AMD64 - Fix format conversions and other warnings.
[dragonfly.git] / sys / platform / pc64 / amd64 / machdep.c
blobbb59973b7d94444a495b7fda8e8576b11ac9dfe0
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41 * $DragonFly: src/sys/platform/pc64/amd64/machdep.c,v 1.1 2008/08/29 17:07:10 dillon Exp $
44 #include "use_ether.h"
45 //#include "use_npx.h"
46 #include "use_isa.h"
47 #include "opt_atalk.h"
48 #include "opt_compat.h"
49 #include "opt_cpu.h"
50 #include "opt_ddb.h"
51 #include "opt_directio.h"
52 #include "opt_inet.h"
53 #include "opt_ipx.h"
54 #include "opt_msgbuf.h"
55 #include "opt_swap.h"
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sysproto.h>
60 #include <sys/signalvar.h>
61 #include <sys/kernel.h>
62 #include <sys/linker.h>
63 #include <sys/malloc.h>
64 #include <sys/proc.h>
65 #include <sys/priv.h>
66 #include <sys/buf.h>
67 #include <sys/reboot.h>
68 #include <sys/mbuf.h>
69 #include <sys/msgbuf.h>
70 #include <sys/sysent.h>
71 #include <sys/sysctl.h>
72 #include <sys/vmmeter.h>
73 #include <sys/bus.h>
74 #include <sys/upcall.h>
75 #include <sys/usched.h>
76 #include <sys/reg.h>
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_pager.h>
86 #include <vm/vm_extern.h>
88 #include <sys/thread2.h>
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
94 #include <ddb/ddb.h>
96 #include <machine/cpu.h>
97 #include <machine/clock.h>
98 #include <machine/specialreg.h>
99 #if JG
100 #include <machine/bootinfo.h>
101 #endif
102 #include <machine/md_var.h>
103 #include <machine/metadata.h>
104 #include <machine/pc/bios.h>
105 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
106 #include <machine/globaldata.h> /* CPU_prvspace */
107 #include <machine/smp.h>
108 #ifdef PERFMON
109 #include <machine/perfmon.h>
110 #endif
111 #include <machine/cputypes.h>
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/intr_machdep.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
122 #define PHYSMAP_ENTRIES 10
124 extern void init386(int first);
125 extern void dblfault_handler(void);
126 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
128 extern void printcpuinfo(void); /* XXX header file */
129 extern void identify_cpu(void);
130 #if JG
131 extern void finishidentcpu(void);
132 #endif
133 extern void panicifcpuunsupported(void);
135 static void cpu_startup(void *);
136 #ifndef CPU_DISABLE_SSE
137 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
138 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
139 #endif /* CPU_DISABLE_SSE */
140 #ifdef DIRECTIO
141 extern void ffs_rawread_setup(void);
142 #endif /* DIRECTIO */
143 static void init_locks(void);
145 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
147 #ifdef DDB
148 extern vm_offset_t ksym_start, ksym_end;
149 #endif
151 uint64_t KPTphys;
152 uint64_t SMPptpa;
153 pt_entry_t *SMPpt;
156 struct privatespace CPU_prvspace[MAXCPU];
158 int _udatasel, _ucodesel, _ucode32sel;
159 u_long atdevbase;
160 #ifdef SMP
161 int64_t tsc_offsets[MAXCPU];
162 #else
163 int64_t tsc_offsets[1];
164 #endif
166 #if defined(SWTCH_OPTIM_STATS)
167 extern int swtch_optim_stats;
168 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
169 CTLFLAG_RD, &swtch_optim_stats, 0, "");
170 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
171 CTLFLAG_RD, &tlb_flush_count, 0, "");
172 #endif
174 int physmem = 0;
176 static int
177 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
179 int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
180 return (error);
183 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
184 0, 0, sysctl_hw_physmem, "IU", "");
186 static int
187 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
189 int error = sysctl_handle_int(oidp, 0,
190 ctob(physmem - vmstats.v_wire_count), req);
191 return (error);
194 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
195 0, 0, sysctl_hw_usermem, "IU", "");
197 static int
198 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
200 int error = sysctl_handle_int(oidp, 0,
201 amd64_btop(avail_end - avail_start), req);
202 return (error);
205 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
206 0, 0, sysctl_hw_availpages, "I", "");
208 static int
209 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
211 int error;
213 /* Unwind the buffer, so that it's linear (possibly starting with
214 * some initial nulls).
216 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
217 msgbufp->msg_size-msgbufp->msg_bufr,req);
218 if(error) return(error);
219 if(msgbufp->msg_bufr>0) {
220 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
221 msgbufp->msg_bufr,req);
223 return(error);
226 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
227 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
229 static int msgbuf_clear;
231 static int
232 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
234 int error;
235 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
236 req);
237 if (!error && req->newptr) {
238 /* Clear the buffer and reset write pointer */
239 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
240 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
241 msgbuf_clear=0;
243 return (error);
246 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
247 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
248 "Clear kernel message buffer");
250 vm_paddr_t Maxmem = 0;
253 * The number of PHYSMAP entries must be one less than the number of
254 * PHYSSEG entries because the PHYSMAP entry that spans the largest
255 * physical address that is accessible by ISA DMA is split into two
256 * PHYSSEG entries.
258 #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
260 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
261 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
263 /* must be 2 less so 0 0 can signal end of chunks */
264 #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
265 #define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
267 static vm_offset_t buffer_sva, buffer_eva;
268 vm_offset_t clean_sva, clean_eva;
269 static vm_offset_t pager_sva, pager_eva;
270 static struct trapframe proc0_tf;
272 static void
273 cpu_startup(void *dummy)
275 caddr_t v;
276 vm_size_t size = 0;
277 vm_offset_t firstaddr;
279 if (boothowto & RB_VERBOSE)
280 bootverbose++;
283 * Good {morning,afternoon,evening,night}.
285 kprintf("%s", version);
286 startrtclock();
287 printcpuinfo();
288 panicifcpuunsupported();
289 #ifdef PERFMON
290 perfmon_init();
291 #endif
292 kprintf("real memory = %ju (%juK bytes)\n",
293 (intmax_t)ptoa(Maxmem),
294 (intmax_t)ptoa(Maxmem) / 1024);
296 * Display any holes after the first chunk of extended memory.
298 if (bootverbose) {
299 int indx;
301 kprintf("Physical memory chunk(s):\n");
302 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
303 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
305 kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
306 (intmax_t)phys_avail[indx],
307 (intmax_t)phys_avail[indx + 1] - 1,
308 (intmax_t)size1,
309 (intmax_t)(size1 / PAGE_SIZE));
314 * Allocate space for system data structures.
315 * The first available kernel virtual address is in "v".
316 * As pages of kernel virtual memory are allocated, "v" is incremented.
317 * As pages of memory are allocated and cleared,
318 * "firstaddr" is incremented.
319 * An index into the kernel page table corresponding to the
320 * virtual memory address maintained in "v" is kept in "mapaddr".
324 * Make two passes. The first pass calculates how much memory is
325 * needed and allocates it. The second pass assigns virtual
326 * addresses to the various data structures.
328 firstaddr = 0;
329 again:
330 v = (caddr_t)firstaddr;
332 #define valloc(name, type, num) \
333 (name) = (type *)v; v = (caddr_t)((name)+(num))
334 #define valloclim(name, type, num, lim) \
335 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
338 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
339 * For the first 64MB of ram nominally allocate sufficient buffers to
340 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
341 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
342 * the buffer cache we limit the eventual kva reservation to
343 * maxbcache bytes.
345 * factor represents the 1/4 x ram conversion.
347 if (nbuf == 0) {
348 int factor = 4 * BKVASIZE / 1024;
349 int kbytes = physmem * (PAGE_SIZE / 1024);
351 nbuf = 50;
352 if (kbytes > 4096)
353 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
354 if (kbytes > 65536)
355 nbuf += (kbytes - 65536) * 2 / (factor * 5);
356 if (maxbcache && nbuf > maxbcache / BKVASIZE)
357 nbuf = maxbcache / BKVASIZE;
361 * Do not allow the buffer_map to be more then 1/2 the size of the
362 * kernel_map.
