kernel/clock_gettime: Various fixes.
[dragonfly.git] / lib / libkvm / kvm_proc.c
blob618735352ad5fa7953b439f5f31a871f4682043b
1 /*-
2 * Copyright (c) 1989, 1992, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
35 * @(#)kvm_proc.c 8.3 (Berkeley) 9/23/93
39 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
40 * users of this code, so we've factored it out into a separate module.
41 * Thus, we keep this grunge out of the other kvm applications (i.e.,
42 * most other applications are interested only in open/close/read/nlist).
45 #include <sys/user.h> /* MUST BE FIRST */
46 #include <sys/conf.h>
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/exec.h>
50 #include <sys/stat.h>
51 #include <sys/globaldata.h>
52 #include <sys/ioctl.h>
53 #include <sys/tty.h>
54 #include <sys/file.h>
55 #include <sys/jail.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <unistd.h>
59 #include <nlist.h>
60 #include <kvm.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/swap_pager.h>
66 #include <sys/sysctl.h>
68 #include <limits.h>
69 #include <memory.h>
70 #include <paths.h>
72 #include "kvm_private.h"
74 #if used
75 static char *
76 kvm_readswap(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
78 #if defined(__FreeBSD__) || defined(__DragonFly__)
79 /* XXX Stubbed out, our vm system is differnet */
80 _kvm_err(kd, kd->program, "kvm_readswap not implemented");
81 return(0);
82 #endif
84 #endif
86 #define KREAD(kd, addr, obj) \
87 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
88 #define KREADSTR(kd, addr) \
89 kvm_readstr(kd, (u_long)addr, NULL, NULL)
91 static struct kinfo_proc *
92 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
94 if (bp < kd->procend)
95 return bp;
97 size_t pos = bp - kd->procend;
98 size_t size = kd->procend - kd->procbase;
100 if (size == 0)
101 size = 8;
102 else
103 size *= 2;
104 kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
105 if (kd->procbase == NULL)
106 return NULL;
107 kd->procend = kd->procbase + size;
108 bp = kd->procbase + pos;
109 return bp;
113 * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
114 * compiled by userland.
116 dev_t
117 dev2udev(cdev_t dev)
119 if (dev == NULL)
120 return NOUDEV;
121 if ((dev->si_umajor & 0xffffff00) ||
122 (dev->si_uminor & 0x0000ff00)) {
123 return NOUDEV;
125 return((dev->si_umajor << 8) | dev->si_uminor);
129 * Helper routine which traverses the left hand side of a red-black sub-tree.
131 static uintptr_t
132 kvm_lwptraverse(kvm_t *kd, struct lwp *lwp, uintptr_t lwppos)
134 for (;;) {
135 if (KREAD(kd, lwppos, lwp)) {
136 _kvm_err(kd, kd->program, "can't read lwp at %p",
137 (void *)lwppos);
138 return ((uintptr_t)-1);
140 if (lwp->u.lwp_rbnode.rbe_left == NULL)
141 break;
142 lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_left;
144 return(lwppos);
148 * Iterate LWPs in a process.
150 * The first lwp in a red-black tree is a left-side traversal of the tree.
152 static uintptr_t
153 kvm_firstlwp(kvm_t *kd, struct lwp *lwp, struct proc *proc)
155 return(kvm_lwptraverse(kd, lwp, (uintptr_t)proc->p_lwp_tree.rbh_root));
159 * If the current element is the left side of the parent the next element
160 * will be a left side traversal of the parent's right side. If the parent
161 * has no right side the next element will be the parent.
163 * If the current element is the right side of the parent the next element
164 * is the parent.
166 * If the parent is NULL we are done.
168 static uintptr_t
169 kvm_nextlwp(kvm_t *kd, uintptr_t lwppos, struct lwp *lwp, struct proc *proc)
171 uintptr_t nextpos;
173 nextpos = (uintptr_t)lwp->u.lwp_rbnode.rbe_parent;
174 if (nextpos) {
175 if (KREAD(kd, nextpos, lwp)) {
176 _kvm_err(kd, kd->program, "can't read lwp at %p",
177 (void *)lwppos);
178 return ((uintptr_t)-1);
180 if (lwppos == (uintptr_t)lwp->u.lwp_rbnode.rbe_left) {
182 * If we had gone down the left side the next element
183 * is a left hand traversal of the parent's right
184 * side, or the parent itself if there is no right
185 * side.
