kernel - Incidental MPLOCK removal (devfs)
[dragonfly.git] / sys / vfs / devfs / devfs_vnops.c
blob5a309c5512b6c692934471ee4a0e85e2110752e9
1 /*
2 * (MPSAFE)
4 * Copyright (c) 2009 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to The DragonFly Project
7 * by Alex Hornung <ahornung@gmail.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/time.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/fcntl.h>
42 #include <sys/proc.h>
43 #include <sys/priv.h>
44 #include <sys/signalvar.h>
45 #include <sys/vnode.h>
46 #include <sys/uio.h>
47 #include <sys/mount.h>
48 #include <sys/file.h>
49 #include <sys/namei.h>
50 #include <sys/dirent.h>
51 #include <sys/malloc.h>
52 #include <sys/stat.h>
53 #include <sys/reg.h>
54 #include <vm/vm_pager.h>
55 #include <vm/vm_zone.h>
56 #include <vm/vm_object.h>
57 #include <sys/filio.h>
58 #include <sys/ttycom.h>
59 #include <sys/tty.h>
60 #include <sys/diskslice.h>
61 #include <sys/sysctl.h>
62 #include <sys/devfs.h>
63 #include <sys/pioctl.h>
64 #include <vfs/fifofs/fifo.h>
66 #include <machine/limits.h>
68 #include <sys/buf2.h>
69 #include <sys/sysref2.h>
70 #include <vm/vm_page2.h>
72 #ifndef SPEC_CHAIN_DEBUG
73 #define SPEC_CHAIN_DEBUG 0
74 #endif
76 MALLOC_DECLARE(M_DEVFS);
77 #define DEVFS_BADOP (void *)devfs_vop_badop
79 static int devfs_vop_badop(struct vop_generic_args *);
80 static int devfs_vop_access(struct vop_access_args *);
81 static int devfs_vop_inactive(struct vop_inactive_args *);
82 static int devfs_vop_reclaim(struct vop_reclaim_args *);
83 static int devfs_vop_readdir(struct vop_readdir_args *);
84 static int devfs_vop_getattr(struct vop_getattr_args *);
85 static int devfs_vop_setattr(struct vop_setattr_args *);
86 static int devfs_vop_readlink(struct vop_readlink_args *);
87 static int devfs_vop_print(struct vop_print_args *);
89 static int devfs_vop_nresolve(struct vop_nresolve_args *);
90 static int devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *);
91 static int devfs_vop_nmkdir(struct vop_nmkdir_args *);
92 static int devfs_vop_nsymlink(struct vop_nsymlink_args *);
93 static int devfs_vop_nrmdir(struct vop_nrmdir_args *);
94 static int devfs_vop_nremove(struct vop_nremove_args *);
96 static int devfs_spec_open(struct vop_open_args *);
97 static int devfs_spec_close(struct vop_close_args *);
98 static int devfs_spec_fsync(struct vop_fsync_args *);
100 static int devfs_spec_read(struct vop_read_args *);
101 static int devfs_spec_write(struct vop_write_args *);
102 static int devfs_spec_ioctl(struct vop_ioctl_args *);
103 static int devfs_spec_kqfilter(struct vop_kqfilter_args *);
104 static int devfs_spec_strategy(struct vop_strategy_args *);
105 static void devfs_spec_strategy_done(struct bio *);
106 static int devfs_spec_freeblks(struct vop_freeblks_args *);
107 static int devfs_spec_bmap(struct vop_bmap_args *);
108 static int devfs_spec_advlock(struct vop_advlock_args *);
109 static void devfs_spec_getpages_iodone(struct bio *);
110 static int devfs_spec_getpages(struct vop_getpages_args *);
112 static int devfs_fo_close(struct file *);
113 static int devfs_fo_read(struct file *, struct uio *, struct ucred *, int);
114 static int devfs_fo_write(struct file *, struct uio *, struct ucred *, int);
115 static int devfs_fo_stat(struct file *, struct stat *, struct ucred *);
116 static int devfs_fo_kqfilter(struct file *, struct knote *);
117 static int devfs_fo_ioctl(struct file *, u_long, caddr_t,
118 struct ucred *, struct sysmsg *);
119 static __inline int sequential_heuristic(struct uio *, struct file *);
121 extern struct lock devfs_lock;
124 * devfs vnode operations for regular files. All vnode ops are MPSAFE.
126 struct vop_ops devfs_vnode_norm_vops = {
127 .vop_default = vop_defaultop,
128 .vop_access = devfs_vop_access,
129 .vop_advlock = DEVFS_BADOP,
130 .vop_bmap = DEVFS_BADOP,
131 .vop_close = vop_stdclose,
132 .vop_getattr = devfs_vop_getattr,
133 .vop_inactive = devfs_vop_inactive,
134 .vop_ncreate = DEVFS_BADOP,
135 .vop_nresolve = devfs_vop_nresolve,
136 .vop_nlookupdotdot = devfs_vop_nlookupdotdot,
137 .vop_nlink = DEVFS_BADOP,
138 .vop_nmkdir = devfs_vop_nmkdir,
139 .vop_nmknod = DEVFS_BADOP,
140 .vop_nremove = devfs_vop_nremove,
141 .vop_nrename = DEVFS_BADOP,
142 .vop_nrmdir = devfs_vop_nrmdir,
143 .vop_nsymlink = devfs_vop_nsymlink,
144 .vop_open = vop_stdopen,
145 .vop_pathconf = vop_stdpathconf,
146 .vop_print = devfs_vop_print,
147 .vop_read = DEVFS_BADOP,
148 .vop_readdir = devfs_vop_readdir,
149 .vop_readlink = devfs_vop_readlink,
150 .vop_reclaim = devfs_vop_reclaim,
151 .vop_setattr = devfs_vop_setattr,
152 .vop_write = DEVFS_BADOP,
153 .vop_ioctl = DEVFS_BADOP
157 * devfs vnode operations for character devices. All vnode ops are MPSAFE.
159 struct vop_ops devfs_vnode_dev_vops = {
160 .vop_default = vop_defaultop,
161 .vop_access = devfs_vop_access,
162 .vop_advlock = devfs_spec_advlock,
163 .vop_bmap = devfs_spec_bmap,
164 .vop_close = devfs_spec_close,
165 .vop_freeblks = devfs_spec_freeblks,
166 .vop_fsync = devfs_spec_fsync,
167 .vop_getattr = devfs_vop_getattr,
168 .vop_getpages = devfs_spec_getpages,
169 .vop_inactive = devfs_vop_inactive,
170 .vop_open = devfs_spec_open,
171 .vop_pathconf = vop_stdpathconf,
172 .vop_print = devfs_vop_print,
173 .vop_kqfilter = devfs_spec_kqfilter,
174 .vop_read = devfs_spec_read,
175 .vop_readdir = DEVFS_BADOP,
176 .vop_readlink = DEVFS_BADOP,
177 .vop_reclaim = devfs_vop_reclaim,
178 .vop_setattr = devfs_vop_setattr,
179 .vop_strategy = devfs_spec_strategy,
180 .vop_write = devfs_spec_write,
181 .vop_ioctl = devfs_spec_ioctl
185 * devfs file pointer operations. All fileops are MPSAFE.
187 struct vop_ops *devfs_vnode_dev_vops_p = &devfs_vnode_dev_vops;
189 struct fileops devfs_dev_fileops = {
190 .fo_read = devfs_fo_read,
191 .fo_write = devfs_fo_write,
192 .fo_ioctl = devfs_fo_ioctl,
193 .fo_kqfilter = devfs_fo_kqfilter,
194 .fo_stat = devfs_fo_stat,
195 .fo_close = devfs_fo_close,
196 .fo_shutdown = nofo_shutdown
200 * These two functions are possibly temporary hacks for devices (aka
201 * the pty code) which want to control the node attributes themselves.
203 * XXX we may ultimately desire to simply remove the uid/gid/mode
204 * from the node entirely.
206 * MPSAFE - sorta. Theoretically the overwrite can compete since they
207 * are loading from the same fields.
