NFS - Fix panic if the readdir base offset is beyond the directory EOF
[dragonfly.git] / sys / vfs / nfs / nfs_bio.c
blob96ff2f8239110f22d32c619b289cdfdc62526a93
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
37 * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38 * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.45 2008/07/18 00:09:39 dillon Exp $
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/msfbuf.h>
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
61 #include <sys/buf2.h>
62 #include <sys/thread2.h>
63 #include <vm/vm_page2.h>
65 #include "rpcv2.h"
66 #include "nfsproto.h"
67 #include "nfs.h"
68 #include "nfsmount.h"
69 #include "nfsnode.h"
70 #include "xdr_subs.h"
71 #include "nfsm_subs.h"
74 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset,
75 int size, struct thread *td);
76 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen);
77 static void nfsiodone_sync(struct bio *bio);
78 static void nfs_readrpc_bio_done(nfsm_info_t info);
79 static void nfs_writerpc_bio_done(nfsm_info_t info);
80 static void nfs_commitrpc_bio_done(nfsm_info_t info);
83 * Vnode op for VM getpages.
85 * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
86 * int a_reqpage, vm_ooffset_t a_offset)
88 int
89 nfs_getpages(struct vop_getpages_args *ap)
91 struct thread *td = curthread; /* XXX */
92 int i, error, nextoff, size, toff, count, npages;
93 struct uio uio;
94 struct iovec iov;
95 char *kva;
96 struct vnode *vp;
97 struct nfsmount *nmp;
98 vm_page_t *pages;
99 vm_page_t m;
100 struct msf_buf *msf;
102 vp = ap->a_vp;
103 nmp = VFSTONFS(vp->v_mount);
104 pages = ap->a_m;
105 count = ap->a_count;
107 if (vp->v_object == NULL) {
108 kprintf("nfs_getpages: called with non-merged cache vnode??\n");
109 return VM_PAGER_ERROR;
112 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
113 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
114 (void)nfs_fsinfo(nmp, vp, td);
116 npages = btoc(count);
119 * NOTE that partially valid pages may occur in cases other
120 * then file EOF, such as when a file is partially written and
121 * ftruncate()-extended to a larger size. It is also possible
122 * for the valid bits to be set on garbage beyond the file EOF and
123 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
124 * occur due to vtruncbuf() and the buffer cache's handling of
125 * pages which 'straddle' buffers or when b_bufsize is not a
126 * multiple of PAGE_SIZE.... the buffer cache cannot normally
127 * clear the extra bits. This kind of situation occurs when you
128 * make a small write() (m->valid == 0x03) and then mmap() and
129 * fault in the buffer(m->valid = 0xFF). When NFS flushes the
130 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
132 * This is combined with the possibility that the pages are partially
133 * dirty or that there is a buffer backing the pages that is dirty
134 * (even if m->dirty is 0).
136 * To solve this problem several hacks have been made: (1) NFS
137 * guarentees that the IO block size is a multiple of PAGE_SIZE and
138 * (2) The buffer cache, when invalidating an NFS buffer, will
139 * disregard the buffer's fragmentory b_bufsize and invalidate
140 * the whole page rather then just the piece the buffer owns.
142 * This allows us to assume that a partially valid page found here
143 * is fully valid (vm_fault will zero'd out areas of the page not
144 * marked as valid).
146 m = pages[ap->a_reqpage];
147 if (m->valid != 0) {
148 for (i = 0; i < npages; ++i) {
149 if (i != ap->a_reqpage)
150 vnode_pager_freepage(pages[i]);
152 return(0);
156 * Use an MSF_BUF as a medium to retrieve data from the pages.
158 msf_map_pagelist(&msf, pages, npages, 0);
159 KKASSERT(msf);
160 kva = msf_buf_kva(msf);
162 iov.iov_base = kva;
163 iov.iov_len = count;
164 uio.uio_iov = &iov;
165 uio.uio_iovcnt = 1;
166 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
167 uio.uio_resid = count;
168 uio.uio_segflg = UIO_SYSSPACE;
169 uio.uio_rw = UIO_READ;
170 uio.uio_td = td;
172 error = nfs_readrpc_uio(vp, &uio);
173 msf_buf_free(msf);
175 if (error && ((int)uio.uio_resid == count)) {
176 kprintf("nfs_getpages: error %d\n", error);
177 for (i = 0; i < npages; ++i) {
178 if (i != ap->a_reqpage)
179 vnode_pager_freepage(pages[i]);
181 return VM_PAGER_ERROR;
185 * Calculate the number of bytes read and validate only that number
186 * of bytes. Note that due to pending writes, size may be 0. This
187 * does not mean that the remaining data is invalid!
190 size = count - (int)uio.uio_resid;
192 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
193 nextoff = toff + PAGE_SIZE;
194 m = pages[i];
196 m->flags &= ~PG_ZERO;
199 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
200 * pmap modified bit.
202 if (nextoff <= size) {
204 * Read operation filled an entire page
206 m->valid = VM_PAGE_BITS_ALL;
207 vm_page_undirty(m);
208 } else if (size > toff) {
210 * Read operation filled a partial page.
212 m->valid = 0;
213 vm_page_set_valid(m, 0, size - toff);
214 vm_page_clear_dirty_end_nonincl(m, 0, size - toff);
215 /* handled by vm_fault now */
216 /* vm_page_zero_invalid(m, TRUE); */
217 } else {
219 * Read operation was short. If no error occured
220 * we may have hit a zero-fill section. We simply
221 * leave valid set to 0.
225 if (i != ap->a_reqpage) {
227 * Whether or not to leave the page activated is up in
228 * the air, but we should put the page on a page queue
229 * somewhere (it already is in the object). Result:
230 * It appears that emperical results show that
231 * deactivating pages is best.
235 * Just in case someone was asking for this page we
236 * now tell them that it is ok to use.
238 if (!error) {
239 if (m->flags & PG_WANTED)
240 vm_page_activate(m);
241 else
242 vm_page_deactivate(m);
243 vm_page_wakeup(m);
244 } else {
245 vnode_pager_freepage(m);
249 return 0;
253 * Vnode op for VM putpages.
255 * The pmap modified bit was cleared prior to the putpages and probably
256 * couldn't get set again until after our I/O completed, since the page
257 * should not be mapped. But don't count on it. The m->dirty bits must
258 * be completely cleared when we finish even if the count is truncated.
260 * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
261 * int *a_rtvals, vm_ooffset_t a_offset)
264 nfs_putpages(struct vop_putpages_args *ap)
266 struct thread *td = curthread;
267 struct uio uio;
268 struct iovec iov;
269 char *kva;
270 int iomode, must_commit, i, error, npages, count;
271 off_t offset;
272 int *rtvals;
273 struct vnode *vp;
274 struct nfsmount *nmp;
275 struct nfsnode *np;
276 vm_page_t *pages;
277 struct msf_buf *msf;
279 vp = ap->a_vp;
280 np = VTONFS(vp);
281 nmp = VFSTONFS(vp->v_mount);
282 pages = ap->a_m;
283 count = ap->a_count;
284 rtvals = ap->a_rtvals;
285 npages = btoc(count);
286 offset = IDX_TO_OFF(pages[0]->pindex);
288 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
289 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
290 (void)nfs_fsinfo(nmp, vp, td);
292 for (i = 0; i < npages; i++) {
293 rtvals[i] = VM_PAGER_AGAIN;
297 * When putting pages, do not extend file past EOF.
300 if (offset + count > np->n_size) {
301 count = np->n_size - offset;
302 if (count < 0)
303 count = 0;
307 * Use an MSF_BUF as a medium to retrieve data from the pages.
