Import gcc-4.4.1
[dragonfly.git] / contrib / gcc-4.4 / gcc / doc / md.texi
blobcdfe379fb930c2fd4dcb21869897872d68cfc5b5
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 @c Free Software Foundation, Inc.
4 @c This is part of the GCC manual.
5 @c For copying conditions, see the file gcc.texi.
7 @ifset INTERNALS
8 @node Machine Desc
9 @chapter Machine Descriptions
10 @cindex machine descriptions
12 A machine description has two parts: a file of instruction patterns
13 (@file{.md} file) and a C header file of macro definitions.
15 The @file{.md} file for a target machine contains a pattern for each
16 instruction that the target machine supports (or at least each instruction
17 that is worth telling the compiler about).  It may also contain comments.
18 A semicolon causes the rest of the line to be a comment, unless the semicolon
19 is inside a quoted string.
21 See the next chapter for information on the C header file.
23 @menu
24 * Overview::            How the machine description is used.
25 * Patterns::            How to write instruction patterns.
26 * Example::             An explained example of a @code{define_insn} pattern.
27 * RTL Template::        The RTL template defines what insns match a pattern.
28 * Output Template::     The output template says how to make assembler code
29                         from such an insn.
30 * Output Statement::    For more generality, write C code to output
31                         the assembler code.
32 * Predicates::          Controlling what kinds of operands can be used
33                         for an insn.
34 * Constraints::         Fine-tuning operand selection.
35 * Standard Names::      Names mark patterns to use for code generation.
36 * Pattern Ordering::    When the order of patterns makes a difference.
37 * Dependent Patterns::  Having one pattern may make you need another.
38 * Jump Patterns::       Special considerations for patterns for jump insns.
39 * Looping Patterns::    How to define patterns for special looping insns.
40 * Insn Canonicalizations::Canonicalization of Instructions
41 * Expander Definitions::Generating a sequence of several RTL insns
42                         for a standard operation.
43 * Insn Splitting::      Splitting Instructions into Multiple Instructions.
44 * Including Patterns::  Including Patterns in Machine Descriptions.
45 * Peephole Definitions::Defining machine-specific peephole optimizations.
46 * Insn Attributes::     Specifying the value of attributes for generated insns.
47 * Conditional Execution::Generating @code{define_insn} patterns for
48                          predication.
49 * Constant Definitions::Defining symbolic constants that can be used in the
50                         md file.
51 * Iterators::           Using iterators to generate patterns from a template.
52 @end menu
54 @node Overview
55 @section Overview of How the Machine Description is Used
57 There are three main conversions that happen in the compiler:
59 @enumerate
61 @item
62 The front end reads the source code and builds a parse tree.
64 @item
65 The parse tree is used to generate an RTL insn list based on named
66 instruction patterns.
68 @item
69 The insn list is matched against the RTL templates to produce assembler
70 code.
72 @end enumerate
74 For the generate pass, only the names of the insns matter, from either a
75 named @code{define_insn} or a @code{define_expand}.  The compiler will
76 choose the pattern with the right name and apply the operands according
77 to the documentation later in this chapter, without regard for the RTL
78 template or operand constraints.  Note that the names the compiler looks
79 for are hard-coded in the compiler---it will ignore unnamed patterns and
80 patterns with names it doesn't know about, but if you don't provide a
81 named pattern it needs, it will abort.
83 If a @code{define_insn} is used, the template given is inserted into the
84 insn list.  If a @code{define_expand} is used, one of three things
85 happens, based on the condition logic.  The condition logic may manually
86 create new insns for the insn list, say via @code{emit_insn()}, and
87 invoke @code{DONE}.  For certain named patterns, it may invoke @code{FAIL} to tell the
88 compiler to use an alternate way of performing that task.  If it invokes
89 neither @code{DONE} nor @code{FAIL}, the template given in the pattern
90 is inserted, as if the @code{define_expand} were a @code{define_insn}.
92 Once the insn list is generated, various optimization passes convert,
93 replace, and rearrange the insns in the insn list.  This is where the
94 @code{define_split} and @code{define_peephole} patterns get used, for
95 example.
97 Finally, the insn list's RTL is matched up with the RTL templates in the
98 @code{define_insn} patterns, and those patterns are used to emit the
99 final assembly code.  For this purpose, each named @code{define_insn}
100 acts like it's unnamed, since the names are ignored.
102 @node Patterns
103 @section Everything about Instruction Patterns
104 @cindex patterns
105 @cindex instruction patterns
107 @findex define_insn
108 Each instruction pattern contains an incomplete RTL expression, with pieces
109 to be filled in later, operand constraints that restrict how the pieces can
110 be filled in, and an output pattern or C code to generate the assembler
111 output, all wrapped up in a @code{define_insn} expression.
113 A @code{define_insn} is an RTL expression containing four or five operands:
115 @enumerate
116 @item
117 An optional name.  The presence of a name indicate that this instruction
118 pattern can perform a certain standard job for the RTL-generation
119 pass of the compiler.  This pass knows certain names and will use
120 the instruction patterns with those names, if the names are defined
121 in the machine description.
123 The absence of a name is indicated by writing an empty string
124 where the name should go.  Nameless instruction patterns are never
125 used for generating RTL code, but they may permit several simpler insns
126 to be combined later on.
128 Names that are not thus known and used in RTL-generation have no
129 effect; they are equivalent to no name at all.
131 For the purpose of debugging the compiler, you may also specify a
132 name beginning with the @samp{*} character.  Such a name is used only
133 for identifying the instruction in RTL dumps; it is entirely equivalent
134 to having a nameless pattern for all other purposes.
136 @item
137 The @dfn{RTL template} (@pxref{RTL Template}) is a vector of incomplete
138 RTL expressions which show what the instruction should look like.  It is
139 incomplete because it may contain @code{match_operand},
140 @code{match_operator}, and @code{match_dup} expressions that stand for
141 operands of the instruction.
143 If the vector has only one element, that element is the template for the
144 instruction pattern.  If the vector has multiple elements, then the
145 instruction pattern is a @code{parallel} expression containing the
146 elements described.
148 @item
149 @cindex pattern conditions
150 @cindex conditions, in patterns
151 A condition.  This is a string which contains a C expression that is
152 the final test to decide whether an insn body matches this pattern.
154 @cindex named patterns and conditions
155 For a named pattern, the condition (if present) may not depend on
156 the data in the insn being matched, but only the target-machine-type
157 flags.  The compiler needs to test these conditions during
158 initialization in order to learn exactly which named instructions are
159 available in a particular run.
161 @findex operands
162 For nameless patterns, the condition is applied only when matching an
163 individual insn, and only after the insn has matched the pattern's
164 recognition template.  The insn's operands may be found in the vector
165 @code{operands}.  For an insn where the condition has once matched, it
166 can't be used to control register allocation, for example by excluding
167 certain hard registers or hard register combinations.
169 @item
170 The @dfn{output template}: a string that says how to output matching
171 insns as assembler code.  @samp{%} in this string specifies where
172 to substitute the value of an operand.  @xref{Output Template}.
174 When simple substitution isn't general enough, you can specify a piece
175 of C code to compute the output.  @xref{Output Statement}.
177 @item
178 Optionally, a vector containing the values of attributes for insns matching
179 this pattern.  @xref{Insn Attributes}.
180 @end enumerate
182 @node Example
183 @section Example of @code{define_insn}
184 @cindex @code{define_insn} example
186 Here is an actual example of an instruction pattern, for the 68000/68020.
188 @smallexample
189 (define_insn "tstsi"
190   [(set (cc0)
191         (match_operand:SI 0 "general_operand" "rm"))]
192   ""
193   "*
195   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
196     return \"tstl %0\";
197   return \"cmpl #0,%0\";
198 @}")
199 @end smallexample
201 @noindent
202 This can also be written using braced strings:
204 @smallexample
205 (define_insn "tstsi"
206   [(set (cc0)
207         (match_operand:SI 0 "general_operand" "rm"))]
208   ""
210   if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
211     return "tstl %0";
212   return "cmpl #0,%0";
214 @end smallexample
216 This is an instruction that sets the condition codes based on the value of
217 a general operand.  It has no condition, so any insn whose RTL description
218 has the form shown may be handled according to this pattern.  The name
219 @samp{tstsi} means ``test a @code{SImode} value'' and tells the RTL generation
220 pass that, when it is necessary to test such a value, an insn to do so
221 can be constructed using this pattern.
223 The output control string is a piece of C code which chooses which
224 output template to return based on the kind of operand and the specific
225 type of CPU for which code is being generated.
227 @samp{"rm"} is an operand constraint.  Its meaning is explained below.
229 @node RTL Template
230 @section RTL Template
231 @cindex RTL insn template
232 @cindex generating insns
233 @cindex insns, generating
234 @cindex recognizing insns
235 @cindex insns, recognizing
237 The RTL template is used to define which insns match the particular pattern
238 and how to find their operands.  For named patterns, the RTL template also
239 says how to construct an insn from specified operands.
241 Construction involves substituting specified operands into a copy of the
242 template.  Matching involves determining the values that serve as the
243 operands in the insn being matched.  Both of these activities are
244 controlled by special expression types that direct matching and
245 substitution of the operands.
247 @table @code
248 @findex match_operand
249 @item (match_operand:@var{m} @var{n} @var{predicate} @var{constraint})
250 This expression is a placeholder for operand number @var{n} of
251 the insn.  When constructing an insn, operand number @var{n}
252 will be substituted at this point.  When matching an insn, whatever
253 appears at this position in the insn will be taken as operand
254 number @var{n}; but it must satisfy @var{predicate} or this instruction
255 pattern will not match at all.
257 Operand numbers must be chosen consecutively counting from zero in
258 each instruction pattern.  There may be only one @code{match_operand}
259 expression in the pattern for each operand number.  Usually operands
260 are numbered in the order of appearance in @code{match_operand}
261 expressions.  In the case of a @code{define_expand}, any operand numbers
262 used only in @code{match_dup} expressions have higher values than all
263 other operand numbers.
265 @var{predicate} is a string that is the name of a function that
266 accepts two arguments, an expression and a machine mode.
267 @xref{Predicates}.  During matching, the function will be called with
268 the putative operand as the expression and @var{m} as the mode
269 argument (if @var{m} is not specified, @code{VOIDmode} will be used,
270 which normally causes @var{predicate} to accept any mode).  If it
271 returns zero, this instruction pattern fails to match.
272 @var{predicate} may be an empty string; then it means no test is to be
273 done on the operand, so anything which occurs in this position is
274 valid.
276 Most of the time, @var{predicate} will reject modes other than @var{m}---but
277 not always.  For example, the predicate @code{address_operand} uses
278 @var{m} as the mode of memory ref that the address should be valid for.
279 Many predicates accept @code{const_int} nodes even though their mode is
280 @code{VOIDmode}.
282 @var{constraint} controls reloading and the choice of the best register
283 class to use for a value, as explained later (@pxref{Constraints}).
284 If the constraint would be an empty string, it can be omitted.
286 People are often unclear on the difference between the constraint and the
287 predicate.  The predicate helps decide whether a given insn matches the
288 pattern.  The constraint plays no role in this decision; instead, it
289 controls various decisions in the case of an insn which does match.
291 @findex match_scratch
292 @item (match_scratch:@var{m} @var{n} @var{constraint})
293 This expression is also a placeholder for operand number @var{n}
294 and indicates that operand must be a @code{scratch} or @code{reg}
295 expression.
297 When matching patterns, this is equivalent to
299 @smallexample
300 (match_operand:@var{m} @var{n} "scratch_operand" @var{pred})
301 @end smallexample
303 but, when generating RTL, it produces a (@code{scratch}:@var{m})
304 expression.
306 If the last few expressions in a @code{parallel} are @code{clobber}
307 expressions whose operands are either a hard register or
308 @code{match_scratch}, the combiner can add or delete them when
309 necessary.  @xref{Side Effects}.
311 @findex match_dup
312 @item (match_dup @var{n})
313 This expression is also a placeholder for operand number @var{n}.
314 It is used when the operand needs to appear more than once in the
315 insn.
317 In construction, @code{match_dup} acts just like @code{match_operand}:
318 the operand is substituted into the insn being constructed.  But in
319 matching, @code{match_dup} behaves differently.  It assumes that operand
320 number @var{n} has already been determined by a @code{match_operand}
321 appearing earlier in the recognition template, and it matches only an
322 identical-looking expression.
324 Note that @code{match_dup} should not be used to tell the compiler that
325 a particular register is being used for two operands (example:
326 @code{add} that adds one register to another; the second register is
327 both an input operand and the output operand).  Use a matching
328 constraint (@pxref{Simple Constraints}) for those.  @code{match_dup} is for the cases where one
329 operand is used in two places in the template, such as an instruction
330 that computes both a quotient and a remainder, where the opcode takes
331 two input operands but the RTL template has to refer to each of those
332 twice; once for the quotient pattern and once for the remainder pattern.
334 @findex match_operator
335 @item (match_operator:@var{m} @var{n} @var{predicate} [@var{operands}@dots{}])
336 This pattern is a kind of placeholder for a variable RTL expression
337 code.
339 When constructing an insn, it stands for an RTL expression whose
340 expression code is taken from that of operand @var{n}, and whose
341 operands are constructed from the patterns @var{operands}.
343 When matching an expression, it matches an expression if the function
344 @var{predicate} returns nonzero on that expression @emph{and} the
345 patterns @var{operands} match the operands of the expression.
347 Suppose that the function @code{commutative_operator} is defined as
348 follows, to match any expression whose operator is one of the
349 commutative arithmetic operators of RTL and whose mode is @var{mode}:
351 @smallexample
353 commutative_integer_operator (x, mode)
354      rtx x;
355      enum machine_mode mode;
357   enum rtx_code code = GET_CODE (x);
358   if (GET_MODE (x) != mode)
359     return 0;
360   return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
361           || code == EQ || code == NE);
363 @end smallexample
365 Then the following pattern will match any RTL expression consisting
366 of a commutative operator applied to two general operands:
368 @smallexample
369 (match_operator:SI 3 "commutative_operator"
370   [(match_operand:SI 1 "general_operand" "g")
371    (match_operand:SI 2 "general_operand" "g")])
372 @end smallexample
374 Here the vector @code{[@var{operands}@dots{}]} contains two patterns
375 because the expressions to be matched all contain two operands.
377 When this pattern does match, the two operands of the commutative
378 operator are recorded as operands 1 and 2 of the insn.  (This is done
379 by the two instances of @code{match_operand}.)  Operand 3 of the insn
380 will be the entire commutative expression: use @code{GET_CODE
381 (operands[3])} to see which commutative operator was used.
383 The machine mode @var{m} of @code{match_operator} works like that of
384 @code{match_operand}: it is passed as the second argument to the
385 predicate function, and that function is solely responsible for
386 deciding whether the expression to be matched ``has'' that mode.
388 When constructing an insn, argument 3 of the gen-function will specify
389 the operation (i.e.@: the expression code) for the expression to be
390 made.  It should be an RTL expression, whose expression code is copied
391 into a new expression whose operands are arguments 1 and 2 of the
392 gen-function.  The subexpressions of argument 3 are not used;
393 only its expression code matters.
395 When @code{match_operator} is used in a pattern for matching an insn,
396 it usually best if the operand number of the @code{match_operator}
397 is higher than that of the actual operands of the insn.  This improves
398 register allocation because the register allocator often looks at
399 operands 1 and 2 of insns to see if it can do register tying.
401 There is no way to specify constraints in @code{match_operator}.  The
402 operand of the insn which corresponds to the @code{match_operator}
403 never has any constraints because it is never reloaded as a whole.
404 However, if parts of its @var{operands} are matched by
405 @code{match_operand} patterns, those parts may have constraints of
406 their own.
408 @findex match_op_dup
409 @item (match_op_dup:@var{m} @var{n}[@var{operands}@dots{}])
410 Like @code{match_dup}, except that it applies to operators instead of
411 operands.  When constructing an insn, operand number @var{n} will be
412 substituted at this point.  But in matching, @code{match_op_dup} behaves
413 differently.  It assumes that operand number @var{n} has already been
414 determined by a @code{match_operator} appearing earlier in the
415 recognition template, and it matches only an identical-looking
416 expression.
418 @findex match_parallel
419 @item (match_parallel @var{n} @var{predicate} [@var{subpat}@dots{}])
420 This pattern is a placeholder for an insn that consists of a
421 @code{parallel} expression with a variable number of elements.  This
422 expression should only appear at the top level of an insn pattern.
424 When constructing an insn, operand number @var{n} will be substituted at
425 this point.  When matching an insn, it matches if the body of the insn
426 is a @code{parallel} expression with at least as many elements as the
427 vector of @var{subpat} expressions in the @code{match_parallel}, if each
428 @var{subpat} matches the corresponding element of the @code{parallel},
429 @emph{and} the function @var{predicate} returns nonzero on the
430 @code{parallel} that is the body of the insn.  It is the responsibility
431 of the predicate to validate elements of the @code{parallel} beyond
432 those listed in the @code{match_parallel}.
434 A typical use of @code{match_parallel} is to match load and store
435 multiple expressions, which can contain a variable number of elements
436 in a @code{parallel}.  For example,
438 @smallexample
439 (define_insn ""
440   [(match_parallel 0 "load_multiple_operation"
441      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
442            (match_operand:SI 2 "memory_operand" "m"))
443       (use (reg:SI 179))
444       (clobber (reg:SI 179))])]
445   ""
446   "loadm 0,0,%1,%2")
447 @end smallexample
449 This example comes from @file{a29k.md}.  The function
450 @code{load_multiple_operation} is defined in @file{a29k.c} and checks
451 that subsequent elements in the @code{parallel} are the same as the
452 @code{set} in the pattern, except that they are referencing subsequent
453 registers and memory locations.
455 An insn that matches this pattern might look like:
457 @smallexample
458 (parallel
459  [(set (reg:SI 20) (mem:SI (reg:SI 100)))
460   (use (reg:SI 179))
461   (clobber (reg:SI 179))
462   (set (reg:SI 21)
463        (mem:SI (plus:SI (reg:SI 100)
464                         (const_int 4))))
465   (set (reg:SI 22)
466        (mem:SI (plus:SI (reg:SI 100)
467                         (const_int 8))))])
468 @end smallexample
470 @findex match_par_dup
471 @item (match_par_dup @var{n} [@var{subpat}@dots{}])
472 Like @code{match_op_dup}, but for @code{match_parallel} instead of
473 @code{match_operator}.
475 @end table
477 @node Output Template
478 @section Output Templates and Operand Substitution
479 @cindex output templates
480 @cindex operand substitution
482 @cindex @samp{%} in template
483 @cindex percent sign
484 The @dfn{output template} is a string which specifies how to output the
485 assembler code for an instruction pattern.  Most of the template is a
486 fixed string which is output literally.  The character @samp{%} is used
487 to specify where to substitute an operand; it can also be used to
488 identify places where different variants of the assembler require
489 different syntax.
491 In the simplest case, a @samp{%} followed by a digit @var{n} says to output
492 operand @var{n} at that point in the string.
494 @samp{%} followed by a letter and a digit says to output an operand in an
495 alternate fashion.  Four letters have standard, built-in meanings described
496 below.  The machine description macro @code{PRINT_OPERAND} can define
497 additional letters with nonstandard meanings.
499 @samp{%c@var{digit}} can be used to substitute an operand that is a
500 constant value without the syntax that normally indicates an immediate
501 operand.
503 @samp{%n@var{digit}} is like @samp{%c@var{digit}} except that the value of
504 the constant is negated before printing.
506 @samp{%a@var{digit}} can be used to substitute an operand as if it were a
507 memory reference, with the actual operand treated as the address.  This may
508 be useful when outputting a ``load address'' instruction, because often the
509 assembler syntax for such an instruction requires you to write the operand
510 as if it were a memory reference.
512 @samp{%l@var{digit}} is used to substitute a @code{label_ref} into a jump
513 instruction.
515 @samp{%=} outputs a number which is unique to each instruction in the
516 entire compilation.  This is useful for making local labels to be
517 referred to more than once in a single template that generates multiple
518 assembler instructions.
520 @samp{%} followed by a punctuation character specifies a substitution that
521 does not use an operand.  Only one case is standard: @samp{%%} outputs a
522 @samp{%} into the assembler code.  Other nonstandard cases can be
523 defined in the @code{PRINT_OPERAND} macro.  You must also define
524 which punctuation characters are valid with the
525 @code{PRINT_OPERAND_PUNCT_VALID_P} macro.
527 @cindex \
528 @cindex backslash
529 The template may generate multiple assembler instructions.  Write the text
530 for the instructions, with @samp{\;} between them.
532 @cindex matching operands
533 When the RTL contains two operands which are required by constraint to match
534 each other, the output template must refer only to the lower-numbered operand.
535 Matching operands are not always identical, and the rest of the compiler
536 arranges to put the proper RTL expression for printing into the lower-numbered
537 operand.
539 One use of nonstandard letters or punctuation following @samp{%} is to
540 distinguish between different assembler languages for the same machine; for
541 example, Motorola syntax versus MIT syntax for the 68000.  Motorola syntax
542 requires periods in most opcode names, while MIT syntax does not.  For
543 example, the opcode @samp{movel} in MIT syntax is @samp{move.l} in Motorola
544 syntax.  The same file of patterns is used for both kinds of output syntax,
545 but the character sequence @samp{%.} is used in each place where Motorola
546 syntax wants a period.  The @code{PRINT_OPERAND} macro for Motorola syntax
547 defines the sequence to output a period; the macro for MIT syntax defines
548 it to do nothing.
550 @cindex @code{#} in template
551 As a special case, a template consisting of the single character @code{#}
552 instructs the compiler to first split the insn, and then output the
553 resulting instructions separately.  This helps eliminate redundancy in the
554 output templates.   If you have a @code{define_insn} that needs to emit
555 multiple assembler instructions, and there is an matching @code{define_split}
556 already defined, then you can simply use @code{#} as the output template
557 instead of writing an output template that emits the multiple assembler
558 instructions.
560 If the macro @code{ASSEMBLER_DIALECT} is defined, you can use construct
561 of the form @samp{@{option0|option1|option2@}} in the templates.  These
562 describe multiple variants of assembler language syntax.
563 @xref{Instruction Output}.
565 @node Output Statement
566 @section C Statements for Assembler Output
567 @cindex output statements
568 @cindex C statements for assembler output
569 @cindex generating assembler output
571 Often a single fixed template string cannot produce correct and efficient
572 assembler code for all the cases that are recognized by a single
573 instruction pattern.  For example, the opcodes may depend on the kinds of
574 operands; or some unfortunate combinations of operands may require extra
575 machine instructions.
577 If the output control string starts with a @samp{@@}, then it is actually
578 a series of templates, each on a separate line.  (Blank lines and
579 leading spaces and tabs are ignored.)  The templates correspond to the
580 pattern's constraint alternatives (@pxref{Multi-Alternative}).  For example,
581 if a target machine has a two-address add instruction @samp{addr} to add
582 into a register and another @samp{addm} to add a register to memory, you
583 might write this pattern:
585 @smallexample
586 (define_insn "addsi3"
587   [(set (match_operand:SI 0 "general_operand" "=r,m")
588         (plus:SI (match_operand:SI 1 "general_operand" "0,0")
589                  (match_operand:SI 2 "general_operand" "g,r")))]
590   ""
591   "@@
592    addr %2,%0
593    addm %2,%0")
594 @end smallexample
596 @cindex @code{*} in template
597 @cindex asterisk in template
598 If the output control string starts with a @samp{*}, then it is not an
599 output template but rather a piece of C program that should compute a
600 template.  It should execute a @code{return} statement to return the
601 template-string you want.  Most such templates use C string literals, which
602 require doublequote characters to delimit them.  To include these
603 doublequote characters in the string, prefix each one with @samp{\}.
605 If the output control string is written as a brace block instead of a
606 double-quoted string, it is automatically assumed to be C code.  In that
607 case, it is not necessary to put in a leading asterisk, or to escape the
608 doublequotes surrounding C string literals.
610 The operands may be found in the array @code{operands}, whose C data type
611 is @code{rtx []}.
613 It is very common to select different ways of generating assembler code
614 based on whether an immediate operand is within a certain range.  Be
615 careful when doing this, because the result of @code{INTVAL} is an
616 integer on the host machine.  If the host machine has more bits in an
617 @code{int} than the target machine has in the mode in which the constant
618 will be used, then some of the bits you get from @code{INTVAL} will be
619 superfluous.  For proper results, you must carefully disregard the
620 values of those bits.
622 @findex output_asm_insn
623 It is possible to output an assembler instruction and then go on to output
624 or compute more of them, using the subroutine @code{output_asm_insn}.  This
625 receives two arguments: a template-string and a vector of operands.  The
626 vector may be @code{operands}, or it may be another array of @code{rtx}
627 that you declare locally and initialize yourself.
629 @findex which_alternative
630 When an insn pattern has multiple alternatives in its constraints, often
631 the appearance of the assembler code is determined mostly by which alternative
632 was matched.  When this is so, the C code can test the variable
633 @code{which_alternative}, which is the ordinal number of the alternative
634 that was actually satisfied (0 for the first, 1 for the second alternative,
635 etc.).
637 For example, suppose there are two opcodes for storing zero, @samp{clrreg}
638 for registers and @samp{clrmem} for memory locations.  Here is how
639 a pattern could use @code{which_alternative} to choose between them:
641 @smallexample
642 (define_insn ""
643   [(set (match_operand:SI 0 "general_operand" "=r,m")
644         (const_int 0))]
645   ""
646   @{
647   return (which_alternative == 0
648           ? "clrreg %0" : "clrmem %0");
649   @})
650 @end smallexample
652 The example above, where the assembler code to generate was
653 @emph{solely} determined by the alternative, could also have been specified
654 as follows, having the output control string start with a @samp{@@}:
656 @smallexample
657 @group
658 (define_insn ""
659   [(set (match_operand:SI 0 "general_operand" "=r,m")
660         (const_int 0))]
661   ""
662   "@@
663    clrreg %0
664    clrmem %0")
665 @end group
666 @end smallexample
668 @node Predicates
669 @section Predicates
670 @cindex predicates
671 @cindex operand predicates
672 @cindex operator predicates
674 A predicate determines whether a @code{match_operand} or
675 @code{match_operator} expression matches, and therefore whether the
676 surrounding instruction pattern will be used for that combination of
677 operands.  GCC has a number of machine-independent predicates, and you
678 can define machine-specific predicates as needed.  By convention,
679 predicates used with @code{match_operand} have names that end in
680 @samp{_operand}, and those used with @code{match_operator} have names
681 that end in @samp{_operator}.
683 All predicates are Boolean functions (in the mathematical sense) of
684 two arguments: the RTL expression that is being considered at that
685 position in the instruction pattern, and the machine mode that the
686 @code{match_operand} or @code{match_operator} specifies.  In this
687 section, the first argument is called @var{op} and the second argument
688 @var{mode}.  Predicates can be called from C as ordinary two-argument
689 functions; this can be useful in output templates or other
690 machine-specific code.
692 Operand predicates can allow operands that are not actually acceptable
693 to the hardware, as long as the constraints give reload the ability to
694 fix them up (@pxref{Constraints}).  However, GCC will usually generate
695 better code if the predicates specify the requirements of the machine
696 instructions as closely as possible.  Reload cannot fix up operands
697 that must be constants (``immediate operands''); you must use a
698 predicate that allows only constants, or else enforce the requirement
699 in the extra condition.
701 @cindex predicates and machine modes
702 @cindex normal predicates
703 @cindex special predicates
704 Most predicates handle their @var{mode} argument in a uniform manner.
705 If @var{mode} is @code{VOIDmode} (unspecified), then @var{op} can have
706 any mode.  If @var{mode} is anything else, then @var{op} must have the
707 same mode, unless @var{op} is a @code{CONST_INT} or integer
708 @code{CONST_DOUBLE}.  These RTL expressions always have
709 @code{VOIDmode}, so it would be counterproductive to check that their
710 mode matches.  Instead, predicates that accept @code{CONST_INT} and/or
711 integer @code{CONST_DOUBLE} check that the value stored in the
712 constant will fit in the requested mode.
714 Predicates with this behavior are called @dfn{normal}.
715 @command{genrecog} can optimize the instruction recognizer based on
716 knowledge of how normal predicates treat modes.  It can also diagnose
717 certain kinds of common errors in the use of normal predicates; for
718 instance, it is almost always an error to use a normal predicate
719 without specifying a mode.
721 Predicates that do something different with their @var{mode} argument
722 are called @dfn{special}.  The generic predicates
723 @code{address_operand} and @code{pmode_register_operand} are special
724 predicates.  @command{genrecog} does not do any optimizations or
725 diagnosis when special predicates are used.
727 @menu
728 * Machine-Independent Predicates::  Predicates available to all back ends.
729 * Defining Predicates::             How to write machine-specific predicate
730                                     functions.
731 @end menu
733 @node Machine-Independent Predicates
734 @subsection Machine-Independent Predicates
735 @cindex machine-independent predicates
736 @cindex generic predicates
738 These are the generic predicates available to all back ends.  They are
739 defined in @file{recog.c}.  The first category of predicates allow
740 only constant, or @dfn{immediate}, operands.
742 @defun immediate_operand
743 This predicate allows any sort of constant that fits in @var{mode}.
744 It is an appropriate choice for instructions that take operands that
745 must be constant.
746 @end defun
748 @defun const_int_operand
749 This predicate allows any @code{CONST_INT} expression that fits in
750 @var{mode}.  It is an appropriate choice for an immediate operand that
751 does not allow a symbol or label.
752 @end defun
754 @defun const_double_operand
755 This predicate accepts any @code{CONST_DOUBLE} expression that has
756 exactly @var{mode}.  If @var{mode} is @code{VOIDmode}, it will also
757 accept @code{CONST_INT}.  It is intended for immediate floating point
758 constants.
759 @end defun
761 @noindent
762 The second category of predicates allow only some kind of machine
763 register.
765 @defun register_operand
766 This predicate allows any @code{REG} or @code{SUBREG} expression that
767 is valid for @var{mode}.  It is often suitable for arithmetic
768 instruction operands on a RISC machine.
769 @end defun
771 @defun pmode_register_operand
772 This is a slight variant on @code{register_operand} which works around
773 a limitation in the machine-description reader.
775 @smallexample
776 (match_operand @var{n} "pmode_register_operand" @var{constraint})
777 @end smallexample
779 @noindent
780 means exactly what
782 @smallexample
783 (match_operand:P @var{n} "register_operand" @var{constraint})
784 @end smallexample
786 @noindent
787 would mean, if the machine-description reader accepted @samp{:P}
788 mode suffixes.  Unfortunately, it cannot, because @code{Pmode} is an
789 alias for some other mode, and might vary with machine-specific
790 options.  @xref{Misc}.
791 @end defun
793 @defun scratch_operand
794 This predicate allows hard registers and @code{SCRATCH} expressions,
795 but not pseudo-registers.  It is used internally by @code{match_scratch};
796 it should not be used directly.
797 @end defun
799 @noindent
800 The third category of predicates allow only some kind of memory reference.
802 @defun memory_operand
803 This predicate allows any valid reference to a quantity of mode
804 @var{mode} in memory, as determined by the weak form of
805 @code{GO_IF_LEGITIMATE_ADDRESS} (@pxref{Addressing Modes}).
806 @end defun
808 @defun address_operand
809 This predicate is a little unusual; it allows any operand that is a
810 valid expression for the @emph{address} of a quantity of mode
811 @var{mode}, again determined by the weak form of
812 @code{GO_IF_LEGITIMATE_ADDRESS}.  To first order, if
813 @samp{@w{(mem:@var{mode} (@var{exp}))}} is acceptable to
814 @code{memory_operand}, then @var{exp} is acceptable to
815 @code{address_operand}.  Note that @var{exp} does not necessarily have
816 the mode @var{mode}.
817 @end defun
819 @defun indirect_operand
820 This is a stricter form of @code{memory_operand} which allows only
821 memory references with a @code{general_operand} as the address
822 expression.  New uses of this predicate are discouraged, because
823 @code{general_operand} is very permissive, so it's hard to tell what
824 an @code{indirect_operand} does or does not allow.  If a target has
825 different requirements for memory operands for different instructions,
826 it is better to define target-specific predicates which enforce the
827 hardware's requirements explicitly.
828 @end defun
830 @defun push_operand
831 This predicate allows a memory reference suitable for pushing a value
832 onto the stack.  This will be a @code{MEM} which refers to
833 @code{stack_pointer_rtx}, with a side-effect in its address expression
834 (@pxref{Incdec}); which one is determined by the
835 @code{STACK_PUSH_CODE} macro (@pxref{Frame Layout}).
836 @end defun
838 @defun pop_operand
839 This predicate allows a memory reference suitable for popping a value
840 off the stack.  Again, this will be a @code{MEM} referring to
841 @code{stack_pointer_rtx}, with a side-effect in its address
842 expression.  However, this time @code{STACK_POP_CODE} is expected.
843 @end defun
845 @noindent
846 The fourth category of predicates allow some combination of the above
847 operands.
849 @defun nonmemory_operand
850 This predicate allows any immediate or register operand valid for @var{mode}.
851 @end defun
853 @defun nonimmediate_operand
854 This predicate allows any register or memory operand valid for @var{mode}.
855 @end defun
857 @defun general_operand
858 This predicate allows any immediate, register, or memory operand
859 valid for @var{mode}.
860 @end defun
862 @noindent
863 Finally, there is one generic operator predicate.
865 @defun comparison_operator
866 This predicate matches any expression which performs an arithmetic
867 comparison in @var{mode}; that is, @code{COMPARISON_P} is true for the
868 expression code.
869 @end defun
871 @node Defining Predicates
872 @subsection Defining Machine-Specific Predicates
873 @cindex defining predicates
874 @findex define_predicate
875 @findex define_special_predicate
877 Many machines have requirements for their operands that cannot be
878 expressed precisely using the generic predicates.  You can define
879 additional predicates using @code{define_predicate} and
880 @code{define_special_predicate} expressions.  These expressions have
881 three operands:
883 @itemize @bullet
884 @item
885 The name of the predicate, as it will be referred to in
886 @code{match_operand} or @code{match_operator} expressions.
888 @item
889 An RTL expression which evaluates to true if the predicate allows the
890 operand @var{op}, false if it does not.  This expression can only use
891 the following RTL codes:
893 @table @code
894 @item MATCH_OPERAND
895 When written inside a predicate expression, a @code{MATCH_OPERAND}
896 expression evaluates to true if the predicate it names would allow
897 @var{op}.  The operand number and constraint are ignored.  Due to
898 limitations in @command{genrecog}, you can only refer to generic
899 predicates and predicates that have already been defined.
901 @item MATCH_CODE
902 This expression evaluates to true if @var{op} or a specified
903 subexpression of @var{op} has one of a given list of RTX codes.
905 The first operand of this expression is a string constant containing a
906 comma-separated list of RTX code names (in lower case).  These are the
907 codes for which the @code{MATCH_CODE} will be true.
909 The second operand is a string constant which indicates what
910 subexpression of @var{op} to examine.  If it is absent or the empty
911 string, @var{op} itself is examined.  Otherwise, the string constant
912 must be a sequence of digits and/or lowercase letters.  Each character
913 indicates a subexpression to extract from the current expression; for
914 the first character this is @var{op}, for the second and subsequent
915 characters it is the result of the previous character.  A digit
916 @var{n} extracts @samp{@w{XEXP (@var{e}, @var{n})}}; a letter @var{l}
917 extracts @samp{@w{XVECEXP (@var{e}, 0, @var{n})}} where @var{n} is the
918 alphabetic ordinal of @var{l} (0 for `a', 1 for 'b', and so on).  The
919 @code{MATCH_CODE} then examines the RTX code of the subexpression
920 extracted by the complete string.  It is not possible to extract
921 components of an @code{rtvec} that is not at position 0 within its RTX
922 object.
924 @item MATCH_TEST
925 This expression has one operand, a string constant containing a C
926 expression.  The predicate's arguments, @var{op} and @var{mode}, are
927 available with those names in the C expression.  The @code{MATCH_TEST}
928 evaluates to true if the C expression evaluates to a nonzero value.
929 @code{MATCH_TEST} expressions must not have side effects.
931 @item  AND
932 @itemx IOR
933 @itemx NOT
934 @itemx IF_THEN_ELSE
935 The basic @samp{MATCH_} expressions can be combined using these
936 logical operators, which have the semantics of the C operators
937 @samp{&&}, @samp{||}, @samp{!}, and @samp{@w{? :}} respectively.  As
938 in Common Lisp, you may give an @code{AND} or @code{IOR} expression an
939 arbitrary number of arguments; this has exactly the same effect as
940 writing a chain of two-argument @code{AND} or @code{IOR} expressions.
941 @end table
943 @item
944 An optional block of C code, which should execute
945 @samp{@w{return true}} if the predicate is found to match and
946 @samp{@w{return false}} if it does not.  It must not have any side
947 effects.  The predicate arguments, @var{op} and @var{mode}, are
948 available with those names.
950 If a code block is present in a predicate definition, then the RTL
951 expression must evaluate to true @emph{and} the code block must
952 execute @samp{@w{return true}} for the predicate to allow the operand.
953 The RTL expression is evaluated first; do not re-check anything in the
954 code block that was checked in the RTL expression.
955 @end itemize
957 The program @command{genrecog} scans @code{define_predicate} and
958 @code{define_special_predicate} expressions to determine which RTX
959 codes are possibly allowed.  You should always make this explicit in
960 the RTL predicate expression, using @code{MATCH_OPERAND} and
961 @code{MATCH_CODE}.
963 Here is an example of a simple predicate definition, from the IA64
964 machine description:
966 @smallexample
967 @group
968 ;; @r{True if @var{op} is a @code{SYMBOL_REF} which refers to the sdata section.}
969 (define_predicate "small_addr_symbolic_operand"
970   (and (match_code "symbol_ref")
971        (match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
972 @end group
973 @end smallexample
975 @noindent
976 And here is another, showing the use of the C block.
978 @smallexample
979 @group
980 ;; @r{True if @var{op} is a register operand that is (or could be) a GR reg.}
981 (define_predicate "gr_register_operand"
982   (match_operand 0 "register_operand")
984   unsigned int regno;
985   if (GET_CODE (op) == SUBREG)
986     op = SUBREG_REG (op);
988   regno = REGNO (op);
989   return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
991 @end group
992 @end smallexample
994 Predicates written with @code{define_predicate} automatically include
995 a test that @var{mode} is @code{VOIDmode}, or @var{op} has the same
996 mode as @var{mode}, or @var{op} is a @code{CONST_INT} or
997 @code{CONST_DOUBLE}.  They do @emph{not} check specifically for
998 integer @code{CONST_DOUBLE}, nor do they test that the value of either
999 kind of constant fits in the requested mode.  This is because
1000 target-specific predicates that take constants usually have to do more
1001 stringent value checks anyway.  If you need the exact same treatment
1002 of @code{CONST_INT} or @code{CONST_DOUBLE} that the generic predicates
1003 provide, use a @code{MATCH_OPERAND} subexpression to call
1004 @code{const_int_operand}, @code{const_double_operand}, or
1005 @code{immediate_operand}.
