kernel/if_re: Add support for the Realtek 8168H.
[dragonfly.git] / sys / dev / netif / re / if_re.c
blob6e7edd60ac380fd6af6318f4396b596a9f7530b4
1 /*
2 * Copyright (c) 2004
3 * Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
5 * Copyright (c) 1997, 1998-2003
6 * Bill Paul <wpaul@windriver.com>. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
35 * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
39 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41 * Written by Bill Paul <wpaul@windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
61 * o 64-bit DMA
63 * o TCP/IP checksum offload for both RX and TX
65 * o High and normal priority transmit DMA rings
67 * o VLAN tag insertion and extraction
69 * o TCP large send (segmentation offload)
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
80 * o 1000Mbps mode
82 * o Jumbo frames
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
90 * o Slight differences in register layout from the 8139C+
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7440, so the max MTU possible with this
110 * driver is 7422 bytes.
113 #define _IP_VHL
115 #include "opt_ifpoll.h"
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_poll.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
143 #include <netinet/ip.h>
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
148 #include "pcidevs.h"
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
152 /* "device miibus" required. See GENERIC if you get errors here. */
153 #include "miibus_if.h"
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
159 * Various supported device vendors/types and their names.
161 static const struct re_type {
162 uint16_t re_vid;
163 uint16_t re_did;
164 const char *re_name;
165 } re_devs[] = {
166 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
167 "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
169 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
170 "RealTek 8139C+ 10/100BaseTX" },
172 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
173 "RealTek 810x PCIe 10/100baseTX" },
175 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
176 "RealTek 8111/8168 PCIe Gigabit Ethernet" },
178 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
179 "RealTek 8110/8169 Gigabit Ethernet" },
181 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
182 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
184 { PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
185 "Corega CG-LAPCIGT Gigabit Ethernet" },
187 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
188 "Linksys EG1032 Gigabit Ethernet" },
190 { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
191 "US Robotics 997902 Gigabit Ethernet" },
193 { PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
194 "TTTech MC322 Gigabit Ethernet" },
196 { 0, 0, NULL }
199 static const struct re_hwrev re_hwrevs[] = {
200 { RE_HWREV_8139CPLUS, ETHERMTU,
201 RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
203 { RE_HWREV_8169, ETHERMTU,
204 RE_C_HWCSUM | RE_C_8169 },
206 { RE_HWREV_8110S, RE_MTU_6K,
207 RE_C_HWCSUM | RE_C_8169 },
209 { RE_HWREV_8169S, RE_MTU_6K,
210 RE_C_HWCSUM | RE_C_8169 },
212 { RE_HWREV_8169SB, RE_MTU_6K,
213 RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
215 { RE_HWREV_8169SC, RE_MTU_6K,
216 RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
218 { RE_HWREV_8168B1, RE_MTU_6K,
219 RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
221 { RE_HWREV_8168B2, RE_MTU_6K,
222 RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
224 { RE_HWREV_8168C, RE_MTU_6K,
225 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
226 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
228 { RE_HWREV_8168CP, RE_MTU_6K,
229 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
230 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
232 { RE_HWREV_8168D, RE_MTU_9K,
233 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
236 { RE_HWREV_8168DP, RE_MTU_9K,
237 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
240 { RE_HWREV_8168E, RE_MTU_9K,
241 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
244 { RE_HWREV_8168F, RE_MTU_9K,
245 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
246 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
248 { RE_HWREV_8111F, RE_MTU_9K,
249 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
250 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
252 { RE_HWREV_8411, ETHERMTU,
253 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
254 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
256 { RE_HWREV_8168G, ETHERMTU,
257 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
258 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
260 { RE_HWREV_8168EP, ETHERMTU,
261 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
262 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
264 { RE_HWREV_8168GU, ETHERMTU,
265 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
266 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
268 { RE_HWREV_8168H, ETHERMTU,
269 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
270 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
272 { RE_HWREV_8411B, ETHERMTU,
273 RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
274 RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
276 { RE_HWREV_8100E, ETHERMTU,
277 RE_C_HWCSUM | RE_C_FASTE },
279 { RE_HWREV_8101E, ETHERMTU,
280 RE_C_HWCSUM | RE_C_FASTE },
282 { RE_HWREV_8102E, ETHERMTU,
283 RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
284 RE_C_FASTE },
286 { RE_HWREV_8102EL, ETHERMTU,
287 RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
288 RE_C_FASTE },
290 { RE_HWREV_8105E, ETHERMTU,
291 RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
292 RE_C_STOP_RXTX | RE_C_FASTE },
294 { RE_HWREV_8401E, ETHERMTU,
295 RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
296 RE_C_STOP_RXTX | RE_C_FASTE },
298 { RE_HWREV_8402, ETHERMTU,
299 RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
300 RE_C_STOP_RXTX | RE_C_FASTE },
302 { RE_HWREV_8106E, ETHERMTU,
303 RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
304 RE_C_STOP_RXTX | RE_C_FASTE },
306 { RE_HWREV_NULL, 0, 0 }
309 static int re_probe(device_t);
310 static int re_attach(device_t);
311 static int re_detach(device_t);
312 static int re_suspend(device_t);
313 static int re_resume(device_t);
314 static void re_shutdown(device_t);
316 static int re_allocmem(device_t);
317 static void re_freemem(device_t);
318 static void re_freebufmem(struct re_softc *, int, int);
319 static int re_encap(struct re_softc *, struct mbuf **, int *);
320 static int re_newbuf_std(struct re_softc *, int, int);
321 static int re_newbuf_jumbo(struct re_softc *, int, int);
322 static void re_setup_rxdesc(struct re_softc *, int);
323 static int re_rx_list_init(struct re_softc *);
324 static int re_tx_list_init(struct re_softc *);
325 static int re_rxeof(struct re_softc *);
326 static int re_txeof(struct re_softc *);
327 static int re_tx_collect(struct re_softc *);
328 static void re_intr(void *);
329 static void re_tick(void *);
330 static void re_tick_serialized(void *);
332 static void re_start(struct ifnet *, struct ifaltq_subque *);
333 static int re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
334 static void re_init(void *);
335 static void re_stop(struct re_softc *);
336 static void re_watchdog(struct ifnet *);
337 static int re_ifmedia_upd(struct ifnet *);
338 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
340 static void re_eeprom_putbyte(struct re_softc *, int);
341 static void re_eeprom_getword(struct re_softc *, int, u_int16_t *);
342 static void re_read_eeprom(struct re_softc *, caddr_t, int, int);
343 static void re_get_eewidth(struct re_softc *);
345 static int re_gmii_readreg(device_t, int, int);
346 static int re_gmii_writereg(device_t, int, int, int);
348 static int re_miibus_readreg(device_t, int, int);
349 static int re_miibus_writereg(device_t, int, int, int);
350 static void re_miibus_statchg(device_t);
352 static void re_setmulti(struct re_softc *);
353 static void re_reset(struct re_softc *, int);
354 static void re_get_eaddr(struct re_softc *, uint8_t *);
356 static void re_setup_hw_im(struct re_softc *);
357 static void re_setup_sim_im(struct re_softc *);
358 static void re_disable_hw_im(struct re_softc *);
359 static void re_disable_sim_im(struct re_softc *);
360 static void re_config_imtype(struct re_softc *, int);
361 static void re_setup_intr(struct re_softc *, int, int);
363 static int re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
364 static int re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
365 static int re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
366 static int re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
367 static int re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
369 static int re_jpool_alloc(struct re_softc *);
370 static void re_jpool_free(struct re_softc *);
371 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
372 static void re_jbuf_free(void *);
373 static void re_jbuf_ref(void *);
375 #ifdef RE_DIAG
376 static int re_diag(struct re_softc *);
377 #endif
379 #ifdef IFPOLL_ENABLE
380 static void re_npoll(struct ifnet *, struct ifpoll_info *);
381 static void re_npoll_compat(struct ifnet *, void *, int);
382 #endif
384 static device_method_t re_methods[] = {
385 /* Device interface */
386 DEVMETHOD(device_probe, re_probe),
387 DEVMETHOD(device_attach, re_attach),
388 DEVMETHOD(device_detach, re_detach),
389 DEVMETHOD(device_suspend, re_suspend),
390 DEVMETHOD(device_resume, re_resume),
391 DEVMETHOD(device_shutdown, re_shutdown),
393 /* bus interface */
394 DEVMETHOD(bus_print_child, bus_generic_print_child),
395 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
397 /* MII interface */
398 DEVMETHOD(miibus_readreg, re_miibus_readreg),
399 DEVMETHOD(miibus_writereg, re_miibus_writereg),
400 DEVMETHOD(miibus_statchg, re_miibus_statchg),
402 DEVMETHOD_END
405 static driver_t re_driver = {
406 "re",
407 re_methods,
408 sizeof(struct re_softc)
411 static devclass_t re_devclass;
413 DECLARE_DUMMY_MODULE(if_re);
414 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
415 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
416 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
417 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
419 static int re_rx_desc_count = RE_RX_DESC_CNT_DEF;
420 static int re_tx_desc_count = RE_TX_DESC_CNT_DEF;
421 static int re_msi_enable = 0;
423 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
424 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
425 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
427 #define EE_SET(x) \
428 CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
430 #define EE_CLR(x) \
431 CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
433 static __inline void
434 re_free_rxchain(struct re_softc *sc)
436 if (sc->re_head != NULL) {
437 m_freem(sc->re_head);
438 sc->re_head = sc->re_tail = NULL;
443 * Send a read command and address to the EEPROM, check for ACK.
445 static void
446 re_eeprom_putbyte(struct re_softc *sc, int addr)
448 int d, i;
450 d = addr | (RE_9346_READ << sc->re_eewidth);
453 * Feed in each bit and strobe the clock.
455 for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
456 if (d & i)
457 EE_SET(RE_EE_DATAIN);
458 else
459 EE_CLR(RE_EE_DATAIN);
460 DELAY(100);
461 EE_SET(RE_EE_CLK);
462 DELAY(150);
463 EE_CLR(RE_EE_CLK);
464 DELAY(100);
469 * Read a word of data stored in the EEPROM at address 'addr.'
471 static void
472 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
474 int i;
475 uint16_t word = 0;
478 * Send address of word we want to read.
480 re_eeprom_putbyte(sc, addr);
483 * Start reading bits from EEPROM.
485 for (i = 0x8000; i != 0; i >>= 1) {
486 EE_SET(RE_EE_CLK);
487 DELAY(100);
488 if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
489 word |= i;
490 EE_CLR(RE_EE_CLK);
491 DELAY(100);
494 *dest = word;
498 * Read a sequence of words from the EEPROM.