364 if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
365 nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
366 kprintf("Warning: nbufs capped at %d\n", nbuf);
369 nswbuf = max(min(nbuf/4, 256), 16);
370 #ifdef NSWBUF_MIN
371 if (nswbuf < NSWBUF_MIN)
372 nswbuf = NSWBUF_MIN;
373 #endif
374 #ifdef DIRECTIO
375 ffs_rawread_setup();
376 #endif
378 valloc(swbuf, struct buf, nswbuf);
379 valloc(buf, struct buf, nbuf);
382 * End of first pass, size has been calculated so allocate memory
384 if (firstaddr == 0) {
385 size = (vm_size_t)(v - firstaddr);
386 firstaddr = kmem_alloc(&kernel_map, round_page(size));
387 if (firstaddr == 0)
388 panic("startup: no room for tables");
389 goto again;
393 * End of second pass, addresses have been assigned
395 if ((vm_size_t)(v - firstaddr) != size)
396 panic("startup: table size inconsistency");
398 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
399 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
400 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
401 (nbuf*BKVASIZE));
402 buffer_map.system_map = 1;
403 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
404 (nswbuf*MAXPHYS) + pager_map_size);
405 pager_map.system_map = 1;
407 #if defined(USERCONFIG)
408 userconfig();
409 cninit(); /* the preferred console may have changed */
410 #endif
412 kprintf("avail memory = %lu (%luK bytes)\n",
413 ptoa(vmstats.v_free_count),
414 ptoa(vmstats.v_free_count) / 1024);
417 * Set up buffers, so they can be used to read disk labels.
419 bufinit();
420 vm_pager_bufferinit();
422 #ifdef SMP
424 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
426 mp_start(); /* fire up the APs and APICs */
427 mp_announce();
428 #endif /* SMP */
429 cpu_setregs();
433 * Send an interrupt to process.
435 * Stack is set up to allow sigcode stored
436 * at top to call routine, followed by kcall
437 * to sigreturn routine below. After sigreturn
438 * resets the signal mask, the stack, and the
439 * frame pointer, it returns to the user
440 * specified pc, psl.
442 void
443 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
445 struct lwp *lp = curthread->td_lwp;
446 struct proc *p = lp->lwp_proc;
447 struct trapframe *regs;
448 struct sigacts *psp = p->p_sigacts;
449 struct sigframe sf, *sfp;
450 int oonstack;
451 char *sp;
453 regs = lp->lwp_md.md_regs;
454 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
456 /* Save user context */
457 bzero(&sf, sizeof(struct sigframe));
458 sf.sf_uc.uc_sigmask = *mask;
459 sf.sf_uc.uc_stack = lp->lwp_sigstk;
460 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
461 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
462 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
464 /* Make the size of the saved context visible to userland */
465 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
467 /* Save mailbox pending state for syscall interlock semantics */
468 if (p->p_flag & P_MAILBOX)
469 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
471 /* Allocate and validate space for the signal handler context. */
472 if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
473 SIGISMEMBER(psp->ps_sigonstack, sig)) {
474 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
475 sizeof(struct sigframe));
476 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
477 } else {
478 /* We take red zone into account */
479 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
482 /* Align to 16 bytes */
483 sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
485 /* Translate the signal is appropriate */
486 if (p->p_sysent->sv_sigtbl) {
487 if (sig <= p->p_sysent->sv_sigsize)
488 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
492 * Build the argument list for the signal handler.
494 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
496 regs->tf_rdi = sig; /* argument 1 */
497 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
499 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
501 * Signal handler installed with SA_SIGINFO.
503 * action(signo, siginfo, ucontext)
505 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
506 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
507 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
509 /* fill siginfo structure */
510 sf.sf_si.si_signo = sig;
511 sf.sf_si.si_code = code;
512 sf.sf_si.si_addr = (void *)regs->tf_err;
513 } else {
515 * Old FreeBSD-style arguments.
517 * handler (signo, code, [uc], addr)
519 regs->tf_rsi = (register_t)code; /* argument 2 */
520 regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
521 sf.sf_ahu.sf_handler = catcher;
525 * If we're a vm86 process, we want to save the segment registers.
526 * We also change eflags to be our emulated eflags, not the actual
527 * eflags.
529 #if JG
530 if (regs->tf_eflags & PSL_VM) {
531 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
532 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
534 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
535 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
536 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
537 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
539 if (vm86->vm86_has_vme == 0)
540 sf.sf_uc.uc_mcontext.mc_eflags =
541 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
542 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
545 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
546 * syscalls made by the signal handler. This just avoids
547 * wasting time for our lazy fixup of such faults. PSL_NT
548 * does nothing in vm86 mode, but vm86 programs can set it
549 * almost legitimately in probes for old cpu types.
551 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
553 #endif
556 * Save the FPU state and reinit the FP unit
558 npxpush(&sf.sf_uc.uc_mcontext);
561 * Copy the sigframe out to the user's stack.
563 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
565 * Something is wrong with the stack pointer.
566 * ...Kill the process.
568 sigexit(lp, SIGILL);
571 regs->tf_rsp = (register_t)sfp;
572 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
575 * i386 abi specifies that the direction flag must be cleared
576 * on function entry
578 regs->tf_rflags &= ~(PSL_T|PSL_D);
581 * 64 bit mode has a code and stack selector but
582 * no data or extra selector. %fs and %gs are not
583 * stored in-context.
585 regs->tf_cs = _ucodesel;
586 regs->tf_ss = _udatasel;
590 * Sanitize the trapframe for a virtual kernel passing control to a custom
591 * VM context. Remove any items that would otherwise create a privilage
592 * issue.
594 * XXX at the moment we allow userland to set the resume flag. Is this a
595 * bad idea?
598 cpu_sanitize_frame(struct trapframe *frame)
600 frame->tf_cs = _ucodesel;
601 frame->tf_ss = _udatasel;
602 /* XXX VM (8086) mode not supported? */
603 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
604 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
606 return(0);
610 * Sanitize the tls so loading the descriptor does not blow up
611 * on us. For AMD64 we don't have to do anything.
614 cpu_sanitize_tls(struct savetls *tls)
616 return(0);
620 * sigreturn(ucontext_t *sigcntxp)
622 * System call to cleanup state after a signal
623 * has been taken. Reset signal mask and
624 * stack state from context left by sendsig (above).
625 * Return to previous pc and psl as specified by
626 * context left by sendsig. Check carefully to
627 * make sure that the user has not modified the
628 * state to gain improper privileges.
630 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
631 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
634 sys_sigreturn(struct sigreturn_args *uap)
636 struct lwp *lp = curthread->td_lwp;
637 struct proc *p = lp->lwp_proc;
638 struct trapframe *regs;
639 ucontext_t uc;
640 ucontext_t *ucp;
641 register_t rflags;
642 int cs;
643 int error;
646 * We have to copy the information into kernel space so userland
647 * can't modify it while we are sniffing it.
649 regs = lp->lwp_md.md_regs;
650 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
651 if (error)
652 return (error);
653 ucp = &uc;
654 rflags = ucp->uc_mcontext.mc_rflags;
656 /* VM (8086) mode not supported */
657 rflags &= ~PSL_VM_UNSUPP;
659 #if JG
660 if (eflags & PSL_VM) {
661 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
662 struct vm86_kernel *vm86;
665 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
666 * set up the vm86 area, and we can't enter vm86 mode.
668 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
669 return (EINVAL);
670 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
671 if (vm86->vm86_inited == 0)
672 return (EINVAL);
674 /* go back to user mode if both flags are set */
675 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
676 trapsignal(lp, SIGBUS, 0);
678 if (vm86->vm86_has_vme) {
679 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
680 (eflags & VME_USERCHANGE) | PSL_VM;
681 } else {
682 vm86->vm86_eflags = eflags; /* save VIF, VIP */
683 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
684 (eflags & VM_USERCHANGE) | PSL_VM;
686 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
687 tf->tf_eflags = eflags;
688 tf->tf_vm86_ds = tf->tf_ds;
689 tf->tf_vm86_es = tf->tf_es;
690 tf->tf_vm86_fs = tf->tf_fs;
691 tf->tf_vm86_gs = tf->tf_gs;
692 tf->tf_ds = _udatasel;
693 tf->tf_es = _udatasel;
694 tf->tf_fs = _udatasel;
695 tf->tf_gs = _udatasel;
696 } else
697 #endif
700 * Don't allow users to change privileged or reserved flags.