1007 Predicates written with @code{define_special_predicate} do not get any
1008 automatic mode checks, and are treated as having special mode handling
1009 by @command{genrecog}.
1011 The program @command{genpreds} is responsible for generating code to
1012 test predicates.  It also writes a header file containing function
1013 declarations for all machine-specific predicates.  It is not necessary
1014 to declare these predicates in @file{@var{cpu}-protos.h}.
1015 @end ifset
1017 @c Most of this node appears by itself (in a different place) even
1018 @c when the INTERNALS flag is clear.  Passages that require the internals
1019 @c manual's context are conditionalized to appear only in the internals manual.
1020 @ifset INTERNALS
1021 @node Constraints
1022 @section Operand Constraints
1023 @cindex operand constraints
1024 @cindex constraints
1026 Each @code{match_operand} in an instruction pattern can specify
1027 constraints for the operands allowed.  The constraints allow you to
1028 fine-tune matching within the set of operands allowed by the
1029 predicate.
1031 @end ifset
1032 @ifclear INTERNALS
1033 @node Constraints
1034 @section Constraints for @code{asm} Operands
1035 @cindex operand constraints, @code{asm}
1036 @cindex constraints, @code{asm}
1037 @cindex @code{asm} constraints
1039 Here are specific details on what constraint letters you can use with
1040 @code{asm} operands.
1041 @end ifclear
1042 Constraints can say whether
1043 an operand may be in a register, and which kinds of register; whether the
1044 operand can be a memory reference, and which kinds of address; whether the
1045 operand may be an immediate constant, and which possible values it may
1046 have.  Constraints can also require two operands to match.
1048 @ifset INTERNALS
1049 @menu
1050 * Simple Constraints::  Basic use of constraints.
1051 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1052 * Class Preferences::   Constraints guide which hard register to put things in.
1053 * Modifiers::           More precise control over effects of constraints.
1054 * Disable Insn Alternatives:: Disable insn alternatives using the @code{enabled} attribute.
1055 * Machine Constraints:: Existing constraints for some particular machines.
1056 * Define Constraints::  How to define machine-specific constraints.
1057 * C Constraint Interface:: How to test constraints from C code.
1058 @end menu
1059 @end ifset
1061 @ifclear INTERNALS
1062 @menu
1063 * Simple Constraints::  Basic use of constraints.
1064 * Multi-Alternative::   When an insn has two alternative constraint-patterns.
1065 * Modifiers::           More precise control over effects of constraints.
1066 * Machine Constraints:: Special constraints for some particular machines.
1067 @end menu
1068 @end ifclear
1070 @node Simple Constraints
1071 @subsection Simple Constraints
1072 @cindex simple constraints
1074 The simplest kind of constraint is a string full of letters, each of
1075 which describes one kind of operand that is permitted.  Here are
1076 the letters that are allowed:
1078 @table @asis
1079 @item whitespace
1080 Whitespace characters are ignored and can be inserted at any position
1081 except the first.  This enables each alternative for different operands to
1082 be visually aligned in the machine description even if they have different
1083 number of constraints and modifiers.
1085 @cindex @samp{m} in constraint
1086 @cindex memory references in constraints
1087 @item @samp{m}
1088 A memory operand is allowed, with any kind of address that the machine
1089 supports in general.
1090 Note that the letter used for the general memory constraint can be
1091 re-defined by a back end using the @code{TARGET_MEM_CONSTRAINT} macro.
1093 @cindex offsettable address
1094 @cindex @samp{o} in constraint
1095 @item @samp{o}
1096 A memory operand is allowed, but only if the address is
1097 @dfn{offsettable}.  This means that adding a small integer (actually,
1098 the width in bytes of the operand, as determined by its machine mode)
1099 may be added to the address and the result is also a valid memory
1100 address.
1102 @cindex autoincrement/decrement addressing
1103 For example, an address which is constant is offsettable; so is an
1104 address that is the sum of a register and a constant (as long as a
1105 slightly larger constant is also within the range of address-offsets
1106 supported by the machine); but an autoincrement or autodecrement
1107 address is not offsettable.  More complicated indirect/indexed
1108 addresses may or may not be offsettable depending on the other
1109 addressing modes that the machine supports.
1111 Note that in an output operand which can be matched by another
1112 operand, the constraint letter @samp{o} is valid only when accompanied
1113 by both @samp{<} (if the target machine has predecrement addressing)
1114 and @samp{>} (if the target machine has preincrement addressing).
1116 @cindex @samp{V} in constraint
1117 @item @samp{V}
1118 A memory operand that is not offsettable.  In other words, anything that
1119 would fit the @samp{m} constraint but not the @samp{o} constraint.
1121 @cindex @samp{<} in constraint
1122 @item @samp{<}
1123 A memory operand with autodecrement addressing (either predecrement or
1124 postdecrement) is allowed.
1126 @cindex @samp{>} in constraint
1127 @item @samp{>}
1128 A memory operand with autoincrement addressing (either preincrement or
1129 postincrement) is allowed.
1131 @cindex @samp{r} in constraint
1132 @cindex registers in constraints
1133 @item @samp{r}
1134 A register operand is allowed provided that it is in a general
1135 register.
1137 @cindex constants in constraints
1138 @cindex @samp{i} in constraint
1139 @item @samp{i}
1140 An immediate integer operand (one with constant value) is allowed.
1141 This includes symbolic constants whose values will be known only at
1142 assembly time or later.
1144 @cindex @samp{n} in constraint
1145 @item @samp{n}
1146 An immediate integer operand with a known numeric value is allowed.
1147 Many systems cannot support assembly-time constants for operands less
1148 than a word wide.  Constraints for these operands should use @samp{n}
1149 rather than @samp{i}.
1151 @cindex @samp{I} in constraint
1152 @item @samp{I}, @samp{J}, @samp{K}, @dots{} @samp{P}
1153 Other letters in the range @samp{I} through @samp{P} may be defined in
1154 a machine-dependent fashion to permit immediate integer operands with
1155 explicit integer values in specified ranges.  For example, on the
1156 68000, @samp{I} is defined to stand for the range of values 1 to 8.
1157 This is the range permitted as a shift count in the shift
1158 instructions.
1160 @cindex @samp{E} in constraint
1161 @item @samp{E}
1162 An immediate floating operand (expression code @code{const_double}) is
1163 allowed, but only if the target floating point format is the same as
1164 that of the host machine (on which the compiler is running).
1166 @cindex @samp{F} in constraint
1167 @item @samp{F}
1168 An immediate floating operand (expression code @code{const_double} or
1169 @code{const_vector}) is allowed.
1171 @cindex @samp{G} in constraint
1172 @cindex @samp{H} in constraint
1173 @item @samp{G}, @samp{H}
1174 @samp{G} and @samp{H} may be defined in a machine-dependent fashion to
1175 permit immediate floating operands in particular ranges of values.
1177 @cindex @samp{s} in constraint
1178 @item @samp{s}
1179 An immediate integer operand whose value is not an explicit integer is
1180 allowed.
1182 This might appear strange; if an insn allows a constant operand with a
1183 value not known at compile time, it certainly must allow any known
1184 value.  So why use @samp{s} instead of @samp{i}?  Sometimes it allows
1185 better code to be generated.
1187 For example, on the 68000 in a fullword instruction it is possible to
1188 use an immediate operand; but if the immediate value is between @minus{}128
1189 and 127, better code results from loading the value into a register and
1190 using the register.  This is because the load into the register can be
1191 done with a @samp{moveq} instruction.  We arrange for this to happen
1192 by defining the letter @samp{K} to mean ``any integer outside the
1193 range @minus{}128 to 127'', and then specifying @samp{Ks} in the operand
1194 constraints.
1196 @cindex @samp{g} in constraint
1197 @item @samp{g}
1198 Any register, memory or immediate integer operand is allowed, except for
1199 registers that are not general registers.
1201 @cindex @samp{X} in constraint
1202 @item @samp{X}
1203 @ifset INTERNALS
1204 Any operand whatsoever is allowed, even if it does not satisfy
1205 @code{general_operand}.  This is normally used in the constraint of
1206 a @code{match_scratch} when certain alternatives will not actually
1207 require a scratch register.
1208 @end ifset
1209 @ifclear INTERNALS
1210 Any operand whatsoever is allowed.
1211 @end ifclear
1213 @cindex @samp{0} in constraint
1214 @cindex digits in constraint
1215 @item @samp{0}, @samp{1}, @samp{2}, @dots{} @samp{9}
1216 An operand that matches the specified operand number is allowed.  If a
1217 digit is used together with letters within the same alternative, the
1218 digit should come last.
1220 This number is allowed to be more than a single digit.  If multiple
1221 digits are encountered consecutively, they are interpreted as a single
1222 decimal integer.  There is scant chance for ambiguity, since to-date
1223 it has never been desirable that @samp{10} be interpreted as matching
1224 either operand 1 @emph{or} operand 0.  Should this be desired, one
1225 can use multiple alternatives instead.
1227 @cindex matching constraint
1228 @cindex constraint, matching
1229 This is called a @dfn{matching constraint} and what it really means is
1230 that the assembler has only a single operand that fills two roles
1231 @ifset INTERNALS
1232 considered separate in the RTL insn.  For example, an add insn has two
1233 input operands and one output operand in the RTL, but on most CISC
1234 @end ifset
1235 @ifclear INTERNALS
1236 which @code{asm} distinguishes.  For example, an add instruction uses
1237 two input operands and an output operand, but on most CISC
1238 @end ifclear
1239 machines an add instruction really has only two operands, one of them an
1240 input-output operand:
1242 @smallexample
1243 addl #35,r12
1244 @end smallexample
1246 Matching constraints are used in these circumstances.
1247 More precisely, the two operands that match must include one input-only
1248 operand and one output-only operand.  Moreover, the digit must be a
1249 smaller number than the number of the operand that uses it in the
1250 constraint.
1252 @ifset INTERNALS
1253 For operands to match in a particular case usually means that they
1254 are identical-looking RTL expressions.  But in a few special cases
1255 specific kinds of dissimilarity are allowed.  For example, @code{*x}
1256 as an input operand will match @code{*x++} as an output operand.
1257 For proper results in such cases, the output template should always
1258 use the output-operand's number when printing the operand.
1259 @end ifset
1261 @cindex load address instruction
1262 @cindex push address instruction
1263 @cindex address constraints
1264 @cindex @samp{p} in constraint
1265 @item @samp{p}
1266 An operand that is a valid memory address is allowed.  This is
1267 for ``load address'' and ``push address'' instructions.
1269 @findex address_operand
1270 @samp{p} in the constraint must be accompanied by @code{address_operand}
1271 as the predicate in the @code{match_operand}.  This predicate interprets
1272 the mode specified in the @code{match_operand} as the mode of the memory
1273 reference for which the address would be valid.
1275 @cindex other register constraints
1276 @cindex extensible constraints
1277 @item @var{other-letters}
1278 Other letters can be defined in machine-dependent fashion to stand for
1279 particular classes of registers or other arbitrary operand types.
1280 @samp{d}, @samp{a} and @samp{f} are defined on the 68000/68020 to stand
1281 for data, address and floating point registers.
1282 @end table
1284 @ifset INTERNALS
1285 In order to have valid assembler code, each operand must satisfy
1286 its constraint.  But a failure to do so does not prevent the pattern
1287 from applying to an insn.  Instead, it directs the compiler to modify
1288 the code so that the constraint will be satisfied.  Usually this is
1289 done by copying an operand into a register.
1291 Contrast, therefore, the two instruction patterns that follow:
1293 @smallexample
1294 (define_insn ""
1295   [(set (match_operand:SI 0 "general_operand" "=r")
1296         (plus:SI (match_dup 0)
1297                  (match_operand:SI 1 "general_operand" "r")))]
1298   ""
1299   "@dots{}")
1300 @end smallexample
1302 @noindent
1303 which has two operands, one of which must appear in two places, and
1305 @smallexample
1306 (define_insn ""
1307   [(set (match_operand:SI 0 "general_operand" "=r")
1308         (plus:SI (match_operand:SI 1 "general_operand" "0")
1309                  (match_operand:SI 2 "general_operand" "r")))]
1310   ""
1311   "@dots{}")
1312 @end smallexample
1314 @noindent
1315 which has three operands, two of which are required by a constraint to be
1316 identical.  If we are considering an insn of the form
1318 @smallexample
1319 (insn @var{n} @var{prev} @var{next}
1320   (set (reg:SI 3)
1321        (plus:SI (reg:SI 6) (reg:SI 109)))
1322   @dots{})
1323 @end smallexample
1325 @noindent
1326 the first pattern would not apply at all, because this insn does not
1327 contain two identical subexpressions in the right place.  The pattern would
1328 say, ``That does not look like an add instruction; try other patterns''.
1329 The second pattern would say, ``Yes, that's an add instruction, but there
1330 is something wrong with it''.  It would direct the reload pass of the
1331 compiler to generate additional insns to make the constraint true.  The
1332 results might look like this:
1334 @smallexample
1335 (insn @var{n2} @var{prev} @var{n}
1336   (set (reg:SI 3) (reg:SI 6))
1337   @dots{})
1339 (insn @var{n} @var{n2} @var{next}
1340   (set (reg:SI 3)
1341        (plus:SI (reg:SI 3) (reg:SI 109)))
1342   @dots{})
1343 @end smallexample
1345 It is up to you to make sure that each operand, in each pattern, has
1346 constraints that can handle any RTL expression that could be present for
1347 that operand.  (When multiple alternatives are in use, each pattern must,
1348 for each possible combination of operand expressions, have at least one
1349 alternative which can handle that combination of operands.)  The
1350 constraints don't need to @emph{allow} any possible operand---when this is
1351 the case, they do not constrain---but they must at least point the way to
1352 reloading any possible operand so that it will fit.
1354 @itemize @bullet
1355 @item
1356 If the constraint accepts whatever operands the predicate permits,
1357 there is no problem: reloading is never necessary for this operand.
1359 For example, an operand whose constraints permit everything except
1360 registers is safe provided its predicate rejects registers.
1362 An operand whose predicate accepts only constant values is safe
1363 provided its constraints include the letter @samp{i}.  If any possible
1364 constant value is accepted, then nothing less than @samp{i} will do;
1365 if the predicate is more selective, then the constraints may also be
1366 more selective.
1368 @item
1369 Any operand expression can be reloaded by copying it into a register.
1370 So if an operand's constraints allow some kind of register, it is
1371 certain to be safe.  It need not permit all classes of registers; the
1372 compiler knows how to copy a register into another register of the
1373 proper class in order to make an instruction valid.
1375 @cindex nonoffsettable memory reference
1376 @cindex memory reference, nonoffsettable
1377 @item
1378 A nonoffsettable memory reference can be reloaded by copying the
1379 address into a register.  So if the constraint uses the letter
1380 @samp{o}, all memory references are taken care of.
1382 @item
1383 A constant operand can be reloaded by allocating space in memory to
1384 hold it as preinitialized data.  Then the memory reference can be used
1385 in place of the constant.  So if the constraint uses the letters
1386 @samp{o} or @samp{m}, constant operands are not a problem.
1388 @item
1389 If the constraint permits a constant and a pseudo register used in an insn
1390 was not allocated to a hard register and is equivalent to a constant,
1391 the register will be replaced with the constant.  If the predicate does
1392 not permit a constant and the insn is re-recognized for some reason, the
1393 compiler will crash.  Thus the predicate must always recognize any
1394 objects allowed by the constraint.
1395 @end itemize
1397 If the operand's predicate can recognize registers, but the constraint does
1398 not permit them, it can make the compiler crash.  When this operand happens
1399 to be a register, the reload pass will be stymied, because it does not know
1400 how to copy a register temporarily into memory.
1402 If the predicate accepts a unary operator, the constraint applies to the
1403 operand.  For example, the MIPS processor at ISA level 3 supports an
1404 instruction which adds two registers in @code{SImode} to produce a
1405 @code{DImode} result, but only if the registers are correctly sign
1406 extended.  This predicate for the input operands accepts a
1407 @code{sign_extend} of an @code{SImode} register.  Write the constraint
1408 to indicate the type of register that is required for the operand of the
1409 @code{sign_extend}.
1410 @end ifset
1412 @node Multi-Alternative
1413 @subsection Multiple Alternative Constraints
1414 @cindex multiple alternative constraints
1416 Sometimes a single instruction has multiple alternative sets of possible
1417 operands.  For example, on the 68000, a logical-or instruction can combine
1418 register or an immediate value into memory, or it can combine any kind of
1419 operand into a register; but it cannot combine one memory location into
1420 another.
1422 These constraints are represented as multiple alternatives.  An alternative
1423 can be described by a series of letters for each operand.  The overall
1424 constraint for an operand is made from the letters for this operand
1425 from the first alternative, a comma, the letters for this operand from
1426 the second alternative, a comma, and so on until the last alternative.
1427 @ifset INTERNALS
1428 Here is how it is done for fullword logical-or on the 68000:
1430 @smallexample
1431 (define_insn "iorsi3"
1432   [(set (match_operand:SI 0 "general_operand" "=m,d")
1433         (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
1434                 (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
1435   @dots{})
1436 @end smallexample
1438 The first alternative has @samp{m} (memory) for operand 0, @samp{0} for
1439 operand 1 (meaning it must match operand 0), and @samp{dKs} for operand
1440 2.  The second alternative has @samp{d} (data register) for operand 0,
1441 @samp{0} for operand 1, and @samp{dmKs} for operand 2.  The @samp{=} and
1442 @samp{%} in the constraints apply to all the alternatives; their
1443 meaning is explained in the next section (@pxref{Class Preferences}).
1444 @end ifset
1446 @c FIXME Is this ? and ! stuff of use in asm()?  If not, hide unless INTERNAL
1447 If all the operands fit any one alternative, the instruction is valid.
1448 Otherwise, for each alternative, the compiler counts how many instructions
1449 must be added to copy the operands so that that alternative applies.
1450 The alternative requiring the least copying is chosen.  If two alternatives
1451 need the same amount of copying, the one that comes first is chosen.
1452 These choices can be altered with the @samp{?} and @samp{!} characters:
1454 @table @code
1455 @cindex @samp{?} in constraint
1456 @cindex question mark
1457 @item ?
1458 Disparage slightly the alternative that the @samp{?} appears in,
1459 as a choice when no alternative applies exactly.  The compiler regards
1460 this alternative as one unit more costly for each @samp{?} that appears
1461 in it.
1463 @cindex @samp{!} in constraint
1464 @cindex exclamation point
1465 @item !
1466 Disparage severely the alternative that the @samp{!} appears in.
1467 This alternative can still be used if it fits without reloading,
1468 but if reloading is needed, some other alternative will be used.
1469 @end table
1471 @ifset INTERNALS
1472 When an insn pattern has multiple alternatives in its constraints, often
1473 the appearance of the assembler code is determined mostly by which
1474 alternative was matched.  When this is so, the C code for writing the
1475 assembler code can use the variable @code{which_alternative}, which is
1476 the ordinal number of the alternative that was actually satisfied (0 for
1477 the first, 1 for the second alternative, etc.).  @xref{Output Statement}.
1478 @end ifset
1480 @ifset INTERNALS
1481 @node Class Preferences
1482 @subsection Register Class Preferences
1483 @cindex class preference constraints
1484 @cindex register class preference constraints
1486 @cindex voting between constraint alternatives
1487 The operand constraints have another function: they enable the compiler
1488 to decide which kind of hardware register a pseudo register is best
1489 allocated to.  The compiler examines the constraints that apply to the
1490 insns that use the pseudo register, looking for the machine-dependent
1491 letters such as @samp{d} and @samp{a} that specify classes of registers.
1492 The pseudo register is put in whichever class gets the most ``votes''.
1493 The constraint letters @samp{g} and @samp{r} also vote: they vote in
1494 favor of a general register.  The machine description says which registers
1495 are considered general.
1497 Of course, on some machines all registers are equivalent, and no register
1498 classes are defined.  Then none of this complexity is relevant.
1499 @end ifset
1501 @node Modifiers
1502 @subsection Constraint Modifier Characters
1503 @cindex modifiers in constraints
1504 @cindex constraint modifier characters
1506 @c prevent bad page break with this line
1507 Here are constraint modifier characters.
1509 @table @samp
1510 @cindex @samp{=} in constraint
1511 @item =
1512 Means that this operand is write-only for this instruction: the previous
1513 value is discarded and replaced by output data.
1515 @cindex @samp{+} in constraint
1516 @item +
1517 Means that this operand is both read and written by the instruction.
1519 When the compiler fixes up the operands to satisfy the constraints,
1520 it needs to know which operands are inputs to the instruction and
1521 which are outputs from it.  @samp{=} identifies an output; @samp{+}
1522 identifies an operand that is both input and output; all other operands
1523 are assumed to be input only.
1525 If you specify @samp{=} or @samp{+} in a constraint, you put it in the
1526 first character of the constraint string.
1528 @cindex @samp{&} in constraint
1529 @cindex earlyclobber operand
1530 @item &
1531 Means (in a particular alternative) that this operand is an
1532 @dfn{earlyclobber} operand, which is modified before the instruction is
1533 finished using the input operands.  Therefore, this operand may not lie
1534 in a register that is used as an input operand or as part of any memory
1535 address.
1537 @samp{&} applies only to the alternative in which it is written.  In
1538 constraints with multiple alternatives, sometimes one alternative
1539 requires @samp{&} while others do not.  See, for example, the
1540 @samp{movdf} insn of the 68000.
1542 An input operand can be tied to an earlyclobber operand if its only
1543 use as an input occurs before the early result is written.  Adding
1544 alternatives of this form often allows GCC to produce better code
1545 when only some of the inputs can be affected by the earlyclobber.
1546 See, for example, the @samp{mulsi3} insn of the ARM@.
1548 @samp{&} does not obviate the need to write @samp{=}.
1550 @cindex @samp{%} in constraint
1551 @item %
1552 Declares the instruction to be commutative for this operand and the
1553 following operand.  This means that the compiler may interchange the
1554 two operands if that is the cheapest way to make all operands fit the
1555 constraints.
1556 @ifset INTERNALS
1557 This is often used in patterns for addition instructions
1558 that really have only two operands: the result must go in one of the
1559 arguments.  Here for example, is how the 68000 halfword-add
1560 instruction is defined:
1562 @smallexample
1563 (define_insn "addhi3"
1564   [(set (match_operand:HI 0 "general_operand" "=m,r")
1565      (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
1566               (match_operand:HI 2 "general_operand" "di,g")))]
1567   @dots{})
1568 @end smallexample
1569 @end ifset
1570 GCC can only handle one commutative pair in an asm; if you use more,
1571 the compiler may fail.  Note that you need not use the modifier if
1572 the two alternatives are strictly identical; this would only waste
1573 time in the reload pass.  The modifier is not operational after
1574 register allocation, so the result of @code{define_peephole2}
1575 and @code{define_split}s performed after reload cannot rely on
1576 @samp{%} to make the intended insn match.
1578 @cindex @samp{#} in constraint
1579 @item #
1580 Says that all following characters, up to the next comma, are to be
1581 ignored as a constraint.  They are significant only for choosing
1582 register preferences.
1584 @cindex @samp{*} in constraint
1585 @item *
1586 Says that the following character should be ignored when choosing
1587 register preferences.  @samp{*} has no effect on the meaning of the
1588 constraint as a constraint, and no effect on reloading.
1590 @ifset INTERNALS
1591 Here is an example: the 68000 has an instruction to sign-extend a
1592 halfword in a data register, and can also sign-extend a value by
1593 copying it into an address register.  While either kind of register is
1594 acceptable, the constraints on an address-register destination are
1595 less strict, so it is best if register allocation makes an address
1596 register its goal.  Therefore, @samp{*} is used so that the @samp{d}
1597 constraint letter (for data register) is ignored when computing
1598 register preferences.
1600 @smallexample
1601 (define_insn "extendhisi2"
1602   [(set (match_operand:SI 0 "general_operand" "=*d,a")
1603         (sign_extend:SI
1604          (match_operand:HI 1 "general_operand" "0,g")))]
1605   @dots{})
1606 @end smallexample
1607 @end ifset
1608 @end table
1610 @node Machine Constraints
1611 @subsection Constraints for Particular Machines
1612 @cindex machine specific constraints
1613 @cindex constraints, machine specific
1615 Whenever possible, you should use the general-purpose constraint letters
1616 in @code{asm} arguments, since they will convey meaning more readily to
1617 people reading your code.  Failing that, use the constraint letters
1618 that usually have very similar meanings across architectures.  The most
1619 commonly used constraints are @samp{m} and @samp{r} (for memory and
1620 general-purpose registers respectively; @pxref{Simple Constraints}), and
1621 @samp{I}, usually the letter indicating the most common
1622 immediate-constant format.
1624 Each architecture defines additional constraints.  These constraints
1625 are used by the compiler itself for instruction generation, as well as
1626 for @code{asm} statements; therefore, some of the constraints are not
1627 particularly useful for @code{asm}.  Here is a summary of some of the
1628 machine-dependent constraints available on some particular machines;
1629 it includes both constraints that are useful for @code{asm} and
1630 constraints that aren't.  The compiler source file mentioned in the
1631 table heading for each architecture is the definitive reference for
1632 the meanings of that architecture's constraints.
1634 @table @emph
1635 @item ARM family---@file{config/arm/arm.h}
1636 @table @code
1637 @item f
1638 Floating-point register
1640 @item w
1641 VFP floating-point register
1643 @item F
1644 One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
1645 or 10.0
1647 @item G
1648 Floating-point constant that would satisfy the constraint @samp{F} if it
1649 were negated
1651 @item I
1652 Integer that is valid as an immediate operand in a data processing
1653 instruction.  That is, an integer in the range 0 to 255 rotated by a
1654 multiple of 2
1656 @item J
1657 Integer in the range @minus{}4095 to 4095
1659 @item K
1660 Integer that satisfies constraint @samp{I} when inverted (ones complement)
1662 @item L
1663 Integer that satisfies constraint @samp{I} when negated (twos complement)
1665 @item M
1666 Integer in the range 0 to 32
1668 @item Q
1669 A memory reference where the exact address is in a single register
1670 (`@samp{m}' is preferable for @code{asm} statements)
1672 @item R
1673 An item in the constant pool
1675 @item S
1676 A symbol in the text segment of the current file
1678 @item Uv
1679 A memory reference suitable for VFP load/store insns (reg+constant offset)
1681 @item Uy
1682 A memory reference suitable for iWMMXt load/store instructions.
1684 @item Uq
1685 A memory reference suitable for the ARMv4 ldrsb instruction.
1686 @end table
1688 @item AVR family---@file{config/avr/constraints.md}
1689 @table @code
1690 @item l
1691 Registers from r0 to r15
1693 @item a
1694 Registers from r16 to r23
1696 @item d
1697 Registers from r16 to r31
1699 @item w
1700 Registers from r24 to r31.  These registers can be used in @samp{adiw} command
1702 @item e
1703 Pointer register (r26--r31)
1705 @item b
1706 Base pointer register (r28--r31)
1708 @item q
1709 Stack pointer register (SPH:SPL)
1711 @item t
1712 Temporary register r0
1714 @item x
1715 Register pair X (r27:r26)
1717 @item y
1718 Register pair Y (r29:r28)
1720 @item z
1721 Register pair Z (r31:r30)
1723 @item I
1724 Constant greater than @minus{}1, less than 64
1726 @item J
1727 Constant greater than @minus{}64, less than 1
1729 @item K
1730 Constant integer 2
1732 @item L
1733 Constant integer 0
1735 @item M
1736 Constant that fits in 8 bits
1738 @item N
1739 Constant integer @minus{}1
1741 @item O
1742 Constant integer 8, 16, or 24
1744 @item P
1745 Constant integer 1
1747 @item G
1748 A floating point constant 0.0
1750 @item R
1751 Integer constant in the range -6 @dots{} 5.
1753 @item Q
1754 A memory address based on Y or Z pointer with displacement.
1755 @end table
1757 @item CRX Architecture---@file{config/crx/crx.h}
1758 @table @code
1760 @item b
1761 Registers from r0 to r14 (registers without stack pointer)
1763 @item l
1764 Register r16 (64-bit accumulator lo register)
1766 @item h
1767 Register r17 (64-bit accumulator hi register)
1769 @item k
1770 Register pair r16-r17. (64-bit accumulator lo-hi pair)
1772 @item I
1773 Constant that fits in 3 bits
1775 @item J
1776 Constant that fits in 4 bits
1778 @item K
1779 Constant that fits in 5 bits
1781 @item L
1782 Constant that is one of -1, 4, -4, 7, 8, 12, 16, 20, 32, 48
1784 @item G
1785 Floating point constant that is legal for store immediate
1786 @end table
1788 @item Hewlett-Packard PA-RISC---@file{config/pa/pa.h}
1789 @table @code
1790 @item a
1791 General register 1
1793 @item f
1794 Floating point register
1796 @item q
1797 Shift amount register
1799 @item x
1800 Floating point register (deprecated)
1802 @item y
1803 Upper floating point register (32-bit), floating point register (64-bit)
1805 @item Z
1806 Any register
1808 @item I
1809 Signed 11-bit integer constant
1811 @item J
1812 Signed 14-bit integer constant
1814 @item K
1815 Integer constant that can be deposited with a @code{zdepi} instruction
1817 @item L
1818 Signed 5-bit integer constant
1820 @item M
1821 Integer constant 0
1823 @item N
1824 Integer constant that can be loaded with a @code{ldil} instruction
1826 @item O
1827 Integer constant whose value plus one is a power of 2
1829 @item P
1830 Integer constant that can be used for @code{and} operations in @code{depi}
1831 and @code{extru} instructions
1833 @item S
1834 Integer constant 31
1836 @item U
1837 Integer constant 63
1839 @item G
1840 Floating-point constant 0.0
1842 @item A
1843 A @code{lo_sum} data-linkage-table memory operand
1845 @item Q
1846 A memory operand that can be used as the destination operand of an
1847 integer store instruction
1849 @item R
1850 A scaled or unscaled indexed memory operand
1852 @item T
1853 A memory operand for floating-point loads and stores
1855 @item W
1856 A register indirect memory operand
1857 @end table
1859 @item picoChip family---@file{picochip.h}
1860 @table @code
1861 @item k
1862 Stack register.
1864 @item f
1865 Pointer register.  A register which can be used to access memory without
1866 supplying an offset.  Any other register can be used to access memory,
1867 but will need a constant offset.  In the case of the offset being zero,
1868 it is more efficient to use a pointer register, since this reduces code
1869 size.
1871 @item t
1872 A twin register.  A register which may be paired with an adjacent
1873 register to create a 32-bit register.
1875 @item a
1876 Any absolute memory address (e.g., symbolic constant, symbolic
1877 constant + offset).
1879 @item I
1880 4-bit signed integer.
1882 @item J
1883 4-bit unsigned integer.
1885 @item K
1886 8-bit signed integer.
1888 @item M
1889 Any constant whose absolute value is no greater than 4-bits.
1891 @item N
1892 10-bit signed integer
1894 @item O
1895 16-bit signed integer.
1897 @end table
1899 @item PowerPC and IBM RS6000---@file{config/rs6000/rs6000.h}
1900 @table @code
1901 @item b
1902 Address base register
1904 @item f
1905 Floating point register
1907 @item v
1908 Vector register
1910 @item h
1911 @samp{MQ}, @samp{CTR}, or @samp{LINK} register
1913 @item q
1914 @samp{MQ} register
1916 @item c
1917 @samp{CTR} register
1919 @item l
1920 @samp{LINK} register
1922 @item x
1923 @samp{CR} register (condition register) number 0
1925 @item y
1926 @samp{CR} register (condition register)
1928 @item z
1929 @samp{FPMEM} stack memory for FPR-GPR transfers
1931 @item I
1932 Signed 16-bit constant
1934 @item J
1935 Unsigned 16-bit constant shifted left 16 bits (use @samp{L} instead for
1936 @code{SImode} constants)
1938 @item K
1939 Unsigned 16-bit constant
1941 @item L
1942 Signed 16-bit constant shifted left 16 bits
1944 @item M
1945 Constant larger than 31
1947 @item N
1948 Exact power of 2
1950 @item O
1951 Zero
1953 @item P
1954 Constant whose negation is a signed 16-bit constant
1956 @item G
1957 Floating point constant that can be loaded into a register with one
1958 instruction per word
1960 @item H
1961 Integer/Floating point constant that can be loaded into a register using
1962 three instructions
1964 @item Q
1965 Memory operand that is an offset from a register (@samp{m} is preferable
1966 for @code{asm} statements)
1968 @item Z
1969 Memory operand that is an indexed or indirect from a register (@samp{m} is
1970 preferable for @code{asm} statements)
1972 @item R
1973 AIX TOC entry
1975 @item a
1976 Address operand that is an indexed or indirect from a register (@samp{p} is
1977 preferable for @code{asm} statements)
1979 @item S
1980 Constant suitable as a 64-bit mask operand
1982 @item T
1983 Constant suitable as a 32-bit mask operand
1985 @item U
1986 System V Release 4 small data area reference
1988 @item t
1989 AND masks that can be performed by two rldic@{l, r@} instructions
1991 @item W
1992 Vector constant that does not require memory
1994 @end table
1996 @item Intel 386---@file{config/i386/constraints.md}
1997 @table @code
1998 @item R
1999 Legacy register---the eight integer registers available on all
2000 i386 processors (@code{a}, @code{b}, @code{c}, @code{d},
2001 @code{si}, @code{di}, @code{bp}, @code{sp}).
2003 @item q
2004 Any register accessible as @code{@var{r}l}.  In 32-bit mode, @code{a},
2005 @code{b}, @code{c}, and @code{d}; in 64-bit mode, any integer register.
2007 @item Q
2008 Any register accessible as @code{@var{r}h}: @code{a}, @code{b},
2009 @code{c}, and @code{d}.
2011 @ifset INTERNALS
2012 @item l
2013 Any register that can be used as the index in a base+index memory
2014 access: that is, any general register except the stack pointer.
2015 @end ifset
2017 @item a
2018 The @code{a} register.
2020 @item b
2021 The @code{b} register.
2023 @item c
2024 The @code{c} register.
2026 @item d
2027 The @code{d} register.
2029 @item S
2030 The @code{si} register.
2032 @item D
2033 The @code{di} register.
2035 @item A
2036 The @code{a} and @code{d} registers, as a pair (for instructions that
2037 return half the result in one and half in the other).
2039 @item f
2040 Any 80387 floating-point (stack) register.
2042 @item t
2043 Top of 80387 floating-point stack (@code{%st(0)}).
2045 @item u
2046 Second from top of 80387 floating-point stack (@code{%st(1)}).
2048 @item y
2049 Any MMX register.
2051 @item x
2052 Any SSE register.
2054 @item Yz
2055 First SSE register (@code{%xmm0}).
2057 @ifset INTERNALS
2058 @item Y2
2059 Any SSE register, when SSE2 is enabled.
2061 @item Yi
2062 Any SSE register, when SSE2 and inter-unit moves are enabled.
2064 @item Ym
2065 Any MMX register, when inter-unit moves are enabled.
2066 @end ifset
2068 @item I
2069 Integer constant in the range 0 @dots{} 31, for 32-bit shifts.
2071 @item J
2072 Integer constant in the range 0 @dots{} 63, for 64-bit shifts.
2074 @item K
2075 Signed 8-bit integer constant.
2077 @item L
2078 @code{0xFF} or @code{0xFFFF}, for andsi as a zero-extending move.
2080 @item M
2081 0, 1, 2, or 3 (shifts for the @code{lea} instruction).
2083 @item N
2084 Unsigned 8-bit integer constant (for @code{in} and @code{out} 
2085 instructions).
2087 @ifset INTERNALS
2088 @item O
2089 Integer constant in the range 0 @dots{} 127, for 128-bit shifts.
2090 @end ifset
2092 @item G
2093 Standard 80387 floating point constant.
2095 @item C
2096 Standard SSE floating point constant.
2098 @item e
2099 32-bit signed integer constant, or a symbolic reference known
2100 to fit that range (for immediate operands in sign-extending x86-64
2101 instructions).
2103 @item Z
2104 32-bit unsigned integer constant, or a symbolic reference known
2105 to fit that range (for immediate operands in zero-extending x86-64
2106 instructions).
2108 @end table
2110 @item Intel IA-64---@file{config/ia64/ia64.h}
2111 @table @code
2112 @item a
2113 General register @code{r0} to @code{r3} for @code{addl} instruction
2115 @item b
2116 Branch register
2118 @item c
2119 Predicate register (@samp{c} as in ``conditional'')
2121 @item d
2122 Application register residing in M-unit
2124 @item e
2125 Application register residing in I-unit
2127 @item f
2128 Floating-point register
2130 @item m
2131 Memory operand.
2132 Remember that @samp{m} allows postincrement and postdecrement which
2133 require printing with @samp{%Pn} on IA-64.
2134 Use @samp{S} to disallow postincrement and postdecrement.
2136 @item G
2137 Floating-point constant 0.0 or 1.0
2139 @item I
2140 14-bit signed integer constant
2142 @item J
2143 22-bit signed integer constant
2145 @item K
2146 8-bit signed integer constant for logical instructions
2148 @item L
2149 8-bit adjusted signed integer constant for compare pseudo-ops
2151 @item M
2152 6-bit unsigned integer constant for shift counts
2154 @item N
2155 9-bit signed integer constant for load and store postincrements
2157 @item O
2158 The constant zero
2160 @item P
2161 0 or @minus{}1 for @code{dep} instruction
2163 @item Q
2164 Non-volatile memory for floating-point loads and stores
2166 @item R
2167 Integer constant in the range 1 to 4 for @code{shladd} instruction
2169 @item S
2170 Memory operand except postincrement and postdecrement
2171 @end table
2173 @item FRV---@file{config/frv/frv.h}
2174 @table @code
2175 @item a
2176 Register in the class @code{ACC_REGS} (@code{acc0} to @code{acc7}).
2178 @item b
2179 Register in the class @code{EVEN_ACC_REGS} (@code{acc0} to @code{acc7}).
2181 @item c
2182 Register in the class @code{CC_REGS} (@code{fcc0} to @code{fcc3} and
2183 @code{icc0} to @code{icc3}).
2185 @item d
2186 Register in the class @code{GPR_REGS} (@code{gr0} to @code{gr63}).
2188 @item e
2189 Register in the class @code{EVEN_REGS} (@code{gr0} to @code{gr63}).
2190 Odd registers are excluded not in the class but through the use of a machine
2191 mode larger than 4 bytes.
2193 @item f
2194 Register in the class @code{FPR_REGS} (@code{fr0} to @code{fr63}).
2196 @item h
2197 Register in the class @code{FEVEN_REGS} (@code{fr0} to @code{fr63}).
2198 Odd registers are excluded not in the class but through the use of a machine
2199 mode larger than 4 bytes.
2201 @item l
2202 Register in the class @code{LR_REG} (the @code{lr} register).
2204 @item q
2205 Register in the class @code{QUAD_REGS} (@code{gr2} to @code{gr63}).
2206 Register numbers not divisible by 4 are excluded not in the class but through
2207 the use of a machine mode larger than 8 bytes.