500 static void
501 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
503 int i;
504 uint16_t word = 0, *ptr;
506 CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
507 DELAY(100);
509 for (i = 0; i < cnt; i++) {
510 CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
511 re_eeprom_getword(sc, off + i, &word);
512 CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
513 ptr = (uint16_t *)(dest + (i * 2));
514 *ptr = word;
517 CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
520 static void
521 re_get_eewidth(struct re_softc *sc)
523 uint16_t re_did = 0;
525 sc->re_eewidth = 6;
526 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
527 if (re_did != 0x8129)
528 sc->re_eewidth = 8;
531 static int
532 re_gmii_readreg(device_t dev, int phy, int reg)
534 struct re_softc *sc = device_get_softc(dev);
535 u_int32_t rval;
536 int i;
538 if (phy != 1)
539 return(0);
541 /* Let the rgephy driver read the GMEDIASTAT register */
543 if (reg == RE_GMEDIASTAT)
544 return(CSR_READ_1(sc, RE_GMEDIASTAT));
546 CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
547 DELAY(1000);
549 for (i = 0; i < RE_TIMEOUT; i++) {
550 rval = CSR_READ_4(sc, RE_PHYAR);
551 if (rval & RE_PHYAR_BUSY)
552 break;
553 DELAY(100);
556 if (i == RE_TIMEOUT) {
557 device_printf(dev, "PHY read failed\n");
558 return(0);
561 return(rval & RE_PHYAR_PHYDATA);
564 static int
565 re_gmii_writereg(device_t dev, int phy, int reg, int data)
567 struct re_softc *sc = device_get_softc(dev);
568 uint32_t rval;
569 int i;
571 CSR_WRITE_4(sc, RE_PHYAR,
572 (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
573 DELAY(1000);
575 for (i = 0; i < RE_TIMEOUT; i++) {
576 rval = CSR_READ_4(sc, RE_PHYAR);
577 if ((rval & RE_PHYAR_BUSY) == 0)
578 break;
579 DELAY(100);
582 if (i == RE_TIMEOUT)
583 device_printf(dev, "PHY write failed\n");
585 return(0);
588 static int
589 re_miibus_readreg(device_t dev, int phy, int reg)
591 struct re_softc *sc = device_get_softc(dev);
592 uint16_t rval = 0;
593 uint16_t re8139_reg = 0;
595 if (!RE_IS_8139CP(sc)) {
596 rval = re_gmii_readreg(dev, phy, reg);
597 return(rval);
600 /* Pretend the internal PHY is only at address 0 */
601 if (phy)
602 return(0);
604 switch(reg) {
605 case MII_BMCR:
606 re8139_reg = RE_BMCR;
607 break;
608 case MII_BMSR:
609 re8139_reg = RE_BMSR;
610 break;
611 case MII_ANAR:
612 re8139_reg = RE_ANAR;
613 break;
614 case MII_ANER:
615 re8139_reg = RE_ANER;
616 break;
617 case MII_ANLPAR:
618 re8139_reg = RE_LPAR;
619 break;
620 case MII_PHYIDR1:
621 case MII_PHYIDR2:
622 return(0);
624 * Allow the rlphy driver to read the media status
625 * register. If we have a link partner which does not
626 * support NWAY, this is the register which will tell
627 * us the results of parallel detection.
629 case RE_MEDIASTAT:
630 return(CSR_READ_1(sc, RE_MEDIASTAT));
631 default:
632 device_printf(dev, "bad phy register\n");
633 return(0);
635 rval = CSR_READ_2(sc, re8139_reg);
636 if (re8139_reg == RE_BMCR) {
637 /* 8139C+ has different bit layout. */
638 rval &= ~(BMCR_LOOP | BMCR_ISO);
640 return(rval);
643 static int
644 re_miibus_writereg(device_t dev, int phy, int reg, int data)
646 struct re_softc *sc= device_get_softc(dev);
647 u_int16_t re8139_reg = 0;
649 if (!RE_IS_8139CP(sc))
650 return(re_gmii_writereg(dev, phy, reg, data));
652 /* Pretend the internal PHY is only at address 0 */
653 if (phy)
654 return(0);
656 switch(reg) {
657 case MII_BMCR:
658 re8139_reg = RE_BMCR;
659 /* 8139C+ has different bit layout. */
660 data &= ~(BMCR_LOOP | BMCR_ISO);
661 break;
662 case MII_BMSR:
663 re8139_reg = RE_BMSR;
664 break;
665 case MII_ANAR:
666 re8139_reg = RE_ANAR;
667 break;
668 case MII_ANER:
669 re8139_reg = RE_ANER;
670 break;
671 case MII_ANLPAR:
672 re8139_reg = RE_LPAR;
673 break;
674 case MII_PHYIDR1:
675 case MII_PHYIDR2:
676 return(0);
677 default:
678 device_printf(dev, "bad phy register\n");
679 return(0);
681 CSR_WRITE_2(sc, re8139_reg, data);
682 return(0);
685 static void
686 re_miibus_statchg(device_t dev)
691 * Program the 64-bit multicast hash filter.
693 static void
694 re_setmulti(struct re_softc *sc)
696 struct ifnet *ifp = &sc->arpcom.ac_if;
697 int h = 0;
698 uint32_t hashes[2] = { 0, 0 };
699 struct ifmultiaddr *ifma;
700 uint32_t rxfilt;
701 int mcnt = 0;
703 rxfilt = CSR_READ_4(sc, RE_RXCFG);
705 /* Set the individual bit to receive frames for this host only. */
706 rxfilt |= RE_RXCFG_RX_INDIV;
707 /* Set capture broadcast bit to capture broadcast frames. */
708 rxfilt |= RE_RXCFG_RX_BROAD;
710 rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
711 if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
712 rxfilt |= RE_RXCFG_RX_MULTI;
714 /* If we want promiscuous mode, set the allframes bit. */
715 if (ifp->if_flags & IFF_PROMISC)
716 rxfilt |= RE_RXCFG_RX_ALLPHYS;
718 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
719 CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
720 CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
721 return;
724 /* first, zot all the existing hash bits */
725 CSR_WRITE_4(sc, RE_MAR0, 0);
726 CSR_WRITE_4(sc, RE_MAR4, 0);
728 /* now program new ones */
729 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
730 if (ifma->ifma_addr->sa_family != AF_LINK)
731 continue;
732 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
733 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
734 if (h < 32)
735 hashes[0] |= (1 << h);
736 else
737 hashes[1] |= (1 << (h - 32));
738 mcnt++;
741 if (mcnt)
742 rxfilt |= RE_RXCFG_RX_MULTI;
743 else
744 rxfilt &= ~RE_RXCFG_RX_MULTI;
746 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
749 * For some unfathomable reason, RealTek decided to reverse
750 * the order of the multicast hash registers in the PCI Express
751 * parts. This means we have to write the hash pattern in reverse
752 * order for those devices.
754 if (sc->re_caps & RE_C_PCIE) {
755 CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
756 CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
757 } else {
758 CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
759 CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
763 static void
764 re_reset(struct re_softc *sc, int running)
766 int i;
768 if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
769 CSR_WRITE_1(sc, RE_COMMAND,
770 RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
771 DELAY(100);
774 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
776 for (i = 0; i < RE_TIMEOUT; i++) {
777 DELAY(10);
778 if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
779 break;
781 if (i == RE_TIMEOUT)
782 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
785 #ifdef RE_DIAG
787 * The following routine is designed to test for a defect on some
788 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
789 * lines connected to the bus, however for a 32-bit only card, they
790 * should be pulled high. The result of this defect is that the
791 * NIC will not work right if you plug it into a 64-bit slot: DMA
792 * operations will be done with 64-bit transfers, which will fail
793 * because the 64-bit data lines aren't connected.
795 * There's no way to work around this (short of talking a soldering
796 * iron to the board), however we can detect it. The method we use
797 * here is to put the NIC into digital loopback mode, set the receiver
798 * to promiscuous mode, and then try to send a frame. We then compare
799 * the frame data we sent to what was received. If the data matches,
800 * then the NIC is working correctly, otherwise we know the user has
801 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
802 * slot. In the latter case, there's no way the NIC can work correctly,
803 * so we print out a message on the console and abort the device attach.
806 static int
807 re_diag(struct re_softc *sc)
809 struct ifnet *ifp = &sc->arpcom.ac_if;
810 struct mbuf *m0;
811 struct ether_header *eh;
812 struct re_desc *cur_rx;
813 uint16_t status;
814 int total_len, i, error = 0, phyaddr;
815 uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
816 uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
817 char ethstr[2][ETHER_ADDRSTRLEN + 1];
819 /* Allocate a single mbuf */
821 MGETHDR(m0, M_NOWAIT, MT_DATA);
822 if (m0 == NULL)
823 return(ENOBUFS);
826 * Initialize the NIC in test mode. This sets the chip up
827 * so that it can send and receive frames, but performs the
828 * following special functions:
829 * - Puts receiver in promiscuous mode
830 * - Enables digital loopback mode
831 * - Leaves interrupts turned off
834 ifp->if_flags |= IFF_PROMISC;
835 sc->re_flags |= RE_F_TESTMODE;
836 re_init(sc);
837 sc->re_flags |= RE_F_LINKED;
838 if (!RE_IS_8139CP(sc))
839 phyaddr = 1;
840 else
841 phyaddr = 0;
843 re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
844 for (i = 0; i < RE_TIMEOUT; i++) {
845 status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
846 if (!(status & BMCR_RESET))
847 break;
850 re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
851 CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
853 DELAY(100000);
855 /* Put some data in the mbuf */
857 eh = mtod(m0, struct ether_header *);
858 bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
859 bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
860 eh->ether_type = htons(ETHERTYPE_IP);
861 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
864 * Queue the packet, start transmission.
865 * Note: ifq_handoff() ultimately calls re_start() for us.
868 CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
869 error = ifq_handoff(ifp, m0, NULL);
870 if (error) {
871 m0 = NULL;
872 goto done;
874 m0 = NULL;
876 /* Wait for it to propagate through the chip */
878 DELAY(100000);
879 for (i = 0; i < RE_TIMEOUT; i++) {
880 status = CSR_READ_2(sc, RE_ISR);
881 CSR_WRITE_2(sc, RE_ISR, status);
882 if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
883 (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
884 break;
885 DELAY(10);
888 if (i == RE_TIMEOUT) {
889 if_printf(ifp, "diagnostic failed to receive packet "
890 "in loopback mode\n");
891 error = EIO;
892 goto done;
896 * The packet should have been dumped into the first
897 * entry in the RX DMA ring. Grab it from there.
900 bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
901 BUS_DMASYNC_POSTREAD);
902 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
903 sc->re_ldata.re_rx_dmamap[0]);
905 m0 = sc->re_ldata.re_rx_mbuf[0];
906 sc->re_ldata.re_rx_mbuf[0] = NULL;
907 eh = mtod(m0, struct ether_header *);
909 cur_rx = &sc->re_ldata.re_rx_list[0];
910 total_len = RE_RXBYTES(cur_rx);
912 if (total_len != ETHER_MIN_LEN) {
913 if_printf(ifp, "diagnostic failed, received short packet\n");
914 error = EIO;
915 goto done;
918 /* Test that the received packet data matches what we sent. */
920 if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
921 bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
922 be16toh(eh->ether_type) != ETHERTYPE_IP) {
923 if_printf(ifp, "WARNING, DMA FAILURE!\n");
924 if_printf(ifp, "expected TX data: %s/%s/0x%x\n",
925 kether_ntoa(dst, ethstr[0]), kether_ntoa(src, ethstr[1]), ETHERTYPE_IP);
926 if_printf(ifp, "received RX data: %s/%s/0x%x\n",
927 kether_ntoa(eh->ether_dhost, ethstr[0]),
928 kether_ntoa(eh->ether_shost, ethstr[1]),
929 ntohs(eh->ether_type));
930 if_printf(ifp, "You may have a defective 32-bit NIC plugged "
931 "into a 64-bit PCI slot.\n");
932 if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
933 "for proper operation.\n");
934 if_printf(ifp, "Read the re(4) man page for more details.\n");
935 error = EIO;
938 done:
939 /* Turn interface off, release resources */
941 sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
942 ifp->if_flags &= ~IFF_PROMISC;
943 re_stop(sc);
944 if (m0 != NULL)
945 m_freem(m0);
947 return (error);
949 #endif /* RE_DIAG */
952 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
953 * IDs against our list and return a device name if we find a match.
955 static int
956 re_probe(device_t dev)
958 const struct re_type *t;
959 const struct re_hwrev *hw_rev;
960 struct re_softc *sc;
961 int rid;
962 uint32_t hwrev, macmode, txcfg;
963 uint16_t vendor, product;
965 vendor = pci_get_vendor(dev);
966 product = pci_get_device(dev);
969 * Only attach to rev.3 of the Linksys EG1032 adapter.
970 * Rev.2 is supported by sk(4).