703 * XXX do allow users to change the privileged flag PSL_RF.
704 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
705 * should sometimes set it there too. tf_eflags is kept in
706 * the signal context during signal handling and there is no
707 * other place to remember it, so the PSL_RF bit may be
708 * corrupted by the signal handler without us knowing.
709 * Corruption of the PSL_RF bit at worst causes one more or
710 * one less debugger trap, so allowing it is fairly harmless.
712 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
713 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
714 return(EINVAL);
718 * Don't allow users to load a valid privileged %cs. Let the
719 * hardware check for invalid selectors, excess privilege in
720 * other selectors, invalid %eip's and invalid %esp's.
722 cs = ucp->uc_mcontext.mc_cs;
723 if (!CS_SECURE(cs)) {
724 kprintf("sigreturn: cs = 0x%x\n", cs);
725 trapsignal(lp, SIGBUS, T_PROTFLT);
726 return(EINVAL);
728 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
732 * Restore the FPU state from the frame
734 npxpop(&ucp->uc_mcontext);
737 * Merge saved signal mailbox pending flag to maintain interlock
738 * semantics against system calls.
740 if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
741 p->p_flag |= P_MAILBOX;
743 if (ucp->uc_mcontext.mc_onstack & 1)
744 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
745 else
746 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
748 lp->lwp_sigmask = ucp->uc_sigmask;
749 SIG_CANTMASK(lp->lwp_sigmask);
750 return(EJUSTRETURN);
754 * Stack frame on entry to function. %rax will contain the function vector,
755 * %rcx will contain the function data. flags, rcx, and rax will have
756 * already been pushed on the stack.
758 struct upc_frame {
759 register_t rax;
760 register_t rcx;
761 register_t rdx;
762 register_t flags;
763 register_t oldip;
766 void
767 sendupcall(struct vmupcall *vu, int morepending)
769 struct lwp *lp = curthread->td_lwp;
770 struct trapframe *regs;
771 struct upcall upcall;
772 struct upc_frame upc_frame;
773 int crit_count = 0;
776 * If we are a virtual kernel running an emulated user process
777 * context, switch back to the virtual kernel context before
778 * trying to post the signal.
780 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
781 lp->lwp_md.md_regs->tf_trapno = 0;
782 vkernel_trap(lp, lp->lwp_md.md_regs);
786 * Get the upcall data structure
788 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
789 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
791 vu->vu_pending = 0;
792 kprintf("bad upcall address\n");
793 return;
797 * If the data structure is already marked pending or has a critical
798 * section count, mark the data structure as pending and return
799 * without doing an upcall. vu_pending is left set.
801 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
802 if (upcall.upc_pending < vu->vu_pending) {
803 upcall.upc_pending = vu->vu_pending;
804 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
805 sizeof(upcall.upc_pending));
807 return;
811 * We can run this upcall now, clear vu_pending.
813 * Bump our critical section count and set or clear the
814 * user pending flag depending on whether more upcalls are
815 * pending. The user will be responsible for calling
816 * upc_dispatch(-1) to process remaining upcalls.
818 vu->vu_pending = 0;
819 upcall.upc_pending = morepending;
820 crit_count += TDPRI_CRIT;
821 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
822 sizeof(upcall.upc_pending));
823 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
824 sizeof(int));
827 * Construct a stack frame and issue the upcall
829 regs = lp->lwp_md.md_regs;
830 upc_frame.rax = regs->tf_rax;
831 upc_frame.rcx = regs->tf_rcx;
832 upc_frame.rdx = regs->tf_rdx;
833 upc_frame.flags = regs->tf_rflags;
834 upc_frame.oldip = regs->tf_rip;
835 if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
836 sizeof(upc_frame)) != 0) {
837 kprintf("bad stack on upcall\n");
838 } else {
839 regs->tf_rax = (register_t)vu->vu_func;
840 regs->tf_rcx = (register_t)vu->vu_data;
841 regs->tf_rdx = (register_t)lp->lwp_upcall;
842 regs->tf_rip = (register_t)vu->vu_ctx;
843 regs->tf_rsp -= sizeof(upc_frame);
848 * fetchupcall occurs in the context of a system call, which means that
849 * we have to return EJUSTRETURN in order to prevent eax and edx from
850 * being overwritten by the syscall return value.
852 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
853 * and the function pointer in %eax.
856 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
858 struct upc_frame upc_frame;
859 struct lwp *lp = curthread->td_lwp;
860 struct trapframe *regs;
861 int error;
862 struct upcall upcall;
863 int crit_count;
865 regs = lp->lwp_md.md_regs;
867 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
868 if (error == 0) {
869 if (vu) {
871 * This jumps us to the next ready context.
873 vu->vu_pending = 0;
874 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
875 crit_count = 0;
876 if (error == 0)
877 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
878 crit_count += TDPRI_CRIT;
879 if (error == 0)
880 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
881 regs->tf_rax = (register_t)vu->vu_func;
882 regs->tf_rcx = (register_t)vu->vu_data;
883 regs->tf_rdx = (register_t)lp->lwp_upcall;
884 regs->tf_rip = (register_t)vu->vu_ctx;
885 regs->tf_rsp = (register_t)rsp;
886 } else {
888 * This returns us to the originally interrupted code.
890 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
891 regs->tf_rax = upc_frame.rax;
892 regs->tf_rcx = upc_frame.rcx;
893 regs->tf_rdx = upc_frame.rdx;
894 regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
895 (upc_frame.flags & PSL_USERCHANGE);
896 regs->tf_rip = upc_frame.oldip;
897 regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
900 if (error == 0)
901 error = EJUSTRETURN;
902 return(error);
906 * Machine dependent boot() routine
908 * I haven't seen anything to put here yet
909 * Possibly some stuff might be grafted back here from boot()
911 void
912 cpu_boot(int howto)
917 * Shutdown the CPU as much as possible
919 void
920 cpu_halt(void)
922 for (;;)
923 __asm__ __volatile("hlt");
927 * cpu_idle() represents the idle LWKT. You cannot return from this function
928 * (unless you want to blow things up!). Instead we look for runnable threads
929 * and loop or halt as appropriate. Giant is not held on entry to the thread.
931 * The main loop is entered with a critical section held, we must release
932 * the critical section before doing anything else. lwkt_switch() will
933 * check for pending interrupts due to entering and exiting its own
934 * critical section.
936 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
937 * to wake a HLTed cpu up. However, there are cases where the idlethread
938 * will be entered with the possibility that no IPI will occur and in such
939 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
941 static int cpu_idle_hlt = 1;
942 static int cpu_idle_hltcnt;
943 static int cpu_idle_spincnt;
944 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
945 &cpu_idle_hlt, 0, "Idle loop HLT enable");
946 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
947 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
948 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
949 &cpu_idle_spincnt, 0, "Idle loop entry spins");
951 static void
952 cpu_idle_default_hook(void)
955 * We must guarentee that hlt is exactly the instruction
956 * following the sti.
958 __asm __volatile("sti; hlt");
961 /* Other subsystems (e.g., ACPI) can hook this later. */
962 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
964 void
965 cpu_idle(void)
967 struct thread *td = curthread;
969 crit_exit();
970 KKASSERT(td->td_pri < TDPRI_CRIT);
971 for (;;) {
973 * See if there are any LWKTs ready to go.
975 lwkt_switch();
978 * If we are going to halt call splz unconditionally after
979 * CLIing to catch any interrupt races. Note that we are
980 * at SPL0 and interrupts are enabled.
