Import gcc-4.4.1
[dragonfly.git] / contrib / gcc-4.4 / libstdc++-v3 / include / ext / bitmap_allocator.h
blob3ad08fbef1891566681d6f764495a1f118f1b532
1 // Bitmap Allocator. -*- C++ -*-
3 // Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
26 /** @file ext/bitmap_allocator.h
27 * This file is a GNU extension to the Standard C++ Library.
30 #ifndef _BITMAP_ALLOCATOR_H
31 #define _BITMAP_ALLOCATOR_H 1
33 #include <cstddef> // For std::size_t, and ptrdiff_t.
34 #include <bits/functexcept.h> // For __throw_bad_alloc().
35 #include <utility> // For std::pair.
36 #include <functional> // For greater_equal, and less_equal.
37 #include <new> // For operator new.
38 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
39 #include <ext/concurrence.h>
40 #include <bits/move.h>
42 /** @brief The constant in the expression below is the alignment
43 * required in bytes.
45 #define _BALLOC_ALIGN_BYTES 8
47 _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
49 using std::size_t;
50 using std::ptrdiff_t;
52 namespace __detail
54 /** @class __mini_vector bitmap_allocator.h bitmap_allocator.h
56 * @brief __mini_vector<> is a stripped down version of the
57 * full-fledged std::vector<>.
59 * It is to be used only for built-in types or PODs. Notable
60 * differences are:
62 * @detail
63 * 1. Not all accessor functions are present.
64 * 2. Used ONLY for PODs.
65 * 3. No Allocator template argument. Uses ::operator new() to get
66 * memory, and ::operator delete() to free it.
67 * Caveat: The dtor does NOT free the memory allocated, so this a
68 * memory-leaking vector!
70 template<typename _Tp>
71 class __mini_vector
73 __mini_vector(const __mini_vector&);
74 __mini_vector& operator=(const __mini_vector&);
76 public:
77 typedef _Tp value_type;
78 typedef _Tp* pointer;
79 typedef _Tp& reference;
80 typedef const _Tp& const_reference;
81 typedef size_t size_type;
82 typedef ptrdiff_t difference_type;
83 typedef pointer iterator;
85 private:
86 pointer _M_start;
87 pointer _M_finish;
88 pointer _M_end_of_storage;
90 size_type
91 _M_space_left() const throw()
92 { return _M_end_of_storage - _M_finish; }
94 pointer
95 allocate(size_type __n)
96 { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
98 void
99 deallocate(pointer __p, size_type)
100 { ::operator delete(__p); }
102 public:
103 // Members used: size(), push_back(), pop_back(),
104 // insert(iterator, const_reference), erase(iterator),
105 // begin(), end(), back(), operator[].
107 __mini_vector() : _M_start(0), _M_finish(0),
108 _M_end_of_storage(0)
111 #if 0
112 ~__mini_vector()
114 if (this->_M_start)
116 this->deallocate(this->_M_start, this->_M_end_of_storage
117 - this->_M_start);
120 #endif
122 size_type
123 size() const throw()
124 { return _M_finish - _M_start; }
126 iterator
127 begin() const throw()
128 { return this->_M_start; }
130 iterator
131 end() const throw()
132 { return this->_M_finish; }
134 reference
135 back() const throw()
136 { return *(this->end() - 1); }
138 reference
139 operator[](const size_type __pos) const throw()
140 { return this->_M_start[__pos]; }
142 void
143 insert(iterator __pos, const_reference __x);
145 void
146 push_back(const_reference __x)
148 if (this->_M_space_left())
150 *this->end() = __x;
151 ++this->_M_finish;
153 else
154 this->insert(this->end(), __x);
157 void
158 pop_back() throw()
159 { --this->_M_finish; }
161 void
162 erase(iterator __pos) throw();
164 void
165 clear() throw()
166 { this->_M_finish = this->_M_start; }
169 // Out of line function definitions.
