AMD64 - Fix format conversions and other warnings.
[dragonfly.git] / contrib / gdb-6.2.1 / bfd / elflink.c
blob1c1de27fc87b382ca000643dd4ac87f658665472
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
30 bfd_boolean
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
33 flagword flags;
34 asection *s;
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
38 int ptralign;
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
43 return TRUE;
45 switch (bed->s->arch_size)
47 case 32:
48 ptralign = 2;
49 break;
51 case 64:
52 ptralign = 3;
53 break;
55 default:
56 bfd_set_error (bfd_error_bad_value);
57 return FALSE;
60 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
61 | SEC_LINKER_CREATED);
63 s = bfd_make_section (abfd, ".got");
64 if (s == NULL
65 || !bfd_set_section_flags (abfd, s, flags)
66 || !bfd_set_section_alignment (abfd, s, ptralign))
67 return FALSE;
69 if (bed->want_got_plt)
71 s = bfd_make_section (abfd, ".got.plt");
72 if (s == NULL
73 || !bfd_set_section_flags (abfd, s, flags)
74 || !bfd_set_section_alignment (abfd, s, ptralign))
75 return FALSE;
78 if (bed->want_got_sym)
80 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
81 (or .got.plt) section. We don't do this in the linker script
82 because we don't want to define the symbol if we are not creating
83 a global offset table. */
84 bh = NULL;
85 if (!(_bfd_generic_link_add_one_symbol
86 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
87 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
88 return FALSE;
89 h = (struct elf_link_hash_entry *) bh;
90 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
91 h->type = STT_OBJECT;
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
95 return FALSE;
97 elf_hash_table (info)->hgot = h;
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
103 return TRUE;
106 /* Create some sections which will be filled in with dynamic linking
107 information. ABFD is an input file which requires dynamic sections
108 to be created. The dynamic sections take up virtual memory space
109 when the final executable is run, so we need to create them before
110 addresses are assigned to the output sections. We work out the
111 actual contents and size of these sections later. */
113 bfd_boolean
114 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
116 flagword flags;
117 register asection *s;
118 struct elf_link_hash_entry *h;
119 struct bfd_link_hash_entry *bh;
120 const struct elf_backend_data *bed;
122 if (! is_elf_hash_table (info->hash))
123 return FALSE;
125 if (elf_hash_table (info)->dynamic_sections_created)
126 return TRUE;
128 /* Make sure that all dynamic sections use the same input BFD. */
129 if (elf_hash_table (info)->dynobj == NULL)
130 elf_hash_table (info)->dynobj = abfd;
131 else
132 abfd = elf_hash_table (info)->dynobj;
134 /* Note that we set the SEC_IN_MEMORY flag for all of these
135 sections. */
136 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
137 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
139 /* A dynamically linked executable has a .interp section, but a
140 shared library does not. */
141 if (info->executable)
143 s = bfd_make_section (abfd, ".interp");
144 if (s == NULL
145 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
146 return FALSE;
149 if (! info->traditional_format)
151 s = bfd_make_section (abfd, ".eh_frame_hdr");
152 if (s == NULL
153 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
154 || ! bfd_set_section_alignment (abfd, s, 2))
155 return FALSE;
156 elf_hash_table (info)->eh_info.hdr_sec = s;
159 bed = get_elf_backend_data (abfd);
161 /* Create sections to hold version informations. These are removed
162 if they are not needed. */
163 s = bfd_make_section (abfd, ".gnu.version_d");
164 if (s == NULL
165 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
169 s = bfd_make_section (abfd, ".gnu.version");
170 if (s == NULL
171 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
172 || ! bfd_set_section_alignment (abfd, s, 1))
173 return FALSE;
175 s = bfd_make_section (abfd, ".gnu.version_r");
176 if (s == NULL
177 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
179 return FALSE;
181 s = bfd_make_section (abfd, ".dynsym");
182 if (s == NULL
183 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
184 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
185 return FALSE;
187 s = bfd_make_section (abfd, ".dynstr");
188 if (s == NULL
189 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
190 return FALSE;
192 /* Create a strtab to hold the dynamic symbol names. */
193 if (elf_hash_table (info)->dynstr == NULL)
195 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
196 if (elf_hash_table (info)->dynstr == NULL)
197 return FALSE;
200 s = bfd_make_section (abfd, ".dynamic");
201 if (s == NULL
202 || ! bfd_set_section_flags (abfd, s, flags)
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
204 return FALSE;