982 if (cpu_idle_hlt && !lwkt_runnable() &&
983 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
984 __asm __volatile("cli");
985 splz();
986 if (!lwkt_runnable())
987 cpu_idle_hook();
988 #ifdef SMP
989 else
990 __asm __volatile("pause");
991 #endif
992 ++cpu_idle_hltcnt;
993 } else {
994 td->td_flags &= ~TDF_IDLE_NOHLT;
995 splz();
996 #ifdef SMP
997 __asm __volatile("sti; pause");
998 #else
999 __asm __volatile("sti");
1000 #endif
1001 ++cpu_idle_spincnt;
1007 * This routine is called when the only runnable threads require
1008 * the MP lock, and the scheduler couldn't get it. On a real cpu
1009 * we let the scheduler spin.
1011 void
1012 cpu_mplock_contested(void)
1014 cpu_pause();
1018 * This routine is called if a spinlock has been held through the
1019 * exponential backoff period and is seriously contested. On a real cpu
1020 * we let it spin.
1022 void
1023 cpu_spinlock_contested(void)
1025 cpu_pause();
1029 * Clear registers on exec
1031 void
1032 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1034 struct thread *td = curthread;
1035 struct lwp *lp = td->td_lwp;
1036 struct pcb *pcb = td->td_pcb;
1037 struct trapframe *regs = lp->lwp_md.md_regs;
1039 /* was i386_user_cleanup() in NetBSD */
1040 user_ldt_free(pcb);
1042 bzero((char *)regs, sizeof(struct trapframe));
1043 regs->tf_rip = entry;
1044 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1045 regs->tf_rdi = stack; /* argv */
1046 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1047 regs->tf_ss = _udatasel;
1048 regs->tf_cs = _ucodesel;
1049 regs->tf_rbx = ps_strings;
1052 * Reset the hardware debug registers if they were in use.
1053 * They won't have any meaning for the newly exec'd process.
1055 if (pcb->pcb_flags & PCB_DBREGS) {
1056 pcb->pcb_dr0 = 0;
1057 pcb->pcb_dr1 = 0;
1058 pcb->pcb_dr2 = 0;
1059 pcb->pcb_dr3 = 0;
1060 pcb->pcb_dr6 = 0;
1061 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1062 if (pcb == td->td_pcb) {
1064 * Clear the debug registers on the running
1065 * CPU, otherwise they will end up affecting
1066 * the next process we switch to.
1068 reset_dbregs();
1070 pcb->pcb_flags &= ~PCB_DBREGS;
1074 * Initialize the math emulator (if any) for the current process.
1075 * Actually, just clear the bit that says that the emulator has
1076 * been initialized. Initialization is delayed until the process
1077 * traps to the emulator (if it is done at all) mainly because
1078 * emulators don't provide an entry point for initialization.
1080 pcb->pcb_flags &= ~FP_SOFTFP;
1083 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
1084 * gd_npxthread. Otherwise a preemptive interrupt thread
1085 * may panic in npxdna().
1087 crit_enter();
1088 load_cr0(rcr0() | CR0_MP);
1091 * NOTE: The MSR values must be correct so we can return to
1092 * userland. gd_user_fs/gs must be correct so the switch
1093 * code knows what the current MSR values are.
1095 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
1096 pcb->pcb_gsbase = 0;
1097 mdcpu->gd_user_fs = 0; /* Cache of current MSR values */
1098 mdcpu->gd_user_gs = 0;
1099 wrmsr(MSR_FSBASE, 0); /* Set MSR values for return to userland */
1100 wrmsr(MSR_KGSBASE, 0);
1102 /* Initialize the npx (if any) for the current process. */
1103 npxinit(__INITIAL_NPXCW__);
1104 crit_exit();
1106 pcb->pcb_ds = _udatasel;
1107 pcb->pcb_es = _udatasel;
1108 pcb->pcb_fs = _udatasel;
1109 pcb->pcb_gs = _udatasel;
1112 void
1113 cpu_setregs(void)
1115 register_t cr0;
1117 cr0 = rcr0();
1118 cr0 |= CR0_NE; /* Done by npxinit() */
1119 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1120 cr0 |= CR0_WP | CR0_AM;
1121 load_cr0(cr0);
1122 load_gs(_udatasel);
1125 static int
1126 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1128 int error;
1129 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1130 req);
1131 if (!error && req->newptr)
1132 resettodr();
1133 return (error);
1136 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1137 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1139 #if JG
1140 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1141 CTLFLAG_RW, &disable_rtc_set, 0, "");
1142 #endif
1144 #if JG
1145 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1146 CTLFLAG_RD, &bootinfo, bootinfo, "");
1147 #endif
1149 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1150 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1152 extern u_long bootdev; /* not a cdev_t - encoding is different */
1153 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1154 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1157 * Initialize 386 and configure to run kernel
1161 * Initialize segments & interrupt table
1164 int _default_ldt;
1165 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1166 static struct gate_descriptor idt0[NIDT];
1167 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1168 #if JG
1169 union descriptor ldt[NLDT]; /* local descriptor table */
1170 #endif
1172 /* table descriptors - used to load tables by cpu */
1173 struct region_descriptor r_gdt, r_idt;
1175 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1176 extern int has_f00f_bug;
1177 #endif
1179 static char dblfault_stack[PAGE_SIZE] __aligned(16);
1181 /* JG proc0paddr is a virtual address */
1182 void *proc0paddr;
1183 /* JG alignment? */
1184 char proc0paddr_buff[LWKT_THREAD_STACK];
1187 /* software prototypes -- in more palatable form */
1188 struct soft_segment_descriptor gdt_segs[] = {
1189 /* GNULL_SEL 0 Null Descriptor */
1190 { 0x0, /* segment base address */
1191 0x0, /* length */
1192 0, /* segment type */
1193 0, /* segment descriptor priority level */
1194 0, /* segment descriptor present */
1195 0, /* long */
1196 0, /* default 32 vs 16 bit size */
1197 0 /* limit granularity (byte/page units)*/ },
1198 /* GCODE_SEL 1 Code Descriptor for kernel */
1199 { 0x0, /* segment base address */
1200 0xfffff, /* length - all address space */
1201 SDT_MEMERA, /* segment type */
1202 SEL_KPL, /* segment descriptor priority level */
1203 1, /* segment descriptor present */
1204 1, /* long */
1205 0, /* default 32 vs 16 bit size */
1206 1 /* limit granularity (byte/page units)*/ },
1207 /* GDATA_SEL 2 Data Descriptor for kernel */
1208 { 0x0, /* segment base address */
1209 0xfffff, /* length - all address space */
1210 SDT_MEMRWA, /* segment type */
1211 SEL_KPL, /* segment descriptor priority level */
1212 1, /* segment descriptor present */
1213 1, /* long */
1214 0, /* default 32 vs 16 bit size */
1215 1 /* limit granularity (byte/page units)*/ },
1216 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1217 { 0x0, /* segment base address */
1218 0xfffff, /* length - all address space */
1219 SDT_MEMERA, /* segment type */
1220 SEL_UPL, /* segment descriptor priority level */
1221 1, /* segment descriptor present */
1222 0, /* long */
1223 1, /* default 32 vs 16 bit size */
1224 1 /* limit granularity (byte/page units)*/ },
1225 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1226 { 0x0, /* segment base address */
1227 0xfffff, /* length - all address space */
1228 SDT_MEMRWA, /* segment type */
1229 SEL_UPL, /* segment descriptor priority level */
1230 1, /* segment descriptor present */
1231 0, /* long */
1232 1, /* default 32 vs 16 bit size */
1233 1 /* limit granularity (byte/page units)*/ },
1234 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1235 { 0x0, /* segment base address */
1236 0xfffff, /* length - all address space */
1237 SDT_MEMERA, /* segment type */
1238 SEL_UPL, /* segment descriptor priority level */
1239 1, /* segment descriptor present */
1240 1, /* long */
1241 0, /* default 32 vs 16 bit size */
1242 1 /* limit granularity (byte/page units)*/ },
1243 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1245 0x0, /* segment base address */
1246 sizeof(struct amd64tss)-1,/* length - all address space */