209 static __inline void
210 node_sync_dev_get(struct devfs_node *node)
212 cdev_t dev;
214 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
215 node->uid = dev->si_uid;
216 node->gid = dev->si_gid;
217 node->mode = dev->si_perms;
221 static __inline void
222 node_sync_dev_set(struct devfs_node *node)
224 cdev_t dev;
226 if ((dev = node->d_dev) && (dev->si_flags & SI_OVERRIDE)) {
227 dev->si_uid = node->uid;
228 dev->si_gid = node->gid;
229 dev->si_perms = node->mode;
234 * generic entry point for unsupported operations
236 static int
237 devfs_vop_badop(struct vop_generic_args *ap)
239 return (EIO);
243 static int
244 devfs_vop_access(struct vop_access_args *ap)
246 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
247 int error;
249 if (!devfs_node_is_accessible(node))
250 return ENOENT;
251 node_sync_dev_get(node);
252 error = vop_helper_access(ap, node->uid, node->gid,
253 node->mode, node->flags);
255 return error;
259 static int
260 devfs_vop_inactive(struct vop_inactive_args *ap)
262 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
264 if (node == NULL || (node->flags & DEVFS_NODE_LINKED) == 0)
265 vrecycle(ap->a_vp);
266 return 0;
270 static int
271 devfs_vop_reclaim(struct vop_reclaim_args *ap)
273 struct devfs_node *node;
274 struct vnode *vp;
275 int locked;
278 * Check if it is locked already. if not, we acquire the devfs lock
280 if ((lockstatus(&devfs_lock, curthread)) != LK_EXCLUSIVE) {
281 lockmgr(&devfs_lock, LK_EXCLUSIVE);
282 locked = 1;
283 } else {
284 locked = 0;
288 * Get rid of the devfs_node if it is no longer linked into the
289 * topology.
291 vp = ap->a_vp;
292 if ((node = DEVFS_NODE(vp)) != NULL) {
293 node->v_node = NULL;
294 if ((node->flags & DEVFS_NODE_LINKED) == 0)
295 devfs_freep(node);
298 if (locked)
299 lockmgr(&devfs_lock, LK_RELEASE);
302 * v_rdev needs to be properly released using v_release_rdev
303 * Make sure v_data is NULL as well.
305 vp->v_data = NULL;
306 v_release_rdev(vp);
307 return 0;
311 static int
312 devfs_vop_readdir(struct vop_readdir_args *ap)
314 struct devfs_node *dnode = DEVFS_NODE(ap->a_vp);
315 struct devfs_node *node;
316 int cookie_index;
317 int ncookies;
318 int error2;
319 int error;
320 int r;
321 off_t *cookies;
322 off_t saveoff;
324 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_readdir() called!\n");
326 if (ap->a_uio->uio_offset < 0 || ap->a_uio->uio_offset > INT_MAX)
327 return (EINVAL);
328 error = vn_lock(ap->a_vp, LK_EXCLUSIVE | LK_RETRY | LK_FAILRECLAIM);
329 if (error)
330 return (error);
332 if (!devfs_node_is_accessible(dnode)) {
333 vn_unlock(ap->a_vp);
334 return ENOENT;
337 lockmgr(&devfs_lock, LK_EXCLUSIVE);
339 saveoff = ap->a_uio->uio_offset;
341 if (ap->a_ncookies) {
342 ncookies = ap->a_uio->uio_resid / 16 + 1; /* Why / 16 ?? */
343 if (ncookies > 256)
344 ncookies = 256;
345 cookies = kmalloc(256 * sizeof(off_t), M_TEMP, M_WAITOK);
346 cookie_index = 0;
347 } else {
348 ncookies = -1;
349 cookies = NULL;
350 cookie_index = 0;
353 nanotime(&dnode->atime);
355 if (saveoff == 0) {
356 r = vop_write_dirent(&error, ap->a_uio, dnode->d_dir.d_ino,
357 DT_DIR, 1, ".");
358 if (r)
359 goto done;
360 if (cookies)
361 cookies[cookie_index] = saveoff;
362 saveoff++;
363 cookie_index++;
364 if (cookie_index == ncookies)
365 goto done;
368 if (saveoff == 1) {
369 if (dnode->parent) {
370 r = vop_write_dirent(&error, ap->a_uio,
371 dnode->parent->d_dir.d_ino,
372 DT_DIR, 2, "..");
373 } else {
374 r = vop_write_dirent(&error, ap->a_uio,
375 dnode->d_dir.d_ino,
376 DT_DIR, 2, "..");
378 if (r)
379 goto done;
380 if (cookies)
381 cookies[cookie_index] = saveoff;
382 saveoff++;
383 cookie_index++;
384 if (cookie_index == ncookies)
385 goto done;
388 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
389 if ((node->flags & DEVFS_HIDDEN) ||
390 (node->flags & DEVFS_INVISIBLE)) {
391 continue;
395 * If the node type is a valid devfs alias, then we make
396 * sure that the target isn't hidden. If it is, we don't
397 * show the link in the directory listing.
399 if ((node->node_type == Nlink) && (node->link_target != NULL) &&
400 (node->link_target->flags & DEVFS_HIDDEN))
401 continue;
403 if (node->cookie < saveoff)
404 continue;
406 saveoff = node->cookie;
408 error2 = vop_write_dirent(&error, ap->a_uio, node->d_dir.d_ino,
409 node->d_dir.d_type,
410 node->d_dir.d_namlen,
411 node->d_dir.d_name);
413 if (error2)
414 break;
416 saveoff++;
418 if (cookies)
419 cookies[cookie_index] = node->cookie;
420 ++cookie_index;
421 if (cookie_index == ncookies)
422 break;
425 done:
426 lockmgr(&devfs_lock, LK_RELEASE);
427 vn_unlock(ap->a_vp);
429 ap->a_uio->uio_offset = saveoff;
430 if (error && cookie_index == 0) {
431 if (cookies) {
432 kfree(cookies, M_TEMP);
433 *ap->a_ncookies = 0;
434 *ap->a_cookies = NULL;
436 } else {
437 if (cookies) {
438 *ap->a_ncookies = cookie_index;
439 *ap->a_cookies = cookies;
442 return (error);
446 static int
447 devfs_vop_nresolve(struct vop_nresolve_args *ap)
449 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
450 struct devfs_node *node, *found = NULL;
451 struct namecache *ncp;
452 struct vnode *vp = NULL;
453 int error = 0;
454 int len;
455 int depth;
457 ncp = ap->a_nch->ncp;
458 len = ncp->nc_nlen;
460 if (!devfs_node_is_accessible(dnode))
461 return ENOENT;
463 lockmgr(&devfs_lock, LK_EXCLUSIVE);
465 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir)) {
466 error = ENOENT;
467 cache_setvp(ap->a_nch, NULL);
468 goto out;
471 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
472 if (len == node->d_dir.d_namlen) {
473 if (!memcmp(ncp->nc_name, node->d_dir.d_name, len)) {
474 found = node;
475 break;
480 if (found) {
481 depth = 0;
482 while ((found->node_type == Nlink) && (found->link_target)) {
483 if (depth >= 8) {
484 devfs_debug(DEVFS_DEBUG_SHOW, "Recursive link or depth >= 8");
485 break;
488 found = found->link_target;
489 ++depth;
492 if (!(found->flags & DEVFS_HIDDEN))
493 devfs_allocv(/*ap->a_dvp->v_mount, */ &vp, found);
496 if (vp == NULL) {
497 error = ENOENT;
498 cache_setvp(ap->a_nch, NULL);
499 goto out;
502 KKASSERT(vp);
503 vn_unlock(vp);
504 cache_setvp(ap->a_nch, vp);
505 vrele(vp);
506 out:
507 lockmgr(&devfs_lock, LK_RELEASE);
509 return error;
513 static int
514 devfs_vop_nlookupdotdot(struct vop_nlookupdotdot_args *ap)
516 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
518 *ap->a_vpp = NULL;
519 if (!devfs_node_is_accessible(dnode))
520 return ENOENT;
522 lockmgr(&devfs_lock, LK_EXCLUSIVE);
523 if (dnode->parent != NULL) {
524 devfs_allocv(ap->a_vpp, dnode->parent);
525 vn_unlock(*ap->a_vpp);
527 lockmgr(&devfs_lock, LK_RELEASE);
529 return ((*ap->a_vpp == NULL) ? ENOENT : 0);
533 static int
534 devfs_vop_getattr(struct vop_getattr_args *ap)
536 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
537 struct vattr *vap = ap->a_vap;
538 struct partinfo pinfo;
539 int error = 0;
541 #if 0
542 if (!devfs_node_is_accessible(node))
543 return ENOENT;
544 #endif
545 node_sync_dev_get(node);
547 lockmgr(&devfs_lock, LK_EXCLUSIVE);
549 /* start by zeroing out the attributes */
550 VATTR_NULL(vap);
552 /* next do all the common fields */
553 vap->va_type = ap->a_vp->v_type;
554 vap->va_mode = node->mode;
555 vap->va_fileid = DEVFS_NODE(ap->a_vp)->d_dir.d_ino ;
556 vap->va_flags = 0;
557 vap->va_blocksize = DEV_BSIZE;
558 vap->va_bytes = vap->va_size = 0;
560 vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
562 vap->va_atime = node->atime;
563 vap->va_mtime = node->mtime;
564 vap->va_ctime = node->ctime;
566 vap->va_nlink = 1; /* number of references to file */
568 vap->va_uid = node->uid;
569 vap->va_gid = node->gid;
571 vap->va_rmajor = 0;
572 vap->va_rminor = 0;
574 if ((node->node_type == Ndev) && node->d_dev) {
575 reference_dev(node->d_dev);
576 vap->va_rminor = node->d_dev->si_uminor;
577 release_dev(node->d_dev);
580 /* For a softlink the va_size is the length of the softlink */
581 if (node->symlink_name != 0) {
582 vap->va_bytes = vap->va_size = node->symlink_namelen;
586 * For a disk-type device, va_size is the size of the underlying
587 * device, so that lseek() works properly.