206 /* The special symbol _DYNAMIC is always set to the start of the
207 .dynamic section. This call occurs before we have processed the
208 symbols for any dynamic object, so we don't have to worry about
209 overriding a dynamic definition. We could set _DYNAMIC in a
210 linker script, but we only want to define it if we are, in fact,
211 creating a .dynamic section. We don't want to define it if there
212 is no .dynamic section, since on some ELF platforms the start up
213 code examines it to decide how to initialize the process. */
214 bh = NULL;
215 if (! (_bfd_generic_link_add_one_symbol
216 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
217 get_elf_backend_data (abfd)->collect, &bh)))
218 return FALSE;
219 h = (struct elf_link_hash_entry *) bh;
220 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
221 h->type = STT_OBJECT;
223 if (! info->executable
224 && ! bfd_elf_link_record_dynamic_symbol (info, h))
225 return FALSE;
227 s = bfd_make_section (abfd, ".hash");
228 if (s == NULL
229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
230 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
231 return FALSE;
232 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
234 /* Let the backend create the rest of the sections. This lets the
235 backend set the right flags. The backend will normally create
236 the .got and .plt sections. */
237 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
238 return FALSE;
240 elf_hash_table (info)->dynamic_sections_created = TRUE;
242 return TRUE;
245 /* Create dynamic sections when linking against a dynamic object. */
247 bfd_boolean
248 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250 flagword flags, pltflags;
251 asection *s;
252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
254 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
255 .rel[a].bss sections. */
257 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
258 | SEC_LINKER_CREATED);
260 pltflags = flags;
261 pltflags |= SEC_CODE;
262 if (bed->plt_not_loaded)
263 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
264 if (bed->plt_readonly)
265 pltflags |= SEC_READONLY;
267 s = bfd_make_section (abfd, ".plt");
268 if (s == NULL
269 || ! bfd_set_section_flags (abfd, s, pltflags)
270 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
271 return FALSE;
273 if (bed->want_plt_sym)
275 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
276 .plt section. */
277 struct elf_link_hash_entry *h;
278 struct bfd_link_hash_entry *bh = NULL;
280 if (! (_bfd_generic_link_add_one_symbol
281 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
282 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
283 return FALSE;
284 h = (struct elf_link_hash_entry *) bh;
285 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
286 h->type = STT_OBJECT;
288 if (! info->executable
289 && ! bfd_elf_link_record_dynamic_symbol (info, h))
290 return FALSE;
293 s = bfd_make_section (abfd,
294 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
295 if (s == NULL
296 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
300 if (! _bfd_elf_create_got_section (abfd, info))
301 return FALSE;
303 if (bed->want_dynbss)
305 /* The .dynbss section is a place to put symbols which are defined
306 by dynamic objects, are referenced by regular objects, and are
307 not functions. We must allocate space for them in the process
308 image and use a R_*_COPY reloc to tell the dynamic linker to
309 initialize them at run time. The linker script puts the .dynbss
310 section into the .bss section of the final image. */
311 s = bfd_make_section (abfd, ".dynbss");
312 if (s == NULL
313 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
314 return FALSE;
316 /* The .rel[a].bss section holds copy relocs. This section is not
317 normally needed. We need to create it here, though, so that the
318 linker will map it to an output section. We can't just create it
319 only if we need it, because we will not know whether we need it
320 until we have seen all the input files, and the first time the
321 main linker code calls BFD after examining all the input files
322 (size_dynamic_sections) the input sections have already been
323 mapped to the output sections. If the section turns out not to
324 be needed, we can discard it later. We will never need this
325 section when generating a shared object, since they do not use
326 copy relocs. */
327 if (! info->shared)
329 s = bfd_make_section (abfd,
330 (bed->default_use_rela_p
331 ? ".rela.bss" : ".rel.bss"));
332 if (s == NULL
333 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
334 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
335 return FALSE;
339 return TRUE;
342 /* Record a new dynamic symbol. We record the dynamic symbols as we
343 read the input files, since we need to have a list of all of them
344 before we can determine the final sizes of the output sections.