1247 SDT_SYSTSS, /* segment type */
1248 SEL_KPL, /* segment descriptor priority level */
1249 1, /* segment descriptor present */
1250 0, /* long */
1251 0, /* unused - default 32 vs 16 bit size */
1252 0 /* limit granularity (byte/page units)*/ },
1253 /* Actually, the TSS is a system descriptor which is double size */
1254 { 0x0, /* segment base address */
1255 0x0, /* length */
1256 0, /* segment type */
1257 0, /* segment descriptor priority level */
1258 0, /* segment descriptor present */
1259 0, /* long */
1260 0, /* default 32 vs 16 bit size */
1261 0 /* limit granularity (byte/page units)*/ },
1262 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1263 { 0x0, /* segment base address */
1264 0xfffff, /* length - all address space */
1265 SDT_MEMRWA, /* segment type */
1266 SEL_UPL, /* segment descriptor priority level */
1267 1, /* segment descriptor present */
1268 0, /* long */
1269 1, /* default 32 vs 16 bit size */
1270 1 /* limit granularity (byte/page units)*/ },
1273 void
1274 setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
1276 struct gate_descriptor *ip;
1278 ip = idt + idx;
1279 ip->gd_looffset = (uintptr_t)func;
1280 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1281 ip->gd_ist = ist;
1282 ip->gd_xx = 0;
1283 ip->gd_type = typ;
1284 ip->gd_dpl = dpl;
1285 ip->gd_p = 1;
1286 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1289 #define IDTVEC(name) __CONCAT(X,name)
1291 extern inthand_t
1292 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1293 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1294 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1295 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1296 IDTVEC(xmm), IDTVEC(dblfault),
1297 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1299 #ifdef DEBUG_INTERRUPTS
1300 extern inthand_t *Xrsvdary[256];
1301 #endif
1303 void
1304 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1306 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1307 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1308 ssd->ssd_type = sd->sd_type;
1309 ssd->ssd_dpl = sd->sd_dpl;
1310 ssd->ssd_p = sd->sd_p;
1311 ssd->ssd_def32 = sd->sd_def32;
1312 ssd->ssd_gran = sd->sd_gran;
1315 void
1316 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1319 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1320 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1321 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1322 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1323 sd->sd_type = ssd->ssd_type;
1324 sd->sd_dpl = ssd->ssd_dpl;
1325 sd->sd_p = ssd->ssd_p;
1326 sd->sd_long = ssd->ssd_long;
1327 sd->sd_def32 = ssd->ssd_def32;
1328 sd->sd_gran = ssd->ssd_gran;
1331 void
1332 ssdtosyssd(struct soft_segment_descriptor *ssd,
1333 struct system_segment_descriptor *sd)
1336 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1337 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1338 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1339 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1340 sd->sd_type = ssd->ssd_type;
1341 sd->sd_dpl = ssd->ssd_dpl;
1342 sd->sd_p = ssd->ssd_p;
1343 sd->sd_gran = ssd->ssd_gran;
1346 u_int basemem;
1349 * Populate the (physmap) array with base/bound pairs describing the
1350 * available physical memory in the system, then test this memory and
1351 * build the phys_avail array describing the actually-available memory.
1353 * If we cannot accurately determine the physical memory map, then use
1354 * value from the 0xE801 call, and failing that, the RTC.
1356 * Total memory size may be set by the kernel environment variable
1357 * hw.physmem or the compile-time define MAXMEM.
1359 * XXX first should be vm_paddr_t.
1361 static void
1362 getmemsize(caddr_t kmdp, u_int64_t first)
1364 int i, off, physmap_idx, pa_indx, da_indx;
1365 vm_paddr_t pa, physmap[PHYSMAP_SIZE];
1366 u_long physmem_tunable;
1367 pt_entry_t *pte;
1368 struct bios_smap *smapbase, *smap, *smapend;
1369 u_int32_t smapsize;
1370 quad_t dcons_addr, dcons_size;
1372 bzero(physmap, sizeof(physmap));
1373 basemem = 0;
1374 physmap_idx = 0;
1377 * get memory map from INT 15:E820, kindly supplied by the loader.
1379 * subr_module.c says:
1380 * "Consumer may safely assume that size value precedes data."
1381 * ie: an int32_t immediately precedes smap.
1383 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1384 MODINFO_METADATA | MODINFOMD_SMAP);
1385 if (smapbase == NULL)
1386 panic("No BIOS smap info from loader!");
1388 smapsize = *((u_int32_t *)smapbase - 1);
1389 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1391 for (smap = smapbase; smap < smapend; smap++) {
1392 if (boothowto & RB_VERBOSE)
1393 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1394 smap->type, smap->base, smap->length);
1396 if (smap->type != SMAP_TYPE_MEMORY)
1397 continue;
1399 if (smap->length == 0)
1400 continue;
1402 for (i = 0; i <= physmap_idx; i += 2) {
1403 if (smap->base < physmap[i + 1]) {
1404 if (boothowto & RB_VERBOSE)
1405 kprintf(
1406 "Overlapping or non-monotonic memory region, ignoring second region\n");
1407 continue;
1411 if (smap->base == physmap[physmap_idx + 1]) {
1412 physmap[physmap_idx + 1] += smap->length;
1413 continue;
1416 physmap_idx += 2;
1417 if (physmap_idx == PHYSMAP_SIZE) {
1418 kprintf(
1419 "Too many segments in the physical address map, giving up\n");
1420 break;
1422 physmap[physmap_idx] = smap->base;
1423 physmap[physmap_idx + 1] = smap->base + smap->length;
1427 * Find the 'base memory' segment for SMP
1429 basemem = 0;
1430 for (i = 0; i <= physmap_idx; i += 2) {
1431 if (physmap[i] == 0x00000000) {
1432 basemem = physmap[i + 1] / 1024;
1433 break;
1436 if (basemem == 0)
1437 panic("BIOS smap did not include a basemem segment!");
1439 #ifdef SMP
1440 /* make hole for AP bootstrap code */
1441 physmap[1] = mp_bootaddress(physmap[1] / 1024);
1443 /* look for the MP hardware - needed for apic addresses */
1444 mp_probe();
1445 #endif
1448 * Maxmem isn't the "maximum memory", it's one larger than the
1449 * highest page of the physical address space. It should be
1450 * called something like "Maxphyspage". We may adjust this
1451 * based on ``hw.physmem'' and the results of the memory test.
1453 Maxmem = atop(physmap[physmap_idx + 1]);
1455 #ifdef MAXMEM
1456 Maxmem = MAXMEM / 4;
1457 #endif
1459 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1460 Maxmem = atop(physmem_tunable);
1463 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1464 * in the system.
1466 if (Maxmem > atop(physmap[physmap_idx + 1]))
1467 Maxmem = atop(physmap[physmap_idx + 1]);
1469 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1470 (boothowto & RB_VERBOSE))
1471 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1473 /* call pmap initialization to make new kernel address space */
1474 pmap_bootstrap(&first);
1477 * Size up each available chunk of physical memory.
1479 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1480 pa_indx = 0;
1481 da_indx = 1;
1482 phys_avail[pa_indx++] = physmap[0];
1483 phys_avail[pa_indx] = physmap[0];
1484 dump_avail[da_indx] = physmap[0];
1485 pte = CMAP1;
1488 * Get dcons buffer address
1490 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1491 kgetenv_quad("dcons.size", &dcons_size) == 0)
1492 dcons_addr = 0;
1495 * physmap is in bytes, so when converting to page boundaries,
1496 * round up the start address and round down the end address.
1498 for (i = 0; i <= physmap_idx; i += 2) {
1499 vm_paddr_t end;
1501 end = ptoa((vm_paddr_t)Maxmem);
1502 if (physmap[i + 1] < end)
1503 end = trunc_page(physmap[i + 1]);
1504 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1505 int tmp, page_bad, full;
1506 int *ptr = (int *)CADDR1;
1508 full = FALSE;
1510 * block out kernel memory as not available.