589 if ((node->d_dev) && (dev_dflags(node->d_dev) & D_DISK)) {
590 bzero(&pinfo, sizeof(pinfo));
591 error = dev_dioctl(node->d_dev, DIOCGPART, (void *)&pinfo,
592 0, proc0.p_ucred, NULL, NULL);
593 if ((error == 0) && (pinfo.media_blksize != 0)) {
594 vap->va_size = pinfo.media_size;
595 } else {
596 vap->va_size = 0;
597 error = 0;
601 lockmgr(&devfs_lock, LK_RELEASE);
603 return (error);
607 static int
608 devfs_vop_setattr(struct vop_setattr_args *ap)
610 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
611 struct vattr *vap;
612 uid_t cur_uid;
613 gid_t cur_gid;
614 mode_t cur_mode;
615 int error = 0;
617 if (!devfs_node_is_accessible(node))
618 return ENOENT;
619 node_sync_dev_get(node);
621 lockmgr(&devfs_lock, LK_EXCLUSIVE);
623 vap = ap->a_vap;
625 if ((vap->va_uid != (uid_t)VNOVAL) || (vap->va_gid != (gid_t)VNOVAL)) {
626 cur_uid = node->uid;
627 cur_gid = node->gid;
628 cur_mode = node->mode;
629 error = vop_helper_chown(ap->a_vp, vap->va_uid, vap->va_gid,
630 ap->a_cred, &cur_uid, &cur_gid, &cur_mode);
631 if (error)
632 goto out;
634 if (node->uid != cur_uid || node->gid != cur_gid) {
635 node->uid = cur_uid;
636 node->gid = cur_gid;
637 node->mode = cur_mode;
641 if (vap->va_mode != (mode_t)VNOVAL) {
642 cur_mode = node->mode;
643 error = vop_helper_chmod(ap->a_vp, vap->va_mode, ap->a_cred,
644 node->uid, node->gid, &cur_mode);
645 if (error == 0 && node->mode != cur_mode) {
646 node->mode = cur_mode;
650 out:
651 node_sync_dev_set(node);
652 nanotime(&node->ctime);
653 lockmgr(&devfs_lock, LK_RELEASE);
655 return error;
659 static int
660 devfs_vop_readlink(struct vop_readlink_args *ap)
662 struct devfs_node *node = DEVFS_NODE(ap->a_vp);
663 int ret;
665 if (!devfs_node_is_accessible(node))
666 return ENOENT;
668 lockmgr(&devfs_lock, LK_EXCLUSIVE);
669 ret = uiomove(node->symlink_name, node->symlink_namelen, ap->a_uio);
670 lockmgr(&devfs_lock, LK_RELEASE);
672 return ret;
676 static int
677 devfs_vop_print(struct vop_print_args *ap)
679 return (0);
682 static int
683 devfs_vop_nmkdir(struct vop_nmkdir_args *ap)
685 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
686 struct devfs_node *node;
688 if (!devfs_node_is_accessible(dnode))
689 return ENOENT;
691 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
692 goto out;
694 lockmgr(&devfs_lock, LK_EXCLUSIVE);
695 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Ndir,
696 ap->a_nch->ncp->nc_name, dnode, NULL);
698 if (*ap->a_vpp) {
699 node = DEVFS_NODE(*ap->a_vpp);
700 node->flags |= DEVFS_USER_CREATED;
701 cache_setunresolved(ap->a_nch);
702 cache_setvp(ap->a_nch, *ap->a_vpp);
704 lockmgr(&devfs_lock, LK_RELEASE);
705 out:
706 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
709 static int
710 devfs_vop_nsymlink(struct vop_nsymlink_args *ap)
712 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
713 struct devfs_node *node;
714 size_t targetlen;
716 if (!devfs_node_is_accessible(dnode))
717 return ENOENT;
719 ap->a_vap->va_type = VLNK;
721 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
722 goto out;
724 lockmgr(&devfs_lock, LK_EXCLUSIVE);
725 devfs_allocvp(ap->a_dvp->v_mount, ap->a_vpp, Nlink,
726 ap->a_nch->ncp->nc_name, dnode, NULL);
728 targetlen = strlen(ap->a_target);
729 if (*ap->a_vpp) {
730 node = DEVFS_NODE(*ap->a_vpp);
731 node->flags |= DEVFS_USER_CREATED;
732 node->symlink_namelen = targetlen;
733 node->symlink_name = kmalloc(targetlen + 1, M_DEVFS, M_WAITOK);
734 memcpy(node->symlink_name, ap->a_target, targetlen);
735 node->symlink_name[targetlen] = '\0';
736 cache_setunresolved(ap->a_nch);
737 cache_setvp(ap->a_nch, *ap->a_vpp);
739 lockmgr(&devfs_lock, LK_RELEASE);
740 out:
741 return ((*ap->a_vpp == NULL) ? ENOTDIR : 0);
744 static int
745 devfs_vop_nrmdir(struct vop_nrmdir_args *ap)
747 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
748 struct devfs_node *node;
749 struct namecache *ncp;
750 int error = ENOENT;
752 ncp = ap->a_nch->ncp;
754 if (!devfs_node_is_accessible(dnode))
755 return ENOENT;
757 lockmgr(&devfs_lock, LK_EXCLUSIVE);
759 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
760 goto out;
762 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
763 if (ncp->nc_nlen != node->d_dir.d_namlen)
764 continue;
765 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
766 continue;
769 * only allow removal of user created dirs
771 if ((node->flags & DEVFS_USER_CREATED) == 0) {
772 error = EPERM;
773 goto out;
774 } else if (node->node_type != Ndir) {
775 error = ENOTDIR;
776 goto out;
777 } else if (node->nchildren > 2) {
778 error = ENOTEMPTY;
779 goto out;
780 } else {
781 if (node->v_node)
782 cache_inval_vp(node->v_node, CINV_DESTROY);
783 devfs_unlinkp(node);
784 error = 0;
785 break;
789 cache_unlink(ap->a_nch);
790 out:
791 lockmgr(&devfs_lock, LK_RELEASE);
792 return error;
795 static int
796 devfs_vop_nremove(struct vop_nremove_args *ap)
798 struct devfs_node *dnode = DEVFS_NODE(ap->a_dvp);
799 struct devfs_node *node;
800 struct namecache *ncp;
801 int error = ENOENT;
803 ncp = ap->a_nch->ncp;
805 if (!devfs_node_is_accessible(dnode))
806 return ENOENT;
808 lockmgr(&devfs_lock, LK_EXCLUSIVE);
810 if ((dnode->node_type != Nroot) && (dnode->node_type != Ndir))
811 goto out;
813 TAILQ_FOREACH(node, DEVFS_DENODE_HEAD(dnode), link) {
814 if (ncp->nc_nlen != node->d_dir.d_namlen)
815 continue;
816 if (memcmp(ncp->nc_name, node->d_dir.d_name, ncp->nc_nlen))
817 continue;
820 * only allow removal of user created stuff (e.g. symlinks)
822 if ((node->flags & DEVFS_USER_CREATED) == 0) {
823 error = EPERM;
824 goto out;
825 } else if (node->node_type == Ndir) {
826 error = EISDIR;
827 goto out;
828 } else {
829 if (node->v_node)
830 cache_inval_vp(node->v_node, CINV_DESTROY);
831 devfs_unlinkp(node);
832 error = 0;
833 break;
837 cache_unlink(ap->a_nch);
838 out:
839 lockmgr(&devfs_lock, LK_RELEASE);
840 return error;
844 static int
845 devfs_spec_open(struct vop_open_args *ap)
847 struct vnode *vp = ap->a_vp;
848 struct vnode *orig_vp = NULL;
849 struct devfs_node *node = DEVFS_NODE(vp);
850 struct devfs_node *newnode;
851 cdev_t dev, ndev = NULL;
852 int error = 0;
854 if (node) {
855 if (node->d_dev == NULL)
856 return ENXIO;
857 if (!devfs_node_is_accessible(node))
858 return ENOENT;
861 if ((dev = vp->v_rdev) == NULL)
862 return ENXIO;
864 vn_lock(vp, LK_UPGRADE | LK_RETRY);
866 if (node && ap->a_fp) {
867 int exists;
869 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_open: -1.1-\n");
870 lockmgr(&devfs_lock, LK_EXCLUSIVE);
872 ndev = devfs_clone(dev, node->d_dir.d_name,
873 node->d_dir.d_namlen,
874 ap->a_mode, ap->a_cred);
875 if (ndev != NULL) {
876 newnode = devfs_create_device_node(
877 DEVFS_MNTDATA(vp->v_mount)->root_node,
878 ndev, &exists, NULL, NULL);
879 /* XXX: possibly destroy device if this happens */
881 if (newnode != NULL) {
882 dev = ndev;
883 if (exists == 0)
884 devfs_link_dev(dev);
886 devfs_debug(DEVFS_DEBUG_DEBUG,
887 "parent here is: %s, node is: |%s|\n",
888 ((node->parent->node_type == Nroot) ?