170 template<typename _Tp>
171 void __mini_vector<_Tp>::
172 insert(iterator __pos, const_reference __x)
174 if (this->_M_space_left())
176 size_type __to_move = this->_M_finish - __pos;
177 iterator __dest = this->end();
178 iterator __src = this->end() - 1;
180 ++this->_M_finish;
181 while (__to_move)
183 *__dest = *__src;
184 --__dest; --__src; --__to_move;
186 *__pos = __x;
188 else
190 size_type __new_size = this->size() ? this->size() * 2 : 1;
191 iterator __new_start = this->allocate(__new_size);
192 iterator __first = this->begin();
193 iterator __start = __new_start;
194 while (__first != __pos)
196 *__start = *__first;
197 ++__start; ++__first;
199 *__start = __x;
200 ++__start;
201 while (__first != this->end())
203 *__start = *__first;
204 ++__start; ++__first;
206 if (this->_M_start)
207 this->deallocate(this->_M_start, this->size());
209 this->_M_start = __new_start;
210 this->_M_finish = __start;
211 this->_M_end_of_storage = this->_M_start + __new_size;
215 template<typename _Tp>
216 void __mini_vector<_Tp>::
217 erase(iterator __pos) throw()
219 while (__pos + 1 != this->end())
221 *__pos = __pos[1];
222 ++__pos;
224 --this->_M_finish;
228 template<typename _Tp>
229 struct __mv_iter_traits
231 typedef typename _Tp::value_type value_type;
232 typedef typename _Tp::difference_type difference_type;
235 template<typename _Tp>
236 struct __mv_iter_traits<_Tp*>
238 typedef _Tp value_type;
239 typedef ptrdiff_t difference_type;
242 enum
244 bits_per_byte = 8,
245 bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
248 template<typename _ForwardIterator, typename _Tp, typename _Compare>
249 _ForwardIterator
250 __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
251 const _Tp& __val, _Compare __comp)
253 typedef typename __mv_iter_traits<_ForwardIterator>::value_type
254 _ValueType;
255 typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
256 _DistanceType;
258 _DistanceType __len = __last - __first;
259 _DistanceType __half;
260 _ForwardIterator __middle;
262 while (__len > 0)
264 __half = __len >> 1;
265 __middle = __first;
266 __middle += __half;
267 if (__comp(*__middle, __val))
269 __first = __middle;
270 ++__first;
271 __len = __len - __half - 1;
273 else
274 __len = __half;
276 return __first;
279 template<typename _InputIterator, typename _Predicate>
280 inline _InputIterator
281 __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
283 while (__first != __last && !__p(*__first))
284 ++__first;
285 return __first;
288 /** @brief The number of Blocks pointed to by the address pair
289 * passed to the function.
291 template<typename _AddrPair>
292 inline size_t
293 __num_blocks(_AddrPair __ap)
294 { return (__ap.second - __ap.first) + 1; }
296 /** @brief The number of Bit-maps pointed to by the address pair
297 * passed to the function.
299 template<typename _AddrPair>
300 inline size_t
301 __num_bitmaps(_AddrPair __ap)
302 { return __num_blocks(__ap) / size_t(bits_per_block); }
304 // _Tp should be a pointer type.
305 template<typename _Tp>
306 class _Inclusive_between
307 : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
309 typedef _Tp pointer;
310 pointer _M_ptr_value;
311 typedef typename std::pair<_Tp, _Tp> _Block_pair;
313 public:
314 _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
317 bool
318 operator()(_Block_pair __bp) const throw()
320 if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
321 && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
322 return true;
323 else
324 return false;
328 // Used to pass a Functor to functions by reference.
329 template<typename _Functor>
330 class _Functor_Ref
331 : public std::unary_function<typename _Functor::argument_type,
332 typename _Functor::result_type>
334 _Functor& _M_fref;
336 public:
337 typedef typename _Functor::argument_type argument_type;
338 typedef typename _Functor::result_type result_type;
340 _Functor_Ref(_Functor& __fref) : _M_fref(__fref)
343 result_type
344 operator()(argument_type __arg)
345 { return _M_fref(__arg); }
348 /** @class _Ffit_finder bitmap_allocator.h bitmap_allocator.h
350 * @brief The class which acts as a predicate for applying the
351 * first-fit memory allocation policy for the bitmap allocator.
353 // _Tp should be a pointer type, and _Alloc is the Allocator for
354 // the vector.
355 template<typename _Tp>
356 class _Ffit_finder
357 : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
359 typedef typename std::pair<_Tp, _Tp> _Block_pair;
360 typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
361 typedef typename _BPVector::difference_type _Counter_type;
363 size_t* _M_pbitmap;
364 _Counter_type _M_data_offset;
366 public:
367 _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
370 bool
371 operator()(_Block_pair __bp) throw()
373 // Set the _rover to the last physical location bitmap,
374 // which is the bitmap which belongs to the first free
375 // block. Thus, the bitmaps are in exact reverse order of
376 // the actual memory layout. So, we count down the bitmaps,
377 // which is the same as moving up the memory.