972 if (vendor == PCI_VENDOR_LINKSYS &&
973 product == PCI_PRODUCT_LINKSYS_EG1032 &&
974 pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
975 return ENXIO;
977 if (vendor == PCI_VENDOR_REALTEK &&
978 product == PCI_PRODUCT_REALTEK_RT8139 &&
979 pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
980 /* Poor 8139 */
981 return ENXIO;
984 for (t = re_devs; t->re_name != NULL; t++) {
985 if (product == t->re_did && vendor == t->re_vid)
986 break;
990 * Check if we found a RealTek device.
992 if (t->re_name == NULL)
993 return ENXIO;
996 * Temporarily map the I/O space so we can read the chip ID register.
998 sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
999 rid = RE_PCI_LOIO;
1000 sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1001 RF_ACTIVE);
1002 if (sc->re_res == NULL) {
1003 device_printf(dev, "couldn't map ports/memory\n");
1004 kfree(sc, M_TEMP);
1005 return ENXIO;
1008 sc->re_btag = rman_get_bustag(sc->re_res);
1009 sc->re_bhandle = rman_get_bushandle(sc->re_res);
1011 txcfg = CSR_READ_4(sc, RE_TXCFG);
1012 hwrev = txcfg & RE_TXCFG_HWREV;
1013 macmode = txcfg & RE_TXCFG_MACMODE;
1014 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
1015 kfree(sc, M_TEMP);
1018 * and continue matching for the specific chip...
1020 for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
1021 if (hw_rev->re_hwrev == hwrev) {
1022 sc = device_get_softc(dev);
1024 sc->re_hwrev = hw_rev->re_hwrev;
1025 sc->re_caps = hw_rev->re_caps;
1026 sc->re_maxmtu = hw_rev->re_maxmtu;
1029 * Apply chip property fixup
1031 switch (sc->re_hwrev) {
1032 case RE_HWREV_8168GU:
1033 if (vendor == PCI_VENDOR_REALTEK &&
1034 product == PCI_PRODUCT_REALTEK_RT8101E) {
1035 /* 8106EUS */
1036 sc->re_caps = RE_C_HWCSUM | RE_C_MAC2 |
1037 RE_C_PHYPMGT | RE_C_AUTOPAD |
1038 RE_C_STOP_RXTX | RE_C_FASTE;
1039 sc->re_maxmtu = ETHERMTU;
1040 device_printf(dev, "8106EUS fixup\n");
1041 } else {
1042 /* 8168GU */
1043 goto ee_eaddr1;
1045 break;
1047 case RE_HWREV_8168E:
1048 if (vendor == PCI_VENDOR_REALTEK &&
1049 product == PCI_PRODUCT_REALTEK_RT8101E) {
1050 /* 8105E */
1051 sc->re_caps = RE_C_HWCSUM | RE_C_MAC2 |
1052 RE_C_PHYPMGT | RE_C_AUTOPAD |
1053 RE_C_STOP_RXTX | RE_C_FASTE;
1054 sc->re_maxmtu = ETHERMTU;
1055 device_printf(dev, "8105E fixup\n");
1056 goto ee_eaddr0;
1058 /* 8168E */
1059 break;
1061 case RE_HWREV_8101E:
1062 case RE_HWREV_8102E:
1063 case RE_HWREV_8102EL:
1064 case RE_HWREV_8401E:
1065 case RE_HWREV_8105E:
1066 case RE_HWREV_8106E:
1067 ee_eaddr0:
1068 sc->re_caps |= RE_C_EE_EADDR;
1069 sc->re_ee_eaddr = RE_EE_EADDR0;
1070 break;
1072 case RE_HWREV_8168F:
1073 case RE_HWREV_8111F:
1074 case RE_HWREV_8168G:
1075 if (macmode == 0 ||
1076 macmode == 0x100000) {
1077 sc->re_caps |= RE_C_EE_EADDR;
1078 sc->re_ee_eaddr = RE_EE_EADDR1;
1080 break;
1082 case RE_HWREV_8411:
1083 case RE_HWREV_8168EP:
1084 case RE_HWREV_8168H:
1085 case RE_HWREV_8411B:
1086 ee_eaddr1:
1087 sc->re_caps |= RE_C_EE_EADDR;
1088 sc->re_ee_eaddr = RE_EE_EADDR1;
1089 break;
1091 if (pci_is_pcie(dev))
1092 sc->re_caps |= RE_C_PCIE;
1094 device_set_desc(dev, t->re_name);
1095 return 0;
1098 device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1099 hwrev, macmode);
1101 return ENXIO;
1104 static int
1105 re_allocmem(device_t dev)
1107 struct re_softc *sc = device_get_softc(dev);
1108 bus_dmamem_t dmem;
1109 int error, i;
1112 * Allocate list data
1114 sc->re_ldata.re_tx_mbuf =
1115 kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1116 M_DEVBUF, M_ZERO | M_WAITOK);
1118 sc->re_ldata.re_rx_mbuf =
1119 kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1120 M_DEVBUF, M_ZERO | M_WAITOK);
1122 sc->re_ldata.re_rx_paddr =
1123 kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1124 M_DEVBUF, M_ZERO | M_WAITOK);
1126 sc->re_ldata.re_tx_dmamap =
1127 kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1128 M_DEVBUF, M_ZERO | M_WAITOK);
1130 sc->re_ldata.re_rx_dmamap =
1131 kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1132 M_DEVBUF, M_ZERO | M_WAITOK);
1135 * Allocate the parent bus DMA tag appropriate for PCI.
1137 error = bus_dma_tag_create(NULL, /* parent */
1138 1, 0, /* alignment, boundary */
1139 BUS_SPACE_MAXADDR, /* lowaddr */
1140 BUS_SPACE_MAXADDR, /* highaddr */
1141 NULL, NULL, /* filter, filterarg */
1142 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1143 0, /* nsegments */
1144 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1145 0, /* flags */
1146 &sc->re_parent_tag);
1147 if (error) {
1148 device_printf(dev, "could not allocate parent dma tag\n");
1149 return error;
1152 /* Allocate TX descriptor list. */
1153 error = bus_dmamem_coherent(sc->re_parent_tag,
1154 RE_RING_ALIGN, 0,
1155 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1156 RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1157 &dmem);
1158 if (error) {
1159 device_printf(dev, "could not allocate TX ring\n");
1160 return error;
1162 sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1163 sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1164 sc->re_ldata.re_tx_list = dmem.dmem_addr;
1165 sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1167 /* Allocate RX descriptor list. */
1168 error = bus_dmamem_coherent(sc->re_parent_tag,
1169 RE_RING_ALIGN, 0,
1170 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1171 RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1172 &dmem);
1173 if (error) {
1174 device_printf(dev, "could not allocate RX ring\n");
1175 return error;
1177 sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1178 sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1179 sc->re_ldata.re_rx_list = dmem.dmem_addr;
1180 sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1182 /* Allocate maps for TX mbufs. */
1183 error = bus_dma_tag_create(sc->re_parent_tag,
1184 1, 0,
1185 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1186 NULL, NULL,
1187 RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1188 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1189 &sc->re_ldata.re_tx_mtag);
1190 if (error) {
1191 device_printf(dev, "could not allocate TX buf dma tag\n");
1192 return(error);
1195 /* Create DMA maps for TX buffers */
1196 for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1197 error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1198 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1199 &sc->re_ldata.re_tx_dmamap[i]);
1200 if (error) {
1201 device_printf(dev, "can't create DMA map for TX buf\n");
1202 re_freebufmem(sc, i, 0);
1203 return(error);
1207 /* Allocate maps for RX mbufs. */
1208 error = bus_dma_tag_create(sc->re_parent_tag,
1209 RE_RXBUF_ALIGN, 0,
1210 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1211 NULL, NULL,
1212 MCLBYTES, 1, MCLBYTES,
1213 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1214 &sc->re_ldata.re_rx_mtag);
1215 if (error) {
1216 device_printf(dev, "could not allocate RX buf dma tag\n");
1217 return(error);
1220 /* Create spare DMA map for RX */
1221 error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1222 &sc->re_ldata.re_rx_spare);
1223 if (error) {
1224 device_printf(dev, "can't create spare DMA map for RX\n");
1225 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1226 sc->re_ldata.re_rx_mtag = NULL;
1227 return error;
1230 /* Create DMA maps for RX buffers */
1231 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1232 error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1233 BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1234 if (error) {
1235 device_printf(dev, "can't create DMA map for RX buf\n");
1236 re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1237 return(error);
1241 /* Create jumbo buffer pool for RX if required */
1242 if (sc->re_caps & RE_C_CONTIGRX) {
1243 error = re_jpool_alloc(sc);
1244 if (error) {
1245 re_jpool_free(sc);
1246 /* Disable jumbo frame support */
1247 sc->re_maxmtu = ETHERMTU;
1250 return(0);
1253 static void
1254 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1256 int i;
1258 /* Destroy all the RX and TX buffer maps */
1259 if (sc->re_ldata.re_tx_mtag) {
1260 for (i = 0; i < tx_cnt; i++) {
1261 bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1262 sc->re_ldata.re_tx_dmamap[i]);
1264 bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1265 sc->re_ldata.re_tx_mtag = NULL;
1268 if (sc->re_ldata.re_rx_mtag) {
1269 for (i = 0; i < rx_cnt; i++) {
1270 bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1271 sc->re_ldata.re_rx_dmamap[i]);
1273 bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1274 sc->re_ldata.re_rx_spare);
1275 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1276 sc->re_ldata.re_rx_mtag = NULL;
1280 static void
1281 re_freemem(device_t dev)
1283 struct re_softc *sc = device_get_softc(dev);
1285 /* Unload and free the RX DMA ring memory and map */
1286 if (sc->re_ldata.re_rx_list_tag) {
1287 bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1288 sc->re_ldata.re_rx_list_map);
1289 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1290 sc->re_ldata.re_rx_list,
1291 sc->re_ldata.re_rx_list_map);
1292 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1295 /* Unload and free the TX DMA ring memory and map */
1296 if (sc->re_ldata.re_tx_list_tag) {
1297 bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1298 sc->re_ldata.re_tx_list_map);
1299 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1300 sc->re_ldata.re_tx_list,
1301 sc->re_ldata.re_tx_list_map);
1302 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1305 /* Free RX/TX buf DMA stuffs */
1306 re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1308 /* Unload and free the stats buffer and map */
1309 if (sc->re_ldata.re_stag) {
1310 bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1311 bus_dmamem_free(sc->re_ldata.re_stag,
1312 sc->re_ldata.re_stats,
1313 sc->re_ldata.re_smap);
1314 bus_dma_tag_destroy(sc->re_ldata.re_stag);
1317 if (sc->re_caps & RE_C_CONTIGRX)
1318 re_jpool_free(sc);
1320 if (sc->re_parent_tag)
1321 bus_dma_tag_destroy(sc->re_parent_tag);
1323 if (sc->re_ldata.re_tx_mbuf != NULL)
1324 kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1325 if (sc->re_ldata.re_rx_mbuf != NULL)
1326 kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1327 if (sc->re_ldata.re_rx_paddr != NULL)
1328 kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1329 if (sc->re_ldata.re_tx_dmamap != NULL)
1330 kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1331 if (sc->re_ldata.re_rx_dmamap != NULL)
1332 kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1336 * Attach the interface. Allocate softc structures, do ifmedia
1337 * setup and ethernet/BPF attach.