345 Note that we may actually call this function even though we are not
346 going to output any dynamic symbols; in some cases we know that a
347 symbol should be in the dynamic symbol table, but only if there is
348 one. */
350 bfd_boolean
351 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
352 struct elf_link_hash_entry *h)
354 if (h->dynindx == -1)
356 struct elf_strtab_hash *dynstr;
357 char *p;
358 const char *name;
359 bfd_size_type indx;
361 /* XXX: The ABI draft says the linker must turn hidden and
362 internal symbols into STB_LOCAL symbols when producing the
363 DSO. However, if ld.so honors st_other in the dynamic table,
364 this would not be necessary. */
365 switch (ELF_ST_VISIBILITY (h->other))
367 case STV_INTERNAL:
368 case STV_HIDDEN:
369 if (h->root.type != bfd_link_hash_undefined
370 && h->root.type != bfd_link_hash_undefweak)
372 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
373 return TRUE;
376 default:
377 break;
380 h->dynindx = elf_hash_table (info)->dynsymcount;
381 ++elf_hash_table (info)->dynsymcount;
383 dynstr = elf_hash_table (info)->dynstr;
384 if (dynstr == NULL)
386 /* Create a strtab to hold the dynamic symbol names. */
387 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
388 if (dynstr == NULL)
389 return FALSE;
392 /* We don't put any version information in the dynamic string
393 table. */
394 name = h->root.root.string;
395 p = strchr (name, ELF_VER_CHR);
396 if (p != NULL)
397 /* We know that the p points into writable memory. In fact,
398 there are only a few symbols that have read-only names, being
399 those like _GLOBAL_OFFSET_TABLE_ that are created specially
400 by the backends. Most symbols will have names pointing into
401 an ELF string table read from a file, or to objalloc memory. */
402 *p = 0;
404 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
406 if (p != NULL)
407 *p = ELF_VER_CHR;
409 if (indx == (bfd_size_type) -1)
410 return FALSE;
411 h->dynstr_index = indx;
414 return TRUE;
417 /* Record an assignment to a symbol made by a linker script. We need
418 this in case some dynamic object refers to this symbol. */
420 bfd_boolean
421 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
422 struct bfd_link_info *info,
423 const char *name,
424 bfd_boolean provide)
426 struct elf_link_hash_entry *h;
428 if (!is_elf_hash_table (info->hash))
429 return TRUE;
431 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
432 if (h == NULL)
433 return FALSE;
435 /* Since we're defining the symbol, don't let it seem to have not
436 been defined. record_dynamic_symbol and size_dynamic_sections
437 may depend on this. */
438 if (h->root.type == bfd_link_hash_undefweak
439 || h->root.type == bfd_link_hash_undefined)
440 h->root.type = bfd_link_hash_new;
442 if (h->root.type == bfd_link_hash_new)
443 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
445 /* If this symbol is being provided by the linker script, and it is
446 currently defined by a dynamic object, but not by a regular
447 object, then mark it as undefined so that the generic linker will
448 force the correct value. */
449 if (provide
450 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
451 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
452 h->root.type = bfd_link_hash_undefined;
454 /* If this symbol is not being provided by the linker script, and it is
455 currently defined by a dynamic object, but not by a regular object,
456 then clear out any version information because the symbol will not be
457 associated with the dynamic object any more. */
458 if (!provide
459 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
460 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
461 h->verinfo.verdef = NULL;
463 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
465 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
466 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
467 || info->shared)
468 && h->dynindx == -1)
470 if (! bfd_elf_link_record_dynamic_symbol (info, h))
471 return FALSE;
473 /* If this is a weak defined symbol, and we know a corresponding
474 real symbol from the same dynamic object, make sure the real
475 symbol is also made into a dynamic symbol. */
476 if (h->weakdef != NULL
477 && h->weakdef->dynindx == -1)
479 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
480 return FALSE;
484 return TRUE;
487 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
488 success, and 2 on a failure caused by attempting to record a symbol
489 in a discarded section, eg. a discarded link-once section symbol. */
492 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
493 bfd *input_bfd,
494 long input_indx)
496 bfd_size_type amt;
497 struct elf_link_local_dynamic_entry *entry;
498 struct elf_link_hash_table *eht;