2209 @item t
2210 Register in the class @code{ICC_REGS} (@code{icc0} to @code{icc3}).
2212 @item u
2213 Register in the class @code{FCC_REGS} (@code{fcc0} to @code{fcc3}).
2215 @item v
2216 Register in the class @code{ICR_REGS} (@code{cc4} to @code{cc7}).
2218 @item w
2219 Register in the class @code{FCR_REGS} (@code{cc0} to @code{cc3}).
2221 @item x
2222 Register in the class @code{QUAD_FPR_REGS} (@code{fr0} to @code{fr63}).
2223 Register numbers not divisible by 4 are excluded not in the class but through
2224 the use of a machine mode larger than 8 bytes.
2226 @item z
2227 Register in the class @code{SPR_REGS} (@code{lcr} and @code{lr}).
2229 @item A
2230 Register in the class @code{QUAD_ACC_REGS} (@code{acc0} to @code{acc7}).
2232 @item B
2233 Register in the class @code{ACCG_REGS} (@code{accg0} to @code{accg7}).
2235 @item C
2236 Register in the class @code{CR_REGS} (@code{cc0} to @code{cc7}).
2238 @item G
2239 Floating point constant zero
2241 @item I
2242 6-bit signed integer constant
2244 @item J
2245 10-bit signed integer constant
2247 @item L
2248 16-bit signed integer constant
2250 @item M
2251 16-bit unsigned integer constant
2253 @item N
2254 12-bit signed integer constant that is negative---i.e.@: in the
2255 range of @minus{}2048 to @minus{}1
2257 @item O
2258 Constant zero
2260 @item P
2261 12-bit signed integer constant that is greater than zero---i.e.@: in the
2262 range of 1 to 2047.
2264 @end table
2266 @item Blackfin family---@file{config/bfin/constraints.md}
2267 @table @code
2268 @item a
2269 P register
2271 @item d
2272 D register
2274 @item z
2275 A call clobbered P register.
2277 @item q@var{n}
2278 A single register.  If @var{n} is in the range 0 to 7, the corresponding D
2279 register.  If it is @code{A}, then the register P0.
2281 @item D
2282 Even-numbered D register
2284 @item W
2285 Odd-numbered D register
2287 @item e
2288 Accumulator register.
2290 @item A
2291 Even-numbered accumulator register.
2293 @item B
2294 Odd-numbered accumulator register.
2296 @item b
2297 I register
2299 @item v
2300 B register
2302 @item f
2303 M register
2305 @item c
2306 Registers used for circular buffering, i.e. I, B, or L registers.
2308 @item C
2309 The CC register.
2311 @item t
2312 LT0 or LT1.
2314 @item k
2315 LC0 or LC1.
2317 @item u
2318 LB0 or LB1.
2320 @item x
2321 Any D, P, B, M, I or L register.
2323 @item y
2324 Additional registers typically used only in prologues and epilogues: RETS,
2325 RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.
2327 @item w
2328 Any register except accumulators or CC.
2330 @item Ksh
2331 Signed 16 bit integer (in the range -32768 to 32767)
2333 @item Kuh
2334 Unsigned 16 bit integer (in the range 0 to 65535)
2336 @item Ks7
2337 Signed 7 bit integer (in the range -64 to 63)
2339 @item Ku7
2340 Unsigned 7 bit integer (in the range 0 to 127)
2342 @item Ku5
2343 Unsigned 5 bit integer (in the range 0 to 31)
2345 @item Ks4
2346 Signed 4 bit integer (in the range -8 to 7)
2348 @item Ks3
2349 Signed 3 bit integer (in the range -3 to 4)
2351 @item Ku3
2352 Unsigned 3 bit integer (in the range 0 to 7)
2354 @item P@var{n}
2355 Constant @var{n}, where @var{n} is a single-digit constant in the range 0 to 4.
2357 @item PA
2358 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2359 use with either accumulator.
2361 @item PB
2362 An integer equal to one of the MACFLAG_XXX constants that is suitable for
2363 use only with accumulator A1.
2365 @item M1
2366 Constant 255.
2368 @item M2
2369 Constant 65535.
2371 @item J
2372 An integer constant with exactly a single bit set.
2374 @item L
2375 An integer constant with all bits set except exactly one.
2377 @item H
2379 @item Q
2380 Any SYMBOL_REF.
2381 @end table
2383 @item M32C---@file{config/m32c/m32c.c}
2384 @table @code
2385 @item Rsp
2386 @itemx Rfb
2387 @itemx Rsb
2388 @samp{$sp}, @samp{$fb}, @samp{$sb}.
2390 @item Rcr
2391 Any control register, when they're 16 bits wide (nothing if control
2392 registers are 24 bits wide)
2394 @item Rcl
2395 Any control register, when they're 24 bits wide.
2397 @item R0w
2398 @itemx R1w
2399 @itemx R2w
2400 @itemx R3w
2401 $r0, $r1, $r2, $r3.
2403 @item R02
2404 $r0 or $r2, or $r2r0 for 32 bit values.
2406 @item R13
2407 $r1 or $r3, or $r3r1 for 32 bit values.
2409 @item Rdi
2410 A register that can hold a 64 bit value.
2412 @item Rhl
2413 $r0 or $r1 (registers with addressable high/low bytes)
2415 @item R23
2416 $r2 or $r3
2418 @item Raa
2419 Address registers
2421 @item Raw
2422 Address registers when they're 16 bits wide.
2424 @item Ral
2425 Address registers when they're 24 bits wide.
2427 @item Rqi
2428 Registers that can hold QI values.
2430 @item Rad
2431 Registers that can be used with displacements ($a0, $a1, $sb).
2433 @item Rsi
2434 Registers that can hold 32 bit values.
2436 @item Rhi
2437 Registers that can hold 16 bit values.
2439 @item Rhc
2440 Registers chat can hold 16 bit values, including all control
2441 registers.
2443 @item Rra
2444 $r0 through R1, plus $a0 and $a1.
2446 @item Rfl
2447 The flags register.
2449 @item Rmm
2450 The memory-based pseudo-registers $mem0 through $mem15.
2452 @item Rpi
2453 Registers that can hold pointers (16 bit registers for r8c, m16c; 24
2454 bit registers for m32cm, m32c).
2456 @item Rpa
2457 Matches multiple registers in a PARALLEL to form a larger register.
2458 Used to match function return values.
2460 @item Is3
2461 -8 @dots{} 7
2463 @item IS1
2464 -128 @dots{} 127
2466 @item IS2
2467 -32768 @dots{} 32767
2469 @item IU2
2470 0 @dots{} 65535
2472 @item In4
2473 -8 @dots{} -1 or 1 @dots{} 8
2475 @item In5
2476 -16 @dots{} -1 or 1 @dots{} 16
2478 @item In6
2479 -32 @dots{} -1 or 1 @dots{} 32
2481 @item IM2
2482 -65536 @dots{} -1
2484 @item Ilb
2485 An 8 bit value with exactly one bit set.
2487 @item Ilw
2488 A 16 bit value with exactly one bit set.
2490 @item Sd
2491 The common src/dest memory addressing modes.
2493 @item Sa
2494 Memory addressed using $a0 or $a1.
2496 @item Si
2497 Memory addressed with immediate addresses.
2499 @item Ss
2500 Memory addressed using the stack pointer ($sp).
2502 @item Sf
2503 Memory addressed using the frame base register ($fb).
2505 @item Ss
2506 Memory addressed using the small base register ($sb).
2508 @item S1
2509 $r1h
2510 @end table
2512 @item MIPS---@file{config/mips/constraints.md}
2513 @table @code
2514 @item d
2515 An address register.  This is equivalent to @code{r} unless
2516 generating MIPS16 code.
2518 @item f
2519 A floating-point register (if available).
2521 @item h
2522 Formerly the @code{hi} register.  This constraint is no longer supported.
2524 @item l
2525 The @code{lo} register.  Use this register to store values that are
2526 no bigger than a word.
2528 @item x
2529 The concatenated @code{hi} and @code{lo} registers.  Use this register
2530 to store doubleword values.
2532 @item c
2533 A register suitable for use in an indirect jump.  This will always be
2534 @code{$25} for @option{-mabicalls}.
2536 @item v
2537 Register @code{$3}.  Do not use this constraint in new code;
2538 it is retained only for compatibility with glibc.
2540 @item y
2541 Equivalent to @code{r}; retained for backwards compatibility.
2543 @item z
2544 A floating-point condition code register.
2546 @item I
2547 A signed 16-bit constant (for arithmetic instructions).
2549 @item J
2550 Integer zero.
2552 @item K
2553 An unsigned 16-bit constant (for logic instructions).
2555 @item L
2556 A signed 32-bit constant in which the lower 16 bits are zero.
2557 Such constants can be loaded using @code{lui}.
2559 @item M
2560 A constant that cannot be loaded using @code{lui}, @code{addiu}
2561 or @code{ori}.
2563 @item N
2564 A constant in the range -65535 to -1 (inclusive).
2566 @item O
2567 A signed 15-bit constant.
2569 @item P
2570 A constant in the range 1 to 65535 (inclusive).
2572 @item G
2573 Floating-point zero.
2575 @item R
2576 An address that can be used in a non-macro load or store.
2577 @end table
2579 @item Motorola 680x0---@file{config/m68k/constraints.md}
2580 @table @code
2581 @item a
2582 Address register
2584 @item d
2585 Data register
2587 @item f
2588 68881 floating-point register, if available
2590 @item I
2591 Integer in the range 1 to 8
2593 @item J
2594 16-bit signed number
2596 @item K
2597 Signed number whose magnitude is greater than 0x80
2599 @item L
2600 Integer in the range @minus{}8 to @minus{}1
2602 @item M
2603 Signed number whose magnitude is greater than 0x100
2605 @item N
2606 Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate
2608 @item O
2609 16 (for rotate using swap)
2611 @item P
2612 Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate
2614 @item R
2615 Numbers that mov3q can handle
2617 @item G
2618 Floating point constant that is not a 68881 constant
2620 @item S
2621 Operands that satisfy 'm' when -mpcrel is in effect
2623 @item T
2624 Operands that satisfy 's' when -mpcrel is not in effect
2626 @item Q
2627 Address register indirect addressing mode
2629 @item U
2630 Register offset addressing
2632 @item W
2633 const_call_operand
2635 @item Cs
2636 symbol_ref or const
2638 @item Ci
2639 const_int
2641 @item C0
2642 const_int 0
2644 @item Cj
2645 Range of signed numbers that don't fit in 16 bits
2647 @item Cmvq
2648 Integers valid for mvq
2650 @item Capsw
2651 Integers valid for a moveq followed by a swap
2653 @item Cmvz
2654 Integers valid for mvz
2656 @item Cmvs
2657 Integers valid for mvs
2659 @item Ap
2660 push_operand
2662 @item Ac
2663 Non-register operands allowed in clr
2665 @end table
2667 @item Motorola 68HC11 & 68HC12 families---@file{config/m68hc11/m68hc11.h}
2668 @table @code
2669 @item a
2670 Register `a'
2672 @item b
2673 Register `b'
2675 @item d
2676 Register `d'
2678 @item q
2679 An 8-bit register
2681 @item t
2682 Temporary soft register _.tmp
2684 @item u
2685 A soft register _.d1 to _.d31
2687 @item w
2688 Stack pointer register
2690 @item x
2691 Register `x'
2693 @item y
2694 Register `y'
2696 @item z
2697 Pseudo register `z' (replaced by `x' or `y' at the end)
2699 @item A
2700 An address register: x, y or z
2702 @item B
2703 An address register: x or y
2705 @item D
2706 Register pair (x:d) to form a 32-bit value
2708 @item L
2709 Constants in the range @minus{}65536 to 65535
2711 @item M
2712 Constants whose 16-bit low part is zero
2714 @item N
2715 Constant integer 1 or @minus{}1
2717 @item O
2718 Constant integer 16
2720 @item P
2721 Constants in the range @minus{}8 to 2
2723 @end table
2725 @need 1000
2726 @item SPARC---@file{config/sparc/sparc.h}
2727 @table @code
2728 @item f
2729 Floating-point register on the SPARC-V8 architecture and
2730 lower floating-point register on the SPARC-V9 architecture.
2732 @item e
2733 Floating-point register.  It is equivalent to @samp{f} on the
2734 SPARC-V8 architecture and contains both lower and upper
2735 floating-point registers on the SPARC-V9 architecture.
2737 @item c
2738 Floating-point condition code register.
2740 @item d
2741 Lower floating-point register.  It is only valid on the SPARC-V9
2742 architecture when the Visual Instruction Set is available.
2744 @item b
2745 Floating-point register.  It is only valid on the SPARC-V9 architecture
2746 when the Visual Instruction Set is available.
2748 @item h
2749 64-bit global or out register for the SPARC-V8+ architecture.
2751 @item D
2752 A vector constant
2754 @item I
2755 Signed 13-bit constant
2757 @item J
2758 Zero
2760 @item K
2761 32-bit constant with the low 12 bits clear (a constant that can be
2762 loaded with the @code{sethi} instruction)
2764 @item L
2765 A constant in the range supported by @code{movcc} instructions
2767 @item M
2768 A constant in the range supported by @code{movrcc} instructions
2770 @item N
2771 Same as @samp{K}, except that it verifies that bits that are not in the
2772 lower 32-bit range are all zero.  Must be used instead of @samp{K} for
2773 modes wider than @code{SImode}
2775 @item O
2776 The constant 4096
2778 @item G
2779 Floating-point zero
2781 @item H
2782 Signed 13-bit constant, sign-extended to 32 or 64 bits
2784 @item Q
2785 Floating-point constant whose integral representation can
2786 be moved into an integer register using a single sethi
2787 instruction
2789 @item R
2790 Floating-point constant whose integral representation can
2791 be moved into an integer register using a single mov
2792 instruction
2794 @item S
2795 Floating-point constant whose integral representation can
2796 be moved into an integer register using a high/lo_sum
2797 instruction sequence
2799 @item T
2800 Memory address aligned to an 8-byte boundary
2802 @item U
2803 Even register
2805 @item W
2806 Memory address for @samp{e} constraint registers
2808 @item Y
2809 Vector zero
2811 @end table
2813 @item SPU---@file{config/spu/spu.h}
2814 @table @code
2815 @item a
2816 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 64 bit value.  
2818 @item c
2819 An immediate for and/xor/or instructions.  const_int is treated as a 64 bit value.  
2821 @item d
2822 An immediate for the @code{iohl} instruction.  const_int is treated as a 64 bit value.  
2824 @item f
2825 An immediate which can be loaded with @code{fsmbi}.  
2827 @item A
2828 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is treated as a 32 bit value.  
2830 @item B
2831 An immediate for most arithmetic instructions.  const_int is treated as a 32 bit value.  
2833 @item C
2834 An immediate for and/xor/or instructions.  const_int is treated as a 32 bit value.  
2836 @item D
2837 An immediate for the @code{iohl} instruction.  const_int is treated as a 32 bit value.  
2839 @item I
2840 A constant in the range [-64, 63] for shift/rotate instructions.  
2842 @item J
2843 An unsigned 7-bit constant for conversion/nop/channel instructions.  
2845 @item K
2846 A signed 10-bit constant for most arithmetic instructions.  
2848 @item M
2849 A signed 16 bit immediate for @code{stop}.  
2851 @item N
2852 An unsigned 16-bit constant for @code{iohl} and @code{fsmbi}.  
2854 @item O
2855 An unsigned 7-bit constant whose 3 least significant bits are 0.  
2857 @item P
2858 An unsigned 3-bit constant for 16-byte rotates and shifts 
2860 @item R
2861 Call operand, reg, for indirect calls 
2863 @item S
2864 Call operand, symbol, for relative calls.  
2866 @item T
2867 Call operand, const_int, for absolute calls.  
2869 @item U
2870 An immediate which can be loaded with the il/ila/ilh/ilhu instructions.  const_int is sign extended to 128 bit.  
2872 @item W
2873 An immediate for shift and rotate instructions.  const_int is treated as a 32 bit value.  
2875 @item Y
2876 An immediate for and/xor/or instructions.  const_int is sign extended as a 128 bit.  
2878 @item Z
2879 An immediate for the @code{iohl} instruction.  const_int is sign extended to 128 bit.  
2881 @end table
2883 @item S/390 and zSeries---@file{config/s390/s390.h}
2884 @table @code
2885 @item a
2886 Address register (general purpose register except r0)
2888 @item c
2889 Condition code register
2891 @item d
2892 Data register (arbitrary general purpose register)
2894 @item f
2895 Floating-point register
2897 @item I
2898 Unsigned 8-bit constant (0--255)
2900 @item J
2901 Unsigned 12-bit constant (0--4095)
2903 @item K
2904 Signed 16-bit constant (@minus{}32768--32767)
2906 @item L
2907 Value appropriate as displacement.
2908 @table @code
2909 @item (0..4095)
2910 for short displacement
2911 @item (-524288..524287)
2912 for long displacement
2913 @end table
2915 @item M
2916 Constant integer with a value of 0x7fffffff.
2918 @item N
2919 Multiple letter constraint followed by 4 parameter letters.
2920 @table @code
2921 @item 0..9:
2922 number of the part counting from most to least significant
2923 @item H,Q:
2924 mode of the part
2925 @item D,S,H:
2926 mode of the containing operand
2927 @item 0,F:
2928 value of the other parts (F---all bits set)
2929 @end table
2930 The constraint matches if the specified part of a constant
2931 has a value different from its other parts.
2933 @item Q
2934 Memory reference without index register and with short displacement.
2936 @item R
2937 Memory reference with index register and short displacement.
2939 @item S
2940 Memory reference without index register but with long displacement.
2942 @item T
2943 Memory reference with index register and long displacement.
2945 @item U
2946 Pointer with short displacement.
2948 @item W
2949 Pointer with long displacement.
2951 @item Y
2952 Shift count operand.
2954 @end table
2956 @item Score family---@file{config/score/score.h}
2957 @table @code
2958 @item d
2959 Registers from r0 to r32.
2961 @item e
2962 Registers from r0 to r16.
2964 @item t
2965 r8---r11 or r22---r27 registers.
2967 @item h
2968 hi register.
2970 @item l
2971 lo register.
2973 @item x
2974 hi + lo register.
2976 @item q
2977 cnt register.
2979 @item y
2980 lcb register.
2982 @item z
2983 scb register.
2985 @item a
2986 cnt + lcb + scb register.
2988 @item c
2989 cr0---cr15 register.
2991 @item b
2992 cp1 registers.
2994 @item f
2995 cp2 registers.
2997 @item i
2998 cp3 registers.
3000 @item j
3001 cp1 + cp2 + cp3 registers.
3003 @item I
3004 High 16-bit constant (32-bit constant with 16 LSBs zero).
3006 @item J
3007 Unsigned 5 bit integer (in the range 0 to 31).
3009 @item K
3010 Unsigned 16 bit integer (in the range 0 to 65535).
3012 @item L
3013 Signed 16 bit integer (in the range @minus{}32768 to 32767).
3015 @item M
3016 Unsigned 14 bit integer (in the range 0 to 16383).
3018 @item N
3019 Signed 14 bit integer (in the range @minus{}8192 to 8191).
3021 @item Z
3022 Any SYMBOL_REF.
3023 @end table
3025 @item Xstormy16---@file{config/stormy16/stormy16.h}
3026 @table @code
3027 @item a
3028 Register r0.
3030 @item b
3031 Register r1.
3033 @item c
3034 Register r2.
3036 @item d
3037 Register r8.
3039 @item e
3040 Registers r0 through r7.
3042 @item t
3043 Registers r0 and r1.
3045 @item y
3046 The carry register.
3048 @item z
3049 Registers r8 and r9.
3051 @item I
3052 A constant between 0 and 3 inclusive.
3054 @item J
3055 A constant that has exactly one bit set.
3057 @item K
3058 A constant that has exactly one bit clear.
3060 @item L
3061 A constant between 0 and 255 inclusive.
3063 @item M
3064 A constant between @minus{}255 and 0 inclusive.
3066 @item N
3067 A constant between @minus{}3 and 0 inclusive.
3069 @item O
3070 A constant between 1 and 4 inclusive.
3072 @item P
3073 A constant between @minus{}4 and @minus{}1 inclusive.
3075 @item Q
3076 A memory reference that is a stack push.
3078 @item R
3079 A memory reference that is a stack pop.
3081 @item S
3082 A memory reference that refers to a constant address of known value.
3084 @item T
3085 The register indicated by Rx (not implemented yet).
3087 @item U
3088 A constant that is not between 2 and 15 inclusive.
3090 @item Z
3091 The constant 0.
3093 @end table
3095 @item Xtensa---@file{config/xtensa/constraints.md}
3096 @table @code
3097 @item a
3098 General-purpose 32-bit register
3100 @item b
3101 One-bit boolean register
3103 @item A
3104 MAC16 40-bit accumulator register
3106 @item I
3107 Signed 12-bit integer constant, for use in MOVI instructions
3109 @item J
3110 Signed 8-bit integer constant, for use in ADDI instructions
3112 @item K
3113 Integer constant valid for BccI instructions
3115 @item L
3116 Unsigned constant valid for BccUI instructions
3118 @end table
3120 @end table
3122 @ifset INTERNALS
3123 @node Disable Insn Alternatives
3124 @subsection Disable insn alternatives using the @code{enabled} attribute
3125 @cindex enabled
3127 The @code{enabled} insn attribute may be used to disable certain insn
3128 alternatives for machine-specific reasons.  This is useful when adding
3129 new instructions to an existing pattern which are only available for
3130 certain cpu architecture levels as specified with the @code{-march=}
3131 option.
3133 If an insn alternative is disabled, then it will never be used.  The
3134 compiler treats the constraints for the disabled alternative as
3135 unsatisfiable.
3137 In order to make use of the @code{enabled} attribute a back end has to add
3138 in the machine description files:
3140 @enumerate
3141 @item
3142 A definition of the @code{enabled} insn attribute.  The attribute is
3143 defined as usual using the @code{define_attr} command.  This
3144 definition should be based on other insn attributes and/or target flags.
3145 The @code{enabled} attribute is a numeric attribute and should evaluate to
3146 @code{(const_int 1)} for an enabled alternative and to
3147 @code{(const_int 0)} otherwise.
3148 @item
3149 A definition of another insn attribute used to describe for what
3150 reason an insn alternative might be available or
3151 not.  E.g. @code{cpu_facility} as in the example below.
3152 @item
3153 An assignment for the second attribute to each insn definition
3154 combining instructions which are not all available under the same
3155 circumstances.  (Note: It obviously only makes sense for definitions
3156 with more than one alternative.  Otherwise the insn pattern should be
3157 disabled or enabled using the insn condition.)
3158 @end enumerate
3160 E.g. the following two patterns could easily be merged using the @code{enabled}
3161 attribute:
3163 @smallexample
3165 (define_insn "*movdi_old"
3166   [(set (match_operand:DI 0 "register_operand" "=d")
3167         (match_operand:DI 1 "register_operand" " d"))]
3168   "!TARGET_NEW"
3169   "lgr %0,%1")
3171 (define_insn "*movdi_new"
3172   [(set (match_operand:DI 0 "register_operand" "=d,f,d")
3173         (match_operand:DI 1 "register_operand" " d,d,f"))]
3174   "TARGET_NEW"
3175   "@@
3176    lgr  %0,%1
3177    ldgr %0,%1
3178    lgdr %0,%1")
3180 @end smallexample
3184 @smallexample
3186 (define_insn "*movdi_combined"
3187   [(set (match_operand:DI 0 "register_operand" "=d,f,d")
3188         (match_operand:DI 1 "register_operand" " d,d,f"))]
3189   ""
3190   "@@
3191    lgr  %0,%1
3192    ldgr %0,%1
3193    lgdr %0,%1"
3194   [(set_attr "cpu_facility" "*,new,new")])
3196 @end smallexample
3198 with the @code{enabled} attribute defined like this:
3200 @smallexample
3202 (define_attr "cpu_facility" "standard,new" (const_string "standard"))
3204 (define_attr "enabled" ""
3205   (cond [(eq_attr "cpu_facility" "standard") (const_int 1)
3206          (and (eq_attr "cpu_facility" "new")
3207               (ne (symbol_ref "TARGET_NEW") (const_int 0)))
3208          (const_int 1)]
3209         (const_int 0)))
3211 @end smallexample
3213 @end ifset
3215 @ifset INTERNALS
3216 @node Define Constraints
3217 @subsection Defining Machine-Specific Constraints
3218 @cindex defining constraints
3219 @cindex constraints, defining
3221 Machine-specific constraints fall into two categories: register and
3222 non-register constraints.  Within the latter category, constraints
3223 which allow subsets of all possible memory or address operands should
3224 be specially marked, to give @code{reload} more information.
3226 Machine-specific constraints can be given names of arbitrary length,
3227 but they must be entirely composed of letters, digits, underscores
3228 (@samp{_}), and angle brackets (@samp{< >}).  Like C identifiers, they
3229 must begin with a letter or underscore. 
3231 In order to avoid ambiguity in operand constraint strings, no
3232 constraint can have a name that begins with any other constraint's
3233 name.  For example, if @code{x} is defined as a constraint name,
3234 @code{xy} may not be, and vice versa.  As a consequence of this rule,
3235 no constraint may begin with one of the generic constraint letters:
3236 @samp{E F V X g i m n o p r s}.
3238 Register constraints correspond directly to register classes.
3239 @xref{Register Classes}.  There is thus not much flexibility in their
3240 definitions.
3242 @deffn {MD Expression} define_register_constraint name regclass docstring
3243 All three arguments are string constants.
3244 @var{name} is the name of the constraint, as it will appear in
3245 @code{match_operand} expressions.  If @var{name} is a multi-letter
3246 constraint its length shall be the same for all constraints starting
3247 with the same letter.  @var{regclass} can be either the
3248 name of the corresponding register class (@pxref{Register Classes}),
3249 or a C expression which evaluates to the appropriate register class.
3250 If it is an expression, it must have no side effects, and it cannot
3251 look at the operand.  The usual use of expressions is to map some
3252 register constraints to @code{NO_REGS} when the register class
3253 is not available on a given subarchitecture.
3255 @var{docstring} is a sentence documenting the meaning of the
3256 constraint.  Docstrings are explained further below.
3257 @end deffn
3259 Non-register constraints are more like predicates: the constraint
3260 definition gives a Boolean expression which indicates whether the
3261 constraint matches.
3263 @deffn {MD Expression} define_constraint name docstring exp
3264 The @var{name} and @var{docstring} arguments are the same as for
3265 @code{define_register_constraint}, but note that the docstring comes
3266 immediately after the name for these expressions.  @var{exp} is an RTL
3267 expression, obeying the same rules as the RTL expressions in predicate
3268 definitions.  @xref{Defining Predicates}, for details.  If it
3269 evaluates true, the constraint matches; if it evaluates false, it
3270 doesn't. Constraint expressions should indicate which RTL codes they
3271 might match, just like predicate expressions.
3273 @code{match_test} C expressions have access to the
3274 following variables:
3276 @table @var
3277 @item op
3278 The RTL object defining the operand.
3279 @item mode
3280 The machine mode of @var{op}.
3281 @item ival
3282 @samp{INTVAL (@var{op})}, if @var{op} is a @code{const_int}.
3283 @item hval
3284 @samp{CONST_DOUBLE_HIGH (@var{op})}, if @var{op} is an integer
3285 @code{const_double}.
3286 @item lval
3287 @samp{CONST_DOUBLE_LOW (@var{op})}, if @var{op} is an integer
3288 @code{const_double}.
3289 @item rval
3290 @samp{CONST_DOUBLE_REAL_VALUE (@var{op})}, if @var{op} is a floating-point
3291 @code{const_double}.
3292 @end table
3294 The @var{*val} variables should only be used once another piece of the
3295 expression has verified that @var{op} is the appropriate kind of RTL
3296 object.
3297 @end deffn
3299 Most non-register constraints should be defined with
3300 @code{define_constraint}.  The remaining two definition expressions
3301 are only appropriate for constraints that should be handled specially
3302 by @code{reload} if they fail to match.
3304 @deffn {MD Expression} define_memory_constraint name docstring exp
3305 Use this expression for constraints that match a subset of all memory
3306 operands: that is, @code{reload} can make them match by converting the
3307 operand to the form @samp{@w{(mem (reg @var{X}))}}, where @var{X} is a
3308 base register (from the register class specified by
3309 @code{BASE_REG_CLASS}, @pxref{Register Classes}).
3311 For example, on the S/390, some instructions do not accept arbitrary
3312 memory references, but only those that do not make use of an index
3313 register.  The constraint letter @samp{Q} is defined to represent a
3314 memory address of this type.  If @samp{Q} is defined with
3315 @code{define_memory_constraint}, a @samp{Q} constraint can handle any
3316 memory operand, because @code{reload} knows it can simply copy the
3317 memory address into a base register if required.  This is analogous to
3318 the way a @samp{o} constraint can handle any memory operand.
3320 The syntax and semantics are otherwise identical to
3321 @code{define_constraint}.
3322 @end deffn
3324 @deffn {MD Expression} define_address_constraint name docstring exp
3325 Use this expression for constraints that match a subset of all address
3326 operands: that is, @code{reload} can make the constraint match by
3327 converting the operand to the form @samp{@w{(reg @var{X})}}, again
3328 with @var{X} a base register.
3330 Constraints defined with @code{define_address_constraint} can only be
3331 used with the @code{address_operand} predicate, or machine-specific
3332 predicates that work the same way.  They are treated analogously to
3333 the generic @samp{p} constraint.
3335 The syntax and semantics are otherwise identical to
3336 @code{define_constraint}.
3337 @end deffn
3339 For historical reasons, names beginning with the letters @samp{G H}
3340 are reserved for constraints that match only @code{const_double}s, and
3341 names beginning with the letters @samp{I J K L M N O P} are reserved
3342 for constraints that match only @code{const_int}s.  This may change in
3343 the future.  For the time being, constraints with these names must be
3344 written in a stylized form, so that @code{genpreds} can tell you did
3345 it correctly:
3347 @smallexample
3348 @group
3349 (define_constraint "[@var{GHIJKLMNOP}]@dots{}"
3350   "@var{doc}@dots{}"
3351   (and (match_code "const_int")  ; @r{@code{const_double} for G/H}
3352        @var{condition}@dots{}))            ; @r{usually a @code{match_test}}
3353 @end group
3354 @end smallexample
3355 @c the semicolons line up in the formatted manual
3357 It is fine to use names beginning with other letters for constraints
3358 that match @code{const_double}s or @code{const_int}s.
3360 Each docstring in a constraint definition should be one or more complete
3361 sentences, marked up in Texinfo format.  @emph{They are currently unused.}
3362 In the future they will be copied into the GCC manual, in @ref{Machine
3363 Constraints}, replacing the hand-maintained tables currently found in
3364 that section.  Also, in the future the compiler may use this to give
3365 more helpful diagnostics when poor choice of @code{asm} constraints
3366 causes a reload failure.
3368 If you put the pseudo-Texinfo directive @samp{@@internal} at the
3369 beginning of a docstring, then (in the future) it will appear only in
3370 the internals manual's version of the machine-specific constraint tables.
3371 Use this for constraints that should not appear in @code{asm} statements.
3373 @node C Constraint Interface
3374 @subsection Testing constraints from C
3375 @cindex testing constraints
3376 @cindex constraints, testing
3378 It is occasionally useful to test a constraint from C code rather than
3379 implicitly via the constraint string in a @code{match_operand}.  The
3380 generated file @file{tm_p.h} declares a few interfaces for working
3381 with machine-specific constraints.  None of these interfaces work with
3382 the generic constraints described in @ref{Simple Constraints}.  This
3383 may change in the future.
3385 @strong{Warning:} @file{tm_p.h} may declare other functions that
3386 operate on constraints, besides the ones documented here.  Do not use
3387 those functions from machine-dependent code.  They exist to implement
3388 the old constraint interface that machine-independent components of
3389 the compiler still expect.  They will change or disappear in the
3390 future.
3392 Some valid constraint names are not valid C identifiers, so there is a
3393 mangling scheme for referring to them from C@.  Constraint names that
3394 do not contain angle brackets or underscores are left unchanged.
3395 Underscores are doubled, each @samp{<} is replaced with @samp{_l}, and
3396 each @samp{>} with @samp{_g}.  Here are some examples:
3398 @c the @c's prevent double blank lines in the printed manual.
3399 @example
3400 @multitable {Original} {Mangled}
3401 @item @strong{Original} @tab @strong{Mangled}  @c
3402 @item @code{x}     @tab @code{x}       @c
3403 @item @code{P42x}  @tab @code{P42x}    @c
3404 @item @code{P4_x}  @tab @code{P4__x}   @c
3405 @item @code{P4>x}  @tab @code{P4_gx}   @c
3406 @item @code{P4>>}  @tab @code{P4_g_g}  @c
3407 @item @code{P4_g>} @tab @code{P4__g_g} @c
3408 @end multitable
3409 @end example
3411 Throughout this section, the variable @var{c} is either a constraint
3412 in the abstract sense, or a constant from @code{enum constraint_num};
3413 the variable @var{m} is a mangled constraint name (usually as part of
3414 a larger identifier).
3416 @deftp Enum constraint_num
3417 For each machine-specific constraint, there is a corresponding
3418 enumeration constant: @samp{CONSTRAINT_} plus the mangled name of the
3419 constraint.  Functions that take an @code{enum constraint_num} as an
3420 argument expect one of these constants.
3422 Machine-independent constraints do not have associated constants.
3423 This may change in the future.
3424 @end deftp
3426 @deftypefun {inline bool} satisfies_constraint_@var{m} (rtx @var{exp})
3427 For each machine-specific, non-register constraint @var{m}, there is
3428 one of these functions; it returns @code{true} if @var{exp} satisfies the
3429 constraint.  These functions are only visible if @file{rtl.h} was included
3430 before @file{tm_p.h}.
3431 @end deftypefun
3433 @deftypefun bool constraint_satisfied_p (rtx @var{exp}, enum constraint_num @var{c})
3434 Like the @code{satisfies_constraint_@var{m}} functions, but the
3435 constraint to test is given as an argument, @var{c}.  If @var{c}
3436 specifies a register constraint, this function will always return
3437 @code{false}.
3438 @end deftypefun
3440 @deftypefun {enum reg_class} regclass_for_constraint (enum constraint_num @var{c})
3441 Returns the register class associated with @var{c}.  If @var{c} is not
3442 a register constraint, or those registers are not available for the
3443 currently selected subtarget, returns @code{NO_REGS}.
3444 @end deftypefun
3446 Here is an example use of @code{satisfies_constraint_@var{m}}.  In
3447 peephole optimizations (@pxref{Peephole Definitions}), operand
3448 constraint strings are ignored, so if there are relevant constraints,
3449 they must be tested in the C condition.  In the example, the
3450 optimization is applied if operand 2 does @emph{not} satisfy the
3451 @samp{K} constraint.  (This is a simplified version of a peephole
3452 definition from the i386 machine description.)
3454 @smallexample
3455 (define_peephole2
3456   [(match_scratch:SI 3 "r")
3457    (set (match_operand:SI 0 "register_operand" "")
3458         (mult:SI (match_operand:SI 1 "memory_operand" "")
3459                  (match_operand:SI 2 "immediate_operand" "")))]
3461   "!satisfies_constraint_K (operands[2])"
3463   [(set (match_dup 3) (match_dup 1))
3464    (set (match_dup 0) (mult:SI (match_dup 3) (match_dup 2)))]
3466   "")
3467 @end smallexample
3469 @node Standard Names
3470 @section Standard Pattern Names For Generation
3471 @cindex standard pattern names
3472 @cindex pattern names
3473 @cindex names, pattern
3475 Here is a table of the instruction names that are meaningful in the RTL
3476 generation pass of the compiler.  Giving one of these names to an
3477 instruction pattern tells the RTL generation pass that it can use the
3478 pattern to accomplish a certain task.
3480 @table @asis
3481 @cindex @code{mov@var{m}} instruction pattern
3482 @item @samp{mov@var{m}}
3483 Here @var{m} stands for a two-letter machine mode name, in lowercase.
3484 This instruction pattern moves data with that machine mode from operand
3485 1 to operand 0.  For example, @samp{movsi} moves full-word data.
3487 If operand 0 is a @code{subreg} with mode @var{m} of a register whose
3488 own mode is wider than @var{m}, the effect of this instruction is
3489 to store the specified value in the part of the register that corresponds
3490 to mode @var{m}.  Bits outside of @var{m}, but which are within the
3491 same target word as the @code{subreg} are undefined.  Bits which are
3492 outside the target word are left unchanged.
3494 This class of patterns is special in several ways.  First of all, each
3495 of these names up to and including full word size @emph{must} be defined,
3496 because there is no other way to copy a datum from one place to another.
3497 If there are patterns accepting operands in larger modes,
3498 @samp{mov@var{m}} must be defined for integer modes of those sizes.
3500 Second, these patterns are not used solely in the RTL generation pass.
3501 Even the reload pass can generate move insns to copy values from stack
3502 slots into temporary registers.  When it does so, one of the operands is
3503 a hard register and the other is an operand that can need to be reloaded
3504 into a register.
3506 @findex force_reg
3507 Therefore, when given such a pair of operands, the pattern must generate
3508 RTL which needs no reloading and needs no temporary registers---no
3509 registers other than the operands.  For example, if you support the
3510 pattern with a @code{define_expand}, then in such a case the
3511 @code{define_expand} mustn't call @code{force_reg} or any other such
3512 function which might generate new pseudo registers.
3514 This requirement exists even for subword modes on a RISC machine where
3515 fetching those modes from memory normally requires several insns and
3516 some temporary registers.
3518 @findex change_address
3519 During reload a memory reference with an invalid address may be passed
3520 as an operand.  Such an address will be replaced with a valid address
3521 later in the reload pass.  In this case, nothing may be done with the
3522 address except to use it as it stands.  If it is copied, it will not be
3523 replaced with a valid address.  No attempt should be made to make such
3524 an address into a valid address and no routine (such as
3525 @code{change_address}) that will do so may be called.  Note that
3526 @code{general_operand} will fail when applied to such an address.
3528 @findex reload_in_progress
3529 The global variable @code{reload_in_progress} (which must be explicitly
3530 declared if required) can be used to determine whether such special
3531 handling is required.
3533 The variety of operands that have reloads depends on the rest of the
3534 machine description, but typically on a RISC machine these can only be
3535 pseudo registers that did not get hard registers, while on other
3536 machines explicit memory references will get optional reloads.
3538 If a scratch register is required to move an object to or from memory,
3539 it can be allocated using @code{gen_reg_rtx} prior to life analysis.
3541 If there are cases which need scratch registers during or after reload,
3542 you must provide an appropriate secondary_reload target hook.
3544 @findex can_create_pseudo_p
3545 The macro @code{can_create_pseudo_p} can be used to determine if it
3546 is unsafe to create new pseudo registers.  If this variable is nonzero, then
3547 it is unsafe to call @code{gen_reg_rtx} to allocate a new pseudo.
