
12023 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12024 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12025 return 0;
12028 * Calculate 'intermediate' watermarks that satisfy both the
12029 * old state and the new state. We can program these
12030 * immediately.
12032 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12033 intel_crtc,
12034 pipe_config);
12035 if (ret) {
12036 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12037 return ret;
12039 } else if (dev_priv->display.compute_intermediate_wm) {
12040 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12041 pipe_config->wm.intermediate = pipe_config->wm.optimal.ilk;
12044 if (INTEL_INFO(dev)->gen >= 9) {
12045 if (mode_changed)
12046 ret = skl_update_scaler_crtc(pipe_config);
12048 if (!ret)
12049 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12050 pipe_config);
12053 return ret;
12056 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12057 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12058 .atomic_begin = intel_begin_crtc_commit,
12059 .atomic_flush = intel_finish_crtc_commit,
12060 .atomic_check = intel_crtc_atomic_check,
12063 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12065 struct intel_connector *connector;
12067 for_each_intel_connector(dev, connector) {
12068 if (connector->base.state->crtc)
12069 drm_connector_unreference(&connector->base);
12071 if (connector->base.encoder) {
12072 connector->base.state->best_encoder =
12073 connector->base.encoder;
12074 connector->base.state->crtc =
12075 connector->base.encoder->crtc;
12077 drm_connector_reference(&connector->base);
12078 } else {
12079 connector->base.state->best_encoder = NULL;
12080 connector->base.state->crtc = NULL;
12085 static void
12086 connected_sink_compute_bpp(struct intel_connector *connector,
12087 struct intel_crtc_state *pipe_config)
12089 int bpp = pipe_config->pipe_bpp;
12091 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12092 connector->base.base.id,
12093 connector->base.name);
12095 /* Don't use an invalid EDID bpc value */
12096 if (connector->base.display_info.bpc &&
12097 connector->base.display_info.bpc * 3 < bpp) {
12098 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12099 bpp, connector->base.display_info.bpc*3);
12100 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12103 /* Clamp bpp to 8 on screens without EDID 1.4 */
12104 if (connector->base.display_info.bpc == 0 && bpp > 24) {
12105 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12106 bpp);
12107 pipe_config->pipe_bpp = 24;
12111 static int
12112 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12113 struct intel_crtc_state *pipe_config)
12115 struct drm_device *dev = crtc->base.dev;
12116 struct drm_atomic_state *state;
12117 struct drm_connector *connector;
12118 struct drm_connector_state *connector_state;
12119 int bpp, i;
12121 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12122 bpp = 10*3;
12123 else if (INTEL_INFO(dev)->gen >= 5)
12124 bpp = 12*3;
12125 else
12126 bpp = 8*3;
12129 pipe_config->pipe_bpp = bpp;
12131 state = pipe_config->base.state;
12133 /* Clamp display bpp to EDID value */
12134 for_each_connector_in_state(state, connector, connector_state, i) {
12135 if (connector_state->crtc != &crtc->base)
12136 continue;
12138 connected_sink_compute_bpp(to_intel_connector(connector),
12139 pipe_config);
12142 return bpp;
12145 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12147 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12148 "type: 0x%x flags: 0x%x\n",
12149 mode->crtc_clock,
12150 mode->crtc_hdisplay, mode->crtc_hsync_start,
12151 mode->crtc_hsync_end, mode->crtc_htotal,
12152 mode->crtc_vdisplay, mode->crtc_vsync_start,
12153 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12156 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12157 struct intel_crtc_state *pipe_config,
12158 const char *context)
12160 struct drm_device *dev = crtc->base.dev;
12161 struct drm_plane *plane;
12162 struct intel_plane *intel_plane;
12163 struct intel_plane_state *state;
12164 struct drm_framebuffer *fb;
12166 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12167 context, pipe_config, pipe_name(crtc->pipe));
12169 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12170 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12171 pipe_config->pipe_bpp, pipe_config->dither);
12172 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12173 pipe_config->has_pch_encoder,
12174 pipe_config->fdi_lanes,
12175 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12176 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12177 pipe_config->fdi_m_n.tu);
12178 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12179 pipe_config->has_dp_encoder,
12180 pipe_config->lane_count,
12181 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12182 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12183 pipe_config->dp_m_n.tu);
12185 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12186 pipe_config->has_dp_encoder,
12187 pipe_config->lane_count,
12188 pipe_config->dp_m2_n2.gmch_m,
12189 pipe_config->dp_m2_n2.gmch_n,
12190 pipe_config->dp_m2_n2.link_m,
12191 pipe_config->dp_m2_n2.link_n,
12192 pipe_config->dp_m2_n2.tu);
12194 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12195 pipe_config->has_audio,
12196 pipe_config->has_infoframe);
12198 DRM_DEBUG_KMS("requested mode:\n");
12199 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12200 DRM_DEBUG_KMS("adjusted mode:\n");
12201 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12202 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12203 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12204 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12205 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12206 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12207 crtc->num_scalers,
12208 pipe_config->scaler_state.scaler_users,
12209 pipe_config->scaler_state.scaler_id);
12210 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12211 pipe_config->gmch_pfit.control,
12212 pipe_config->gmch_pfit.pgm_ratios,
12213 pipe_config->gmch_pfit.lvds_border_bits);
12214 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12215 pipe_config->pch_pfit.pos,
12216 pipe_config->pch_pfit.size,
12217 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12218 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12219 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12221 if (IS_BROXTON(dev)) {
12222 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12223 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12224 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12225 pipe_config->ddi_pll_sel,
12226 pipe_config->dpll_hw_state.ebb0,
12227 pipe_config->dpll_hw_state.ebb4,
12228 pipe_config->dpll_hw_state.pll0,
12229 pipe_config->dpll_hw_state.pll1,
12230 pipe_config->dpll_hw_state.pll2,
12231 pipe_config->dpll_hw_state.pll3,
12232 pipe_config->dpll_hw_state.pll6,
12233 pipe_config->dpll_hw_state.pll8,
12234 pipe_config->dpll_hw_state.pll9,
12235 pipe_config->dpll_hw_state.pll10,
12236 pipe_config->dpll_hw_state.pcsdw12);
12237 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12238 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12239 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12240 pipe_config->ddi_pll_sel,
12241 pipe_config->dpll_hw_state.ctrl1,
12242 pipe_config->dpll_hw_state.cfgcr1,
12243 pipe_config->dpll_hw_state.cfgcr2);
12244 } else if (HAS_DDI(dev)) {
12245 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12246 pipe_config->ddi_pll_sel,
12247 pipe_config->dpll_hw_state.wrpll,
12248 pipe_config->dpll_hw_state.spll);
12249 } else {
12250 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12251 "fp0: 0x%x, fp1: 0x%x\n",
12252 pipe_config->dpll_hw_state.dpll,
12253 pipe_config->dpll_hw_state.dpll_md,
12254 pipe_config->dpll_hw_state.fp0,
12255 pipe_config->dpll_hw_state.fp1);
12258 DRM_DEBUG_KMS("planes on this crtc\n");
12259 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12260 intel_plane = to_intel_plane(plane);
12261 if (intel_plane->pipe != crtc->pipe)
12262 continue;
12264 state = to_intel_plane_state(plane->state);
12265 fb = state->base.fb;
12266 if (!fb) {
12267 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12268 "disabled, scaler_id = %d\n",
12269 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12270 plane->base.id, intel_plane->pipe,
12271 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12272 drm_plane_index(plane), state->scaler_id);
12273 continue;
12276 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12277 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12278 plane->base.id, intel_plane->pipe,
12279 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12280 drm_plane_index(plane));
12281 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12282 fb->base.id, fb->width, fb->height, fb->pixel_format);
12283 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12284 state->scaler_id,
12285 state->src.x1 >> 16, state->src.y1 >> 16,
12286 drm_rect_width(&state->src) >> 16,
12287 drm_rect_height(&state->src) >> 16,
12288 state->dst.x1, state->dst.y1,
12289 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12293 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12295 struct drm_device *dev = state->dev;
12296 struct drm_connector *connector;
12297 unsigned int used_ports = 0;
12300 * Walk the connector list instead of the encoder
12301 * list to detect the problem on ddi platforms
12302 * where there's just one encoder per digital port.
12304 drm_for_each_connector(connector, dev) {
12305 struct drm_connector_state *connector_state;
12306 struct intel_encoder *encoder;
12308 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12309 if (!connector_state)
12310 connector_state = connector->state;
12312 if (!connector_state->best_encoder)
12313 continue;
12315 encoder = to_intel_encoder(connector_state->best_encoder);
12317 WARN_ON(!connector_state->crtc);
12319 switch (encoder->type) {
12320 unsigned int port_mask;
12321 case INTEL_OUTPUT_UNKNOWN:
12322 if (WARN_ON(!HAS_DDI(dev)))
12323 break;
12324 case INTEL_OUTPUT_DISPLAYPORT:
12325 case INTEL_OUTPUT_HDMI:
12326 case INTEL_OUTPUT_EDP:
12327 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12329 /* the same port mustn't appear more than once */
12330 if (used_ports & port_mask)
12331 return false;
12333 used_ports |= port_mask;
12334 default:
12335 break;
12339 return true;
12342 static void
12343 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12345 struct drm_crtc_state tmp_state;
12346 struct intel_crtc_scaler_state scaler_state;
12347 struct intel_dpll_hw_state dpll_hw_state;
12348 struct intel_shared_dpll *shared_dpll;
12349 uint32_t ddi_pll_sel;
12350 bool force_thru;
12352 /* FIXME: before the switch to atomic started, a new pipe_config was
12353 * kzalloc'd. Code that depends on any field being zero should be
12354 * fixed, so that the crtc_state can be safely duplicated. For now,
12355 * only fields that are know to not cause problems are preserved. */
12357 tmp_state = crtc_state->base;
12358 scaler_state = crtc_state->scaler_state;
12359 shared_dpll = crtc_state->shared_dpll;
12360 dpll_hw_state = crtc_state->dpll_hw_state;
12361 ddi_pll_sel = crtc_state->ddi_pll_sel;
12362 force_thru = crtc_state->pch_pfit.force_thru;
12364 memset(crtc_state, 0, sizeof *crtc_state);
12366 crtc_state->base = tmp_state;
12367 crtc_state->scaler_state = scaler_state;
12368 crtc_state->shared_dpll = shared_dpll;
12369 crtc_state->dpll_hw_state = dpll_hw_state;
12370 crtc_state->ddi_pll_sel = ddi_pll_sel;
12371 crtc_state->pch_pfit.force_thru = force_thru;
12374 static int
12375 intel_modeset_pipe_config(struct drm_crtc *crtc,
12376 struct intel_crtc_state *pipe_config)
12378 struct drm_atomic_state *state = pipe_config->base.state;
12379 struct intel_encoder *encoder;
12380 struct drm_connector *connector;
12381 struct drm_connector_state *connector_state;
12382 int base_bpp, ret = -EINVAL;
12383 int i;
12384 bool retry = true;
12386 clear_intel_crtc_state(pipe_config);
12388 pipe_config->cpu_transcoder =
12389 (enum transcoder) to_intel_crtc(crtc)->pipe;
12392 * Sanitize sync polarity flags based on requested ones. If neither
12393 * positive or negative polarity is requested, treat this as meaning
12394 * negative polarity.
12396 if (!(pipe_config->base.adjusted_mode.flags &
12397 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12398 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12400 if (!(pipe_config->base.adjusted_mode.flags &
12401 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12402 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12404 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12405 pipe_config);
12406 if (base_bpp < 0)
12407 goto fail;
12410 * Determine the real pipe dimensions. Note that stereo modes can
12411 * increase the actual pipe size due to the frame doubling and
12412 * insertion of additional space for blanks between the frame. This
12413 * is stored in the crtc timings. We use the requested mode to do this
12414 * computation to clearly distinguish it from the adjusted mode, which
12415 * can be changed by the connectors in the below retry loop.
12417 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12418 &pipe_config->pipe_src_w,
12419 &pipe_config->pipe_src_h);
12421 encoder_retry:
12422 /* Ensure the port clock defaults are reset when retrying. */
12423 pipe_config->port_clock = 0;
12424 pipe_config->pixel_multiplier = 1;
12426 /* Fill in default crtc timings, allow encoders to overwrite them. */
12427 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12428 CRTC_STEREO_DOUBLE);
12430 /* Pass our mode to the connectors and the CRTC to give them a chance to
12431 * adjust it according to limitations or connector properties, and also
12432 * a chance to reject the mode entirely.
12434 for_each_connector_in_state(state, connector, connector_state, i) {
12435 if (connector_state->crtc != crtc)
12436 continue;
12438 encoder = to_intel_encoder(connector_state->best_encoder);
12440 if (!(encoder->compute_config(encoder, pipe_config))) {
12441 DRM_DEBUG_KMS("Encoder config failure\n");
12442 goto fail;
12446 /* Set default port clock if not overwritten by the encoder. Needs to be
12447 * done afterwards in case the encoder adjusts the mode. */
12448 if (!pipe_config->port_clock)
12449 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12450 * pipe_config->pixel_multiplier;
12452 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12453 if (ret < 0) {
12454 DRM_DEBUG_KMS("CRTC fixup failed\n");
12455 goto fail;
12458 if (ret == RETRY) {
12459 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12460 ret = -EINVAL;
12461 goto fail;
12464 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12465 retry = false;
12466 goto encoder_retry;
12469 /* Dithering seems to not pass-through bits correctly when it should, so
12470 * only enable it on 6bpc panels. */
12471 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12472 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12473 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12475 fail:
12476 return ret;
12479 static void
12480 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12482 struct drm_crtc *crtc;
12483 struct drm_crtc_state *crtc_state;
12484 int i;
12486 /* Double check state. */
12487 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12488 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12490 /* Update hwmode for vblank functions */
12491 if (crtc->state->active)
12492 crtc->hwmode = crtc->state->adjusted_mode;
12493 else
12494 crtc->hwmode.crtc_clock = 0;
12497 * Update legacy state to satisfy fbc code. This can
12498 * be removed when fbc uses the atomic state.