1339 static int
1340 re_attach(device_t dev)
1342 struct re_softc *sc = device_get_softc(dev);
1343 struct ifnet *ifp;
1344 struct sysctl_ctx_list *ctx;
1345 struct sysctl_oid *tree;
1346 uint8_t eaddr[ETHER_ADDR_LEN];
1347 int error = 0, qlen, msi_enable;
1348 u_int irq_flags;
1350 callout_init_mp(&sc->re_timer);
1351 sc->re_dev = dev;
1353 if (RE_IS_8139CP(sc)) {
1354 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1355 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1356 } else {
1357 sc->re_rx_desc_cnt = re_rx_desc_count;
1358 if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1359 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1361 sc->re_tx_desc_cnt = re_tx_desc_count;
1362 if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1363 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1366 qlen = RE_IFQ_MAXLEN;
1367 if (sc->re_tx_desc_cnt > qlen)
1368 qlen = sc->re_tx_desc_cnt;
1370 sc->re_rxbuf_size = MCLBYTES;
1371 sc->re_newbuf = re_newbuf_std;
1373 sc->re_tx_time = 5; /* 125us */
1374 sc->re_rx_time = 2; /* 50us */
1375 if (sc->re_caps & RE_C_PCIE)
1376 sc->re_sim_time = 75; /* 75us */
1377 else
1378 sc->re_sim_time = 125; /* 125us */
1379 if (!RE_IS_8139CP(sc)) {
1380 /* simulated interrupt moderation */
1381 sc->re_imtype = RE_IMTYPE_SIM;
1382 } else {
1383 sc->re_imtype = RE_IMTYPE_NONE;
1385 re_config_imtype(sc, sc->re_imtype);
1387 ctx = device_get_sysctl_ctx(dev);
1388 tree = device_get_sysctl_tree(dev);
1389 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1390 "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1391 0, "RX desc count");
1392 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1393 "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1394 0, "TX desc count");
1395 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "sim_time",
1396 CTLTYPE_INT | CTLFLAG_RW,
1397 sc, 0, re_sysctl_simtime, "I",
1398 "Simulated interrupt moderation time (usec).");
1399 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "imtype",
1400 CTLTYPE_INT | CTLFLAG_RW,
1401 sc, 0, re_sysctl_imtype, "I",
1402 "Interrupt moderation type -- "
1403 "0:disable, 1:simulated, "
1404 "2:hardware(if supported)");
1405 if (sc->re_caps & RE_C_HWIM) {
1406 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1407 OID_AUTO, "hw_rxtime",
1408 CTLTYPE_INT | CTLFLAG_RW,
1409 sc, 0, re_sysctl_rxtime, "I",
1410 "Hardware interrupt moderation time "
1411 "(unit: 25usec).");
1412 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1413 OID_AUTO, "hw_txtime",
1414 CTLTYPE_INT | CTLFLAG_RW,
1415 sc, 0, re_sysctl_txtime, "I",
1416 "Hardware interrupt moderation time "
1417 "(unit: 25usec).");
1420 #ifndef BURN_BRIDGES
1422 * Handle power management nonsense.
1425 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1426 uint32_t membase, irq;
1428 /* Save important PCI config data. */
1429 membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1430 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1432 /* Reset the power state. */
1433 device_printf(dev, "chip is in D%d power mode "
1434 "-- setting to D0\n", pci_get_powerstate(dev));
1436 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1438 /* Restore PCI config data. */
1439 pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1440 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1442 #endif
1444 * Map control/status registers.
1446 pci_enable_busmaster(dev);
1448 if (pci_is_pcie(dev)) {
1449 sc->re_res_rid = PCIR_BAR(2);
1450 sc->re_res_type = SYS_RES_MEMORY;
1451 } else {
1452 sc->re_res_rid = PCIR_BAR(0);
1453 sc->re_res_type = SYS_RES_IOPORT;
1455 sc->re_res = bus_alloc_resource_any(dev, sc->re_res_type,
1456 &sc->re_res_rid, RF_ACTIVE);
1457 if (sc->re_res == NULL) {
1458 device_printf(dev, "couldn't map IO\n");
1459 error = ENXIO;
1460 goto fail;
1463 sc->re_btag = rman_get_bustag(sc->re_res);
1464 sc->re_bhandle = rman_get_bushandle(sc->re_res);
1467 * Allocate interrupt
1469 if (pci_is_pcie(dev))
1470 msi_enable = re_msi_enable;
1471 else
1472 msi_enable = 0;
1473 sc->re_irq_type = pci_alloc_1intr(dev, msi_enable,
1474 &sc->re_irq_rid, &irq_flags);
1476 sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1477 irq_flags);
1478 if (sc->re_irq == NULL) {
1479 device_printf(dev, "couldn't map interrupt\n");
1480 error = ENXIO;
1481 goto fail;
1484 /* Reset the adapter. */
1485 re_reset(sc, 0);
1487 if (RE_IS_8139CP(sc)) {
1488 sc->re_bus_speed = 33; /* XXX */
1489 } else if (sc->re_caps & RE_C_PCIE) {
1490 sc->re_bus_speed = 125;
1491 } else {
1492 uint8_t cfg2;
1494 cfg2 = CSR_READ_1(sc, RE_CFG2);
1495 switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1496 case RE_CFG2_PCICLK_33MHZ:
1497 sc->re_bus_speed = 33;
1498 break;
1499 case RE_CFG2_PCICLK_66MHZ:
1500 sc->re_bus_speed = 66;
1501 break;
1502 default:
1503 device_printf(dev, "unknown bus speed, assume 33MHz\n");
1504 sc->re_bus_speed = 33;
1505 break;
1507 if (cfg2 & RE_CFG2_PCI64)
1508 sc->re_caps |= RE_C_PCI64;
1510 device_printf(dev, "Hardware rev. 0x%08x; PCI%s %dMHz\n",
1511 sc->re_hwrev,
1512 (sc->re_caps & RE_C_PCIE) ?
1513 "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1514 sc->re_bus_speed);
1517 * NOTE:
1518 * DO NOT try to adjust config1 and config5 which was spotted in
1519 * Realtek's Linux drivers. It will _permanently_ damage certain
1520 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1523 re_get_eaddr(sc, eaddr);
1525 if (!RE_IS_8139CP(sc)) {
1526 /* Set RX length mask */
1527 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1528 sc->re_txstart = RE_GTXSTART;
1529 } else {
1530 /* Set RX length mask */
1531 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1532 sc->re_txstart = RE_TXSTART;
1535 /* Allocate DMA stuffs */
1536 error = re_allocmem(dev);
1537 if (error)
1538 goto fail;
1541 * Apply some magic PCI settings from Realtek ...
1543 if (RE_IS_8169(sc)) {
1544 CSR_WRITE_1(sc, 0x82, 1);
1545 pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1547 pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1549 if (sc->re_caps & RE_C_MAC2) {
1551 * Following part is extracted from Realtek BSD driver v176.
1552 * However, this does _not_ make much/any sense:
1553 * 8168C's PCI Express device control is located at 0x78,
1554 * so the reading from 0x79 (higher part of 0x78) and setting
1555 * the 4~6bits intend to enlarge the "max read request size"
1556 * (we will do it). The content of the rest part of this
1557 * register is not meaningful to other PCI registers, so
1558 * writing the value to 0x54 could be completely wrong.
1559 * 0x80 is the lower part of PCI Express device status, non-
1560 * reserved bits are RW1C, writing 0 to them will not have
1561 * any effect at all.
1563 #ifdef foo
1564 uint8_t val;
1566 val = pci_read_config(dev, 0x79, 1);
1567 val = (val & ~0x70) | 0x50;
1568 pci_write_config(dev, 0x54, val, 1);
1569 pci_write_config(dev, 0x80, 0, 1);
1570 #endif
1574 * Apply some PHY fixup from Realtek ...
1576 if (sc->re_hwrev == RE_HWREV_8110S) {
1577 CSR_WRITE_1(sc, 0x82, 1);
1578 re_miibus_writereg(dev, 1, 0xb, 0);
1580 if (sc->re_caps & RE_C_PHYPMGT) {
1581 /* Power up PHY */
1582 re_miibus_writereg(dev, 1, 0x1f, 0);
1583 re_miibus_writereg(dev, 1, 0xe, 0);
1586 /* Do MII setup */
1587 if (mii_phy_probe(dev, &sc->re_miibus,
1588 re_ifmedia_upd, re_ifmedia_sts)) {
1589 device_printf(dev, "MII without any phy!\n");
1590 error = ENXIO;
1591 goto fail;
1594 ifp = &sc->arpcom.ac_if;
1595 ifp->if_softc = sc;
1596 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1597 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1598 ifp->if_ioctl = re_ioctl;
1599 ifp->if_start = re_start;
1600 #ifdef IFPOLL_ENABLE
1601 ifp->if_npoll = re_npoll;
1602 #endif
1603 ifp->if_watchdog = re_watchdog;
1604 ifp->if_init = re_init;
1605 if (!RE_IS_8139CP(sc)) /* XXX */
1606 ifp->if_baudrate = 1000000000;
1607 else
1608 ifp->if_baudrate = 100000000;
1609 ifp->if_nmbclusters = sc->re_rx_desc_cnt;
1610 ifq_set_maxlen(&ifp->if_snd, qlen);
1611 ifq_set_ready(&ifp->if_snd);
1613 ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1614 if (sc->re_caps & RE_C_HWCSUM)
1615 ifp->if_capabilities |= IFCAP_HWCSUM;
1617 ifp->if_capenable = ifp->if_capabilities;
1618 if (ifp->if_capabilities & IFCAP_HWCSUM) {
1620 * RTL8168/8111C generates wrong IP checksummed frame if the
1621 * packet has IP options so disable TX IP checksum offloading.
1623 if (sc->re_hwrev == RE_HWREV_8168CP ||
1624 sc->re_hwrev == RE_HWREV_8168C)
1625 sc->re_hwassist = CSUM_TCP | CSUM_UDP;
1626 else
1627 sc->re_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1629 ifp->if_hwassist = sc->re_hwassist;
1632 * Call MI attach routine.
1634 ether_ifattach(ifp, eaddr, NULL);
1636 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
1638 #ifdef IFPOLL_ENABLE
1639 ifpoll_compat_setup(&sc->re_npoll, ctx, (struct sysctl_oid *)tree,
1640 device_get_unit(dev), ifp->if_serializer);
1641 #endif
1643 #ifdef RE_DIAG
1645 * Perform hardware diagnostic on the original RTL8169.
1646 * Some 32-bit cards were incorrectly wired and would
1647 * malfunction if plugged into a 64-bit slot.
1649 if (sc->re_hwrev == RE_HWREV_8169) {
1650 lwkt_serialize_enter(ifp->if_serializer);
1651 error = re_diag(sc);
1652 lwkt_serialize_exit(ifp->if_serializer);
1654 if (error) {
1655 device_printf(dev, "hardware diagnostic failure\n");
1656 ether_ifdetach(ifp);
1657 goto fail;
1660 #endif /* RE_DIAG */
1662 /* Hook interrupt last to avoid having to lock softc */
1663 error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1664 &sc->re_intrhand, ifp->if_serializer);
1666 if (error) {
1667 device_printf(dev, "couldn't set up irq\n");
1668 ether_ifdetach(ifp);
1669 goto fail;
1672 fail:
1673 if (error)
1674 re_detach(dev);
1676 return (error);
1680 * Shutdown hardware and free up resources. This can be called any
1681 * time after the mutex has been initialized. It is called in both
1682 * the error case in attach and the normal detach case so it needs
1683 * to be careful about only freeing resources that have actually been
1684 * allocated.