3549 The constraints on a @samp{mov@var{m}} must permit moving any hard
3550 register to any other hard register provided that
3551 @code{HARD_REGNO_MODE_OK} permits mode @var{m} in both registers and
3552 @code{REGISTER_MOVE_COST} applied to their classes returns a value of 2.
3554 It is obligatory to support floating point @samp{mov@var{m}}
3555 instructions into and out of any registers that can hold fixed point
3556 values, because unions and structures (which have modes @code{SImode} or
3557 @code{DImode}) can be in those registers and they may have floating
3558 point members.
3560 There may also be a need to support fixed point @samp{mov@var{m}}
3561 instructions in and out of floating point registers.  Unfortunately, I
3562 have forgotten why this was so, and I don't know whether it is still
3563 true.  If @code{HARD_REGNO_MODE_OK} rejects fixed point values in
3564 floating point registers, then the constraints of the fixed point
3565 @samp{mov@var{m}} instructions must be designed to avoid ever trying to
3566 reload into a floating point register.
3568 @cindex @code{reload_in} instruction pattern
3569 @cindex @code{reload_out} instruction pattern
3570 @item @samp{reload_in@var{m}}
3571 @itemx @samp{reload_out@var{m}}
3572 These named patterns have been obsoleted by the target hook
3573 @code{secondary_reload}.
3575 Like @samp{mov@var{m}}, but used when a scratch register is required to
3576 move between operand 0 and operand 1.  Operand 2 describes the scratch
3577 register.  See the discussion of the @code{SECONDARY_RELOAD_CLASS}
3578 macro in @pxref{Register Classes}.
3580 There are special restrictions on the form of the @code{match_operand}s
3581 used in these patterns.  First, only the predicate for the reload
3582 operand is examined, i.e., @code{reload_in} examines operand 1, but not
3583 the predicates for operand 0 or 2.  Second, there may be only one
3584 alternative in the constraints.  Third, only a single register class
3585 letter may be used for the constraint; subsequent constraint letters
3586 are ignored.  As a special exception, an empty constraint string
3587 matches the @code{ALL_REGS} register class.  This may relieve ports
3588 of the burden of defining an @code{ALL_REGS} constraint letter just
3589 for these patterns.
3591 @cindex @code{movstrict@var{m}} instruction pattern
3592 @item @samp{movstrict@var{m}}
3593 Like @samp{mov@var{m}} except that if operand 0 is a @code{subreg}
3594 with mode @var{m} of a register whose natural mode is wider,
3595 the @samp{movstrict@var{m}} instruction is guaranteed not to alter
3596 any of the register except the part which belongs to mode @var{m}.
3598 @cindex @code{movmisalign@var{m}} instruction pattern
3599 @item @samp{movmisalign@var{m}}
3600 This variant of a move pattern is designed to load or store a value
3601 from a memory address that is not naturally aligned for its mode.
3602 For a store, the memory will be in operand 0; for a load, the memory
3603 will be in operand 1.  The other operand is guaranteed not to be a
3604 memory, so that it's easy to tell whether this is a load or store.
3606 This pattern is used by the autovectorizer, and when expanding a
3607 @code{MISALIGNED_INDIRECT_REF} expression.
3609 @cindex @code{load_multiple} instruction pattern
3610 @item @samp{load_multiple}
3611 Load several consecutive memory locations into consecutive registers.
3612 Operand 0 is the first of the consecutive registers, operand 1
3613 is the first memory location, and operand 2 is a constant: the
3614 number of consecutive registers.
3616 Define this only if the target machine really has such an instruction;
3617 do not define this if the most efficient way of loading consecutive
3618 registers from memory is to do them one at a time.
3620 On some machines, there are restrictions as to which consecutive
3621 registers can be stored into memory, such as particular starting or
3622 ending register numbers or only a range of valid counts.  For those
3623 machines, use a @code{define_expand} (@pxref{Expander Definitions})
3624 and make the pattern fail if the restrictions are not met.
3626 Write the generated insn as a @code{parallel} with elements being a
3627 @code{set} of one register from the appropriate memory location (you may
3628 also need @code{use} or @code{clobber} elements).  Use a
3629 @code{match_parallel} (@pxref{RTL Template}) to recognize the insn.  See
3630 @file{rs6000.md} for examples of the use of this insn pattern.
3632 @cindex @samp{store_multiple} instruction pattern
3633 @item @samp{store_multiple}
3634 Similar to @samp{load_multiple}, but store several consecutive registers
3635 into consecutive memory locations.  Operand 0 is the first of the
3636 consecutive memory locations, operand 1 is the first register, and
3637 operand 2 is a constant: the number of consecutive registers.
3639 @cindex @code{vec_set@var{m}} instruction pattern
3640 @item @samp{vec_set@var{m}}
3641 Set given field in the vector value.  Operand 0 is the vector to modify,
3642 operand 1 is new value of field and operand 2 specify the field index.
3644 @cindex @code{vec_extract@var{m}} instruction pattern
3645 @item @samp{vec_extract@var{m}}
3646 Extract given field from the vector value.  Operand 1 is the vector, operand 2
3647 specify field index and operand 0 place to store value into.
3649 @cindex @code{vec_extract_even@var{m}} instruction pattern
3650 @item @samp{vec_extract_even@var{m}}
3651 Extract even elements from the input vectors (operand 1 and operand 2). 
3652 The even elements of operand 2 are concatenated to the even elements of operand
3653 1 in their original order. The result is stored in operand 0. 
3654 The output and input vectors should have the same modes. 
3656 @cindex @code{vec_extract_odd@var{m}} instruction pattern
3657 @item @samp{vec_extract_odd@var{m}}
3658 Extract odd elements from the input vectors (operand 1 and operand 2). 
3659 The odd elements of operand 2 are concatenated to the odd elements of operand 
3660 1 in their original order. The result is stored in operand 0.
3661 The output and input vectors should have the same modes.
3663 @cindex @code{vec_interleave_high@var{m}} instruction pattern
3664 @item @samp{vec_interleave_high@var{m}}
3665 Merge high elements of the two input vectors into the output vector. The output
3666 and input vectors should have the same modes (@code{N} elements). The high
3667 @code{N/2} elements of the first input vector are interleaved with the high
3668 @code{N/2} elements of the second input vector.
3670 @cindex @code{vec_interleave_low@var{m}} instruction pattern
3671 @item @samp{vec_interleave_low@var{m}}
3672 Merge low elements of the two input vectors into the output vector. The output
3673 and input vectors should have the same modes (@code{N} elements). The low
3674 @code{N/2} elements of the first input vector are interleaved with the low 
3675 @code{N/2} elements of the second input vector.
3677 @cindex @code{vec_init@var{m}} instruction pattern
3678 @item @samp{vec_init@var{m}}
3679 Initialize the vector to given values.  Operand 0 is the vector to initialize
3680 and operand 1 is parallel containing values for individual fields.
3682 @cindex @code{push@var{m}1} instruction pattern
3683 @item @samp{push@var{m}1}
3684 Output a push instruction.  Operand 0 is value to push.  Used only when
3685 @code{PUSH_ROUNDING} is defined.  For historical reason, this pattern may be
3686 missing and in such case an @code{mov} expander is used instead, with a
3687 @code{MEM} expression forming the push operation.  The @code{mov} expander
3688 method is deprecated.
3690 @cindex @code{add@var{m}3} instruction pattern
3691 @item @samp{add@var{m}3}
3692 Add operand 2 and operand 1, storing the result in operand 0.  All operands
3693 must have mode @var{m}.  This can be used even on two-address machines, by
3694 means of constraints requiring operands 1 and 0 to be the same location.
3696 @cindex @code{ssadd@var{m}3} instruction pattern
3697 @cindex @code{usadd@var{m}3} instruction pattern
3698 @cindex @code{sub@var{m}3} instruction pattern
3699 @cindex @code{sssub@var{m}3} instruction pattern
3700 @cindex @code{ussub@var{m}3} instruction pattern
3701 @cindex @code{mul@var{m}3} instruction pattern
3702 @cindex @code{ssmul@var{m}3} instruction pattern
3703 @cindex @code{usmul@var{m}3} instruction pattern
3704 @cindex @code{div@var{m}3} instruction pattern
3705 @cindex @code{ssdiv@var{m}3} instruction pattern
3706 @cindex @code{udiv@var{m}3} instruction pattern
3707 @cindex @code{usdiv@var{m}3} instruction pattern
3708 @cindex @code{mod@var{m}3} instruction pattern
3709 @cindex @code{umod@var{m}3} instruction pattern
3710 @cindex @code{umin@var{m}3} instruction pattern
3711 @cindex @code{umax@var{m}3} instruction pattern
3712 @cindex @code{and@var{m}3} instruction pattern
3713 @cindex @code{ior@var{m}3} instruction pattern
3714 @cindex @code{xor@var{m}3} instruction pattern
3715 @item @samp{ssadd@var{m}3}, @samp{usadd@var{m}3}
3716 @item @samp{sub@var{m}3}, @samp{sssub@var{m}3}, @samp{ussub@var{m}3}
3717 @item @samp{mul@var{m}3}, @samp{ssmul@var{m}3}, @samp{usmul@var{m}3}
3718 @itemx @samp{div@var{m}3}, @samp{ssdiv@var{m}3}
3719 @itemx @samp{udiv@var{m}3}, @samp{usdiv@var{m}3}
3720 @itemx @samp{mod@var{m}3}, @samp{umod@var{m}3}
3721 @itemx @samp{umin@var{m}3}, @samp{umax@var{m}3}
3722 @itemx @samp{and@var{m}3}, @samp{ior@var{m}3}, @samp{xor@var{m}3}
3723 Similar, for other arithmetic operations.
3725 @cindex @code{min@var{m}3} instruction pattern
3726 @cindex @code{max@var{m}3} instruction pattern
3727 @item @samp{smin@var{m}3}, @samp{smax@var{m}3}
3728 Signed minimum and maximum operations.  When used with floating point,
3729 if both operands are zeros, or if either operand is @code{NaN}, then
3730 it is unspecified which of the two operands is returned as the result.
3732 @cindex @code{reduc_smin_@var{m}} instruction pattern
3733 @cindex @code{reduc_smax_@var{m}} instruction pattern
3734 @item @samp{reduc_smin_@var{m}}, @samp{reduc_smax_@var{m}}
3735 Find the signed minimum/maximum of the elements of a vector. The vector is
3736 operand 1, and the scalar result is stored in the least significant bits of
3737 operand 0 (also a vector). The output and input vector should have the same
3738 modes.
3740 @cindex @code{reduc_umin_@var{m}} instruction pattern
3741 @cindex @code{reduc_umax_@var{m}} instruction pattern
3742 @item @samp{reduc_umin_@var{m}}, @samp{reduc_umax_@var{m}}
3743 Find the unsigned minimum/maximum of the elements of a vector. The vector is
3744 operand 1, and the scalar result is stored in the least significant bits of
3745 operand 0 (also a vector). The output and input vector should have the same
3746 modes.
3748 @cindex @code{reduc_splus_@var{m}} instruction pattern
3749 @item @samp{reduc_splus_@var{m}}
3750 Compute the sum of the signed elements of a vector. The vector is operand 1,
3751 and the scalar result is stored in the least significant bits of operand 0
3752 (also a vector). The output and input vector should have the same modes.
3754 @cindex @code{reduc_uplus_@var{m}} instruction pattern
3755 @item @samp{reduc_uplus_@var{m}}
3756 Compute the sum of the unsigned elements of a vector. The vector is operand 1,
3757 and the scalar result is stored in the least significant bits of operand 0
3758 (also a vector). The output and input vector should have the same modes.
3760 @cindex @code{sdot_prod@var{m}} instruction pattern
3761 @item @samp{sdot_prod@var{m}}
3762 @cindex @code{udot_prod@var{m}} instruction pattern
3763 @item @samp{udot_prod@var{m}}
3764 Compute the sum of the products of two signed/unsigned elements. 
3765 Operand 1 and operand 2 are of the same mode. Their product, which is of a 
3766 wider mode, is computed and added to operand 3. Operand 3 is of a mode equal or 
3767 wider than the mode of the product. The result is placed in operand 0, which
3768 is of the same mode as operand 3. 
3770 @cindex @code{ssum_widen@var{m3}} instruction pattern
3771 @item @samp{ssum_widen@var{m3}}
3772 @cindex @code{usum_widen@var{m3}} instruction pattern
3773 @item @samp{usum_widen@var{m3}}
3774 Operands 0 and 2 are of the same mode, which is wider than the mode of 
3775 operand 1. Add operand 1 to operand 2 and place the widened result in
3776 operand 0. (This is used express accumulation of elements into an accumulator
3777 of a wider mode.)
3779 @cindex @code{vec_shl_@var{m}} instruction pattern
3780 @cindex @code{vec_shr_@var{m}} instruction pattern
3781 @item @samp{vec_shl_@var{m}}, @samp{vec_shr_@var{m}}
3782 Whole vector left/right shift in bits.
3783 Operand 1 is a vector to be shifted.
3784 Operand 2 is an integer shift amount in bits.
3785 Operand 0 is where the resulting shifted vector is stored.
3786 The output and input vectors should have the same modes.
3788 @cindex @code{vec_pack_trunc_@var{m}} instruction pattern
3789 @item @samp{vec_pack_trunc_@var{m}}
3790 Narrow (demote) and merge the elements of two vectors. Operands 1 and 2
3791 are vectors of the same mode having N integral or floating point elements
3792 of size S@.  Operand 0 is the resulting vector in which 2*N elements of
3793 size N/2 are concatenated after narrowing them down using truncation.
3795 @cindex @code{vec_pack_ssat_@var{m}} instruction pattern
3796 @cindex @code{vec_pack_usat_@var{m}} instruction pattern
3797 @item @samp{vec_pack_ssat_@var{m}}, @samp{vec_pack_usat_@var{m}}
3798 Narrow (demote) and merge the elements of two vectors.  Operands 1 and 2
3799 are vectors of the same mode having N integral elements of size S.
3800 Operand 0 is the resulting vector in which the elements of the two input
3801 vectors are concatenated after narrowing them down using signed/unsigned
3802 saturating arithmetic.
3804 @cindex @code{vec_pack_sfix_trunc_@var{m}} instruction pattern
3805 @cindex @code{vec_pack_ufix_trunc_@var{m}} instruction pattern
3806 @item @samp{vec_pack_sfix_trunc_@var{m}}, @samp{vec_pack_ufix_trunc_@var{m}}
3807 Narrow, convert to signed/unsigned integral type and merge the elements
3808 of two vectors.  Operands 1 and 2 are vectors of the same mode having N
3809 floating point elements of size S@.  Operand 0 is the resulting vector
3810 in which 2*N elements of size N/2 are concatenated.
3812 @cindex @code{vec_unpacks_hi_@var{m}} instruction pattern
3813 @cindex @code{vec_unpacks_lo_@var{m}} instruction pattern
3814 @item @samp{vec_unpacks_hi_@var{m}}, @samp{vec_unpacks_lo_@var{m}}
3815 Extract and widen (promote) the high/low part of a vector of signed
3816 integral or floating point elements.  The input vector (operand 1) has N
3817 elements of size S@.  Widen (promote) the high/low elements of the vector
3818 using signed or floating point extension and place the resulting N/2
3819 values of size 2*S in the output vector (operand 0).
3821 @cindex @code{vec_unpacku_hi_@var{m}} instruction pattern
3822 @cindex @code{vec_unpacku_lo_@var{m}} instruction pattern
3823 @item @samp{vec_unpacku_hi_@var{m}}, @samp{vec_unpacku_lo_@var{m}}
3824 Extract and widen (promote) the high/low part of a vector of unsigned
3825 integral elements.  The input vector (operand 1) has N elements of size S.
3826 Widen (promote) the high/low elements of the vector using zero extension and
3827 place the resulting N/2 values of size 2*S in the output vector (operand 0).
3829 @cindex @code{vec_unpacks_float_hi_@var{m}} instruction pattern
3830 @cindex @code{vec_unpacks_float_lo_@var{m}} instruction pattern
3831 @cindex @code{vec_unpacku_float_hi_@var{m}} instruction pattern
3832 @cindex @code{vec_unpacku_float_lo_@var{m}} instruction pattern
3833 @item @samp{vec_unpacks_float_hi_@var{m}}, @samp{vec_unpacks_float_lo_@var{m}}
3834 @itemx @samp{vec_unpacku_float_hi_@var{m}}, @samp{vec_unpacku_float_lo_@var{m}}
3835 Extract, convert to floating point type and widen the high/low part of a
3836 vector of signed/unsigned integral elements.  The input vector (operand 1)
3837 has N elements of size S@.  Convert the high/low elements of the vector using
3838 floating point conversion and place the resulting N/2 values of size 2*S in
3839 the output vector (operand 0).
3841 @cindex @code{vec_widen_umult_hi_@var{m}} instruction pattern
3842 @cindex @code{vec_widen_umult_lo__@var{m}} instruction pattern
3843 @cindex @code{vec_widen_smult_hi_@var{m}} instruction pattern
3844 @cindex @code{vec_widen_smult_lo_@var{m}} instruction pattern
3845 @item @samp{vec_widen_umult_hi_@var{m}}, @samp{vec_widen_umult_lo_@var{m}}
3846 @itemx @samp{vec_widen_smult_hi_@var{m}}, @samp{vec_widen_smult_lo_@var{m}}
3847 Signed/Unsigned widening multiplication.  The two inputs (operands 1 and 2)
3848 are vectors with N signed/unsigned elements of size S@.  Multiply the high/low
3849 elements of the two vectors, and put the N/2 products of size 2*S in the
3850 output vector (operand 0).
3852 @cindex @code{mulhisi3} instruction pattern
3853 @item @samp{mulhisi3}
3854 Multiply operands 1 and 2, which have mode @code{HImode}, and store
3855 a @code{SImode} product in operand 0.
3857 @cindex @code{mulqihi3} instruction pattern
3858 @cindex @code{mulsidi3} instruction pattern
3859 @item @samp{mulqihi3}, @samp{mulsidi3}
3860 Similar widening-multiplication instructions of other widths.
3862 @cindex @code{umulqihi3} instruction pattern
3863 @cindex @code{umulhisi3} instruction pattern
3864 @cindex @code{umulsidi3} instruction pattern
3865 @item @samp{umulqihi3}, @samp{umulhisi3}, @samp{umulsidi3}
3866 Similar widening-multiplication instructions that do unsigned
3867 multiplication.
3869 @cindex @code{usmulqihi3} instruction pattern
3870 @cindex @code{usmulhisi3} instruction pattern
3871 @cindex @code{usmulsidi3} instruction pattern
3872 @item @samp{usmulqihi3}, @samp{usmulhisi3}, @samp{usmulsidi3}
3873 Similar widening-multiplication instructions that interpret the first
3874 operand as unsigned and the second operand as signed, then do a signed
3875 multiplication.
3877 @cindex @code{smul@var{m}3_highpart} instruction pattern
3878 @item @samp{smul@var{m}3_highpart}
3879 Perform a signed multiplication of operands 1 and 2, which have mode
3880 @var{m}, and store the most significant half of the product in operand 0.
3881 The least significant half of the product is discarded.
3883 @cindex @code{umul@var{m}3_highpart} instruction pattern
3884 @item @samp{umul@var{m}3_highpart}
3885 Similar, but the multiplication is unsigned.
3887 @cindex @code{madd@var{m}@var{n}4} instruction pattern
3888 @item @samp{madd@var{m}@var{n}4}
3889 Multiply operands 1 and 2, sign-extend them to mode @var{n}, add
3890 operand 3, and store the result in operand 0.  Operands 1 and 2
3891 have mode @var{m} and operands 0 and 3 have mode @var{n}.
3892 Both modes must be integer or fixed-point modes and @var{n} must be twice
3893 the size of @var{m}.
3895 In other words, @code{madd@var{m}@var{n}4} is like
3896 @code{mul@var{m}@var{n}3} except that it also adds operand 3.
3898 These instructions are not allowed to @code{FAIL}.
3900 @cindex @code{umadd@var{m}@var{n}4} instruction pattern
3901 @item @samp{umadd@var{m}@var{n}4}
3902 Like @code{madd@var{m}@var{n}4}, but zero-extend the multiplication
3903 operands instead of sign-extending them.
3905 @cindex @code{ssmadd@var{m}@var{n}4} instruction pattern
3906 @item @samp{ssmadd@var{m}@var{n}4}
3907 Like @code{madd@var{m}@var{n}4}, but all involved operations must be
3908 signed-saturating.
3910 @cindex @code{usmadd@var{m}@var{n}4} instruction pattern
3911 @item @samp{usmadd@var{m}@var{n}4}
3912 Like @code{umadd@var{m}@var{n}4}, but all involved operations must be
3913 unsigned-saturating.
3915 @cindex @code{msub@var{m}@var{n}4} instruction pattern
3916 @item @samp{msub@var{m}@var{n}4}
3917 Multiply operands 1 and 2, sign-extend them to mode @var{n}, subtract the
3918 result from operand 3, and store the result in operand 0.  Operands 1 and 2
3919 have mode @var{m} and operands 0 and 3 have mode @var{n}.
3920 Both modes must be integer or fixed-point modes and @var{n} must be twice
3921 the size of @var{m}.
3923 In other words, @code{msub@var{m}@var{n}4} is like
3924 @code{mul@var{m}@var{n}3} except that it also subtracts the result
3925 from operand 3.
3927 These instructions are not allowed to @code{FAIL}.
3929 @cindex @code{umsub@var{m}@var{n}4} instruction pattern
3930 @item @samp{umsub@var{m}@var{n}4}
3931 Like @code{msub@var{m}@var{n}4}, but zero-extend the multiplication
3932 operands instead of sign-extending them.
3934 @cindex @code{ssmsub@var{m}@var{n}4} instruction pattern
3935 @item @samp{ssmsub@var{m}@var{n}4}
3936 Like @code{msub@var{m}@var{n}4}, but all involved operations must be
3937 signed-saturating.
3939 @cindex @code{usmsub@var{m}@var{n}4} instruction pattern
3940 @item @samp{usmsub@var{m}@var{n}4}
3941 Like @code{umsub@var{m}@var{n}4}, but all involved operations must be
3942 unsigned-saturating.
3944 @cindex @code{divmod@var{m}4} instruction pattern
3945 @item @samp{divmod@var{m}4}
3946 Signed division that produces both a quotient and a remainder.
3947 Operand 1 is divided by operand 2 to produce a quotient stored
3948 in operand 0 and a remainder stored in operand 3.
3950 For machines with an instruction that produces both a quotient and a
3951 remainder, provide a pattern for @samp{divmod@var{m}4} but do not
3952 provide patterns for @samp{div@var{m}3} and @samp{mod@var{m}3}.  This
3953 allows optimization in the relatively common case when both the quotient
3954 and remainder are computed.
3956 If an instruction that just produces a quotient or just a remainder
3957 exists and is more efficient than the instruction that produces both,
3958 write the output routine of @samp{divmod@var{m}4} to call
3959 @code{find_reg_note} and look for a @code{REG_UNUSED} note on the
3960 quotient or remainder and generate the appropriate instruction.
3962 @cindex @code{udivmod@var{m}4} instruction pattern
3963 @item @samp{udivmod@var{m}4}
3964 Similar, but does unsigned division.
3966 @anchor{shift patterns}
3967 @cindex @code{ashl@var{m}3} instruction pattern
3968 @cindex @code{ssashl@var{m}3} instruction pattern
3969 @cindex @code{usashl@var{m}3} instruction pattern
3970 @item @samp{ashl@var{m}3}, @samp{ssashl@var{m}3}, @samp{usashl@var{m}3}
3971 Arithmetic-shift operand 1 left by a number of bits specified by operand
3972 2, and store the result in operand 0.  Here @var{m} is the mode of
3973 operand 0 and operand 1; operand 2's mode is specified by the
3974 instruction pattern, and the compiler will convert the operand to that
3975 mode before generating the instruction.  The meaning of out-of-range shift
3976 counts can optionally be specified by @code{TARGET_SHIFT_TRUNCATION_MASK}.
3977 @xref{TARGET_SHIFT_TRUNCATION_MASK}.  Operand 2 is always a scalar type.
3979 @cindex @code{ashr@var{m}3} instruction pattern
3980 @cindex @code{lshr@var{m}3} instruction pattern
3981 @cindex @code{rotl@var{m}3} instruction pattern
3982 @cindex @code{rotr@var{m}3} instruction pattern
3983 @item @samp{ashr@var{m}3}, @samp{lshr@var{m}3}, @samp{rotl@var{m}3}, @samp{rotr@var{m}3}
3984 Other shift and rotate instructions, analogous to the
3985 @code{ashl@var{m}3} instructions.  Operand 2 is always a scalar type.
3987 @cindex @code{vashl@var{m}3} instruction pattern
3988 @cindex @code{vashr@var{m}3} instruction pattern
3989 @cindex @code{vlshr@var{m}3} instruction pattern
3990 @cindex @code{vrotl@var{m}3} instruction pattern
3991 @cindex @code{vrotr@var{m}3} instruction pattern
3992 @item @samp{vashl@var{m}3}, @samp{vashr@var{m}3}, @samp{vlshr@var{m}3}, @samp{vrotl@var{m}3}, @samp{vrotr@var{m}3}
3993 Vector shift and rotate instructions that take vectors as operand 2
3994 instead of a scalar type.
3996 @cindex @code{neg@var{m}2} instruction pattern
3997 @cindex @code{ssneg@var{m}2} instruction pattern
3998 @cindex @code{usneg@var{m}2} instruction pattern
3999 @item @samp{neg@var{m}2}, @samp{ssneg@var{m}2}, @samp{usneg@var{m}2}
4000 Negate operand 1 and store the result in operand 0.
4002 @cindex @code{abs@var{m}2} instruction pattern
4003 @item @samp{abs@var{m}2}
4004 Store the absolute value of operand 1 into operand 0.
4006 @cindex @code{sqrt@var{m}2} instruction pattern
4007 @item @samp{sqrt@var{m}2}
4008 Store the square root of operand 1 into operand 0.
4010 The @code{sqrt} built-in function of C always uses the mode which
4011 corresponds to the C data type @code{double} and the @code{sqrtf}
4012 built-in function uses the mode which corresponds to the C data
4013 type @code{float}.
4015 @cindex @code{fmod@var{m}3} instruction pattern
4016 @item @samp{fmod@var{m}3}
4017 Store the remainder of dividing operand 1 by operand 2 into
4018 operand 0, rounded towards zero to an integer.
4020 The @code{fmod} built-in function of C always uses the mode which
4021 corresponds to the C data type @code{double} and the @code{fmodf}
4022 built-in function uses the mode which corresponds to the C data
4023 type @code{float}.
4025 @cindex @code{remainder@var{m}3} instruction pattern
4026 @item @samp{remainder@var{m}3}
4027 Store the remainder of dividing operand 1 by operand 2 into
4028 operand 0, rounded to the nearest integer.
4030 The @code{remainder} built-in function of C always uses the mode
4031 which corresponds to the C data type @code{double} and the
4032 @code{remainderf} built-in function uses the mode which corresponds
4033 to the C data type @code{float}.
4035 @cindex @code{cos@var{m}2} instruction pattern
4036 @item @samp{cos@var{m}2}
4037 Store the cosine of operand 1 into operand 0.
4039 The @code{cos} built-in function of C always uses the mode which
4040 corresponds to the C data type @code{double} and the @code{cosf}
4041 built-in function uses the mode which corresponds to the C data
4042 type @code{float}.
4044 @cindex @code{sin@var{m}2} instruction pattern
4045 @item @samp{sin@var{m}2}
4046 Store the sine of operand 1 into operand 0.
4048 The @code{sin} built-in function of C always uses the mode which
4049 corresponds to the C data type @code{double} and the @code{sinf}
4050 built-in function uses the mode which corresponds to the C data
4051 type @code{float}.
4053 @cindex @code{exp@var{m}2} instruction pattern
4054 @item @samp{exp@var{m}2}
4055 Store the exponential of operand 1 into operand 0.
4057 The @code{exp} built-in function of C always uses the mode which
4058 corresponds to the C data type @code{double} and the @code{expf}
4059 built-in function uses the mode which corresponds to the C data
4060 type @code{float}.
4062 @cindex @code{log@var{m}2} instruction pattern
4063 @item @samp{log@var{m}2}
4064 Store the natural logarithm of operand 1 into operand 0.
4066 The @code{log} built-in function of C always uses the mode which
4067 corresponds to the C data type @code{double} and the @code{logf}
4068 built-in function uses the mode which corresponds to the C data
4069 type @code{float}.
4071 @cindex @code{pow@var{m}3} instruction pattern
4072 @item @samp{pow@var{m}3}
4073 Store the value of operand 1 raised to the exponent operand 2
4074 into operand 0.
4076 The @code{pow} built-in function of C always uses the mode which
4077 corresponds to the C data type @code{double} and the @code{powf}
4078 built-in function uses the mode which corresponds to the C data
4079 type @code{float}.
4081 @cindex @code{atan2@var{m}3} instruction pattern
4082 @item @samp{atan2@var{m}3}
4083 Store the arc tangent (inverse tangent) of operand 1 divided by
4084 operand 2 into operand 0, using the signs of both arguments to
4085 determine the quadrant of the result.
4087 The @code{atan2} built-in function of C always uses the mode which
4088 corresponds to the C data type @code{double} and the @code{atan2f}
4089 built-in function uses the mode which corresponds to the C data
4090 type @code{float}.
4092 @cindex @code{floor@var{m}2} instruction pattern
4093 @item @samp{floor@var{m}2}
4094 Store the largest integral value not greater than argument.
4096 The @code{floor} built-in function of C always uses the mode which
4097 corresponds to the C data type @code{double} and the @code{floorf}
4098 built-in function uses the mode which corresponds to the C data
4099 type @code{float}.
4101 @cindex @code{btrunc@var{m}2} instruction pattern
4102 @item @samp{btrunc@var{m}2}
4103 Store the argument rounded to integer towards zero.
4105 The @code{trunc} built-in function of C always uses the mode which
4106 corresponds to the C data type @code{double} and the @code{truncf}
4107 built-in function uses the mode which corresponds to the C data
4108 type @code{float}.
4110 @cindex @code{round@var{m}2} instruction pattern
4111 @item @samp{round@var{m}2}
4112 Store the argument rounded to integer away from zero.
4114 The @code{round} built-in function of C always uses the mode which
4115 corresponds to the C data type @code{double} and the @code{roundf}
4116 built-in function uses the mode which corresponds to the C data
4117 type @code{float}.
4119 @cindex @code{ceil@var{m}2} instruction pattern
4120 @item @samp{ceil@var{m}2}
4121 Store the argument rounded to integer away from zero.
4123 The @code{ceil} built-in function of C always uses the mode which
4124 corresponds to the C data type @code{double} and the @code{ceilf}
4125 built-in function uses the mode which corresponds to the C data
4126 type @code{float}.
4128 @cindex @code{nearbyint@var{m}2} instruction pattern
4129 @item @samp{nearbyint@var{m}2}
4130 Store the argument rounded according to the default rounding mode
4132 The @code{nearbyint} built-in function of C always uses the mode which
4133 corresponds to the C data type @code{double} and the @code{nearbyintf}
4134 built-in function uses the mode which corresponds to the C data
4135 type @code{float}.
4137 @cindex @code{rint@var{m}2} instruction pattern
4138 @item @samp{rint@var{m}2}
4139 Store the argument rounded according to the default rounding mode and
4140 raise the inexact exception when the result differs in value from
4141 the argument
4143 The @code{rint} built-in function of C always uses the mode which
4144 corresponds to the C data type @code{double} and the @code{rintf}
4145 built-in function uses the mode which corresponds to the C data
4146 type @code{float}.
4148 @cindex @code{lrint@var{m}@var{n}2}
4149 @item @samp{lrint@var{m}@var{n}2}
4150 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4151 point mode @var{n} as a signed number according to the current
4152 rounding mode and store in operand 0 (which has mode @var{n}).
4154 @cindex @code{lround@var{m}@var{n}2}
4155 @item @samp{lround@var{m}2}
4156 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4157 point mode @var{n} as a signed number rounding to nearest and away
4158 from zero and store in operand 0 (which has mode @var{n}).
4160 @cindex @code{lfloor@var{m}@var{n}2}
4161 @item @samp{lfloor@var{m}2}
4162 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4163 point mode @var{n} as a signed number rounding down and store in
4164 operand 0 (which has mode @var{n}).
4166 @cindex @code{lceil@var{m}@var{n}2}
4167 @item @samp{lceil@var{m}2}
4168 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4169 point mode @var{n} as a signed number rounding up and store in
4170 operand 0 (which has mode @var{n}).
4172 @cindex @code{copysign@var{m}3} instruction pattern
4173 @item @samp{copysign@var{m}3}
4174 Store a value with the magnitude of operand 1 and the sign of operand
4175 2 into operand 0.
4177 The @code{copysign} built-in function of C always uses the mode which
4178 corresponds to the C data type @code{double} and the @code{copysignf}
4179 built-in function uses the mode which corresponds to the C data
4180 type @code{float}.
4182 @cindex @code{ffs@var{m}2} instruction pattern
4183 @item @samp{ffs@var{m}2}
4184 Store into operand 0 one plus the index of the least significant 1-bit
4185 of operand 1.  If operand 1 is zero, store zero.  @var{m} is the mode
4186 of operand 0; operand 1's mode is specified by the instruction
4187 pattern, and the compiler will convert the operand to that mode before
4188 generating the instruction.
4190 The @code{ffs} built-in function of C always uses the mode which
4191 corresponds to the C data type @code{int}.
4193 @cindex @code{clz@var{m}2} instruction pattern
4194 @item @samp{clz@var{m}2}
4195 Store into operand 0 the number of leading 0-bits in @var{x}, starting
4196 at the most significant bit position.  If @var{x} is 0, the
4197 @code{CLZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
4198 the result is undefined or has a useful value.
4199 @var{m} is the mode of operand 0; operand 1's mode is
4200 specified by the instruction pattern, and the compiler will convert the
4201 operand to that mode before generating the instruction.
4203 @cindex @code{ctz@var{m}2} instruction pattern
4204 @item @samp{ctz@var{m}2}
4205 Store into operand 0 the number of trailing 0-bits in @var{x}, starting
4206 at the least significant bit position.  If @var{x} is 0, the
4207 @code{CTZ_DEFINED_VALUE_AT_ZERO} (@pxref{Misc}) macro defines if
4208 the result is undefined or has a useful value.
4209 @var{m} is the mode of operand 0; operand 1's mode is
4210 specified by the instruction pattern, and the compiler will convert the
4211 operand to that mode before generating the instruction.
4213 @cindex @code{popcount@var{m}2} instruction pattern
4214 @item @samp{popcount@var{m}2}
4215 Store into operand 0 the number of 1-bits in @var{x}.  @var{m} is the
4216 mode of operand 0; operand 1's mode is specified by the instruction
4217 pattern, and the compiler will convert the operand to that mode before
4218 generating the instruction.
4220 @cindex @code{parity@var{m}2} instruction pattern
4221 @item @samp{parity@var{m}2}
4222 Store into operand 0 the parity of @var{x}, i.e.@: the number of 1-bits
4223 in @var{x} modulo 2.  @var{m} is the mode of operand 0; operand 1's mode
4224 is specified by the instruction pattern, and the compiler will convert
4225 the operand to that mode before generating the instruction.
4227 @cindex @code{one_cmpl@var{m}2} instruction pattern
4228 @item @samp{one_cmpl@var{m}2}
4229 Store the bitwise-complement of operand 1 into operand 0.
4231 @cindex @code{cmp@var{m}} instruction pattern
4232 @item @samp{cmp@var{m}}
4233 Compare operand 0 and operand 1, and set the condition codes.
4234 The RTL pattern should look like this:
4236 @smallexample
4237 (set (cc0) (compare (match_operand:@var{m} 0 @dots{})
4238                     (match_operand:@var{m} 1 @dots{})))
4239 @end smallexample
4241 @cindex @code{tst@var{m}} instruction pattern
4242 @item @samp{tst@var{m}}
4243 Compare operand 0 against zero, and set the condition codes.
4244 The RTL pattern should look like this:
4246 @smallexample
4247 (set (cc0) (match_operand:@var{m} 0 @dots{}))
4248 @end smallexample
4250 @samp{tst@var{m}} patterns should not be defined for machines that do
4251 not use @code{(cc0)}.  Doing so would confuse the optimizer since it
4252 would no longer be clear which @code{set} operations were comparisons.
4253 The @samp{cmp@var{m}} patterns should be used instead.
4255 @cindex @code{movmem@var{m}} instruction pattern
4256 @item @samp{movmem@var{m}}
4257 Block move instruction.  The destination and source blocks of memory
4258 are the first two operands, and both are @code{mem:BLK}s with an
4259 address in mode @code{Pmode}.
4261 The number of bytes to move is the third operand, in mode @var{m}.
4262 Usually, you specify @code{word_mode} for @var{m}.  However, if you can
4263 generate better code knowing the range of valid lengths is smaller than
4264 those representable in a full word, you should provide a pattern with a
4265 mode corresponding to the range of values you can handle efficiently
4266 (e.g., @code{QImode} for values in the range 0--127; note we avoid numbers
4267 that appear negative) and also a pattern with @code{word_mode}.
4269 The fourth operand is the known shared alignment of the source and
4270 destination, in the form of a @code{const_int} rtx.  Thus, if the
4271 compiler knows that both source and destination are word-aligned,
4272 it may provide the value 4 for this operand.
4274 Optional operands 5 and 6 specify expected alignment and size of block
4275 respectively.  The expected alignment differs from alignment in operand 4
4276 in a way that the blocks are not required to be aligned according to it in
4277 all cases. This expected alignment is also in bytes, just like operand 4.
4278 Expected size, when unknown, is set to @code{(const_int -1)}.
4280 Descriptions of multiple @code{movmem@var{m}} patterns can only be
4281 beneficial if the patterns for smaller modes have fewer restrictions
4282 on their first, second and fourth operands.  Note that the mode @var{m}
4283 in @code{movmem@var{m}} does not impose any restriction on the mode of
4284 individually moved data units in the block.
4286 These patterns need not give special consideration to the possibility
4287 that the source and destination strings might overlap.
4289 @cindex @code{movstr} instruction pattern
4290 @item @samp{movstr}
4291 String copy instruction, with @code{stpcpy} semantics.  Operand 0 is
4292 an output operand in mode @code{Pmode}.  The addresses of the
4293 destination and source strings are operands 1 and 2, and both are
4294 @code{mem:BLK}s with addresses in mode @code{Pmode}.  The execution of
4295 the expansion of this pattern should store in operand 0 the address in
4296 which the @code{NUL} terminator was stored in the destination string.
4298 @cindex @code{setmem@var{m}} instruction pattern
4299 @item @samp{setmem@var{m}}
4300 Block set instruction.  The destination string is the first operand,
4301 given as a @code{mem:BLK} whose address is in mode @code{Pmode}.  The
4302 number of bytes to set is the second operand, in mode @var{m}.  The value to
4303 initialize the memory with is the third operand. Targets that only support the
4304 clearing of memory should reject any value that is not the constant 0.  See
4305 @samp{movmem@var{m}} for a discussion of the choice of mode.