12500 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12501 struct drm_plane_state *plane_state = crtc->primary->state;
12503 crtc->primary->fb = plane_state->fb;
12504 crtc->x = plane_state->src_x >> 16;
12505 crtc->y = plane_state->src_y >> 16;
12510 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12512 int diff;
12514 if (clock1 == clock2)
12515 return true;
12517 if (!clock1 || !clock2)
12518 return false;
12520 diff = abs(clock1 - clock2);
12522 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12523 return true;
12525 return false;
12528 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12529 list_for_each_entry((intel_crtc), \
12530 &(dev)->mode_config.crtc_list, \
12531 base.head) \
12532 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12534 static bool
12535 intel_compare_m_n(unsigned int m, unsigned int n,
12536 unsigned int m2, unsigned int n2,
12537 bool exact)
12539 if (m == m2 && n == n2)
12540 return true;
12542 if (exact || !m || !n || !m2 || !n2)
12543 return false;
12545 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12547 if (n > n2) {
12548 while (n > n2) {
12549 m2 <<= 1;
12550 n2 <<= 1;
12552 } else if (n < n2) {
12553 while (n < n2) {
12554 m <<= 1;
12555 n <<= 1;
12559 if (n != n2)
12560 return false;
12562 return intel_fuzzy_clock_check(m, m2);
12565 static bool
12566 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12567 struct intel_link_m_n *m2_n2,
12568 bool adjust)
12570 if (m_n->tu == m2_n2->tu &&
12571 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12572 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12573 intel_compare_m_n(m_n->link_m, m_n->link_n,
12574 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12575 if (adjust)
12576 *m2_n2 = *m_n;
12578 return true;
12581 return false;
12584 static bool
12585 intel_pipe_config_compare(struct drm_device *dev,
12586 struct intel_crtc_state *current_config,
12587 struct intel_crtc_state *pipe_config,
12588 bool adjust)
12590 bool ret = true;
12592 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12593 do { \
12594 if (!adjust) \
12595 DRM_ERROR(fmt, ##__VA_ARGS__); \
12596 else \
12597 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12598 } while (0)
12600 #define PIPE_CONF_CHECK_X(name) \
12601 if (current_config->name != pipe_config->name) { \
12602 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12603 "(expected 0x%08x, found 0x%08x)\n", \
12604 current_config->name, \
12605 pipe_config->name); \
12606 ret = false; \
12609 #define PIPE_CONF_CHECK_I(name) \
12610 if (current_config->name != pipe_config->name) { \
12611 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12612 "(expected %i, found %i)\n", \
12613 current_config->name, \
12614 pipe_config->name); \
12615 ret = false; \
12618 #define PIPE_CONF_CHECK_P(name) \
12619 if (current_config->name != pipe_config->name) { \
12620 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12621 "(expected %p, found %p)\n", \
12622 current_config->name, \
12623 pipe_config->name); \
12624 ret = false; \
12627 #define PIPE_CONF_CHECK_M_N(name) \
12628 if (!intel_compare_link_m_n(&current_config->name, \
12629 &pipe_config->name,\
12630 adjust)) { \
12631 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12632 "(expected tu %i gmch %i/%i link %i/%i, " \
12633 "found tu %i, gmch %i/%i link %i/%i)\n", \
12634 current_config->name.tu, \
12635 current_config->name.gmch_m, \
12636 current_config->name.gmch_n, \
12637 current_config->name.link_m, \
12638 current_config->name.link_n, \
12639 pipe_config->name.tu, \
12640 pipe_config->name.gmch_m, \
12641 pipe_config->name.gmch_n, \
12642 pipe_config->name.link_m, \
12643 pipe_config->name.link_n); \
12644 ret = false; \
12647 /* This is required for BDW+ where there is only one set of registers for
12648 * switching between high and low RR.
12649 * This macro can be used whenever a comparison has to be made between one
12650 * hw state and multiple sw state variables.
12652 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12653 if (!intel_compare_link_m_n(&current_config->name, \
12654 &pipe_config->name, adjust) && \
12655 !intel_compare_link_m_n(&current_config->alt_name, \
12656 &pipe_config->name, adjust)) { \
12657 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12658 "(expected tu %i gmch %i/%i link %i/%i, " \
12659 "or tu %i gmch %i/%i link %i/%i, " \
12660 "found tu %i, gmch %i/%i link %i/%i)\n", \
12661 current_config->name.tu, \
12662 current_config->name.gmch_m, \
12663 current_config->name.gmch_n, \
12664 current_config->name.link_m, \
12665 current_config->name.link_n, \
12666 current_config->alt_name.tu, \
12667 current_config->alt_name.gmch_m, \
12668 current_config->alt_name.gmch_n, \
12669 current_config->alt_name.link_m, \
12670 current_config->alt_name.link_n, \
12671 pipe_config->name.tu, \
12672 pipe_config->name.gmch_m, \
12673 pipe_config->name.gmch_n, \
12674 pipe_config->name.link_m, \
12675 pipe_config->name.link_n); \
12676 ret = false; \
12679 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
12680 if ((current_config->name ^ pipe_config->name) & (mask)) { \
12681 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12682 "(expected %i, found %i)\n", \
12683 current_config->name & (mask), \
12684 pipe_config->name & (mask)); \
12685 ret = false; \
12688 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12689 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12690 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12691 "(expected %i, found %i)\n", \
12692 current_config->name, \
12693 pipe_config->name); \
12694 ret = false; \
12697 #define PIPE_CONF_QUIRK(quirk) \
12698 ((current_config->quirks | pipe_config->quirks) & (quirk))
12700 PIPE_CONF_CHECK_I(cpu_transcoder);
12702 PIPE_CONF_CHECK_I(has_pch_encoder);
12703 PIPE_CONF_CHECK_I(fdi_lanes);
12704 PIPE_CONF_CHECK_M_N(fdi_m_n);
12706 PIPE_CONF_CHECK_I(has_dp_encoder);
12707 PIPE_CONF_CHECK_I(lane_count);
12709 if (INTEL_INFO(dev)->gen < 8) {
12710 PIPE_CONF_CHECK_M_N(dp_m_n);
12712 if (current_config->has_drrs)
12713 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12714 } else
12715 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12717 PIPE_CONF_CHECK_I(has_dsi_encoder);
12719 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12720 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12721 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12722 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12723 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12724 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12726 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12727 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12728 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12729 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12730 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12731 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12733 PIPE_CONF_CHECK_I(pixel_multiplier);
12734 PIPE_CONF_CHECK_I(has_hdmi_sink);
12735 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12736 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12737 PIPE_CONF_CHECK_I(limited_color_range);
12738 PIPE_CONF_CHECK_I(has_infoframe);
12740 PIPE_CONF_CHECK_I(has_audio);
12742 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12743 DRM_MODE_FLAG_INTERLACE);
12745 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12746 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12747 DRM_MODE_FLAG_PHSYNC);
12748 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12749 DRM_MODE_FLAG_NHSYNC);
12750 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12751 DRM_MODE_FLAG_PVSYNC);
12752 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12753 DRM_MODE_FLAG_NVSYNC);
12756 PIPE_CONF_CHECK_X(gmch_pfit.control);
12757 /* pfit ratios are autocomputed by the hw on gen4+ */
12758 if (INTEL_INFO(dev)->gen < 4)
12759 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12760 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12762 if (!adjust) {
12763 PIPE_CONF_CHECK_I(pipe_src_w);
12764 PIPE_CONF_CHECK_I(pipe_src_h);
12766 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12767 if (current_config->pch_pfit.enabled) {
12768 PIPE_CONF_CHECK_X(pch_pfit.pos);
12769 PIPE_CONF_CHECK_X(pch_pfit.size);
12772 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12775 /* BDW+ don't expose a synchronous way to read the state */
12776 if (IS_HASWELL(dev))
12777 PIPE_CONF_CHECK_I(ips_enabled);
12779 PIPE_CONF_CHECK_I(double_wide);
12781 PIPE_CONF_CHECK_X(ddi_pll_sel);
12783 PIPE_CONF_CHECK_P(shared_dpll);
12784 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12785 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12786 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12787 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12788 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12789 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12790 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12791 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12792 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12794 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12795 PIPE_CONF_CHECK_X(dsi_pll.div);
12797 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12798 PIPE_CONF_CHECK_I(pipe_bpp);
12800 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12801 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12803 #undef PIPE_CONF_CHECK_X
12804 #undef PIPE_CONF_CHECK_I
12805 #undef PIPE_CONF_CHECK_P
12806 #undef PIPE_CONF_CHECK_FLAGS
12807 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12808 #undef PIPE_CONF_QUIRK
12809 #undef INTEL_ERR_OR_DBG_KMS
12811 return ret;
12814 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12815 const struct intel_crtc_state *pipe_config)
12817 if (pipe_config->has_pch_encoder) {
12818 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12819 &pipe_config->fdi_m_n);
12820 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12823 * FDI already provided one idea for the dotclock.
12824 * Yell if the encoder disagrees.
12826 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12827 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12828 fdi_dotclock, dotclock);
12832 static void verify_wm_state(struct drm_crtc *crtc,
12833 struct drm_crtc_state *new_state)
12835 struct drm_device *dev = crtc->dev;
12836 struct drm_i915_private *dev_priv = dev->dev_private;
12837 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12838 struct skl_ddb_entry *hw_entry, *sw_entry;
12839 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12840 const enum i915_pipe pipe = intel_crtc->pipe;
12841 int plane;
12843 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12844 return;
12846 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12847 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12849 /* planes */
12850 for_each_plane(dev_priv, pipe, plane) {
12851 hw_entry = &hw_ddb.plane[pipe][plane];
12852 sw_entry = &sw_ddb->plane[pipe][plane];
12854 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12855 continue;
12857 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12858 "(expected (%u,%u), found (%u,%u))\n",
12859 pipe_name(pipe), plane + 1,
12860 sw_entry->start, sw_entry->end,
12861 hw_entry->start, hw_entry->end);
12864 /* cursor */
12865 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12866 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12868 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12869 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12870 "(expected (%u,%u), found (%u,%u))\n",
12871 pipe_name(pipe),
12872 sw_entry->start, sw_entry->end,
12873 hw_entry->start, hw_entry->end);
12877 static void
12878 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12880 struct drm_connector *connector;
12882 drm_for_each_connector(connector, dev) {
12883 struct drm_encoder *encoder = connector->encoder;
12884 struct drm_connector_state *state = connector->state;
12886 if (state->crtc != crtc)
12887 continue;
12889 intel_connector_verify_state(to_intel_connector(connector));
12891 I915_STATE_WARN(state->best_encoder != encoder,
12892 "connector's atomic encoder doesn't match legacy encoder\n");
12896 static void
12897 verify_encoder_state(struct drm_device *dev)
12899 struct intel_encoder *encoder;
12900 struct intel_connector *connector;
12902 for_each_intel_encoder(dev, encoder) {
12903 bool enabled = false;
12904 enum i915_pipe pipe;
12906 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12907 encoder->base.base.id,
12908 encoder->base.name);
12910 for_each_intel_connector(dev, connector) {
12911 if (connector->base.state->best_encoder != &encoder->base)
12912 continue;
12913 enabled = true;
12915 I915_STATE_WARN(connector->base.state->crtc !=
12916 encoder->base.crtc,
12917 "connector's crtc doesn't match encoder crtc\n");
12920 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12921 "encoder's enabled state mismatch "
12922 "(expected %i, found %i)\n",
12923 !!encoder->base.crtc, enabled);
12925 if (!encoder->base.crtc) {
12926 bool active;
12928 active = encoder->get_hw_state(encoder, &pipe);
12929 I915_STATE_WARN(active,
12930 "encoder detached but still enabled on pipe %c.\n",
12931 pipe_name(pipe));
12936 static void
12937 verify_crtc_state(struct drm_crtc *crtc,
12938 struct drm_crtc_state *old_crtc_state,
12939 struct drm_crtc_state *new_crtc_state)
12941 struct drm_device *dev = crtc->dev;
12942 struct drm_i915_private *dev_priv = dev->dev_private;
12943 struct intel_encoder *encoder;
12944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12945 struct intel_crtc_state *pipe_config, *sw_config;
12946 struct drm_atomic_state *old_state;
12947 bool active;
12949 old_state = old_crtc_state->state;
12950 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12951 pipe_config = to_intel_crtc_state(old_crtc_state);
12952 memset(pipe_config, 0, sizeof(*pipe_config));
12953 pipe_config->base.crtc = crtc;
12954 pipe_config->base.state = old_state;
12956 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12958 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12960 /* hw state is inconsistent with the pipe quirk */
12961 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12962 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12963 active = new_crtc_state->active;
12965 I915_STATE_WARN(new_crtc_state->active != active,
12966 "crtc active state doesn't match with hw state "
12967 "(expected %i, found %i)\n", new_crtc_state->active, active);
12969 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12970 "transitional active state does not match atomic hw state "
12971 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12973 for_each_encoder_on_crtc(dev, crtc, encoder) {
12974 enum i915_pipe pipe;
12976 active = encoder->get_hw_state(encoder, &pipe);
12977 I915_STATE_WARN(active != new_crtc_state->active,
12978 "[ENCODER:%i] active %i with crtc active %i\n",
12979 encoder->base.base.id, active, new_crtc_state->active);
12981 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12982 "Encoder connected to wrong pipe %c\n",
12983 pipe_name(pipe));
12985 if (active)
12986 encoder->get_config(encoder, pipe_config);
12989 if (!new_crtc_state->active)
12990 return;
12992 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12994 sw_config = to_intel_crtc_state(crtc->state);
12995 if (!intel_pipe_config_compare(dev, sw_config,
12996 pipe_config, false)) {
12997 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12998 intel_dump_pipe_config(intel_crtc, pipe_config,
12999 "[hw state]");
13000 intel_dump_pipe_config(intel_crtc, sw_config,
13001 "[sw state]");
13005 static void
13006 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13007 struct intel_shared_dpll *pll,
13008 struct drm_crtc *crtc,
13009 struct drm_crtc_state *new_state)
13011 struct intel_dpll_hw_state dpll_hw_state;
13012 unsigned crtc_mask;
13013 bool active;
13015 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13017 DRM_DEBUG_KMS("%s\n", pll->name);
13019 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13021 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13022 I915_STATE_WARN(!pll->on && pll->active_mask,
13023 "pll in active use but not on in sw tracking\n");
13024 I915_STATE_WARN(pll->on && !pll->active_mask,
13025 "pll is on but not used by any active crtc\n");
13026 I915_STATE_WARN(pll->on != active,
13027 "pll on state mismatch (expected %i, found %i)\n",
13028 pll->on, active);
13031 if (!crtc) {
13032 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13033 "more active pll users than references: %x vs %x\n",
13034 pll->active_mask, pll->config.crtc_mask);
13036 return;
13039 crtc_mask = 1 << drm_crtc_index(crtc);
13041 if (new_state->active)
13042 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13043 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13044 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13045 else
13046 I915_STATE_WARN(pll->active_mask & crtc_mask,
13047 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13048 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13050 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13051 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13052 crtc_mask, pll->config.crtc_mask);
13054 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13055 &dpll_hw_state,
13056 sizeof(dpll_hw_state)),
13057 "pll hw state mismatch\n");
13060 static void
13061 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13062 struct drm_crtc_state *old_crtc_state,
13063 struct drm_crtc_state *new_crtc_state)
13065 struct drm_i915_private *dev_priv = dev->dev_private;
13066 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13067 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13069 if (new_state->shared_dpll)
13070 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13072 if (old_state->shared_dpll &&
13073 old_state->shared_dpll != new_state->shared_dpll) {
13074 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13075 struct intel_shared_dpll *pll = old_state->shared_dpll;
13077 I915_STATE_WARN(pll->active_mask & crtc_mask,
13078 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13079 pipe_name(drm_crtc_index(crtc)));
13080 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13081 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13082 pipe_name(drm_crtc_index(crtc)));
13086 static void
13087 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13088 struct drm_crtc_state *old_state,
13089 struct drm_crtc_state *new_state)
13091 if (!needs_modeset(new_state) &&
13092 !to_intel_crtc_state(new_state)->update_pipe)
13093 return;
13095 verify_wm_state(crtc, new_state);
13096 verify_connector_state(crtc->dev, crtc);
13097 verify_crtc_state(crtc, old_state, new_state);
13098 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13101 static void
13102 verify_disabled_dpll_state(struct drm_device *dev)
13104 struct drm_i915_private *dev_priv = dev->dev_private;
13105 int i;
13107 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13108 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13111 static void
13112 intel_modeset_verify_disabled(struct drm_device *dev)
13114 verify_encoder_state(dev);
13115 verify_connector_state(dev, NULL);
13116 verify_disabled_dpll_state(dev);
13119 static void update_scanline_offset(struct intel_crtc *crtc)
13121 struct drm_device *dev = crtc->base.dev;
13124 * The scanline counter increments at the leading edge of hsync.