889 "ROOT!" : node->parent->d_dir.d_name),
890 newnode->d_dir.d_name);
891 devfs_debug(DEVFS_DEBUG_DEBUG,
892 "test: %s\n",
893 ((struct devfs_node *)(TAILQ_LAST(DEVFS_DENODE_HEAD(node->parent), devfs_node_head)))->d_dir.d_name);
896 * orig_vp is set to the original vp if we
897 * cloned.
899 /* node->flags |= DEVFS_CLONED; */
900 devfs_allocv(&vp, newnode);
901 orig_vp = ap->a_vp;
902 ap->a_vp = vp;
905 lockmgr(&devfs_lock, LK_RELEASE);
907 * Synchronize devfs here to make sure that, if the cloned
908 * device creates other device nodes in addition to the
909 * cloned one, all of them are created by the time we return
910 * from opening the cloned one.
912 if (ndev)
913 devfs_config();
916 devfs_debug(DEVFS_DEBUG_DEBUG,
917 "devfs_spec_open() called on %s! \n",
918 dev->si_name);
921 * Make this field valid before any I/O in ->d_open
923 if (!dev->si_iosize_max)
924 /* XXX: old DFLTPHYS == 64KB dependency */
925 dev->si_iosize_max = min(MAXPHYS,64*1024);
927 if (dev_dflags(dev) & D_TTY)
928 vsetflags(vp, VISTTY);
931 * Open underlying device
933 vn_unlock(vp);
934 error = dev_dopen(dev, ap->a_mode, S_IFCHR, ap->a_cred, ap->a_fp);
935 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
938 * Clean up any cloned vp if we error out.
940 if (error) {
941 if (orig_vp) {
942 vput(vp);
943 ap->a_vp = orig_vp;
944 /* orig_vp = NULL; */
946 return error;
950 * This checks if the disk device is going to be opened for writing.
951 * It will be only allowed in the cases where securelevel permits it
952 * and it's not mounted R/W.
954 if ((dev_dflags(dev) & D_DISK) && (ap->a_mode & FWRITE) &&
955 (ap->a_cred != FSCRED)) {
957 /* Very secure mode. No open for writing allowed */
958 if (securelevel >= 2)
959 return EPERM;
962 * If it is mounted R/W, do not allow to open for writing.
963 * In the case it's mounted read-only but securelevel
964 * is >= 1, then do not allow opening for writing either.
966 if (vfs_mountedon(vp)) {
967 if (!(dev->si_mountpoint->mnt_flag & MNT_RDONLY))
968 return EBUSY;
969 else if (securelevel >= 1)
970 return EPERM;
974 if (dev_dflags(dev) & D_TTY) {
975 if (dev->si_tty) {
976 struct tty *tp;
977 tp = dev->si_tty;
978 if (!tp->t_stop) {
979 devfs_debug(DEVFS_DEBUG_DEBUG,
980 "devfs: no t_stop\n");
981 tp->t_stop = nottystop;
987 if (vn_isdisk(vp, NULL)) {
988 if (!dev->si_bsize_phys)
989 dev->si_bsize_phys = DEV_BSIZE;
990 vinitvmio(vp, IDX_TO_OFF(INT_MAX), PAGE_SIZE, -1);
993 vop_stdopen(ap);
994 #if 0
995 if (node)
996 nanotime(&node->atime);
997 #endif
1000 * If we replaced the vp the vop_stdopen() call will have loaded
1001 * it into fp->f_data and vref()d the vp, giving us two refs. So
1002 * instead of just unlocking it here we have to vput() it.
1004 if (orig_vp)
1005 vput(vp);
1007 /* Ugly pty magic, to make pty devices appear once they are opened */
1008 if (node && (node->flags & DEVFS_PTY) == DEVFS_PTY)
1009 node->flags &= ~DEVFS_INVISIBLE;
1011 if (ap->a_fp) {
1012 KKASSERT(ap->a_fp->f_type == DTYPE_VNODE);
1013 KKASSERT((ap->a_fp->f_flag & FMASK) == (ap->a_mode & FMASK));
1014 ap->a_fp->f_ops = &devfs_dev_fileops;
1015 KKASSERT(ap->a_fp->f_data == (void *)vp);
1018 return 0;
1021 static int
1022 devfs_spec_close(struct vop_close_args *ap)
1024 struct devfs_node *node;
1025 struct proc *p = curproc;
1026 struct vnode *vp = ap->a_vp;
1027 cdev_t dev = vp->v_rdev;
1028 int error = 0;
1029 int needrelock;
1030 int opencount;
1033 * We do special tests on the opencount so unfortunately we need
1034 * an exclusive lock.
1036 vn_lock(vp, LK_UPGRADE | LK_RETRY);
1038 if (dev)
1039 devfs_debug(DEVFS_DEBUG_DEBUG,
1040 "devfs_spec_close() called on %s! \n",
1041 dev->si_name);
1042 else
1043 devfs_debug(DEVFS_DEBUG_DEBUG,
1044 "devfs_spec_close() called, null vode!\n");
1047 * A couple of hacks for devices and tty devices. The
1048 * vnode ref count cannot be used to figure out the
1049 * last close, but we can use v_opencount now that
1050 * revoke works properly.
1052 * Detect the last close on a controlling terminal and clear
1053 * the session (half-close).
1055 * XXX opencount is not SMP safe. The vnode is locked but there
1056 * may be multiple vnodes referencing the same device.
1058 if (dev) {
1060 * NOTE: Try to avoid global tokens when testing opencount
1061 * XXX hack, fixme. needs a struct lock and opencount in
1062 * struct cdev itself.
1064 reference_dev(dev);
1065 opencount = vp->v_opencount;
1066 if (opencount <= 1)
1067 opencount = count_dev(dev); /* XXX NOT SMP SAFE */
1068 } else {
1069 opencount = 0;
1072 if (p && vp->v_opencount <= 1 && vp == p->p_session->s_ttyvp) {
1073 p->p_session->s_ttyvp = NULL;
1074 vrele(vp);
1078 * Vnodes can be opened and closed multiple times. Do not really
1079 * close the device unless (1) it is being closed forcibly,
1080 * (2) the device wants to track closes, or (3) this is the last
1081 * vnode doing its last close on the device.
1083 * XXX the VXLOCK (force close) case can leave vnodes referencing
1084 * a closed device. This might not occur now that our revoke is
1085 * fixed.
1087 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -1- \n");
1088 if (dev && ((vp->v_flag & VRECLAIMED) ||
1089 (dev_dflags(dev) & D_TRACKCLOSE) ||
1090 (opencount == 1))) {
1092 * Ugly pty magic, to make pty devices disappear again once
1093 * they are closed.
1095 node = DEVFS_NODE(ap->a_vp);
1096 if (node && (node->flags & DEVFS_PTY))
1097 node->flags |= DEVFS_INVISIBLE;
1100 * Unlock around dev_dclose(), unless the vnode is
1101 * undergoing a vgone/reclaim (during umount).
1103 needrelock = 0;
1104 if ((vp->v_flag & VRECLAIMED) == 0 && vn_islocked(vp)) {
1105 needrelock = 1;
1106 vn_unlock(vp);
1110 * WARNING! If the device destroys itself the devfs node
1111 * can disappear here.