1512 if (pa >= 0x100000 && pa < first)
1513 goto do_dump_avail;
1516 * block out dcons buffer
1518 if (dcons_addr > 0
1519 && pa >= trunc_page(dcons_addr)
1520 && pa < dcons_addr + dcons_size)
1521 goto do_dump_avail;
1523 page_bad = FALSE;
1526 * map page into kernel: valid, read/write,non-cacheable
1528 *pte = pa | PG_V | PG_RW | PG_N;
1529 cpu_invltlb();
1531 tmp = *(int *)ptr;
1533 * Test for alternating 1's and 0's
1535 *(volatile int *)ptr = 0xaaaaaaaa;
1536 if (*(volatile int *)ptr != 0xaaaaaaaa)
1537 page_bad = TRUE;
1539 * Test for alternating 0's and 1's
1541 *(volatile int *)ptr = 0x55555555;
1542 if (*(volatile int *)ptr != 0x55555555)
1543 page_bad = TRUE;
1545 * Test for all 1's
1547 *(volatile int *)ptr = 0xffffffff;
1548 if (*(volatile int *)ptr != 0xffffffff)
1549 page_bad = TRUE;
1551 * Test for all 0's
1553 *(volatile int *)ptr = 0x0;
1554 if (*(volatile int *)ptr != 0x0)
1555 page_bad = TRUE;
1557 * Restore original value.
1559 *(int *)ptr = tmp;
1562 * Adjust array of valid/good pages.
1564 if (page_bad == TRUE)
1565 continue;
1567 * If this good page is a continuation of the
1568 * previous set of good pages, then just increase
1569 * the end pointer. Otherwise start a new chunk.
1570 * Note that "end" points one higher than end,
1571 * making the range >= start and < end.
1572 * If we're also doing a speculative memory
1573 * test and we at or past the end, bump up Maxmem
1574 * so that we keep going. The first bad page
1575 * will terminate the loop.
1577 if (phys_avail[pa_indx] == pa) {
1578 phys_avail[pa_indx] += PAGE_SIZE;
1579 } else {
1580 pa_indx++;
1581 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1582 kprintf(
1583 "Too many holes in the physical address space, giving up\n");
1584 pa_indx--;
1585 full = TRUE;
1586 goto do_dump_avail;
1588 phys_avail[pa_indx++] = pa; /* start */
1589 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1591 physmem++;
1592 do_dump_avail:
1593 if (dump_avail[da_indx] == pa) {
1594 dump_avail[da_indx] += PAGE_SIZE;
1595 } else {
1596 da_indx++;
1597 if (da_indx == DUMP_AVAIL_ARRAY_END) {
1598 da_indx--;
1599 goto do_next;
1601 dump_avail[da_indx++] = pa; /* start */
1602 dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
1604 do_next:
1605 if (full)
1606 break;
1609 *pte = 0;
1610 cpu_invltlb();
1613 * XXX
1614 * The last chunk must contain at least one page plus the message
1615 * buffer to avoid complicating other code (message buffer address
1616 * calculation, etc.).
1618 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1619 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1620 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1621 phys_avail[pa_indx--] = 0;
1622 phys_avail[pa_indx--] = 0;
1625 Maxmem = atop(phys_avail[pa_indx]);
1627 /* Trim off space for the message buffer. */
1628 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1630 avail_end = phys_avail[pa_indx];
1632 /* Map the message buffer. */
1633 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1634 pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] +
1635 off);
1639 * IDT VECTORS:
1640 * 0 Divide by zero
1641 * 1 Debug
1642 * 2 NMI
1643 * 3 BreakPoint
1644 * 4 OverFlow
1645 * 5 Bound-Range
1646 * 6 Invalid OpCode
1647 * 7 Device Not Available (x87)
1648 * 8 Double-Fault
1649 * 9 Coprocessor Segment overrun (unsupported, reserved)
1650 * 10 Invalid-TSS
1651 * 11 Segment not present
1652 * 12 Stack
1653 * 13 General Protection
1654 * 14 Page Fault
1655 * 15 Reserved
1656 * 16 x87 FP Exception pending
1657 * 17 Alignment Check
1658 * 18 Machine Check
1659 * 19 SIMD floating point
1660 * 20-31 reserved
1661 * 32-255 INTn/external sources
1663 u_int64_t
1664 hammer_time(u_int64_t modulep, u_int64_t physfree)
1666 caddr_t kmdp;
1667 int gsel_tss, x;
1668 #if JG
1669 int metadata_missing, off;
1670 #endif
1671 struct mdglobaldata *gd;
1672 u_int64_t msr;
1673 char *env;
1675 #if JG
1677 * This must be done before the first references
1678 * to CPU_prvspace[0] are made.
1680 init_paging(&physfree);
1681 #endif
1684 * Prevent lowering of the ipl if we call tsleep() early.
1686 gd = &CPU_prvspace[0].mdglobaldata;
1687 bzero(gd, sizeof(*gd));
1690 * Note: on both UP and SMP curthread must be set non-NULL
1691 * early in the boot sequence because the system assumes
1692 * that 'curthread' is never NULL.
1695 gd->mi.gd_curthread = &thread0;
1696 thread0.td_gd = &gd->mi;
1698 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1700 #if JG
1701 metadata_missing = 0;
1702 if (bootinfo.bi_modulep) {
1703 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1704 preload_bootstrap_relocate(KERNBASE);
1705 } else {
1706 metadata_missing = 1;
1708 if (bootinfo.bi_envp)
1709 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1710 #endif
1712 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1713 preload_bootstrap_relocate(PTOV_OFFSET);
1714 kmdp = preload_search_by_type("elf kernel");
1715 if (kmdp == NULL)
1716 kmdp = preload_search_by_type("elf64 kernel");
1717 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1718 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1719 #ifdef DDB
1720 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1721 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1722 #endif
1725 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
1726 * and ncpus_fit_mask remain 0.
1728 ncpus = 1;
1729 ncpus2 = 1;
1730 ncpus_fit = 1;
1731 /* Init basic tunables, hz etc */
1732 init_param1();
1735 * make gdt memory segments
1737 gdt_segs[GPROC0_SEL].ssd_base =
1738 (uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1740 gd->mi.gd_prvspace = &CPU_prvspace[0];
1742 for (x = 0; x < NGDT; x++) {
1743 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1744 ssdtosd(&gdt_segs[x], &gdt[x]);
1746 ssdtosyssd(&gdt_segs[GPROC0_SEL],
1747 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1749 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1750 r_gdt.rd_base = (long) gdt;
1751 lgdt(&r_gdt);
1753 wrmsr(MSR_FSBASE, 0); /* User value */
1754 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1755 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
1757 mi_gdinit(&gd->mi, 0);
1758 cpu_gdinit(gd, 0);
1759 proc0paddr = proc0paddr_buff;
1760 mi_proc0init(&gd->mi, proc0paddr);
1761 safepri = TDPRI_MAX;
1763 /* spinlocks and the BGL */
1764 init_locks();
1766 /* exceptions */
1767 for (x = 0; x < NIDT; x++)
1768 setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1769 setidt(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
1770 setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
1771 setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
1772 setidt(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
1773 setidt(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
1774 setidt(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
1775 setidt(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
1776 setidt(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
1777 setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1778 setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
1779 setidt(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
1780 setidt(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
1781 setidt(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
1782 setidt(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
1783 setidt(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
1784 setidt(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
1785 setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1786 setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
1787 setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1789 r_idt.rd_limit = sizeof(idt0) - 1;
1790 r_idt.rd_base = (long) idt;
1791 lidt(&r_idt);
1794 * Initialize the console before we print anything out.