309 msf_map_pagelist(&msf, pages, npages, 0);
310 KKASSERT(msf);
311 kva = msf_buf_kva(msf);
313 iov.iov_base = kva;
314 iov.iov_len = count;
315 uio.uio_iov = &iov;
316 uio.uio_iovcnt = 1;
317 uio.uio_offset = offset;
318 uio.uio_resid = (size_t)count;
319 uio.uio_segflg = UIO_SYSSPACE;
320 uio.uio_rw = UIO_WRITE;
321 uio.uio_td = td;
323 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
324 iomode = NFSV3WRITE_UNSTABLE;
325 else
326 iomode = NFSV3WRITE_FILESYNC;
328 error = nfs_writerpc_uio(vp, &uio, &iomode, &must_commit);
330 msf_buf_free(msf);
332 if (error == 0) {
333 int nwritten;
335 nwritten = round_page(count - (int)uio.uio_resid) / PAGE_SIZE;
336 for (i = 0; i < nwritten; i++) {
337 rtvals[i] = VM_PAGER_OK;
338 vm_page_undirty(pages[i]);
340 if (must_commit)
341 nfs_clearcommit(vp->v_mount);
343 return rtvals[0];
347 * Vnode op for read using bio
350 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
352 struct nfsnode *np = VTONFS(vp);
353 int biosize, i;
354 struct buf *bp, *rabp;
355 struct vattr vattr;
356 struct thread *td;
357 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
358 off_t lbn, rabn;
359 off_t raoffset;
360 off_t loffset;
361 int seqcount;
362 int nra, error = 0;
363 int boff = 0;
364 size_t n;
366 #ifdef DIAGNOSTIC
367 if (uio->uio_rw != UIO_READ)
368 panic("nfs_read mode");
369 #endif
370 if (uio->uio_resid == 0)
371 return (0);
372 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */
373 return (EINVAL);
374 td = uio->uio_td;
376 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
377 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
378 (void)nfs_fsinfo(nmp, vp, td);
379 if (vp->v_type != VDIR &&
380 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
381 return (EFBIG);
382 biosize = vp->v_mount->mnt_stat.f_iosize;
383 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
386 * For nfs, cache consistency can only be maintained approximately.
387 * Although RFC1094 does not specify the criteria, the following is
388 * believed to be compatible with the reference port.
390 * NFS: If local changes have been made and this is a
391 * directory, the directory must be invalidated and
392 * the attribute cache must be cleared.
394 * GETATTR is called to synchronize the file size.
396 * If remote changes are detected local data is flushed
397 * and the cache is invalidated.
399 * NOTE: In the normal case the attribute cache is not
400 * cleared which means GETATTR may use cached data and
401 * not immediately detect changes made on the server.
403 if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
404 nfs_invaldir(vp);
405 error = nfs_vinvalbuf(vp, V_SAVE, 1);
406 if (error)
407 return (error);
408 np->n_attrstamp = 0;
410 error = VOP_GETATTR(vp, &vattr);
411 if (error)
412 return (error);
413 if (np->n_flag & NRMODIFIED) {
414 if (vp->v_type == VDIR)
415 nfs_invaldir(vp);
416 error = nfs_vinvalbuf(vp, V_SAVE, 1);
417 if (error)
418 return (error);
419 np->n_flag &= ~NRMODIFIED;
423 * Loop until uio exhausted or we hit EOF
425 do {
426 bp = NULL;
428 switch (vp->v_type) {
429 case VREG:
430 nfsstats.biocache_reads++;
431 lbn = uio->uio_offset / biosize;
432 boff = uio->uio_offset & (biosize - 1);
433 loffset = (off_t)lbn * biosize;
436 * Start the read ahead(s), as required.
438 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp)) {
439 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
440 (off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
441 rabn = lbn + 1 + nra;
442 raoffset = (off_t)rabn * biosize;
443 if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) {
444 rabp = nfs_getcacheblk(vp, raoffset, biosize, td);
445 if (!rabp)
446 return (EINTR);
447 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
448 rabp->b_cmd = BUF_CMD_READ;
449 vfs_busy_pages(vp, rabp);
450 nfs_asyncio(vp, &rabp->b_bio2);
451 } else {
452 brelse(rabp);
459 * Obtain the buffer cache block. Figure out the buffer size
460 * when we are at EOF. If we are modifying the size of the
461 * buffer based on an EOF condition we need to hold
462 * nfs_rslock() through obtaining the buffer to prevent
463 * a potential writer-appender from messing with n_size.
464 * Otherwise we may accidently truncate the buffer and
465 * lose dirty data.
467 * Note that bcount is *not* DEV_BSIZE aligned.
469 if (loffset + boff >= np->n_size) {
470 n = 0;
471 break;
473 bp = nfs_getcacheblk(vp, loffset, biosize, td);
475 if (bp == NULL)
476 return (EINTR);
479 * If B_CACHE is not set, we must issue the read. If this
480 * fails, we return an error.
482 if ((bp->b_flags & B_CACHE) == 0) {
483 bp->b_cmd = BUF_CMD_READ;
484 bp->b_bio2.bio_done = nfsiodone_sync;
485 bp->b_bio2.bio_flags |= BIO_SYNC;
486 vfs_busy_pages(vp, bp);
487 error = nfs_doio(vp, &bp->b_bio2, td);
488 if (error) {
489 brelse(bp);
490 return (error);
495 * on is the offset into the current bp. Figure out how many
496 * bytes we can copy out of the bp. Note that bcount is
497 * NOT DEV_BSIZE aligned.
499 * Then figure out how many bytes we can copy into the uio.
501 n = biosize - boff;
502 if (n > uio->uio_resid)
503 n = uio->uio_resid;
504 if (loffset + boff + n > np->n_size)
505 n = np->n_size - loffset - boff;
506 break;
507 case VLNK:
508 biosize = min(NFS_MAXPATHLEN, np->n_size);
509 nfsstats.biocache_readlinks++;
510 bp = nfs_getcacheblk(vp, (off_t)0, biosize, td);
511 if (bp == NULL)
512 return (EINTR);
513 if ((bp->b_flags & B_CACHE) == 0) {
514 bp->b_cmd = BUF_CMD_READ;
515 bp->b_bio2.bio_done = nfsiodone_sync;
516 bp->b_bio2.bio_flags |= BIO_SYNC;
517 vfs_busy_pages(vp, bp);
518 error = nfs_doio(vp, &bp->b_bio2, td);
519 if (error) {
520 bp->b_flags |= B_ERROR | B_INVAL;
521 brelse(bp);
522 return (error);
525 n = szmin(uio->uio_resid, (size_t)bp->b_bcount - bp->b_resid);
526 boff = 0;
527 break;
528 case VDIR:
529 nfsstats.biocache_readdirs++;
530 if (np->n_direofoffset &&
531 uio->uio_offset >= np->n_direofoffset
533 return (0);
535 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
536 boff = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
537 loffset = uio->uio_offset - boff;
538 bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td);
539 if (bp == NULL)
540 return (EINTR);
542 if ((bp->b_flags & B_CACHE) == 0) {
543 bp->b_cmd = BUF_CMD_READ;
544 bp->b_bio2.bio_done = nfsiodone_sync;
545 bp->b_bio2.bio_flags |= BIO_SYNC;
546 vfs_busy_pages(vp, bp);
547 error = nfs_doio(vp, &bp->b_bio2, td);
548 if (error)
549 brelse(bp);
550 while (error == NFSERR_BAD_COOKIE) {
551 kprintf("got bad cookie vp %p bp %p\n", vp, bp);
552 nfs_invaldir(vp);
553 error = nfs_vinvalbuf(vp, 0, 1);
555 * Yuck! The directory has been modified on the
556 * server. The only way to get the block is by
557 * reading from the beginning to get all the
558 * offset cookies.
560 * Leave the last bp intact unless there is an error.
561 * Loop back up to the while if the error is another
562 * NFSERR_BAD_COOKIE (double yuch!).