1113 * WARNING! vn_lock() will fail if the vp is in a VRECLAIM,
1114 * which can occur during umount.
1116 error = dev_dclose(dev, ap->a_fflag, S_IFCHR, ap->a_fp);
1117 /* node is now stale */
1119 if (needrelock) {
1120 if (vn_lock(vp, LK_EXCLUSIVE |
1121 LK_RETRY |
1122 LK_FAILRECLAIM) != 0) {
1123 panic("devfs_spec_close: vnode %p "
1124 "unexpectedly could not be relocked",
1125 vp);
1128 } else {
1129 error = 0;
1131 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_spec_close() -2- \n");
1134 * Track the actual opens and closes on the vnode. The last close
1135 * disassociates the rdev. If the rdev is already disassociated or
1136 * the opencount is already 0, the vnode might have been revoked
1137 * and no further opencount tracking occurs.
1139 if (dev)
1140 release_dev(dev);
1141 if (vp->v_opencount > 0)
1142 vop_stdclose(ap);
1143 return(error);
1148 static int
1149 devfs_fo_close(struct file *fp)
1151 struct vnode *vp = (struct vnode *)fp->f_data;
1152 int error;
1154 fp->f_ops = &badfileops;
1155 error = vn_close(vp, fp->f_flag, fp);
1156 devfs_clear_cdevpriv(fp);
1158 return (error);
1163 * Device-optimized file table vnode read routine.
1165 * This bypasses the VOP table and talks directly to the device. Most
1166 * filesystems just route to specfs and can make this optimization.
1168 static int
1169 devfs_fo_read(struct file *fp, struct uio *uio,
1170 struct ucred *cred, int flags)
1172 struct devfs_node *node;
1173 struct vnode *vp;
1174 int ioflag;
1175 int error;
1176 cdev_t dev;
1178 KASSERT(uio->uio_td == curthread,
1179 ("uio_td %p is not td %p", uio->uio_td, curthread));
1181 if (uio->uio_resid == 0)
1182 return 0;
1184 vp = (struct vnode *)fp->f_data;
1185 if (vp == NULL || vp->v_type == VBAD)
1186 return EBADF;
1188 node = DEVFS_NODE(vp);
1190 if ((dev = vp->v_rdev) == NULL)
1191 return EBADF;
1193 reference_dev(dev);
1195 if ((flags & O_FOFFSET) == 0)
1196 uio->uio_offset = fp->f_offset;
1198 ioflag = 0;
1199 if (flags & O_FBLOCKING) {
1200 /* ioflag &= ~IO_NDELAY; */
1201 } else if (flags & O_FNONBLOCKING) {
1202 ioflag |= IO_NDELAY;
1203 } else if (fp->f_flag & FNONBLOCK) {
1204 ioflag |= IO_NDELAY;
1206 if (fp->f_flag & O_DIRECT) {
1207 ioflag |= IO_DIRECT;
1209 ioflag |= sequential_heuristic(uio, fp);
1211 error = dev_dread(dev, uio, ioflag, fp);
1213 release_dev(dev);
1214 if (node)
1215 nanotime(&node->atime);
1216 if ((flags & O_FOFFSET) == 0)
1217 fp->f_offset = uio->uio_offset;
1218 fp->f_nextoff = uio->uio_offset;
1220 return (error);
1224 static int
1225 devfs_fo_write(struct file *fp, struct uio *uio,
1226 struct ucred *cred, int flags)
1228 struct devfs_node *node;
1229 struct vnode *vp;
1230 int ioflag;
1231 int error;
1232 cdev_t dev;
1234 KASSERT(uio->uio_td == curthread,
1235 ("uio_td %p is not p %p", uio->uio_td, curthread));
1237 vp = (struct vnode *)fp->f_data;
1238 if (vp == NULL || vp->v_type == VBAD)
1239 return EBADF;
1241 node = DEVFS_NODE(vp);
1243 if (vp->v_type == VREG)
1244 bwillwrite(uio->uio_resid);
1246 vp = (struct vnode *)fp->f_data;
1248 if ((dev = vp->v_rdev) == NULL)
1249 return EBADF;
1251 reference_dev(dev);
1253 if ((flags & O_FOFFSET) == 0)
1254 uio->uio_offset = fp->f_offset;
1256 ioflag = IO_UNIT;
1257 if (vp->v_type == VREG &&
1258 ((fp->f_flag & O_APPEND) || (flags & O_FAPPEND))) {
1259 ioflag |= IO_APPEND;
1262 if (flags & O_FBLOCKING) {
1263 /* ioflag &= ~IO_NDELAY; */
1264 } else if (flags & O_FNONBLOCKING) {
1265 ioflag |= IO_NDELAY;
1266 } else if (fp->f_flag & FNONBLOCK) {
1267 ioflag |= IO_NDELAY;
1269 if (fp->f_flag & O_DIRECT) {
1270 ioflag |= IO_DIRECT;
1272 if (flags & O_FASYNCWRITE) {
1273 /* ioflag &= ~IO_SYNC; */
1274 } else if (flags & O_FSYNCWRITE) {
1275 ioflag |= IO_SYNC;
1276 } else if (fp->f_flag & O_FSYNC) {
1277 ioflag |= IO_SYNC;
1280 if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))
1281 ioflag |= IO_SYNC;
1282 ioflag |= sequential_heuristic(uio, fp);
1284 error = dev_dwrite(dev, uio, ioflag, fp);
1286 release_dev(dev);
1287 if (node) {
1288 nanotime(&node->atime);
1289 nanotime(&node->mtime);
1292 if ((flags & O_FOFFSET) == 0)
1293 fp->f_offset = uio->uio_offset;
1294 fp->f_nextoff = uio->uio_offset;
1296 return (error);
1300 static int
1301 devfs_fo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
1303 struct vnode *vp;
1304 struct vattr vattr;
1305 struct vattr *vap;
1306 u_short mode;
1307 cdev_t dev;
1308 int error;
1310 vp = (struct vnode *)fp->f_data;
1311 if (vp == NULL || vp->v_type == VBAD)
1312 return EBADF;
1314 error = vn_stat(vp, sb, cred);
1315 if (error)
1316 return (error);
1318 vap = &vattr;
1319 error = VOP_GETATTR(vp, vap);
1320 if (error)
1321 return (error);
1324 * Zero the spare stat fields
1326 sb->st_lspare = 0;
1327 sb->st_qspare1 = 0;
1328 sb->st_qspare2 = 0;
1331 * Copy from vattr table ... or not in case it's a cloned device
1333 if (vap->va_fsid != VNOVAL)
1334 sb->st_dev = vap->va_fsid;
1335 else
1336 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1338 sb->st_ino = vap->va_fileid;
1340 mode = vap->va_mode;
1341 mode |= S_IFCHR;
1342 sb->st_mode = mode;
1344 if (vap->va_nlink > (nlink_t)-1)
1345 sb->st_nlink = (nlink_t)-1;
1346 else
1347 sb->st_nlink = vap->va_nlink;
1349 sb->st_uid = vap->va_uid;
1350 sb->st_gid = vap->va_gid;
1351 sb->st_rdev = dev2udev(DEVFS_NODE(vp)->d_dev);
1352 sb->st_size = vap->va_bytes;
1353 sb->st_atimespec = vap->va_atime;
1354 sb->st_mtimespec = vap->va_mtime;
1355 sb->st_ctimespec = vap->va_ctime;
1358 * A VCHR and VBLK device may track the last access and last modified
1359 * time independantly of the filesystem. This is particularly true
1360 * because device read and write calls may bypass the filesystem.
1362 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1363 dev = vp->v_rdev;
1364 if (dev != NULL) {
1365 if (dev->si_lastread) {
1366 sb->st_atimespec.tv_sec = time_second +
1367 (time_uptime -
1368 dev->si_lastread);
1369 sb->st_atimespec.tv_nsec = 0;
1371 if (dev->si_lastwrite) {
1372 sb->st_atimespec.tv_sec = time_second +
1373 (time_uptime -
1374 dev->si_lastwrite);
1375 sb->st_atimespec.tv_nsec = 0;
1381 * According to www.opengroup.org, the meaning of st_blksize is
1382 * "a filesystem-specific preferred I/O block size for this
1383 * object. In some filesystem types, this may vary from file
1384 * to file"
1385 * Default to PAGE_SIZE after much discussion.