13126 * On most platforms it starts counting from vtotal-1 on the
13127 * first active line. That means the scanline counter value is
13128 * always one less than what we would expect. Ie. just after
13129 * start of vblank, which also occurs at start of hsync (on the
13130 * last active line), the scanline counter will read vblank_start-1.
13132 * On gen2 the scanline counter starts counting from 1 instead
13133 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13134 * to keep the value positive), instead of adding one.
13136 * On HSW+ the behaviour of the scanline counter depends on the output
13137 * type. For DP ports it behaves like most other platforms, but on HDMI
13138 * there's an extra 1 line difference. So we need to add two instead of
13139 * one to the value.
13141 if (IS_GEN2(dev)) {
13142 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13143 int vtotal;
13145 vtotal = adjusted_mode->crtc_vtotal;
13146 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13147 vtotal /= 2;
13149 crtc->scanline_offset = vtotal - 1;
13150 } else if (HAS_DDI(dev) &&
13151 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13152 crtc->scanline_offset = 2;
13153 } else
13154 crtc->scanline_offset = 1;
13157 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13159 struct drm_device *dev = state->dev;
13160 struct drm_i915_private *dev_priv = to_i915(dev);
13161 struct intel_shared_dpll_config *shared_dpll = NULL;
13162 struct drm_crtc *crtc;
13163 struct drm_crtc_state *crtc_state;
13164 int i;
13166 if (!dev_priv->display.crtc_compute_clock)
13167 return;
13169 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13171 struct intel_shared_dpll *old_dpll =
13172 to_intel_crtc_state(crtc->state)->shared_dpll;
13174 if (!needs_modeset(crtc_state))
13175 continue;
13177 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13179 if (!old_dpll)
13180 continue;
13182 if (!shared_dpll)
13183 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13185 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13190 * This implements the workaround described in the "notes" section of the mode
13191 * set sequence documentation. When going from no pipes or single pipe to
13192 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13193 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13195 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13197 struct drm_crtc_state *crtc_state;
13198 struct intel_crtc *intel_crtc;
13199 struct drm_crtc *crtc;
13200 struct intel_crtc_state *first_crtc_state = NULL;
13201 struct intel_crtc_state *other_crtc_state = NULL;
13202 enum i915_pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13203 int i;
13205 /* look at all crtc's that are going to be enabled in during modeset */
13206 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13207 intel_crtc = to_intel_crtc(crtc);
13209 if (!crtc_state->active || !needs_modeset(crtc_state))
13210 continue;
13212 if (first_crtc_state) {
13213 other_crtc_state = to_intel_crtc_state(crtc_state);
13214 break;
13215 } else {
13216 first_crtc_state = to_intel_crtc_state(crtc_state);
13217 first_pipe = intel_crtc->pipe;
13221 /* No workaround needed? */
13222 if (!first_crtc_state)
13223 return 0;
13225 /* w/a possibly needed, check how many crtc's are already enabled. */
13226 for_each_intel_crtc(state->dev, intel_crtc) {
13227 struct intel_crtc_state *pipe_config;
13229 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13230 if (IS_ERR(pipe_config))
13231 return PTR_ERR(pipe_config);
13233 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13235 if (!pipe_config->base.active ||
13236 needs_modeset(&pipe_config->base))
13237 continue;
13239 /* 2 or more enabled crtcs means no need for w/a */
13240 if (enabled_pipe != INVALID_PIPE)
13241 return 0;
13243 enabled_pipe = intel_crtc->pipe;
13246 if (enabled_pipe != INVALID_PIPE)
13247 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13248 else if (other_crtc_state)
13249 other_crtc_state->hsw_workaround_pipe = first_pipe;
13251 return 0;
13254 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13256 struct drm_crtc *crtc;
13257 struct drm_crtc_state *crtc_state;
13258 int ret = 0;
13260 /* add all active pipes to the state */
13261 for_each_crtc(state->dev, crtc) {
13262 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13263 if (IS_ERR(crtc_state))
13264 return PTR_ERR(crtc_state);
13266 if (!crtc_state->active || needs_modeset(crtc_state))
13267 continue;
13269 crtc_state->mode_changed = true;
13271 ret = drm_atomic_add_affected_connectors(state, crtc);
13272 if (ret)
13273 break;
13275 ret = drm_atomic_add_affected_planes(state, crtc);
13276 if (ret)
13277 break;
13280 return ret;
13283 static int intel_modeset_checks(struct drm_atomic_state *state)
13285 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13286 struct drm_i915_private *dev_priv = state->dev->dev_private;
13287 struct drm_crtc *crtc;
13288 struct drm_crtc_state *crtc_state;
13289 int ret = 0, i;
13291 if (!check_digital_port_conflicts(state)) {
13292 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13293 return -EINVAL;
13296 intel_state->modeset = true;
13297 intel_state->active_crtcs = dev_priv->active_crtcs;
13299 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13300 if (crtc_state->active)
13301 intel_state->active_crtcs |= 1 << i;
13302 else
13303 intel_state->active_crtcs &= ~(1 << i);
13307 * See if the config requires any additional preparation, e.g.
13308 * to adjust global state with pipes off. We need to do this
13309 * here so we can get the modeset_pipe updated config for the new
13310 * mode set on this crtc. For other crtcs we need to use the
13311 * adjusted_mode bits in the crtc directly.
13313 if (dev_priv->display.modeset_calc_cdclk) {
13314 ret = dev_priv->display.modeset_calc_cdclk(state);
13316 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13317 ret = intel_modeset_all_pipes(state);
13319 if (ret < 0)
13320 return ret;
13322 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13323 intel_state->cdclk, intel_state->dev_cdclk);
13324 } else
13325 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13327 intel_modeset_clear_plls(state);
13329 if (IS_HASWELL(dev_priv))
13330 return haswell_mode_set_planes_workaround(state);
13332 return 0;
13336 * Handle calculation of various watermark data at the end of the atomic check
13337 * phase. The code here should be run after the per-crtc and per-plane 'check'
13338 * handlers to ensure that all derived state has been updated.
13340 static void calc_watermark_data(struct drm_atomic_state *state)
13342 struct drm_device *dev = state->dev;
13343 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13344 struct drm_crtc *crtc;
13345 struct drm_crtc_state *cstate;
13346 struct drm_plane *plane;
13347 struct drm_plane_state *pstate;
13350 * Calculate watermark configuration details now that derived
13351 * plane/crtc state is all properly updated.
13353 drm_for_each_crtc(crtc, dev) {
13354 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13355 crtc->state;
13357 if (cstate->active)
13358 intel_state->wm_config.num_pipes_active++;
13360 drm_for_each_legacy_plane(plane, dev) {
13361 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13362 plane->state;
13364 if (!to_intel_plane_state(pstate)->visible)
13365 continue;
13367 intel_state->wm_config.sprites_enabled = true;
13368 if (pstate->crtc_w != pstate->src_w >> 16 ||
13369 pstate->crtc_h != pstate->src_h >> 16)
13370 intel_state->wm_config.sprites_scaled = true;
13375 * intel_atomic_check - validate state object
13376 * @dev: drm device
13377 * @state: state to validate
13379 static int intel_atomic_check(struct drm_device *dev,
13380 struct drm_atomic_state *state)
13382 struct drm_i915_private *dev_priv = to_i915(dev);
13383 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13384 struct drm_crtc *crtc;
13385 struct drm_crtc_state *crtc_state;
13386 int ret, i;
13387 bool any_ms = false;
13389 ret = drm_atomic_helper_check_modeset(dev, state);
13390 if (ret)
13391 return ret;
13393 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13394 struct intel_crtc_state *pipe_config =
13395 to_intel_crtc_state(crtc_state);
13397 /* Catch I915_MODE_FLAG_INHERITED */
13398 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13399 crtc_state->mode_changed = true;
13401 if (!crtc_state->enable) {
13402 if (needs_modeset(crtc_state))
13403 any_ms = true;
13404 continue;
13407 if (!needs_modeset(crtc_state))
13408 continue;
13410 /* FIXME: For only active_changed we shouldn't need to do any
13411 * state recomputation at all. */
13413 ret = drm_atomic_add_affected_connectors(state, crtc);
13414 if (ret)
13415 return ret;
13417 ret = intel_modeset_pipe_config(crtc, pipe_config);
13418 if (ret)
13419 return ret;
13421 if (i915.fastboot &&
13422 intel_pipe_config_compare(dev,
13423 to_intel_crtc_state(crtc->state),
13424 pipe_config, true)) {
13425 crtc_state->mode_changed = false;
13426 to_intel_crtc_state(crtc_state)->update_pipe = true;
13429 if (needs_modeset(crtc_state)) {
13430 any_ms = true;
13432 ret = drm_atomic_add_affected_planes(state, crtc);
13433 if (ret)
13434 return ret;
13437 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13438 needs_modeset(crtc_state) ?
13439 "[modeset]" : "[fastset]");
13442 if (any_ms) {
13443 ret = intel_modeset_checks(state);
13445 if (ret)
13446 return ret;
13447 } else
13448 intel_state->cdclk = dev_priv->cdclk_freq;
13450 ret = drm_atomic_helper_check_planes(dev, state);
13451 if (ret)
13452 return ret;
13454 intel_fbc_choose_crtc(dev_priv, state);
13455 calc_watermark_data(state);
13457 return 0;
13460 static int intel_atomic_prepare_commit(struct drm_device *dev,
13461 struct drm_atomic_state *state,
13462 bool nonblock)
13464 struct drm_i915_private *dev_priv = dev->dev_private;
13465 struct drm_plane_state *plane_state;
13466 struct drm_crtc_state *crtc_state;
13467 struct drm_plane *plane;
13468 struct drm_crtc *crtc;
13469 int i, ret;
13471 if (nonblock) {
13472 DRM_DEBUG_KMS("i915 does not yet support nonblocking commit\n");
13473 return -EINVAL;
13476 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13477 if (state->legacy_cursor_update)
13478 continue;
13480 ret = intel_crtc_wait_for_pending_flips(crtc);
13481 if (ret)
13482 return ret;
13484 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13485 flush_workqueue(dev_priv->wq);
13488 ret = mutex_lock_interruptible(&dev->struct_mutex);
13489 if (ret)
13490 return ret;
13492 ret = drm_atomic_helper_prepare_planes(dev, state);
13493 mutex_unlock(&dev->struct_mutex);
13495 if (!ret && !nonblock) {
13496 for_each_plane_in_state(state, plane, plane_state, i) {
13497 struct intel_plane_state *intel_plane_state =
13498 to_intel_plane_state(plane_state);
13500 if (!intel_plane_state->wait_req)
13501 continue;
13503 ret = __i915_wait_request(intel_plane_state->wait_req,
13504 true, NULL, NULL);
13505 if (ret) {
13506 /* Any hang should be swallowed by the wait */
13507 WARN_ON(ret == -EIO);
13508 mutex_lock(&dev->struct_mutex);
13509 drm_atomic_helper_cleanup_planes(dev, state);
13510 mutex_unlock(&dev->struct_mutex);
13511 break;
13516 return ret;
13519 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13520 struct drm_i915_private *dev_priv,
13521 unsigned crtc_mask)
13523 unsigned last_vblank_count[I915_MAX_PIPES];
13524 enum i915_pipe pipe;
13525 int ret;
13527 if (!crtc_mask)
13528 return;
13530 for_each_pipe(dev_priv, pipe) {
13531 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13533 if (!((1 << pipe) & crtc_mask))
13534 continue;
13536 ret = drm_crtc_vblank_get(crtc);
13537 if (WARN_ON(ret != 0)) {
13538 crtc_mask &= ~(1 << pipe);
13539 continue;
13542 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13545 for_each_pipe(dev_priv, pipe) {
13546 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13547 long lret;
13549 if (!((1 << pipe) & crtc_mask))
13550 continue;
13552 lret = wait_event_timeout(dev->vblank[pipe].queue,
13553 last_vblank_count[pipe] !=
13554 drm_crtc_vblank_count(crtc),
13555 msecs_to_jiffies(50));
13557 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13559 drm_crtc_vblank_put(crtc);
13563 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13565 /* fb updated, need to unpin old fb */
13566 if (crtc_state->fb_changed)
13567 return true;
13569 /* wm changes, need vblank before final wm's */
13570 if (crtc_state->update_wm_post)
13571 return true;
13574 * cxsr is re-enabled after vblank.
13575 * This is already handled by crtc_state->update_wm_post,
13576 * but added for clarity.
13578 if (crtc_state->disable_cxsr)
13579 return true;
13581 return false;
13585 * intel_atomic_commit - commit validated state object
13586 * @dev: DRM device
13587 * @state: the top-level driver state object
13588 * @nonblock: nonblocking commit
13590 * This function commits a top-level state object that has been validated
13591 * with drm_atomic_helper_check().
13593 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13594 * we can only handle plane-related operations and do not yet support
13595 * nonblocking commit.
13597 * RETURNS
13598 * Zero for success or -errno.
13600 static int intel_atomic_commit(struct drm_device *dev,
13601 struct drm_atomic_state *state,
13602 bool nonblock)
13604 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13605 struct drm_i915_private *dev_priv = dev->dev_private;
13606 struct drm_crtc_state *old_crtc_state;
13607 struct drm_crtc *crtc;
13608 struct intel_crtc_state *intel_cstate;
13609 int ret = 0, i;
13610 bool hw_check = intel_state->modeset;
13611 unsigned long put_domains[I915_MAX_PIPES] = {};
13612 unsigned crtc_vblank_mask = 0;
13614 ret = intel_atomic_prepare_commit(dev, state, nonblock);
13615 if (ret) {
13616 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13617 return ret;
13620 drm_atomic_helper_swap_state(dev, state);
13621 dev_priv->wm.config = intel_state->wm_config;
13622 intel_shared_dpll_commit(state);
13624 if (intel_state->modeset) {
13625 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13626 sizeof(intel_state->min_pixclk));
13627 dev_priv->active_crtcs = intel_state->active_crtcs;
13628 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13630 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13633 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13636 if (needs_modeset(crtc->state) ||
13637 to_intel_crtc_state(crtc->state)->update_pipe) {
13638 hw_check = true;
13640 put_domains[to_intel_crtc(crtc)->pipe] =
13641 modeset_get_crtc_power_domains(crtc,
13642 to_intel_crtc_state(crtc->state));
13645 if (!needs_modeset(crtc->state))
13646 continue;
13648 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13650 if (old_crtc_state->active) {
13651 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13652 dev_priv->display.crtc_disable(crtc);
13653 intel_crtc->active = false;
13654 intel_fbc_disable(intel_crtc);
13655 intel_disable_shared_dpll(intel_crtc);
13658 * Underruns don't always raise
13659 * interrupts, so check manually.