4307 The fourth operand is the known alignment of the destination, in the form
4308 of a @code{const_int} rtx.  Thus, if the compiler knows that the
4309 destination is word-aligned, it may provide the value 4 for this
4310 operand.
4312 Optional operands 5 and 6 specify expected alignment and size of block
4313 respectively.  The expected alignment differs from alignment in operand 4
4314 in a way that the blocks are not required to be aligned according to it in
4315 all cases. This expected alignment is also in bytes, just like operand 4.
4316 Expected size, when unknown, is set to @code{(const_int -1)}.
4318 The use for multiple @code{setmem@var{m}} is as for @code{movmem@var{m}}.
4320 @cindex @code{cmpstrn@var{m}} instruction pattern
4321 @item @samp{cmpstrn@var{m}}
4322 String compare instruction, with five operands.  Operand 0 is the output;
4323 it has mode @var{m}.  The remaining four operands are like the operands
4324 of @samp{movmem@var{m}}.  The two memory blocks specified are compared
4325 byte by byte in lexicographic order starting at the beginning of each
4326 string.  The instruction is not allowed to prefetch more than one byte
4327 at a time since either string may end in the first byte and reading past
4328 that may access an invalid page or segment and cause a fault.  The
4329 effect of the instruction is to store a value in operand 0 whose sign
4330 indicates the result of the comparison.
4332 @cindex @code{cmpstr@var{m}} instruction pattern
4333 @item @samp{cmpstr@var{m}}
4334 String compare instruction, without known maximum length.  Operand 0 is the
4335 output; it has mode @var{m}.  The second and third operand are the blocks of
4336 memory to be compared; both are @code{mem:BLK} with an address in mode
4337 @code{Pmode}.
4339 The fourth operand is the known shared alignment of the source and
4340 destination, in the form of a @code{const_int} rtx.  Thus, if the
4341 compiler knows that both source and destination are word-aligned,
4342 it may provide the value 4 for this operand.
4344 The two memory blocks specified are compared byte by byte in lexicographic
4345 order starting at the beginning of each string.  The instruction is not allowed
4346 to prefetch more than one byte at a time since either string may end in the
4347 first byte and reading past that may access an invalid page or segment and
4348 cause a fault.  The effect of the instruction is to store a value in operand 0
4349 whose sign indicates the result of the comparison.
4351 @cindex @code{cmpmem@var{m}} instruction pattern
4352 @item @samp{cmpmem@var{m}}
4353 Block compare instruction, with five operands like the operands
4354 of @samp{cmpstr@var{m}}.  The two memory blocks specified are compared
4355 byte by byte in lexicographic order starting at the beginning of each
4356 block.  Unlike @samp{cmpstr@var{m}} the instruction can prefetch
4357 any bytes in the two memory blocks.  The effect of the instruction is
4358 to store a value in operand 0 whose sign indicates the result of the
4359 comparison.
4361 @cindex @code{strlen@var{m}} instruction pattern
4362 @item @samp{strlen@var{m}}
4363 Compute the length of a string, with three operands.
4364 Operand 0 is the result (of mode @var{m}), operand 1 is
4365 a @code{mem} referring to the first character of the string,
4366 operand 2 is the character to search for (normally zero),
4367 and operand 3 is a constant describing the known alignment
4368 of the beginning of the string.
4370 @cindex @code{float@var{mn}2} instruction pattern
4371 @item @samp{float@var{m}@var{n}2}
4372 Convert signed integer operand 1 (valid for fixed point mode @var{m}) to
4373 floating point mode @var{n} and store in operand 0 (which has mode
4374 @var{n}).
4376 @cindex @code{floatuns@var{mn}2} instruction pattern
4377 @item @samp{floatuns@var{m}@var{n}2}
4378 Convert unsigned integer operand 1 (valid for fixed point mode @var{m})
4379 to floating point mode @var{n} and store in operand 0 (which has mode
4380 @var{n}).
4382 @cindex @code{fix@var{mn}2} instruction pattern
4383 @item @samp{fix@var{m}@var{n}2}
4384 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4385 point mode @var{n} as a signed number and store in operand 0 (which
4386 has mode @var{n}).  This instruction's result is defined only when
4387 the value of operand 1 is an integer.
4389 If the machine description defines this pattern, it also needs to
4390 define the @code{ftrunc} pattern.
4392 @cindex @code{fixuns@var{mn}2} instruction pattern
4393 @item @samp{fixuns@var{m}@var{n}2}
4394 Convert operand 1 (valid for floating point mode @var{m}) to fixed
4395 point mode @var{n} as an unsigned number and store in operand 0 (which
4396 has mode @var{n}).  This instruction's result is defined only when the
4397 value of operand 1 is an integer.
4399 @cindex @code{ftrunc@var{m}2} instruction pattern
4400 @item @samp{ftrunc@var{m}2}
4401 Convert operand 1 (valid for floating point mode @var{m}) to an
4402 integer value, still represented in floating point mode @var{m}, and
4403 store it in operand 0 (valid for floating point mode @var{m}).
4405 @cindex @code{fix_trunc@var{mn}2} instruction pattern
4406 @item @samp{fix_trunc@var{m}@var{n}2}
4407 Like @samp{fix@var{m}@var{n}2} but works for any floating point value
4408 of mode @var{m} by converting the value to an integer.
4410 @cindex @code{fixuns_trunc@var{mn}2} instruction pattern
4411 @item @samp{fixuns_trunc@var{m}@var{n}2}
4412 Like @samp{fixuns@var{m}@var{n}2} but works for any floating point
4413 value of mode @var{m} by converting the value to an integer.
4415 @cindex @code{trunc@var{mn}2} instruction pattern
4416 @item @samp{trunc@var{m}@var{n}2}
4417 Truncate operand 1 (valid for mode @var{m}) to mode @var{n} and
4418 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
4419 point or both floating point.
4421 @cindex @code{extend@var{mn}2} instruction pattern
4422 @item @samp{extend@var{m}@var{n}2}
4423 Sign-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
4424 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
4425 point or both floating point.
4427 @cindex @code{zero_extend@var{mn}2} instruction pattern
4428 @item @samp{zero_extend@var{m}@var{n}2}
4429 Zero-extend operand 1 (valid for mode @var{m}) to mode @var{n} and
4430 store in operand 0 (which has mode @var{n}).  Both modes must be fixed
4431 point.
4433 @cindex @code{fract@var{mn}2} instruction pattern
4434 @item @samp{fract@var{m}@var{n}2}
4435 Convert operand 1 of mode @var{m} to mode @var{n} and store in
4436 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
4437 could be fixed-point to fixed-point, signed integer to fixed-point,
4438 fixed-point to signed integer, floating-point to fixed-point,
4439 or fixed-point to floating-point.
4440 When overflows or underflows happen, the results are undefined.
4442 @cindex @code{satfract@var{mn}2} instruction pattern
4443 @item @samp{satfract@var{m}@var{n}2}
4444 Convert operand 1 of mode @var{m} to mode @var{n} and store in
4445 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
4446 could be fixed-point to fixed-point, signed integer to fixed-point,
4447 or floating-point to fixed-point.
4448 When overflows or underflows happen, the instruction saturates the
4449 results to the maximum or the minimum.
4451 @cindex @code{fractuns@var{mn}2} instruction pattern
4452 @item @samp{fractuns@var{m}@var{n}2}
4453 Convert operand 1 of mode @var{m} to mode @var{n} and store in
4454 operand 0 (which has mode @var{n}).  Mode @var{m} and mode @var{n}
4455 could be unsigned integer to fixed-point, or
4456 fixed-point to unsigned integer.
4457 When overflows or underflows happen, the results are undefined.
4459 @cindex @code{satfractuns@var{mn}2} instruction pattern
4460 @item @samp{satfractuns@var{m}@var{n}2}
4461 Convert unsigned integer operand 1 of mode @var{m} to fixed-point mode
4462 @var{n} and store in operand 0 (which has mode @var{n}).
4463 When overflows or underflows happen, the instruction saturates the
4464 results to the maximum or the minimum.
4466 @cindex @code{extv} instruction pattern
4467 @item @samp{extv}
4468 Extract a bit-field from operand 1 (a register or memory operand), where
4469 operand 2 specifies the width in bits and operand 3 the starting bit,
4470 and store it in operand 0.  Operand 0 must have mode @code{word_mode}.
4471 Operand 1 may have mode @code{byte_mode} or @code{word_mode}; often
4472 @code{word_mode} is allowed only for registers.  Operands 2 and 3 must
4473 be valid for @code{word_mode}.
4475 The RTL generation pass generates this instruction only with constants
4476 for operands 2 and 3 and the constant is never zero for operand 2.
4478 The bit-field value is sign-extended to a full word integer
4479 before it is stored in operand 0.
4481 @cindex @code{extzv} instruction pattern
4482 @item @samp{extzv}
4483 Like @samp{extv} except that the bit-field value is zero-extended.
4485 @cindex @code{insv} instruction pattern
4486 @item @samp{insv}
4487 Store operand 3 (which must be valid for @code{word_mode}) into a
4488 bit-field in operand 0, where operand 1 specifies the width in bits and
4489 operand 2 the starting bit.  Operand 0 may have mode @code{byte_mode} or
4490 @code{word_mode}; often @code{word_mode} is allowed only for registers.
4491 Operands 1 and 2 must be valid for @code{word_mode}.
4493 The RTL generation pass generates this instruction only with constants
4494 for operands 1 and 2 and the constant is never zero for operand 1.
4496 @cindex @code{mov@var{mode}cc} instruction pattern
4497 @item @samp{mov@var{mode}cc}
4498 Conditionally move operand 2 or operand 3 into operand 0 according to the
4499 comparison in operand 1.  If the comparison is true, operand 2 is moved
4500 into operand 0, otherwise operand 3 is moved.
4502 The mode of the operands being compared need not be the same as the operands
4503 being moved.  Some machines, sparc64 for example, have instructions that
4504 conditionally move an integer value based on the floating point condition
4505 codes and vice versa.
4507 If the machine does not have conditional move instructions, do not
4508 define these patterns.
4510 @cindex @code{add@var{mode}cc} instruction pattern
4511 @item @samp{add@var{mode}cc}
4512 Similar to @samp{mov@var{mode}cc} but for conditional addition.  Conditionally
4513 move operand 2 or (operands 2 + operand 3) into operand 0 according to the
4514 comparison in operand 1.  If the comparison is true, operand 2 is moved into
4515 operand 0, otherwise (operand 2 + operand 3) is moved.
4517 @cindex @code{s@var{cond}} instruction pattern
4518 @item @samp{s@var{cond}}
4519 Store zero or nonzero in the operand according to the condition codes.
4520 Value stored is nonzero iff the condition @var{cond} is true.
4521 @var{cond} is the name of a comparison operation expression code, such
4522 as @code{eq}, @code{lt} or @code{leu}.
4524 You specify the mode that the operand must have when you write the
4525 @code{match_operand} expression.  The compiler automatically sees
4526 which mode you have used and supplies an operand of that mode.
4528 The value stored for a true condition must have 1 as its low bit, or
4529 else must be negative.  Otherwise the instruction is not suitable and
4530 you should omit it from the machine description.  You describe to the
4531 compiler exactly which value is stored by defining the macro
4532 @code{STORE_FLAG_VALUE} (@pxref{Misc}).  If a description cannot be
4533 found that can be used for all the @samp{s@var{cond}} patterns, you
4534 should omit those operations from the machine description.
4536 These operations may fail, but should do so only in relatively
4537 uncommon cases; if they would fail for common cases involving
4538 integer comparisons, it is best to omit these patterns.
4540 If these operations are omitted, the compiler will usually generate code
4541 that copies the constant one to the target and branches around an
4542 assignment of zero to the target.  If this code is more efficient than
4543 the potential instructions used for the @samp{s@var{cond}} pattern
4544 followed by those required to convert the result into a 1 or a zero in
4545 @code{SImode}, you should omit the @samp{s@var{cond}} operations from
4546 the machine description.
4548 @cindex @code{b@var{cond}} instruction pattern
4549 @item @samp{b@var{cond}}
4550 Conditional branch instruction.  Operand 0 is a @code{label_ref} that
4551 refers to the label to jump to.  Jump if the condition codes meet
4552 condition @var{cond}.
4554 Some machines do not follow the model assumed here where a comparison
4555 instruction is followed by a conditional branch instruction.  In that
4556 case, the @samp{cmp@var{m}} (and @samp{tst@var{m}}) patterns should
4557 simply store the operands away and generate all the required insns in a
4558 @code{define_expand} (@pxref{Expander Definitions}) for the conditional
4559 branch operations.  All calls to expand @samp{b@var{cond}} patterns are
4560 immediately preceded by calls to expand either a @samp{cmp@var{m}}
4561 pattern or a @samp{tst@var{m}} pattern.
4563 Machines that use a pseudo register for the condition code value, or
4564 where the mode used for the comparison depends on the condition being
4565 tested, should also use the above mechanism.  @xref{Jump Patterns}.
4567 The above discussion also applies to the @samp{mov@var{mode}cc} and
4568 @samp{s@var{cond}} patterns.
4570 @cindex @code{cbranch@var{mode}4} instruction pattern
4571 @item @samp{cbranch@var{mode}4}
4572 Conditional branch instruction combined with a compare instruction.
4573 Operand 0 is a comparison operator.  Operand 1 and operand 2 are the
4574 first and second operands of the comparison, respectively.  Operand 3
4575 is a @code{label_ref} that refers to the label to jump to.
4577 @cindex @code{jump} instruction pattern
4578 @item @samp{jump}
4579 A jump inside a function; an unconditional branch.  Operand 0 is the
4580 @code{label_ref} of the label to jump to.  This pattern name is mandatory
4581 on all machines.
4583 @cindex @code{call} instruction pattern
4584 @item @samp{call}
4585 Subroutine call instruction returning no value.  Operand 0 is the
4586 function to call; operand 1 is the number of bytes of arguments pushed
4587 as a @code{const_int}; operand 2 is the number of registers used as
4588 operands.
4590 On most machines, operand 2 is not actually stored into the RTL
4591 pattern.  It is supplied for the sake of some RISC machines which need
4592 to put this information into the assembler code; they can put it in
4593 the RTL instead of operand 1.
4595 Operand 0 should be a @code{mem} RTX whose address is the address of the
4596 function.  Note, however, that this address can be a @code{symbol_ref}
4597 expression even if it would not be a legitimate memory address on the
4598 target machine.  If it is also not a valid argument for a call
4599 instruction, the pattern for this operation should be a
4600 @code{define_expand} (@pxref{Expander Definitions}) that places the
4601 address into a register and uses that register in the call instruction.
4603 @cindex @code{call_value} instruction pattern
4604 @item @samp{call_value}
4605 Subroutine call instruction returning a value.  Operand 0 is the hard
4606 register in which the value is returned.  There are three more
4607 operands, the same as the three operands of the @samp{call}
4608 instruction (but with numbers increased by one).
4610 Subroutines that return @code{BLKmode} objects use the @samp{call}
4611 insn.
4613 @cindex @code{call_pop} instruction pattern
4614 @cindex @code{call_value_pop} instruction pattern
4615 @item @samp{call_pop}, @samp{call_value_pop}
4616 Similar to @samp{call} and @samp{call_value}, except used if defined and
4617 if @code{RETURN_POPS_ARGS} is nonzero.  They should emit a @code{parallel}
4618 that contains both the function call and a @code{set} to indicate the
4619 adjustment made to the frame pointer.
4621 For machines where @code{RETURN_POPS_ARGS} can be nonzero, the use of these
4622 patterns increases the number of functions for which the frame pointer
4623 can be eliminated, if desired.
4625 @cindex @code{untyped_call} instruction pattern
4626 @item @samp{untyped_call}
4627 Subroutine call instruction returning a value of any type.  Operand 0 is
4628 the function to call; operand 1 is a memory location where the result of
4629 calling the function is to be stored; operand 2 is a @code{parallel}
4630 expression where each element is a @code{set} expression that indicates
4631 the saving of a function return value into the result block.
4633 This instruction pattern should be defined to support
4634 @code{__builtin_apply} on machines where special instructions are needed
4635 to call a subroutine with arbitrary arguments or to save the value
4636 returned.  This instruction pattern is required on machines that have
4637 multiple registers that can hold a return value
4638 (i.e.@: @code{FUNCTION_VALUE_REGNO_P} is true for more than one register).
4640 @cindex @code{return} instruction pattern
4641 @item @samp{return}
4642 Subroutine return instruction.  This instruction pattern name should be
4643 defined only if a single instruction can do all the work of returning
4644 from a function.
4646 Like the @samp{mov@var{m}} patterns, this pattern is also used after the
4647 RTL generation phase.  In this case it is to support machines where
4648 multiple instructions are usually needed to return from a function, but
4649 some class of functions only requires one instruction to implement a
4650 return.  Normally, the applicable functions are those which do not need
4651 to save any registers or allocate stack space.
4653 @findex reload_completed
4654 @findex leaf_function_p
4655 For such machines, the condition specified in this pattern should only
4656 be true when @code{reload_completed} is nonzero and the function's
4657 epilogue would only be a single instruction.  For machines with register
4658 windows, the routine @code{leaf_function_p} may be used to determine if
4659 a register window push is required.
4661 Machines that have conditional return instructions should define patterns
4662 such as
4664 @smallexample
4665 (define_insn ""
4666   [(set (pc)
4667         (if_then_else (match_operator
4668                          0 "comparison_operator"
4669                          [(cc0) (const_int 0)])
4670                       (return)
4671                       (pc)))]
4672   "@var{condition}"
4673   "@dots{}")
4674 @end smallexample
4676 where @var{condition} would normally be the same condition specified on the
4677 named @samp{return} pattern.
4679 @cindex @code{untyped_return} instruction pattern
4680 @item @samp{untyped_return}
4681 Untyped subroutine return instruction.  This instruction pattern should
4682 be defined to support @code{__builtin_return} on machines where special
4683 instructions are needed to return a value of any type.
4685 Operand 0 is a memory location where the result of calling a function
4686 with @code{__builtin_apply} is stored; operand 1 is a @code{parallel}
4687 expression where each element is a @code{set} expression that indicates
4688 the restoring of a function return value from the result block.
4690 @cindex @code{nop} instruction pattern
4691 @item @samp{nop}
4692 No-op instruction.  This instruction pattern name should always be defined
4693 to output a no-op in assembler code.  @code{(const_int 0)} will do as an
4694 RTL pattern.
4696 @cindex @code{indirect_jump} instruction pattern
4697 @item @samp{indirect_jump}
4698 An instruction to jump to an address which is operand zero.
4699 This pattern name is mandatory on all machines.
4701 @cindex @code{casesi} instruction pattern
4702 @item @samp{casesi}
4703 Instruction to jump through a dispatch table, including bounds checking.
4704 This instruction takes five operands:
4706 @enumerate
4707 @item
4708 The index to dispatch on, which has mode @code{SImode}.
4710 @item
4711 The lower bound for indices in the table, an integer constant.
4713 @item
4714 The total range of indices in the table---the largest index
4715 minus the smallest one (both inclusive).
4717 @item
4718 A label that precedes the table itself.
4720 @item
4721 A label to jump to if the index has a value outside the bounds.
4722 @end enumerate
4724 The table is a @code{addr_vec} or @code{addr_diff_vec} inside of a
4725 @code{jump_insn}.  The number of elements in the table is one plus the
4726 difference between the upper bound and the lower bound.
4728 @cindex @code{tablejump} instruction pattern
4729 @item @samp{tablejump}
4730 Instruction to jump to a variable address.  This is a low-level
4731 capability which can be used to implement a dispatch table when there
4732 is no @samp{casesi} pattern.
4734 This pattern requires two operands: the address or offset, and a label
4735 which should immediately precede the jump table.  If the macro
4736 @code{CASE_VECTOR_PC_RELATIVE} evaluates to a nonzero value then the first
4737 operand is an offset which counts from the address of the table; otherwise,
4738 it is an absolute address to jump to.  In either case, the first operand has
4739 mode @code{Pmode}.
4741 The @samp{tablejump} insn is always the last insn before the jump
4742 table it uses.  Its assembler code normally has no need to use the
4743 second operand, but you should incorporate it in the RTL pattern so
4744 that the jump optimizer will not delete the table as unreachable code.
4747 @cindex @code{decrement_and_branch_until_zero} instruction pattern
4748 @item @samp{decrement_and_branch_until_zero}
4749 Conditional branch instruction that decrements a register and
4750 jumps if the register is nonzero.  Operand 0 is the register to
4751 decrement and test; operand 1 is the label to jump to if the
4752 register is nonzero.  @xref{Looping Patterns}.
4754 This optional instruction pattern is only used by the combiner,
4755 typically for loops reversed by the loop optimizer when strength
4756 reduction is enabled.
4758 @cindex @code{doloop_end} instruction pattern
4759 @item @samp{doloop_end}
4760 Conditional branch instruction that decrements a register and jumps if
4761 the register is nonzero.  This instruction takes five operands: Operand
4762 0 is the register to decrement and test; operand 1 is the number of loop
4763 iterations as a @code{const_int} or @code{const0_rtx} if this cannot be
4764 determined until run-time; operand 2 is the actual or estimated maximum
4765 number of iterations as a @code{const_int}; operand 3 is the number of
4766 enclosed loops as a @code{const_int} (an innermost loop has a value of
4767 1); operand 4 is the label to jump to if the register is nonzero.
4768 @xref{Looping Patterns}.
4770 This optional instruction pattern should be defined for machines with
4771 low-overhead looping instructions as the loop optimizer will try to
4772 modify suitable loops to utilize it.  If nested low-overhead looping is
4773 not supported, use a @code{define_expand} (@pxref{Expander Definitions})
4774 and make the pattern fail if operand 3 is not @code{const1_rtx}.
4775 Similarly, if the actual or estimated maximum number of iterations is
4776 too large for this instruction, make it fail.
4778 @cindex @code{doloop_begin} instruction pattern
4779 @item @samp{doloop_begin}
4780 Companion instruction to @code{doloop_end} required for machines that
4781 need to perform some initialization, such as loading special registers
4782 used by a low-overhead looping instruction.  If initialization insns do
4783 not always need to be emitted, use a @code{define_expand}
4784 (@pxref{Expander Definitions}) and make it fail.
4787 @cindex @code{canonicalize_funcptr_for_compare} instruction pattern
4788 @item @samp{canonicalize_funcptr_for_compare}
4789 Canonicalize the function pointer in operand 1 and store the result
4790 into operand 0.
4792 Operand 0 is always a @code{reg} and has mode @code{Pmode}; operand 1
4793 may be a @code{reg}, @code{mem}, @code{symbol_ref}, @code{const_int}, etc
4794 and also has mode @code{Pmode}.
4796 Canonicalization of a function pointer usually involves computing
4797 the address of the function which would be called if the function
4798 pointer were used in an indirect call.
4800 Only define this pattern if function pointers on the target machine
4801 can have different values but still call the same function when
4802 used in an indirect call.
4804 @cindex @code{save_stack_block} instruction pattern
4805 @cindex @code{save_stack_function} instruction pattern
4806 @cindex @code{save_stack_nonlocal} instruction pattern
4807 @cindex @code{restore_stack_block} instruction pattern
4808 @cindex @code{restore_stack_function} instruction pattern
4809 @cindex @code{restore_stack_nonlocal} instruction pattern
4810 @item @samp{save_stack_block}
4811 @itemx @samp{save_stack_function}
4812 @itemx @samp{save_stack_nonlocal}
4813 @itemx @samp{restore_stack_block}
4814 @itemx @samp{restore_stack_function}
4815 @itemx @samp{restore_stack_nonlocal}
4816 Most machines save and restore the stack pointer by copying it to or
4817 from an object of mode @code{Pmode}.  Do not define these patterns on
4818 such machines.
4820 Some machines require special handling for stack pointer saves and
4821 restores.  On those machines, define the patterns corresponding to the
4822 non-standard cases by using a @code{define_expand} (@pxref{Expander
4823 Definitions}) that produces the required insns.  The three types of
4824 saves and restores are:
4826 @enumerate
4827 @item
4828 @samp{save_stack_block} saves the stack pointer at the start of a block
4829 that allocates a variable-sized object, and @samp{restore_stack_block}
4830 restores the stack pointer when the block is exited.
4832 @item
4833 @samp{save_stack_function} and @samp{restore_stack_function} do a
4834 similar job for the outermost block of a function and are used when the
4835 function allocates variable-sized objects or calls @code{alloca}.  Only
4836 the epilogue uses the restored stack pointer, allowing a simpler save or
4837 restore sequence on some machines.
4839 @item
4840 @samp{save_stack_nonlocal} is used in functions that contain labels
4841 branched to by nested functions.  It saves the stack pointer in such a
4842 way that the inner function can use @samp{restore_stack_nonlocal} to
4843 restore the stack pointer.  The compiler generates code to restore the
4844 frame and argument pointer registers, but some machines require saving
4845 and restoring additional data such as register window information or
4846 stack backchains.  Place insns in these patterns to save and restore any
4847 such required data.
4848 @end enumerate
4850 When saving the stack pointer, operand 0 is the save area and operand 1
4851 is the stack pointer.  The mode used to allocate the save area defaults
4852 to @code{Pmode} but you can override that choice by defining the
4853 @code{STACK_SAVEAREA_MODE} macro (@pxref{Storage Layout}).  You must
4854 specify an integral mode, or @code{VOIDmode} if no save area is needed
4855 for a particular type of save (either because no save is needed or
4856 because a machine-specific save area can be used).  Operand 0 is the
4857 stack pointer and operand 1 is the save area for restore operations.  If
4858 @samp{save_stack_block} is defined, operand 0 must not be
4859 @code{VOIDmode} since these saves can be arbitrarily nested.
4861 A save area is a @code{mem} that is at a constant offset from
4862 @code{virtual_stack_vars_rtx} when the stack pointer is saved for use by
4863 nonlocal gotos and a @code{reg} in the other two cases.
4865 @cindex @code{allocate_stack} instruction pattern
4866 @item @samp{allocate_stack}
4867 Subtract (or add if @code{STACK_GROWS_DOWNWARD} is undefined) operand 1 from
4868 the stack pointer to create space for dynamically allocated data.
4870 Store the resultant pointer to this space into operand 0.  If you
4871 are allocating space from the main stack, do this by emitting a
4872 move insn to copy @code{virtual_stack_dynamic_rtx} to operand 0.
4873 If you are allocating the space elsewhere, generate code to copy the
4874 location of the space to operand 0.  In the latter case, you must
4875 ensure this space gets freed when the corresponding space on the main
4876 stack is free.
4878 Do not define this pattern if all that must be done is the subtraction.
4879 Some machines require other operations such as stack probes or
4880 maintaining the back chain.  Define this pattern to emit those
4881 operations in addition to updating the stack pointer.
4883 @cindex @code{check_stack} instruction pattern
4884 @item @samp{check_stack}
4885 If stack checking cannot be done on your system by probing the stack with
4886 a load or store instruction (@pxref{Stack Checking}), define this pattern
4887 to perform the needed check and signaling an error if the stack
4888 has overflowed.  The single operand is the location in the stack furthest
4889 from the current stack pointer that you need to validate.  Normally,
4890 on machines where this pattern is needed, you would obtain the stack
4891 limit from a global or thread-specific variable or register.
4893 @cindex @code{nonlocal_goto} instruction pattern
4894 @item @samp{nonlocal_goto}
4895 Emit code to generate a non-local goto, e.g., a jump from one function
4896 to a label in an outer function.  This pattern has four arguments,
4897 each representing a value to be used in the jump.  The first
4898 argument is to be loaded into the frame pointer, the second is
4899 the address to branch to (code to dispatch to the actual label),
4900 the third is the address of a location where the stack is saved,
4901 and the last is the address of the label, to be placed in the
4902 location for the incoming static chain.
4904 On most machines you need not define this pattern, since GCC will
4905 already generate the correct code, which is to load the frame pointer
4906 and static chain, restore the stack (using the
4907 @samp{restore_stack_nonlocal} pattern, if defined), and jump indirectly
4908 to the dispatcher.  You need only define this pattern if this code will
4909 not work on your machine.
4911 @cindex @code{nonlocal_goto_receiver} instruction pattern
4912 @item @samp{nonlocal_goto_receiver}
4913 This pattern, if defined, contains code needed at the target of a
4914 nonlocal goto after the code already generated by GCC@.  You will not
4915 normally need to define this pattern.  A typical reason why you might
4916 need this pattern is if some value, such as a pointer to a global table,
4917 must be restored when the frame pointer is restored.  Note that a nonlocal
4918 goto only occurs within a unit-of-translation, so a global table pointer
4919 that is shared by all functions of a given module need not be restored.
4920 There are no arguments.
4922 @cindex @code{exception_receiver} instruction pattern
4923 @item @samp{exception_receiver}
4924 This pattern, if defined, contains code needed at the site of an
4925 exception handler that isn't needed at the site of a nonlocal goto.  You
4926 will not normally need to define this pattern.  A typical reason why you
4927 might need this pattern is if some value, such as a pointer to a global
4928 table, must be restored after control flow is branched to the handler of
4929 an exception.  There are no arguments.
4931 @cindex @code{builtin_setjmp_setup} instruction pattern
4932 @item @samp{builtin_setjmp_setup}
4933 This pattern, if defined, contains additional code needed to initialize
4934 the @code{jmp_buf}.  You will not normally need to define this pattern.
4935 A typical reason why you might need this pattern is if some value, such
4936 as a pointer to a global table, must be restored.  Though it is
4937 preferred that the pointer value be recalculated if possible (given the
4938 address of a label for instance).  The single argument is a pointer to
4939 the @code{jmp_buf}.  Note that the buffer is five words long and that
4940 the first three are normally used by the generic mechanism.
4942 @cindex @code{builtin_setjmp_receiver} instruction pattern
4943 @item @samp{builtin_setjmp_receiver}
4944 This pattern, if defined, contains code needed at the site of an
4945 built-in setjmp that isn't needed at the site of a nonlocal goto.  You
4946 will not normally need to define this pattern.  A typical reason why you
4947 might need this pattern is if some value, such as a pointer to a global
4948 table, must be restored.  It takes one argument, which is the label
4949 to which builtin_longjmp transfered control; this pattern may be emitted
4950 at a small offset from that label.
4952 @cindex @code{builtin_longjmp} instruction pattern
4953 @item @samp{builtin_longjmp}
4954 This pattern, if defined, performs the entire action of the longjmp.
4955 You will not normally need to define this pattern unless you also define
4956 @code{builtin_setjmp_setup}.  The single argument is a pointer to the
4957 @code{jmp_buf}.
4959 @cindex @code{eh_return} instruction pattern
4960 @item @samp{eh_return}
4961 This pattern, if defined, affects the way @code{__builtin_eh_return},
4962 and thence the call frame exception handling library routines, are
4963 built.  It is intended to handle non-trivial actions needed along
4964 the abnormal return path.
4966 The address of the exception handler to which the function should return
4967 is passed as operand to this pattern.  It will normally need to copied by
4968 the pattern to some special register or memory location.
4969 If the pattern needs to determine the location of the target call
4970 frame in order to do so, it may use @code{EH_RETURN_STACKADJ_RTX},
4971 if defined; it will have already been assigned.
4973 If this pattern is not defined, the default action will be to simply
4974 copy the return address to @code{EH_RETURN_HANDLER_RTX}.  Either
4975 that macro or this pattern needs to be defined if call frame exception
4976 handling is to be used.
4978 @cindex @code{prologue} instruction pattern
4979 @anchor{prologue instruction pattern}
4980 @item @samp{prologue}
4981 This pattern, if defined, emits RTL for entry to a function.  The function
4982 entry is responsible for setting up the stack frame, initializing the frame
4983 pointer register, saving callee saved registers, etc.
4985 Using a prologue pattern is generally preferred over defining
4986 @code{TARGET_ASM_FUNCTION_PROLOGUE} to emit assembly code for the prologue.
4988 The @code{prologue} pattern is particularly useful for targets which perform
4989 instruction scheduling.
4991 @cindex @code{epilogue} instruction pattern
4992 @anchor{epilogue instruction pattern}
4993 @item @samp{epilogue}
4994 This pattern emits RTL for exit from a function.  The function
4995 exit is responsible for deallocating the stack frame, restoring callee saved
4996 registers and emitting the return instruction.
4998 Using an epilogue pattern is generally preferred over defining
4999 @code{TARGET_ASM_FUNCTION_EPILOGUE} to emit assembly code for the epilogue.
5001 The @code{epilogue} pattern is particularly useful for targets which perform
5002 instruction scheduling or which have delay slots for their return instruction.
5004 @cindex @code{sibcall_epilogue} instruction pattern
5005 @item @samp{sibcall_epilogue}
5006 This pattern, if defined, emits RTL for exit from a function without the final
5007 branch back to the calling function.  This pattern will be emitted before any
5008 sibling call (aka tail call) sites.
5010 The @code{sibcall_epilogue} pattern must not clobber any arguments used for
5011 parameter passing or any stack slots for arguments passed to the current
5012 function.
5014 @cindex @code{trap} instruction pattern
5015 @item @samp{trap}
5016 This pattern, if defined, signals an error, typically by causing some
5017 kind of signal to be raised.  Among other places, it is used by the Java
5018 front end to signal `invalid array index' exceptions.
5020 @cindex @code{conditional_trap} instruction pattern
5021 @item @samp{conditional_trap}
5022 Conditional trap instruction.  Operand 0 is a piece of RTL which
5023 performs a comparison.  Operand 1 is the trap code, an integer.
5025 A typical @code{conditional_trap} pattern looks like
5027 @smallexample
5028 (define_insn "conditional_trap"
5029   [(trap_if (match_operator 0 "trap_operator"
5030              [(cc0) (const_int 0)])
5031             (match_operand 1 "const_int_operand" "i"))]
5032   ""
5033   "@dots{}")
5034 @end smallexample
5036 @cindex @code{prefetch} instruction pattern
5037 @item @samp{prefetch}
5039 This pattern, if defined, emits code for a non-faulting data prefetch
5040 instruction.  Operand 0 is the address of the memory to prefetch.  Operand 1
5041 is a constant 1 if the prefetch is preparing for a write to the memory
5042 address, or a constant 0 otherwise.  Operand 2 is the expected degree of
5043 temporal locality of the data and is a value between 0 and 3, inclusive; 0
5044 means that the data has no temporal locality, so it need not be left in the
5045 cache after the access; 3 means that the data has a high degree of temporal
5046 locality and should be left in all levels of cache possible;  1 and 2 mean,
5047 respectively, a low or moderate degree of temporal locality.
5049 Targets that do not support write prefetches or locality hints can ignore
5050 the values of operands 1 and 2.
5052 @cindex @code{blockage} instruction pattern
5053 @item @samp{blockage}
5055 This pattern defines a pseudo insn that prevents the instruction
5056 scheduler from moving instructions across the boundary defined by the
5057 blockage insn.  Normally an UNSPEC_VOLATILE pattern.
5059 @cindex @code{memory_barrier} instruction pattern
5060 @item @samp{memory_barrier}
5062 If the target memory model is not fully synchronous, then this pattern
5063 should be defined to an instruction that orders both loads and stores
5064 before the instruction with respect to loads and stores after the instruction.
5065 This pattern has no operands.
5067 @cindex @code{sync_compare_and_swap@var{mode}} instruction pattern
5068 @item @samp{sync_compare_and_swap@var{mode}}
5070 This pattern, if defined, emits code for an atomic compare-and-swap
5071 operation.  Operand 1 is the memory on which the atomic operation is
5072 performed.  Operand 2 is the ``old'' value to be compared against the
5073 current contents of the memory location.  Operand 3 is the ``new'' value
5074 to store in the memory if the compare succeeds.  Operand 0 is the result
5075 of the operation; it should contain the contents of the memory
5076 before the operation.  If the compare succeeds, this should obviously be
5077 a copy of operand 2.
5079 This pattern must show that both operand 0 and operand 1 are modified.
5081 This pattern must issue any memory barrier instructions such that all
5082 memory operations before the atomic operation occur before the atomic
5083 operation and all memory operations after the atomic operation occur
5084 after the atomic operation.
5086 @cindex @code{sync_compare_and_swap_cc@var{mode}} instruction pattern
5087 @item @samp{sync_compare_and_swap_cc@var{mode}}
5089 This pattern is just like @code{sync_compare_and_swap@var{mode}}, except
5090 it should act as if compare part of the compare-and-swap were issued via
5091 @code{cmp@var{m}}.  This comparison will only be used with @code{EQ} and
5092 @code{NE} branches and @code{setcc} operations.
5094 Some targets do expose the success or failure of the compare-and-swap
5095 operation via the status flags.  Ideally we wouldn't need a separate
5096 named pattern in order to take advantage of this, but the combine pass
5097 does not handle patterns with multiple sets, which is required by
5098 definition for @code{sync_compare_and_swap@var{mode}}.
5100 @cindex @code{sync_add@var{mode}} instruction pattern
5101 @cindex @code{sync_sub@var{mode}} instruction pattern
5102 @cindex @code{sync_ior@var{mode}} instruction pattern
5103 @cindex @code{sync_and@var{mode}} instruction pattern
5104 @cindex @code{sync_xor@var{mode}} instruction pattern
5105 @cindex @code{sync_nand@var{mode}} instruction pattern
5106 @item @samp{sync_add@var{mode}}, @samp{sync_sub@var{mode}}
5107 @itemx @samp{sync_ior@var{mode}}, @samp{sync_and@var{mode}}
5108 @itemx @samp{sync_xor@var{mode}}, @samp{sync_nand@var{mode}}
5110 These patterns emit code for an atomic operation on memory.
5111 Operand 0 is the memory on which the atomic operation is performed.
5112 Operand 1 is the second operand to the binary operator.
5114 This pattern must issue any memory barrier instructions such that all
5115 memory operations before the atomic operation occur before the atomic
5116 operation and all memory operations after the atomic operation occur
5117 after the atomic operation.
5119 If these patterns are not defined, the operation will be constructed
5120 from a compare-and-swap operation, if defined.
5122 @cindex @code{sync_old_add@var{mode}} instruction pattern
5123 @cindex @code{sync_old_sub@var{mode}} instruction pattern
5124 @cindex @code{sync_old_ior@var{mode}} instruction pattern
5125 @cindex @code{sync_old_and@var{mode}} instruction pattern
5126 @cindex @code{sync_old_xor@var{mode}} instruction pattern
5127 @cindex @code{sync_old_nand@var{mode}} instruction pattern
5128 @item @samp{sync_old_add@var{mode}}, @samp{sync_old_sub@var{mode}}
5129 @itemx @samp{sync_old_ior@var{mode}}, @samp{sync_old_and@var{mode}}
5130 @itemx @samp{sync_old_xor@var{mode}}, @samp{sync_old_nand@var{mode}}
5132 These patterns are emit code for an atomic operation on memory,
5133 and return the value that the memory contained before the operation.
5134 Operand 0 is the result value, operand 1 is the memory on which the
5135 atomic operation is performed, and operand 2 is the second operand
5136 to the binary operator.
5138 This pattern must issue any memory barrier instructions such that all
5139 memory operations before the atomic operation occur before the atomic
5140 operation and all memory operations after the atomic operation occur
5141 after the atomic operation.