1388 sb->st_blksize = PAGE_SIZE;
1390 sb->st_flags = vap->va_flags;
1392 error = priv_check_cred(cred, PRIV_VFS_GENERATION, 0);
1393 if (error)
1394 sb->st_gen = 0;
1395 else
1396 sb->st_gen = (u_int32_t)vap->va_gen;
1398 sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1400 return (0);
1404 static int
1405 devfs_fo_kqfilter(struct file *fp, struct knote *kn)
1407 struct vnode *vp;
1408 int error;
1409 cdev_t dev;
1411 vp = (struct vnode *)fp->f_data;
1412 if (vp == NULL || vp->v_type == VBAD) {
1413 error = EBADF;
1414 goto done;
1416 if ((dev = vp->v_rdev) == NULL) {
1417 error = EBADF;
1418 goto done;
1420 reference_dev(dev);
1422 error = dev_dkqfilter(dev, kn, fp);
1424 release_dev(dev);
1426 done:
1427 return (error);
1430 static int
1431 devfs_fo_ioctl(struct file *fp, u_long com, caddr_t data,
1432 struct ucred *ucred, struct sysmsg *msg)
1434 #if 0
1435 struct devfs_node *node;
1436 #endif
1437 struct vnode *vp;
1438 struct vnode *ovp;
1439 cdev_t dev;
1440 int error;
1441 struct fiodname_args *name_args;
1442 size_t namlen;
1443 const char *name;
1445 vp = ((struct vnode *)fp->f_data);
1447 if ((dev = vp->v_rdev) == NULL)
1448 return EBADF; /* device was revoked */
1450 reference_dev(dev);
1452 #if 0
1453 node = DEVFS_NODE(vp);
1454 #endif
1456 devfs_debug(DEVFS_DEBUG_DEBUG,
1457 "devfs_fo_ioctl() called! for dev %s\n",
1458 dev->si_name);
1460 if (com == FIODTYPE) {
1461 *(int *)data = dev_dflags(dev) & D_TYPEMASK;
1462 error = 0;
1463 goto out;
1464 } else if (com == FIODNAME) {
1465 name_args = (struct fiodname_args *)data;
1466 name = dev->si_name;
1467 namlen = strlen(name) + 1;
1469 devfs_debug(DEVFS_DEBUG_DEBUG,
1470 "ioctl, got: FIODNAME for %s\n", name);
1472 if (namlen <= name_args->len)
1473 error = copyout(dev->si_name, name_args->name, namlen);
1474 else
1475 error = EINVAL;
1477 devfs_debug(DEVFS_DEBUG_DEBUG,
1478 "ioctl stuff: error: %d\n", error);
1479 goto out;
1482 error = dev_dioctl(dev, com, data, fp->f_flag, ucred, msg, fp);
1484 #if 0
1485 if (node) {
1486 nanotime(&node->atime);
1487 nanotime(&node->mtime);
1489 #endif
1490 if (com == TIOCSCTTY) {
1491 devfs_debug(DEVFS_DEBUG_DEBUG,
1492 "devfs_fo_ioctl: got TIOCSCTTY on %s\n",
1493 dev->si_name);
1495 if (error == 0 && com == TIOCSCTTY) {
1496 struct proc *p = curthread->td_proc;
1497 struct session *sess;
1499 devfs_debug(DEVFS_DEBUG_DEBUG,
1500 "devfs_fo_ioctl: dealing with TIOCSCTTY on %s\n",
1501 dev->si_name);
1502 if (p == NULL) {
1503 error = ENOTTY;
1504 goto out;
1506 sess = p->p_session;
1509 * Do nothing if reassigning same control tty
1511 if (sess->s_ttyvp == vp) {
1512 error = 0;
1513 goto out;
1517 * Get rid of reference to old control tty
1519 ovp = sess->s_ttyvp;
1520 vref(vp);
1521 sess->s_ttyvp = vp;
1522 if (ovp)
1523 vrele(ovp);
1526 out:
1527 release_dev(dev);
1528 devfs_debug(DEVFS_DEBUG_DEBUG, "devfs_fo_ioctl() finished! \n");
1529 return (error);
1533 static int
1534 devfs_spec_fsync(struct vop_fsync_args *ap)
1536 struct vnode *vp = ap->a_vp;
1537 int error;
1539 if (!vn_isdisk(vp, NULL))
1540 return (0);
1543 * Flush all dirty buffers associated with a block device.
1545 error = vfsync(vp, ap->a_waitfor, 10000, NULL, NULL);
1546 return (error);
1549 static int
1550 devfs_spec_read(struct vop_read_args *ap)
1552 struct devfs_node *node;
1553 struct vnode *vp;
1554 struct uio *uio;
1555 cdev_t dev;
1556 int error;
1558 vp = ap->a_vp;
1559 dev = vp->v_rdev;
1560 uio = ap->a_uio;
1561 node = DEVFS_NODE(vp);
1563 if (dev == NULL) /* device was revoked */
1564 return (EBADF);
1565 if (uio->uio_resid == 0)
1566 return (0);
1568 vn_unlock(vp);
1569 error = dev_dread(dev, uio, ap->a_ioflag, NULL);
1570 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1572 if (node)
1573 nanotime(&node->atime);
1575 return (error);
1579 * Vnode op for write
1581 * spec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1582 * struct ucred *a_cred)
1584 static int
1585 devfs_spec_write(struct vop_write_args *ap)
1587 struct devfs_node *node;
1588 struct vnode *vp;
1589 struct uio *uio;
1590 cdev_t dev;
1591 int error;
1593 vp = ap->a_vp;
1594 dev = vp->v_rdev;
1595 uio = ap->a_uio;
1596 node = DEVFS_NODE(vp);
1598 KKASSERT(uio->uio_segflg != UIO_NOCOPY);
1600 if (dev == NULL) /* device was revoked */
1601 return (EBADF);
1603 vn_unlock(vp);
1604 error = dev_dwrite(dev, uio, ap->a_ioflag, NULL);
1605 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1607 if (node) {
1608 nanotime(&node->atime);
1609 nanotime(&node->mtime);
1612 return (error);
1616 * Device ioctl operation.
1618 * spec_ioctl(struct vnode *a_vp, int a_command, caddr_t a_data,
1619 * int a_fflag, struct ucred *a_cred, struct sysmsg *msg)
1621 static int
1622 devfs_spec_ioctl(struct vop_ioctl_args *ap)
1624 struct vnode *vp = ap->a_vp;
1625 #if 0
1626 struct devfs_node *node;
1627 #endif
1628 cdev_t dev;
1630 if ((dev = vp->v_rdev) == NULL)
1631 return (EBADF); /* device was revoked */
1632 #if 0
1633 node = DEVFS_NODE(vp);
1635 if (node) {
1636 nanotime(&node->atime);
1637 nanotime(&node->mtime);
1639 #endif
1641 return (dev_dioctl(dev, ap->a_command, ap->a_data, ap->a_fflag,
1642 ap->a_cred, ap->a_sysmsg, NULL));
1646 * spec_kqfilter(struct vnode *a_vp, struct knote *a_kn)
1648 /* ARGSUSED */
1649 static int
1650 devfs_spec_kqfilter(struct vop_kqfilter_args *ap)
1652 struct vnode *vp = ap->a_vp;
1653 #if 0
1654 struct devfs_node *node;
1655 #endif
1656 cdev_t dev;
1658 if ((dev = vp->v_rdev) == NULL)
1659 return (EBADF); /* device was revoked (EBADF) */
1660 #if 0
1661 node = DEVFS_NODE(vp);
1663 if (node)
1664 nanotime(&node->atime);
1665 #endif
1667 return (dev_dkqfilter(dev, ap->a_kn, NULL));
1671 * Convert a vnode strategy call into a device strategy call. Vnode strategy
1672 * calls are not limited to device DMA limits so we have to deal with the
1673 * case.
1675 * spec_strategy(struct vnode *a_vp, struct bio *a_bio)
1677 static int
1678 devfs_spec_strategy(struct vop_strategy_args *ap)
1680 struct bio *bio = ap->a_bio;
1681 struct buf *bp = bio->bio_buf;
1682 struct buf *nbp;
1683 struct vnode *vp;
1684 struct mount *mp;
1685 int chunksize;
1686 int maxiosize;
1688 if (bp->b_cmd != BUF_CMD_READ && LIST_FIRST(&bp->b_dep) != NULL)
1689 buf_start(bp);
1692 * Collect statistics on synchronous and asynchronous read
1693 * and write counts for disks that have associated filesystems.