187 lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_right;
188 if (lwppos)
189 nextpos = kvm_lwptraverse(kd, lwp, lwppos);
190 } else {
192 * If we had gone down the right side the next
193 * element is the parent.
195 /* nextpos = nextpos */
198 return(nextpos);
202 * Read proc's from memory file into buffer bp, which has space to hold
203 * at most maxcnt procs.
205 static int
206 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
207 struct kinfo_proc *bp)
209 struct pgrp pgrp;
210 struct pgrp tpgrp;
211 struct globaldata gdata;
212 struct session sess;
213 struct session tsess;
214 struct tty tty;
215 struct proc proc;
216 struct ucred ucred;
217 struct thread thread;
218 struct proc pproc;
219 struct cdev cdev;
220 struct vmspace vmspace;
221 struct prison prison;
222 struct sigacts sigacts;
223 struct lwp lwp;
224 uintptr_t lwppos;
225 int count;
226 char *wmesg;
228 count = 0;
230 for (; p != NULL; p = proc.p_list.le_next) {
231 if (KREAD(kd, (u_long)p, &proc)) {
232 _kvm_err(kd, kd->program, "can't read proc at %p", p);
233 return (-1);
235 if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
236 _kvm_err(kd, kd->program, "can't read ucred at %p",
237 proc.p_ucred);
238 return (-1);
240 proc.p_ucred = &ucred;
242 switch(what & ~KERN_PROC_FLAGMASK) {
244 case KERN_PROC_PID:
245 if (proc.p_pid != (pid_t)arg)
246 continue;
247 break;
249 case KERN_PROC_UID:
250 if (ucred.cr_uid != (uid_t)arg)
251 continue;
252 break;
254 case KERN_PROC_RUID:
255 if (ucred.cr_ruid != (uid_t)arg)
256 continue;
257 break;
260 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
261 _kvm_err(kd, kd->program, "can't read pgrp at %p",
262 proc.p_pgrp);
263 return (-1);
265 proc.p_pgrp = &pgrp;
266 if (proc.p_pptr) {
267 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
268 _kvm_err(kd, kd->program, "can't read pproc at %p",
269 proc.p_pptr);
270 return (-1);
272 proc.p_pptr = &pproc;
275 if (proc.p_sigacts) {
276 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
277 _kvm_err(kd, kd->program,
278 "can't read sigacts at %p",
279 proc.p_sigacts);
280 return (-1);
282 proc.p_sigacts = &sigacts;
285 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
286 _kvm_err(kd, kd->program, "can't read session at %p",
287 pgrp.pg_session);
288 return (-1);
290 pgrp.pg_session = &sess;
292 if ((proc.p_flags & P_CONTROLT) && sess.s_ttyp != NULL) {
293 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
294 _kvm_err(kd, kd->program,
295 "can't read tty at %p", sess.s_ttyp);
296 return (-1);
298 sess.s_ttyp = &tty;
299 if (tty.t_dev != NULL) {
300 if (KREAD(kd, (u_long)tty.t_dev, &cdev))
301 tty.t_dev = NULL;
302 else
303 tty.t_dev = &cdev;
305 if (tty.t_pgrp != NULL) {
306 if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
307 _kvm_err(kd, kd->program,
308 "can't read tpgrp at %p",
309 tty.t_pgrp);
310 return (-1);
312 tty.t_pgrp = &tpgrp;
314 if (tty.t_session != NULL) {
315 if (KREAD(kd, (u_long)tty.t_session, &tsess)) {
316 _kvm_err(kd, kd->program,
317 "can't read tsess at %p",
318 tty.t_session);
319 return (-1);
321 tty.t_session = &tsess;
325 if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
326 _kvm_err(kd, kd->program, "can't read vmspace at %p",
327 proc.p_vmspace);
328 return (-1);
330 proc.p_vmspace = &vmspace;
332 if (ucred.cr_prison != NULL) {
333 if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