1686 static int
1687 re_detach(device_t dev)
1689 struct re_softc *sc = device_get_softc(dev);
1690 struct ifnet *ifp = &sc->arpcom.ac_if;
1692 /* These should only be active if attach succeeded */
1693 if (device_is_attached(dev)) {
1694 lwkt_serialize_enter(ifp->if_serializer);
1695 re_stop(sc);
1696 bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1697 lwkt_serialize_exit(ifp->if_serializer);
1699 ether_ifdetach(ifp);
1701 if (sc->re_miibus)
1702 device_delete_child(dev, sc->re_miibus);
1703 bus_generic_detach(dev);
1705 if (sc->re_irq)
1706 bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1707 sc->re_irq);
1709 if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1710 pci_release_msi(dev);
1712 if (sc->re_res) {
1713 bus_release_resource(dev, sc->re_res_type, sc->re_res_rid,
1714 sc->re_res);
1717 /* Free DMA stuffs */
1718 re_freemem(dev);
1720 return(0);
1723 static void
1724 re_setup_rxdesc(struct re_softc *sc, int idx)
1726 bus_addr_t paddr;
1727 uint32_t cmdstat;
1728 struct re_desc *d;
1730 paddr = sc->re_ldata.re_rx_paddr[idx];
1731 d = &sc->re_ldata.re_rx_list[idx];
1733 d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1734 d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1736 cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1737 if (idx == (sc->re_rx_desc_cnt - 1))
1738 cmdstat |= RE_RDESC_CMD_EOR;
1739 d->re_cmdstat = htole32(cmdstat);
1742 static int
1743 re_newbuf_std(struct re_softc *sc, int idx, int init)
1745 bus_dma_segment_t seg;
1746 bus_dmamap_t map;
1747 struct mbuf *m;
1748 int error, nsegs;
1750 m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
1751 if (m == NULL) {
1752 error = ENOBUFS;
1754 if (init) {
1755 if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1756 return error;
1757 } else {
1758 goto back;
1761 m->m_len = m->m_pkthdr.len = MCLBYTES;
1764 * NOTE:
1765 * re(4) chips need address of the receive buffer to be 8-byte
1766 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1769 error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1770 sc->re_ldata.re_rx_spare, m,
1771 &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1772 if (error) {
1773 m_freem(m);
1774 if (init) {
1775 if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1776 return error;
1777 } else {
1778 goto back;
1782 if (!init) {
1783 bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1784 sc->re_ldata.re_rx_dmamap[idx],
1785 BUS_DMASYNC_POSTREAD);
1786 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1787 sc->re_ldata.re_rx_dmamap[idx]);
1789 sc->re_ldata.re_rx_mbuf[idx] = m;
1790 sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1792 map = sc->re_ldata.re_rx_dmamap[idx];
1793 sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1794 sc->re_ldata.re_rx_spare = map;
1795 back:
1796 re_setup_rxdesc(sc, idx);
1797 return error;
1800 static int
1801 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1803 struct mbuf *m;
1804 struct re_jbuf *jbuf;
1805 int error = 0;
1807 MGETHDR(m, init ? M_WAITOK : M_NOWAIT, MT_DATA);
1808 if (m == NULL) {
1809 error = ENOBUFS;
1810 if (init) {
1811 if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1812 return error;
1813 } else {
1814 goto back;
1818 jbuf = re_jbuf_alloc(sc);
1819 if (jbuf == NULL) {
1820 m_freem(m);
1822 error = ENOBUFS;
1823 if (init) {
1824 if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1825 return error;
1826 } else {
1827 goto back;
1831 m->m_ext.ext_arg = jbuf;
1832 m->m_ext.ext_buf = jbuf->re_buf;
1833 m->m_ext.ext_free = re_jbuf_free;
1834 m->m_ext.ext_ref = re_jbuf_ref;
1835 m->m_ext.ext_size = sc->re_rxbuf_size;
1837 m->m_data = m->m_ext.ext_buf;
1838 m->m_flags |= M_EXT;
1839 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1842 * NOTE:
1843 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1844 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1847 sc->re_ldata.re_rx_mbuf[idx] = m;
1848 sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1849 back:
1850 re_setup_rxdesc(sc, idx);
1851 return error;
1854 static int
1855 re_tx_list_init(struct re_softc *sc)
1857 bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1859 sc->re_ldata.re_tx_prodidx = 0;
1860 sc->re_ldata.re_tx_considx = 0;
1861 sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1863 return(0);
1866 static int
1867 re_rx_list_init(struct re_softc *sc)
1869 int i, error;
1871 bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1873 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1874 error = sc->re_newbuf(sc, i, 1);
1875 if (error)
1876 return(error);
1879 sc->re_ldata.re_rx_prodidx = 0;
1880 sc->re_head = sc->re_tail = NULL;
1882 return(0);
1885 #define RE_IP4_PACKET 0x1
1886 #define RE_TCP_PACKET 0x2
1887 #define RE_UDP_PACKET 0x4
1889 static __inline uint8_t
1890 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1892 uint8_t packet_type = 0;
1894 if (sc->re_caps & RE_C_MAC2) {
1895 if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1896 packet_type |= RE_IP4_PACKET;
1897 } else {
1898 if (rxstat & RE_RDESC_STAT_PROTOID)
1899 packet_type |= RE_IP4_PACKET;
1901 if (RE_TCPPKT(rxstat))
1902 packet_type |= RE_TCP_PACKET;
1903 else if (RE_UDPPKT(rxstat))
1904 packet_type |= RE_UDP_PACKET;
1905 return packet_type;
1909 * RX handler for C+ and 8169. For the gigE chips, we support
1910 * the reception of jumbo frames that have been fragmented
1911 * across multiple 2K mbuf cluster buffers.
1913 static int
1914 re_rxeof(struct re_softc *sc)
1916 struct ifnet *ifp = &sc->arpcom.ac_if;
1917 struct mbuf *m;
1918 struct re_desc *cur_rx;
1919 uint32_t rxstat, rxctrl;
1920 int i, total_len, rx = 0;
1922 for (i = sc->re_ldata.re_rx_prodidx;
1923 RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1924 cur_rx = &sc->re_ldata.re_rx_list[i];
1925 m = sc->re_ldata.re_rx_mbuf[i];
1926 total_len = RE_RXBYTES(cur_rx);
1927 rxstat = le32toh(cur_rx->re_cmdstat);
1928 rxctrl = le32toh(cur_rx->re_control);
1930 rx = 1;
1932 #ifdef INVARIANTS
1933 if (sc->re_flags & RE_F_USE_JPOOL)
1934 KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1935 #endif
1937 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1938 if (sc->re_flags & RE_F_DROP_RXFRAG) {
1939 re_setup_rxdesc(sc, i);
1940 continue;
1943 if (sc->re_newbuf(sc, i, 0)) {
1944 /* Drop upcoming fragments */
1945 sc->re_flags |= RE_F_DROP_RXFRAG;
1946 continue;
1949 m->m_len = MCLBYTES;
1950 if (sc->re_head == NULL) {
1951 sc->re_head = sc->re_tail = m;
1952 } else {
1953 sc->re_tail->m_next = m;
1954 sc->re_tail = m;
1956 continue;
1957 } else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1959 * Last fragment of a multi-fragment packet.
1961 * Since error already happened, this fragment
1962 * must be dropped as well as the fragment chain.
1964 re_setup_rxdesc(sc, i);
1965 re_free_rxchain(sc);
1966 sc->re_flags &= ~RE_F_DROP_RXFRAG;
1967 continue;
1971 * NOTE: for the 8139C+, the frame length field
1972 * is always 12 bits in size, but for the gigE chips,
1973 * it is 13 bits (since the max RX frame length is 16K).
1974 * Unfortunately, all 32 bits in the status word
1975 * were already used, so to make room for the extra
1976 * length bit, RealTek took out the 'frame alignment
1977 * error' bit and shifted the other status bits
1978 * over one slot. The OWN, EOR, FS and LS bits are
1979 * still in the same places. We have already extracted
1980 * the frame length and checked the OWN bit, so rather
1981 * than using an alternate bit mapping, we shift the
1982 * status bits one space to the right so we can evaluate
1983 * them using the 8169 status as though it was in the
1984 * same format as that of the 8139C+.
1986 if (!RE_IS_8139CP(sc))
1987 rxstat >>= 1;
1989 if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1990 IFNET_STAT_INC(ifp, ierrors, 1);
1992 * If this is part of a multi-fragment packet,
1993 * discard all the pieces.
1995 re_free_rxchain(sc);
1996 re_setup_rxdesc(sc, i);
1997 continue;
2001 * If allocating a replacement mbuf fails,
2002 * reload the current one.
2005 if (sc->re_newbuf(sc, i, 0)) {
2006 IFNET_STAT_INC(ifp, ierrors, 1);
2007 continue;
2010 if (sc->re_head != NULL) {
2011 m->m_len = total_len % MCLBYTES;
2013 * Special case: if there's 4 bytes or less
2014 * in this buffer, the mbuf can be discarded:
2015 * the last 4 bytes is the CRC, which we don't
2016 * care about anyway.
2018 if (m->m_len <= ETHER_CRC_LEN) {
2019 sc->re_tail->m_len -=
2020 (ETHER_CRC_LEN - m->m_len);
2021 m_freem(m);
2022 } else {
2023 m->m_len -= ETHER_CRC_LEN;
2024 sc->re_tail->m_next = m;
2026 m = sc->re_head;
2027 sc->re_head = sc->re_tail = NULL;
2028 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2029 } else {
2030 m->m_pkthdr.len = m->m_len =
2031 (total_len - ETHER_CRC_LEN);
2034 IFNET_STAT_INC(ifp, ipackets, 1);
2035 m->m_pkthdr.rcvif = ifp;
2037 /* Do RX checksumming if enabled */
2039 if (ifp->if_capenable & IFCAP_RXCSUM) {
2040 uint8_t packet_type;
2042 packet_type = re_packet_type(sc, rxstat, rxctrl);
2044 /* Check IP header checksum */
2045 if (packet_type & RE_IP4_PACKET) {
2046 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2047 if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2048 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2051 /* Check TCP/UDP checksum */
2052 if (((packet_type & RE_TCP_PACKET) &&
2053 (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2054 ((packet_type & RE_UDP_PACKET) &&
2055 (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2056 m->m_pkthdr.csum_flags |=
2057 CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2058 CSUM_FRAG_NOT_CHECKED;
2059 m->m_pkthdr.csum_data = 0xffff;
2063 if (rxctrl & RE_RDESC_CTL_HASTAG) {
2064 m->m_flags |= M_VLANTAG;
2065 m->m_pkthdr.ether_vlantag =
2066 be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2068 ifp->if_input(ifp, m, NULL, -1);
2071 sc->re_ldata.re_rx_prodidx = i;
2073 return rx;
2076 #undef RE_IP4_PACKET
2077 #undef RE_TCP_PACKET
2078 #undef RE_UDP_PACKET
2080 static int
2081 re_tx_collect(struct re_softc *sc)
2083 struct ifnet *ifp = &sc->arpcom.ac_if;
2084 uint32_t txstat;
2085 int idx, tx = 0;
2087 for (idx = sc->re_ldata.re_tx_considx;
2088 sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2089 RE_TXDESC_INC(sc, idx)) {
2090 txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2091 if (txstat & RE_TDESC_CMD_OWN)
2092 break;
2094 tx = 1;
2096 sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2099 * We only stash mbufs in the last descriptor
2100 * in a fragment chain, which also happens to
2101 * be the only place where the TX status bits
2102 * are valid.
2104 if (txstat & RE_TDESC_CMD_EOF) {
2105 bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2106 sc->re_ldata.re_tx_dmamap[idx]);
2107 m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2108 sc->re_ldata.re_tx_mbuf[idx] = NULL;
2109 if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2110 RE_TDESC_STAT_COLCNT))
2111 IFNET_STAT_INC(ifp, collisions, 1);
2112 if (txstat & RE_TDESC_STAT_TXERRSUM)
2113 IFNET_STAT_INC(ifp, oerrors, 1);
2114 else
2115 IFNET_STAT_INC(ifp, opackets, 1);
2117 sc->re_ldata.re_tx_free++;
2119 sc->re_ldata.re_tx_considx = idx;
2121 return tx;
2124 static int
2125 re_txeof(struct re_softc *sc)
2127 struct ifnet *ifp = &sc->arpcom.ac_if;
2128 int tx;
2130 tx = re_tx_collect(sc);
2132 /* There is enough free TX descs */
2133 if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2134 ifq_clr_oactive(&ifp->if_snd);
2137 * Some chips will ignore a second TX request issued while an
2138 * existing transmission is in progress. If the transmitter goes
2139 * idle but there are still packets waiting to be sent, we need
2140 * to restart the channel here to flush them out. This only seems
2141 * to be required with the PCIe devices.