564 for (i = 0; i <= lbn && !error; i++) {
565 if (np->n_direofoffset
566 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
567 return (0);
568 bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ,
569 NFS_DIRBLKSIZ, td);
570 if (!bp)
571 return (EINTR);
572 if ((bp->b_flags & B_CACHE) == 0) {
573 bp->b_cmd = BUF_CMD_READ;
574 bp->b_bio2.bio_done = nfsiodone_sync;
575 bp->b_bio2.bio_flags |= BIO_SYNC;
576 vfs_busy_pages(vp, bp);
577 error = nfs_doio(vp, &bp->b_bio2, td);
579 * no error + B_INVAL == directory EOF,
580 * use the block.
582 if (error == 0 && (bp->b_flags & B_INVAL))
583 break;
586 * An error will throw away the block and the
587 * for loop will break out. If no error and this
588 * is not the block we want, we throw away the
589 * block and go for the next one via the for loop.
591 if (error || i < lbn)
592 brelse(bp);
596 * The above while is repeated if we hit another cookie
597 * error. If we hit an error and it wasn't a cookie error,
598 * we give up.
600 if (error)
601 return (error);
605 * If not eof and read aheads are enabled, start one.
606 * (You need the current block first, so that you have the
607 * directory offset cookie of the next block.)
609 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp) &&
610 (bp->b_flags & B_INVAL) == 0 &&
611 (np->n_direofoffset == 0 ||
612 loffset + NFS_DIRBLKSIZ < np->n_direofoffset) &&
613 findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL
615 rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ,
616 NFS_DIRBLKSIZ, td);
617 if (rabp) {
618 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
619 rabp->b_cmd = BUF_CMD_READ;
620 vfs_busy_pages(vp, rabp);
621 nfs_asyncio(vp, &rabp->b_bio2);
622 } else {
623 brelse(rabp);
628 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
629 * chopped for the EOF condition, we cannot tell how large
630 * NFS directories are going to be until we hit EOF. So
631 * an NFS directory buffer is *not* chopped to its EOF. Now,
632 * it just so happens that b_resid will effectively chop it
633 * to EOF. *BUT* this information is lost if the buffer goes
634 * away and is reconstituted into a B_CACHE state ( due to
635 * being VMIO ) later. So we keep track of the directory eof
636 * in np->n_direofoffset and chop it off as an extra step
637 * right here.
639 * NOTE: boff could already be beyond EOF.
641 if ((size_t)boff > NFS_DIRBLKSIZ - bp->b_resid) {
642 n = 0;
643 } else {
644 n = szmin(uio->uio_resid,
645 NFS_DIRBLKSIZ - bp->b_resid - (size_t)boff);
647 if (np->n_direofoffset &&
648 n > (size_t)(np->n_direofoffset - uio->uio_offset)) {
649 n = (size_t)(np->n_direofoffset - uio->uio_offset);
651 break;
652 default:
653 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
654 n = 0;
655 break;
658 switch (vp->v_type) {
659 case VREG:
660 if (n > 0)
661 error = uiomove(bp->b_data + boff, n, uio);
662 break;
663 case VLNK:
664 if (n > 0)
665 error = uiomove(bp->b_data + boff, n, uio);
666 n = 0;
667 break;
668 case VDIR:
669 if (n > 0) {
670 off_t old_off = uio->uio_offset;
671 caddr_t cpos, epos;
672 struct nfs_dirent *dp;
675 * We are casting cpos to nfs_dirent, it must be
676 * int-aligned.
678 if (boff & 3) {
679 error = EINVAL;
680 break;
683 cpos = bp->b_data + boff;
684 epos = bp->b_data + boff + n;
685 while (cpos < epos && error == 0 && uio->uio_resid > 0) {
686 dp = (struct nfs_dirent *)cpos;
687 error = nfs_check_dirent(dp, (int)(epos - cpos));
688 if (error)
689 break;
690 if (vop_write_dirent(&error, uio, dp->nfs_ino,
691 dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) {
692 break;
694 cpos += dp->nfs_reclen;
696 n = 0;
697 if (error == 0) {
698 uio->uio_offset = old_off + cpos -
699 bp->b_data - boff;
702 break;
703 default:
704 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
706 if (bp)
707 brelse(bp);
708 } while (error == 0 && uio->uio_resid > 0 && n > 0);
709 return (error);
713 * Userland can supply any 'seek' offset when reading a NFS directory.
714 * Validate the structure so we don't panic the kernel. Note that
715 * the element name is nul terminated and the nul is not included
716 * in nfs_namlen.
718 static
720 nfs_check_dirent(struct nfs_dirent *dp, int maxlen)
722 int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]);
724 if (nfs_name_off >= maxlen)
725 return (EINVAL);
726 if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen)
727 return (EINVAL);
728 if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen)
729 return (EINVAL);
730 if (dp->nfs_reclen & 3)
731 return (EINVAL);
732 return (0);
736 * Vnode op for write using bio
738 * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
739 * struct ucred *a_cred)
742 nfs_write(struct vop_write_args *ap)
744 struct uio *uio = ap->a_uio;
745 struct thread *td = uio->uio_td;
746 struct vnode *vp = ap->a_vp;
747 struct nfsnode *np = VTONFS(vp);
748 int ioflag = ap->a_ioflag;
749 struct buf *bp;
750 struct vattr vattr;
751 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
752 off_t loffset;
753 int boff, bytes;
754 int error = 0;
755 int haverslock = 0;
756 int bcount;
757 int biosize;
759 #ifdef DIAGNOSTIC
760 if (uio->uio_rw != UIO_WRITE)
761 panic("nfs_write mode");
762 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
763 panic("nfs_write proc");
764 #endif
765 if (vp->v_type != VREG)
766 return (EIO);
767 if (np->n_flag & NWRITEERR) {
768 np->n_flag &= ~NWRITEERR;
769 return (np->n_error);
771 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
772 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
773 (void)nfs_fsinfo(nmp, vp, td);
776 * Synchronously flush pending buffers if we are in synchronous
777 * mode or if we are appending.
779 if (ioflag & (IO_APPEND | IO_SYNC)) {
780 if (np->n_flag & NLMODIFIED) {
781 np->n_attrstamp = 0;
782 error = nfs_flush(vp, MNT_WAIT, td, 0);
783 /* error = nfs_vinvalbuf(vp, V_SAVE, 1); */
784 if (error)
785 return (error);
790 * If IO_APPEND then load uio_offset. We restart here if we cannot
791 * get the append lock.
793 restart:
794 if (ioflag & IO_APPEND) {
795 np->n_attrstamp = 0;
796 error = VOP_GETATTR(vp, &vattr);
797 if (error)
798 return (error);
799 uio->uio_offset = np->n_size;
802 if (uio->uio_offset < 0)
803 return (EINVAL);
804 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
805 return (EFBIG);
806 if (uio->uio_resid == 0)
807 return (0);
810 * We need to obtain the rslock if we intend to modify np->n_size
811 * in order to guarentee the append point with multiple contending
812 * writers, to guarentee that no other appenders modify n_size
813 * while we are trying to obtain a truncated buffer (i.e. to avoid
814 * accidently truncating data written by another appender due to
815 * the race), and to ensure that the buffer is populated prior to
816 * our extending of the file. We hold rslock through the entire
817 * operation.
819 * Note that we do not synchronize the case where someone truncates
820 * the file while we are appending to it because attempting to lock
821 * this case may deadlock other parts of the system unexpectedly.
823 if ((ioflag & IO_APPEND) ||
824 uio->uio_offset + uio->uio_resid > np->n_size) {
825 switch(nfs_rslock(np)) {
826 case ENOLCK:
827 goto restart;
828 /* not reached */
829 case EINTR:
830 case ERESTART:
831 return(EINTR);
832 /* not reached */
833 default:
834 break;
836 haverslock = 1;
840 * Maybe this should be above the vnode op call, but so long as
841 * file servers have no limits, i don't think it matters
843 if (td->td_proc && uio->uio_offset + uio->uio_resid >
844 td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
845 lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
846 if (haverslock)
847 nfs_rsunlock(np);
848 return (EFBIG);
851 biosize = vp->v_mount->mnt_stat.f_iosize;
853 do {
854 nfsstats.biocache_writes++;
855 boff = uio->uio_offset & (biosize-1);
856 loffset = uio->uio_offset - boff;
857 bytes = (int)szmin((unsigned)(biosize - boff), uio->uio_resid);
858 again:
860 * Handle direct append and file extension cases, calculate
861 * unaligned buffer size. When extending B_CACHE will be
862 * set if possible. See UIO_NOCOPY note below.