499 struct elf_strtab_hash *dynstr;
500 unsigned long dynstr_index;
501 char *name;
502 Elf_External_Sym_Shndx eshndx;
503 char esym[sizeof (Elf64_External_Sym)];
505 if (! is_elf_hash_table (info->hash))
506 return 0;
508 /* See if the entry exists already. */
509 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
510 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
511 return 1;
513 amt = sizeof (*entry);
514 entry = bfd_alloc (input_bfd, amt);
515 if (entry == NULL)
516 return 0;
518 /* Go find the symbol, so that we can find it's name. */
519 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
520 1, input_indx, &entry->isym, esym, &eshndx))
522 bfd_release (input_bfd, entry);
523 return 0;
526 if (entry->isym.st_shndx != SHN_UNDEF
527 && (entry->isym.st_shndx < SHN_LORESERVE
528 || entry->isym.st_shndx > SHN_HIRESERVE))
530 asection *s;
532 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
533 if (s == NULL || bfd_is_abs_section (s->output_section))
535 /* We can still bfd_release here as nothing has done another
536 bfd_alloc. We can't do this later in this function. */
537 bfd_release (input_bfd, entry);
538 return 2;
542 name = (bfd_elf_string_from_elf_section
543 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
544 entry->isym.st_name));
546 dynstr = elf_hash_table (info)->dynstr;
547 if (dynstr == NULL)
549 /* Create a strtab to hold the dynamic symbol names. */
550 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
551 if (dynstr == NULL)
552 return 0;
555 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
556 if (dynstr_index == (unsigned long) -1)
557 return 0;
558 entry->isym.st_name = dynstr_index;
560 eht = elf_hash_table (info);
562 entry->next = eht->dynlocal;
563 eht->dynlocal = entry;
564 entry->input_bfd = input_bfd;
565 entry->input_indx = input_indx;
566 eht->dynsymcount++;
568 /* Whatever binding the symbol had before, it's now local. */
569 entry->isym.st_info
570 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
572 /* The dynindx will be set at the end of size_dynamic_sections. */
574 return 1;
577 /* Return the dynindex of a local dynamic symbol. */
579 long
580 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
581 bfd *input_bfd,
582 long input_indx)
584 struct elf_link_local_dynamic_entry *e;
586 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
587 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
588 return e->dynindx;
589 return -1;
592 /* This function is used to renumber the dynamic symbols, if some of
593 them are removed because they are marked as local. This is called
594 via elf_link_hash_traverse. */
596 static bfd_boolean
597 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
598 void *data)
600 size_t *count = data;
602 if (h->root.type == bfd_link_hash_warning)
603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
605 if (h->dynindx != -1)
606 h->dynindx = ++(*count);
608 return TRUE;
611 /* Return true if the dynamic symbol for a given section should be
612 omitted when creating a shared library. */
613 bfd_boolean
614 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
615 struct bfd_link_info *info,
616 asection *p)
618 switch (elf_section_data (p)->this_hdr.sh_type)
620 case SHT_PROGBITS:
621 case SHT_NOBITS:
622 /* If sh_type is yet undecided, assume it could be
623 SHT_PROGBITS/SHT_NOBITS. */
624 case SHT_NULL:
625 if (strcmp (p->name, ".got") == 0
626 || strcmp (p->name, ".got.plt") == 0
627 || strcmp (p->name, ".plt") == 0)
629 asection *ip;
630 bfd *dynobj = elf_hash_table (info)->dynobj;
632 if (dynobj != NULL
633 && (ip = bfd_get_section_by_name (dynobj, p->name))
634 != NULL
635 && (ip->flags & SEC_LINKER_CREATED)
636 && ip->output_section == p)
637 return TRUE;
639 return FALSE;
641 /* There shouldn't be section relative relocations
642 against any other section. */
643 default:
644 return TRUE;
648 /* Assign dynsym indices. In a shared library we generate a section
649 symbol for each output section, which come first. Next come all of
650 the back-end allocated local dynamic syms, followed by the rest of
651 the global symbols. */
653 unsigned long
654 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
656 unsigned long dynsymcount = 0;
658 if (info->shared)
660 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
661 asection *p;
662 for (p = output_bfd->sections; p ; p = p->next)
663 if ((p->flags & SEC_EXCLUDE) == 0
664 && (p->flags & SEC_ALLOC) != 0
665 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
666 elf_section_data (p)->dynindx = ++dynsymcount;
669 if (elf_hash_table (info)->dynlocal)
671 struct elf_link_local_dynamic_entry *p;
672 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
673 p->dynindx = ++dynsymcount;
676 elf_link_hash_traverse (elf_hash_table (info),