1796 cninit();
1798 #if JG
1799 if (metadata_missing)
1800 kprintf("WARNING: loader(8) metadata is missing!\n");
1801 #endif
1803 #if NISA >0
1804 isa_defaultirq();
1805 #endif
1806 rand_initialize();
1808 #ifdef DDB
1809 kdb_init();
1810 if (boothowto & RB_KDB)
1811 Debugger("Boot flags requested debugger");
1812 #endif
1814 #if JG
1815 finishidentcpu(); /* Final stage of CPU initialization */
1816 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1817 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1818 #endif
1819 identify_cpu(); /* Final stage of CPU initialization */
1820 initializecpu(); /* Initialize CPU registers */
1822 /* make an initial tss so cpu can get interrupt stack on syscall! */
1823 gd->gd_common_tss.tss_rsp0 =
1824 (register_t)(thread0.td_kstack +
1825 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1826 /* Ensure the stack is aligned to 16 bytes */
1827 gd->gd_common_tss.tss_rsp0 &= ~0xFul;
1828 gd->gd_rsp0 = gd->gd_common_tss.tss_rsp0;
1830 /* doublefault stack space, runs on ist1 */
1831 gd->gd_common_tss.tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
1833 /* Set the IO permission bitmap (empty due to tss seg limit) */
1834 gd->gd_common_tss.tss_iobase = sizeof(struct amd64tss);
1836 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1837 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1838 gd->gd_common_tssd = *gd->gd_tss_gdt;
1839 ltr(gsel_tss);
1841 /* Set up the fast syscall stuff */
1842 msr = rdmsr(MSR_EFER) | EFER_SCE;
1843 wrmsr(MSR_EFER, msr);
1844 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1845 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1846 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1847 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1848 wrmsr(MSR_STAR, msr);
1849 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1851 getmemsize(kmdp, physfree);
1852 init_param2(physmem);
1854 /* now running on new page tables, configured,and u/iom is accessible */
1856 /* Map the message buffer. */
1857 #if JG
1858 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1859 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1860 #endif
1862 msgbufinit(msgbufp, MSGBUF_SIZE);
1865 /* transfer to user mode */
1867 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1868 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1869 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1871 load_ds(_udatasel);
1872 load_es(_udatasel);
1873 load_fs(_udatasel);
1875 /* setup proc 0's pcb */
1876 thread0.td_pcb->pcb_flags = 0;
1877 thread0.td_pcb->pcb_cr3 = KPML4phys;
1878 thread0.td_pcb->pcb_ext = 0;
1879 lwp0.lwp_md.md_regs = &proc0_tf;
1880 env = kgetenv("kernelname");
1881 if (env != NULL)
1882 strlcpy(kernelname, env, sizeof(kernelname));
1884 /* Location of kernel stack for locore */
1885 return ((u_int64_t)thread0.td_pcb);
1889 * Initialize machine-dependant portions of the global data structure.
1890 * Note that the global data area and cpu0's idlestack in the private
1891 * data space were allocated in locore.
1893 * Note: the idlethread's cpl is 0
1895 * WARNING! Called from early boot, 'mycpu' may not work yet.
1897 void
1898 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1900 if (cpu)
1901 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1903 lwkt_init_thread(&gd->mi.gd_idlethread,
1904 gd->mi.gd_prvspace->idlestack,
1905 sizeof(gd->mi.gd_prvspace->idlestack),
1906 TDF_MPSAFE, &gd->mi);
1907 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1908 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1909 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1910 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1914 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1916 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1917 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1918 return (TRUE);
1920 return (FALSE);
1923 struct globaldata *
1924 globaldata_find(int cpu)
1926 KKASSERT(cpu >= 0 && cpu < ncpus);
1927 return(&CPU_prvspace[cpu].mdglobaldata.mi);
1930 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1931 static void f00f_hack(void *unused);
1932 SYSINIT(f00f_hack, SI_BOOT2_BIOS, SI_ORDER_ANY, f00f_hack, NULL);
1934 static void
1935 f00f_hack(void *unused)
1937 struct gate_descriptor *new_idt;
1938 vm_offset_t tmp;
1940 if (!has_f00f_bug)
1941 return;
1943 kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
1945 r_idt.rd_limit = sizeof(idt0) - 1;
1947 tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
1948 if (tmp == 0)
1949 panic("kmem_alloc returned 0");
1950 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
1951 panic("kmem_alloc returned non-page-aligned memory");
1952 /* Put the first seven entries in the lower page */
1953 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
1954 bcopy(idt, new_idt, sizeof(idt0));
1955 r_idt.rd_base = (int)new_idt;
1956 lidt(&r_idt);
1957 idt = new_idt;
1958 if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
1959 VM_PROT_READ, FALSE) != KERN_SUCCESS)
1960 panic("vm_map_protect failed");
1961 return;
1963 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
1966 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1968 lp->lwp_md.md_regs->tf_rip = addr;
1969 return (0);
1973 ptrace_single_step(struct lwp *lp)
1975 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1976 return (0);
1980 fill_regs(struct lwp *lp, struct reg *regs)
1982 struct pcb *pcb;
1983 struct trapframe *tp;
1985 tp = lp->lwp_md.md_regs;
1986 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
1988 pcb = lp->lwp_thread->td_pcb;
1989 return (0);
1993 set_regs(struct lwp *lp, struct reg *regs)
1995 struct pcb *pcb;
1996 struct trapframe *tp;
1998 tp = lp->lwp_md.md_regs;
1999 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2000 !CS_SECURE(regs->r_cs))
2001 return (EINVAL);
2002 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2003 pcb = lp->lwp_thread->td_pcb;
2004 return (0);
2007 #ifndef CPU_DISABLE_SSE
2008 static void
2009 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2011 struct env87 *penv_87 = &sv_87->sv_env;
2012 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2013 int i;
2015 /* FPU control/status */
2016 penv_87->en_cw = penv_xmm->en_cw;
2017 penv_87->en_sw = penv_xmm->en_sw;
2018 penv_87->en_tw = penv_xmm->en_tw;
2019 penv_87->en_fip = penv_xmm->en_fip;
2020 penv_87->en_fcs = penv_xmm->en_fcs;
2021 penv_87->en_opcode = penv_xmm->en_opcode;
2022 penv_87->en_foo = penv_xmm->en_foo;
2023 penv_87->en_fos = penv_xmm->en_fos;
2025 /* FPU registers */
2026 for (i = 0; i < 8; ++i)
2027 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2029 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2032 static void
2033 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2035 struct env87 *penv_87 = &sv_87->sv_env;
2036 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2037 int i;
2039 /* FPU control/status */
2040 penv_xmm->en_cw = penv_87->en_cw;
2041 penv_xmm->en_sw = penv_87->en_sw;
2042 penv_xmm->en_tw = penv_87->en_tw;
2043 penv_xmm->en_fip = penv_87->en_fip;
2044 penv_xmm->en_fcs = penv_87->en_fcs;
2045 penv_xmm->en_opcode = penv_87->en_opcode;
2046 penv_xmm->en_foo = penv_87->en_foo;
2047 penv_xmm->en_fos = penv_87->en_fos;
2049 /* FPU registers */
2050 for (i = 0; i < 8; ++i)
2051 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2053 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2055 #endif /* CPU_DISABLE_SSE */
2058 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2060 #ifndef CPU_DISABLE_SSE
2061 if (cpu_fxsr) {
2062 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2063 (struct save87 *)fpregs);
2064 return (0);
2066 #endif /* CPU_DISABLE_SSE */
2067 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2068 return (0);
2072 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2074 #ifndef CPU_DISABLE_SSE
2075 if (cpu_fxsr) {
2076 set_fpregs_xmm((struct save87 *)fpregs,
2077 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2078 return (0);
2080 #endif /* CPU_DISABLE_SSE */
2081 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2082 return (0);
2086 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2088 if (lp == NULL) {
2089 dbregs->dr[0] = rdr0();
2090 dbregs->dr[1] = rdr1();
2091 dbregs->dr[2] = rdr2();
2092 dbregs->dr[3] = rdr3();
2093 dbregs->dr[4] = rdr4();
2094 dbregs->dr[5] = rdr5();
2095 dbregs->dr[6] = rdr6();
2096 dbregs->dr[7] = rdr7();
2097 } else {
2098 struct pcb *pcb;
2100 pcb = lp->lwp_thread->td_pcb;
2101 dbregs->dr[0] = pcb->pcb_dr0;
2102 dbregs->dr[1] = pcb->pcb_dr1;
2103 dbregs->dr[2] = pcb->pcb_dr2;
2104 dbregs->dr[3] = pcb->pcb_dr3;
2105 dbregs->dr[4] = 0;
2106 dbregs->dr[5] = 0;
2107 dbregs->dr[6] = pcb->pcb_dr6;
2108 dbregs->dr[7] = pcb->pcb_dr7;
2110 return (0);
2114 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2116 if (lp == NULL) {
2117 load_dr0(dbregs->dr[0]);
2118 load_dr1(dbregs->dr[1]);
2119 load_dr2(dbregs->dr[2]);
2120 load_dr3(dbregs->dr[3]);
2121 load_dr4(dbregs->dr[4]);
2122 load_dr5(dbregs->dr[5]);
2123 load_dr6(dbregs->dr[6]);
2124 load_dr7(dbregs->dr[7]);
2125 } else {
2126 struct pcb *pcb;
2127 struct ucred *ucred;
2128 int i;
2129 uint64_t mask1, mask2;
2132 * Don't let an illegal value for dr7 get set. Specifically,
2133 * check for undefined settings. Setting these bit patterns
2134 * result in undefined behaviour and can lead to an unexpected
2135 * TRCTRAP.