379 // If the used count stored at the start of the Bit Map headers
380 // is equal to the number of Objects that the current Block can
381 // store, then there is definitely no space for another single
382 // object, so just return false.
383 _Counter_type __diff =
384 __gnu_cxx::__detail::__num_bitmaps(__bp);
386 if (*(reinterpret_cast<size_t*>
387 (__bp.first) - (__diff + 1))
388 == __gnu_cxx::__detail::__num_blocks(__bp))
389 return false;
391 size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
393 for (_Counter_type __i = 0; __i < __diff; ++__i)
395 _M_data_offset = __i;
396 if (*__rover)
398 _M_pbitmap = __rover;
399 return true;
401 --__rover;
403 return false;
407 size_t*
408 _M_get() const throw()
409 { return _M_pbitmap; }
411 _Counter_type
412 _M_offset() const throw()
413 { return _M_data_offset * size_t(bits_per_block); }
417 /** @class _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
419 * @brief The bitmap counter which acts as the bitmap
420 * manipulator, and manages the bit-manipulation functions and
421 * the searching and identification functions on the bit-map.
423 // _Tp should be a pointer type.
424 template<typename _Tp>
425 class _Bitmap_counter
427 typedef typename __detail::__mini_vector<typename std::pair<_Tp, _Tp> >
428 _BPVector;
429 typedef typename _BPVector::size_type _Index_type;
430 typedef _Tp pointer;
432 _BPVector& _M_vbp;
433 size_t* _M_curr_bmap;
434 size_t* _M_last_bmap_in_block;
435 _Index_type _M_curr_index;
437 public:
438 // Use the 2nd parameter with care. Make sure that such an
439 // entry exists in the vector before passing that particular
440 // index to this ctor.
441 _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
442 { this->_M_reset(__index); }
444 void
445 _M_reset(long __index = -1) throw()
447 if (__index == -1)
449 _M_curr_bmap = 0;
450 _M_curr_index = static_cast<_Index_type>(-1);
451 return;
454 _M_curr_index = __index;
455 _M_curr_bmap = reinterpret_cast<size_t*>
456 (_M_vbp[_M_curr_index].first) - 1;
458 _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
460 _M_last_bmap_in_block = _M_curr_bmap
461 - ((_M_vbp[_M_curr_index].second
462 - _M_vbp[_M_curr_index].first + 1)
463 / size_t(bits_per_block) - 1);
466 // Dangerous Function! Use with extreme care. Pass to this
467 // function ONLY those values that are known to be correct,
468 // otherwise this will mess up big time.
469 void
470 _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
471 { _M_curr_bmap = __new_internal_marker; }
473 bool
474 _M_finished() const throw()
475 { return(_M_curr_bmap == 0); }
477 _Bitmap_counter&
478 operator++() throw()
480 if (_M_curr_bmap == _M_last_bmap_in_block)
482 if (++_M_curr_index == _M_vbp.size())
483 _M_curr_bmap = 0;
484 else
485 this->_M_reset(_M_curr_index);
487 else
488 --_M_curr_bmap;
489 return *this;
492 size_t*
493 _M_get() const throw()
494 { return _M_curr_bmap; }
496 pointer
497 _M_base() const throw()
498 { return _M_vbp[_M_curr_index].first; }
500 _Index_type
501 _M_offset() const throw()
503 return size_t(bits_per_block)
504 * ((reinterpret_cast<size_t*>(this->_M_base())
505 - _M_curr_bmap) - 1);
508 _Index_type
509 _M_where() const throw()
510 { return _M_curr_index; }
513 /** @brief Mark a memory address as allocated by re-setting the
514 * corresponding bit in the bit-map.
516 inline void
517 __bit_allocate(size_t* __pbmap, size_t __pos) throw()
519 size_t __mask = 1 << __pos;
520 __mask = ~__mask;
521 *__pbmap &= __mask;
524 /** @brief Mark a memory address as free by setting the
525 * corresponding bit in the bit-map.
527 inline void
528 __bit_free(size_t* __pbmap, size_t __pos) throw()
530 size_t __mask = 1 << __pos;
531 *__pbmap |= __mask;
533 } // namespace __detail
535 /** @brief Generic Version of the bsf instruction.