334 _kvm_err(kd, kd->program, "can't read prison at %p",
335 ucred.cr_prison);
336 return (-1);
338 ucred.cr_prison = &prison;
341 switch (what & ~KERN_PROC_FLAGMASK) {
343 case KERN_PROC_PGRP:
344 if (proc.p_pgrp->pg_id != (pid_t)arg)
345 continue;
346 break;
348 case KERN_PROC_TTY:
349 if ((proc.p_flags & P_CONTROLT) == 0 ||
350 dev2udev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
351 != (dev_t)arg)
352 continue;
353 break;
356 if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
357 return (-1);
358 fill_kinfo_proc(&proc, bp);
359 bp->kp_paddr = (uintptr_t)p;
361 lwppos = kvm_firstlwp(kd, &lwp, &proc);
362 if (lwppos == 0) {
363 bp++; /* Just export the proc then */
364 count++;
366 while (lwppos && lwppos != (uintptr_t)-1) {
367 if (p != lwp.lwp_proc) {
368 _kvm_err(kd, kd->program, "lwp has wrong parent");
369 return (-1);
371 lwp.lwp_proc = &proc;
372 if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
373 _kvm_err(kd, kd->program, "can't read thread at %p",
374 lwp.lwp_thread);
375 return (-1);
377 lwp.lwp_thread = &thread;
379 if (thread.td_gd) {
380 if (KREAD(kd, (u_long)thread.td_gd, &gdata)) {
381 _kvm_err(kd, kd->program, "can't read"
382 " gd at %p",
383 thread.td_gd);
384 return(-1);
386 thread.td_gd = &gdata;
388 if (thread.td_wmesg) {
389 wmesg = (void *)KREADSTR(kd, thread.td_wmesg);
390 if (wmesg == NULL) {
391 _kvm_err(kd, kd->program, "can't read"
392 " wmesg %p",
393 thread.td_wmesg);
394 return(-1);
396 thread.td_wmesg = wmesg;
397 } else {
398 wmesg = NULL;
401 if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
402 return (-1);
403 fill_kinfo_proc(&proc, bp);
404 fill_kinfo_lwp(&lwp, &bp->kp_lwp);
405 bp->kp_paddr = (uintptr_t)p;
406 bp++;
407 count++;
408 if (wmesg)
409 free(wmesg);
410 if ((what & KERN_PROC_FLAG_LWP) == 0)
411 break;
412 lwppos = kvm_nextlwp(kd, lwppos, &lwp, &proc);
414 if (lwppos == (uintptr_t)-1)
415 return(-1);
417 return (count);
421 * Build proc info array by reading in proc list from a crash dump.
422 * We reallocate kd->procbase as necessary.
424 static int
425 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
426 int allproc_hsize)
428 struct kinfo_proc *bp;
429 struct proc *p;
430 struct proclist **pl;
431 int cnt, partcnt, n;
432 u_long nextoff;
434 cnt = partcnt = 0;
435 nextoff = 0;
438 * Dynamically allocate space for all the elements of the
439 * allprocs array and KREAD() them.
441 pl = _kvm_malloc(kd, allproc_hsize * sizeof(struct proclist *));
442 for (n = 0; n < allproc_hsize; n++) {
443 pl[n] = _kvm_malloc(kd, sizeof(struct proclist));
444 nextoff = a_allproc + (n * sizeof(struct proclist));
445 if (KREAD(kd, (u_long)nextoff, pl[n])) {
446 _kvm_err(kd, kd->program, "can't read proclist at 0x%lx",
447 a_allproc);
448 return (-1);
451 /* Ignore empty proclists */
452 if (LIST_EMPTY(pl[n]))
453 continue;
455 bp = kd->procbase + cnt;
456 p = pl[n]->lh_first;
457 partcnt = kvm_proclist(kd, what, arg, p, bp);
458 if (partcnt < 0) {
459 free(pl[n]);
460 return (partcnt);
463 cnt += partcnt;
464 free(pl[n]);
467 return (cnt);
470 struct kinfo_proc *
471 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
473 int mib[4], st, nprocs, allproc_hsize;
474 int miblen = ((op & ~KERN_PROC_FLAGMASK) == KERN_PROC_ALL) ? 3 : 4;
475 size_t size;
477 if (kd->procbase != 0) {
478 free((void *)kd->procbase);
480 * Clear this pointer in case this call fails. Otherwise,
481 * kvm_close() will free it again.