1695 vp = ap->a_vp;
1696 KKASSERT(vp->v_rdev != NULL); /* XXX */
1697 if (vn_isdisk(vp, NULL) && (mp = vp->v_rdev->si_mountpoint) != NULL) {
1698 if (bp->b_cmd == BUF_CMD_READ) {
1699 if (bp->b_flags & BIO_SYNC)
1700 mp->mnt_stat.f_syncreads++;
1701 else
1702 mp->mnt_stat.f_asyncreads++;
1703 } else {
1704 if (bp->b_flags & BIO_SYNC)
1705 mp->mnt_stat.f_syncwrites++;
1706 else
1707 mp->mnt_stat.f_asyncwrites++;
1712 * Device iosize limitations only apply to read and write. Shortcut
1713 * the I/O if it fits.
1715 if ((maxiosize = vp->v_rdev->si_iosize_max) == 0) {
1716 devfs_debug(DEVFS_DEBUG_DEBUG,
1717 "%s: si_iosize_max not set!\n",
1718 dev_dname(vp->v_rdev));
1719 maxiosize = MAXPHYS;
1721 #if SPEC_CHAIN_DEBUG & 2
1722 maxiosize = 4096;
1723 #endif
1724 if (bp->b_bcount <= maxiosize ||
1725 (bp->b_cmd != BUF_CMD_READ && bp->b_cmd != BUF_CMD_WRITE)) {
1726 dev_dstrategy_chain(vp->v_rdev, bio);
1727 return (0);
1731 * Clone the buffer and set up an I/O chain to chunk up the I/O.
1733 nbp = kmalloc(sizeof(*bp), M_DEVBUF, M_INTWAIT|M_ZERO);
1734 initbufbio(nbp);
1735 buf_dep_init(nbp);
1736 BUF_LOCK(nbp, LK_EXCLUSIVE);
1737 BUF_KERNPROC(nbp);
1738 nbp->b_vp = vp;
1739 nbp->b_flags = B_PAGING | (bp->b_flags & B_BNOCLIP);
1740 nbp->b_data = bp->b_data;
1741 nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1742 nbp->b_bio1.bio_offset = bio->bio_offset;
1743 nbp->b_bio1.bio_caller_info1.ptr = bio;
1746 * Start the first transfer
1748 if (vn_isdisk(vp, NULL))
1749 chunksize = vp->v_rdev->si_bsize_phys;
1750 else
1751 chunksize = DEV_BSIZE;
1752 chunksize = maxiosize / chunksize * chunksize;
1753 #if SPEC_CHAIN_DEBUG & 1
1754 devfs_debug(DEVFS_DEBUG_DEBUG,
1755 "spec_strategy chained I/O chunksize=%d\n",
1756 chunksize);
1757 #endif
1758 nbp->b_cmd = bp->b_cmd;
1759 nbp->b_bcount = chunksize;
1760 nbp->b_bufsize = chunksize; /* used to detect a short I/O */
1761 nbp->b_bio1.bio_caller_info2.index = chunksize;
1763 #if SPEC_CHAIN_DEBUG & 1
1764 devfs_debug(DEVFS_DEBUG_DEBUG,
1765 "spec_strategy: chain %p offset %d/%d bcount %d\n",
1766 bp, 0, bp->b_bcount, nbp->b_bcount);
1767 #endif
1769 dev_dstrategy(vp->v_rdev, &nbp->b_bio1);
1771 if (DEVFS_NODE(vp)) {
1772 nanotime(&DEVFS_NODE(vp)->atime);
1773 nanotime(&DEVFS_NODE(vp)->mtime);
1776 return (0);
1780 * Chunked up transfer completion routine - chain transfers until done
1782 * NOTE: MPSAFE callback.
1784 static
1785 void
1786 devfs_spec_strategy_done(struct bio *nbio)
1788 struct buf *nbp = nbio->bio_buf;
1789 struct bio *bio = nbio->bio_caller_info1.ptr; /* original bio */
1790 struct buf *bp = bio->bio_buf; /* original bp */
1791 int chunksize = nbio->bio_caller_info2.index; /* chunking */
1792 int boffset = nbp->b_data - bp->b_data;
1794 if (nbp->b_flags & B_ERROR) {
1796 * An error terminates the chain, propogate the error back
1797 * to the original bp
1799 bp->b_flags |= B_ERROR;
1800 bp->b_error = nbp->b_error;
1801 bp->b_resid = bp->b_bcount - boffset +
1802 (nbp->b_bcount - nbp->b_resid);
1803 #if SPEC_CHAIN_DEBUG & 1
1804 devfs_debug(DEVFS_DEBUG_DEBUG,
1805 "spec_strategy: chain %p error %d bcount %d/%d\n",
1806 bp, bp->b_error, bp->b_bcount,
1807 bp->b_bcount - bp->b_resid);
1808 #endif
1809 } else if (nbp->b_resid) {
1811 * A short read or write terminates the chain
1813 bp->b_error = nbp->b_error;
1814 bp->b_resid = bp->b_bcount - boffset +
1815 (nbp->b_bcount - nbp->b_resid);
1816 #if SPEC_CHAIN_DEBUG & 1
1817 devfs_debug(DEVFS_DEBUG_DEBUG,
1818 "spec_strategy: chain %p short read(1) "
1819 "bcount %d/%d\n",
1820 bp, bp->b_bcount - bp->b_resid, bp->b_bcount);
1821 #endif
1822 } else if (nbp->b_bcount != nbp->b_bufsize) {
1824 * A short read or write can also occur by truncating b_bcount
1826 #if SPEC_CHAIN_DEBUG & 1
1827 devfs_debug(DEVFS_DEBUG_DEBUG,
1828 "spec_strategy: chain %p short read(2) "
1829 "bcount %d/%d\n",
1830 bp, nbp->b_bcount + boffset, bp->b_bcount);
1831 #endif
1832 bp->b_error = 0;
1833 bp->b_bcount = nbp->b_bcount + boffset;
1834 bp->b_resid = nbp->b_resid;
1835 } else if (nbp->b_bcount + boffset == bp->b_bcount) {
1837 * No more data terminates the chain
1839 #if SPEC_CHAIN_DEBUG & 1
1840 devfs_debug(DEVFS_DEBUG_DEBUG,
1841 "spec_strategy: chain %p finished bcount %d\n",
1842 bp, bp->b_bcount);
1843 #endif
1844 bp->b_error = 0;
1845 bp->b_resid = 0;
1846 } else {
1848 * Continue the chain
1850 boffset += nbp->b_bcount;
1851 nbp->b_data = bp->b_data + boffset;
1852 nbp->b_bcount = bp->b_bcount - boffset;
1853 if (nbp->b_bcount > chunksize)
1854 nbp->b_bcount = chunksize;
1855 nbp->b_bio1.bio_done = devfs_spec_strategy_done;
1856 nbp->b_bio1.bio_offset = bio->bio_offset + boffset;
1858 #if SPEC_CHAIN_DEBUG & 1
1859 devfs_debug(DEVFS_DEBUG_DEBUG,
1860 "spec_strategy: chain %p offset %d/%d bcount %d\n",
1861 bp, boffset, bp->b_bcount, nbp->b_bcount);
1862 #endif
1864 dev_dstrategy(nbp->b_vp->v_rdev, &nbp->b_bio1);
1865 return;
1869 * Fall through to here on termination. biodone(bp) and
1870 * clean up and free nbp.
1872 biodone(bio);
1873 BUF_UNLOCK(nbp);
1874 uninitbufbio(nbp);
1875 kfree(nbp, M_DEVBUF);
1879 * spec_freeblks(struct vnode *a_vp, daddr_t a_addr, daddr_t a_length)
1881 static int
1882 devfs_spec_freeblks(struct vop_freeblks_args *ap)
1884 struct buf *bp;
1887 * Must be a synchronous operation
1889 KKASSERT(ap->a_vp->v_rdev != NULL);
1890 if ((ap->a_vp->v_rdev->si_flags & SI_CANFREE) == 0)
1891 return (0);
1892 bp = geteblk(ap->a_length);
1893 bp->b_cmd = BUF_CMD_FREEBLKS;
1894 bp->b_bio1.bio_flags |= BIO_SYNC;
1895 bp->b_bio1.bio_offset = ap->a_offset;
1896 bp->b_bio1.bio_done = biodone_sync;
1897 bp->b_bcount = ap->a_length;
1898 dev_dstrategy(ap->a_vp->v_rdev, &bp->b_bio1);
1899 biowait(&bp->b_bio1, "TRIM");
1900 brelse(bp);
1902 return (0);
1906 * Implement degenerate case where the block requested is the block
1907 * returned, and assume that the entire device is contiguous in regards
1908 * to the contiguous block range (runp and runb).