864 if (uio->uio_offset + bytes > np->n_size) {
865 np->n_flag |= NLMODIFIED;
866 bp = nfs_meta_setsize(vp, td, loffset, boff, bytes);
867 } else {
868 bp = nfs_getcacheblk(vp, loffset, biosize, td);
870 if (bp == NULL) {
871 error = EINTR;
872 break;
876 * Actual bytes in buffer which we care about
878 if (loffset + biosize < np->n_size)
879 bcount = biosize;
880 else
881 bcount = (int)(np->n_size - loffset);
884 * Avoid a read by setting B_CACHE where the data we
885 * intend to write covers the entire buffer. Note
886 * that the buffer may have been set to B_CACHE by
887 * nfs_meta_setsize() above or otherwise inherited the
888 * flag, but if B_CACHE isn't set the buffer may be
889 * uninitialized and must be zero'd to accomodate
890 * future seek+write's.
892 * See the comments in kern/vfs_bio.c's getblk() for
893 * more information.
895 * When doing a UIO_NOCOPY write the buffer is not
896 * overwritten and we cannot just set B_CACHE unconditionally
897 * for full-block writes.
899 if (boff == 0 && bytes == biosize &&
900 uio->uio_segflg != UIO_NOCOPY) {
901 bp->b_flags |= B_CACHE;
902 bp->b_flags &= ~(B_ERROR | B_INVAL);
906 * b_resid may be set due to file EOF if we extended out.
907 * The NFS bio code will zero the difference anyway so
908 * just acknowledged the fact and set b_resid to 0.
910 if ((bp->b_flags & B_CACHE) == 0) {
911 bp->b_cmd = BUF_CMD_READ;
912 bp->b_bio2.bio_done = nfsiodone_sync;
913 bp->b_bio2.bio_flags |= BIO_SYNC;
914 vfs_busy_pages(vp, bp);
915 error = nfs_doio(vp, &bp->b_bio2, td);
916 if (error) {
917 brelse(bp);
918 break;
920 bp->b_resid = 0;
922 np->n_flag |= NLMODIFIED;
925 * If dirtyend exceeds file size, chop it down. This should
926 * not normally occur but there is an append race where it
927 * might occur XXX, so we log it.
929 * If the chopping creates a reverse-indexed or degenerate
930 * situation with dirtyoff/end, we 0 both of them.
932 if (bp->b_dirtyend > bcount) {
933 kprintf("NFS append race @%08llx:%d\n",
934 (long long)bp->b_bio2.bio_offset,
935 bp->b_dirtyend - bcount);
936 bp->b_dirtyend = bcount;
939 if (bp->b_dirtyoff >= bp->b_dirtyend)
940 bp->b_dirtyoff = bp->b_dirtyend = 0;
943 * If the new write will leave a contiguous dirty
944 * area, just update the b_dirtyoff and b_dirtyend,
945 * otherwise force a write rpc of the old dirty area.
947 * While it is possible to merge discontiguous writes due to
948 * our having a B_CACHE buffer ( and thus valid read data
949 * for the hole), we don't because it could lead to
950 * significant cache coherency problems with multiple clients,
951 * especially if locking is implemented later on.
953 * as an optimization we could theoretically maintain
954 * a linked list of discontinuous areas, but we would still
955 * have to commit them separately so there isn't much
956 * advantage to it except perhaps a bit of asynchronization.
958 if (bp->b_dirtyend > 0 &&
959 (boff > bp->b_dirtyend ||
960 (boff + bytes) < bp->b_dirtyoff)
962 if (bwrite(bp) == EINTR) {
963 error = EINTR;
964 break;
966 goto again;
969 error = uiomove(bp->b_data + boff, bytes, uio);
972 * Since this block is being modified, it must be written
973 * again and not just committed. Since write clustering does
974 * not work for the stage 1 data write, only the stage 2
975 * commit rpc, we have to clear B_CLUSTEROK as well.
977 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
979 if (error) {
980 brelse(bp);
981 break;
985 * Only update dirtyoff/dirtyend if not a degenerate
986 * condition.
988 * The underlying VM pages have been marked valid by
989 * virtue of acquiring the bp. Because the entire buffer
990 * is marked dirty we do not have to worry about cleaning
991 * out the related dirty bits (and wouldn't really know
992 * how to deal with byte ranges anyway)
994 if (bytes) {
995 if (bp->b_dirtyend > 0) {
996 bp->b_dirtyoff = imin(boff, bp->b_dirtyoff);
997 bp->b_dirtyend = imax(boff + bytes,
998 bp->b_dirtyend);
999 } else {
1000 bp->b_dirtyoff = boff;
1001 bp->b_dirtyend = boff + bytes;
1006 * If the lease is non-cachable or IO_SYNC do bwrite().
1008 * IO_INVAL appears to be unused. The idea appears to be
1009 * to turn off caching in this case. Very odd. XXX
1011 * If nfs_async is set bawrite() will use an unstable write
1012 * (build dirty bufs on the server), so we might as well
1013 * push it out with bawrite(). If nfs_async is not set we
1014 * use bdwrite() to cache dirty bufs on the client.
1016 if (ioflag & IO_SYNC) {
1017 if (ioflag & IO_INVAL)
1018 bp->b_flags |= B_NOCACHE;
1019 error = bwrite(bp);
1020 if (error)
1021 break;
1022 } else if (boff + bytes == biosize && nfs_async) {
1023 bawrite(bp);
1024 } else {
1025 bdwrite(bp);
1027 } while (uio->uio_resid > 0 && bytes > 0);
1029 if (haverslock)
1030 nfs_rsunlock(np);
1032 return (error);
1036 * Get an nfs cache block.
1038 * Allocate a new one if the block isn't currently in the cache
1039 * and return the block marked busy. If the calling process is
1040 * interrupted by a signal for an interruptible mount point, return
1041 * NULL.
1043 * The caller must carefully deal with the possible B_INVAL state of
1044 * the buffer. nfs_startio() clears B_INVAL (and nfs_asyncio() clears it
1045 * indirectly), so synchronous reads can be issued without worrying about
1046 * the B_INVAL state. We have to be a little more careful when dealing
1047 * with writes (see comments in nfs_write()) when extending a file past
1048 * its EOF.
1050 static struct buf *
1051 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td)
1053 struct buf *bp;
1054 struct mount *mp;
1055 struct nfsmount *nmp;
1057 mp = vp->v_mount;
1058 nmp = VFSTONFS(mp);
1060 if (nmp->nm_flag & NFSMNT_INT) {
1061 bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0);
1062 while (bp == NULL) {
1063 if (nfs_sigintr(nmp, NULL, td))
1064 return (NULL);
1065 bp = getblk(vp, loffset, size, 0, 2 * hz);
1067 } else {
1068 bp = getblk(vp, loffset, size, 0, 0);
1072 * bio2, the 'device' layer. Since BIOs use 64 bit byte offsets
1073 * now, no translation is necessary.
1075 bp->b_bio2.bio_offset = loffset;
1076 return (bp);
1080 * Flush and invalidate all dirty buffers. If another process is already
1081 * doing the flush, just wait for completion.
1084 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg)
1086 struct nfsnode *np = VTONFS(vp);
1087 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1088 int error = 0, slpflag, slptimeo;
1089 thread_t td = curthread;
1091 if (vp->v_flag & VRECLAIMED)
1092 return (0);
1094 if ((nmp->nm_flag & NFSMNT_INT) == 0)
1095 intrflg = 0;
1096 if (intrflg) {
1097 slpflag = PCATCH;
1098 slptimeo = 2 * hz;
1099 } else {
1100 slpflag = 0;
1101 slptimeo = 0;
1104 * First wait for any other process doing a flush to complete.