2143 if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2144 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2145 else
2146 ifp->if_timer = 0;
2148 return tx;
2151 static void
2152 re_tick(void *xsc)
2154 struct re_softc *sc = xsc;
2156 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2157 re_tick_serialized(xsc);
2158 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2161 static void
2162 re_tick_serialized(void *xsc)
2164 struct re_softc *sc = xsc;
2165 struct ifnet *ifp = &sc->arpcom.ac_if;
2166 struct mii_data *mii;
2168 ASSERT_SERIALIZED(ifp->if_serializer);
2170 mii = device_get_softc(sc->re_miibus);
2171 mii_tick(mii);
2172 if (sc->re_flags & RE_F_LINKED) {
2173 if (!(mii->mii_media_status & IFM_ACTIVE))
2174 sc->re_flags &= ~RE_F_LINKED;
2175 } else {
2176 if (mii->mii_media_status & IFM_ACTIVE &&
2177 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2178 sc->re_flags |= RE_F_LINKED;
2179 if (!ifq_is_empty(&ifp->if_snd))
2180 if_devstart(ifp);
2184 callout_reset(&sc->re_timer, hz, re_tick, sc);
2187 #ifdef IFPOLL_ENABLE
2189 static void
2190 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2192 struct re_softc *sc = ifp->if_softc;
2194 ASSERT_SERIALIZED(ifp->if_serializer);
2196 if (sc->re_npoll.ifpc_stcount-- == 0) {
2197 uint16_t status;
2199 sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
2201 status = CSR_READ_2(sc, RE_ISR);
2202 if (status == 0xffff)
2203 return;
2204 if (status)
2205 CSR_WRITE_2(sc, RE_ISR, status);
2208 * XXX check behaviour on receiver stalls.
2211 if (status & RE_ISR_SYSTEM_ERR)
2212 re_init(sc);
2215 sc->rxcycles = count;
2216 re_rxeof(sc);
2217 re_txeof(sc);
2219 if (!ifq_is_empty(&ifp->if_snd))
2220 if_devstart(ifp);
2223 static void
2224 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2226 struct re_softc *sc = ifp->if_softc;
2228 ASSERT_SERIALIZED(ifp->if_serializer);
2230 if (info != NULL) {
2231 int cpuid = sc->re_npoll.ifpc_cpuid;
2233 info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
2234 info->ifpi_rx[cpuid].arg = NULL;
2235 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2237 if (ifp->if_flags & IFF_RUNNING)
2238 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2239 ifq_set_cpuid(&ifp->if_snd, cpuid);
2240 } else {
2241 if (ifp->if_flags & IFF_RUNNING)
2242 re_setup_intr(sc, 1, sc->re_imtype);
2243 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
2246 #endif /* IFPOLL_ENABLE */
2248 static void
2249 re_intr(void *arg)
2251 struct re_softc *sc = arg;
2252 struct ifnet *ifp = &sc->arpcom.ac_if;
2253 uint16_t status;
2254 int rx, tx;
2256 ASSERT_SERIALIZED(ifp->if_serializer);
2258 if ((sc->re_flags & RE_F_SUSPENDED) ||
2259 (ifp->if_flags & IFF_RUNNING) == 0)
2260 return;
2262 rx = tx = 0;
2264 status = CSR_READ_2(sc, RE_ISR);
2265 /* If the card has gone away the read returns 0xffff. */
2266 if (status == 0xffff)
2267 goto reload;
2268 if (status)
2269 CSR_WRITE_2(sc, RE_ISR, status);
2271 if ((status & sc->re_intrs) == 0)
2272 goto reload;
2274 if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2275 rx |= re_rxeof(sc);
2277 if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2278 tx |= re_txeof(sc);
2280 if (status & RE_ISR_SYSTEM_ERR)
2281 re_init(sc);
2283 if (status & RE_ISR_LINKCHG) {
2284 callout_stop(&sc->re_timer);
2285 re_tick_serialized(sc);
2288 reload:
2289 if (sc->re_imtype == RE_IMTYPE_SIM) {
2290 if ((sc->re_flags & RE_F_TIMER_INTR)) {
2291 if ((tx | rx) == 0) {
2293 * Nothing needs to be processed, fallback
2294 * to use TX/RX interrupts.
2296 re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2299 * Recollect, mainly to avoid the possible
2300 * race introduced by changing interrupt
2301 * masks.
2303 re_rxeof(sc);
2304 tx = re_txeof(sc);
2305 } else {
2306 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2308 } else if (tx | rx) {
2310 * Assume that using simulated interrupt moderation
2311 * (hardware timer based) could reduce the interript
2312 * rate.
2314 re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2318 if (tx && !ifq_is_empty(&ifp->if_snd))
2319 if_devstart(ifp);
2322 static int
2323 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2325 struct mbuf *m = *m_head;
2326 bus_dma_segment_t segs[RE_MAXSEGS];
2327 bus_dmamap_t map;
2328 int error, maxsegs, idx, i, nsegs;
2329 struct re_desc *d, *tx_ring;
2330 uint32_t cmd_csum, ctl_csum, vlantag;
2332 KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2333 ("not enough free TX desc"));
2335 map = sc->re_ldata.re_tx_dmamap[*idx0];
2338 * Set up checksum offload. Note: checksum offload bits must
2339 * appear in all descriptors of a multi-descriptor transmit
2340 * attempt. (This is according to testing done with an 8169
2341 * chip. I'm not sure if this is a requirement or a bug.)
2343 cmd_csum = ctl_csum = 0;
2344 if (m->m_pkthdr.csum_flags & CSUM_IP) {
2345 cmd_csum |= RE_TDESC_CMD_IPCSUM;
2346 ctl_csum |= RE_TDESC_CTL_IPCSUM;
2348 if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2349 cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2350 ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2352 if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2353 cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2354 ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2357 /* For MAC2 chips, csum flags are set on re_control */
2358 if (sc->re_caps & RE_C_MAC2)
2359 cmd_csum = 0;
2360 else
2361 ctl_csum = 0;
2363 if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2365 * With some of the RealTek chips, using the checksum offload
2366 * support in conjunction with the autopadding feature results
2367 * in the transmission of corrupt frames. For example, if we
2368 * need to send a really small IP fragment that's less than 60
2369 * bytes in size, and IP header checksumming is enabled, the
2370 * resulting ethernet frame that appears on the wire will
2371 * have garbled payload. To work around this, if TX checksum
2372 * offload is enabled, we always manually pad short frames out
2373 * to the minimum ethernet frame size.
2375 * Note: this appears unnecessary for TCP, and doing it for TCP
2376 * with PCIe adapters seems to result in bad checksums.
2378 if ((m->m_pkthdr.csum_flags &
2379 (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2380 (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2381 m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2382 error = m_devpad(m, RE_MIN_FRAMELEN);
2383 if (error)
2384 goto back;
2388 vlantag = 0;
2389 if (m->m_flags & M_VLANTAG) {
2390 vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2391 RE_TDESC_CTL_INSTAG;
2394 maxsegs = sc->re_ldata.re_tx_free;
2395 if (maxsegs > RE_MAXSEGS)
2396 maxsegs = RE_MAXSEGS;
2398 error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2399 m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2400 if (error)
2401 goto back;
2403 m = *m_head;
2404 bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2407 * Map the segment array into descriptors. We also keep track
2408 * of the end of the ring and set the end-of-ring bits as needed,
2409 * and we set the ownership bits in all except the very first
2410 * descriptor, whose ownership bits will be turned on later.
2412 tx_ring = sc->re_ldata.re_tx_list;
2413 idx = *idx0;
2414 i = 0;
2415 for (;;) {
2416 uint32_t cmdstat;
2418 d = &tx_ring[idx];
2420 cmdstat = segs[i].ds_len;
2421 d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2422 d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2423 if (i == 0)
2424 cmdstat |= RE_TDESC_CMD_SOF;
2425 else
2426 cmdstat |= RE_TDESC_CMD_OWN;
2427 if (idx == (sc->re_tx_desc_cnt - 1))
2428 cmdstat |= RE_TDESC_CMD_EOR;
2429 d->re_cmdstat = htole32(cmdstat | cmd_csum);
2430 d->re_control = htole32(ctl_csum | vlantag);
2432 i++;
2433 if (i == nsegs)
2434 break;
2435 RE_TXDESC_INC(sc, idx);
2437 d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2439 /* Transfer ownership of packet to the chip. */
2440 d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2441 if (*idx0 != idx)
2442 tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2445 * Insure that the map for this transmission
2446 * is placed at the array index of the last descriptor
2447 * in this chain.
2449 sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2450 sc->re_ldata.re_tx_dmamap[idx] = map;
2452 sc->re_ldata.re_tx_mbuf[idx] = m;
2453 sc->re_ldata.re_tx_free -= nsegs;
2455 RE_TXDESC_INC(sc, idx);
2456 *idx0 = idx;
2457 back:
2458 if (error) {
2459 m_freem(*m_head);
2460 *m_head = NULL;
2462 return error;
2466 * Main transmit routine for C+ and gigE NICs.
2469 static void
2470 re_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2472 struct re_softc *sc = ifp->if_softc;
2473 struct mbuf *m_head;
2474 int idx, need_trans, oactive, error;
2476 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2477 ASSERT_SERIALIZED(ifp->if_serializer);
2479 if ((sc->re_flags & RE_F_LINKED) == 0) {
2480 ifq_purge(&ifp->if_snd);
2481 return;
2484 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2485 return;
2487 idx = sc->re_ldata.re_tx_prodidx;
2489 need_trans = 0;
2490 oactive = 0;
2491 while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2492 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2493 if (!oactive) {
2494 if (re_tx_collect(sc)) {
2495 oactive = 1;
2496 continue;
2499 ifq_set_oactive(&ifp->if_snd);
2500 break;
2503 m_head = ifq_dequeue(&ifp->if_snd);
2504 if (m_head == NULL)
2505 break;
2507 error = re_encap(sc, &m_head, &idx);
2508 if (error) {
2509 /* m_head is freed by re_encap(), if we reach here */
2510 IFNET_STAT_INC(ifp, oerrors, 1);
2512 if (error == EFBIG && !oactive) {
2513 if (re_tx_collect(sc)) {
2514 oactive = 1;
2515 continue;
2518 ifq_set_oactive(&ifp->if_snd);
2519 break;
2522 oactive = 0;
2523 need_trans = 1;
2526 * If there's a BPF listener, bounce a copy of this frame
2527 * to him.
2529 ETHER_BPF_MTAP(ifp, m_head);
2533 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2534 * for OACTIVE to not be properly set when we also do not
2535 * have sufficient free tx descriptors, leaving packet in
2536 * ifp->if_snd. This can cause if_start_dispatch() to loop
2537 * infinitely so make sure OACTIVE is set properly.
2539 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2540 if (!ifq_is_oactive(&ifp->if_snd)) {
2541 #if 0
2542 if_printf(ifp, "Debug: OACTIVE was not set when "
2543 "re_tx_free was below minimum!\n");
2544 #endif
2545 ifq_set_oactive(&ifp->if_snd);
2548 if (!need_trans)
2549 return;
2551 sc->re_ldata.re_tx_prodidx = idx;
2554 * RealTek put the TX poll request register in a different
2555 * location on the 8169 gigE chip. I don't know why.