677 elf_link_renumber_hash_table_dynsyms,
678 &dynsymcount);
680 /* There is an unused NULL entry at the head of the table which
681 we must account for in our count. Unless there weren't any
682 symbols, which means we'll have no table at all. */
683 if (dynsymcount != 0)
684 ++dynsymcount;
686 return elf_hash_table (info)->dynsymcount = dynsymcount;
689 /* This function is called when we want to define a new symbol. It
690 handles the various cases which arise when we find a definition in
691 a dynamic object, or when there is already a definition in a
692 dynamic object. The new symbol is described by NAME, SYM, PSEC,
693 and PVALUE. We set SYM_HASH to the hash table entry. We set
694 OVERRIDE if the old symbol is overriding a new definition. We set
695 TYPE_CHANGE_OK if it is OK for the type to change. We set
696 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
697 change, we mean that we shouldn't warn if the type or size does
698 change. */
700 bfd_boolean
701 _bfd_elf_merge_symbol (bfd *abfd,
702 struct bfd_link_info *info,
703 const char *name,
704 Elf_Internal_Sym *sym,
705 asection **psec,
706 bfd_vma *pvalue,
707 struct elf_link_hash_entry **sym_hash,
708 bfd_boolean *skip,
709 bfd_boolean *override,
710 bfd_boolean *type_change_ok,
711 bfd_boolean *size_change_ok)
713 asection *sec;
714 struct elf_link_hash_entry *h;
715 struct elf_link_hash_entry *flip;
716 int bind;
717 bfd *oldbfd;
718 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
719 bfd_boolean newweak, oldweak;
721 *skip = FALSE;
722 *override = FALSE;
724 sec = *psec;
725 bind = ELF_ST_BIND (sym->st_info);
727 if (! bfd_is_und_section (sec))
728 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
729 else
730 h = ((struct elf_link_hash_entry *)
731 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
732 if (h == NULL)
733 return FALSE;
734 *sym_hash = h;
736 /* This code is for coping with dynamic objects, and is only useful
737 if we are doing an ELF link. */
738 if (info->hash->creator != abfd->xvec)
739 return TRUE;
741 /* For merging, we only care about real symbols. */
743 while (h->root.type == bfd_link_hash_indirect
744 || h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747 /* If we just created the symbol, mark it as being an ELF symbol.
748 Other than that, there is nothing to do--there is no merge issue
749 with a newly defined symbol--so we just return. */
751 if (h->root.type == bfd_link_hash_new)
753 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
754 return TRUE;
757 /* OLDBFD is a BFD associated with the existing symbol. */
759 switch (h->root.type)
761 default:
762 oldbfd = NULL;
763 break;
765 case bfd_link_hash_undefined:
766 case bfd_link_hash_undefweak:
767 oldbfd = h->root.u.undef.abfd;
768 break;
770 case bfd_link_hash_defined:
771 case bfd_link_hash_defweak:
772 oldbfd = h->root.u.def.section->owner;
773 break;
775 case bfd_link_hash_common:
776 oldbfd = h->root.u.c.p->section->owner;
777 break;
780 /* In cases involving weak versioned symbols, we may wind up trying
781 to merge a symbol with itself. Catch that here, to avoid the
782 confusion that results if we try to override a symbol with
783 itself. The additional tests catch cases like
784 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
785 dynamic object, which we do want to handle here. */
786 if (abfd == oldbfd
787 && ((abfd->flags & DYNAMIC) == 0
788 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
789 return TRUE;
791 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
792 respectively, is from a dynamic object. */
794 if ((abfd->flags & DYNAMIC) != 0)
795 newdyn = TRUE;
796 else
797 newdyn = FALSE;
799 if (oldbfd != NULL)
800 olddyn = (oldbfd->flags & DYNAMIC) != 0;
801 else
803 asection *hsec;
805 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
806 indices used by MIPS ELF. */
807 switch (h->root.type)
809 default:
810 hsec = NULL;
811 break;
813 case bfd_link_hash_defined:
814 case bfd_link_hash_defweak:
815 hsec = h->root.u.def.section;
816 break;
818 case bfd_link_hash_common:
819 hsec = h->root.u.c.p->section;
820 break;
823 if (hsec == NULL)
824 olddyn = FALSE;
825 else
826 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
829 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
830 respectively, appear to be a definition rather than reference. */
832 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
833 newdef = FALSE;
834 else
835 newdef = TRUE;
837 if (h->root.type == bfd_link_hash_undefined
838 || h->root.type == bfd_link_hash_undefweak
839 || h->root.type == bfd_link_hash_common)
840 olddef = FALSE;
841 else
842 olddef = TRUE;
844 /* We need to remember if a symbol has a definition in a dynamic
845 object or is weak in all dynamic objects. Internal and hidden