1106 while (np->n_flag & NFLUSHINPROG) {
1107 np->n_flag |= NFLUSHWANT;
1108 error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1109 if (error && intrflg && nfs_sigintr(nmp, NULL, td))
1110 return (EINTR);
1114 * Now, flush as required.
1116 np->n_flag |= NFLUSHINPROG;
1117 error = vinvalbuf(vp, flags, slpflag, 0);
1118 while (error) {
1119 if (intrflg && nfs_sigintr(nmp, NULL, td)) {
1120 np->n_flag &= ~NFLUSHINPROG;
1121 if (np->n_flag & NFLUSHWANT) {
1122 np->n_flag &= ~NFLUSHWANT;
1123 wakeup((caddr_t)&np->n_flag);
1125 return (EINTR);
1127 error = vinvalbuf(vp, flags, 0, slptimeo);
1129 np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
1130 if (np->n_flag & NFLUSHWANT) {
1131 np->n_flag &= ~NFLUSHWANT;
1132 wakeup((caddr_t)&np->n_flag);
1134 return (0);
1138 * Return true (non-zero) if the txthread and rxthread are operational
1139 * and we do not already have too many not-yet-started BIO's built up.
1142 nfs_asyncok(struct nfsmount *nmp)
1144 return (nmp->nm_bioqlen < nfs_maxasyncbio &&
1145 nmp->nm_bioqlen < nmp->nm_maxasync_scaled / NFS_ASYSCALE &&
1146 nmp->nm_rxstate <= NFSSVC_PENDING &&
1147 nmp->nm_txstate <= NFSSVC_PENDING);
1151 * The read-ahead code calls this to queue a bio to the txthread.
1153 * We don't touch the bio otherwise... that is, we do not even
1154 * construct or send the initial rpc. The txthread will do it
1155 * for us.
1157 * NOTE! nm_bioqlen is not decremented until the request completes,
1158 * so it does not reflect the number of bio's on bioq.
1160 void
1161 nfs_asyncio(struct vnode *vp, struct bio *bio)
1163 struct buf *bp = bio->bio_buf;
1164 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1166 KKASSERT(vp->v_tag == VT_NFS);
1167 BUF_KERNPROC(bp);
1168 bio->bio_driver_info = vp;
1169 crit_enter();
1170 TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
1171 atomic_add_int(&nmp->nm_bioqlen, 1);
1172 crit_exit();
1173 nfssvc_iod_writer_wakeup(nmp);
1177 * nfs_dio() - Execute a BIO operation synchronously. The BIO will be
1178 * completed and its error returned. The caller is responsible
1179 * for brelse()ing it. ONLY USE FOR BIO_SYNC IOs! Otherwise
1180 * our error probe will be against an invalid pointer.
1182 * nfs_startio()- Execute a BIO operation assynchronously.
1184 * NOTE: nfs_asyncio() is used to initiate an asynchronous BIO operation,
1185 * which basically just queues it to the txthread. nfs_startio()
1186 * actually initiates the I/O AFTER it has gotten to the txthread.
1188 * NOTE: td might be NULL.
1190 * NOTE: Caller has already busied the I/O.
1192 void
1193 nfs_startio(struct vnode *vp, struct bio *bio, struct thread *td)
1195 struct buf *bp = bio->bio_buf;
1196 struct nfsnode *np;
1197 struct nfsmount *nmp;
1199 KKASSERT(vp->v_tag == VT_NFS);
1200 np = VTONFS(vp);
1201 nmp = VFSTONFS(vp->v_mount);
1204 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We
1205 * do this here so we do not have to do it in all the code that
1206 * calls us.
1208 bp->b_flags &= ~(B_ERROR | B_INVAL);
1210 KASSERT(bp->b_cmd != BUF_CMD_DONE,
1211 ("nfs_doio: bp %p already marked done!", bp));
1213 if (bp->b_cmd == BUF_CMD_READ) {
1214 switch (vp->v_type) {
1215 case VREG:
1216 nfsstats.read_bios++;
1217 nfs_readrpc_bio(vp, bio);
1218 break;
1219 case VLNK:
1220 #if 0
1221 bio->bio_offset = 0;
1222 nfsstats.readlink_bios++;
1223 nfs_readlinkrpc_bio(vp, bio);
1224 #else
1225 nfs_doio(vp, bio, td);
1226 #endif
1227 break;
1228 case VDIR:
1230 * NOTE: If nfs_readdirplusrpc_bio() is requested but
1231 * not supported, it will chain to
1232 * nfs_readdirrpc_bio().
1234 #if 0
1235 nfsstats.readdir_bios++;
1236 uiop->uio_offset = bio->bio_offset;
1237 if (nmp->nm_flag & NFSMNT_RDIRPLUS)
1238 nfs_readdirplusrpc_bio(vp, bio);
1239 else
1240 nfs_readdirrpc_bio(vp, bio);
1241 #else
1242 nfs_doio(vp, bio, td);
1243 #endif
1244 break;
1245 default:
1246 kprintf("nfs_doio: type %x unexpected\n",vp->v_type);
1247 bp->b_flags |= B_ERROR;
1248 bp->b_error = EINVAL;
1249 biodone(bio);
1250 break;
1252 } else {
1254 * If we only need to commit, try to commit. If this fails
1255 * it will chain through to the write. Basically all the logic
1256 * in nfs_doio() is replicated.
1258 KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1259 if (bp->b_flags & B_NEEDCOMMIT)
1260 nfs_commitrpc_bio(vp, bio);
1261 else
1262 nfs_writerpc_bio(vp, bio);
1267 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1269 struct buf *bp = bio->bio_buf;
1270 struct uio *uiop;
1271 struct nfsnode *np;
1272 struct nfsmount *nmp;
1273 int error = 0;
1274 int iomode, must_commit;
1275 size_t n;
1276 struct uio uio;
1277 struct iovec io;
1279 KKASSERT(vp->v_tag == VT_NFS);
1280 np = VTONFS(vp);
1281 nmp = VFSTONFS(vp->v_mount);
1282 uiop = &uio;
1283 uiop->uio_iov = &io;
1284 uiop->uio_iovcnt = 1;
1285 uiop->uio_segflg = UIO_SYSSPACE;
1286 uiop->uio_td = td;
1289 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We
1290 * do this here so we do not have to do it in all the code that
1291 * calls us.
1293 bp->b_flags &= ~(B_ERROR | B_INVAL);
1295 KASSERT(bp->b_cmd != BUF_CMD_DONE,
1296 ("nfs_doio: bp %p already marked done!", bp));
1298 if (bp->b_cmd == BUF_CMD_READ) {
1299 io.iov_len = uiop->uio_resid = (size_t)bp->b_bcount;
1300 io.iov_base = bp->b_data;
1301 uiop->uio_rw = UIO_READ;
1303 switch (vp->v_type) {
1304 case VREG:
1306 * When reading from a regular file zero-fill any residual.
1307 * Note that this residual has nothing to do with NFS short
1308 * reads, which nfs_readrpc_uio() will handle for us.
1310 * We have to do this because when we are write extending
1311 * a file the server may not have the same notion of
1312 * filesize as we do. Our BIOs should already be sized
1313 * (b_bcount) to account for the file EOF.