537 inline size_t
538 _Bit_scan_forward(size_t __num)
539 { return static_cast<size_t>(__builtin_ctzl(__num)); }
541 /** @class free_list bitmap_allocator.h bitmap_allocator.h
543 * @brief The free list class for managing chunks of memory to be
544 * given to and returned by the bitmap_allocator.
546 class free_list
548 typedef size_t* value_type;
549 typedef __detail::__mini_vector<value_type> vector_type;
550 typedef vector_type::iterator iterator;
551 typedef __mutex __mutex_type;
553 struct _LT_pointer_compare
555 bool
556 operator()(const size_t* __pui,
557 const size_t __cui) const throw()
558 { return *__pui < __cui; }
561 #if defined __GTHREADS
562 __mutex_type&
563 _M_get_mutex()
565 static __mutex_type _S_mutex;
566 return _S_mutex;
568 #endif
570 vector_type&
571 _M_get_free_list()
573 static vector_type _S_free_list;
574 return _S_free_list;
577 /** @brief Performs validation of memory based on their size.
579 * @param __addr The pointer to the memory block to be
580 * validated.
582 * @detail Validates the memory block passed to this function and
583 * appropriately performs the action of managing the free list of
584 * blocks by adding this block to the free list or deleting this
585 * or larger blocks from the free list.
587 void
588 _M_validate(size_t* __addr) throw()
590 vector_type& __free_list = _M_get_free_list();
591 const vector_type::size_type __max_size = 64;
592 if (__free_list.size() >= __max_size)
594 // Ok, the threshold value has been reached. We determine
595 // which block to remove from the list of free blocks.
596 if (*__addr >= *__free_list.back())
598 // Ok, the new block is greater than or equal to the
599 // last block in the list of free blocks. We just free
600 // the new block.
601 ::operator delete(static_cast<void*>(__addr));
602 return;
604 else
606 // Deallocate the last block in the list of free lists,
607 // and insert the new one in its correct position.
608 ::operator delete(static_cast<void*>(__free_list.back()));
609 __free_list.pop_back();
613 // Just add the block to the list of free lists unconditionally.
614 iterator __temp = __gnu_cxx::__detail::__lower_bound
615 (__free_list.begin(), __free_list.end(),
616 *__addr, _LT_pointer_compare());
618 // We may insert the new free list before _temp;
619 __free_list.insert(__temp, __addr);
622 /** @brief Decides whether the wastage of memory is acceptable for
623 * the current memory request and returns accordingly.
625 * @param __block_size The size of the block available in the free
626 * list.
628 * @param __required_size The required size of the memory block.
630 * @return true if the wastage incurred is acceptable, else returns
631 * false.
633 bool
634 _M_should_i_give(size_t __block_size,
635 size_t __required_size) throw()
637 const size_t __max_wastage_percentage = 36;
638 if (__block_size >= __required_size &&
639 (((__block_size - __required_size) * 100 / __block_size)
640 < __max_wastage_percentage))
641 return true;
642 else
643 return false;
646 public:
647 /** @brief This function returns the block of memory to the
648 * internal free list.
650 * @param __addr The pointer to the memory block that was given
651 * by a call to the _M_get function.
653 inline void
654 _M_insert(size_t* __addr) throw()
656 #if defined __GTHREADS
657 __gnu_cxx::__scoped_lock __bfl_lock(_M_get_mutex());
658 #endif
659 // Call _M_validate to decide what should be done with
660 // this particular free list.
661 this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
662 // See discussion as to why this is 1!
665 /** @brief This function gets a block of memory of the specified
666 * size from the free list.
668 * @param __sz The size in bytes of the memory required.
670 * @return A pointer to the new memory block of size at least
671 * equal to that requested.
673 size_t*
674 _M_get(size_t __sz) throw(std::bad_alloc);
676 /** @brief This function just clears the internal Free List, and
677 * gives back all the memory to the OS.
679 void
680 _M_clear();
684 // Forward declare the class.
685 template<typename _Tp>
686 class bitmap_allocator;
688 // Specialize for void:
689 template<>
690 class bitmap_allocator<void>
692 public:
693 typedef void* pointer;
694 typedef const void* const_pointer;
696 // Reference-to-void members are impossible.
697 typedef void value_type;
698 template<typename _Tp1>
699 struct rebind
701 typedef bitmap_allocator<_Tp1> other;
706 * @brief Bitmap Allocator, primary template.