846 visibility will make it unavailable to dynamic objects. */
847 if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0)
849 if (!bfd_is_und_section (sec))
850 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF;
851 else
853 /* Check if this symbol is weak in all dynamic objects. If it
854 is the first time we see it in a dynamic object, we mark
855 if it is weak. Otherwise, we clear it. */
856 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
858 if (bind == STB_WEAK)
859 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK;
861 else if (bind != STB_WEAK)
862 h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK;
866 /* If the old symbol has non-default visibility, we ignore the new
867 definition from a dynamic object. */
868 if (newdyn
869 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
870 && !bfd_is_und_section (sec))
872 *skip = TRUE;
873 /* Make sure this symbol is dynamic. */
874 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
875 /* A protected symbol has external availability. Make sure it is
876 recorded as dynamic.
878 FIXME: Should we check type and size for protected symbol? */
879 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
880 return bfd_elf_link_record_dynamic_symbol (info, h);
881 else
882 return TRUE;
884 else if (!newdyn
885 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
886 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
888 /* If the new symbol with non-default visibility comes from a
889 relocatable file and the old definition comes from a dynamic
890 object, we remove the old definition. */
891 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
892 h = *sym_hash;
894 if ((h->root.und_next || info->hash->undefs_tail == &h->root)
895 && bfd_is_und_section (sec))
897 /* If the new symbol is undefined and the old symbol was
898 also undefined before, we need to make sure
899 _bfd_generic_link_add_one_symbol doesn't mess
900 up the linker hash table undefs list. Since the old
901 definition came from a dynamic object, it is still on the
902 undefs list. */
903 h->root.type = bfd_link_hash_undefined;
904 /* FIXME: What if the new symbol is weak undefined? */
905 h->root.u.undef.abfd = abfd;
907 else
909 h->root.type = bfd_link_hash_new;
910 h->root.u.undef.abfd = NULL;
913 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
915 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
916 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC
917 | ELF_LINK_DYNAMIC_DEF);
919 /* FIXME: Should we check type and size for protected symbol? */
920 h->size = 0;
921 h->type = 0;
922 return TRUE;
925 /* Differentiate strong and weak symbols. */
926 newweak = bind == STB_WEAK;
927 oldweak = (h->root.type == bfd_link_hash_defweak
928 || h->root.type == bfd_link_hash_undefweak);
930 /* If a new weak symbol definition comes from a regular file and the
931 old symbol comes from a dynamic library, we treat the new one as
932 strong. Similarly, an old weak symbol definition from a regular
933 file is treated as strong when the new symbol comes from a dynamic
934 library. Further, an old weak symbol from a dynamic library is
935 treated as strong if the new symbol is from a dynamic library.
936 This reflects the way glibc's ld.so works.
938 Do this before setting *type_change_ok or *size_change_ok so that
939 we warn properly when dynamic library symbols are overridden. */
941 if (newdef && !newdyn && olddyn)
942 newweak = FALSE;
943 if (olddef && newdyn)
944 oldweak = FALSE;
946 /* It's OK to change the type if either the existing symbol or the
947 new symbol is weak. A type change is also OK if the old symbol
948 is undefined and the new symbol is defined. */
950 if (oldweak
951 || newweak
952 || (newdef
953 && h->root.type == bfd_link_hash_undefined))
954 *type_change_ok = TRUE;
956 /* It's OK to change the size if either the existing symbol or the
957 new symbol is weak, or if the old symbol is undefined. */
959 if (*type_change_ok
960 || h->root.type == bfd_link_hash_undefined)
961 *size_change_ok = TRUE;
963 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
964 symbol, respectively, appears to be a common symbol in a dynamic
965 object. If a symbol appears in an uninitialized section, and is
966 not weak, and is not a function, then it may be a common symbol
967 which was resolved when the dynamic object was created. We want
968 to treat such symbols specially, because they raise special
969 considerations when setting the symbol size: if the symbol
970 appears as a common symbol in a regular object, and the size in
971 the regular object is larger, we must make sure that we use the
972 larger size. This problematic case can always be avoided in C,
973 but it must be handled correctly when using Fortran shared
974 libraries.