483 kd->procbase = 0;
485 if (kvm_ishost(kd)) {
486 size = 0;
487 mib[0] = CTL_KERN;
488 mib[1] = KERN_PROC;
489 mib[2] = op;
490 mib[3] = arg;
491 st = sysctl(mib, miblen, NULL, &size, NULL, 0);
492 if (st == -1) {
493 _kvm_syserr(kd, kd->program, "kvm_getprocs");
494 return (0);
496 do {
497 size += size / 10;
498 kd->procbase = (struct kinfo_proc *)
499 _kvm_realloc(kd, kd->procbase, size);
500 if (kd->procbase == 0)
501 return (0);
502 st = sysctl(mib, miblen, kd->procbase, &size, NULL, 0);
503 } while (st == -1 && errno == ENOMEM);
504 if (st == -1) {
505 _kvm_syserr(kd, kd->program, "kvm_getprocs");
506 return (0);
508 if (size % sizeof(struct kinfo_proc) != 0) {
509 _kvm_err(kd, kd->program,
510 "proc size mismatch (%zd total, %zd chunks)",
511 size, sizeof(struct kinfo_proc));
512 return (0);
514 nprocs = size / sizeof(struct kinfo_proc);
515 } else {
516 struct nlist nl[4], *p;
518 nl[0].n_name = "_nprocs";
519 nl[1].n_name = "_allprocs";
520 nl[2].n_name = "_allproc_hsize";
521 nl[3].n_name = 0;
523 if (kvm_nlist(kd, nl) != 0) {
524 for (p = nl; p->n_type != 0; ++p)
526 _kvm_err(kd, kd->program,
527 "%s: no such symbol", p->n_name);
528 return (0);
530 if (KREAD(kd, nl[0].n_value, &nprocs)) {
531 _kvm_err(kd, kd->program, "can't read nprocs");
532 return (0);
534 if (KREAD(kd, nl[2].n_value, &allproc_hsize)) {
535 _kvm_err(kd, kd->program, "can't read allproc_hsize");
536 return (0);
538 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
539 allproc_hsize);
540 #ifdef notdef
541 size = nprocs * sizeof(struct kinfo_proc);
542 (void)realloc(kd->procbase, size);
543 #endif
545 *cnt = nprocs;
546 return (kd->procbase);
549 void
550 _kvm_freeprocs(kvm_t *kd)
552 if (kd->procbase) {
553 free(kd->procbase);
554 kd->procbase = 0;
558 void *
559 _kvm_realloc(kvm_t *kd, void *p, size_t n)
561 void *np = (void *)realloc(p, n);
563 if (np == NULL) {
564 free(p);
565 _kvm_err(kd, kd->program, "out of memory");
567 return (np);
570 #ifndef MAX
571 #define MAX(a, b) ((a) > (b) ? (a) : (b))
572 #endif
575 * Read in an argument vector from the user address space of process pid.
576 * addr if the user-space base address of narg null-terminated contiguous
577 * strings. This is used to read in both the command arguments and
578 * environment strings. Read at most maxcnt characters of strings.
580 static char **
581 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
583 char *np, *cp, *ep, *ap;
584 u_long oaddr = -1;
585 int len, cc;
586 char **argv;
589 * Check that there aren't an unreasonable number of agruments,
590 * and that the address is in user space.
592 if (narg > 512 ||
593 addr < VM_MIN_USER_ADDRESS || addr >= VM_MAX_USER_ADDRESS) {
594 return (0);
598 * kd->argv : work space for fetching the strings from the target
599 * process's space, and is converted for returning to caller
601 if (kd->argv == 0) {
603 * Try to avoid reallocs.
605 kd->argc = MAX(narg + 1, 32);
606 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
607 sizeof(*kd->argv));
608 if (kd->argv == 0)
609 return (0);
610 } else if (narg + 1 > kd->argc) {
611 kd->argc = MAX(2 * kd->argc, narg + 1);
612 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
613 sizeof(*kd->argv));
614 if (kd->argv == 0)
615 return (0);
618 * kd->argspc : returned to user, this is where the kd->argv
619 * arrays are left pointing to the collected strings.
621 if (kd->argspc == 0) {
622 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
623 if (kd->argspc == 0)
624 return (0);
625 kd->arglen = PAGE_SIZE;
628 * kd->argbuf : used to pull in pages from the target process.
629 * the strings are copied out of here.