5143 If these patterns are not defined, the operation will be constructed
5144 from a compare-and-swap operation, if defined.
5146 @cindex @code{sync_new_add@var{mode}} instruction pattern
5147 @cindex @code{sync_new_sub@var{mode}} instruction pattern
5148 @cindex @code{sync_new_ior@var{mode}} instruction pattern
5149 @cindex @code{sync_new_and@var{mode}} instruction pattern
5150 @cindex @code{sync_new_xor@var{mode}} instruction pattern
5151 @cindex @code{sync_new_nand@var{mode}} instruction pattern
5152 @item @samp{sync_new_add@var{mode}}, @samp{sync_new_sub@var{mode}}
5153 @itemx @samp{sync_new_ior@var{mode}}, @samp{sync_new_and@var{mode}}
5154 @itemx @samp{sync_new_xor@var{mode}}, @samp{sync_new_nand@var{mode}}
5156 These patterns are like their @code{sync_old_@var{op}} counterparts,
5157 except that they return the value that exists in the memory location
5158 after the operation, rather than before the operation.
5160 @cindex @code{sync_lock_test_and_set@var{mode}} instruction pattern
5161 @item @samp{sync_lock_test_and_set@var{mode}}
5163 This pattern takes two forms, based on the capabilities of the target.
5164 In either case, operand 0 is the result of the operand, operand 1 is
5165 the memory on which the atomic operation is performed, and operand 2
5166 is the value to set in the lock.
5168 In the ideal case, this operation is an atomic exchange operation, in
5169 which the previous value in memory operand is copied into the result
5170 operand, and the value operand is stored in the memory operand.
5172 For less capable targets, any value operand that is not the constant 1
5173 should be rejected with @code{FAIL}.  In this case the target may use
5174 an atomic test-and-set bit operation.  The result operand should contain
5175 1 if the bit was previously set and 0 if the bit was previously clear.
5176 The true contents of the memory operand are implementation defined.
5178 This pattern must issue any memory barrier instructions such that the
5179 pattern as a whole acts as an acquire barrier, that is all memory
5180 operations after the pattern do not occur until the lock is acquired.
5182 If this pattern is not defined, the operation will be constructed from
5183 a compare-and-swap operation, if defined.
5185 @cindex @code{sync_lock_release@var{mode}} instruction pattern
5186 @item @samp{sync_lock_release@var{mode}}
5188 This pattern, if defined, releases a lock set by
5189 @code{sync_lock_test_and_set@var{mode}}.  Operand 0 is the memory
5190 that contains the lock; operand 1 is the value to store in the lock.
5192 If the target doesn't implement full semantics for
5193 @code{sync_lock_test_and_set@var{mode}}, any value operand which is not
5194 the constant 0 should be rejected with @code{FAIL}, and the true contents
5195 of the memory operand are implementation defined.
5197 This pattern must issue any memory barrier instructions such that the
5198 pattern as a whole acts as a release barrier, that is the lock is
5199 released only after all previous memory operations have completed.
5201 If this pattern is not defined, then a @code{memory_barrier} pattern
5202 will be emitted, followed by a store of the value to the memory operand.
5204 @cindex @code{stack_protect_set} instruction pattern
5205 @item @samp{stack_protect_set}
5207 This pattern, if defined, moves a @code{Pmode} value from the memory
5208 in operand 1 to the memory in operand 0 without leaving the value in
5209 a register afterward.  This is to avoid leaking the value some place
5210 that an attacker might use to rewrite the stack guard slot after
5211 having clobbered it.
5213 If this pattern is not defined, then a plain move pattern is generated.
5215 @cindex @code{stack_protect_test} instruction pattern
5216 @item @samp{stack_protect_test}
5218 This pattern, if defined, compares a @code{Pmode} value from the
5219 memory in operand 1 with the memory in operand 0 without leaving the
5220 value in a register afterward and branches to operand 2 if the values
5221 weren't equal.
5223 If this pattern is not defined, then a plain compare pattern and
5224 conditional branch pattern is used.
5226 @cindex @code{clear_cache} instruction pattern
5227 @item @samp{clear_cache}
5229 This pattern, if defined, flushes the instruction cache for a region of
5230 memory.  The region is bounded to by the Pmode pointers in operand 0
5231 inclusive and operand 1 exclusive.
5233 If this pattern is not defined, a call to the library function
5234 @code{__clear_cache} is used.
5236 @end table
5238 @end ifset
5239 @c Each of the following nodes are wrapped in separate
5240 @c "@ifset INTERNALS" to work around memory limits for the default
5241 @c configuration in older tetex distributions.  Known to not work:
5242 @c tetex-1.0.7, known to work: tetex-2.0.2.
5243 @ifset INTERNALS
5244 @node Pattern Ordering
5245 @section When the Order of Patterns Matters
5246 @cindex Pattern Ordering
5247 @cindex Ordering of Patterns
5249 Sometimes an insn can match more than one instruction pattern.  Then the
5250 pattern that appears first in the machine description is the one used.
5251 Therefore, more specific patterns (patterns that will match fewer things)
5252 and faster instructions (those that will produce better code when they
5253 do match) should usually go first in the description.
5255 In some cases the effect of ordering the patterns can be used to hide
5256 a pattern when it is not valid.  For example, the 68000 has an
5257 instruction for converting a fullword to floating point and another
5258 for converting a byte to floating point.  An instruction converting
5259 an integer to floating point could match either one.  We put the
5260 pattern to convert the fullword first to make sure that one will
5261 be used rather than the other.  (Otherwise a large integer might
5262 be generated as a single-byte immediate quantity, which would not work.)
5263 Instead of using this pattern ordering it would be possible to make the
5264 pattern for convert-a-byte smart enough to deal properly with any
5265 constant value.
5267 @end ifset
5268 @ifset INTERNALS
5269 @node Dependent Patterns
5270 @section Interdependence of Patterns
5271 @cindex Dependent Patterns
5272 @cindex Interdependence of Patterns
5274 Every machine description must have a named pattern for each of the
5275 conditional branch names @samp{b@var{cond}}.  The recognition template
5276 must always have the form
5278 @smallexample
5279 (set (pc)
5280      (if_then_else (@var{cond} (cc0) (const_int 0))
5281                    (label_ref (match_operand 0 "" ""))
5282                    (pc)))
5283 @end smallexample
5285 @noindent
5286 In addition, every machine description must have an anonymous pattern
5287 for each of the possible reverse-conditional branches.  Their templates
5288 look like
5290 @smallexample
5291 (set (pc)
5292      (if_then_else (@var{cond} (cc0) (const_int 0))
5293                    (pc)
5294                    (label_ref (match_operand 0 "" ""))))
5295 @end smallexample
5297 @noindent
5298 They are necessary because jump optimization can turn direct-conditional
5299 branches into reverse-conditional branches.
5301 It is often convenient to use the @code{match_operator} construct to
5302 reduce the number of patterns that must be specified for branches.  For
5303 example,
5305 @smallexample
5306 (define_insn ""
5307   [(set (pc)
5308         (if_then_else (match_operator 0 "comparison_operator"
5309                                       [(cc0) (const_int 0)])
5310                       (pc)
5311                       (label_ref (match_operand 1 "" ""))))]
5312   "@var{condition}"
5313   "@dots{}")
5314 @end smallexample
5316 In some cases machines support instructions identical except for the
5317 machine mode of one or more operands.  For example, there may be
5318 ``sign-extend halfword'' and ``sign-extend byte'' instructions whose
5319 patterns are
5321 @smallexample
5322 (set (match_operand:SI 0 @dots{})
5323      (extend:SI (match_operand:HI 1 @dots{})))
5325 (set (match_operand:SI 0 @dots{})
5326      (extend:SI (match_operand:QI 1 @dots{})))
5327 @end smallexample
5329 @noindent
5330 Constant integers do not specify a machine mode, so an instruction to
5331 extend a constant value could match either pattern.  The pattern it
5332 actually will match is the one that appears first in the file.  For correct
5333 results, this must be the one for the widest possible mode (@code{HImode},
5334 here).  If the pattern matches the @code{QImode} instruction, the results
5335 will be incorrect if the constant value does not actually fit that mode.
5337 Such instructions to extend constants are rarely generated because they are
5338 optimized away, but they do occasionally happen in nonoptimized
5339 compilations.
5341 If a constraint in a pattern allows a constant, the reload pass may
5342 replace a register with a constant permitted by the constraint in some
5343 cases.  Similarly for memory references.  Because of this substitution,
5344 you should not provide separate patterns for increment and decrement
5345 instructions.  Instead, they should be generated from the same pattern
5346 that supports register-register add insns by examining the operands and
5347 generating the appropriate machine instruction.
5349 @end ifset
5350 @ifset INTERNALS
5351 @node Jump Patterns
5352 @section Defining Jump Instruction Patterns
5353 @cindex jump instruction patterns
5354 @cindex defining jump instruction patterns
5356 For most machines, GCC assumes that the machine has a condition code.
5357 A comparison insn sets the condition code, recording the results of both
5358 signed and unsigned comparison of the given operands.  A separate branch
5359 insn tests the condition code and branches or not according its value.
5360 The branch insns come in distinct signed and unsigned flavors.  Many
5361 common machines, such as the VAX, the 68000 and the 32000, work this
5362 way.
5364 Some machines have distinct signed and unsigned compare instructions, and
5365 only one set of conditional branch instructions.  The easiest way to handle
5366 these machines is to treat them just like the others until the final stage
5367 where assembly code is written.  At this time, when outputting code for the
5368 compare instruction, peek ahead at the following branch using
5369 @code{next_cc0_user (insn)}.  (The variable @code{insn} refers to the insn
5370 being output, in the output-writing code in an instruction pattern.)  If
5371 the RTL says that is an unsigned branch, output an unsigned compare;
5372 otherwise output a signed compare.  When the branch itself is output, you
5373 can treat signed and unsigned branches identically.
5375 The reason you can do this is that GCC always generates a pair of
5376 consecutive RTL insns, possibly separated by @code{note} insns, one to
5377 set the condition code and one to test it, and keeps the pair inviolate
5378 until the end.
5380 To go with this technique, you must define the machine-description macro
5381 @code{NOTICE_UPDATE_CC} to do @code{CC_STATUS_INIT}; in other words, no
5382 compare instruction is superfluous.
5384 Some machines have compare-and-branch instructions and no condition code.
5385 A similar technique works for them.  When it is time to ``output'' a
5386 compare instruction, record its operands in two static variables.  When
5387 outputting the branch-on-condition-code instruction that follows, actually
5388 output a compare-and-branch instruction that uses the remembered operands.
5390 It also works to define patterns for compare-and-branch instructions.
5391 In optimizing compilation, the pair of compare and branch instructions
5392 will be combined according to these patterns.  But this does not happen
5393 if optimization is not requested.  So you must use one of the solutions
5394 above in addition to any special patterns you define.
5396 In many RISC machines, most instructions do not affect the condition
5397 code and there may not even be a separate condition code register.  On
5398 these machines, the restriction that the definition and use of the
5399 condition code be adjacent insns is not necessary and can prevent
5400 important optimizations.  For example, on the IBM RS/6000, there is a
5401 delay for taken branches unless the condition code register is set three
5402 instructions earlier than the conditional branch.  The instruction
5403 scheduler cannot perform this optimization if it is not permitted to
5404 separate the definition and use of the condition code register.
5406 On these machines, do not use @code{(cc0)}, but instead use a register
5407 to represent the condition code.  If there is a specific condition code
5408 register in the machine, use a hard register.  If the condition code or
5409 comparison result can be placed in any general register, or if there are
5410 multiple condition registers, use a pseudo register.
5412 @findex prev_cc0_setter
5413 @findex next_cc0_user
5414 On some machines, the type of branch instruction generated may depend on
5415 the way the condition code was produced; for example, on the 68k and
5416 SPARC, setting the condition code directly from an add or subtract
5417 instruction does not clear the overflow bit the way that a test
5418 instruction does, so a different branch instruction must be used for
5419 some conditional branches.  For machines that use @code{(cc0)}, the set
5420 and use of the condition code must be adjacent (separated only by
5421 @code{note} insns) allowing flags in @code{cc_status} to be used.
5422 (@xref{Condition Code}.)  Also, the comparison and branch insns can be
5423 located from each other by using the functions @code{prev_cc0_setter}
5424 and @code{next_cc0_user}.
5426 However, this is not true on machines that do not use @code{(cc0)}.  On
5427 those machines, no assumptions can be made about the adjacency of the
5428 compare and branch insns and the above methods cannot be used.  Instead,
5429 we use the machine mode of the condition code register to record
5430 different formats of the condition code register.
5432 Registers used to store the condition code value should have a mode that
5433 is in class @code{MODE_CC}.  Normally, it will be @code{CCmode}.  If
5434 additional modes are required (as for the add example mentioned above in
5435 the SPARC), define them in @file{@var{machine}-modes.def}
5436 (@pxref{Condition Code}).  Also define @code{SELECT_CC_MODE} to choose
5437 a mode given an operand of a compare.
5439 If it is known during RTL generation that a different mode will be
5440 required (for example, if the machine has separate compare instructions
5441 for signed and unsigned quantities, like most IBM processors), they can
5442 be specified at that time.
5444 If the cases that require different modes would be made by instruction
5445 combination, the macro @code{SELECT_CC_MODE} determines which machine
5446 mode should be used for the comparison result.  The patterns should be
5447 written using that mode.  To support the case of the add on the SPARC
5448 discussed above, we have the pattern
5450 @smallexample
5451 (define_insn ""
5452   [(set (reg:CC_NOOV 0)
5453         (compare:CC_NOOV
5454           (plus:SI (match_operand:SI 0 "register_operand" "%r")
5455                    (match_operand:SI 1 "arith_operand" "rI"))
5456           (const_int 0)))]
5457   ""
5458   "@dots{}")
5459 @end smallexample
5461 The @code{SELECT_CC_MODE} macro on the SPARC returns @code{CC_NOOVmode}
5462 for comparisons whose argument is a @code{plus}.
5464 @end ifset
5465 @ifset INTERNALS
5466 @node Looping Patterns
5467 @section Defining Looping Instruction Patterns
5468 @cindex looping instruction patterns
5469 @cindex defining looping instruction patterns
5471 Some machines have special jump instructions that can be utilized to
5472 make loops more efficient.  A common example is the 68000 @samp{dbra}
5473 instruction which performs a decrement of a register and a branch if the
5474 result was greater than zero.  Other machines, in particular digital
5475 signal processors (DSPs), have special block repeat instructions to
5476 provide low-overhead loop support.  For example, the TI TMS320C3x/C4x
5477 DSPs have a block repeat instruction that loads special registers to
5478 mark the top and end of a loop and to count the number of loop
5479 iterations.  This avoids the need for fetching and executing a
5480 @samp{dbra}-like instruction and avoids pipeline stalls associated with
5481 the jump.
5483 GCC has three special named patterns to support low overhead looping.
5484 They are @samp{decrement_and_branch_until_zero}, @samp{doloop_begin},
5485 and @samp{doloop_end}.  The first pattern,
5486 @samp{decrement_and_branch_until_zero}, is not emitted during RTL
5487 generation but may be emitted during the instruction combination phase.
5488 This requires the assistance of the loop optimizer, using information
5489 collected during strength reduction, to reverse a loop to count down to
5490 zero.  Some targets also require the loop optimizer to add a
5491 @code{REG_NONNEG} note to indicate that the iteration count is always
5492 positive.  This is needed if the target performs a signed loop
5493 termination test.  For example, the 68000 uses a pattern similar to the
5494 following for its @code{dbra} instruction:
5496 @smallexample
5497 @group
5498 (define_insn "decrement_and_branch_until_zero"
5499   [(set (pc)
5500         (if_then_else
5501           (ge (plus:SI (match_operand:SI 0 "general_operand" "+d*am")
5502                        (const_int -1))
5503               (const_int 0))
5504           (label_ref (match_operand 1 "" ""))
5505           (pc)))
5506    (set (match_dup 0)
5507         (plus:SI (match_dup 0)
5508                  (const_int -1)))]
5509   "find_reg_note (insn, REG_NONNEG, 0)"
5510   "@dots{}")
5511 @end group
5512 @end smallexample
5514 Note that since the insn is both a jump insn and has an output, it must
5515 deal with its own reloads, hence the `m' constraints.  Also note that
5516 since this insn is generated by the instruction combination phase
5517 combining two sequential insns together into an implicit parallel insn,
5518 the iteration counter needs to be biased by the same amount as the
5519 decrement operation, in this case @minus{}1.  Note that the following similar
5520 pattern will not be matched by the combiner.
5522 @smallexample
5523 @group
5524 (define_insn "decrement_and_branch_until_zero"
5525   [(set (pc)
5526         (if_then_else
5527           (ge (match_operand:SI 0 "general_operand" "+d*am")
5528               (const_int 1))
5529           (label_ref (match_operand 1 "" ""))
5530           (pc)))
5531    (set (match_dup 0)
5532         (plus:SI (match_dup 0)
5533                  (const_int -1)))]
5534   "find_reg_note (insn, REG_NONNEG, 0)"
5535   "@dots{}")
5536 @end group
5537 @end smallexample
5539 The other two special looping patterns, @samp{doloop_begin} and
5540 @samp{doloop_end}, are emitted by the loop optimizer for certain
5541 well-behaved loops with a finite number of loop iterations using
5542 information collected during strength reduction.
5544 The @samp{doloop_end} pattern describes the actual looping instruction
5545 (or the implicit looping operation) and the @samp{doloop_begin} pattern
5546 is an optional companion pattern that can be used for initialization
5547 needed for some low-overhead looping instructions.
5549 Note that some machines require the actual looping instruction to be
5550 emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs).  Emitting
5551 the true RTL for a looping instruction at the top of the loop can cause
5552 problems with flow analysis.  So instead, a dummy @code{doloop} insn is
5553 emitted at the end of the loop.  The machine dependent reorg pass checks
5554 for the presence of this @code{doloop} insn and then searches back to
5555 the top of the loop, where it inserts the true looping insn (provided
5556 there are no instructions in the loop which would cause problems).  Any
5557 additional labels can be emitted at this point.  In addition, if the
5558 desired special iteration counter register was not allocated, this
5559 machine dependent reorg pass could emit a traditional compare and jump
5560 instruction pair.
5562 The essential difference between the
5563 @samp{decrement_and_branch_until_zero} and the @samp{doloop_end}
5564 patterns is that the loop optimizer allocates an additional pseudo
5565 register for the latter as an iteration counter.  This pseudo register
5566 cannot be used within the loop (i.e., general induction variables cannot
5567 be derived from it), however, in many cases the loop induction variable
5568 may become redundant and removed by the flow pass.
5571 @end ifset
5572 @ifset INTERNALS
5573 @node Insn Canonicalizations
5574 @section Canonicalization of Instructions
5575 @cindex canonicalization of instructions
5576 @cindex insn canonicalization
5578 There are often cases where multiple RTL expressions could represent an
5579 operation performed by a single machine instruction.  This situation is
5580 most commonly encountered with logical, branch, and multiply-accumulate
5581 instructions.  In such cases, the compiler attempts to convert these
5582 multiple RTL expressions into a single canonical form to reduce the
5583 number of insn patterns required.
5585 In addition to algebraic simplifications, following canonicalizations
5586 are performed:
5588 @itemize @bullet
5589 @item
5590 For commutative and comparison operators, a constant is always made the
5591 second operand.  If a machine only supports a constant as the second
5592 operand, only patterns that match a constant in the second operand need
5593 be supplied.
5595 @item
5596 For associative operators, a sequence of operators will always chain
5597 to the left; for instance, only the left operand of an integer @code{plus}
5598 can itself be a @code{plus}.  @code{and}, @code{ior}, @code{xor},
5599 @code{plus}, @code{mult}, @code{smin}, @code{smax}, @code{umin}, and
5600 @code{umax} are associative when applied to integers, and sometimes to
5601 floating-point.
5603 @item
5604 @cindex @code{neg}, canonicalization of
5605 @cindex @code{not}, canonicalization of
5606 @cindex @code{mult}, canonicalization of
5607 @cindex @code{plus}, canonicalization of
5608 @cindex @code{minus}, canonicalization of
5609 For these operators, if only one operand is a @code{neg}, @code{not},
5610 @code{mult}, @code{plus}, or @code{minus} expression, it will be the
5611 first operand.
5613 @item
5614 In combinations of @code{neg}, @code{mult}, @code{plus}, and
5615 @code{minus}, the @code{neg} operations (if any) will be moved inside
5616 the operations as far as possible.  For instance,
5617 @code{(neg (mult A B))} is canonicalized as @code{(mult (neg A) B)}, but
5618 @code{(plus (mult (neg A) B) C)} is canonicalized as
5619 @code{(minus A (mult B C))}.
5621 @cindex @code{compare}, canonicalization of
5622 @item
5623 For the @code{compare} operator, a constant is always the second operand
5624 on machines where @code{cc0} is used (@pxref{Jump Patterns}).  On other
5625 machines, there are rare cases where the compiler might want to construct
5626 a @code{compare} with a constant as the first operand.  However, these
5627 cases are not common enough for it to be worthwhile to provide a pattern
5628 matching a constant as the first operand unless the machine actually has
5629 such an instruction.
5631 An operand of @code{neg}, @code{not}, @code{mult}, @code{plus}, or
5632 @code{minus} is made the first operand under the same conditions as
5633 above.
5635 @item
5636 @code{(ltu (plus @var{a} @var{b}) @var{b})} is converted to
5637 @code{(ltu (plus @var{a} @var{b}) @var{a})}. Likewise with @code{geu} instead
5638 of @code{ltu}.
5640 @item
5641 @code{(minus @var{x} (const_int @var{n}))} is converted to
5642 @code{(plus @var{x} (const_int @var{-n}))}.
5644 @item
5645 Within address computations (i.e., inside @code{mem}), a left shift is
5646 converted into the appropriate multiplication by a power of two.
5648 @cindex @code{ior}, canonicalization of
5649 @cindex @code{and}, canonicalization of
5650 @cindex De Morgan's law
5651 @item
5652 De Morgan's Law is used to move bitwise negation inside a bitwise
5653 logical-and or logical-or operation.  If this results in only one
5654 operand being a @code{not} expression, it will be the first one.
5656 A machine that has an instruction that performs a bitwise logical-and of one
5657 operand with the bitwise negation of the other should specify the pattern
5658 for that instruction as
5660 @smallexample
5661 (define_insn ""
5662   [(set (match_operand:@var{m} 0 @dots{})
5663         (and:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
5664                      (match_operand:@var{m} 2 @dots{})))]
5665   "@dots{}"
5666   "@dots{}")
5667 @end smallexample
5669 @noindent
5670 Similarly, a pattern for a ``NAND'' instruction should be written
5672 @smallexample
5673 (define_insn ""
5674   [(set (match_operand:@var{m} 0 @dots{})
5675         (ior:@var{m} (not:@var{m} (match_operand:@var{m} 1 @dots{}))
5676                      (not:@var{m} (match_operand:@var{m} 2 @dots{}))))]
5677   "@dots{}"
5678   "@dots{}")
5679 @end smallexample
5681 In both cases, it is not necessary to include patterns for the many
5682 logically equivalent RTL expressions.
5684 @cindex @code{xor}, canonicalization of
5685 @item
5686 The only possible RTL expressions involving both bitwise exclusive-or
5687 and bitwise negation are @code{(xor:@var{m} @var{x} @var{y})}
5688 and @code{(not:@var{m} (xor:@var{m} @var{x} @var{y}))}.
5690 @item
5691 The sum of three items, one of which is a constant, will only appear in
5692 the form
5694 @smallexample
5695 (plus:@var{m} (plus:@var{m} @var{x} @var{y}) @var{constant})
5696 @end smallexample
5698 @item
5699 On machines that do not use @code{cc0},
5700 @code{(compare @var{x} (const_int 0))} will be converted to
5701 @var{x}.
5703 @cindex @code{zero_extract}, canonicalization of
5704 @cindex @code{sign_extract}, canonicalization of
5705 @item
5706 Equality comparisons of a group of bits (usually a single bit) with zero
5707 will be written using @code{zero_extract} rather than the equivalent
5708 @code{and} or @code{sign_extract} operations.
5710 @end itemize
5712 Further canonicalization rules are defined in the function
5713 @code{commutative_operand_precedence} in @file{gcc/rtlanal.c}.
5715 @end ifset
5716 @ifset INTERNALS
5717 @node Expander Definitions
5718 @section Defining RTL Sequences for Code Generation
5719 @cindex expander definitions
5720 @cindex code generation RTL sequences
5721 @cindex defining RTL sequences for code generation
5723 On some target machines, some standard pattern names for RTL generation
5724 cannot be handled with single insn, but a sequence of RTL insns can
5725 represent them.  For these target machines, you can write a
5726 @code{define_expand} to specify how to generate the sequence of RTL@.
5728 @findex define_expand
5729 A @code{define_expand} is an RTL expression that looks almost like a
5730 @code{define_insn}; but, unlike the latter, a @code{define_expand} is used
5731 only for RTL generation and it can produce more than one RTL insn.
5733 A @code{define_expand} RTX has four operands:
5735 @itemize @bullet
5736 @item
5737 The name.  Each @code{define_expand} must have a name, since the only
5738 use for it is to refer to it by name.
5740 @item
5741 The RTL template.  This is a vector of RTL expressions representing
5742 a sequence of separate instructions.  Unlike @code{define_insn}, there
5743 is no implicit surrounding @code{PARALLEL}.
5745 @item
5746 The condition, a string containing a C expression.  This expression is
5747 used to express how the availability of this pattern depends on
5748 subclasses of target machine, selected by command-line options when GCC
5749 is run.  This is just like the condition of a @code{define_insn} that
5750 has a standard name.  Therefore, the condition (if present) may not
5751 depend on the data in the insn being matched, but only the
5752 target-machine-type flags.  The compiler needs to test these conditions
5753 during initialization in order to learn exactly which named instructions
5754 are available in a particular run.
5756 @item
5757 The preparation statements, a string containing zero or more C
5758 statements which are to be executed before RTL code is generated from
5759 the RTL template.
5761 Usually these statements prepare temporary registers for use as
5762 internal operands in the RTL template, but they can also generate RTL
5763 insns directly by calling routines such as @code{emit_insn}, etc.
5764 Any such insns precede the ones that come from the RTL template.
5765 @end itemize
5767 Every RTL insn emitted by a @code{define_expand} must match some
5768 @code{define_insn} in the machine description.  Otherwise, the compiler
5769 will crash when trying to generate code for the insn or trying to optimize
5772 The RTL template, in addition to controlling generation of RTL insns,
5773 also describes the operands that need to be specified when this pattern
5774 is used.  In particular, it gives a predicate for each operand.
5776 A true operand, which needs to be specified in order to generate RTL from
5777 the pattern, should be described with a @code{match_operand} in its first
5778 occurrence in the RTL template.  This enters information on the operand's
5779 predicate into the tables that record such things.  GCC uses the
5780 information to preload the operand into a register if that is required for
5781 valid RTL code.  If the operand is referred to more than once, subsequent
5782 references should use @code{match_dup}.
5784 The RTL template may also refer to internal ``operands'' which are
5785 temporary registers or labels used only within the sequence made by the
5786 @code{define_expand}.  Internal operands are substituted into the RTL
5787 template with @code{match_dup}, never with @code{match_operand}.  The
5788 values of the internal operands are not passed in as arguments by the
5789 compiler when it requests use of this pattern.  Instead, they are computed
5790 within the pattern, in the preparation statements.  These statements
5791 compute the values and store them into the appropriate elements of
5792 @code{operands} so that @code{match_dup} can find them.
5794 There are two special macros defined for use in the preparation statements:
5795 @code{DONE} and @code{FAIL}.  Use them with a following semicolon,
5796 as a statement.
5798 @table @code
5800 @findex DONE
5801 @item DONE
5802 Use the @code{DONE} macro to end RTL generation for the pattern.  The
5803 only RTL insns resulting from the pattern on this occasion will be
5804 those already emitted by explicit calls to @code{emit_insn} within the
5805 preparation statements; the RTL template will not be generated.
5807 @findex FAIL
5808 @item FAIL
5809 Make the pattern fail on this occasion.  When a pattern fails, it means
5810 that the pattern was not truly available.  The calling routines in the
5811 compiler will try other strategies for code generation using other patterns.
5813 Failure is currently supported only for binary (addition, multiplication,
5814 shifting, etc.) and bit-field (@code{extv}, @code{extzv}, and @code{insv})
5815 operations.
5816 @end table
5818 If the preparation falls through (invokes neither @code{DONE} nor
5819 @code{FAIL}), then the @code{define_expand} acts like a
5820 @code{define_insn} in that the RTL template is used to generate the
5821 insn.
5823 The RTL template is not used for matching, only for generating the
5824 initial insn list.  If the preparation statement always invokes
5825 @code{DONE} or @code{FAIL}, the RTL template may be reduced to a simple
5826 list of operands, such as this example:
5828 @smallexample
5829 @group
5830 (define_expand "addsi3"
5831   [(match_operand:SI 0 "register_operand" "")
5832    (match_operand:SI 1 "register_operand" "")
5833    (match_operand:SI 2 "register_operand" "")]
5834 @end group
5835 @group
5836   ""
5837   "
5839   handle_add (operands[0], operands[1], operands[2]);
5840   DONE;
5841 @}")
5842 @end group
5843 @end smallexample
5845 Here is an example, the definition of left-shift for the SPUR chip:
5847 @smallexample
5848 @group
5849 (define_expand "ashlsi3"
5850   [(set (match_operand:SI 0 "register_operand" "")
5851         (ashift:SI
5852 @end group
5853 @group
5854           (match_operand:SI 1 "register_operand" "")
5855           (match_operand:SI 2 "nonmemory_operand" "")))]
5856   ""
5857   "
5858 @end group
5859 @end smallexample
5861 @smallexample
5862 @group
5864   if (GET_CODE (operands[2]) != CONST_INT
5865       || (unsigned) INTVAL (operands[2]) > 3)
5866     FAIL;
5867 @}")
5868 @end group
5869 @end smallexample
5871 @noindent
5872 This example uses @code{define_expand} so that it can generate an RTL insn
5873 for shifting when the shift-count is in the supported range of 0 to 3 but
5874 fail in other cases where machine insns aren't available.  When it fails,
5875 the compiler tries another strategy using different patterns (such as, a
5876 library call).
5878 If the compiler were able to handle nontrivial condition-strings in
5879 patterns with names, then it would be possible to use a
5880 @code{define_insn} in that case.  Here is another case (zero-extension
5881 on the 68000) which makes more use of the power of @code{define_expand}:
5883 @smallexample
5884 (define_expand "zero_extendhisi2"
5885   [(set (match_operand:SI 0 "general_operand" "")
5886         (const_int 0))
5887    (set (strict_low_part
5888           (subreg:HI
5889             (match_dup 0)
5890             0))
5891         (match_operand:HI 1 "general_operand" ""))]
5892   ""
5893   "operands[1] = make_safe_from (operands[1], operands[0]);")
5894 @end smallexample
5896 @noindent
5897 @findex make_safe_from
5898 Here two RTL insns are generated, one to clear the entire output operand
5899 and the other to copy the input operand into its low half.  This sequence
5900 is incorrect if the input operand refers to [the old value of] the output
5901 operand, so the preparation statement makes sure this isn't so.  The
5902 function @code{make_safe_from} copies the @code{operands[1]} into a
5903 temporary register if it refers to @code{operands[0]}.  It does this
5904 by emitting another RTL insn.
5906 Finally, a third example shows the use of an internal operand.
5907 Zero-extension on the SPUR chip is done by @code{and}-ing the result
5908 against a halfword mask.  But this mask cannot be represented by a
5909 @code{const_int} because the constant value is too large to be legitimate
5910 on this machine.  So it must be copied into a register with
5911 @code{force_reg} and then the register used in the @code{and}.
5913 @smallexample
5914 (define_expand "zero_extendhisi2"
5915   [(set (match_operand:SI 0 "register_operand" "")
5916         (and:SI (subreg:SI
5917                   (match_operand:HI 1 "register_operand" "")
5918                   0)
5919                 (match_dup 2)))]
5920   ""
5921   "operands[2]
5922      = force_reg (SImode, GEN_INT (65535)); ")
5923 @end smallexample
5925 @emph{Note:} If the @code{define_expand} is used to serve a
5926 standard binary or unary arithmetic operation or a bit-field operation,
5927 then the last insn it generates must not be a @code{code_label},
5928 @code{barrier} or @code{note}.  It must be an @code{insn},
5929 @code{jump_insn} or @code{call_insn}.  If you don't need a real insn
5930 at the end, emit an insn to copy the result of the operation into
5931 itself.  Such an insn will generate no code, but it can avoid problems
5932 in the compiler.
5934 @end ifset
5935 @ifset INTERNALS
5936 @node Insn Splitting
5937 @section Defining How to Split Instructions
5938 @cindex insn splitting
5939 @cindex instruction splitting
5940 @cindex splitting instructions
5942 There are two cases where you should specify how to split a pattern
5943 into multiple insns.  On machines that have instructions requiring
5944 delay slots (@pxref{Delay Slots}) or that have instructions whose
5945 output is not available for multiple cycles (@pxref{Processor pipeline
5946 description}), the compiler phases that optimize these cases need to
5947 be able to move insns into one-instruction delay slots.  However, some
5948 insns may generate more than one machine instruction.  These insns
5949 cannot be placed into a delay slot.
5951 Often you can rewrite the single insn as a list of individual insns,
5952 each corresponding to one machine instruction.  The disadvantage of
5953 doing so is that it will cause the compilation to be slower and require
5954 more space.  If the resulting insns are too complex, it may also
5955 suppress some optimizations.  The compiler splits the insn if there is a
5956 reason to believe that it might improve instruction or delay slot
5957 scheduling.
5959 The insn combiner phase also splits putative insns.  If three insns are
5960 merged into one insn with a complex expression that cannot be matched by
5961 some @code{define_insn} pattern, the combiner phase attempts to split
5962 the complex pattern into two insns that are recognized.  Usually it can
5963 break the complex pattern into two patterns by splitting out some
5964 subexpression.  However, in some other cases, such as performing an
5965 addition of a large constant in two insns on a RISC machine, the way to
5966 split the addition into two insns is machine-dependent.
5968 @findex define_split
5969 The @code{define_split} definition tells the compiler how to split a
5970 complex insn into several simpler insns.  It looks like this:
5972 @smallexample
5973 (define_split
5974   [@var{insn-pattern}]
5975   "@var{condition}"
5976   [@var{new-insn-pattern-1}
5977    @var{new-insn-pattern-2}
5978    @dots{}]
5979   "@var{preparation-statements}")
5980 @end smallexample
5982 @var{insn-pattern} is a pattern that needs to be split and
5983 @var{condition} is the final condition to be tested, as in a
5984 @code{define_insn}.  When an insn matching @var{insn-pattern} and
5985 satisfying @var{condition} is found, it is replaced in the insn list
5986 with the insns given by @var{new-insn-pattern-1},
5987 @var{new-insn-pattern-2}, etc.
5989 The @var{preparation-statements} are similar to those statements that
5990 are specified for @code{define_expand} (@pxref{Expander Definitions})
5991 and are executed before the new RTL is generated to prepare for the
5992 generated code or emit some insns whose pattern is not fixed.  Unlike
5993 those in @code{define_expand}, however, these statements must not
5994 generate any new pseudo-registers.  Once reload has completed, they also
5995 must not allocate any space in the stack frame.
5997 Patterns are matched against @var{insn-pattern} in two different
5998 circumstances.  If an insn needs to be split for delay slot scheduling
5999 or insn scheduling, the insn is already known to be valid, which means
6000 that it must have been matched by some @code{define_insn} and, if
6001 @code{reload_completed} is nonzero, is known to satisfy the constraints
6002 of that @code{define_insn}.  In that case, the new insn patterns must
6003 also be insns that are matched by some @code{define_insn} and, if
6004 @code{reload_completed} is nonzero, must also satisfy the constraints
6005 of those definitions.
6007 As an example of this usage of @code{define_split}, consider the following
6008 example from @file{a29k.md}, which splits a @code{sign_extend} from
6009 @code{HImode} to @code{SImode} into a pair of shift insns:
6011 @smallexample
6012 (define_split
6013   [(set (match_operand:SI 0 "gen_reg_operand" "")
6014         (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
6015   ""
6016   [(set (match_dup 0)
6017         (ashift:SI (match_dup 1)
6018                    (const_int 16)))
6019    (set (match_dup 0)
6020         (ashiftrt:SI (match_dup 0)
6021                      (const_int 16)))]
6022   "
6023 @{ operands[1] = gen_lowpart (SImode, operands[1]); @}")
6024 @end smallexample
6026 When the combiner phase tries to split an insn pattern, it is always the
6027 case that the pattern is @emph{not} matched by any @code{define_insn}.
6028 The combiner pass first tries to split a single @code{set} expression
6029 and then the same @code{set} expression inside a @code{parallel}, but
6030 followed by a @code{clobber} of a pseudo-reg to use as a scratch
6031 register.  In these cases, the combiner expects exactly two new insn
6032 patterns to be generated.  It will verify that these patterns match some
6033 @code{define_insn} definitions, so you need not do this test in the
6034 @code{define_split} (of course, there is no point in writing a
6035 @code{define_split} that will never produce insns that match).
6037 Here is an example of this use of @code{define_split}, taken from
6038 @file{rs6000.md}:
6040 @smallexample
6041 (define_split
6042   [(set (match_operand:SI 0 "gen_reg_operand" "")
6043         (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
6044                  (match_operand:SI 2 "non_add_cint_operand" "")))]
6045   ""
6046   [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
6047    (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
6050   int low = INTVAL (operands[2]) & 0xffff;
6051   int high = (unsigned) INTVAL (operands[2]) >> 16;
6053   if (low & 0x8000)
6054     high++, low |= 0xffff0000;
6056   operands[3] = GEN_INT (high << 16);
6057   operands[4] = GEN_INT (low);
6058 @}")
6059 @end smallexample
6061 Here the predicate @code{non_add_cint_operand} matches any
6062 @code{const_int} that is @emph{not} a valid operand of a single add
6063 insn.  The add with the smaller displacement is written so that it
6064 can be substituted into the address of a subsequent operation.
6066 An example that uses a scratch register, from the same file, generates
6067 an equality comparison of a register and a large constant:
6069 @smallexample
6070 (define_split
6071   [(set (match_operand:CC 0 "cc_reg_operand" "")
6072         (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
6073                     (match_operand:SI 2 "non_short_cint_operand" "")))
6074    (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
6075   "find_single_use (operands[0], insn, 0)
6076    && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
6077        || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
6078   [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
6079    (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
6080   "
6082   /* @r{Get the constant we are comparing against, C, and see what it
6083      looks like sign-extended to 16 bits.  Then see what constant
6084      could be XOR'ed with C to get the sign-extended value.}  */
6086   int c = INTVAL (operands[2]);
6087   int sextc = (c << 16) >> 16;
6088   int xorv = c ^ sextc;
6090   operands[4] = GEN_INT (xorv);
6091   operands[5] = GEN_INT (sextc);
6092 @}")
6093 @end smallexample
6095 To avoid confusion, don't write a single @code{define_split} that
6096 accepts some insns that match some @code{define_insn} as well as some
6097 insns that don't.  Instead, write two separate @code{define_split}
6098 definitions, one for the insns that are valid and one for the insns that
6099 are not valid.