976 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
977 likewise for OLDDYNCOMMON and OLDDEF.
979 Note that this test is just a heuristic, and that it is quite
980 possible to have an uninitialized symbol in a shared object which
981 is really a definition, rather than a common symbol. This could
982 lead to some minor confusion when the symbol really is a common
983 symbol in some regular object. However, I think it will be
984 harmless. */
986 if (newdyn
987 && newdef
988 && !newweak
989 && (sec->flags & SEC_ALLOC) != 0
990 && (sec->flags & SEC_LOAD) == 0
991 && sym->st_size > 0
992 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
993 newdyncommon = TRUE;
994 else
995 newdyncommon = FALSE;
997 if (olddyn
998 && olddef
999 && h->root.type == bfd_link_hash_defined
1000 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1001 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1002 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1003 && h->size > 0
1004 && h->type != STT_FUNC)
1005 olddyncommon = TRUE;
1006 else
1007 olddyncommon = FALSE;
1009 /* If both the old and the new symbols look like common symbols in a
1010 dynamic object, set the size of the symbol to the larger of the
1011 two. */
1013 if (olddyncommon
1014 && newdyncommon
1015 && sym->st_size != h->size)
1017 /* Since we think we have two common symbols, issue a multiple
1018 common warning if desired. Note that we only warn if the
1019 size is different. If the size is the same, we simply let
1020 the old symbol override the new one as normally happens with
1021 symbols defined in dynamic objects. */
1023 if (! ((*info->callbacks->multiple_common)
1024 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1025 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1026 return FALSE;
1028 if (sym->st_size > h->size)
1029 h->size = sym->st_size;
1031 *size_change_ok = TRUE;
1034 /* If we are looking at a dynamic object, and we have found a
1035 definition, we need to see if the symbol was already defined by
1036 some other object. If so, we want to use the existing
1037 definition, and we do not want to report a multiple symbol
1038 definition error; we do this by clobbering *PSEC to be
1039 bfd_und_section_ptr.
1041 We treat a common symbol as a definition if the symbol in the
1042 shared library is a function, since common symbols always
1043 represent variables; this can cause confusion in principle, but
1044 any such confusion would seem to indicate an erroneous program or
1045 shared library. We also permit a common symbol in a regular
1046 object to override a weak symbol in a shared object. */
1048 if (newdyn
1049 && newdef
1050 && (olddef
1051 || (h->root.type == bfd_link_hash_common
1052 && (newweak
1053 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1055 *override = TRUE;
1056 newdef = FALSE;
1057 newdyncommon = FALSE;
1059 *psec = sec = bfd_und_section_ptr;
1060 *size_change_ok = TRUE;
1062 /* If we get here when the old symbol is a common symbol, then
1063 we are explicitly letting it override a weak symbol or
1064 function in a dynamic object, and we don't want to warn about
1065 a type change. If the old symbol is a defined symbol, a type
1066 change warning may still be appropriate. */
1068 if (h->root.type == bfd_link_hash_common)
1069 *type_change_ok = TRUE;
1072 /* Handle the special case of an old common symbol merging with a
1073 new symbol which looks like a common symbol in a shared object.
1074 We change *PSEC and *PVALUE to make the new symbol look like a
1075 common symbol, and let _bfd_generic_link_add_one_symbol will do
1076 the right thing. */
1078 if (newdyncommon
1079 && h->root.type == bfd_link_hash_common)
1081 *override = TRUE;
1082 newdef = FALSE;
1083 newdyncommon = FALSE;
1084 *pvalue = sym->st_size;
1085 *psec = sec = bfd_com_section_ptr;
1086 *size_change_ok = TRUE;
1089 /* If the old symbol is from a dynamic object, and the new symbol is
1090 a definition which is not from a dynamic object, then the new
1091 symbol overrides the old symbol. Symbols from regular files
1092 always take precedence over symbols from dynamic objects, even if
1093 they are defined after the dynamic object in the link.