631 if (kd->argbuf == 0) {
632 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
633 if (kd->argbuf == 0)
634 return (0);
637 /* Pull in the target process'es argv vector */
638 cc = sizeof(char *) * narg;
639 if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
640 return (0);
642 * ap : saved start address of string we're working on in kd->argspc
643 * np : pointer to next place to write in kd->argspc
644 * len: length of data in kd->argspc
645 * argv: pointer to the argv vector that we are hunting around the
646 * target process space for, and converting to addresses in
647 * our address space (kd->argspc).
649 ap = np = kd->argspc;
650 argv = kd->argv;
651 len = 0;
653 * Loop over pages, filling in the argument vector.
654 * Note that the argv strings could be pointing *anywhere* in
655 * the user address space and are no longer contiguous.
656 * Note that *argv is modified when we are going to fetch a string
657 * that crosses a page boundary. We copy the next part of the string
658 * into to "np" and eventually convert the pointer.
660 while (argv < kd->argv + narg && *argv != NULL) {
662 /* get the address that the current argv string is on */
663 addr = (u_long)*argv & ~(PAGE_SIZE - 1);
665 /* is it the same page as the last one? */
666 if (addr != oaddr) {
667 if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
668 PAGE_SIZE)
669 return (0);
670 oaddr = addr;
673 /* offset within the page... kd->argbuf */
674 addr = (u_long)*argv & (PAGE_SIZE - 1);
676 /* cp = start of string, cc = count of chars in this chunk */
677 cp = kd->argbuf + addr;
678 cc = PAGE_SIZE - addr;
680 /* dont get more than asked for by user process */
681 if (maxcnt > 0 && cc > maxcnt - len)
682 cc = maxcnt - len;
684 /* pointer to end of string if we found it in this page */
685 ep = memchr(cp, '\0', cc);
686 if (ep != NULL)
687 cc = ep - cp + 1;
689 * at this point, cc is the count of the chars that we are
690 * going to retrieve this time. we may or may not have found
691 * the end of it. (ep points to the null if the end is known)
694 /* will we exceed the malloc/realloced buffer? */
695 if (len + cc > kd->arglen) {
696 size_t off;
697 char **pp;
698 char *op = kd->argspc;
700 kd->arglen *= 2;
701 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
702 kd->arglen);
703 if (kd->argspc == 0)
704 return (0);
706 * Adjust argv pointers in case realloc moved
707 * the string space.
709 off = kd->argspc - op;
710 for (pp = kd->argv; pp < argv; pp++)
711 *pp += off;
712 ap += off;
713 np += off;
715 /* np = where to put the next part of the string in kd->argspc*/
716 /* np is kinda redundant.. could use "kd->argspc + len" */
717 memcpy(np, cp, cc);
718 np += cc; /* inc counters */
719 len += cc;
722 * if end of string found, set the *argv pointer to the
723 * saved beginning of string, and advance. argv points to
724 * somewhere in kd->argv.. This is initially relative
725 * to the target process, but when we close it off, we set
726 * it to point in our address space.
728 if (ep != NULL) {
729 *argv++ = ap;
730 ap = np;
731 } else {
732 /* update the address relative to the target process */
733 *argv += cc;
736 if (maxcnt > 0 && len >= maxcnt) {
738 * We're stopping prematurely. Terminate the
739 * current string.
741 if (ep == NULL) {
742 *np = '\0';
743 *argv++ = ap;
745 break;
748 /* Make sure argv is terminated. */
749 *argv = NULL;
750 return (kd->argv);
753 static void
754 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
756 *addr = (u_long)p->ps_argvstr;
757 *n = p->ps_nargvstr;
760 static void
761 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
763 *addr = (u_long)p->ps_envstr;
764 *n = p->ps_nenvstr;
768 * Determine if the proc indicated by p is still active.
769 * This test is not 100% foolproof in theory, but chances of
770 * being wrong are very low.