13661 intel_check_cpu_fifo_underruns(dev_priv);
13662 intel_check_pch_fifo_underruns(dev_priv);
13664 if (!crtc->state->active)
13665 intel_update_watermarks(crtc);
13669 /* Only after disabling all output pipelines that will be changed can we
13670 * update the the output configuration. */
13671 intel_modeset_update_crtc_state(state);
13673 if (intel_state->modeset) {
13674 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13676 if (dev_priv->display.modeset_commit_cdclk &&
13677 intel_state->dev_cdclk != dev_priv->cdclk_freq)
13678 dev_priv->display.modeset_commit_cdclk(state);
13680 intel_modeset_verify_disabled(dev);
13683 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13684 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13686 bool modeset = needs_modeset(crtc->state);
13687 struct intel_crtc_state *pipe_config =
13688 to_intel_crtc_state(crtc->state);
13689 bool update_pipe = !modeset && pipe_config->update_pipe;
13691 if (modeset && crtc->state->active) {
13692 update_scanline_offset(to_intel_crtc(crtc));
13693 dev_priv->display.crtc_enable(crtc);
13696 if (!modeset)
13697 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13699 if (crtc->state->active &&
13700 drm_atomic_get_existing_plane_state(state, crtc->primary))
13701 intel_fbc_enable(intel_crtc);
13703 if (crtc->state->active &&
13704 (crtc->state->planes_changed || update_pipe))
13705 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13707 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13708 crtc_vblank_mask |= 1 << i;
13711 /* FIXME: add subpixel order */
13713 if (!state->legacy_cursor_update)
13714 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13717 * Now that the vblank has passed, we can go ahead and program the
13718 * optimal watermarks on platforms that need two-step watermark
13719 * programming.
13721 * TODO: Move this (and other cleanup) to an async worker eventually.
13723 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13724 intel_cstate = to_intel_crtc_state(crtc->state);
13726 if (dev_priv->display.optimize_watermarks)
13727 dev_priv->display.optimize_watermarks(intel_cstate);
13730 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13731 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13733 if (put_domains[i])
13734 modeset_put_power_domains(dev_priv, put_domains[i]);
13736 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13739 if (intel_state->modeset)
13740 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13742 mutex_lock(&dev->struct_mutex);
13743 drm_atomic_helper_cleanup_planes(dev, state);
13744 mutex_unlock(&dev->struct_mutex);
13746 drm_atomic_state_free(state);
13748 /* As one of the primary mmio accessors, KMS has a high likelihood
13749 * of triggering bugs in unclaimed access. After we finish
13750 * modesetting, see if an error has been flagged, and if so
13751 * enable debugging for the next modeset - and hope we catch
13752 * the culprit.
13754 * XXX note that we assume display power is on at this point.
13755 * This might hold true now but we need to add pm helper to check
13756 * unclaimed only when the hardware is on, as atomic commits
13757 * can happen also when the device is completely off.
13759 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13761 return 0;
13764 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13766 struct drm_device *dev = crtc->dev;
13767 struct drm_atomic_state *state;
13768 struct drm_crtc_state *crtc_state;
13769 int ret;
13771 state = drm_atomic_state_alloc(dev);
13772 if (!state) {
13773 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13774 crtc->base.id);
13775 return;
13778 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13780 retry:
13781 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13782 ret = PTR_ERR_OR_ZERO(crtc_state);
13783 if (!ret) {
13784 if (!crtc_state->active)
13785 goto out;
13787 crtc_state->mode_changed = true;
13788 ret = drm_atomic_commit(state);
13791 if (ret == -EDEADLK) {
13792 drm_atomic_state_clear(state);
13793 drm_modeset_backoff(state->acquire_ctx);
13794 goto retry;
13797 if (ret)
13798 out:
13799 drm_atomic_state_free(state);
13802 #undef for_each_intel_crtc_masked
13804 static const struct drm_crtc_funcs intel_crtc_funcs = {
13805 .gamma_set = drm_atomic_helper_legacy_gamma_set,
13806 .set_config = drm_atomic_helper_set_config,
13807 .set_property = drm_atomic_helper_crtc_set_property,
13808 .destroy = intel_crtc_destroy,
13809 .page_flip = intel_crtc_page_flip,
13810 .atomic_duplicate_state = intel_crtc_duplicate_state,
13811 .atomic_destroy_state = intel_crtc_destroy_state,
13815 * intel_prepare_plane_fb - Prepare fb for usage on plane
13816 * @plane: drm plane to prepare for
13817 * @fb: framebuffer to prepare for presentation
13819 * Prepares a framebuffer for usage on a display plane. Generally this
13820 * involves pinning the underlying object and updating the frontbuffer tracking
13821 * bits. Some older platforms need special physical address handling for
13822 * cursor planes.
13824 * Must be called with struct_mutex held.
13826 * Returns 0 on success, negative error code on failure.
13829 intel_prepare_plane_fb(struct drm_plane *plane,
13830 struct drm_plane_state *new_state)
13832 struct drm_device *dev = plane->dev;
13833 struct drm_framebuffer *fb = new_state->fb;
13834 struct intel_plane *intel_plane = to_intel_plane(plane);
13835 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13836 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13837 int ret = 0;
13839 if (!obj && !old_obj)
13840 return 0;
13842 if (old_obj) {
13843 struct drm_crtc_state *crtc_state =
13844 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13846 /* Big Hammer, we also need to ensure that any pending
13847 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13848 * current scanout is retired before unpinning the old
13849 * framebuffer. Note that we rely on userspace rendering
13850 * into the buffer attached to the pipe they are waiting
13851 * on. If not, userspace generates a GPU hang with IPEHR
13852 * point to the MI_WAIT_FOR_EVENT.
13854 * This should only fail upon a hung GPU, in which case we
13855 * can safely continue.
13857 if (needs_modeset(crtc_state))
13858 ret = i915_gem_object_wait_rendering(old_obj, true);
13859 if (ret) {
13860 /* GPU hangs should have been swallowed by the wait */
13861 WARN_ON(ret == -EIO);
13862 return ret;
13866 /* For framebuffer backed by dmabuf, wait for fence */
13867 #if 0
13868 if (obj && obj->base.dma_buf) {
13869 long lret;
13871 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13872 false, true,
13873 MAX_SCHEDULE_TIMEOUT);
13874 if (lret == -ERESTARTSYS)
13875 return lret;
13877 WARN(lret < 0, "waiting returns %li\n", lret);
13879 #endif
13881 if (!obj) {
13882 ret = 0;
13883 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13884 INTEL_INFO(dev)->cursor_needs_physical) {
13885 int align = IS_I830(dev) ? 16 * 1024 : 256;
13886 ret = i915_gem_object_attach_phys(obj, align);
13887 if (ret)
13888 DRM_DEBUG_KMS("failed to attach phys object\n");
13889 } else {
13890 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13893 if (ret == 0) {
13894 if (obj) {
13895 struct intel_plane_state *plane_state =
13896 to_intel_plane_state(new_state);
13898 i915_gem_request_assign(&plane_state->wait_req,
13899 obj->last_write_req);
13902 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13905 return ret;
13909 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13910 * @plane: drm plane to clean up for
13911 * @fb: old framebuffer that was on plane
13913 * Cleans up a framebuffer that has just been removed from a plane.
13915 * Must be called with struct_mutex held.
13917 void
13918 intel_cleanup_plane_fb(struct drm_plane *plane,
13919 struct drm_plane_state *old_state)
13921 struct drm_device *dev = plane->dev;
13922 struct intel_plane *intel_plane = to_intel_plane(plane);
13923 struct intel_plane_state *old_intel_state;
13924 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13925 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13927 old_intel_state = to_intel_plane_state(old_state);
13929 if (!obj && !old_obj)
13930 return;
13932 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13933 !INTEL_INFO(dev)->cursor_needs_physical))
13934 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13936 /* prepare_fb aborted? */
13937 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13938 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13939 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13941 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13945 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13947 int max_scale;
13948 struct drm_device *dev;
13949 struct drm_i915_private *dev_priv;
13950 int crtc_clock, cdclk;
13952 if (!intel_crtc || !crtc_state->base.enable)
13953 return DRM_PLANE_HELPER_NO_SCALING;
13955 dev = intel_crtc->base.dev;
13956 dev_priv = dev->dev_private;
13957 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13958 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13960 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13961 return DRM_PLANE_HELPER_NO_SCALING;
13964 * skl max scale is lower of:
13965 * close to 3 but not 3, -1 is for that purpose
13966 * or
13967 * cdclk/crtc_clock
13969 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13971 return max_scale;
13974 static int
13975 intel_check_primary_plane(struct drm_plane *plane,
13976 struct intel_crtc_state *crtc_state,
13977 struct intel_plane_state *state)
13979 struct drm_crtc *crtc = state->base.crtc;
13980 struct drm_framebuffer *fb = state->base.fb;
13981 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13982 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13983 bool can_position = false;
13985 if (INTEL_INFO(plane->dev)->gen >= 9) {
13986 /* use scaler when colorkey is not required */
13987 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13988 min_scale = 1;
13989 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13991 can_position = true;
13994 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13995 &state->dst, &state->clip,
13996 min_scale, max_scale,
13997 can_position, true,
13998 &state->visible);
14001 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14002 struct drm_crtc_state *old_crtc_state)
14004 struct drm_device *dev = crtc->dev;
14005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14006 struct intel_crtc_state *old_intel_state =
14007 to_intel_crtc_state(old_crtc_state);
14008 bool modeset = needs_modeset(crtc->state);
14010 /* Perform vblank evasion around commit operation */
14011 intel_pipe_update_start(intel_crtc);
14013 if (modeset)
14014 return;
14016 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14017 intel_color_set_csc(crtc->state);
14018 intel_color_load_luts(crtc->state);
14021 if (to_intel_crtc_state(crtc->state)->update_pipe)
14022 intel_update_pipe_config(intel_crtc, old_intel_state);
14023 else if (INTEL_INFO(dev)->gen >= 9)
14024 skl_detach_scalers(intel_crtc);
14027 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14028 struct drm_crtc_state *old_crtc_state)
14030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14032 intel_pipe_update_end(intel_crtc);
14036 * intel_plane_destroy - destroy a plane
14037 * @plane: plane to destroy
14039 * Common destruction function for all types of planes (primary, cursor,
14040 * sprite).
14042 void intel_plane_destroy(struct drm_plane *plane)
14044 struct intel_plane *intel_plane = to_intel_plane(plane);
14045 drm_plane_cleanup(plane);
14046 kfree(intel_plane);
14049 const struct drm_plane_funcs intel_plane_funcs = {
14050 .update_plane = drm_atomic_helper_update_plane,
14051 .disable_plane = drm_atomic_helper_disable_plane,
14052 .destroy = intel_plane_destroy,
14053 .set_property = drm_atomic_helper_plane_set_property,
14054 .atomic_get_property = intel_plane_atomic_get_property,
14055 .atomic_set_property = intel_plane_atomic_set_property,
14056 .atomic_duplicate_state = intel_plane_duplicate_state,
14057 .atomic_destroy_state = intel_plane_destroy_state,
14061 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14062 int pipe)
14064 struct intel_plane *primary = NULL;
14065 struct intel_plane_state *state = NULL;
14066 const uint32_t *intel_primary_formats;
14067 unsigned int num_formats;
14068 int ret;
14070 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14071 if (!primary)
14072 goto fail;
14074 state = intel_create_plane_state(&primary->base);
14075 if (!state)
14076 goto fail;
14077 primary->base.state = &state->base;
14079 primary->can_scale = false;
14080 primary->max_downscale = 1;
14081 if (INTEL_INFO(dev)->gen >= 9) {
14082 primary->can_scale = true;
14083 state->scaler_id = -1;
14085 primary->pipe = pipe;
14086 primary->plane = pipe;
14087 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14088 primary->check_plane = intel_check_primary_plane;
14089 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14090 primary->plane = !pipe;
14092 if (INTEL_INFO(dev)->gen >= 9) {
14093 intel_primary_formats = skl_primary_formats;
14094 num_formats = ARRAY_SIZE(skl_primary_formats);
14096 primary->update_plane = skylake_update_primary_plane;
14097 primary->disable_plane = skylake_disable_primary_plane;
14098 } else if (HAS_PCH_SPLIT(dev)) {
14099 intel_primary_formats = i965_primary_formats;
14100 num_formats = ARRAY_SIZE(i965_primary_formats);
14102 primary->update_plane = ironlake_update_primary_plane;
14103 primary->disable_plane = i9xx_disable_primary_plane;
14104 } else if (INTEL_INFO(dev)->gen >= 4) {
14105 intel_primary_formats = i965_primary_formats;
14106 num_formats = ARRAY_SIZE(i965_primary_formats);
14108 primary->update_plane = i9xx_update_primary_plane;
14109 primary->disable_plane = i9xx_disable_primary_plane;
14110 } else {
14111 intel_primary_formats = i8xx_primary_formats;
14112 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14114 primary->update_plane = i9xx_update_primary_plane;
14115 primary->disable_plane = i9xx_disable_primary_plane;
14118 ret = drm_universal_plane_init(dev, &primary->base, 0,
14119 &intel_plane_funcs,
14120 intel_primary_formats, num_formats,
14121 DRM_PLANE_TYPE_PRIMARY, NULL);
14122 if (ret)
14123 goto fail;
14125 if (INTEL_INFO(dev)->gen >= 4)
14126 intel_create_rotation_property(dev, primary);
14128 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14130 return &primary->base;
14132 fail:
14133 kfree(state);
14134 kfree(primary);
14136 return NULL;
14139 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14141 if (!dev->mode_config.rotation_property) {
14142 unsigned long flags = BIT(DRM_ROTATE_0) |
14143 BIT(DRM_ROTATE_180);
14145 if (INTEL_INFO(dev)->gen >= 9)
14146 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14148 dev->mode_config.rotation_property =
14149 drm_mode_create_rotation_property(dev, flags);
14151 if (dev->mode_config.rotation_property)
14152 drm_object_attach_property(&plane->base.base,
14153 dev->mode_config.rotation_property,
14154 plane->base.state->rotation);
14157 static int
14158 intel_check_cursor_plane(struct drm_plane *plane,
14159 struct intel_crtc_state *crtc_state,
14160 struct intel_plane_state *state)
14162 struct drm_crtc *crtc = crtc_state->base.crtc;
14163 struct drm_framebuffer *fb = state->base.fb;
14164 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14165 enum i915_pipe pipe = to_intel_plane(plane)->pipe;
14166 unsigned stride;
14167 int ret;
14169 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14170 &state->dst, &state->clip,
14171 DRM_PLANE_HELPER_NO_SCALING,
14172 DRM_PLANE_HELPER_NO_SCALING,
14173 true, true, &state->visible);
14174 if (ret)
14175 return ret;
14177 /* if we want to turn off the cursor ignore width and height */
14178 if (!obj)
14179 return 0;
14181 /* Check for which cursor types we support */
14182 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14183 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14184 state->base.crtc_w, state->base.crtc_h);
14185 return -EINVAL;
14188 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14189 if (obj->base.size < stride * state->base.crtc_h) {
14190 DRM_DEBUG_KMS("buffer is too small\n");
14191 return -ENOMEM;
14194 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14195 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14196 return -EINVAL;
14200 * There's something wrong with the cursor on CHV pipe C.