1910 * spec_bmap(struct vnode *a_vp, off_t a_loffset,
1911 * off_t *a_doffsetp, int *a_runp, int *a_runb)
1913 static int
1914 devfs_spec_bmap(struct vop_bmap_args *ap)
1916 if (ap->a_doffsetp != NULL)
1917 *ap->a_doffsetp = ap->a_loffset;
1918 if (ap->a_runp != NULL)
1919 *ap->a_runp = MAXBSIZE;
1920 if (ap->a_runb != NULL) {
1921 if (ap->a_loffset < MAXBSIZE)
1922 *ap->a_runb = (int)ap->a_loffset;
1923 else
1924 *ap->a_runb = MAXBSIZE;
1926 return (0);
1931 * Special device advisory byte-level locks.
1933 * spec_advlock(struct vnode *a_vp, caddr_t a_id, int a_op,
1934 * struct flock *a_fl, int a_flags)
1936 /* ARGSUSED */
1937 static int
1938 devfs_spec_advlock(struct vop_advlock_args *ap)
1940 return ((ap->a_flags & F_POSIX) ? EINVAL : EOPNOTSUPP);
1944 * NOTE: MPSAFE callback.
1946 static void
1947 devfs_spec_getpages_iodone(struct bio *bio)
1949 bio->bio_buf->b_cmd = BUF_CMD_DONE;
1950 wakeup(bio->bio_buf);
1954 * spec_getpages() - get pages associated with device vnode.
1956 * Note that spec_read and spec_write do not use the buffer cache, so we
1957 * must fully implement getpages here.
1959 static int
1960 devfs_spec_getpages(struct vop_getpages_args *ap)
1962 vm_offset_t kva;
1963 int error;
1964 int i, pcount, size;
1965 struct buf *bp;
1966 vm_page_t m;
1967 vm_ooffset_t offset;
1968 int toff, nextoff, nread;
1969 struct vnode *vp = ap->a_vp;
1970 int blksiz;
1971 int gotreqpage;
1973 error = 0;
1974 pcount = round_page(ap->a_count) / PAGE_SIZE;
1977 * Calculate the offset of the transfer and do sanity check.
1979 offset = IDX_TO_OFF(ap->a_m[0]->pindex) + ap->a_offset;
1982 * Round up physical size for real devices. We cannot round using
1983 * v_mount's block size data because v_mount has nothing to do with
1984 * the device. i.e. it's usually '/dev'. We need the physical block
1985 * size for the device itself.
1987 * We can't use v_rdev->si_mountpoint because it only exists when the
1988 * block device is mounted. However, we can use v_rdev.
1990 if (vn_isdisk(vp, NULL))
1991 blksiz = vp->v_rdev->si_bsize_phys;
1992 else
1993 blksiz = DEV_BSIZE;
1995 size = roundup2(ap->a_count, blksiz);
1997 bp = getpbuf_kva(NULL);
1998 kva = (vm_offset_t)bp->b_data;
2001 * Map the pages to be read into the kva.
2003 pmap_qenter(kva, ap->a_m, pcount);
2005 /* Build a minimal buffer header. */
2006 bp->b_cmd = BUF_CMD_READ;
2007 bp->b_bcount = size;
2008 bp->b_resid = 0;
2009 bsetrunningbufspace(bp, size);
2011 bp->b_bio1.bio_offset = offset;
2012 bp->b_bio1.bio_done = devfs_spec_getpages_iodone;
2014 mycpu->gd_cnt.v_vnodein++;
2015 mycpu->gd_cnt.v_vnodepgsin += pcount;
2017 /* Do the input. */
2018 vn_strategy(ap->a_vp, &bp->b_bio1);
2020 crit_enter();
2022 /* We definitely need to be at splbio here. */
2023 while (bp->b_cmd != BUF_CMD_DONE)
2024 tsleep(bp, 0, "spread", 0);
2026 crit_exit();
2028 if (bp->b_flags & B_ERROR) {
2029 if (bp->b_error)
2030 error = bp->b_error;
2031 else
2032 error = EIO;
2036 * If EOF is encountered we must zero-extend the result in order
2037 * to ensure that the page does not contain garabge. When no
2038 * error occurs, an early EOF is indicated if b_bcount got truncated.
2039 * b_resid is relative to b_bcount and should be 0, but some devices
2040 * might indicate an EOF with b_resid instead of truncating b_bcount.
2042 nread = bp->b_bcount - bp->b_resid;
2043 if (nread < ap->a_count)
2044 bzero((caddr_t)kva + nread, ap->a_count - nread);
2045 pmap_qremove(kva, pcount);
2047 gotreqpage = 0;
2048 for (i = 0, toff = 0; i < pcount; i++, toff = nextoff) {
2049 nextoff = toff + PAGE_SIZE;
2050 m = ap->a_m[i];
2053 * NOTE: vm_page_undirty/clear_dirty etc do not clear the
2054 * pmap modified bit. pmap modified bit should have
2055 * already been cleared.
2057 if (nextoff <= nread) {
2058 m->valid = VM_PAGE_BITS_ALL;
2059 vm_page_undirty(m);
2060 } else if (toff < nread) {
2062 * Since this is a VM request, we have to supply the
2063 * unaligned offset to allow vm_page_set_valid()
2064 * to zero sub-DEV_BSIZE'd portions of the page.
2066 vm_page_set_valid(m, 0, nread - toff);
2067 vm_page_clear_dirty_end_nonincl(m, 0, nread - toff);
2068 } else {
2069 m->valid = 0;
2070 vm_page_undirty(m);
2073 if (i != ap->a_reqpage) {
2075 * Just in case someone was asking for this page we
2076 * now tell them that it is ok to use.
2078 if (!error || (m->valid == VM_PAGE_BITS_ALL)) {
2079 if (m->valid) {
2080 if (m->flags & PG_REFERENCED) {
2081 vm_page_activate(m);
2082 } else {
2083 vm_page_deactivate(m);
2085 vm_page_wakeup(m);
2086 } else {
2087 vm_page_free(m);
2089 } else {
2090 vm_page_free(m);
2092 } else if (m->valid) {
2093 gotreqpage = 1;
2095 * Since this is a VM request, we need to make the
2096 * entire page presentable by zeroing invalid sections.
2098 if (m->valid != VM_PAGE_BITS_ALL)
2099 vm_page_zero_invalid(m, FALSE);
2102 if (!gotreqpage) {
2103 m = ap->a_m[ap->a_reqpage];
2104 devfs_debug(DEVFS_DEBUG_WARNING,
2105 "spec_getpages:(%s) I/O read failure: (error=%d) bp %p vp %p\n",
2106 devtoname(vp->v_rdev), error, bp, bp->b_vp);
2107 devfs_debug(DEVFS_DEBUG_WARNING,
2108 " size: %d, resid: %d, a_count: %d, valid: 0x%x\n",
2109 size, bp->b_resid, ap->a_count, m->valid);
2110 devfs_debug(DEVFS_DEBUG_WARNING,
2111 " nread: %d, reqpage: %d, pindex: %lu, pcount: %d\n",
2112 nread, ap->a_reqpage, (u_long)m->pindex, pcount);
2114 * Free the buffer header back to the swap buffer pool.
2116 relpbuf(bp, NULL);
2117 return VM_PAGER_ERROR;
2120 * Free the buffer header back to the swap buffer pool.
2122 relpbuf(bp, NULL);
2123 if (DEVFS_NODE(ap->a_vp))
2124 nanotime(&DEVFS_NODE(ap->a_vp)->mtime);
2125 return VM_PAGER_OK;
2128 static __inline
2130 sequential_heuristic(struct uio *uio, struct file *fp)
2133 * Sequential heuristic - detect sequential operation
2135 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
2136 uio->uio_offset == fp->f_nextoff) {
2138 * XXX we assume that the filesystem block size is
2139 * the default. Not true, but still gives us a pretty
2140 * good indicator of how sequential the read operations
2141 * are.
2143 int tmpseq = fp->f_seqcount;
2145 tmpseq += (uio->uio_resid + MAXBSIZE - 1) / MAXBSIZE;
2146 if (tmpseq > IO_SEQMAX)
2147 tmpseq = IO_SEQMAX;
2148 fp->f_seqcount = tmpseq;
2149 return(fp->f_seqcount << IO_SEQSHIFT);
2153 * Not sequential, quick draw-down of seqcount
2155 if (fp->f_seqcount > 1)
2156 fp->f_seqcount = 1;
2157 else
2158 fp->f_seqcount = 0;
2159 return(0);