707 * @ingroup allocators
709 template<typename _Tp>
710 class bitmap_allocator : private free_list
712 public:
713 typedef size_t size_type;
714 typedef ptrdiff_t difference_type;
715 typedef _Tp* pointer;
716 typedef const _Tp* const_pointer;
717 typedef _Tp& reference;
718 typedef const _Tp& const_reference;
719 typedef _Tp value_type;
720 typedef free_list::__mutex_type __mutex_type;
722 template<typename _Tp1>
723 struct rebind
725 typedef bitmap_allocator<_Tp1> other;
728 private:
729 template<size_t _BSize, size_t _AlignSize>
730 struct aligned_size
732 enum
734 modulus = _BSize % _AlignSize,
735 value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
739 struct _Alloc_block
741 char __M_unused[aligned_size<sizeof(value_type),
742 _BALLOC_ALIGN_BYTES>::value];
746 typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
748 typedef typename
749 __detail::__mini_vector<_Block_pair> _BPVector;
751 #if defined _GLIBCXX_DEBUG
752 // Complexity: O(lg(N)). Where, N is the number of block of size
753 // sizeof(value_type).
754 void
755 _S_check_for_free_blocks() throw()
757 typedef typename
758 __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
759 _FFF __fff;
760 typedef typename _BPVector::iterator _BPiter;
761 _BPiter __bpi =
762 __gnu_cxx::__detail::__find_if
763 (_S_mem_blocks.begin(), _S_mem_blocks.end(),
764 __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
766 _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
768 #endif
770 /** @brief Responsible for exponentially growing the internal
771 * memory pool.
773 * @throw std::bad_alloc. If memory can not be allocated.
775 * @detail Complexity: O(1), but internally depends upon the
776 * complexity of the function free_list::_M_get. The part where
777 * the bitmap headers are written has complexity: O(X),where X
778 * is the number of blocks of size sizeof(value_type) within
779 * the newly acquired block. Having a tight bound.
781 void
782 _S_refill_pool() throw(std::bad_alloc)
784 #if defined _GLIBCXX_DEBUG
785 _S_check_for_free_blocks();
786 #endif
788 const size_t __num_bitmaps = (_S_block_size
789 / size_t(__detail::bits_per_block));
790 const size_t __size_to_allocate = sizeof(size_t)
791 + _S_block_size * sizeof(_Alloc_block)
792 + __num_bitmaps * sizeof(size_t);
794 size_t* __temp =
795 reinterpret_cast<size_t*>
796 (this->_M_get(__size_to_allocate));
797 *__temp = 0;
798 ++__temp;
800 // The Header information goes at the Beginning of the Block.
801 _Block_pair __bp =
802 std::make_pair(reinterpret_cast<_Alloc_block*>
803 (__temp + __num_bitmaps),
804 reinterpret_cast<_Alloc_block*>
805 (__temp + __num_bitmaps)
806 + _S_block_size - 1);
808 // Fill the Vector with this information.
809 _S_mem_blocks.push_back(__bp);
811 size_t __bit_mask = 0; // 0 Indicates all Allocated.
812 __bit_mask = ~__bit_mask; // 1 Indicates all Free.
814 for (size_t __i = 0; __i < __num_bitmaps; ++__i)
815 __temp[__i] = __bit_mask;
817 _S_block_size *= 2;
821 static _BPVector _S_mem_blocks;
822 static size_t _S_block_size;
823 static __gnu_cxx::__detail::
824 _Bitmap_counter<_Alloc_block*> _S_last_request;
825 static typename _BPVector::size_type _S_last_dealloc_index;
826 #if defined __GTHREADS
827 static __mutex_type _S_mut;
828 #endif
830 public:
832 /** @brief Allocates memory for a single object of size
833 * sizeof(_Tp).
835 * @throw std::bad_alloc. If memory can not be allocated.
837 * @detail Complexity: Worst case complexity is O(N), but that
838 * is hardly ever hit. If and when this particular case is
839 * encountered, the next few cases are guaranteed to have a
840 * worst case complexity of O(1)! That's why this function
841 * performs very well on average. You can consider this
842 * function to have a complexity referred to commonly as:
843 * Amortized Constant time.
845 pointer
846 _M_allocate_single_object() throw(std::bad_alloc)
848 #if defined __GTHREADS
849 __gnu_cxx::__scoped_lock __bit_lock(_S_mut);
850 #endif
852 // The algorithm is something like this: The last_request
853 // variable points to the last accessed Bit Map. When such a
854 // condition occurs, we try to find a free block in the
855 // current bitmap, or succeeding bitmaps until the last bitmap
856 // is reached. If no free block turns up, we resort to First
857 // Fit method.