14201 * If it straddles the left edge of the screen then
14202 * moving it away from the edge or disabling it often
14203 * results in a pipe underrun, and often that can lead to
14204 * dead pipe (constant underrun reported, and it scans
14205 * out just a solid color). To recover from that, the
14206 * display power well must be turned off and on again.
14207 * Refuse the put the cursor into that compromised position.
14209 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14210 state->visible && state->base.crtc_x < 0) {
14211 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14212 return -EINVAL;
14215 return 0;
14218 static void
14219 intel_disable_cursor_plane(struct drm_plane *plane,
14220 struct drm_crtc *crtc)
14222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14224 intel_crtc->cursor_addr = 0;
14225 intel_crtc_update_cursor(crtc, NULL);
14228 static void
14229 intel_update_cursor_plane(struct drm_plane *plane,
14230 const struct intel_crtc_state *crtc_state,
14231 const struct intel_plane_state *state)
14233 struct drm_crtc *crtc = crtc_state->base.crtc;
14234 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14235 struct drm_device *dev = plane->dev;
14236 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14237 uint32_t addr;
14239 if (!obj)
14240 addr = 0;
14241 else if (!INTEL_INFO(dev)->cursor_needs_physical)
14242 addr = i915_gem_obj_ggtt_offset(obj);
14243 else
14244 addr = obj->phys_handle->busaddr;
14246 intel_crtc->cursor_addr = addr;
14247 intel_crtc_update_cursor(crtc, state);
14250 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14251 int pipe)
14253 struct intel_plane *cursor = NULL;
14254 struct intel_plane_state *state = NULL;
14255 int ret;
14257 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14258 if (!cursor)
14259 goto fail;
14261 state = intel_create_plane_state(&cursor->base);
14262 if (!state)
14263 goto fail;
14264 cursor->base.state = &state->base;
14266 cursor->can_scale = false;
14267 cursor->max_downscale = 1;
14268 cursor->pipe = pipe;
14269 cursor->plane = pipe;
14270 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14271 cursor->check_plane = intel_check_cursor_plane;
14272 cursor->update_plane = intel_update_cursor_plane;
14273 cursor->disable_plane = intel_disable_cursor_plane;
14275 ret = drm_universal_plane_init(dev, &cursor->base, 0,
14276 &intel_plane_funcs,
14277 intel_cursor_formats,
14278 ARRAY_SIZE(intel_cursor_formats),
14279 DRM_PLANE_TYPE_CURSOR, NULL);
14280 if (ret)
14281 goto fail;
14283 if (INTEL_INFO(dev)->gen >= 4) {
14284 if (!dev->mode_config.rotation_property)
14285 dev->mode_config.rotation_property =
14286 drm_mode_create_rotation_property(dev,
14287 BIT(DRM_ROTATE_0) |
14288 BIT(DRM_ROTATE_180));
14289 if (dev->mode_config.rotation_property)
14290 drm_object_attach_property(&cursor->base.base,
14291 dev->mode_config.rotation_property,
14292 state->base.rotation);
14295 if (INTEL_INFO(dev)->gen >=9)
14296 state->scaler_id = -1;
14298 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14300 return &cursor->base;
14302 fail:
14303 kfree(state);
14304 kfree(cursor);
14306 return NULL;
14309 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14310 struct intel_crtc_state *crtc_state)
14312 int i;
14313 struct intel_scaler *intel_scaler;
14314 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14316 for (i = 0; i < intel_crtc->num_scalers; i++) {
14317 intel_scaler = &scaler_state->scalers[i];
14318 intel_scaler->in_use = 0;
14319 intel_scaler->mode = PS_SCALER_MODE_DYN;
14322 scaler_state->scaler_id = -1;
14325 static void intel_crtc_init(struct drm_device *dev, int pipe)
14327 struct drm_i915_private *dev_priv = dev->dev_private;
14328 struct intel_crtc *intel_crtc;
14329 struct intel_crtc_state *crtc_state = NULL;
14330 struct drm_plane *primary = NULL;
14331 struct drm_plane *cursor = NULL;
14332 int ret;
14334 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14335 if (intel_crtc == NULL)
14336 return;
14338 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14339 if (!crtc_state)
14340 goto fail;
14341 intel_crtc->config = crtc_state;
14342 intel_crtc->base.state = &crtc_state->base;
14343 crtc_state->base.crtc = &intel_crtc->base;
14345 /* initialize shared scalers */
14346 if (INTEL_INFO(dev)->gen >= 9) {
14347 if (pipe == PIPE_C)
14348 intel_crtc->num_scalers = 1;
14349 else
14350 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14352 skl_init_scalers(dev, intel_crtc, crtc_state);
14355 primary = intel_primary_plane_create(dev, pipe);
14356 if (!primary)
14357 goto fail;
14359 cursor = intel_cursor_plane_create(dev, pipe);
14360 if (!cursor)
14361 goto fail;
14363 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14364 cursor, &intel_crtc_funcs, NULL);
14365 if (ret)
14366 goto fail;
14369 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14370 * is hooked to pipe B. Hence we want plane A feeding pipe B.
14372 intel_crtc->pipe = pipe;
14373 intel_crtc->plane = pipe;
14374 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14375 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14376 intel_crtc->plane = !pipe;
14379 intel_crtc->cursor_base = ~0;
14380 intel_crtc->cursor_cntl = ~0;
14381 intel_crtc->cursor_size = ~0;
14383 intel_crtc->wm.cxsr_allowed = true;
14385 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14386 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14387 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14388 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14390 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14392 intel_color_init(&intel_crtc->base);
14394 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14395 return;
14397 fail:
14398 if (primary)
14399 drm_plane_cleanup(primary);
14400 if (cursor)
14401 drm_plane_cleanup(cursor);
14402 kfree(crtc_state);
14403 kfree(intel_crtc);
14406 enum i915_pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14408 struct drm_encoder *encoder = connector->base.encoder;
14409 struct drm_device *dev = connector->base.dev;
14411 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14413 if (!encoder || WARN_ON(!encoder->crtc))
14414 return INVALID_PIPE;
14416 return to_intel_crtc(encoder->crtc)->pipe;
14419 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14420 struct drm_file *file)
14422 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14423 struct drm_crtc *drmmode_crtc;
14424 struct intel_crtc *crtc;
14426 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14428 if (!drmmode_crtc) {
14429 DRM_ERROR("no such CRTC id\n");
14430 return -ENOENT;
14433 crtc = to_intel_crtc(drmmode_crtc);
14434 pipe_from_crtc_id->pipe = crtc->pipe;
14436 return 0;
14439 static int intel_encoder_clones(struct intel_encoder *encoder)
14441 struct drm_device *dev = encoder->base.dev;
14442 struct intel_encoder *source_encoder;
14443 int index_mask = 0;
14444 int entry = 0;
14446 for_each_intel_encoder(dev, source_encoder) {
14447 if (encoders_cloneable(encoder, source_encoder))
14448 index_mask |= (1 << entry);
14450 entry++;
14453 return index_mask;
14456 static bool has_edp_a(struct drm_device *dev)
14458 struct drm_i915_private *dev_priv = dev->dev_private;
14460 if (!IS_MOBILE(dev))
14461 return false;
14463 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14464 return false;
14466 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14467 return false;
14469 return true;
14472 static bool intel_crt_present(struct drm_device *dev)
14474 struct drm_i915_private *dev_priv = dev->dev_private;
14476 if (INTEL_INFO(dev)->gen >= 9)
14477 return false;
14479 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14480 return false;
14482 if (IS_CHERRYVIEW(dev))
14483 return false;
14485 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14486 return false;
14488 /* DDI E can't be used if DDI A requires 4 lanes */
14489 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14490 return false;
14492 if (!dev_priv->vbt.int_crt_support)
14493 return false;
14495 return true;
14498 static void intel_setup_outputs(struct drm_device *dev)
14500 struct drm_i915_private *dev_priv = dev->dev_private;
14501 struct intel_encoder *encoder;
14502 bool dpd_is_edp = false;
14504 intel_lvds_init(dev);
14506 if (intel_crt_present(dev))
14507 intel_crt_init(dev);
14509 if (IS_BROXTON(dev)) {
14511 * FIXME: Broxton doesn't support port detection via the
14512 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14513 * detect the ports.
14515 intel_ddi_init(dev, PORT_A);
14516 intel_ddi_init(dev, PORT_B);
14517 intel_ddi_init(dev, PORT_C);
14519 intel_dsi_init(dev);
14520 } else if (HAS_DDI(dev)) {
14521 int found;
14524 * Haswell uses DDI functions to detect digital outputs.
14525 * On SKL pre-D0 the strap isn't connected, so we assume
14526 * it's there.
14528 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14529 /* WaIgnoreDDIAStrap: skl */
14530 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14531 intel_ddi_init(dev, PORT_A);
14533 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14534 * register */
14535 found = I915_READ(SFUSE_STRAP);
14537 if (found & SFUSE_STRAP_DDIB_DETECTED)
14538 intel_ddi_init(dev, PORT_B);
14539 if (found & SFUSE_STRAP_DDIC_DETECTED)
14540 intel_ddi_init(dev, PORT_C);
14541 if (found & SFUSE_STRAP_DDID_DETECTED)
14542 intel_ddi_init(dev, PORT_D);
14544 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14546 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14547 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14548 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14549 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14550 intel_ddi_init(dev, PORT_E);
14552 } else if (HAS_PCH_SPLIT(dev)) {
14553 int found;
14554 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14556 if (has_edp_a(dev))
14557 intel_dp_init(dev, DP_A, PORT_A);
14559 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14560 /* PCH SDVOB multiplex with HDMIB */
14561 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14562 if (!found)
14563 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14564 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14565 intel_dp_init(dev, PCH_DP_B, PORT_B);
14568 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14569 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14571 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14572 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14574 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14575 intel_dp_init(dev, PCH_DP_C, PORT_C);
14577 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14578 intel_dp_init(dev, PCH_DP_D, PORT_D);
14579 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14580 bool has_edp, has_port;
14583 * The DP_DETECTED bit is the latched state of the DDC
14584 * SDA pin at boot. However since eDP doesn't require DDC
14585 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14586 * eDP ports may have been muxed to an alternate function.
14587 * Thus we can't rely on the DP_DETECTED bit alone to detect
14588 * eDP ports. Consult the VBT as well as DP_DETECTED to
14589 * detect eDP ports.
14591 * Sadly the straps seem to be missing sometimes even for HDMI
14592 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14593 * and VBT for the presence of the port. Additionally we can't
14594 * trust the port type the VBT declares as we've seen at least
14595 * HDMI ports that the VBT claim are DP or eDP.
14597 has_edp = intel_dp_is_edp(dev, PORT_B);
14598 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14599 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14600 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14601 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14602 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14604 has_edp = intel_dp_is_edp(dev, PORT_C);
14605 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14606 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14607 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14608 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14609 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14611 if (IS_CHERRYVIEW(dev)) {
14613 * eDP not supported on port D,
14614 * so no need to worry about it
14616 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14617 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14618 intel_dp_init(dev, CHV_DP_D, PORT_D);
14619 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14620 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14623 intel_dsi_init(dev);
14624 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14625 bool found = false;
14627 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14628 DRM_DEBUG_KMS("probing SDVOB\n");
14629 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14630 if (!found && IS_G4X(dev)) {
14631 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14632 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14635 if (!found && IS_G4X(dev))
14636 intel_dp_init(dev, DP_B, PORT_B);
14639 /* Before G4X SDVOC doesn't have its own detect register */
14641 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14642 DRM_DEBUG_KMS("probing SDVOC\n");
14643 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14646 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14648 if (IS_G4X(dev)) {
14649 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14650 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14652 if (IS_G4X(dev))
14653 intel_dp_init(dev, DP_C, PORT_C);
14656 if (IS_G4X(dev) &&
14657 (I915_READ(DP_D) & DP_DETECTED))
14658 intel_dp_init(dev, DP_D, PORT_D);
14659 } else if (IS_GEN2(dev))
14660 intel_dvo_init(dev);
14662 if (SUPPORTS_TV(dev))
14663 intel_tv_init(dev);
14665 intel_psr_init(dev);
14667 for_each_intel_encoder(dev, encoder) {
14668 encoder->base.possible_crtcs = encoder->crtc_mask;
14669 encoder->base.possible_clones =
14670 intel_encoder_clones(encoder);
14673 intel_init_pch_refclk(dev);
14675 drm_helper_move_panel_connectors_to_head(dev);
14678 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14680 struct drm_device *dev = fb->dev;
14681 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14683 drm_framebuffer_cleanup(fb);
14684 mutex_lock(&dev->struct_mutex);
14685 WARN_ON(!intel_fb->obj->framebuffer_references--);
14686 drm_gem_object_unreference(&intel_fb->obj->base);
14687 mutex_unlock(&dev->struct_mutex);
14688 kfree(intel_fb);
14691 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14692 struct drm_file *file,
14693 unsigned int *handle)
14695 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14696 struct drm_i915_gem_object *obj = intel_fb->obj;
14698 if (obj->userptr.mm) {
14699 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14700 return -EINVAL;
14703 return drm_gem_handle_create(file, &obj->base, handle);
14706 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14707 struct drm_file *file,
14708 unsigned flags, unsigned color,
14709 struct drm_clip_rect *clips,
14710 unsigned num_clips)
14712 struct drm_device *dev = fb->dev;
14713 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14714 struct drm_i915_gem_object *obj = intel_fb->obj;
14716 mutex_lock(&dev->struct_mutex);
14717 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14718 mutex_unlock(&dev->struct_mutex);
14720 return 0;
14723 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14724 .destroy = intel_user_framebuffer_destroy,
14725 .create_handle = intel_user_framebuffer_create_handle,
14726 .dirty = intel_user_framebuffer_dirty,
14729 static
14730 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14731 uint32_t pixel_format)
14733 u32 gen = INTEL_INFO(dev)->gen;
14735 if (gen >= 9) {
14736 int cpp = drm_format_plane_cpp(pixel_format, 0);
14738 /* "The stride in bytes must not exceed the of the size of 8K
14739 * pixels and 32K bytes."