772 static int
773 proc_verify(kvm_t *kd, const struct kinfo_proc *p)
775 struct kinfo_proc kp;
776 int mib[4];
777 size_t len;
778 int error;
780 mib[0] = CTL_KERN;
781 mib[1] = KERN_PROC;
782 mib[2] = KERN_PROC_PID;
783 mib[3] = p->kp_pid;
785 len = sizeof(kp);
786 error = sysctl(mib, 4, &kp, &len, NULL, 0);
787 if (error)
788 return (0);
790 error = (p->kp_pid == kp.kp_pid &&
791 (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
792 return (error);
795 static char **
796 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
797 void (*info)(struct ps_strings *, u_long *, int *))
799 char **ap;
800 u_long addr;
801 int cnt;
802 static struct ps_strings arginfo;
803 static u_long ps_strings;
804 size_t len;
806 if (ps_strings == 0) {
807 len = sizeof(ps_strings);
808 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
809 0) == -1)
810 ps_strings = PS_STRINGS;
814 * Pointers are stored at the top of the user stack.
816 if (kp->kp_stat == SZOMB ||
817 kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
818 sizeof(arginfo)) != sizeof(arginfo))
819 return (0);
821 (*info)(&arginfo, &addr, &cnt);
822 if (cnt == 0)
823 return (0);
824 ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
826 * For live kernels, make sure this process didn't go away.
828 if (ap != NULL && (kvm_ishost(kd) || kvm_isvkernel(kd)) &&
829 !proc_verify(kd, kp))
830 ap = NULL;
831 return (ap);
835 * Get the command args. This code is now machine independent.
837 char **
838 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
840 int oid[4];
841 int i;
842 size_t bufsz;
843 static unsigned long buflen;
844 static char *buf, *p;
845 static char **bufp;
846 static int argc;
848 if (!kvm_ishost(kd)) { /* XXX: vkernels */
849 _kvm_err(kd, kd->program,
850 "cannot read user space from dead kernel");
851 return (0);
854 if (!buflen) {
855 bufsz = sizeof(buflen);
856 i = sysctlbyname("kern.ps_arg_cache_limit",
857 &buflen, &bufsz, NULL, 0);
858 if (i == -1) {
859 buflen = 0;
860 } else {
861 buf = malloc(buflen);
862 if (buf == NULL)
863 buflen = 0;
864 argc = 32;
865 bufp = malloc(sizeof(char *) * argc);
868 if (buf != NULL) {
869 oid[0] = CTL_KERN;
870 oid[1] = KERN_PROC;
871 oid[2] = KERN_PROC_ARGS;
872 oid[3] = kp->kp_pid;
873 bufsz = buflen;
874 i = sysctl(oid, 4, buf, &bufsz, 0, 0);
875 if (i == 0 && bufsz > 0) {
876 i = 0;
877 p = buf;
878 do {
879 bufp[i++] = p;
880 p += strlen(p) + 1;
881 if (i >= argc) {
882 argc += argc;
883 bufp = realloc(bufp,
884 sizeof(char *) * argc);
886 } while (p < buf + bufsz);
887 bufp[i++] = NULL;
888 return (bufp);
891 if (kp->kp_flags & P_SYSTEM)
892 return (NULL);
893 return (kvm_doargv(kd, kp, nchr, ps_str_a));
896 char **
897 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
899 return (kvm_doargv(kd, kp, nchr, ps_str_e));
903 * Read from user space. The user context is given by pid.
905 ssize_t
906 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
908 char *cp;
909 char procfile[MAXPATHLEN];
910 ssize_t amount;
911 int fd;
913 if (!kvm_ishost(kd)) { /* XXX: vkernels */
914 _kvm_err(kd, kd->program,
915 "cannot read user space from dead kernel");
916 return (0);
919 sprintf(procfile, "/proc/%d/mem", pid);
920 fd = open(procfile, O_RDONLY, 0);
921 if (fd < 0) {
922 _kvm_err(kd, kd->program, "cannot open %s", procfile);
923 close(fd);
924 return (0);
927 cp = buf;
928 while (len > 0) {
929 errno = 0;
930 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
931 _kvm_err(kd, kd->program, "invalid address (%lx) in %s",
932 uva, procfile);
933 break;
935 amount = read(fd, cp, len);
936 if (amount < 0) {
937 _kvm_syserr(kd, kd->program, "error reading %s",
938 procfile);
939 break;
941 if (amount == 0) {
942 _kvm_err(kd, kd->program, "EOF reading %s", procfile);
943 break;
945 cp += amount;
946 uva += amount;
947 len -= amount;
950 close(fd);
951 return ((ssize_t)(cp - buf));