859 // WARNING: Do not re-order the condition in the while
860 // statement below, because it relies on C++'s short-circuit
861 // evaluation. The return from _S_last_request->_M_get() will
862 // NOT be dereference able if _S_last_request->_M_finished()
863 // returns true. This would inevitably lead to a NULL pointer
864 // dereference if tinkered with.
865 while (_S_last_request._M_finished() == false
866 && (*(_S_last_request._M_get()) == 0))
868 _S_last_request.operator++();
871 if (__builtin_expect(_S_last_request._M_finished() == true, false))
873 // Fall Back to First Fit algorithm.
874 typedef typename
875 __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
876 _FFF __fff;
877 typedef typename _BPVector::iterator _BPiter;
878 _BPiter __bpi =
879 __gnu_cxx::__detail::__find_if
880 (_S_mem_blocks.begin(), _S_mem_blocks.end(),
881 __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
883 if (__bpi != _S_mem_blocks.end())
885 // Search was successful. Ok, now mark the first bit from
886 // the right as 0, meaning Allocated. This bit is obtained
887 // by calling _M_get() on __fff.
888 size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
889 __detail::__bit_allocate(__fff._M_get(), __nz_bit);
891 _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
893 // Now, get the address of the bit we marked as allocated.
894 pointer __ret = reinterpret_cast<pointer>
895 (__bpi->first + __fff._M_offset() + __nz_bit);
896 size_t* __puse_count =
897 reinterpret_cast<size_t*>
898 (__bpi->first)
899 - (__gnu_cxx::__detail::__num_bitmaps(*__bpi) + 1);
901 ++(*__puse_count);
902 return __ret;
904 else
906 // Search was unsuccessful. We Add more memory to the
907 // pool by calling _S_refill_pool().
908 _S_refill_pool();
910 // _M_Reset the _S_last_request structure to the first
911 // free block's bit map.
912 _S_last_request._M_reset(_S_mem_blocks.size() - 1);
914 // Now, mark that bit as allocated.
918 // _S_last_request holds a pointer to a valid bit map, that
919 // points to a free block in memory.
920 size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
921 __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
923 pointer __ret = reinterpret_cast<pointer>
924 (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
926 size_t* __puse_count = reinterpret_cast<size_t*>
927 (_S_mem_blocks[_S_last_request._M_where()].first)
928 - (__gnu_cxx::__detail::
929 __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
931 ++(*__puse_count);
932 return __ret;
935 /** @brief Deallocates memory that belongs to a single object of
936 * size sizeof(_Tp).
938 * @detail Complexity: O(lg(N)), but the worst case is not hit
939 * often! This is because containers usually deallocate memory
940 * close to each other and this case is handled in O(1) time by
941 * the deallocate function.
943 void
944 _M_deallocate_single_object(pointer __p) throw()
946 #if defined __GTHREADS
947 __gnu_cxx::__scoped_lock __bit_lock(_S_mut);
948 #endif
949 _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
951 typedef typename _BPVector::iterator _Iterator;
952 typedef typename _BPVector::difference_type _Difference_type;
954 _Difference_type __diff;
955 long __displacement;
957 _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
960 if (__gnu_cxx::__detail::_Inclusive_between<_Alloc_block*>
961 (__real_p) (_S_mem_blocks[_S_last_dealloc_index]))
963 _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
964 <= _S_mem_blocks.size() - 1);
966 // Initial Assumption was correct!
967 __diff = _S_last_dealloc_index;
968 __displacement = __real_p - _S_mem_blocks[__diff].first;
970 else
972 _Iterator _iter = __gnu_cxx::__detail::
973 __find_if(_S_mem_blocks.begin(),
974 _S_mem_blocks.end(),
975 __gnu_cxx::__detail::
976 _Inclusive_between<_Alloc_block*>(__real_p));
978 _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
980 __diff = _iter - _S_mem_blocks.begin();
981 __displacement = __real_p - _S_mem_blocks[__diff].first;
982 _S_last_dealloc_index = __diff;
985 // Get the position of the iterator that has been found.