14741 return min(8192 * cpp, 32768);
14742 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14743 return 32*1024;
14744 } else if (gen >= 4) {
14745 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14746 return 16*1024;
14747 else
14748 return 32*1024;
14749 } else if (gen >= 3) {
14750 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14751 return 8*1024;
14752 else
14753 return 16*1024;
14754 } else {
14755 /* XXX DSPC is limited to 4k tiled */
14756 return 8*1024;
14760 static int intel_framebuffer_init(struct drm_device *dev,
14761 struct intel_framebuffer *intel_fb,
14762 struct drm_mode_fb_cmd2 *mode_cmd,
14763 struct drm_i915_gem_object *obj)
14765 struct drm_i915_private *dev_priv = to_i915(dev);
14766 unsigned int aligned_height;
14767 int ret;
14768 u32 pitch_limit, stride_alignment;
14770 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14772 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14773 /* Enforce that fb modifier and tiling mode match, but only for
14774 * X-tiled. This is needed for FBC. */
14775 if (!!(obj->tiling_mode == I915_TILING_X) !=
14776 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14777 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14778 return -EINVAL;
14780 } else {
14781 if (obj->tiling_mode == I915_TILING_X)
14782 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14783 else if (obj->tiling_mode == I915_TILING_Y) {
14784 DRM_DEBUG("No Y tiling for legacy addfb\n");
14785 return -EINVAL;
14789 /* Passed in modifier sanity checking. */
14790 switch (mode_cmd->modifier[0]) {
14791 case I915_FORMAT_MOD_Y_TILED:
14792 case I915_FORMAT_MOD_Yf_TILED:
14793 if (INTEL_INFO(dev)->gen < 9) {
14794 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14795 mode_cmd->modifier[0]);
14796 return -EINVAL;
14798 case DRM_FORMAT_MOD_NONE:
14799 case I915_FORMAT_MOD_X_TILED:
14800 break;
14801 default:
14802 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14803 mode_cmd->modifier[0]);
14804 return -EINVAL;
14807 stride_alignment = intel_fb_stride_alignment(dev_priv,
14808 mode_cmd->modifier[0],
14809 mode_cmd->pixel_format);
14810 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14811 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14812 mode_cmd->pitches[0], stride_alignment);
14813 return -EINVAL;
14816 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14817 mode_cmd->pixel_format);
14818 if (mode_cmd->pitches[0] > pitch_limit) {
14819 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14820 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14821 "tiled" : "linear",
14822 mode_cmd->pitches[0], pitch_limit);
14823 return -EINVAL;
14826 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14827 mode_cmd->pitches[0] != obj->stride) {
14828 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14829 mode_cmd->pitches[0], obj->stride);
14830 return -EINVAL;
14833 /* Reject formats not supported by any plane early. */
14834 switch (mode_cmd->pixel_format) {
14835 case DRM_FORMAT_C8:
14836 case DRM_FORMAT_RGB565:
14837 case DRM_FORMAT_XRGB8888:
14838 case DRM_FORMAT_ARGB8888:
14839 break;
14840 case DRM_FORMAT_XRGB1555:
14841 if (INTEL_INFO(dev)->gen > 3) {
14842 DRM_DEBUG("unsupported pixel format: %s\n",
14843 drm_get_format_name(mode_cmd->pixel_format));
14844 return -EINVAL;
14846 break;
14847 case DRM_FORMAT_ABGR8888:
14848 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14849 INTEL_INFO(dev)->gen < 9) {
14850 DRM_DEBUG("unsupported pixel format: %s\n",
14851 drm_get_format_name(mode_cmd->pixel_format));
14852 return -EINVAL;
14854 break;
14855 case DRM_FORMAT_XBGR8888:
14856 case DRM_FORMAT_XRGB2101010:
14857 case DRM_FORMAT_XBGR2101010:
14858 if (INTEL_INFO(dev)->gen < 4) {
14859 DRM_DEBUG("unsupported pixel format: %s\n",
14860 drm_get_format_name(mode_cmd->pixel_format));
14861 return -EINVAL;
14863 break;
14864 case DRM_FORMAT_ABGR2101010:
14865 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14866 DRM_DEBUG("unsupported pixel format: %s\n",
14867 drm_get_format_name(mode_cmd->pixel_format));
14868 return -EINVAL;
14870 break;
14871 case DRM_FORMAT_YUYV:
14872 case DRM_FORMAT_UYVY:
14873 case DRM_FORMAT_YVYU:
14874 case DRM_FORMAT_VYUY:
14875 if (INTEL_INFO(dev)->gen < 5) {
14876 DRM_DEBUG("unsupported pixel format: %s\n",
14877 drm_get_format_name(mode_cmd->pixel_format));
14878 return -EINVAL;
14880 break;
14881 default:
14882 DRM_DEBUG("unsupported pixel format: %s\n",
14883 drm_get_format_name(mode_cmd->pixel_format));
14884 return -EINVAL;
14887 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14888 if (mode_cmd->offsets[0] != 0)
14889 return -EINVAL;
14891 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14892 mode_cmd->pixel_format,
14893 mode_cmd->modifier[0]);
14894 /* FIXME drm helper for size checks (especially planar formats)? */
14895 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14896 return -EINVAL;
14898 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14899 intel_fb->obj = obj;
14901 intel_fill_fb_info(dev_priv, &intel_fb->base);
14903 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14904 if (ret) {
14905 DRM_ERROR("framebuffer init failed %d\n", ret);
14906 return ret;
14909 intel_fb->obj->framebuffer_references++;
14911 return 0;
14914 static struct drm_framebuffer *
14915 intel_user_framebuffer_create(struct drm_device *dev,
14916 struct drm_file *filp,
14917 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14919 struct drm_framebuffer *fb;
14920 struct drm_i915_gem_object *obj;
14921 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14923 obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
14924 if (&obj->base == NULL)
14925 return ERR_PTR(-ENOENT);
14927 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14928 if (IS_ERR(fb))
14929 drm_gem_object_unreference_unlocked(&obj->base);
14931 return fb;
14934 #ifndef CONFIG_DRM_FBDEV_EMULATION
14935 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14938 #endif
14940 static const struct drm_mode_config_funcs intel_mode_funcs = {
14941 .fb_create = intel_user_framebuffer_create,
14942 .output_poll_changed = intel_fbdev_output_poll_changed,
14943 .atomic_check = intel_atomic_check,
14944 .atomic_commit = intel_atomic_commit,
14945 .atomic_state_alloc = intel_atomic_state_alloc,
14946 .atomic_state_clear = intel_atomic_state_clear,
14950 * intel_init_display_hooks - initialize the display modesetting hooks
14951 * @dev_priv: device private
14953 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14955 if (INTEL_INFO(dev_priv)->gen >= 9) {
14956 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14957 dev_priv->display.get_initial_plane_config =
14958 skylake_get_initial_plane_config;
14959 dev_priv->display.crtc_compute_clock =
14960 haswell_crtc_compute_clock;
14961 dev_priv->display.crtc_enable = haswell_crtc_enable;
14962 dev_priv->display.crtc_disable = haswell_crtc_disable;
14963 } else if (HAS_DDI(dev_priv)) {
14964 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14965 dev_priv->display.get_initial_plane_config =
14966 ironlake_get_initial_plane_config;
14967 dev_priv->display.crtc_compute_clock =
14968 haswell_crtc_compute_clock;
14969 dev_priv->display.crtc_enable = haswell_crtc_enable;
14970 dev_priv->display.crtc_disable = haswell_crtc_disable;
14971 } else if (HAS_PCH_SPLIT(dev_priv)) {
14972 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14973 dev_priv->display.get_initial_plane_config =
14974 ironlake_get_initial_plane_config;
14975 dev_priv->display.crtc_compute_clock =
14976 ironlake_crtc_compute_clock;
14977 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14978 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14979 } else if (IS_CHERRYVIEW(dev_priv)) {
14980 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14981 dev_priv->display.get_initial_plane_config =
14982 i9xx_get_initial_plane_config;
14983 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14984 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14985 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14986 } else if (IS_VALLEYVIEW(dev_priv)) {
14987 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14988 dev_priv->display.get_initial_plane_config =
14989 i9xx_get_initial_plane_config;
14990 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14991 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14992 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14993 } else if (IS_G4X(dev_priv)) {
14994 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14995 dev_priv->display.get_initial_plane_config =
14996 i9xx_get_initial_plane_config;
14997 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14998 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14999 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15000 } else if (IS_PINEVIEW(dev_priv)) {
15001 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15002 dev_priv->display.get_initial_plane_config =
15003 i9xx_get_initial_plane_config;
15004 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15005 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15006 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15007 } else if (!IS_GEN2(dev_priv)) {
15008 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15009 dev_priv->display.get_initial_plane_config =
15010 i9xx_get_initial_plane_config;
15011 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15012 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15013 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15014 } else {
15015 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15016 dev_priv->display.get_initial_plane_config =
15017 i9xx_get_initial_plane_config;
15018 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15019 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15020 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15023 /* Returns the core display clock speed */
15024 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15025 dev_priv->display.get_display_clock_speed =
15026 skylake_get_display_clock_speed;
15027 else if (IS_BROXTON(dev_priv))
15028 dev_priv->display.get_display_clock_speed =
15029 broxton_get_display_clock_speed;
15030 else if (IS_BROADWELL(dev_priv))
15031 dev_priv->display.get_display_clock_speed =
15032 broadwell_get_display_clock_speed;
15033 else if (IS_HASWELL(dev_priv))
15034 dev_priv->display.get_display_clock_speed =
15035 haswell_get_display_clock_speed;
15036 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15037 dev_priv->display.get_display_clock_speed =
15038 valleyview_get_display_clock_speed;
15039 else if (IS_GEN5(dev_priv))
15040 dev_priv->display.get_display_clock_speed =
15041 ilk_get_display_clock_speed;
15042 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15043 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15044 dev_priv->display.get_display_clock_speed =
15045 i945_get_display_clock_speed;
15046 else if (IS_GM45(dev_priv))
15047 dev_priv->display.get_display_clock_speed =
15048 gm45_get_display_clock_speed;
15049 else if (IS_CRESTLINE(dev_priv))
15050 dev_priv->display.get_display_clock_speed =
15051 i965gm_get_display_clock_speed;
15052 else if (IS_PINEVIEW(dev_priv))
15053 dev_priv->display.get_display_clock_speed =
15054 pnv_get_display_clock_speed;
15055 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15056 dev_priv->display.get_display_clock_speed =
15057 g33_get_display_clock_speed;
15058 else if (IS_I915G(dev_priv))
15059 dev_priv->display.get_display_clock_speed =
15060 i915_get_display_clock_speed;
15061 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15062 dev_priv->display.get_display_clock_speed =
15063 i9xx_misc_get_display_clock_speed;
15064 else if (IS_I915GM(dev_priv))
15065 dev_priv->display.get_display_clock_speed =
15066 i915gm_get_display_clock_speed;
15067 else if (IS_I865G(dev_priv))
15068 dev_priv->display.get_display_clock_speed =
15069 i865_get_display_clock_speed;
15070 else if (IS_I85X(dev_priv))
15071 dev_priv->display.get_display_clock_speed =
15072 i85x_get_display_clock_speed;
15073 else { /* 830 */
15074 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15075 dev_priv->display.get_display_clock_speed =
15076 i830_get_display_clock_speed;
15079 if (IS_GEN5(dev_priv)) {
15080 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15081 } else if (IS_GEN6(dev_priv)) {
15082 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15083 } else if (IS_IVYBRIDGE(dev_priv)) {
15084 /* FIXME: detect B0+ stepping and use auto training */
15085 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15086 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15087 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15088 if (IS_BROADWELL(dev_priv)) {
15089 dev_priv->display.modeset_commit_cdclk =
15090 broadwell_modeset_commit_cdclk;
15091 dev_priv->display.modeset_calc_cdclk =
15092 broadwell_modeset_calc_cdclk;
15094 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15095 dev_priv->display.modeset_commit_cdclk =
15096 valleyview_modeset_commit_cdclk;
15097 dev_priv->display.modeset_calc_cdclk =
15098 valleyview_modeset_calc_cdclk;
15099 } else if (IS_BROXTON(dev_priv)) {
15100 dev_priv->display.modeset_commit_cdclk =
15101 broxton_modeset_commit_cdclk;
15102 dev_priv->display.modeset_calc_cdclk =
15103 broxton_modeset_calc_cdclk;
15106 switch (INTEL_INFO(dev_priv)->gen) {
15107 case 2:
15108 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15109 break;
15111 case 3:
15112 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15113 break;
15115 case 4:
15116 case 5:
15117 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15118 break;
15120 case 6:
15121 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15122 break;
15123 case 7:
15124 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15125 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15126 break;
15127 case 9:
15128 /* Drop through - unsupported since execlist only. */
15129 default:
15130 /* Default just returns -ENODEV to indicate unsupported */
15131 dev_priv->display.queue_flip = intel_default_queue_flip;
15136 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15137 * resume, or other times. This quirk makes sure that's the case for
15138 * affected systems.
15140 static void quirk_pipea_force(struct drm_device *dev)
15142 struct drm_i915_private *dev_priv = dev->dev_private;
15144 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15145 DRM_INFO("applying pipe a force quirk\n");
15148 static void quirk_pipeb_force(struct drm_device *dev)
15150 struct drm_i915_private *dev_priv = dev->dev_private;
15152 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15153 DRM_INFO("applying pipe b force quirk\n");
15157 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15159 static void quirk_ssc_force_disable(struct drm_device *dev)
15161 struct drm_i915_private *dev_priv = dev->dev_private;
15162 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15163 DRM_INFO("applying lvds SSC disable quirk\n");
15167 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15168 * brightness value
15170 static void quirk_invert_brightness(struct drm_device *dev)
15172 struct drm_i915_private *dev_priv = dev->dev_private;
15173 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15174 DRM_INFO("applying inverted panel brightness quirk\n");
15177 /* Some VBT's incorrectly indicate no backlight is present */
15178 static void quirk_backlight_present(struct drm_device *dev)
15180 struct drm_i915_private *dev_priv = dev->dev_private;
15181 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15182 DRM_INFO("applying backlight present quirk\n");
15185 struct intel_quirk {
15186 int device;
15187 int subsystem_vendor;
15188 int subsystem_device;
15189 void (*hook)(struct drm_device *dev);
15192 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15193 struct intel_dmi_quirk {
15194 void (*hook)(struct drm_device *dev);
15195 const struct dmi_system_id (*dmi_id_list)[];
15198 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15200 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15201 return 1;
15204 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15206 .dmi_id_list = &(const struct dmi_system_id[]) {
15208 .callback = intel_dmi_reverse_brightness,
15209 .ident = "NCR Corporation",
15210 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15211 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15214 { } /* terminating entry */
15216 .hook = quirk_invert_brightness,
15220 static struct intel_quirk intel_quirks[] = {
15221 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15222 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15224 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15225 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15227 /* 830 needs to leave pipe A & dpll A up */
15228 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15230 /* 830 needs to leave pipe B & dpll B up */
15231 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15233 /* Lenovo U160 cannot use SSC on LVDS */
15234 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15236 /* Sony Vaio Y cannot use SSC on LVDS */
15237 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15239 /* Acer Aspire 5734Z must invert backlight brightness */
15240 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15242 /* Acer/eMachines G725 */
15243 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15245 /* Acer/eMachines e725 */
15246 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15248 /* Acer/Packard Bell NCL20 */
15249 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15251 /* Acer Aspire 4736Z */
15252 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15254 /* Acer Aspire 5336 */
15255 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15257 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15258 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15260 /* Acer C720 Chromebook (Core i3 4005U) */
15261 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15263 /* Apple Macbook 2,1 (Core 2 T7400) */
15264 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15266 /* Apple Macbook 4,1 */
15267 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15269 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15270 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15272 /* HP Chromebook 14 (Celeron 2955U) */
15273 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15275 /* Dell Chromebook 11 */
15276 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15278 /* Dell Chromebook 11 (2015 version) */
15279 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15282 static void intel_init_quirks(struct drm_device *dev)
15284 struct pci_dev *d = dev->pdev;
15285 int i;
15287 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15288 struct intel_quirk *q = &intel_quirks[i];
15290 if (d->device == q->device &&
15291 (d->subsystem_vendor == q->subsystem_vendor ||
15292 q->subsystem_vendor == PCI_ANY_ID) &&
15293 (d->subsystem_device == q->subsystem_device ||
15294 q->subsystem_device == PCI_ANY_ID))
15295 q->hook(dev);
15297 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15298 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15299 intel_dmi_quirks[i].hook(dev);
15303 /* Disable the VGA plane that we never use */
15304 static void i915_disable_vga(struct drm_device *dev)
15306 struct drm_i915_private *dev_priv = dev->dev_private;
15307 u8 sr1;
15308 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15310 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15311 #if 0
15312 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15313 #endif
15314 outb(VGA_SR_INDEX, SR01);
15315 sr1 = inb(VGA_SR_DATA);
15316 outb(VGA_SR_DATA, sr1 | 1 << 5);
15317 #if 0
15318 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15319 #endif
15320 udelay(300);
15322 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15323 POSTING_READ(vga_reg);
15326 void intel_modeset_init_hw(struct drm_device *dev)
15328 struct drm_i915_private *dev_priv = dev->dev_private;
15330 intel_update_cdclk(dev);
15332 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15334 intel_init_clock_gating(dev);
15335 intel_enable_gt_powersave(dev);
15339 * Calculate what we think the watermarks should be for the state we've read
15340 * out of the hardware and then immediately program those watermarks so that
15341 * we ensure the hardware settings match our internal state.