2557 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2560 * Set a timeout in case the chip goes out to lunch.
2562 ifp->if_timer = 5;
2565 static void
2566 re_init(void *xsc)
2568 struct re_softc *sc = xsc;
2569 struct ifnet *ifp = &sc->arpcom.ac_if;
2570 struct mii_data *mii;
2571 int error, framelen;
2573 ASSERT_SERIALIZED(ifp->if_serializer);
2575 mii = device_get_softc(sc->re_miibus);
2578 * Cancel pending I/O and free all RX/TX buffers.
2580 re_stop(sc);
2582 if (sc->re_caps & RE_C_CONTIGRX) {
2583 if (ifp->if_mtu > ETHERMTU) {
2584 KKASSERT(sc->re_ldata.re_jbuf != NULL);
2585 sc->re_flags |= RE_F_USE_JPOOL;
2586 sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2587 sc->re_newbuf = re_newbuf_jumbo;
2588 } else {
2589 sc->re_flags &= ~RE_F_USE_JPOOL;
2590 sc->re_rxbuf_size = MCLBYTES;
2591 sc->re_newbuf = re_newbuf_std;
2596 * Adjust max read request size according to MTU; mainly to
2597 * improve TX performance for common case (ETHERMTU) on GigE
2598 * NICs. However, this could _not_ be done on 10/100 only
2599 * NICs; their DMA engines will malfunction using non-default
2600 * max read request size.
2602 if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2603 if (ifp->if_mtu > ETHERMTU) {
2605 * 512 seems to be the only value that works
2606 * reliably with jumbo frame
2608 pcie_set_max_readrq(sc->re_dev,
2609 PCIEM_DEVCTL_MAX_READRQ_512);
2610 } else {
2611 pcie_set_max_readrq(sc->re_dev,
2612 PCIEM_DEVCTL_MAX_READRQ_4096);
2617 * Enable C+ RX and TX mode, as well as VLAN stripping and
2618 * RX checksum offload. We must configure the C+ register
2619 * before all others.
2621 CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2622 RE_CPLUSCMD_PCI_MRW |
2623 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2624 RE_CPLUSCMD_VLANSTRIP : 0) |
2625 (ifp->if_capenable & IFCAP_RXCSUM ?
2626 RE_CPLUSCMD_RXCSUM_ENB : 0));
2629 * Init our MAC address. Even though the chipset
2630 * documentation doesn't mention it, we need to enter "Config
2631 * register write enable" mode to modify the ID registers.
2633 CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2634 CSR_WRITE_4(sc, RE_IDR0,
2635 htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2636 CSR_WRITE_2(sc, RE_IDR4,
2637 htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2638 CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2641 * For C+ mode, initialize the RX descriptors and mbufs.
2643 error = re_rx_list_init(sc);
2644 if (error) {
2645 re_stop(sc);
2646 return;
2648 error = re_tx_list_init(sc);
2649 if (error) {
2650 re_stop(sc);
2651 return;
2655 * Load the addresses of the RX and TX lists into the chip.
2657 CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2658 RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2659 CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2660 RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2662 CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2663 RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2664 CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2665 RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2668 * Enable transmit and receive.
2670 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2673 * Set the initial TX and RX configuration.
2675 if (sc->re_flags & RE_F_TESTMODE) {
2676 if (!RE_IS_8139CP(sc))
2677 CSR_WRITE_4(sc, RE_TXCFG,
2678 RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2679 else
2680 CSR_WRITE_4(sc, RE_TXCFG,
2681 RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2682 } else
2683 CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2685 framelen = RE_FRAMELEN(ifp->if_mtu);
2686 if (framelen < MCLBYTES)
2687 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2688 else
2689 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2691 CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2694 * Program the multicast filter, if necessary.
2696 re_setmulti(sc);
2698 #ifdef IFPOLL_ENABLE
2700 * Disable interrupts if we are polling.
2702 if (ifp->if_flags & IFF_NPOLLING)
2703 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2704 else /* otherwise ... */
2705 #endif /* IFPOLL_ENABLE */
2707 * Enable interrupts.
2709 if (sc->re_flags & RE_F_TESTMODE)
2710 CSR_WRITE_2(sc, RE_IMR, 0);
2711 else
2712 re_setup_intr(sc, 1, sc->re_imtype);
2713 CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2715 /* Start RX/TX process. */
2716 CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2718 #ifdef notdef
2719 /* Enable receiver and transmitter. */
2720 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2721 #endif
2724 * For 8169 gigE NICs, set the max allowed RX packet
2725 * size so we can receive jumbo frames.
2727 if (!RE_IS_8139CP(sc)) {
2728 if (sc->re_caps & RE_C_CONTIGRX)
2729 CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2730 else
2731 CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2734 if (sc->re_flags & RE_F_TESTMODE)
2735 return;
2737 mii_mediachg(mii);
2739 CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2741 ifp->if_flags |= IFF_RUNNING;
2742 ifq_clr_oactive(&ifp->if_snd);
2744 callout_reset(&sc->re_timer, hz, re_tick, sc);
2748 * Set media options.
2750 static int
2751 re_ifmedia_upd(struct ifnet *ifp)
2753 struct re_softc *sc = ifp->if_softc;
2754 struct mii_data *mii;
2756 ASSERT_SERIALIZED(ifp->if_serializer);
2758 mii = device_get_softc(sc->re_miibus);
2759 mii_mediachg(mii);
2761 return(0);
2765 * Report current media status.
2767 static void
2768 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2770 struct re_softc *sc = ifp->if_softc;
2771 struct mii_data *mii;
2773 ASSERT_SERIALIZED(ifp->if_serializer);
2775 mii = device_get_softc(sc->re_miibus);
2777 mii_pollstat(mii);
2778 ifmr->ifm_active = mii->mii_media_active;
2779 ifmr->ifm_status = mii->mii_media_status;
2782 static int
2783 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2785 struct re_softc *sc = ifp->if_softc;
2786 struct ifreq *ifr = (struct ifreq *) data;
2787 struct mii_data *mii;
2788 int error = 0, mask;
2790 ASSERT_SERIALIZED(ifp->if_serializer);
2792 switch(command) {
2793 case SIOCSIFMTU:
2794 if (ifr->ifr_mtu > sc->re_maxmtu) {
2795 error = EINVAL;
2796 } else if (ifp->if_mtu != ifr->ifr_mtu) {
2797 ifp->if_mtu = ifr->ifr_mtu;
2798 if (ifp->if_flags & IFF_RUNNING)
2799 ifp->if_init(sc);
2801 break;
2803 case SIOCSIFFLAGS:
2804 if (ifp->if_flags & IFF_UP) {
2805 if (ifp->if_flags & IFF_RUNNING) {
2806 if ((ifp->if_flags ^ sc->re_if_flags) &
2807 (IFF_PROMISC | IFF_ALLMULTI))
2808 re_setmulti(sc);
2809 } else {
2810 re_init(sc);
2812 } else if (ifp->if_flags & IFF_RUNNING) {
2813 re_stop(sc);
2815 sc->re_if_flags = ifp->if_flags;
2816 break;
2818 case SIOCADDMULTI:
2819 case SIOCDELMULTI:
2820 re_setmulti(sc);
2821 break;
2823 case SIOCGIFMEDIA:
2824 case SIOCSIFMEDIA:
2825 mii = device_get_softc(sc->re_miibus);
2826 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2827 break;
2829 case SIOCSIFCAP:
2830 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2831 ifp->if_capabilities;
2832 ifp->if_capenable ^= mask;
2834 if (mask & IFCAP_HWCSUM) {
2835 if (ifp->if_capenable & IFCAP_TXCSUM)
2836 ifp->if_hwassist = sc->re_hwassist;
2837 else
2838 ifp->if_hwassist = 0;
2840 if (mask && (ifp->if_flags & IFF_RUNNING))
2841 re_init(sc);
2842 break;
2844 default:
2845 error = ether_ioctl(ifp, command, data);
2846 break;
2848 return(error);
2851 static void
2852 re_watchdog(struct ifnet *ifp)
2854 struct re_softc *sc = ifp->if_softc;
2856 ASSERT_SERIALIZED(ifp->if_serializer);
2858 if_printf(ifp, "watchdog timeout\n");
2860 IFNET_STAT_INC(ifp, oerrors, 1);
2862 re_txeof(sc);
2863 re_rxeof(sc);
2865 re_init(sc);
2867 if (!ifq_is_empty(&ifp->if_snd))
2868 if_devstart(ifp);
2872 * Stop the adapter and free any mbufs allocated to the
2873 * RX and TX lists.
2875 static void
2876 re_stop(struct re_softc *sc)
2878 struct ifnet *ifp = &sc->arpcom.ac_if;
2879 int i;
2881 ASSERT_SERIALIZED(ifp->if_serializer);
2883 /* Reset the adapter. */
2884 re_reset(sc, ifp->if_flags & IFF_RUNNING);
2886 ifp->if_timer = 0;
2887 callout_stop(&sc->re_timer);
2889 ifp->if_flags &= ~IFF_RUNNING;
2890 ifq_clr_oactive(&ifp->if_snd);
2891 sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2893 CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2894 CSR_WRITE_2(sc, RE_IMR, 0x0000);
2895 CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2897 re_free_rxchain(sc);
2899 /* Free the TX list buffers. */
2900 for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2901 if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2902 bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2903 sc->re_ldata.re_tx_dmamap[i]);
2904 m_freem(sc->re_ldata.re_tx_mbuf[i]);
2905 sc->re_ldata.re_tx_mbuf[i] = NULL;
2909 /* Free the RX list buffers. */
2910 for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2911 if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2912 if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2913 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2914 sc->re_ldata.re_rx_dmamap[i]);
2916 m_freem(sc->re_ldata.re_rx_mbuf[i]);
2917 sc->re_ldata.re_rx_mbuf[i] = NULL;
2923 * Device suspend routine. Stop the interface and save some PCI
2924 * settings in case the BIOS doesn't restore them properly on
2925 * resume.
2927 static int
2928 re_suspend(device_t dev)
2930 #ifndef BURN_BRIDGES
2931 int i;
2932 #endif
2933 struct re_softc *sc = device_get_softc(dev);
2934 struct ifnet *ifp = &sc->arpcom.ac_if;
2936 lwkt_serialize_enter(ifp->if_serializer);
2938 re_stop(sc);
2940 #ifndef BURN_BRIDGES
2941 for (i = 0; i < 5; i++)
2942 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2943 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2944 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2945 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2946 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2947 #endif
2949 sc->re_flags |= RE_F_SUSPENDED;
2951 lwkt_serialize_exit(ifp->if_serializer);
2953 return (0);
2957 * Device resume routine. Restore some PCI settings in case the BIOS
2958 * doesn't, re-enable busmastering, and restart the interface if
2959 * appropriate.
2961 static int
2962 re_resume(device_t dev)
2964 struct re_softc *sc = device_get_softc(dev);
2965 struct ifnet *ifp = &sc->arpcom.ac_if;
2966 #ifndef BURN_BRIDGES
2967 int i;
2968 #endif
2970 lwkt_serialize_enter(ifp->if_serializer);
2972 #ifndef BURN_BRIDGES
2973 /* better way to do this? */
2974 for (i = 0; i < 5; i++)
2975 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2976 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2977 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2978 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2979 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2981 /* reenable busmastering */
2982 pci_enable_busmaster(dev);
2983 pci_enable_io(dev, SYS_RES_IOPORT);
2984 #endif
2986 /* reinitialize interface if necessary */
2987 if (ifp->if_flags & IFF_UP)
2988 re_init(sc);
2990 sc->re_flags &= ~RE_F_SUSPENDED;
2992 lwkt_serialize_exit(ifp->if_serializer);
2994 return (0);
2998 * Stop all chip I/O so that the kernel's probe routines don't
2999 * get confused by errant DMAs when rebooting.