1315 nfsstats.read_bios++;
1316 uiop->uio_offset = bio->bio_offset;
1317 error = nfs_readrpc_uio(vp, uiop);
1318 if (error == 0 && uiop->uio_resid) {
1319 n = (size_t)bp->b_bcount - uiop->uio_resid;
1320 bzero(bp->b_data + n, bp->b_bcount - n);
1321 uiop->uio_resid = 0;
1323 if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1324 np->n_mtime != np->n_vattr.va_mtime.tv_sec) {
1325 uprintf("Process killed due to text file modification\n");
1326 ksignal(td->td_proc, SIGKILL);
1328 break;
1329 case VLNK:
1330 uiop->uio_offset = 0;
1331 nfsstats.readlink_bios++;
1332 error = nfs_readlinkrpc_uio(vp, uiop);
1333 break;
1334 case VDIR:
1335 nfsstats.readdir_bios++;
1336 uiop->uio_offset = bio->bio_offset;
1337 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1338 error = nfs_readdirplusrpc_uio(vp, uiop);
1339 if (error == NFSERR_NOTSUPP)
1340 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1342 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1343 error = nfs_readdirrpc_uio(vp, uiop);
1345 * end-of-directory sets B_INVAL but does not generate an
1346 * error.
1348 if (error == 0 && uiop->uio_resid == bp->b_bcount)
1349 bp->b_flags |= B_INVAL;
1350 break;
1351 default:
1352 kprintf("nfs_doio: type %x unexpected\n",vp->v_type);
1353 break;
1355 if (error) {
1356 bp->b_flags |= B_ERROR;
1357 bp->b_error = error;
1359 bp->b_resid = uiop->uio_resid;
1360 } else {
1362 * If we only need to commit, try to commit.
1364 * NOTE: The I/O has already been staged for the write and
1365 * its pages busied, so b_dirtyoff/end is valid.
1367 KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1368 if (bp->b_flags & B_NEEDCOMMIT) {
1369 int retv;
1370 off_t off;
1372 off = bio->bio_offset + bp->b_dirtyoff;
1373 retv = nfs_commitrpc_uio(vp, off,
1374 bp->b_dirtyend - bp->b_dirtyoff,
1375 td);
1376 if (retv == 0) {
1377 bp->b_dirtyoff = bp->b_dirtyend = 0;
1378 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1379 bp->b_resid = 0;
1380 biodone(bio);
1381 return(0);
1383 if (retv == NFSERR_STALEWRITEVERF) {
1384 nfs_clearcommit(vp->v_mount);
1389 * Setup for actual write
1391 if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1392 bp->b_dirtyend = np->n_size - bio->bio_offset;
1394 if (bp->b_dirtyend > bp->b_dirtyoff) {
1395 io.iov_len = uiop->uio_resid = bp->b_dirtyend
1396 - bp->b_dirtyoff;
1397 uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff;
1398 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1399 uiop->uio_rw = UIO_WRITE;
1400 nfsstats.write_bios++;
1402 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1403 iomode = NFSV3WRITE_UNSTABLE;
1404 else
1405 iomode = NFSV3WRITE_FILESYNC;
1407 must_commit = 0;
1408 error = nfs_writerpc_uio(vp, uiop, &iomode, &must_commit);
1411 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1412 * to cluster the buffers needing commit. This will allow
1413 * the system to submit a single commit rpc for the whole
1414 * cluster. We can do this even if the buffer is not 100%
1415 * dirty (relative to the NFS blocksize), so we optimize the
1416 * append-to-file-case.
1418 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1419 * cleared because write clustering only works for commit
1420 * rpc's, not for the data portion of the write).
1423 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1424 bp->b_flags |= B_NEEDCOMMIT;
1425 if (bp->b_dirtyoff == 0
1426 && bp->b_dirtyend == bp->b_bcount)
1427 bp->b_flags |= B_CLUSTEROK;
1428 } else {
1429 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1433 * For an interrupted write, the buffer is still valid
1434 * and the write hasn't been pushed to the server yet,
1435 * so we can't set B_ERROR and report the interruption
1436 * by setting B_EINTR. For the async case, B_EINTR
1437 * is not relevant, so the rpc attempt is essentially
1438 * a noop. For the case of a V3 write rpc not being
1439 * committed to stable storage, the block is still
1440 * dirty and requires either a commit rpc or another
1441 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1442 * the block is reused. This is indicated by setting
1443 * the B_DELWRI and B_NEEDCOMMIT flags.
1445 * If the buffer is marked B_PAGING, it does not reside on
1446 * the vp's paging queues so we cannot call bdirty(). The
1447 * bp in this case is not an NFS cache block so we should
1448 * be safe. XXX
1450 if (error == EINTR
1451 || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1452 crit_enter();
1453 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1454 if ((bp->b_flags & B_PAGING) == 0)
1455 bdirty(bp);
1456 if (error)
1457 bp->b_flags |= B_EINTR;
1458 crit_exit();
1459 } else {
1460 if (error) {
1461 bp->b_flags |= B_ERROR;
1462 bp->b_error = np->n_error = error;
1463 np->n_flag |= NWRITEERR;
1465 bp->b_dirtyoff = bp->b_dirtyend = 0;
1467 if (must_commit)
1468 nfs_clearcommit(vp->v_mount);
1469 bp->b_resid = uiop->uio_resid;
1470 } else {
1471 bp->b_resid = 0;
1476 * I/O was run synchronously, biodone() it and calculate the
1477 * error to return.
1479 biodone(bio);
1480 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
1481 if (bp->b_flags & B_EINTR)
1482 return (EINTR);
1483 if (bp->b_flags & B_ERROR)
1484 return (bp->b_error ? bp->b_error : EIO);
1485 return (0);
1489 * Used to aid in handling ftruncate() and non-trivial write-extend
1490 * operations on the NFS client side. Note that trivial write-extend
1491 * operations (appending with no write hole) are handled by nfs_write()
1492 * directly to avoid silly flushes.
1494 * Truncation creates a number of special problems for NFS. We have to
1495 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1496 * we have to properly handle VM pages or (potentially dirty) buffers
1497 * that straddle the truncation point.
1499 * File extension no longer has an issue now that the buffer size is
1500 * fixed. When extending the intended overwrite area is specified
1501 * by (boff, bytes). This function uses the parameters to determine
1502 * what areas must be zerod. If there are no gaps we set B_CACHE.
1504 struct buf *
1505 nfs_meta_setsize(struct vnode *vp, struct thread *td, off_t nbase,
1506 int boff, int bytes)
1509 struct nfsnode *np = VTONFS(vp);
1510 off_t osize = np->n_size;
1511 off_t nsize;
1512 int biosize = vp->v_mount->mnt_stat.f_iosize;
1513 int error = 0;
1514 struct buf *bp;
1516 nsize = nbase + boff + bytes;
1517 np->n_size = nsize;
1519 if (nsize < osize) {
1521 * vtruncbuf() doesn't get the buffer overlapping the
1522 * truncation point, but it will invalidate pages in
1523 * that buffer and zero the appropriate byte range in
1524 * the page straddling EOF.
1526 error = vtruncbuf(vp, nsize, biosize);
1529 * NFS doesn't do a good job tracking changes in the EOF
1530 * so it may not revisit the buffer if the file is extended.
1532 * After truncating just clear B_CACHE on the buffer
1533 * straddling EOF. If the buffer is dirty then clean
1534 * out the portion beyond the file EOF.
1536 if (error) {
1537 bp = NULL;
1538 } else {
1539 bp = nfs_getcacheblk(vp, nbase, biosize, td);
1540 if (bp->b_flags & B_DELWRI) {
1541 if (bp->b_dirtyoff > bp->b_bcount)
1542 bp->b_dirtyoff = bp->b_bcount;
1543 if (bp->b_dirtyend > bp->b_bcount)
1544 bp->b_dirtyend = bp->b_bcount;
1545 boff = (int)nsize & (biosize - 1);
1546 bzero(bp->b_data + boff, biosize - boff);
1547 } else if (nsize != nbase) {
1548 boff = (int)nsize & (biosize - 1);
1549 bzero(bp->b_data + boff, biosize - boff);
1552 } else {
1554 * The newly expanded portions of the buffer should already
1555 * be zero'd out if B_CACHE is set. If B_CACHE is not
1556 * set and the buffer is beyond osize we can safely zero it
1557 * and set B_CACHE to avoid issuing unnecessary degenerate
1558 * read rpcs.