2137 /* JG this loop looks unreadable */
2138 /* Check 4 2-bit fields for invalid patterns.
2139 * These fields are R/Wi, for i = 0..3
2141 /* Is 10 in LENi allowed when running in compatibility mode? */
2142 /* Pattern 10 in R/Wi might be used to indicate
2143 * breakpoint on I/O. Further analysis should be
2144 * carried to decide if it is safe and useful to
2145 * provide access to that capability
2147 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2148 i++, mask1 <<= 4, mask2 <<= 4)
2149 if ((dbregs->dr[7] & mask1) == mask2)
2150 return (EINVAL);
2152 pcb = lp->lwp_thread->td_pcb;
2153 ucred = lp->lwp_proc->p_ucred;
2156 * Don't let a process set a breakpoint that is not within the
2157 * process's address space. If a process could do this, it
2158 * could halt the system by setting a breakpoint in the kernel
2159 * (if ddb was enabled). Thus, we need to check to make sure
2160 * that no breakpoints are being enabled for addresses outside
2161 * process's address space, unless, perhaps, we were called by
2162 * uid 0.
2164 * XXX - what about when the watched area of the user's
2165 * address space is written into from within the kernel
2166 * ... wouldn't that still cause a breakpoint to be generated
2167 * from within kernel mode?
2170 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2171 if (dbregs->dr[7] & 0x3) {
2172 /* dr0 is enabled */
2173 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2174 return (EINVAL);
2177 if (dbregs->dr[7] & (0x3<<2)) {
2178 /* dr1 is enabled */
2179 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2180 return (EINVAL);
2183 if (dbregs->dr[7] & (0x3<<4)) {
2184 /* dr2 is enabled */
2185 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2186 return (EINVAL);
2189 if (dbregs->dr[7] & (0x3<<6)) {
2190 /* dr3 is enabled */
2191 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2192 return (EINVAL);
2196 pcb->pcb_dr0 = dbregs->dr[0];
2197 pcb->pcb_dr1 = dbregs->dr[1];
2198 pcb->pcb_dr2 = dbregs->dr[2];
2199 pcb->pcb_dr3 = dbregs->dr[3];
2200 pcb->pcb_dr6 = dbregs->dr[6];
2201 pcb->pcb_dr7 = dbregs->dr[7];
2203 pcb->pcb_flags |= PCB_DBREGS;
2206 return (0);
2210 * Return > 0 if a hardware breakpoint has been hit, and the
2211 * breakpoint was in user space. Return 0, otherwise.
2214 user_dbreg_trap(void)
2216 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2217 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2218 int nbp; /* number of breakpoints that triggered */
2219 caddr_t addr[4]; /* breakpoint addresses */
2220 int i;
2222 dr7 = rdr7();
2223 if ((dr7 & 0xff) == 0) {
2225 * all GE and LE bits in the dr7 register are zero,
2226 * thus the trap couldn't have been caused by the
2227 * hardware debug registers
2229 return 0;
2232 nbp = 0;
2233 dr6 = rdr6();
2234 bp = dr6 & 0xf;
2236 if (bp == 0) {
2238 * None of the breakpoint bits are set meaning this
2239 * trap was not caused by any of the debug registers
2241 return 0;
2245 * at least one of the breakpoints were hit, check to see
2246 * which ones and if any of them are user space addresses
2249 if (bp & 0x01) {
2250 addr[nbp++] = (caddr_t)rdr0();
2252 if (bp & 0x02) {
2253 addr[nbp++] = (caddr_t)rdr1();
2255 if (bp & 0x04) {
2256 addr[nbp++] = (caddr_t)rdr2();
2258 if (bp & 0x08) {
2259 addr[nbp++] = (caddr_t)rdr3();
2262 for (i=0; i<nbp; i++) {
2263 if (addr[i] <
2264 (caddr_t)VM_MAX_USER_ADDRESS) {
2266 * addr[i] is in user space
2268 return nbp;
2273 * None of the breakpoints are in user space.
2275 return 0;
2279 #ifndef DDB
2280 void
2281 Debugger(const char *msg)
2283 kprintf("Debugger(\"%s\") called.\n", msg);
2285 #endif /* no DDB */
2287 #ifdef DDB
2290 * Provide inb() and outb() as functions. They are normally only
2291 * available as macros calling inlined functions, thus cannot be
2292 * called inside DDB.
2294 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2297 #undef inb
2298 #undef outb
2300 /* silence compiler warnings */
2301 u_char inb(u_int);
2302 void outb(u_int, u_char);
2304 u_char
2305 inb(u_int port)
2307 u_char data;
2309 * We use %%dx and not %1 here because i/o is done at %dx and not at
2310 * %edx, while gcc generates inferior code (movw instead of movl)
2311 * if we tell it to load (u_short) port.
2313 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2314 return (data);
2317 void
2318 outb(u_int port, u_char data)
2320 u_char al;
2322 * Use an unnecessary assignment to help gcc's register allocator.
2323 * This make a large difference for gcc-1.40 and a tiny difference
2324 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2325 * best results. gcc-2.6.0 can't handle this.
2327 al = data;
2328 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2331 #endif /* DDB */
2335 #include "opt_cpu.h"
2339 * initialize all the SMP locks
2342 /* critical region when masking or unmasking interupts */
2343 struct spinlock_deprecated imen_spinlock;
2345 /* Make FAST_INTR() routines sequential */
2346 struct spinlock_deprecated fast_intr_spinlock;
2348 /* critical region for old style disable_intr/enable_intr */
2349 struct spinlock_deprecated mpintr_spinlock;
2351 /* critical region around INTR() routines */
2352 struct spinlock_deprecated intr_spinlock;
2354 /* lock region used by kernel profiling */
2355 struct spinlock_deprecated mcount_spinlock;
2357 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2358 struct spinlock_deprecated com_spinlock;
2360 /* locks kernel kprintfs */
2361 struct spinlock_deprecated cons_spinlock;
2363 /* lock regions around the clock hardware */
2364 struct spinlock_deprecated clock_spinlock;
2366 /* lock around the MP rendezvous */
2367 struct spinlock_deprecated smp_rv_spinlock;
2369 static void
2370 init_locks(void)
2373 * mp_lock = 0; BSP already owns the MP lock
2376 * Get the initial mp_lock with a count of 1 for the BSP.
2377 * This uses a LOGICAL cpu ID, ie BSP == 0.
2379 #ifdef SMP
2380 cpu_get_initial_mplock();
2381 #endif
2382 /* DEPRECATED */
2383 spin_lock_init(&mcount_spinlock);
2384 spin_lock_init(&fast_intr_spinlock);
2385 spin_lock_init(&intr_spinlock);
2386 spin_lock_init(&mpintr_spinlock);
2387 spin_lock_init(&imen_spinlock);
2388 spin_lock_init(&smp_rv_spinlock);
2389 spin_lock_init(&com_spinlock);
2390 spin_lock_init(&clock_spinlock);
2391 spin_lock_init(&cons_spinlock);
2393 /* our token pool needs to work early */
2394 lwkt_token_pool_init();