3001 static void
3002 re_shutdown(device_t dev)
3004 struct re_softc *sc = device_get_softc(dev);
3005 struct ifnet *ifp = &sc->arpcom.ac_if;
3007 lwkt_serialize_enter(ifp->if_serializer);
3008 re_stop(sc);
3009 lwkt_serialize_exit(ifp->if_serializer);
3012 static int
3013 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
3015 struct re_softc *sc = arg1;
3017 return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
3020 static int
3021 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
3023 struct re_softc *sc = arg1;
3025 return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
3028 static int
3029 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3031 struct re_softc *sc = arg1;
3032 struct ifnet *ifp = &sc->arpcom.ac_if;
3033 int error, v;
3035 lwkt_serialize_enter(ifp->if_serializer);
3037 v = *hwtime;
3038 error = sysctl_handle_int(oidp, &v, 0, req);
3039 if (error || req->newptr == NULL)
3040 goto back;
3042 if (v <= 0) {
3043 error = EINVAL;
3044 goto back;
3047 if (v != *hwtime) {
3048 *hwtime = v;
3050 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3051 IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3052 re_setup_hw_im(sc);
3054 back:
3055 lwkt_serialize_exit(ifp->if_serializer);
3056 return error;
3059 static int
3060 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3062 struct re_softc *sc = arg1;
3063 struct ifnet *ifp = &sc->arpcom.ac_if;
3064 int error, v;
3066 lwkt_serialize_enter(ifp->if_serializer);
3068 v = sc->re_sim_time;
3069 error = sysctl_handle_int(oidp, &v, 0, req);
3070 if (error || req->newptr == NULL)
3071 goto back;
3073 if (v <= 0) {
3074 error = EINVAL;
3075 goto back;
3078 if (v != sc->re_sim_time) {
3079 sc->re_sim_time = v;
3081 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3082 IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3083 #ifdef foo
3084 int reg;
3087 * Following code causes various strange
3088 * performance problems. Hmm ...
3090 CSR_WRITE_2(sc, RE_IMR, 0);
3091 if (!RE_IS_8139CP(sc))
3092 reg = RE_TIMERINT_8169;
3093 else
3094 reg = RE_TIMERINT;
3095 CSR_WRITE_4(sc, reg, 0);
3096 CSR_READ_4(sc, reg); /* flush */
3098 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3099 re_setup_sim_im(sc);
3100 #else
3101 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3102 DELAY(10);
3103 re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3104 #endif
3107 back:
3108 lwkt_serialize_exit(ifp->if_serializer);
3109 return error;
3112 static int
3113 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3115 struct re_softc *sc = arg1;
3116 struct ifnet *ifp = &sc->arpcom.ac_if;
3117 int error, v;
3119 lwkt_serialize_enter(ifp->if_serializer);
3121 v = sc->re_imtype;
3122 error = sysctl_handle_int(oidp, &v, 0, req);
3123 if (error || req->newptr == NULL)
3124 goto back;
3126 if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3127 error = EINVAL;
3128 goto back;
3130 if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3131 /* Can't do hardware interrupt moderation */
3132 error = EOPNOTSUPP;
3133 goto back;
3136 if (v != sc->re_imtype) {
3137 sc->re_imtype = v;
3138 if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3139 IFF_RUNNING)
3140 re_setup_intr(sc, 1, sc->re_imtype);
3142 back:
3143 lwkt_serialize_exit(ifp->if_serializer);
3144 return error;
3147 static void
3148 re_setup_hw_im(struct re_softc *sc)
3150 KKASSERT(sc->re_caps & RE_C_HWIM);
3153 * Interrupt moderation
3155 * 0xABCD
3156 * A - unknown (maybe TX related)
3157 * B - TX timer (unit: 25us)
3158 * C - unknown (maybe RX related)
3159 * D - RX timer (unit: 25us)
3162 * re(4)'s interrupt moderation is actually controlled by
3163 * two variables, like most other NICs (bge, bce etc.)
3164 * o timer
3165 * o number of packets [P]
3167 * The logic relationship between these two variables is
3168 * similar to other NICs too:
3169 * if (timer expire || packets > [P])
3170 * Interrupt is delivered
3172 * Currently we only know how to set 'timer', but not
3173 * 'number of packets', which should be ~30, as far as I
3174 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3176 CSR_WRITE_2(sc, RE_IM,
3177 RE_IM_RXTIME(sc->re_rx_time) |
3178 RE_IM_TXTIME(sc->re_tx_time) |
3179 RE_IM_MAGIC);
3182 static void
3183 re_disable_hw_im(struct re_softc *sc)
3185 if (sc->re_caps & RE_C_HWIM)
3186 CSR_WRITE_2(sc, RE_IM, 0);
3189 static void
3190 re_setup_sim_im(struct re_softc *sc)
3192 if (!RE_IS_8139CP(sc)) {
3193 uint32_t ticks;
3196 * Datasheet says tick decreases at bus speed,
3197 * but it seems the clock runs a little bit
3198 * faster, so we do some compensation here.
3200 ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3201 CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3202 } else {
3203 CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3205 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3206 sc->re_flags |= RE_F_TIMER_INTR;
3209 static void
3210 re_disable_sim_im(struct re_softc *sc)
3212 if (!RE_IS_8139CP(sc))
3213 CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3214 else
3215 CSR_WRITE_4(sc, RE_TIMERINT, 0);
3216 sc->re_flags &= ~RE_F_TIMER_INTR;
3219 static void
3220 re_config_imtype(struct re_softc *sc, int imtype)
3222 switch (imtype) {
3223 case RE_IMTYPE_HW:
3224 KKASSERT(sc->re_caps & RE_C_HWIM);
3225 /* FALL THROUGH */
3226 case RE_IMTYPE_NONE:
3227 sc->re_intrs = RE_INTRS;
3228 sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3229 RE_ISR_RX_OVERRUN;
3230 sc->re_tx_ack = RE_ISR_TX_OK;
3231 break;
3233 case RE_IMTYPE_SIM:
3234 sc->re_intrs = RE_INTRS_TIMER;
3235 sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3236 sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3237 break;
3239 default:
3240 panic("%s: unknown imtype %d",
3241 sc->arpcom.ac_if.if_xname, imtype);
3245 static void
3246 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3248 re_config_imtype(sc, imtype);
3250 if (enable_intrs)
3251 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3252 else
3253 CSR_WRITE_2(sc, RE_IMR, 0);
3255 sc->re_npoll.ifpc_stcount = 0;
3257 switch (imtype) {
3258 case RE_IMTYPE_NONE:
3259 re_disable_sim_im(sc);
3260 re_disable_hw_im(sc);
3261 break;
3263 case RE_IMTYPE_HW:
3264 KKASSERT(sc->re_caps & RE_C_HWIM);
3265 re_disable_sim_im(sc);
3266 re_setup_hw_im(sc);
3267 break;
3269 case RE_IMTYPE_SIM:
3270 re_disable_hw_im(sc);
3271 re_setup_sim_im(sc);
3272 break;
3274 default:
3275 panic("%s: unknown imtype %d",
3276 sc->arpcom.ac_if.if_xname, imtype);
3280 static void
3281 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3283 int i;
3285 if (sc->re_caps & RE_C_EE_EADDR) {
3286 uint16_t re_did;
3288 re_get_eewidth(sc);
3289 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3290 if (re_did == 0x8128) {
3291 uint16_t as[ETHER_ADDR_LEN / 2];
3294 * Get station address from the EEPROM.
3296 re_read_eeprom(sc, (caddr_t)as, sc->re_ee_eaddr, 3);
3297 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3298 as[i] = le16toh(as[i]);
3299 bcopy(as, eaddr, ETHER_ADDR_LEN);
3300 return;
3305 * Get station address from IDRx.
3307 for (i = 0; i < ETHER_ADDR_LEN; ++i)
3308 eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3311 static int
3312 re_jpool_alloc(struct re_softc *sc)
3314 struct re_list_data *ldata = &sc->re_ldata;
3315 struct re_jbuf *jbuf;
3316 bus_addr_t paddr;
3317 bus_size_t jpool_size;
3318 bus_dmamem_t dmem;
3319 caddr_t buf;
3320 int i, error;
3322 lwkt_serialize_init(&ldata->re_jbuf_serializer);
3324 ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3325 M_DEVBUF, M_WAITOK | M_ZERO);
3327 jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3329 error = bus_dmamem_coherent(sc->re_parent_tag,
3330 RE_RXBUF_ALIGN, 0,
3331 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3332 jpool_size, BUS_DMA_WAITOK, &dmem);
3333 if (error) {
3334 device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3335 return error;
3337 ldata->re_jpool_tag = dmem.dmem_tag;
3338 ldata->re_jpool_map = dmem.dmem_map;
3339 ldata->re_jpool = dmem.dmem_addr;
3340 paddr = dmem.dmem_busaddr;
3342 /* ..and split it into 9KB chunks */
3343 SLIST_INIT(&ldata->re_jbuf_free);
3345 buf = ldata->re_jpool;
3346 for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3347 jbuf = &ldata->re_jbuf[i];
3349 jbuf->re_sc = sc;
3350 jbuf->re_inuse = 0;
3351 jbuf->re_slot = i;
3352 jbuf->re_buf = buf;
3353 jbuf->re_paddr = paddr;
3355 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3357 buf += RE_JBUF_SIZE;
3358 paddr += RE_JBUF_SIZE;
3360 return 0;
3363 static void
3364 re_jpool_free(struct re_softc *sc)
3366 struct re_list_data *ldata = &sc->re_ldata;
3368 if (ldata->re_jpool_tag != NULL) {
3369 bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3370 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3371 ldata->re_jpool_map);
3372 bus_dma_tag_destroy(ldata->re_jpool_tag);
3373 ldata->re_jpool_tag = NULL;
3376 if (ldata->re_jbuf != NULL) {
3377 kfree(ldata->re_jbuf, M_DEVBUF);
3378 ldata->re_jbuf = NULL;
3382 static struct re_jbuf *
3383 re_jbuf_alloc(struct re_softc *sc)
3385 struct re_list_data *ldata = &sc->re_ldata;
3386 struct re_jbuf *jbuf;
3388 lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3390 jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3391 if (jbuf != NULL) {
3392 SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3393 jbuf->re_inuse = 1;
3396 lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3398 return jbuf;
3401 static void
3402 re_jbuf_free(void *arg)
3404 struct re_jbuf *jbuf = arg;
3405 struct re_softc *sc = jbuf->re_sc;
3406 struct re_list_data *ldata = &sc->re_ldata;
3408 if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3409 panic("%s: free wrong jumbo buffer",
3410 sc->arpcom.ac_if.if_xname);
3411 } else if (jbuf->re_inuse == 0) {
3412 panic("%s: jumbo buffer already freed",
3413 sc->arpcom.ac_if.if_xname);
3416 lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3417 atomic_subtract_int(&jbuf->re_inuse, 1);
3418 if (jbuf->re_inuse == 0)
3419 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3420 lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3423 static void
3424 re_jbuf_ref(void *arg)
3426 struct re_jbuf *jbuf = arg;
3427 struct re_softc *sc = jbuf->re_sc;
3428 struct re_list_data *ldata = &sc->re_ldata;
3430 if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3431 panic("%s: ref wrong jumbo buffer",
3432 sc->arpcom.ac_if.if_xname);
3433 } else if (jbuf->re_inuse == 0) {
3434 panic("%s: jumbo buffer already freed",
3435 sc->arpcom.ac_if.if_xname);
3437 atomic_add_int(&jbuf->re_inuse, 1);