1560 * Don't do this if the caller is going to overwrite the
1561 * entire buffer anyway (and also don't set B_CACHE!).
1562 * This allows the caller to optimize the operation.
1564 KKASSERT(nsize >= 0);
1565 vnode_pager_setsize(vp, (vm_ooffset_t)nsize);
1567 bp = nfs_getcacheblk(vp, nbase, biosize, td);
1568 if ((bp->b_flags & B_CACHE) == 0 && nbase >= osize &&
1569 !(boff == 0 && bytes == biosize)
1571 bzero(bp->b_data, biosize);
1572 bp->b_flags |= B_CACHE;
1573 bp->b_flags &= ~(B_ERROR | B_INVAL);
1576 return(bp);
1580 * Synchronous completion for nfs_doio. Call bpdone() with elseit=FALSE.
1581 * Caller is responsible for brelse()'ing the bp.
1583 static void
1584 nfsiodone_sync(struct bio *bio)
1586 bio->bio_flags = 0;
1587 bpdone(bio->bio_buf, 0);
1591 * nfs read rpc - BIO version
1593 void
1594 nfs_readrpc_bio(struct vnode *vp, struct bio *bio)
1596 struct buf *bp = bio->bio_buf;
1597 u_int32_t *tl;
1598 struct nfsmount *nmp;
1599 int error = 0, len, tsiz;
1600 struct nfsm_info *info;
1602 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1603 info->mrep = NULL;
1604 info->v3 = NFS_ISV3(vp);
1606 nmp = VFSTONFS(vp->v_mount);
1607 tsiz = bp->b_bcount;
1608 KKASSERT(tsiz <= nmp->nm_rsize);
1609 if (bio->bio_offset + tsiz > nmp->nm_maxfilesize) {
1610 error = EFBIG;
1611 goto nfsmout;
1613 nfsstats.rpccnt[NFSPROC_READ]++;
1614 len = tsiz;
1615 nfsm_reqhead(info, vp, NFSPROC_READ,
1616 NFSX_FH(info->v3) + NFSX_UNSIGNED * 3);
1617 ERROROUT(nfsm_fhtom(info, vp));
1618 tl = nfsm_build(info, NFSX_UNSIGNED * 3);
1619 if (info->v3) {
1620 txdr_hyper(bio->bio_offset, tl);
1621 *(tl + 2) = txdr_unsigned(len);
1622 } else {
1623 *tl++ = txdr_unsigned(bio->bio_offset);
1624 *tl++ = txdr_unsigned(len);
1625 *tl = 0;
1627 info->bio = bio;
1628 info->done = nfs_readrpc_bio_done;
1629 nfsm_request_bio(info, vp, NFSPROC_READ, NULL,
1630 nfs_vpcred(vp, ND_READ));
1631 return;
1632 nfsmout:
1633 kfree(info, M_NFSREQ);
1634 bp->b_error = error;
1635 bp->b_flags |= B_ERROR;
1636 biodone(bio);
1639 static void
1640 nfs_readrpc_bio_done(nfsm_info_t info)
1642 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1643 struct bio *bio = info->bio;
1644 struct buf *bp = bio->bio_buf;
1645 u_int32_t *tl;
1646 int attrflag;
1647 int retlen;
1648 int eof;
1649 int error = 0;
1651 KKASSERT(info->state == NFSM_STATE_DONE);
1653 if (info->v3) {
1654 ERROROUT(nfsm_postop_attr(info, info->vp, &attrflag,
1655 NFS_LATTR_NOSHRINK));
1656 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED));
1657 eof = fxdr_unsigned(int, *(tl + 1));
1658 } else {
1659 ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1660 eof = 0;
1662 NEGATIVEOUT(retlen = nfsm_strsiz(info, nmp->nm_rsize));
1663 ERROROUT(nfsm_mtobio(info, bio, retlen));
1664 m_freem(info->mrep);
1665 info->mrep = NULL;
1668 * No error occured, if retlen is less then bcount and no EOF
1669 * and NFSv3 a zero-fill short read occured.
1671 * For NFSv2 a short-read indicates EOF.
1673 if (retlen < bp->b_bcount && info->v3 && eof == 0) {
1674 bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1675 retlen = bp->b_bcount;
1679 * If we hit an EOF we still zero-fill, but return the expected
1680 * b_resid anyway. This should normally not occur since async
1681 * BIOs are not used for read-before-write case. Races against
1682 * the server can cause it though and we don't want to leave
1683 * garbage in the buffer.
1685 if (retlen < bp->b_bcount) {
1686 bzero(bp->b_data + retlen, bp->b_bcount - retlen);
1688 bp->b_resid = 0;
1689 /* bp->b_resid = bp->b_bcount - retlen; */
1690 nfsmout:
1691 kfree(info, M_NFSREQ);
1692 if (error) {
1693 bp->b_error = error;
1694 bp->b_flags |= B_ERROR;
1696 biodone(bio);
1700 * nfs write call - BIO version
1702 * NOTE: Caller has already busied the I/O.
1704 void
1705 nfs_writerpc_bio(struct vnode *vp, struct bio *bio)
1707 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1708 struct nfsnode *np = VTONFS(vp);
1709 struct buf *bp = bio->bio_buf;
1710 u_int32_t *tl;
1711 int len;
1712 int iomode;
1713 int error = 0;
1714 struct nfsm_info *info;
1715 off_t offset;
1718 * Setup for actual write. Just clean up the bio if there
1719 * is nothing to do. b_dirtyoff/end have already been staged
1720 * by the bp's pages getting busied.
1722 if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1723 bp->b_dirtyend = np->n_size - bio->bio_offset;
1725 if (bp->b_dirtyend <= bp->b_dirtyoff) {
1726 bp->b_resid = 0;
1727 biodone(bio);
1728 return;
1730 len = bp->b_dirtyend - bp->b_dirtyoff;
1731 offset = bio->bio_offset + bp->b_dirtyoff;
1732 if (offset + len > nmp->nm_maxfilesize) {
1733 bp->b_flags |= B_ERROR;
1734 bp->b_error = EFBIG;
1735 biodone(bio);
1736 return;
1738 bp->b_resid = len;
1739 nfsstats.write_bios++;
1741 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1742 info->mrep = NULL;
1743 info->v3 = NFS_ISV3(vp);
1744 info->info_writerpc.must_commit = 0;
1745 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0)
1746 iomode = NFSV3WRITE_UNSTABLE;
1747 else
1748 iomode = NFSV3WRITE_FILESYNC;
1750 KKASSERT(len <= nmp->nm_wsize);
1752 nfsstats.rpccnt[NFSPROC_WRITE]++;
1753 nfsm_reqhead(info, vp, NFSPROC_WRITE,
1754 NFSX_FH(info->v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1755 ERROROUT(nfsm_fhtom(info, vp));
1756 if (info->v3) {
1757 tl = nfsm_build(info, 5 * NFSX_UNSIGNED);
1758 txdr_hyper(offset, tl);
1759 tl += 2;
1760 *tl++ = txdr_unsigned(len);
1761 *tl++ = txdr_unsigned(iomode);
1762 *tl = txdr_unsigned(len);
1763 } else {
1764 u_int32_t x;
1766 tl = nfsm_build(info, 4 * NFSX_UNSIGNED);
1767 /* Set both "begin" and "current" to non-garbage. */
1768 x = txdr_unsigned((u_int32_t)offset);
1769 *tl++ = x; /* "begin offset" */
1770 *tl++ = x; /* "current offset" */
1771 x = txdr_unsigned(len);
1772 *tl++ = x; /* total to this offset */
1773 *tl = x; /* size of this write */
1775 ERROROUT(nfsm_biotom(info, bio, bp->b_dirtyoff, len));
1776 info->bio = bio;
1777 info->done = nfs_writerpc_bio_done;
1778 nfsm_request_bio(info, vp, NFSPROC_WRITE, NULL,
1779 nfs_vpcred(vp, ND_WRITE));
1780 return;
1781 nfsmout:
1782 kfree(info, M_NFSREQ);
1783 bp->b_error = error;
1784 bp->b_flags |= B_ERROR;
1785 biodone(bio);
1788 static void
1789 nfs_writerpc_bio_done(nfsm_info_t info)
1791 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1792 struct nfsnode *np = VTONFS(info->vp);
1793 struct bio *bio = info->bio;
1794 struct buf *bp = bio->bio_buf;
1795 int wccflag = NFSV3_WCCRATTR;
1796 int iomode = NFSV3WRITE_FILESYNC;
1797 int commit;
1798 int rlen;
1799 int error;
1800 int len = bp->b_resid; /* b_resid was set to shortened length */
1801 u_int32_t *tl;
1803 if (info->v3) {
1805 * The write RPC returns a before and after mtime. The
1806 * nfsm_wcc_data() macro checks the before n_mtime
1807 * against the before time and stores the after time
1808 * in the nfsnode's cached vattr and n_mtime field.