15343 * We can calculate what we think WM's should be by creating a duplicate of the
15344 * current state (which was constructed during hardware readout) and running it
15345 * through the atomic check code to calculate new watermark values in the
15346 * state object.
15348 static void sanitize_watermarks(struct drm_device *dev)
15350 struct drm_i915_private *dev_priv = to_i915(dev);
15351 struct drm_atomic_state *state;
15352 struct drm_crtc *crtc;
15353 struct drm_crtc_state *cstate;
15354 struct drm_modeset_acquire_ctx ctx;
15355 int ret;
15356 int i;
15358 /* Only supported on platforms that use atomic watermark design */
15359 if (!dev_priv->display.optimize_watermarks)
15360 return;
15363 * We need to hold connection_mutex before calling duplicate_state so
15364 * that the connector loop is protected.
15366 drm_modeset_acquire_init(&ctx, 0);
15367 retry:
15368 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15369 if (ret == -EDEADLK) {
15370 drm_modeset_backoff(&ctx);
15371 goto retry;
15372 } else if (WARN_ON(ret)) {
15373 goto fail;
15376 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15377 if (WARN_ON(IS_ERR(state)))
15378 goto fail;
15381 * Hardware readout is the only time we don't want to calculate
15382 * intermediate watermarks (since we don't trust the current
15383 * watermarks).
15385 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15387 ret = intel_atomic_check(dev, state);
15388 if (ret) {
15390 * If we fail here, it means that the hardware appears to be
15391 * programmed in a way that shouldn't be possible, given our
15392 * understanding of watermark requirements. This might mean a
15393 * mistake in the hardware readout code or a mistake in the
15394 * watermark calculations for a given platform. Raise a WARN
15395 * so that this is noticeable.
15397 * If this actually happens, we'll have to just leave the
15398 * BIOS-programmed watermarks untouched and hope for the best.
15400 WARN(true, "Could not determine valid watermarks for inherited state\n");
15401 goto fail;
15404 /* Write calculated watermark values back */
15405 to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15406 for_each_crtc_in_state(state, crtc, cstate, i) {
15407 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15409 cs->wm.need_postvbl_update = true;
15410 dev_priv->display.optimize_watermarks(cs);
15413 drm_atomic_state_free(state);
15414 fail:
15415 drm_modeset_drop_locks(&ctx);
15416 drm_modeset_acquire_fini(&ctx);
15419 void intel_modeset_init(struct drm_device *dev)
15421 struct drm_i915_private *dev_priv = to_i915(dev);
15422 struct i915_ggtt *ggtt = &dev_priv->ggtt;
15423 int sprite, ret;
15424 enum i915_pipe pipe;
15425 struct intel_crtc *crtc;
15427 drm_mode_config_init(dev);
15429 dev->mode_config.min_width = 0;
15430 dev->mode_config.min_height = 0;
15432 dev->mode_config.preferred_depth = 24;
15433 dev->mode_config.prefer_shadow = 1;
15435 dev->mode_config.allow_fb_modifiers = true;
15437 dev->mode_config.funcs = &intel_mode_funcs;
15439 intel_init_quirks(dev);
15441 intel_init_pm(dev);
15443 if (INTEL_INFO(dev)->num_pipes == 0)
15444 return;
15447 * There may be no VBT; and if the BIOS enabled SSC we can
15448 * just keep using it to avoid unnecessary flicker. Whereas if the
15449 * BIOS isn't using it, don't assume it will work even if the VBT
15450 * indicates as much.
15452 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15453 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15454 DREF_SSC1_ENABLE);
15456 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15457 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15458 bios_lvds_use_ssc ? "en" : "dis",
15459 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15460 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15464 if (IS_GEN2(dev)) {
15465 dev->mode_config.max_width = 2048;
15466 dev->mode_config.max_height = 2048;
15467 } else if (IS_GEN3(dev)) {
15468 dev->mode_config.max_width = 4096;
15469 dev->mode_config.max_height = 4096;
15470 } else {
15471 dev->mode_config.max_width = 8192;
15472 dev->mode_config.max_height = 8192;
15475 if (IS_845G(dev) || IS_I865G(dev)) {
15476 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15477 dev->mode_config.cursor_height = 1023;
15478 } else if (IS_GEN2(dev)) {
15479 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15480 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15481 } else {
15482 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15483 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15486 dev->mode_config.fb_base = ggtt->mappable_base;
15488 DRM_DEBUG_KMS("%d display pipe%s available.\n",
15489 INTEL_INFO(dev)->num_pipes,
15490 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15492 for_each_pipe(dev_priv, pipe) {
15493 intel_crtc_init(dev, pipe);
15494 for_each_sprite(dev_priv, pipe, sprite) {
15495 ret = intel_plane_init(dev, pipe, sprite);
15496 if (ret)
15497 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15498 pipe_name(pipe), sprite_name(pipe, sprite), ret);
15502 intel_update_czclk(dev_priv);
15503 intel_update_rawclk(dev_priv);
15504 intel_update_cdclk(dev);
15506 intel_shared_dpll_init(dev);
15508 /* Just disable it once at startup */
15509 i915_disable_vga(dev);
15510 intel_setup_outputs(dev);
15512 drm_modeset_lock_all(dev);
15513 intel_modeset_setup_hw_state(dev);
15514 drm_modeset_unlock_all(dev);
15516 for_each_intel_crtc(dev, crtc) {
15517 struct intel_initial_plane_config plane_config = {};
15519 if (!crtc->active)
15520 continue;
15523 * Note that reserving the BIOS fb up front prevents us
15524 * from stuffing other stolen allocations like the ring
15525 * on top. This prevents some ugliness at boot time, and
15526 * can even allow for smooth boot transitions if the BIOS
15527 * fb is large enough for the active pipe configuration.
15529 dev_priv->display.get_initial_plane_config(crtc,
15530 &plane_config);
15533 * If the fb is shared between multiple heads, we'll
15534 * just get the first one.
15536 intel_find_initial_plane_obj(crtc, &plane_config);
15540 * Make sure hardware watermarks really match the state we read out.
15541 * Note that we need to do this after reconstructing the BIOS fb's
15542 * since the watermark calculation done here will use pstate->fb.
15544 sanitize_watermarks(dev);
15547 static void intel_enable_pipe_a(struct drm_device *dev)
15549 struct intel_connector *connector;
15550 struct drm_connector *crt = NULL;
15551 struct intel_load_detect_pipe load_detect_temp;
15552 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15554 /* We can't just switch on the pipe A, we need to set things up with a
15555 * proper mode and output configuration. As a gross hack, enable pipe A
15556 * by enabling the load detect pipe once. */
15557 for_each_intel_connector(dev, connector) {
15558 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15559 crt = &connector->base;
15560 break;
15564 if (!crt)
15565 return;
15567 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15568 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15571 static bool
15572 intel_check_plane_mapping(struct intel_crtc *crtc)
15574 struct drm_device *dev = crtc->base.dev;
15575 struct drm_i915_private *dev_priv = dev->dev_private;
15576 u32 val;
15578 if (INTEL_INFO(dev)->num_pipes == 1)
15579 return true;
15581 val = I915_READ(DSPCNTR(!crtc->plane));
15583 if ((val & DISPLAY_PLANE_ENABLE) &&
15584 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15585 return false;
15587 return true;
15590 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15592 struct drm_device *dev = crtc->base.dev;
15593 struct intel_encoder *encoder;
15595 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15596 return true;
15598 return false;
15601 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15603 struct drm_device *dev = encoder->base.dev;
15604 struct intel_connector *connector;
15606 for_each_connector_on_encoder(dev, &encoder->base, connector)
15607 return true;
15609 return false;
15612 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15614 struct drm_device *dev = crtc->base.dev;
15615 struct drm_i915_private *dev_priv = dev->dev_private;
15616 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15618 /* Clear any frame start delays used for debugging left by the BIOS */
15619 if (!transcoder_is_dsi(cpu_transcoder)) {
15620 i915_reg_t reg = PIPECONF(cpu_transcoder);
15622 I915_WRITE(reg,
15623 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15626 /* restore vblank interrupts to correct state */
15627 drm_crtc_vblank_reset(&crtc->base);
15628 if (crtc->active) {
15629 struct intel_plane *plane;
15631 drm_crtc_vblank_on(&crtc->base);
15633 /* Disable everything but the primary plane */
15634 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15635 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15636 continue;
15638 plane->disable_plane(&plane->base, &crtc->base);
15642 /* We need to sanitize the plane -> pipe mapping first because this will
15643 * disable the crtc (and hence change the state) if it is wrong. Note
15644 * that gen4+ has a fixed plane -> pipe mapping. */
15645 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15646 bool plane;
15648 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15649 crtc->base.base.id);
15651 /* Pipe has the wrong plane attached and the plane is active.
15652 * Temporarily change the plane mapping and disable everything
15653 * ... */
15654 plane = crtc->plane;
15655 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15656 crtc->plane = !plane;
15657 intel_crtc_disable_noatomic(&crtc->base);
15658 crtc->plane = plane;
15661 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15662 crtc->pipe == PIPE_A && !crtc->active) {
15663 /* BIOS forgot to enable pipe A, this mostly happens after
15664 * resume. Force-enable the pipe to fix this, the update_dpms
15665 * call below we restore the pipe to the right state, but leave
15666 * the required bits on. */
15667 intel_enable_pipe_a(dev);
15670 /* Adjust the state of the output pipe according to whether we
15671 * have active connectors/encoders. */
15672 if (crtc->active && !intel_crtc_has_encoders(crtc))
15673 intel_crtc_disable_noatomic(&crtc->base);
15675 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15677 * We start out with underrun reporting disabled to avoid races.
15678 * For correct bookkeeping mark this on active crtcs.
15680 * Also on gmch platforms we dont have any hardware bits to
15681 * disable the underrun reporting. Which means we need to start
15682 * out with underrun reporting disabled also on inactive pipes,
15683 * since otherwise we'll complain about the garbage we read when
15684 * e.g. coming up after runtime pm.
15686 * No protection against concurrent access is required - at
15687 * worst a fifo underrun happens which also sets this to false.
15689 crtc->cpu_fifo_underrun_disabled = true;
15690 crtc->pch_fifo_underrun_disabled = true;
15694 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15696 struct intel_connector *connector;
15697 struct drm_device *dev = encoder->base.dev;
15699 /* We need to check both for a crtc link (meaning that the
15700 * encoder is active and trying to read from a pipe) and the
15701 * pipe itself being active. */
15702 bool has_active_crtc = encoder->base.crtc &&
15703 to_intel_crtc(encoder->base.crtc)->active;
15705 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15706 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15707 encoder->base.base.id,
15708 encoder->base.name);
15710 /* Connector is active, but has no active pipe. This is
15711 * fallout from our resume register restoring. Disable
15712 * the encoder manually again. */
15713 if (encoder->base.crtc) {
15714 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15715 encoder->base.base.id,
15716 encoder->base.name);
15717 encoder->disable(encoder);
15718 if (encoder->post_disable)
15719 encoder->post_disable(encoder);
15721 encoder->base.crtc = NULL;
15723 /* Inconsistent output/port/pipe state happens presumably due to
15724 * a bug in one of the get_hw_state functions. Or someplace else
15725 * in our code, like the register restore mess on resume. Clamp
15726 * things to off as a safer default. */
15727 for_each_intel_connector(dev, connector) {
15728 if (connector->encoder != encoder)
15729 continue;
15730 connector->base.dpms = DRM_MODE_DPMS_OFF;
15731 connector->base.encoder = NULL;
15734 /* Enabled encoders without active connectors will be fixed in
15735 * the crtc fixup. */
15738 void i915_redisable_vga_power_on(struct drm_device *dev)
15740 struct drm_i915_private *dev_priv = dev->dev_private;
15741 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15743 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15744 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15745 i915_disable_vga(dev);
15749 void i915_redisable_vga(struct drm_device *dev)
15751 struct drm_i915_private *dev_priv = dev->dev_private;
15753 /* This function can be called both from intel_modeset_setup_hw_state or
15754 * at a very early point in our resume sequence, where the power well
15755 * structures are not yet restored. Since this function is at a very
15756 * paranoid "someone might have enabled VGA while we were not looking"
15757 * level, just check if the power well is enabled instead of trying to
15758 * follow the "don't touch the power well if we don't need it" policy
15759 * the rest of the driver uses. */
15760 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15761 return;
15763 i915_redisable_vga_power_on(dev);
15765 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15768 static bool primary_get_hw_state(struct intel_plane *plane)
15770 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15772 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15775 /* FIXME read out full plane state for all planes */
15776 static void readout_plane_state(struct intel_crtc *crtc)
15778 struct drm_plane *primary = crtc->base.primary;
15779 struct intel_plane_state *plane_state =
15780 to_intel_plane_state(primary->state);
15782 plane_state->visible = crtc->active &&
15783 primary_get_hw_state(to_intel_plane(primary));
15785 if (plane_state->visible)
15786 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15789 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15791 struct drm_i915_private *dev_priv = dev->dev_private;
15792 enum i915_pipe pipe;
15793 struct intel_crtc *crtc;
15794 struct intel_encoder *encoder;
15795 struct intel_connector *connector;
15796 int i;
15798 dev_priv->active_crtcs = 0;
15800 for_each_intel_crtc(dev, crtc) {
15801 struct intel_crtc_state *crtc_state = crtc->config;
15802 int pixclk = 0;
15804 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15805 memset(crtc_state, 0, sizeof(*crtc_state));
15806 crtc_state->base.crtc = &crtc->base;
15808 crtc_state->base.active = crtc_state->base.enable =
15809 dev_priv->display.get_pipe_config(crtc, crtc_state);
15811 crtc->base.enabled = crtc_state->base.enable;
15812 crtc->active = crtc_state->base.active;
15814 if (crtc_state->base.active) {
15815 dev_priv->active_crtcs |= 1 << crtc->pipe;
15817 if (IS_BROADWELL(dev_priv)) {
15818 pixclk = ilk_pipe_pixel_rate(crtc_state);
15820 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15821 if (crtc_state->ips_enabled)
15822 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15823 } else if (IS_VALLEYVIEW(dev_priv) ||
15824 IS_CHERRYVIEW(dev_priv) ||
15825 IS_BROXTON(dev_priv))
15826 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15827 else
15828 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15831 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15833 readout_plane_state(crtc);
15835 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15836 crtc->base.base.id,
15837 crtc->active ? "enabled" : "disabled");
15840 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15841 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15843 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15844 &pll->config.hw_state);
15845 pll->config.crtc_mask = 0;
15846 for_each_intel_crtc(dev, crtc) {
15847 if (crtc->active && crtc->config->shared_dpll == pll)
15848 pll->config.crtc_mask |= 1 << crtc->pipe;
15850 pll->active_mask = pll->config.crtc_mask;
15852 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15853 pll->name, pll->config.crtc_mask, pll->on);
15856 for_each_intel_encoder(dev, encoder) {
15857 pipe = 0;
15859 if (encoder->get_hw_state(encoder, &pipe)) {
15860 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15861 encoder->base.crtc = &crtc->base;
15862 encoder->get_config(encoder, crtc->config);
15863 } else {
15864 encoder->base.crtc = NULL;
15867 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15868 encoder->base.base.id,
15869 encoder->base.name,
15870 encoder->base.crtc ? "enabled" : "disabled",
15871 pipe_name(pipe));
15874 for_each_intel_connector(dev, connector) {
15875 if (connector->get_hw_state(connector)) {
15876 connector->base.dpms = DRM_MODE_DPMS_ON;
15878 encoder = connector->encoder;
15879 connector->base.encoder = &encoder->base;
15881 if (encoder->base.crtc &&
15882 encoder->base.crtc->state->active) {
15884 * This has to be done during hardware readout
15885 * because anything calling .crtc_disable may
15886 * rely on the connector_mask being accurate.