6101 The splitter is allowed to split jump instructions into sequence of
6102 jumps or create new jumps in while splitting non-jump instructions.  As
6103 the central flowgraph and branch prediction information needs to be updated,
6104 several restriction apply.
6106 Splitting of jump instruction into sequence that over by another jump
6107 instruction is always valid, as compiler expect identical behavior of new
6108 jump.  When new sequence contains multiple jump instructions or new labels,
6109 more assistance is needed.  Splitter is required to create only unconditional
6110 jumps, or simple conditional jump instructions.  Additionally it must attach a
6111 @code{REG_BR_PROB} note to each conditional jump.  A global variable
6112 @code{split_branch_probability} holds the probability of the original branch in case
6113 it was an simple conditional jump, @minus{}1 otherwise.  To simplify
6114 recomputing of edge frequencies, the new sequence is required to have only
6115 forward jumps to the newly created labels.
6117 @findex define_insn_and_split
6118 For the common case where the pattern of a define_split exactly matches the
6119 pattern of a define_insn, use @code{define_insn_and_split}.  It looks like
6120 this:
6122 @smallexample
6123 (define_insn_and_split
6124   [@var{insn-pattern}]
6125   "@var{condition}"
6126   "@var{output-template}"
6127   "@var{split-condition}"
6128   [@var{new-insn-pattern-1}
6129    @var{new-insn-pattern-2}
6130    @dots{}]
6131   "@var{preparation-statements}"
6132   [@var{insn-attributes}])
6134 @end smallexample
6136 @var{insn-pattern}, @var{condition}, @var{output-template}, and
6137 @var{insn-attributes} are used as in @code{define_insn}.  The
6138 @var{new-insn-pattern} vector and the @var{preparation-statements} are used as
6139 in a @code{define_split}.  The @var{split-condition} is also used as in
6140 @code{define_split}, with the additional behavior that if the condition starts
6141 with @samp{&&}, the condition used for the split will be the constructed as a
6142 logical ``and'' of the split condition with the insn condition.  For example,
6143 from i386.md:
6145 @smallexample
6146 (define_insn_and_split "zero_extendhisi2_and"
6147   [(set (match_operand:SI 0 "register_operand" "=r")
6148      (zero_extend:SI (match_operand:HI 1 "register_operand" "0")))
6149    (clobber (reg:CC 17))]
6150   "TARGET_ZERO_EXTEND_WITH_AND && !optimize_size"
6151   "#"
6152   "&& reload_completed"
6153   [(parallel [(set (match_dup 0)
6154                    (and:SI (match_dup 0) (const_int 65535)))
6155               (clobber (reg:CC 17))])]
6156   ""
6157   [(set_attr "type" "alu1")])
6159 @end smallexample
6161 In this case, the actual split condition will be
6162 @samp{TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed}.
6164 The @code{define_insn_and_split} construction provides exactly the same
6165 functionality as two separate @code{define_insn} and @code{define_split}
6166 patterns.  It exists for compactness, and as a maintenance tool to prevent
6167 having to ensure the two patterns' templates match.
6169 @end ifset
6170 @ifset INTERNALS
6171 @node Including Patterns
6172 @section Including Patterns in Machine Descriptions.
6173 @cindex insn includes
6175 @findex include
6176 The @code{include} pattern tells the compiler tools where to
6177 look for patterns that are in files other than in the file
6178 @file{.md}.  This is used only at build time and there is no preprocessing allowed.
6180 It looks like:
6182 @smallexample
6184 (include
6185   @var{pathname})
6186 @end smallexample
6188 For example:
6190 @smallexample
6192 (include "filestuff")
6194 @end smallexample
6196 Where @var{pathname} is a string that specifies the location of the file,
6197 specifies the include file to be in @file{gcc/config/target/filestuff}.  The
6198 directory @file{gcc/config/target} is regarded as the default directory.
6201 Machine descriptions may be split up into smaller more manageable subsections
6202 and placed into subdirectories.
6204 By specifying:
6206 @smallexample
6208 (include "BOGUS/filestuff")
6210 @end smallexample
6212 the include file is specified to be in @file{gcc/config/@var{target}/BOGUS/filestuff}.
6214 Specifying an absolute path for the include file such as;
6215 @smallexample
6217 (include "/u2/BOGUS/filestuff")
6219 @end smallexample
6220 is permitted but is not encouraged.
6222 @subsection RTL Generation Tool Options for Directory Search
6223 @cindex directory options .md
6224 @cindex options, directory search
6225 @cindex search options
6227 The @option{-I@var{dir}} option specifies directories to search for machine descriptions.
6228 For example:
6230 @smallexample
6232 genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md
6234 @end smallexample
6237 Add the directory @var{dir} to the head of the list of directories to be
6238 searched for header files.  This can be used to override a system machine definition
6239 file, substituting your own version, since these directories are
6240 searched before the default machine description file directories.  If you use more than
6241 one @option{-I} option, the directories are scanned in left-to-right
6242 order; the standard default directory come after.
6245 @end ifset
6246 @ifset INTERNALS
6247 @node Peephole Definitions
6248 @section Machine-Specific Peephole Optimizers
6249 @cindex peephole optimizer definitions
6250 @cindex defining peephole optimizers
6252 In addition to instruction patterns the @file{md} file may contain
6253 definitions of machine-specific peephole optimizations.
6255 The combiner does not notice certain peephole optimizations when the data
6256 flow in the program does not suggest that it should try them.  For example,
6257 sometimes two consecutive insns related in purpose can be combined even
6258 though the second one does not appear to use a register computed in the
6259 first one.  A machine-specific peephole optimizer can detect such
6260 opportunities.
6262 There are two forms of peephole definitions that may be used.  The
6263 original @code{define_peephole} is run at assembly output time to
6264 match insns and substitute assembly text.  Use of @code{define_peephole}
6265 is deprecated.
6267 A newer @code{define_peephole2} matches insns and substitutes new
6268 insns.  The @code{peephole2} pass is run after register allocation
6269 but before scheduling, which may result in much better code for
6270 targets that do scheduling.
6272 @menu
6273 * define_peephole::     RTL to Text Peephole Optimizers
6274 * define_peephole2::    RTL to RTL Peephole Optimizers
6275 @end menu
6277 @end ifset
6278 @ifset INTERNALS
6279 @node define_peephole
6280 @subsection RTL to Text Peephole Optimizers
6281 @findex define_peephole
6283 @need 1000
6284 A definition looks like this:
6286 @smallexample
6287 (define_peephole
6288   [@var{insn-pattern-1}
6289    @var{insn-pattern-2}
6290    @dots{}]
6291   "@var{condition}"
6292   "@var{template}"
6293   "@var{optional-insn-attributes}")
6294 @end smallexample
6296 @noindent
6297 The last string operand may be omitted if you are not using any
6298 machine-specific information in this machine description.  If present,
6299 it must obey the same rules as in a @code{define_insn}.
6301 In this skeleton, @var{insn-pattern-1} and so on are patterns to match
6302 consecutive insns.  The optimization applies to a sequence of insns when
6303 @var{insn-pattern-1} matches the first one, @var{insn-pattern-2} matches
6304 the next, and so on.
6306 Each of the insns matched by a peephole must also match a
6307 @code{define_insn}.  Peepholes are checked only at the last stage just
6308 before code generation, and only optionally.  Therefore, any insn which
6309 would match a peephole but no @code{define_insn} will cause a crash in code
6310 generation in an unoptimized compilation, or at various optimization
6311 stages.
6313 The operands of the insns are matched with @code{match_operands},
6314 @code{match_operator}, and @code{match_dup}, as usual.  What is not
6315 usual is that the operand numbers apply to all the insn patterns in the
6316 definition.  So, you can check for identical operands in two insns by
6317 using @code{match_operand} in one insn and @code{match_dup} in the
6318 other.
6320 The operand constraints used in @code{match_operand} patterns do not have
6321 any direct effect on the applicability of the peephole, but they will
6322 be validated afterward, so make sure your constraints are general enough
6323 to apply whenever the peephole matches.  If the peephole matches
6324 but the constraints are not satisfied, the compiler will crash.
6326 It is safe to omit constraints in all the operands of the peephole; or
6327 you can write constraints which serve as a double-check on the criteria
6328 previously tested.
6330 Once a sequence of insns matches the patterns, the @var{condition} is
6331 checked.  This is a C expression which makes the final decision whether to
6332 perform the optimization (we do so if the expression is nonzero).  If
6333 @var{condition} is omitted (in other words, the string is empty) then the
6334 optimization is applied to every sequence of insns that matches the
6335 patterns.
6337 The defined peephole optimizations are applied after register allocation
6338 is complete.  Therefore, the peephole definition can check which
6339 operands have ended up in which kinds of registers, just by looking at
6340 the operands.
6342 @findex prev_active_insn
6343 The way to refer to the operands in @var{condition} is to write
6344 @code{operands[@var{i}]} for operand number @var{i} (as matched by
6345 @code{(match_operand @var{i} @dots{})}).  Use the variable @code{insn}
6346 to refer to the last of the insns being matched; use
6347 @code{prev_active_insn} to find the preceding insns.
6349 @findex dead_or_set_p
6350 When optimizing computations with intermediate results, you can use
6351 @var{condition} to match only when the intermediate results are not used
6352 elsewhere.  Use the C expression @code{dead_or_set_p (@var{insn},
6353 @var{op})}, where @var{insn} is the insn in which you expect the value
6354 to be used for the last time (from the value of @code{insn}, together
6355 with use of @code{prev_nonnote_insn}), and @var{op} is the intermediate
6356 value (from @code{operands[@var{i}]}).
6358 Applying the optimization means replacing the sequence of insns with one
6359 new insn.  The @var{template} controls ultimate output of assembler code
6360 for this combined insn.  It works exactly like the template of a
6361 @code{define_insn}.  Operand numbers in this template are the same ones
6362 used in matching the original sequence of insns.
6364 The result of a defined peephole optimizer does not need to match any of
6365 the insn patterns in the machine description; it does not even have an
6366 opportunity to match them.  The peephole optimizer definition itself serves
6367 as the insn pattern to control how the insn is output.
6369 Defined peephole optimizers are run as assembler code is being output,
6370 so the insns they produce are never combined or rearranged in any way.
6372 Here is an example, taken from the 68000 machine description:
6374 @smallexample
6375 (define_peephole
6376   [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
6377    (set (match_operand:DF 0 "register_operand" "=f")
6378         (match_operand:DF 1 "register_operand" "ad"))]
6379   "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
6381   rtx xoperands[2];
6382   xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
6383 #ifdef MOTOROLA
6384   output_asm_insn ("move.l %1,(sp)", xoperands);
6385   output_asm_insn ("move.l %1,-(sp)", operands);
6386   return "fmove.d (sp)+,%0";
6387 #else
6388   output_asm_insn ("movel %1,sp@@", xoperands);
6389   output_asm_insn ("movel %1,sp@@-", operands);
6390   return "fmoved sp@@+,%0";
6391 #endif
6393 @end smallexample
6395 @need 1000
6396 The effect of this optimization is to change
6398 @smallexample
6399 @group
6400 jbsr _foobar
6401 addql #4,sp
6402 movel d1,sp@@-
6403 movel d0,sp@@-
6404 fmoved sp@@+,fp0
6405 @end group
6406 @end smallexample
6408 @noindent
6409 into
6411 @smallexample
6412 @group
6413 jbsr _foobar
6414 movel d1,sp@@
6415 movel d0,sp@@-
6416 fmoved sp@@+,fp0
6417 @end group
6418 @end smallexample
6420 @ignore
6421 @findex CC_REVERSED
6422 If a peephole matches a sequence including one or more jump insns, you must
6423 take account of the flags such as @code{CC_REVERSED} which specify that the
6424 condition codes are represented in an unusual manner.  The compiler
6425 automatically alters any ordinary conditional jumps which occur in such
6426 situations, but the compiler cannot alter jumps which have been replaced by
6427 peephole optimizations.  So it is up to you to alter the assembler code
6428 that the peephole produces.  Supply C code to write the assembler output,
6429 and in this C code check the condition code status flags and change the
6430 assembler code as appropriate.
6431 @end ignore
6433 @var{insn-pattern-1} and so on look @emph{almost} like the second
6434 operand of @code{define_insn}.  There is one important difference: the
6435 second operand of @code{define_insn} consists of one or more RTX's
6436 enclosed in square brackets.  Usually, there is only one: then the same
6437 action can be written as an element of a @code{define_peephole}.  But
6438 when there are multiple actions in a @code{define_insn}, they are
6439 implicitly enclosed in a @code{parallel}.  Then you must explicitly
6440 write the @code{parallel}, and the square brackets within it, in the
6441 @code{define_peephole}.  Thus, if an insn pattern looks like this,
6443 @smallexample
6444 (define_insn "divmodsi4"
6445   [(set (match_operand:SI 0 "general_operand" "=d")
6446         (div:SI (match_operand:SI 1 "general_operand" "0")
6447                 (match_operand:SI 2 "general_operand" "dmsK")))
6448    (set (match_operand:SI 3 "general_operand" "=d")
6449         (mod:SI (match_dup 1) (match_dup 2)))]
6450   "TARGET_68020"
6451   "divsl%.l %2,%3:%0")
6452 @end smallexample
6454 @noindent
6455 then the way to mention this insn in a peephole is as follows:
6457 @smallexample
6458 (define_peephole
6459   [@dots{}
6460    (parallel
6461     [(set (match_operand:SI 0 "general_operand" "=d")
6462           (div:SI (match_operand:SI 1 "general_operand" "0")
6463                   (match_operand:SI 2 "general_operand" "dmsK")))
6464      (set (match_operand:SI 3 "general_operand" "=d")
6465           (mod:SI (match_dup 1) (match_dup 2)))])
6466    @dots{}]
6467   @dots{})
6468 @end smallexample
6470 @end ifset
6471 @ifset INTERNALS
6472 @node define_peephole2
6473 @subsection RTL to RTL Peephole Optimizers
6474 @findex define_peephole2
6476 The @code{define_peephole2} definition tells the compiler how to
6477 substitute one sequence of instructions for another sequence,
6478 what additional scratch registers may be needed and what their
6479 lifetimes must be.
6481 @smallexample
6482 (define_peephole2
6483   [@var{insn-pattern-1}
6484    @var{insn-pattern-2}
6485    @dots{}]
6486   "@var{condition}"
6487   [@var{new-insn-pattern-1}
6488    @var{new-insn-pattern-2}
6489    @dots{}]
6490   "@var{preparation-statements}")
6491 @end smallexample
6493 The definition is almost identical to @code{define_split}
6494 (@pxref{Insn Splitting}) except that the pattern to match is not a
6495 single instruction, but a sequence of instructions.
6497 It is possible to request additional scratch registers for use in the
6498 output template.  If appropriate registers are not free, the pattern
6499 will simply not match.
6501 @findex match_scratch
6502 @findex match_dup
6503 Scratch registers are requested with a @code{match_scratch} pattern at
6504 the top level of the input pattern.  The allocated register (initially) will
6505 be dead at the point requested within the original sequence.  If the scratch
6506 is used at more than a single point, a @code{match_dup} pattern at the
6507 top level of the input pattern marks the last position in the input sequence
6508 at which the register must be available.
6510 Here is an example from the IA-32 machine description:
6512 @smallexample
6513 (define_peephole2
6514   [(match_scratch:SI 2 "r")
6515    (parallel [(set (match_operand:SI 0 "register_operand" "")
6516                    (match_operator:SI 3 "arith_or_logical_operator"
6517                      [(match_dup 0)
6518                       (match_operand:SI 1 "memory_operand" "")]))
6519               (clobber (reg:CC 17))])]
6520   "! optimize_size && ! TARGET_READ_MODIFY"
6521   [(set (match_dup 2) (match_dup 1))
6522    (parallel [(set (match_dup 0)
6523                    (match_op_dup 3 [(match_dup 0) (match_dup 2)]))
6524               (clobber (reg:CC 17))])]
6525   "")
6526 @end smallexample
6528 @noindent
6529 This pattern tries to split a load from its use in the hopes that we'll be
6530 able to schedule around the memory load latency.  It allocates a single
6531 @code{SImode} register of class @code{GENERAL_REGS} (@code{"r"}) that needs
6532 to be live only at the point just before the arithmetic.
6534 A real example requiring extended scratch lifetimes is harder to come by,
6535 so here's a silly made-up example:
6537 @smallexample
6538 (define_peephole2
6539   [(match_scratch:SI 4 "r")
6540    (set (match_operand:SI 0 "" "") (match_operand:SI 1 "" ""))
6541    (set (match_operand:SI 2 "" "") (match_dup 1))
6542    (match_dup 4)
6543    (set (match_operand:SI 3 "" "") (match_dup 1))]
6544   "/* @r{determine 1 does not overlap 0 and 2} */"
6545   [(set (match_dup 4) (match_dup 1))
6546    (set (match_dup 0) (match_dup 4))
6547    (set (match_dup 2) (match_dup 4))]
6548    (set (match_dup 3) (match_dup 4))]
6549   "")
6550 @end smallexample
6552 @noindent
6553 If we had not added the @code{(match_dup 4)} in the middle of the input
6554 sequence, it might have been the case that the register we chose at the
6555 beginning of the sequence is killed by the first or second @code{set}.
6557 @end ifset
6558 @ifset INTERNALS
6559 @node Insn Attributes
6560 @section Instruction Attributes
6561 @cindex insn attributes
6562 @cindex instruction attributes
6564 In addition to describing the instruction supported by the target machine,
6565 the @file{md} file also defines a group of @dfn{attributes} and a set of
6566 values for each.  Every generated insn is assigned a value for each attribute.
6567 One possible attribute would be the effect that the insn has on the machine's
6568 condition code.  This attribute can then be used by @code{NOTICE_UPDATE_CC}
6569 to track the condition codes.
6571 @menu
6572 * Defining Attributes:: Specifying attributes and their values.
6573 * Expressions::         Valid expressions for attribute values.
6574 * Tagging Insns::       Assigning attribute values to insns.
6575 * Attr Example::        An example of assigning attributes.
6576 * Insn Lengths::        Computing the length of insns.
6577 * Constant Attributes:: Defining attributes that are constant.
6578 * Delay Slots::         Defining delay slots required for a machine.
6579 * Processor pipeline description:: Specifying information for insn scheduling.
6580 @end menu
6582 @end ifset
6583 @ifset INTERNALS
6584 @node Defining Attributes
6585 @subsection Defining Attributes and their Values
6586 @cindex defining attributes and their values
6587 @cindex attributes, defining
6589 @findex define_attr
6590 The @code{define_attr} expression is used to define each attribute required
6591 by the target machine.  It looks like:
6593 @smallexample
6594 (define_attr @var{name} @var{list-of-values} @var{default})
6595 @end smallexample
6597 @var{name} is a string specifying the name of the attribute being defined.
6599 @var{list-of-values} is either a string that specifies a comma-separated
6600 list of values that can be assigned to the attribute, or a null string to
6601 indicate that the attribute takes numeric values.
6603 @var{default} is an attribute expression that gives the value of this
6604 attribute for insns that match patterns whose definition does not include
6605 an explicit value for this attribute.  @xref{Attr Example}, for more
6606 information on the handling of defaults.  @xref{Constant Attributes},
6607 for information on attributes that do not depend on any particular insn.
6609 @findex insn-attr.h
6610 For each defined attribute, a number of definitions are written to the
6611 @file{insn-attr.h} file.  For cases where an explicit set of values is
6612 specified for an attribute, the following are defined:
6614 @itemize @bullet
6615 @item
6616 A @samp{#define} is written for the symbol @samp{HAVE_ATTR_@var{name}}.
6618 @item
6619 An enumerated class is defined for @samp{attr_@var{name}} with
6620 elements of the form @samp{@var{upper-name}_@var{upper-value}} where
6621 the attribute name and value are first converted to uppercase.
6623 @item
6624 A function @samp{get_attr_@var{name}} is defined that is passed an insn and
6625 returns the attribute value for that insn.
6626 @end itemize
6628 For example, if the following is present in the @file{md} file:
6630 @smallexample
6631 (define_attr "type" "branch,fp,load,store,arith" @dots{})
6632 @end smallexample
6634 @noindent
6635 the following lines will be written to the file @file{insn-attr.h}.
6637 @smallexample
6638 #define HAVE_ATTR_type
6639 enum attr_type @{TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
6640                  TYPE_STORE, TYPE_ARITH@};
6641 extern enum attr_type get_attr_type ();
6642 @end smallexample
6644 If the attribute takes numeric values, no @code{enum} type will be
6645 defined and the function to obtain the attribute's value will return
6646 @code{int}.
6648 There are attributes which are tied to a specific meaning.  These
6649 attributes are not free to use for other purposes:
6651 @table @code
6652 @item length
6653 The @code{length} attribute is used to calculate the length of emitted
6654 code chunks.  This is especially important when verifying branch
6655 distances. @xref{Insn Lengths}.
6657 @item enabled
6658 The @code{enabled} attribute can be defined to prevent certain
6659 alternatives of an insn definition from being used during code
6660 generation. @xref{Disable Insn Alternatives}.
6662 @end table
6664 @end ifset
6665 @ifset INTERNALS
6666 @node Expressions
6667 @subsection Attribute Expressions
6668 @cindex attribute expressions
6670 RTL expressions used to define attributes use the codes described above
6671 plus a few specific to attribute definitions, to be discussed below.
6672 Attribute value expressions must have one of the following forms:
6674 @table @code
6675 @cindex @code{const_int} and attributes
6676 @item (const_int @var{i})
6677 The integer @var{i} specifies the value of a numeric attribute.  @var{i}
6678 must be non-negative.
6680 The value of a numeric attribute can be specified either with a
6681 @code{const_int}, or as an integer represented as a string in
6682 @code{const_string}, @code{eq_attr} (see below), @code{attr},
6683 @code{symbol_ref}, simple arithmetic expressions, and @code{set_attr}
6684 overrides on specific instructions (@pxref{Tagging Insns}).
6686 @cindex @code{const_string} and attributes
6687 @item (const_string @var{value})
6688 The string @var{value} specifies a constant attribute value.
6689 If @var{value} is specified as @samp{"*"}, it means that the default value of
6690 the attribute is to be used for the insn containing this expression.
6691 @samp{"*"} obviously cannot be used in the @var{default} expression
6692 of a @code{define_attr}.
6694 If the attribute whose value is being specified is numeric, @var{value}
6695 must be a string containing a non-negative integer (normally
6696 @code{const_int} would be used in this case).  Otherwise, it must
6697 contain one of the valid values for the attribute.
6699 @cindex @code{if_then_else} and attributes
6700 @item (if_then_else @var{test} @var{true-value} @var{false-value})
6701 @var{test} specifies an attribute test, whose format is defined below.
6702 The value of this expression is @var{true-value} if @var{test} is true,
6703 otherwise it is @var{false-value}.
6705 @cindex @code{cond} and attributes
6706 @item (cond [@var{test1} @var{value1} @dots{}] @var{default})
6707 The first operand of this expression is a vector containing an even
6708 number of expressions and consisting of pairs of @var{test} and @var{value}
6709 expressions.  The value of the @code{cond} expression is that of the
6710 @var{value} corresponding to the first true @var{test} expression.  If
6711 none of the @var{test} expressions are true, the value of the @code{cond}
6712 expression is that of the @var{default} expression.
6713 @end table
6715 @var{test} expressions can have one of the following forms:
6717 @table @code
6718 @cindex @code{const_int} and attribute tests
6719 @item (const_int @var{i})
6720 This test is true if @var{i} is nonzero and false otherwise.
6722 @cindex @code{not} and attributes
6723 @cindex @code{ior} and attributes
6724 @cindex @code{and} and attributes
6725 @item (not @var{test})
6726 @itemx (ior @var{test1} @var{test2})
6727 @itemx (and @var{test1} @var{test2})
6728 These tests are true if the indicated logical function is true.
6730 @cindex @code{match_operand} and attributes
6731 @item (match_operand:@var{m} @var{n} @var{pred} @var{constraints})
6732 This test is true if operand @var{n} of the insn whose attribute value
6733 is being determined has mode @var{m} (this part of the test is ignored
6734 if @var{m} is @code{VOIDmode}) and the function specified by the string
6735 @var{pred} returns a nonzero value when passed operand @var{n} and mode
6736 @var{m} (this part of the test is ignored if @var{pred} is the null
6737 string).
6739 The @var{constraints} operand is ignored and should be the null string.
6741 @cindex @code{le} and attributes
6742 @cindex @code{leu} and attributes
6743 @cindex @code{lt} and attributes
6744 @cindex @code{gt} and attributes
6745 @cindex @code{gtu} and attributes
6746 @cindex @code{ge} and attributes
6747 @cindex @code{geu} and attributes
6748 @cindex @code{ne} and attributes
6749 @cindex @code{eq} and attributes
6750 @cindex @code{plus} and attributes
6751 @cindex @code{minus} and attributes
6752 @cindex @code{mult} and attributes
6753 @cindex @code{div} and attributes
6754 @cindex @code{mod} and attributes
6755 @cindex @code{abs} and attributes
6756 @cindex @code{neg} and attributes
6757 @cindex @code{ashift} and attributes
6758 @cindex @code{lshiftrt} and attributes
6759 @cindex @code{ashiftrt} and attributes
6760 @item (le @var{arith1} @var{arith2})
6761 @itemx (leu @var{arith1} @var{arith2})
6762 @itemx (lt @var{arith1} @var{arith2})
6763 @itemx (ltu @var{arith1} @var{arith2})
6764 @itemx (gt @var{arith1} @var{arith2})
6765 @itemx (gtu @var{arith1} @var{arith2})
6766 @itemx (ge @var{arith1} @var{arith2})
6767 @itemx (geu @var{arith1} @var{arith2})
6768 @itemx (ne @var{arith1} @var{arith2})
6769 @itemx (eq @var{arith1} @var{arith2})
6770 These tests are true if the indicated comparison of the two arithmetic
6771 expressions is true.  Arithmetic expressions are formed with
6772 @code{plus}, @code{minus}, @code{mult}, @code{div}, @code{mod},
6773 @code{abs}, @code{neg}, @code{and}, @code{ior}, @code{xor}, @code{not},
6774 @code{ashift}, @code{lshiftrt}, and @code{ashiftrt} expressions.
6776 @findex get_attr
6777 @code{const_int} and @code{symbol_ref} are always valid terms (@pxref{Insn
6778 Lengths},for additional forms).  @code{symbol_ref} is a string
6779 denoting a C expression that yields an @code{int} when evaluated by the
6780 @samp{get_attr_@dots{}} routine.  It should normally be a global
6781 variable.
6783 @findex eq_attr
6784 @item (eq_attr @var{name} @var{value})
6785 @var{name} is a string specifying the name of an attribute.
6787 @var{value} is a string that is either a valid value for attribute
6788 @var{name}, a comma-separated list of values, or @samp{!} followed by a
6789 value or list.  If @var{value} does not begin with a @samp{!}, this
6790 test is true if the value of the @var{name} attribute of the current
6791 insn is in the list specified by @var{value}.  If @var{value} begins
6792 with a @samp{!}, this test is true if the attribute's value is
6793 @emph{not} in the specified list.
6795 For example,
6797 @smallexample
6798 (eq_attr "type" "load,store")
6799 @end smallexample
6801 @noindent
6802 is equivalent to
6804 @smallexample
6805 (ior (eq_attr "type" "load") (eq_attr "type" "store"))
6806 @end smallexample
6808 If @var{name} specifies an attribute of @samp{alternative}, it refers to the
6809 value of the compiler variable @code{which_alternative}
6810 (@pxref{Output Statement}) and the values must be small integers.  For
6811 example,
6813 @smallexample
6814 (eq_attr "alternative" "2,3")
6815 @end smallexample
6817 @noindent
6818 is equivalent to
6820 @smallexample
6821 (ior (eq (symbol_ref "which_alternative") (const_int 2))
6822      (eq (symbol_ref "which_alternative") (const_int 3)))
6823 @end smallexample
6825 Note that, for most attributes, an @code{eq_attr} test is simplified in cases
6826 where the value of the attribute being tested is known for all insns matching
6827 a particular pattern.  This is by far the most common case.
6829 @findex attr_flag
6830 @item (attr_flag @var{name})
6831 The value of an @code{attr_flag} expression is true if the flag
6832 specified by @var{name} is true for the @code{insn} currently being
6833 scheduled.
6835 @var{name} is a string specifying one of a fixed set of flags to test.
6836 Test the flags @code{forward} and @code{backward} to determine the
6837 direction of a conditional branch.  Test the flags @code{very_likely},
6838 @code{likely}, @code{very_unlikely}, and @code{unlikely} to determine
6839 if a conditional branch is expected to be taken.
6841 If the @code{very_likely} flag is true, then the @code{likely} flag is also
6842 true.  Likewise for the @code{very_unlikely} and @code{unlikely} flags.
6844 This example describes a conditional branch delay slot which
6845 can be nullified for forward branches that are taken (annul-true) or
6846 for backward branches which are not taken (annul-false).
6848 @smallexample
6849 (define_delay (eq_attr "type" "cbranch")
6850   [(eq_attr "in_branch_delay" "true")
6851    (and (eq_attr "in_branch_delay" "true")
6852         (attr_flag "forward"))
6853    (and (eq_attr "in_branch_delay" "true")
6854         (attr_flag "backward"))])
6855 @end smallexample
6857 The @code{forward} and @code{backward} flags are false if the current
6858 @code{insn} being scheduled is not a conditional branch.
6860 The @code{very_likely} and @code{likely} flags are true if the
6861 @code{insn} being scheduled is not a conditional branch.
6862 The @code{very_unlikely} and @code{unlikely} flags are false if the
6863 @code{insn} being scheduled is not a conditional branch.
6865 @code{attr_flag} is only used during delay slot scheduling and has no
6866 meaning to other passes of the compiler.
6868 @findex attr
6869 @item (attr @var{name})
6870 The value of another attribute is returned.  This is most useful
6871 for numeric attributes, as @code{eq_attr} and @code{attr_flag}
6872 produce more efficient code for non-numeric attributes.
6873 @end table
6875 @end ifset
6876 @ifset INTERNALS
6877 @node Tagging Insns
6878 @subsection Assigning Attribute Values to Insns
6879 @cindex tagging insns
6880 @cindex assigning attribute values to insns
6882 The value assigned to an attribute of an insn is primarily determined by
6883 which pattern is matched by that insn (or which @code{define_peephole}
6884 generated it).  Every @code{define_insn} and @code{define_peephole} can
6885 have an optional last argument to specify the values of attributes for
6886 matching insns.  The value of any attribute not specified in a particular
6887 insn is set to the default value for that attribute, as specified in its
6888 @code{define_attr}.  Extensive use of default values for attributes
6889 permits the specification of the values for only one or two attributes
6890 in the definition of most insn patterns, as seen in the example in the
6891 next section.
6893 The optional last argument of @code{define_insn} and
6894 @code{define_peephole} is a vector of expressions, each of which defines
6895 the value for a single attribute.  The most general way of assigning an
6896 attribute's value is to use a @code{set} expression whose first operand is an
6897 @code{attr} expression giving the name of the attribute being set.  The
6898 second operand of the @code{set} is an attribute expression
6899 (@pxref{Expressions}) giving the value of the attribute.
6901 When the attribute value depends on the @samp{alternative} attribute
6902 (i.e., which is the applicable alternative in the constraint of the
6903 insn), the @code{set_attr_alternative} expression can be used.  It
6904 allows the specification of a vector of attribute expressions, one for
6905 each alternative.
6907 @findex set_attr
6908 When the generality of arbitrary attribute expressions is not required,
6909 the simpler @code{set_attr} expression can be used, which allows
6910 specifying a string giving either a single attribute value or a list
6911 of attribute values, one for each alternative.
6913 The form of each of the above specifications is shown below.  In each case,
6914 @var{name} is a string specifying the attribute to be set.
6916 @table @code
6917 @item (set_attr @var{name} @var{value-string})
6918 @var{value-string} is either a string giving the desired attribute value,
6919 or a string containing a comma-separated list giving the values for
6920 succeeding alternatives.  The number of elements must match the number
6921 of alternatives in the constraint of the insn pattern.
6923 Note that it may be useful to specify @samp{*} for some alternative, in
6924 which case the attribute will assume its default value for insns matching
6925 that alternative.
6927 @findex set_attr_alternative
6928 @item (set_attr_alternative @var{name} [@var{value1} @var{value2} @dots{}])
6929 Depending on the alternative of the insn, the value will be one of the
6930 specified values.  This is a shorthand for using a @code{cond} with
6931 tests on the @samp{alternative} attribute.
6933 @findex attr
6934 @item (set (attr @var{name}) @var{value})
6935 The first operand of this @code{set} must be the special RTL expression
6936 @code{attr}, whose sole operand is a string giving the name of the
6937 attribute being set.  @var{value} is the value of the attribute.
6938 @end table
6940 The following shows three different ways of representing the same
6941 attribute value specification:
6943 @smallexample
6944 (set_attr "type" "load,store,arith")
6946 (set_attr_alternative "type"
6947                       [(const_string "load") (const_string "store")
6948                        (const_string "arith")])
6950 (set (attr "type")
6951      (cond [(eq_attr "alternative" "1") (const_string "load")
6952             (eq_attr "alternative" "2") (const_string "store")]
6953            (const_string "arith")))
6954 @end smallexample
6956 @need 1000
6957 @findex define_asm_attributes
6958 The @code{define_asm_attributes} expression provides a mechanism to
6959 specify the attributes assigned to insns produced from an @code{asm}
6960 statement.  It has the form:
6962 @smallexample
6963 (define_asm_attributes [@var{attr-sets}])
6964 @end smallexample
6966 @noindent
6967 where @var{attr-sets} is specified the same as for both the
6968 @code{define_insn} and the @code{define_peephole} expressions.
6970 These values will typically be the ``worst case'' attribute values.  For
6971 example, they might indicate that the condition code will be clobbered.
6973 A specification for a @code{length} attribute is handled specially.  The
6974 way to compute the length of an @code{asm} insn is to multiply the
6975 length specified in the expression @code{define_asm_attributes} by the
6976 number of machine instructions specified in the @code{asm} statement,
6977 determined by counting the number of semicolons and newlines in the
6978 string.  Therefore, the value of the @code{length} attribute specified
6979 in a @code{define_asm_attributes} should be the maximum possible length
6980 of a single machine instruction.
6982 @end ifset
6983 @ifset INTERNALS
6984 @node Attr Example
6985 @subsection Example of Attribute Specifications
6986 @cindex attribute specifications example
6987 @cindex attribute specifications
6989 The judicious use of defaulting is important in the efficient use of
6990 insn attributes.  Typically, insns are divided into @dfn{types} and an
6991 attribute, customarily called @code{type}, is used to represent this
6992 value.  This attribute is normally used only to define the default value
6993 for other attributes.  An example will clarify this usage.
6995 Assume we have a RISC machine with a condition code and in which only
6996 full-word operations are performed in registers.  Let us assume that we
6997 can divide all insns into loads, stores, (integer) arithmetic
6998 operations, floating point operations, and branches.
7000 Here we will concern ourselves with determining the effect of an insn on
7001 the condition code and will limit ourselves to the following possible
7002 effects:  The condition code can be set unpredictably (clobbered), not
7003 be changed, be set to agree with the results of the operation, or only
7004 changed if the item previously set into the condition code has been
7005 modified.
7007 Here is part of a sample @file{md} file for such a machine:
7009 @smallexample
7010 (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
7012 (define_attr "cc" "clobber,unchanged,set,change0"
7013              (cond [(eq_attr "type" "load")
7014                         (const_string "change0")
7015                     (eq_attr "type" "store,branch")
7016                         (const_string "unchanged")
7017                     (eq_attr "type" "arith")
7018                         (if_then_else (match_operand:SI 0 "" "")
7019                                       (const_string "set")
7020                                       (const_string "clobber"))]
7021                    (const_string "clobber")))
7023 (define_insn ""
7024   [(set (match_operand:SI 0 "general_operand" "=r,r,m")
7025         (match_operand:SI 1 "general_operand" "r,m,r"))]
7026   ""
7027   "@@
7028    move %0,%1
7029    load %0,%1
7030    store %0,%1"
7031   [(set_attr "type" "arith,load,store")])
7032 @end smallexample
7034 Note that we assume in the above example that arithmetic operations
7035 performed on quantities smaller than a machine word clobber the condition
7036 code since they will set the condition code to a value corresponding to the
7037 full-word result.
7039 @end ifset
7040 @ifset INTERNALS
7041 @node Insn Lengths
7042 @subsection Computing the Length of an Insn
7043 @cindex insn lengths, computing
7044 @cindex computing the length of an insn
7046 For many machines, multiple types of branch instructions are provided, each
7047 for different length branch displacements.  In most cases, the assembler
7048 will choose the correct instruction to use.  However, when the assembler
7049 cannot do so, GCC can when a special attribute, the @code{length}
7050 attribute, is defined.  This attribute must be defined to have numeric
7051 values by specifying a null string in its @code{define_attr}.
7053 In the case of the @code{length} attribute, two additional forms of
7054 arithmetic terms are allowed in test expressions:
7056 @table @code
7057 @cindex @code{match_dup} and attributes
7058 @item (match_dup @var{n})
7059 This refers to the address of operand @var{n} of the current insn, which
7060 must be a @code{label_ref}.
7062 @cindex @code{pc} and attributes
7063 @item (pc)
7064 This refers to the address of the @emph{current} insn.  It might have
7065 been more consistent with other usage to make this the address of the
7066 @emph{next} insn but this would be confusing because the length of the
7067 current insn is to be computed.
7068 @end table
7070 @cindex @code{addr_vec}, length of
7071 @cindex @code{addr_diff_vec}, length of
7072 For normal insns, the length will be determined by value of the
7073 @code{length} attribute.  In the case of @code{addr_vec} and
7074 @code{addr_diff_vec} insn patterns, the length is computed as
7075 the number of vectors multiplied by the size of each vector.
7077 Lengths are measured in addressable storage units (bytes).
7079 The following macros can be used to refine the length computation:
7081 @table @code
7082 @findex ADJUST_INSN_LENGTH
7083 @item ADJUST_INSN_LENGTH (@var{insn}, @var{length})
7084 If defined, modifies the length assigned to instruction @var{insn} as a
7085 function of the context in which it is used.  @var{length} is an lvalue
7086 that contains the initially computed length of the insn and should be
7087 updated with the correct length of the insn.
7089 This macro will normally not be required.  A case in which it is
7090 required is the ROMP@.  On this machine, the size of an @code{addr_vec}
7091 insn must be increased by two to compensate for the fact that alignment
7092 may be required.
7093 @end table
7095 @findex get_attr_length
7096 The routine that returns @code{get_attr_length} (the value of the
7097 @code{length} attribute) can be used by the output routine to
7098 determine the form of the branch instruction to be written, as the
7099 example below illustrates.