1809 * The NRMODIFIED bit will be set if the before
1810 * time did not match the original mtime.
1812 wccflag = NFSV3_WCCCHK;
1813 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1814 if (error == 0) {
1815 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1816 rlen = fxdr_unsigned(int, *tl++);
1817 if (rlen == 0) {
1818 error = NFSERR_IO;
1819 m_freem(info->mrep);
1820 info->mrep = NULL;
1821 goto nfsmout;
1822 } else if (rlen < len) {
1823 #if 0
1825 * XXX what do we do here?
1827 backup = len - rlen;
1828 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1829 uiop->uio_iov->iov_len += backup;
1830 uiop->uio_offset -= backup;
1831 uiop->uio_resid += backup;
1832 len = rlen;
1833 #endif
1835 commit = fxdr_unsigned(int, *tl++);
1838 * Return the lowest committment level
1839 * obtained by any of the RPCs.
1841 if (iomode == NFSV3WRITE_FILESYNC)
1842 iomode = commit;
1843 else if (iomode == NFSV3WRITE_DATASYNC &&
1844 commit == NFSV3WRITE_UNSTABLE)
1845 iomode = commit;
1846 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1847 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1848 nmp->nm_state |= NFSSTA_HASWRITEVERF;
1849 } else if (bcmp(tl, nmp->nm_verf, NFSX_V3WRITEVERF)) {
1850 info->info_writerpc.must_commit = 1;
1851 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF);
1854 } else {
1855 ERROROUT(nfsm_loadattr(info, info->vp, NULL));
1857 m_freem(info->mrep);
1858 info->mrep = NULL;
1859 len = 0;
1860 nfsmout:
1861 if (info->vp->v_mount->mnt_flag & MNT_ASYNC)
1862 iomode = NFSV3WRITE_FILESYNC;
1863 bp->b_resid = len;
1866 * End of RPC. Now clean up the bp.
1868 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1869 * to cluster the buffers needing commit. This will allow
1870 * the system to submit a single commit rpc for the whole
1871 * cluster. We can do this even if the buffer is not 100%
1872 * dirty (relative to the NFS blocksize), so we optimize the
1873 * append-to-file-case.
1875 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1876 * cleared because write clustering only works for commit
1877 * rpc's, not for the data portion of the write).
1879 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1880 bp->b_flags |= B_NEEDCOMMIT;
1881 if (bp->b_dirtyoff == 0 && bp->b_dirtyend == bp->b_bcount)
1882 bp->b_flags |= B_CLUSTEROK;
1883 } else {
1884 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1888 * For an interrupted write, the buffer is still valid
1889 * and the write hasn't been pushed to the server yet,
1890 * so we can't set B_ERROR and report the interruption
1891 * by setting B_EINTR. For the async case, B_EINTR
1892 * is not relevant, so the rpc attempt is essentially
1893 * a noop. For the case of a V3 write rpc not being
1894 * committed to stable storage, the block is still
1895 * dirty and requires either a commit rpc or another
1896 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1897 * the block is reused. This is indicated by setting
1898 * the B_DELWRI and B_NEEDCOMMIT flags.
1900 * If the buffer is marked B_PAGING, it does not reside on
1901 * the vp's paging queues so we cannot call bdirty(). The
1902 * bp in this case is not an NFS cache block so we should
1903 * be safe. XXX
1905 if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1906 crit_enter();
1907 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1908 if ((bp->b_flags & B_PAGING) == 0)
1909 bdirty(bp);
1910 if (error)
1911 bp->b_flags |= B_EINTR;
1912 crit_exit();
1913 } else {
1914 if (error) {
1915 bp->b_flags |= B_ERROR;
1916 bp->b_error = np->n_error = error;
1917 np->n_flag |= NWRITEERR;
1919 bp->b_dirtyoff = bp->b_dirtyend = 0;
1921 if (info->info_writerpc.must_commit)
1922 nfs_clearcommit(info->vp->v_mount);
1923 kfree(info, M_NFSREQ);
1924 if (error) {
1925 bp->b_flags |= B_ERROR;
1926 bp->b_error = error;
1928 biodone(bio);
1932 * Nfs Version 3 commit rpc - BIO version
1934 * This function issues the commit rpc and will chain to a write
1935 * rpc if necessary.
1937 void
1938 nfs_commitrpc_bio(struct vnode *vp, struct bio *bio)
1940 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1941 struct buf *bp = bio->bio_buf;
1942 struct nfsm_info *info;
1943 int error = 0;
1944 u_int32_t *tl;
1946 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
1947 bp->b_dirtyoff = bp->b_dirtyend = 0;
1948 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1949 bp->b_resid = 0;
1950 biodone(bio);
1951 return;
1954 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK);
1955 info->mrep = NULL;
1956 info->v3 = 1;
1958 nfsstats.rpccnt[NFSPROC_COMMIT]++;
1959 nfsm_reqhead(info, vp, NFSPROC_COMMIT, NFSX_FH(1));
1960 ERROROUT(nfsm_fhtom(info, vp));
1961 tl = nfsm_build(info, 3 * NFSX_UNSIGNED);
1962 txdr_hyper(bio->bio_offset + bp->b_dirtyoff, tl);
1963 tl += 2;
1964 *tl = txdr_unsigned(bp->b_dirtyend - bp->b_dirtyoff);
1965 info->bio = bio;
1966 info->done = nfs_commitrpc_bio_done;
1967 nfsm_request_bio(info, vp, NFSPROC_COMMIT, NULL,
1968 nfs_vpcred(vp, ND_WRITE));
1969 return;
1970 nfsmout:
1972 * Chain to write RPC on (early) error
1974 kfree(info, M_NFSREQ);
1975 nfs_writerpc_bio(vp, bio);
1978 static void
1979 nfs_commitrpc_bio_done(nfsm_info_t info)
1981 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount);
1982 struct bio *bio = info->bio;
1983 struct buf *bp = bio->bio_buf;
1984 u_int32_t *tl;
1985 int wccflag = NFSV3_WCCRATTR;
1986 int error = 0;
1988 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag));
1989 if (error == 0) {
1990 NULLOUT(tl = nfsm_dissect(info, NFSX_V3WRITEVERF));
1991 if (bcmp(nmp->nm_verf, tl, NFSX_V3WRITEVERF)) {
1992 bcopy(tl, nmp->nm_verf, NFSX_V3WRITEVERF);
1993 error = NFSERR_STALEWRITEVERF;
1996 m_freem(info->mrep);
1997 info->mrep = NULL;
2000 * On completion we must chain to a write bio if an
2001 * error occurred.
2003 nfsmout:
2004 kfree(info, M_NFSREQ);
2005 if (error == 0) {
2006 bp->b_dirtyoff = bp->b_dirtyend = 0;
2007 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2008 bp->b_resid = 0;
2009 biodone(bio);
2010 } else {
2011 nfs_writerpc_bio(info->vp, bio);