15888 encoder->base.crtc->state->connector_mask |=
15889 1 << drm_connector_index(&connector->base);
15890 encoder->base.crtc->state->encoder_mask |=
15891 1 << drm_encoder_index(&encoder->base);
15894 } else {
15895 connector->base.dpms = DRM_MODE_DPMS_OFF;
15896 connector->base.encoder = NULL;
15898 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15899 connector->base.base.id,
15900 connector->base.name,
15901 connector->base.encoder ? "enabled" : "disabled");
15904 for_each_intel_crtc(dev, crtc) {
15905 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15907 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15908 if (crtc->base.state->active) {
15909 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15910 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15911 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15914 * The initial mode needs to be set in order to keep
15915 * the atomic core happy. It wants a valid mode if the
15916 * crtc's enabled, so we do the above call.
15918 * At this point some state updated by the connectors
15919 * in their ->detect() callback has not run yet, so
15920 * no recalculation can be done yet.
15922 * Even if we could do a recalculation and modeset
15923 * right now it would cause a double modeset if
15924 * fbdev or userspace chooses a different initial mode.
15926 * If that happens, someone indicated they wanted a
15927 * mode change, which means it's safe to do a full
15928 * recalculation.
15930 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15932 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15933 update_scanline_offset(crtc);
15936 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15940 /* Scan out the current hw modeset state,
15941 * and sanitizes it to the current state
15943 static void
15944 intel_modeset_setup_hw_state(struct drm_device *dev)
15946 struct drm_i915_private *dev_priv = dev->dev_private;
15947 enum i915_pipe pipe;
15948 struct intel_crtc *crtc;
15949 struct intel_encoder *encoder;
15950 int i;
15952 intel_modeset_readout_hw_state(dev);
15954 /* HW state is read out, now we need to sanitize this mess. */
15955 for_each_intel_encoder(dev, encoder) {
15956 intel_sanitize_encoder(encoder);
15959 for_each_pipe(dev_priv, pipe) {
15960 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15961 intel_sanitize_crtc(crtc);
15962 intel_dump_pipe_config(crtc, crtc->config,
15963 "[setup_hw_state]");
15966 intel_modeset_update_connector_atomic_state(dev);
15968 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15969 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15971 if (!pll->on || pll->active_mask)
15972 continue;
15974 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15976 pll->funcs.disable(dev_priv, pll);
15977 pll->on = false;
15980 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15981 vlv_wm_get_hw_state(dev);
15982 else if (IS_GEN9(dev))
15983 skl_wm_get_hw_state(dev);
15984 else if (HAS_PCH_SPLIT(dev))
15985 ilk_wm_get_hw_state(dev);
15987 for_each_intel_crtc(dev, crtc) {
15988 unsigned long put_domains;
15990 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15991 if (WARN_ON(put_domains))
15992 modeset_put_power_domains(dev_priv, put_domains);
15994 intel_display_set_init_power(dev_priv, false);
15996 intel_fbc_init_pipe_state(dev_priv);
15999 void intel_display_resume(struct drm_device *dev)
16001 struct drm_i915_private *dev_priv = to_i915(dev);
16002 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16003 struct drm_modeset_acquire_ctx ctx;
16004 int ret;
16005 bool setup = false;
16007 dev_priv->modeset_restore_state = NULL;
16010 * This is a cludge because with real atomic modeset mode_config.mutex
16011 * won't be taken. Unfortunately some probed state like
16012 * audio_codec_enable is still protected by mode_config.mutex, so lock
16013 * it here for now.
16015 mutex_lock(&dev->mode_config.mutex);
16016 drm_modeset_acquire_init(&ctx, 0);
16018 retry:
16019 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16021 if (ret == 0 && !setup) {
16022 setup = true;
16024 intel_modeset_setup_hw_state(dev);
16025 i915_redisable_vga(dev);
16028 if (ret == 0 && state) {
16029 struct drm_crtc_state *crtc_state;
16030 struct drm_crtc *crtc;
16031 int i;
16033 state->acquire_ctx = &ctx;
16035 /* ignore any reset values/BIOS leftovers in the WM registers */
16036 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16038 for_each_crtc_in_state(state, crtc, crtc_state, i) {
16040 * Force recalculation even if we restore
16041 * current state. With fast modeset this may not result
16042 * in a modeset when the state is compatible.
16044 crtc_state->mode_changed = true;
16047 ret = drm_atomic_commit(state);
16050 if (ret == -EDEADLK) {
16051 drm_modeset_backoff(&ctx);
16052 goto retry;
16055 drm_modeset_drop_locks(&ctx);
16056 drm_modeset_acquire_fini(&ctx);
16057 mutex_unlock(&dev->mode_config.mutex);
16059 if (ret) {
16060 DRM_ERROR("Restoring old state failed with %i\n", ret);
16061 drm_atomic_state_free(state);
16065 void intel_modeset_gem_init(struct drm_device *dev)
16067 struct drm_crtc *c;
16068 struct drm_i915_gem_object *obj;
16069 int ret;
16071 intel_init_gt_powersave(dev);
16073 intel_modeset_init_hw(dev);
16075 intel_setup_overlay(dev);
16078 * Make sure any fbs we allocated at startup are properly
16079 * pinned & fenced. When we do the allocation it's too early
16080 * for this.
16082 for_each_crtc(dev, c) {
16083 obj = intel_fb_obj(c->primary->fb);
16084 if (obj == NULL)
16085 continue;
16087 mutex_lock(&dev->struct_mutex);
16088 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16089 c->primary->state->rotation);
16090 mutex_unlock(&dev->struct_mutex);
16091 if (ret) {
16092 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16093 to_intel_crtc(c)->pipe);
16094 drm_framebuffer_unreference(c->primary->fb);
16095 c->primary->fb = NULL;
16096 c->primary->crtc = c->primary->state->crtc = NULL;
16097 update_state_fb(c->primary);
16098 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16102 intel_backlight_register(dev);
16105 void intel_connector_unregister(struct intel_connector *intel_connector)
16107 struct drm_connector *connector = &intel_connector->base;
16109 intel_panel_destroy_backlight(connector);
16110 drm_connector_unregister(connector);
16113 void intel_modeset_cleanup(struct drm_device *dev)
16115 struct drm_i915_private *dev_priv = dev->dev_private;
16116 struct intel_connector *connector;
16118 intel_disable_gt_powersave(dev);
16120 intel_backlight_unregister(dev);
16123 * Interrupts and polling as the first thing to avoid creating havoc.
16124 * Too much stuff here (turning of connectors, ...) would
16125 * experience fancy races otherwise.
16127 intel_irq_uninstall(dev_priv);
16130 * Due to the hpd irq storm handling the hotplug work can re-arm the
16131 * poll handlers. Hence disable polling after hpd handling is shut down.
16133 drm_kms_helper_poll_fini(dev);
16135 intel_unregister_dsm_handler();
16137 intel_fbc_global_disable(dev_priv);
16139 /* flush any delayed tasks or pending work */
16140 flush_scheduled_work();
16142 /* destroy the backlight and sysfs files before encoders/connectors */
16143 for_each_intel_connector(dev, connector)
16144 connector->unregister(connector);
16146 drm_mode_config_cleanup(dev);
16148 intel_cleanup_overlay(dev);
16150 intel_cleanup_gt_powersave(dev);
16152 intel_teardown_gmbus(dev);
16156 * Return which encoder is currently attached for connector.
16158 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16160 return &intel_attached_encoder(connector)->base;
16163 void intel_connector_attach_encoder(struct intel_connector *connector,
16164 struct intel_encoder *encoder)
16166 connector->encoder = encoder;
16167 drm_mode_connector_attach_encoder(&connector->base,
16168 &encoder->base);
16172 * set vga decode state - true == enable VGA decode
16174 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16176 struct drm_i915_private *dev_priv = dev->dev_private;
16177 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16178 u16 gmch_ctrl;
16180 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16181 DRM_ERROR("failed to read control word\n");
16182 return -EIO;
16185 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16186 return 0;
16188 if (state)
16189 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16190 else
16191 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16193 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16194 DRM_ERROR("failed to write control word\n");
16195 return -EIO;
16198 return 0;
16201 #if 0
16202 struct intel_display_error_state {
16204 u32 power_well_driver;
16206 int num_transcoders;
16208 struct intel_cursor_error_state {
16209 u32 control;
16210 u32 position;
16211 u32 base;
16212 u32 size;
16213 } cursor[I915_MAX_PIPES];
16215 struct intel_pipe_error_state {
16216 bool power_domain_on;
16217 u32 source;
16218 u32 stat;
16219 } pipe[I915_MAX_PIPES];
16221 struct intel_plane_error_state {
16222 u32 control;
16223 u32 stride;
16224 u32 size;
16225 u32 pos;
16226 u32 addr;
16227 u32 surface;
16228 u32 tile_offset;
16229 } plane[I915_MAX_PIPES];
16231 struct intel_transcoder_error_state {
16232 bool power_domain_on;
16233 enum transcoder cpu_transcoder;
16235 u32 conf;
16237 u32 htotal;
16238 u32 hblank;
16239 u32 hsync;
16240 u32 vtotal;
16241 u32 vblank;
16242 u32 vsync;
16243 } transcoder[4];
16246 struct intel_display_error_state *
16247 intel_display_capture_error_state(struct drm_device *dev)
16249 struct drm_i915_private *dev_priv = dev->dev_private;
16250 struct intel_display_error_state *error;
16251 int transcoders[] = {
16252 TRANSCODER_A,
16253 TRANSCODER_B,
16254 TRANSCODER_C,
16255 TRANSCODER_EDP,
16257 int i;
16259 if (INTEL_INFO(dev)->num_pipes == 0)
16260 return NULL;
16262 error = kzalloc(sizeof(*error), GFP_ATOMIC);
16263 if (error == NULL)
16264 return NULL;
16266 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16267 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16269 for_each_pipe(dev_priv, i) {
16270 error->pipe[i].power_domain_on =
16271 __intel_display_power_is_enabled(dev_priv,
16272 POWER_DOMAIN_PIPE(i));
16273 if (!error->pipe[i].power_domain_on)
16274 continue;
16276 error->cursor[i].control = I915_READ(CURCNTR(i));
16277 error->cursor[i].position = I915_READ(CURPOS(i));
16278 error->cursor[i].base = I915_READ(CURBASE(i));
16280 error->plane[i].control = I915_READ(DSPCNTR(i));
16281 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16282 if (INTEL_INFO(dev)->gen <= 3) {
16283 error->plane[i].size = I915_READ(DSPSIZE(i));
16284 error->plane[i].pos = I915_READ(DSPPOS(i));
16286 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16287 error->plane[i].addr = I915_READ(DSPADDR(i));
16288 if (INTEL_INFO(dev)->gen >= 4) {
16289 error->plane[i].surface = I915_READ(DSPSURF(i));
16290 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16293 error->pipe[i].source = I915_READ(PIPESRC(i));
16295 if (HAS_GMCH_DISPLAY(dev))
16296 error->pipe[i].stat = I915_READ(PIPESTAT(i));
16299 /* Note: this does not include DSI transcoders. */
16300 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16301 if (HAS_DDI(dev_priv))
16302 error->num_transcoders++; /* Account for eDP. */
16304 for (i = 0; i < error->num_transcoders; i++) {
16305 enum transcoder cpu_transcoder = transcoders[i];
16307 error->transcoder[i].power_domain_on =
16308 __intel_display_power_is_enabled(dev_priv,
16309 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16310 if (!error->transcoder[i].power_domain_on)
16311 continue;
16313 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16315 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16316 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16317 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16318 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16319 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16320 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16321 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16324 return error;
16327 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16329 void
16330 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16331 struct drm_device *dev,
16332 struct intel_display_error_state *error)
16334 struct drm_i915_private *dev_priv = dev->dev_private;
16335 int i;
16337 if (!error)
16338 return;
16340 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16341 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16342 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16343 error->power_well_driver);
16344 for_each_pipe(dev_priv, i) {
16345 err_printf(m, "Pipe [%d]:\n", i);
16346 err_printf(m, " Power: %s\n",
16347 onoff(error->pipe[i].power_domain_on));
16348 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
16349 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
16351 err_printf(m, "Plane [%d]:\n", i);
16352 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16353 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
16354 if (INTEL_INFO(dev)->gen <= 3) {
16355 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16356 err_printf(m, " POS: %08x\n", error->plane[i].pos);
16358 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16359 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
16360 if (INTEL_INFO(dev)->gen >= 4) {
16361 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16362 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
16365 err_printf(m, "Cursor [%d]:\n", i);
16366 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16367 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16368 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
16371 for (i = 0; i < error->num_transcoders; i++) {
16372 err_printf(m, "CPU transcoder: %s\n",
16373 transcoder_name(error->transcoder[i].cpu_transcoder));
16374 err_printf(m, " Power: %s\n",
16375 onoff(error->transcoder[i].power_domain_on));
16376 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16377 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16378 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16379 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16380 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16381 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16382 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16385 #endif