7101 As an example of the specification of variable-length branches, consider
7102 the IBM 360.  If we adopt the convention that a register will be set to
7103 the starting address of a function, we can jump to labels within 4k of
7104 the start using a four-byte instruction.  Otherwise, we need a six-byte
7105 sequence to load the address from memory and then branch to it.
7107 On such a machine, a pattern for a branch instruction might be specified
7108 as follows:
7110 @smallexample
7111 (define_insn "jump"
7112   [(set (pc)
7113         (label_ref (match_operand 0 "" "")))]
7114   ""
7116    return (get_attr_length (insn) == 4
7117            ? "b %l0" : "l r15,=a(%l0); br r15");
7119   [(set (attr "length")
7120         (if_then_else (lt (match_dup 0) (const_int 4096))
7121                       (const_int 4)
7122                       (const_int 6)))])
7123 @end smallexample
7125 @end ifset
7126 @ifset INTERNALS
7127 @node Constant Attributes
7128 @subsection Constant Attributes
7129 @cindex constant attributes
7131 A special form of @code{define_attr}, where the expression for the
7132 default value is a @code{const} expression, indicates an attribute that
7133 is constant for a given run of the compiler.  Constant attributes may be
7134 used to specify which variety of processor is used.  For example,
7136 @smallexample
7137 (define_attr "cpu" "m88100,m88110,m88000"
7138  (const
7139   (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
7140          (symbol_ref "TARGET_88110") (const_string "m88110")]
7141         (const_string "m88000"))))
7143 (define_attr "memory" "fast,slow"
7144  (const
7145   (if_then_else (symbol_ref "TARGET_FAST_MEM")
7146                 (const_string "fast")
7147                 (const_string "slow"))))
7148 @end smallexample
7150 The routine generated for constant attributes has no parameters as it
7151 does not depend on any particular insn.  RTL expressions used to define
7152 the value of a constant attribute may use the @code{symbol_ref} form,
7153 but may not use either the @code{match_operand} form or @code{eq_attr}
7154 forms involving insn attributes.
7156 @end ifset
7157 @ifset INTERNALS
7158 @node Delay Slots
7159 @subsection Delay Slot Scheduling
7160 @cindex delay slots, defining
7162 The insn attribute mechanism can be used to specify the requirements for
7163 delay slots, if any, on a target machine.  An instruction is said to
7164 require a @dfn{delay slot} if some instructions that are physically
7165 after the instruction are executed as if they were located before it.
7166 Classic examples are branch and call instructions, which often execute
7167 the following instruction before the branch or call is performed.
7169 On some machines, conditional branch instructions can optionally
7170 @dfn{annul} instructions in the delay slot.  This means that the
7171 instruction will not be executed for certain branch outcomes.  Both
7172 instructions that annul if the branch is true and instructions that
7173 annul if the branch is false are supported.
7175 Delay slot scheduling differs from instruction scheduling in that
7176 determining whether an instruction needs a delay slot is dependent only
7177 on the type of instruction being generated, not on data flow between the
7178 instructions.  See the next section for a discussion of data-dependent
7179 instruction scheduling.
7181 @findex define_delay
7182 The requirement of an insn needing one or more delay slots is indicated
7183 via the @code{define_delay} expression.  It has the following form:
7185 @smallexample
7186 (define_delay @var{test}
7187               [@var{delay-1} @var{annul-true-1} @var{annul-false-1}
7188                @var{delay-2} @var{annul-true-2} @var{annul-false-2}
7189                @dots{}])
7190 @end smallexample
7192 @var{test} is an attribute test that indicates whether this
7193 @code{define_delay} applies to a particular insn.  If so, the number of
7194 required delay slots is determined by the length of the vector specified
7195 as the second argument.  An insn placed in delay slot @var{n} must
7196 satisfy attribute test @var{delay-n}.  @var{annul-true-n} is an
7197 attribute test that specifies which insns may be annulled if the branch
7198 is true.  Similarly, @var{annul-false-n} specifies which insns in the
7199 delay slot may be annulled if the branch is false.  If annulling is not
7200 supported for that delay slot, @code{(nil)} should be coded.
7202 For example, in the common case where branch and call insns require
7203 a single delay slot, which may contain any insn other than a branch or
7204 call, the following would be placed in the @file{md} file:
7206 @smallexample
7207 (define_delay (eq_attr "type" "branch,call")
7208               [(eq_attr "type" "!branch,call") (nil) (nil)])
7209 @end smallexample
7211 Multiple @code{define_delay} expressions may be specified.  In this
7212 case, each such expression specifies different delay slot requirements
7213 and there must be no insn for which tests in two @code{define_delay}
7214 expressions are both true.
7216 For example, if we have a machine that requires one delay slot for branches
7217 but two for calls,  no delay slot can contain a branch or call insn,
7218 and any valid insn in the delay slot for the branch can be annulled if the
7219 branch is true, we might represent this as follows:
7221 @smallexample
7222 (define_delay (eq_attr "type" "branch")
7223    [(eq_attr "type" "!branch,call")
7224     (eq_attr "type" "!branch,call")
7225     (nil)])
7227 (define_delay (eq_attr "type" "call")
7228               [(eq_attr "type" "!branch,call") (nil) (nil)
7229                (eq_attr "type" "!branch,call") (nil) (nil)])
7230 @end smallexample
7231 @c the above is *still* too long.  --mew 4feb93
7233 @end ifset
7234 @ifset INTERNALS
7235 @node Processor pipeline description
7236 @subsection Specifying processor pipeline description
7237 @cindex processor pipeline description
7238 @cindex processor functional units
7239 @cindex instruction latency time
7240 @cindex interlock delays
7241 @cindex data dependence delays
7242 @cindex reservation delays
7243 @cindex pipeline hazard recognizer
7244 @cindex automaton based pipeline description
7245 @cindex regular expressions
7246 @cindex deterministic finite state automaton
7247 @cindex automaton based scheduler
7248 @cindex RISC
7249 @cindex VLIW
7251 To achieve better performance, most modern processors
7252 (super-pipelined, superscalar @acronym{RISC}, and @acronym{VLIW}
7253 processors) have many @dfn{functional units} on which several
7254 instructions can be executed simultaneously.  An instruction starts
7255 execution if its issue conditions are satisfied.  If not, the
7256 instruction is stalled until its conditions are satisfied.  Such
7257 @dfn{interlock (pipeline) delay} causes interruption of the fetching
7258 of successor instructions (or demands nop instructions, e.g.@: for some
7259 MIPS processors).
7261 There are two major kinds of interlock delays in modern processors.
7262 The first one is a data dependence delay determining @dfn{instruction
7263 latency time}.  The instruction execution is not started until all
7264 source data have been evaluated by prior instructions (there are more
7265 complex cases when the instruction execution starts even when the data
7266 are not available but will be ready in given time after the
7267 instruction execution start).  Taking the data dependence delays into
7268 account is simple.  The data dependence (true, output, and
7269 anti-dependence) delay between two instructions is given by a
7270 constant.  In most cases this approach is adequate.  The second kind
7271 of interlock delays is a reservation delay.  The reservation delay
7272 means that two instructions under execution will be in need of shared
7273 processors resources, i.e.@: buses, internal registers, and/or
7274 functional units, which are reserved for some time.  Taking this kind
7275 of delay into account is complex especially for modern @acronym{RISC}
7276 processors.
7278 The task of exploiting more processor parallelism is solved by an
7279 instruction scheduler.  For a better solution to this problem, the
7280 instruction scheduler has to have an adequate description of the
7281 processor parallelism (or @dfn{pipeline description}).  GCC
7282 machine descriptions describe processor parallelism and functional
7283 unit reservations for groups of instructions with the aid of
7284 @dfn{regular expressions}.
7286 The GCC instruction scheduler uses a @dfn{pipeline hazard recognizer} to
7287 figure out the possibility of the instruction issue by the processor
7288 on a given simulated processor cycle.  The pipeline hazard recognizer is
7289 automatically generated from the processor pipeline description.  The
7290 pipeline hazard recognizer generated from the machine description
7291 is based on a deterministic finite state automaton (@acronym{DFA}):
7292 the instruction issue is possible if there is a transition from one
7293 automaton state to another one.  This algorithm is very fast, and
7294 furthermore, its speed is not dependent on processor
7295 complexity@footnote{However, the size of the automaton depends on
7296 processor complexity.  To limit this effect, machine descriptions
7297 can split orthogonal parts of the machine description among several
7298 automata: but then, since each of these must be stepped independently,
7299 this does cause a small decrease in the algorithm's performance.}.
7301 @cindex automaton based pipeline description
7302 The rest of this section describes the directives that constitute
7303 an automaton-based processor pipeline description.  The order of
7304 these constructions within the machine description file is not
7305 important.
7307 @findex define_automaton
7308 @cindex pipeline hazard recognizer
7309 The following optional construction describes names of automata
7310 generated and used for the pipeline hazards recognition.  Sometimes
7311 the generated finite state automaton used by the pipeline hazard
7312 recognizer is large.  If we use more than one automaton and bind functional
7313 units to the automata, the total size of the automata is usually
7314 less than the size of the single automaton.  If there is no one such
7315 construction, only one finite state automaton is generated.
7317 @smallexample
7318 (define_automaton @var{automata-names})
7319 @end smallexample
7321 @var{automata-names} is a string giving names of the automata.  The
7322 names are separated by commas.  All the automata should have unique names.
7323 The automaton name is used in the constructions @code{define_cpu_unit} and
7324 @code{define_query_cpu_unit}.
7326 @findex define_cpu_unit
7327 @cindex processor functional units
7328 Each processor functional unit used in the description of instruction
7329 reservations should be described by the following construction.
7331 @smallexample
7332 (define_cpu_unit @var{unit-names} [@var{automaton-name}])
7333 @end smallexample
7335 @var{unit-names} is a string giving the names of the functional units
7336 separated by commas.  Don't use name @samp{nothing}, it is reserved
7337 for other goals.
7339 @var{automaton-name} is a string giving the name of the automaton with
7340 which the unit is bound.  The automaton should be described in
7341 construction @code{define_automaton}.  You should give
7342 @dfn{automaton-name}, if there is a defined automaton.
7344 The assignment of units to automata are constrained by the uses of the
7345 units in insn reservations.  The most important constraint is: if a
7346 unit reservation is present on a particular cycle of an alternative
7347 for an insn reservation, then some unit from the same automaton must
7348 be present on the same cycle for the other alternatives of the insn
7349 reservation.  The rest of the constraints are mentioned in the
7350 description of the subsequent constructions.
7352 @findex define_query_cpu_unit
7353 @cindex querying function unit reservations
7354 The following construction describes CPU functional units analogously
7355 to @code{define_cpu_unit}.  The reservation of such units can be
7356 queried for an automaton state.  The instruction scheduler never
7357 queries reservation of functional units for given automaton state.  So
7358 as a rule, you don't need this construction.  This construction could
7359 be used for future code generation goals (e.g.@: to generate
7360 @acronym{VLIW} insn templates).
7362 @smallexample
7363 (define_query_cpu_unit @var{unit-names} [@var{automaton-name}])
7364 @end smallexample
7366 @var{unit-names} is a string giving names of the functional units
7367 separated by commas.
7369 @var{automaton-name} is a string giving the name of the automaton with
7370 which the unit is bound.
7372 @findex define_insn_reservation
7373 @cindex instruction latency time
7374 @cindex regular expressions
7375 @cindex data bypass
7376 The following construction is the major one to describe pipeline
7377 characteristics of an instruction.
7379 @smallexample
7380 (define_insn_reservation @var{insn-name} @var{default_latency}
7381                          @var{condition} @var{regexp})
7382 @end smallexample
7384 @var{default_latency} is a number giving latency time of the
7385 instruction.  There is an important difference between the old
7386 description and the automaton based pipeline description.  The latency
7387 time is used for all dependencies when we use the old description.  In
7388 the automaton based pipeline description, the given latency time is only
7389 used for true dependencies.  The cost of anti-dependencies is always
7390 zero and the cost of output dependencies is the difference between
7391 latency times of the producing and consuming insns (if the difference
7392 is negative, the cost is considered to be zero).  You can always
7393 change the default costs for any description by using the target hook
7394 @code{TARGET_SCHED_ADJUST_COST} (@pxref{Scheduling}).
7396 @var{insn-name} is a string giving the internal name of the insn.  The
7397 internal names are used in constructions @code{define_bypass} and in
7398 the automaton description file generated for debugging.  The internal
7399 name has nothing in common with the names in @code{define_insn}.  It is a
7400 good practice to use insn classes described in the processor manual.
7402 @var{condition} defines what RTL insns are described by this
7403 construction.  You should remember that you will be in trouble if
7404 @var{condition} for two or more different
7405 @code{define_insn_reservation} constructions is TRUE for an insn.  In
7406 this case what reservation will be used for the insn is not defined.
7407 Such cases are not checked during generation of the pipeline hazards
7408 recognizer because in general recognizing that two conditions may have
7409 the same value is quite difficult (especially if the conditions
7410 contain @code{symbol_ref}).  It is also not checked during the
7411 pipeline hazard recognizer work because it would slow down the
7412 recognizer considerably.
7414 @var{regexp} is a string describing the reservation of the cpu's functional
7415 units by the instruction.  The reservations are described by a regular
7416 expression according to the following syntax:
7418 @smallexample
7419        regexp = regexp "," oneof
7420               | oneof
7422        oneof = oneof "|" allof
7423              | allof
7425        allof = allof "+" repeat
7426              | repeat
7428        repeat = element "*" number
7429               | element
7431        element = cpu_function_unit_name
7432                | reservation_name
7433                | result_name
7434                | "nothing"
7435                | "(" regexp ")"
7436 @end smallexample
7438 @itemize @bullet
7439 @item
7440 @samp{,} is used for describing the start of the next cycle in
7441 the reservation.
7443 @item
7444 @samp{|} is used for describing a reservation described by the first
7445 regular expression @strong{or} a reservation described by the second
7446 regular expression @strong{or} etc.
7448 @item
7449 @samp{+} is used for describing a reservation described by the first
7450 regular expression @strong{and} a reservation described by the
7451 second regular expression @strong{and} etc.
7453 @item
7454 @samp{*} is used for convenience and simply means a sequence in which
7455 the regular expression are repeated @var{number} times with cycle
7456 advancing (see @samp{,}).
7458 @item
7459 @samp{cpu_function_unit_name} denotes reservation of the named
7460 functional unit.
7462 @item
7463 @samp{reservation_name} --- see description of construction
7464 @samp{define_reservation}.
7466 @item
7467 @samp{nothing} denotes no unit reservations.
7468 @end itemize
7470 @findex define_reservation
7471 Sometimes unit reservations for different insns contain common parts.
7472 In such case, you can simplify the pipeline description by describing
7473 the common part by the following construction
7475 @smallexample
7476 (define_reservation @var{reservation-name} @var{regexp})
7477 @end smallexample
7479 @var{reservation-name} is a string giving name of @var{regexp}.
7480 Functional unit names and reservation names are in the same name
7481 space.  So the reservation names should be different from the
7482 functional unit names and can not be the reserved name @samp{nothing}.
7484 @findex define_bypass
7485 @cindex instruction latency time
7486 @cindex data bypass
7487 The following construction is used to describe exceptions in the
7488 latency time for given instruction pair.  This is so called bypasses.
7490 @smallexample
7491 (define_bypass @var{number} @var{out_insn_names} @var{in_insn_names}
7492                [@var{guard}])
7493 @end smallexample
7495 @var{number} defines when the result generated by the instructions
7496 given in string @var{out_insn_names} will be ready for the
7497 instructions given in string @var{in_insn_names}.  The instructions in
7498 the string are separated by commas.
7500 @var{guard} is an optional string giving the name of a C function which
7501 defines an additional guard for the bypass.  The function will get the
7502 two insns as parameters.  If the function returns zero the bypass will
7503 be ignored for this case.  The additional guard is necessary to
7504 recognize complicated bypasses, e.g.@: when the consumer is only an address
7505 of insn @samp{store} (not a stored value).
7507 @findex exclusion_set
7508 @findex presence_set
7509 @findex final_presence_set
7510 @findex absence_set
7511 @findex final_absence_set
7512 @cindex VLIW
7513 @cindex RISC
7514 The following five constructions are usually used to describe
7515 @acronym{VLIW} processors, or more precisely, to describe a placement
7516 of small instructions into @acronym{VLIW} instruction slots.  They
7517 can be used for @acronym{RISC} processors, too.
7519 @smallexample
7520 (exclusion_set @var{unit-names} @var{unit-names})
7521 (presence_set @var{unit-names} @var{patterns})
7522 (final_presence_set @var{unit-names} @var{patterns})
7523 (absence_set @var{unit-names} @var{patterns})
7524 (final_absence_set @var{unit-names} @var{patterns})
7525 @end smallexample
7527 @var{unit-names} is a string giving names of functional units
7528 separated by commas.
7530 @var{patterns} is a string giving patterns of functional units
7531 separated by comma.  Currently pattern is one unit or units
7532 separated by white-spaces.
7534 The first construction (@samp{exclusion_set}) means that each
7535 functional unit in the first string can not be reserved simultaneously
7536 with a unit whose name is in the second string and vice versa.  For
7537 example, the construction is useful for describing processors
7538 (e.g.@: some SPARC processors) with a fully pipelined floating point
7539 functional unit which can execute simultaneously only single floating
7540 point insns or only double floating point insns.
7542 The second construction (@samp{presence_set}) means that each
7543 functional unit in the first string can not be reserved unless at
7544 least one of pattern of units whose names are in the second string is
7545 reserved.  This is an asymmetric relation.  For example, it is useful
7546 for description that @acronym{VLIW} @samp{slot1} is reserved after
7547 @samp{slot0} reservation.  We could describe it by the following
7548 construction
7550 @smallexample
7551 (presence_set "slot1" "slot0")
7552 @end smallexample
7554 Or @samp{slot1} is reserved only after @samp{slot0} and unit @samp{b0}
7555 reservation.  In this case we could write
7557 @smallexample
7558 (presence_set "slot1" "slot0 b0")
7559 @end smallexample
7561 The third construction (@samp{final_presence_set}) is analogous to
7562 @samp{presence_set}.  The difference between them is when checking is
7563 done.  When an instruction is issued in given automaton state
7564 reflecting all current and planned unit reservations, the automaton
7565 state is changed.  The first state is a source state, the second one
7566 is a result state.  Checking for @samp{presence_set} is done on the
7567 source state reservation, checking for @samp{final_presence_set} is
7568 done on the result reservation.  This construction is useful to
7569 describe a reservation which is actually two subsequent reservations.
7570 For example, if we use
7572 @smallexample
7573 (presence_set "slot1" "slot0")
7574 @end smallexample
7576 the following insn will be never issued (because @samp{slot1} requires
7577 @samp{slot0} which is absent in the source state).
7579 @smallexample
7580 (define_reservation "insn_and_nop" "slot0 + slot1")
7581 @end smallexample
7583 but it can be issued if we use analogous @samp{final_presence_set}.
7585 The forth construction (@samp{absence_set}) means that each functional
7586 unit in the first string can be reserved only if each pattern of units
7587 whose names are in the second string is not reserved.  This is an
7588 asymmetric relation (actually @samp{exclusion_set} is analogous to
7589 this one but it is symmetric).  For example it might be useful in a 
7590 @acronym{VLIW} description to say that @samp{slot0} cannot be reserved
7591 after either @samp{slot1} or @samp{slot2} have been reserved.  This
7592 can be described as:
7594 @smallexample
7595 (absence_set "slot0" "slot1, slot2")
7596 @end smallexample
7598 Or @samp{slot2} can not be reserved if @samp{slot0} and unit @samp{b0}
7599 are reserved or @samp{slot1} and unit @samp{b1} are reserved.  In
7600 this case we could write
7602 @smallexample
7603 (absence_set "slot2" "slot0 b0, slot1 b1")
7604 @end smallexample
7606 All functional units mentioned in a set should belong to the same
7607 automaton.
7609 The last construction (@samp{final_absence_set}) is analogous to
7610 @samp{absence_set} but checking is done on the result (state)
7611 reservation.  See comments for @samp{final_presence_set}.
7613 @findex automata_option
7614 @cindex deterministic finite state automaton
7615 @cindex nondeterministic finite state automaton
7616 @cindex finite state automaton minimization
7617 You can control the generator of the pipeline hazard recognizer with
7618 the following construction.
7620 @smallexample
7621 (automata_option @var{options})
7622 @end smallexample
7624 @var{options} is a string giving options which affect the generated
7625 code.  Currently there are the following options:
7627 @itemize @bullet
7628 @item
7629 @dfn{no-minimization} makes no minimization of the automaton.  This is
7630 only worth to do when we are debugging the description and need to
7631 look more accurately at reservations of states.
7633 @item
7634 @dfn{time} means printing time statistics about the generation of
7635 automata.
7637 @item
7638 @dfn{stats} means printing statistics about the generated automata
7639 such as the number of DFA states, NDFA states and arcs.
7641 @item
7642 @dfn{v} means a generation of the file describing the result automata.
7643 The file has suffix @samp{.dfa} and can be used for the description
7644 verification and debugging.
7646 @item
7647 @dfn{w} means a generation of warning instead of error for
7648 non-critical errors.
7650 @item
7651 @dfn{ndfa} makes nondeterministic finite state automata.  This affects
7652 the treatment of operator @samp{|} in the regular expressions.  The
7653 usual treatment of the operator is to try the first alternative and,
7654 if the reservation is not possible, the second alternative.  The
7655 nondeterministic treatment means trying all alternatives, some of them
7656 may be rejected by reservations in the subsequent insns.
7658 @item
7659 @dfn{progress} means output of a progress bar showing how many states
7660 were generated so far for automaton being processed.  This is useful
7661 during debugging a @acronym{DFA} description.  If you see too many
7662 generated states, you could interrupt the generator of the pipeline
7663 hazard recognizer and try to figure out a reason for generation of the
7664 huge automaton.
7665 @end itemize
7667 As an example, consider a superscalar @acronym{RISC} machine which can
7668 issue three insns (two integer insns and one floating point insn) on
7669 the cycle but can finish only two insns.  To describe this, we define
7670 the following functional units.
7672 @smallexample
7673 (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline")
7674 (define_cpu_unit "port0, port1")
7675 @end smallexample
7677 All simple integer insns can be executed in any integer pipeline and
7678 their result is ready in two cycles.  The simple integer insns are
7679 issued into the first pipeline unless it is reserved, otherwise they
7680 are issued into the second pipeline.  Integer division and
7681 multiplication insns can be executed only in the second integer
7682 pipeline and their results are ready correspondingly in 8 and 4
7683 cycles.  The integer division is not pipelined, i.e.@: the subsequent
7684 integer division insn can not be issued until the current division
7685 insn finished.  Floating point insns are fully pipelined and their
7686 results are ready in 3 cycles.  Where the result of a floating point
7687 insn is used by an integer insn, an additional delay of one cycle is
7688 incurred.  To describe all of this we could specify
7690 @smallexample
7691 (define_cpu_unit "div")
7693 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
7694                          "(i0_pipeline | i1_pipeline), (port0 | port1)")
7696 (define_insn_reservation "mult" 4 (eq_attr "type" "mult")
7697                          "i1_pipeline, nothing*2, (port0 | port1)")
7699 (define_insn_reservation "div" 8 (eq_attr "type" "div")
7700                          "i1_pipeline, div*7, div + (port0 | port1)")
7702 (define_insn_reservation "float" 3 (eq_attr "type" "float")
7703                          "f_pipeline, nothing, (port0 | port1))
7705 (define_bypass 4 "float" "simple,mult,div")
7706 @end smallexample
7708 To simplify the description we could describe the following reservation
7710 @smallexample
7711 (define_reservation "finish" "port0|port1")
7712 @end smallexample
7714 and use it in all @code{define_insn_reservation} as in the following
7715 construction
7717 @smallexample
7718 (define_insn_reservation "simple" 2 (eq_attr "type" "int")
7719                          "(i0_pipeline | i1_pipeline), finish")
7720 @end smallexample
7723 @end ifset
7724 @ifset INTERNALS
7725 @node Conditional Execution
7726 @section Conditional Execution
7727 @cindex conditional execution
7728 @cindex predication
7730 A number of architectures provide for some form of conditional
7731 execution, or predication.  The hallmark of this feature is the
7732 ability to nullify most of the instructions in the instruction set.
7733 When the instruction set is large and not entirely symmetric, it
7734 can be quite tedious to describe these forms directly in the
7735 @file{.md} file.  An alternative is the @code{define_cond_exec} template.
7737 @findex define_cond_exec
7738 @smallexample
7739 (define_cond_exec
7740   [@var{predicate-pattern}]
7741   "@var{condition}"
7742   "@var{output-template}")
7743 @end smallexample
7745 @var{predicate-pattern} is the condition that must be true for the
7746 insn to be executed at runtime and should match a relational operator.
7747 One can use @code{match_operator} to match several relational operators
7748 at once.  Any @code{match_operand} operands must have no more than one
7749 alternative.
7751 @var{condition} is a C expression that must be true for the generated
7752 pattern to match.
7754 @findex current_insn_predicate
7755 @var{output-template} is a string similar to the @code{define_insn}
7756 output template (@pxref{Output Template}), except that the @samp{*}
7757 and @samp{@@} special cases do not apply.  This is only useful if the
7758 assembly text for the predicate is a simple prefix to the main insn.
7759 In order to handle the general case, there is a global variable
7760 @code{current_insn_predicate} that will contain the entire predicate
7761 if the current insn is predicated, and will otherwise be @code{NULL}.
7763 When @code{define_cond_exec} is used, an implicit reference to
7764 the @code{predicable} instruction attribute is made.
7765 @xref{Insn Attributes}.  This attribute must be boolean (i.e.@: have
7766 exactly two elements in its @var{list-of-values}).  Further, it must
7767 not be used with complex expressions.  That is, the default and all
7768 uses in the insns must be a simple constant, not dependent on the
7769 alternative or anything else.
7771 For each @code{define_insn} for which the @code{predicable}
7772 attribute is true, a new @code{define_insn} pattern will be
7773 generated that matches a predicated version of the instruction.
7774 For example,
7776 @smallexample
7777 (define_insn "addsi"
7778   [(set (match_operand:SI 0 "register_operand" "r")
7779         (plus:SI (match_operand:SI 1 "register_operand" "r")
7780                  (match_operand:SI 2 "register_operand" "r")))]
7781   "@var{test1}"
7782   "add %2,%1,%0")
7784 (define_cond_exec
7785   [(ne (match_operand:CC 0 "register_operand" "c")
7786        (const_int 0))]
7787   "@var{test2}"
7788   "(%0)")
7789 @end smallexample
7791 @noindent
7792 generates a new pattern
7794 @smallexample
7795 (define_insn ""
7796   [(cond_exec
7797      (ne (match_operand:CC 3 "register_operand" "c") (const_int 0))
7798      (set (match_operand:SI 0 "register_operand" "r")
7799           (plus:SI (match_operand:SI 1 "register_operand" "r")
7800                    (match_operand:SI 2 "register_operand" "r"))))]
7801   "(@var{test2}) && (@var{test1})"
7802   "(%3) add %2,%1,%0")
7803 @end smallexample
7805 @end ifset
7806 @ifset INTERNALS
7807 @node Constant Definitions
7808 @section Constant Definitions
7809 @cindex constant definitions
7810 @findex define_constants
7812 Using literal constants inside instruction patterns reduces legibility and
7813 can be a maintenance problem.
7815 To overcome this problem, you may use the @code{define_constants}
7816 expression.  It contains a vector of name-value pairs.  From that
7817 point on, wherever any of the names appears in the MD file, it is as
7818 if the corresponding value had been written instead.  You may use
7819 @code{define_constants} multiple times; each appearance adds more
7820 constants to the table.  It is an error to redefine a constant with
7821 a different value.
7823 To come back to the a29k load multiple example, instead of
7825 @smallexample
7826 (define_insn ""
7827   [(match_parallel 0 "load_multiple_operation"
7828      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
7829            (match_operand:SI 2 "memory_operand" "m"))
7830       (use (reg:SI 179))
7831       (clobber (reg:SI 179))])]
7832   ""
7833   "loadm 0,0,%1,%2")
7834 @end smallexample
7836 You could write:
7838 @smallexample
7839 (define_constants [
7840     (R_BP 177)
7841     (R_FC 178)
7842     (R_CR 179)
7843     (R_Q  180)
7846 (define_insn ""
7847   [(match_parallel 0 "load_multiple_operation"
7848      [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
7849            (match_operand:SI 2 "memory_operand" "m"))
7850       (use (reg:SI R_CR))
7851       (clobber (reg:SI R_CR))])]
7852   ""
7853   "loadm 0,0,%1,%2")
7854 @end smallexample
7856 The constants that are defined with a define_constant are also output
7857 in the insn-codes.h header file as #defines.
7858 @end ifset
7859 @ifset INTERNALS
7860 @node Iterators
7861 @section Iterators
7862 @cindex iterators in @file{.md} files
7864 Ports often need to define similar patterns for more than one machine
7865 mode or for more than one rtx code.  GCC provides some simple iterator
7866 facilities to make this process easier.
7868 @menu
7869 * Mode Iterators::         Generating variations of patterns for different modes.
7870 * Code Iterators::         Doing the same for codes.
7871 @end menu
7873 @node Mode Iterators
7874 @subsection Mode Iterators
7875 @cindex mode iterators in @file{.md} files
7877 Ports often need to define similar patterns for two or more different modes.
7878 For example:
7880 @itemize @bullet
7881 @item
7882 If a processor has hardware support for both single and double
7883 floating-point arithmetic, the @code{SFmode} patterns tend to be
7884 very similar to the @code{DFmode} ones.
7886 @item
7887 If a port uses @code{SImode} pointers in one configuration and
7888 @code{DImode} pointers in another, it will usually have very similar
7889 @code{SImode} and @code{DImode} patterns for manipulating pointers.
7890 @end itemize
7892 Mode iterators allow several patterns to be instantiated from one
7893 @file{.md} file template.  They can be used with any type of
7894 rtx-based construct, such as a @code{define_insn},
7895 @code{define_split}, or @code{define_peephole2}.
7897 @menu
7898 * Defining Mode Iterators:: Defining a new mode iterator.
7899 * Substitutions::           Combining mode iterators with substitutions
7900 * Examples::                Examples
7901 @end menu
7903 @node Defining Mode Iterators
7904 @subsubsection Defining Mode Iterators
7905 @findex define_mode_iterator
7907 The syntax for defining a mode iterator is:
7909 @smallexample
7910 (define_mode_iterator @var{name} [(@var{mode1} "@var{cond1}") @dots{} (@var{moden} "@var{condn}")])
7911 @end smallexample
7913 This allows subsequent @file{.md} file constructs to use the mode suffix
7914 @code{:@var{name}}.  Every construct that does so will be expanded
7915 @var{n} times, once with every use of @code{:@var{name}} replaced by
7916 @code{:@var{mode1}}, once with every use replaced by @code{:@var{mode2}},
7917 and so on.  In the expansion for a particular @var{modei}, every
7918 C condition will also require that @var{condi} be true.
7920 For example:
7922 @smallexample
7923 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
7924 @end smallexample
7926 defines a new mode suffix @code{:P}.  Every construct that uses
7927 @code{:P} will be expanded twice, once with every @code{:P} replaced
7928 by @code{:SI} and once with every @code{:P} replaced by @code{:DI}.
7929 The @code{:SI} version will only apply if @code{Pmode == SImode} and
7930 the @code{:DI} version will only apply if @code{Pmode == DImode}.
7932 As with other @file{.md} conditions, an empty string is treated
7933 as ``always true''.  @code{(@var{mode} "")} can also be abbreviated
7934 to @code{@var{mode}}.  For example:
7936 @smallexample
7937 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
7938 @end smallexample
7940 means that the @code{:DI} expansion only applies if @code{TARGET_64BIT}
7941 but that the @code{:SI} expansion has no such constraint.
7943 Iterators are applied in the order they are defined.  This can be
7944 significant if two iterators are used in a construct that requires
7945 substitutions.  @xref{Substitutions}.
7947 @node Substitutions
7948 @subsubsection Substitution in Mode Iterators
7949 @findex define_mode_attr
7951 If an @file{.md} file construct uses mode iterators, each version of the
7952 construct will often need slightly different strings or modes.  For
7953 example:
7955 @itemize @bullet
7956 @item
7957 When a @code{define_expand} defines several @code{add@var{m}3} patterns
7958 (@pxref{Standard Names}), each expander will need to use the
7959 appropriate mode name for @var{m}.
7961 @item
7962 When a @code{define_insn} defines several instruction patterns,
7963 each instruction will often use a different assembler mnemonic.
7965 @item
7966 When a @code{define_insn} requires operands with different modes,
7967 using an iterator for one of the operand modes usually requires a specific
7968 mode for the other operand(s).
7969 @end itemize
7971 GCC supports such variations through a system of ``mode attributes''.
7972 There are two standard attributes: @code{mode}, which is the name of
7973 the mode in lower case, and @code{MODE}, which is the same thing in
7974 upper case.  You can define other attributes using:
7976 @smallexample
7977 (define_mode_attr @var{name} [(@var{mode1} "@var{value1}") @dots{} (@var{moden} "@var{valuen}")])
7978 @end smallexample
7980 where @var{name} is the name of the attribute and @var{valuei}
7981 is the value associated with @var{modei}.
7983 When GCC replaces some @var{:iterator} with @var{:mode}, it will scan
7984 each string and mode in the pattern for sequences of the form
7985 @code{<@var{iterator}:@var{attr}>}, where @var{attr} is the name of a
7986 mode attribute.  If the attribute is defined for @var{mode}, the whole
7987 @code{<@dots{}>} sequence will be replaced by the appropriate attribute
7988 value.
7990 For example, suppose an @file{.md} file has:
7992 @smallexample
7993 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
7994 (define_mode_attr load [(SI "lw") (DI "ld")])
7995 @end smallexample
7997 If one of the patterns that uses @code{:P} contains the string
7998 @code{"<P:load>\t%0,%1"}, the @code{SI} version of that pattern
7999 will use @code{"lw\t%0,%1"} and the @code{DI} version will use
8000 @code{"ld\t%0,%1"}.
8002 Here is an example of using an attribute for a mode:
8004 @smallexample
8005 (define_mode_iterator LONG [SI DI])
8006 (define_mode_attr SHORT [(SI "HI") (DI "SI")])
8007 (define_insn @dots{}
8008   (sign_extend:LONG (match_operand:<LONG:SHORT> @dots{})) @dots{})
8009 @end smallexample
8011 The @code{@var{iterator}:} prefix may be omitted, in which case the
8012 substitution will be attempted for every iterator expansion.
8014 @node Examples
8015 @subsubsection Mode Iterator Examples
8017 Here is an example from the MIPS port.  It defines the following
8018 modes and attributes (among others):
8020 @smallexample
8021 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
8022 (define_mode_attr d [(SI "") (DI "d")])
8023 @end smallexample
8025 and uses the following template to define both @code{subsi3}
8026 and @code{subdi3}:
8028 @smallexample
8029 (define_insn "sub<mode>3"
8030   [(set (match_operand:GPR 0 "register_operand" "=d")
8031         (minus:GPR (match_operand:GPR 1 "register_operand" "d")
8032                    (match_operand:GPR 2 "register_operand" "d")))]
8033   ""
8034   "<d>subu\t%0,%1,%2"
8035   [(set_attr "type" "arith")
8036    (set_attr "mode" "<MODE>")])
8037 @end smallexample
8039 This is exactly equivalent to:
8041 @smallexample
8042 (define_insn "subsi3"
8043   [(set (match_operand:SI 0 "register_operand" "=d")
8044         (minus:SI (match_operand:SI 1 "register_operand" "d")
8045                   (match_operand:SI 2 "register_operand" "d")))]
8046   ""
8047   "subu\t%0,%1,%2"
8048   [(set_attr "type" "arith")
8049    (set_attr "mode" "SI")])
8051 (define_insn "subdi3"
8052   [(set (match_operand:DI 0 "register_operand" "=d")
8053         (minus:DI (match_operand:DI 1 "register_operand" "d")
8054                   (match_operand:DI 2 "register_operand" "d")))]
8055   ""
8056   "dsubu\t%0,%1,%2"
8057   [(set_attr "type" "arith")
8058    (set_attr "mode" "DI")])
8059 @end smallexample
8061 @node Code Iterators
8062 @subsection Code Iterators
8063 @cindex code iterators in @file{.md} files
8064 @findex define_code_iterator
8065 @findex define_code_attr
8067 Code iterators operate in a similar way to mode iterators.  @xref{Mode Iterators}.
8069 The construct:
8071 @smallexample
8072 (define_code_iterator @var{name} [(@var{code1} "@var{cond1}") @dots{} (@var{coden} "@var{condn}")])
8073 @end smallexample
8075 defines a pseudo rtx code @var{name} that can be instantiated as
8076 @var{codei} if condition @var{condi} is true.  Each @var{codei}
8077 must have the same rtx format.  @xref{RTL Classes}.
8079 As with mode iterators, each pattern that uses @var{name} will be
8080 expanded @var{n} times, once with all uses of @var{name} replaced by
8081 @var{code1}, once with all uses replaced by @var{code2}, and so on.
8082 @xref{Defining Mode Iterators}.
8084 It is possible to define attributes for codes as well as for modes.
8085 There are two standard code attributes: @code{code}, the name of the
8086 code in lower case, and @code{CODE}, the name of the code in upper case.
8087 Other attributes are defined using:
8089 @smallexample
8090 (define_code_attr @var{name} [(@var{code1} "@var{value1}") @dots{} (@var{coden} "@var{valuen}")])
8091 @end smallexample
8093 Here's an example of code iterators in action, taken from the MIPS port:
8095 @smallexample
8096 (define_code_iterator any_cond [unordered ordered unlt unge uneq ltgt unle ungt
8097                                 eq ne gt ge lt le gtu geu ltu leu])
8099 (define_expand "b<code>"
8100   [(set (pc)
8101         (if_then_else (any_cond:CC (cc0)
8102                                    (const_int 0))
8103                       (label_ref (match_operand 0 ""))
8104                       (pc)))]
8105   ""
8107   gen_conditional_branch (operands, <CODE>);
8108   DONE;
8110 @end smallexample
8112 This is equivalent to:
8114 @smallexample
8115 (define_expand "bunordered"
8116   [(set (pc)
8117         (if_then_else (unordered:CC (cc0)
8118                                     (const_int 0))
8119                       (label_ref (match_operand 0 ""))
8120                       (pc)))]
8121   ""
8123   gen_conditional_branch (operands, UNORDERED);
8124   DONE;
8127 (define_expand "bordered"
8128   [(set (pc)
8129         (if_then_else (ordered:CC (cc0)
8130                                   (const_int 0))
8131                       (label_ref (match_operand 0 ""))
8132                       (pc)))]
8133   ""
8135   gen_conditional_branch (operands, ORDERED);
8136   DONE;
8139 @dots{}
8140 @end smallexample
8142 @end ifset