986 const size_t __rotate = (__displacement
987 % size_t(__detail::bits_per_block));
988 size_t* __bitmapC =
989 reinterpret_cast<size_t*>
990 (_S_mem_blocks[__diff].first) - 1;
991 __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
993 __detail::__bit_free(__bitmapC, __rotate);
994 size_t* __puse_count = reinterpret_cast<size_t*>
995 (_S_mem_blocks[__diff].first)
996 - (__gnu_cxx::__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
998 _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
1000 --(*__puse_count);
1002 if (__builtin_expect(*__puse_count == 0, false))
1004 _S_block_size /= 2;
1006 // We can safely remove this block.
1007 // _Block_pair __bp = _S_mem_blocks[__diff];
1008 this->_M_insert(__puse_count);
1009 _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
1011 // Reset the _S_last_request variable to reflect the
1012 // erased block. We do this to protect future requests
1013 // after the last block has been removed from a particular
1014 // memory Chunk, which in turn has been returned to the
1015 // free list, and hence had been erased from the vector,
1016 // so the size of the vector gets reduced by 1.
1017 if ((_Difference_type)_S_last_request._M_where() >= __diff--)
1018 _S_last_request._M_reset(__diff);
1020 // If the Index into the vector of the region of memory
1021 // that might hold the next address that will be passed to
1022 // deallocated may have been invalidated due to the above
1023 // erase procedure being called on the vector, hence we
1024 // try to restore this invariant too.
1025 if (_S_last_dealloc_index >= _S_mem_blocks.size())
1027 _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
1028 _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
1033 public:
1034 bitmap_allocator() throw()
1037 bitmap_allocator(const bitmap_allocator&)
1040 template<typename _Tp1>
1041 bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
1044 ~bitmap_allocator() throw()
1047 pointer
1048 allocate(size_type __n)
1050 if (__builtin_expect(__n > this->max_size(), false))
1051 std::__throw_bad_alloc();
1053 if (__builtin_expect(__n == 1, true))
1054 return this->_M_allocate_single_object();
1055 else
1057 const size_type __b = __n * sizeof(value_type);
1058 return reinterpret_cast<pointer>(::operator new(__b));
1062 pointer
1063 allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1064 { return allocate(__n); }
1066 void
1067 deallocate(pointer __p, size_type __n) throw()
1069 if (__builtin_expect(__p != 0, true))
1071 if (__builtin_expect(__n == 1, true))
1072 this->_M_deallocate_single_object(__p);
1073 else
1074 ::operator delete(__p);
1078 pointer
1079 address(reference __r) const
1080 { return &__r; }
1082 const_pointer
1083 address(const_reference __r) const
1084 { return &__r; }
1086 size_type
1087 max_size() const throw()
1088 { return size_type(-1) / sizeof(value_type); }
1090 void
1091 construct(pointer __p, const_reference __data)
1092 { ::new((void *)__p) value_type(__data); }
1094 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1095 template<typename... _Args>
1096 void
1097 construct(pointer __p, _Args&&... __args)
1098 { ::new((void *)__p) _Tp(std::forward<_Args>(__args)...); }
1099 #endif
1101 void
1102 destroy(pointer __p)
1103 { __p->~value_type(); }
1106 template<typename _Tp1, typename _Tp2>
1107 bool
1108 operator==(const bitmap_allocator<_Tp1>&,
1109 const bitmap_allocator<_Tp2>&) throw()
1110 { return true; }
1112 template<typename _Tp1, typename _Tp2>
1113 bool
1114 operator!=(const bitmap_allocator<_Tp1>&,
1115 const bitmap_allocator<_Tp2>&) throw()
1116 { return false; }
1118 // Static member definitions.
1119 template<typename _Tp>
1120 typename bitmap_allocator<_Tp>::_BPVector
1121 bitmap_allocator<_Tp>::_S_mem_blocks;
1123 template<typename _Tp>
1124 size_t bitmap_allocator<_Tp>::_S_block_size =
1125 2 * size_t(__detail::bits_per_block);
1127 template<typename _Tp>
1128 typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type
1129 bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1131 template<typename _Tp>
1132 __gnu_cxx::__detail::_Bitmap_counter
1133 <typename bitmap_allocator<_Tp>::_Alloc_block*>
1134 bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1136 #if defined __GTHREADS
1137 template<typename _Tp>
1138 typename bitmap_allocator<_Tp>::__mutex_type
1139 bitmap_allocator<_Tp>::_S_mut;
1140 #endif
1142 _GLIBCXX_END_NAMESPACE
1144 #endif