1095 As above, we again permit a common symbol in a regular object to
1096 override a definition in a shared object if the shared object
1097 symbol is a function or is weak. */
1099 flip = NULL;
1100 if (! newdyn
1101 && (newdef
1102 || (bfd_is_com_section (sec)
1103 && (oldweak
1104 || h->type == STT_FUNC)))
1105 && olddyn
1106 && olddef
1107 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
1109 /* Change the hash table entry to undefined, and let
1110 _bfd_generic_link_add_one_symbol do the right thing with the
1111 new definition. */
1113 h->root.type = bfd_link_hash_undefined;
1114 h->root.u.undef.abfd = h->root.u.def.section->owner;
1115 *size_change_ok = TRUE;
1117 olddef = FALSE;
1118 olddyncommon = FALSE;
1120 /* We again permit a type change when a common symbol may be
1121 overriding a function. */
1123 if (bfd_is_com_section (sec))
1124 *type_change_ok = TRUE;
1126 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1127 flip = *sym_hash;
1128 else
1129 /* This union may have been set to be non-NULL when this symbol
1130 was seen in a dynamic object. We must force the union to be
1131 NULL, so that it is correct for a regular symbol. */
1132 h->verinfo.vertree = NULL;
1135 /* Handle the special case of a new common symbol merging with an
1136 old symbol that looks like it might be a common symbol defined in
1137 a shared object. Note that we have already handled the case in
1138 which a new common symbol should simply override the definition
1139 in the shared library. */
1141 if (! newdyn
1142 && bfd_is_com_section (sec)
1143 && olddyncommon)
1145 /* It would be best if we could set the hash table entry to a
1146 common symbol, but we don't know what to use for the section
1147 or the alignment. */
1148 if (! ((*info->callbacks->multiple_common)
1149 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1150 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1151 return FALSE;
1153 /* If the presumed common symbol in the dynamic object is
1154 larger, pretend that the new symbol has its size. */
1156 if (h->size > *pvalue)
1157 *pvalue = h->size;
1159 /* FIXME: We no longer know the alignment required by the symbol
1160 in the dynamic object, so we just wind up using the one from
1161 the regular object. */
1163 olddef = FALSE;
1164 olddyncommon = FALSE;
1166 h->root.type = bfd_link_hash_undefined;
1167 h->root.u.undef.abfd = h->root.u.def.section->owner;
1169 *size_change_ok = TRUE;
1170 *type_change_ok = TRUE;
1172 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1173 flip = *sym_hash;
1174 else
1175 h->verinfo.vertree = NULL;
1178 if (flip != NULL)
1180 /* Handle the case where we had a versioned symbol in a dynamic
1181 library and now find a definition in a normal object. In this
1182 case, we make the versioned symbol point to the normal one. */
1183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1184 flip->root.type = h->root.type;
1185 h->root.type = bfd_link_hash_indirect;
1186 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1187 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1188 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1189 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1191 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
1192 flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1196 return TRUE;
1199 /* This function is called to create an indirect symbol from the
1200 default for the symbol with the default version if needed. The
1201 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1202 set DYNSYM if the new indirect symbol is dynamic. */
1204 bfd_boolean
1205 _bfd_elf_add_default_symbol (bfd *abfd,
1206 struct bfd_link_info *info,
1207 struct elf_link_hash_entry *h,
1208 const char *name,
1209 Elf_Internal_Sym *sym,
1210 asection **psec,
1211 bfd_vma *value,
1212 bfd_boolean *dynsym,
1213 bfd_boolean override)
1215 bfd_boolean type_change_ok;
1216 bfd_boolean size_change_ok;
1217 bfd_boolean skip;
1218 char *shortname;
1219 struct elf_link_hash_entry *hi;
1220 struct bfd_link_hash_entry *bh;
1221 const struct elf_backend_data *bed;
1222 bfd_boolean collect;
1223 bfd_boolean dynamic;
1224 char *p;
1225 size_t len, shortlen;
1226 asection *sec;
1228 /* If this symbol has a version, and it is the default version, we
1229 create an indirect symbol from the default name to the fully
1230 decorated name. This will cause external references which do not
1231 specify a version to be bound to this version of the symbol. */
1232 p = strchr (name, ELF_VER_CHR);
1233 if (p == NULL || p[1] != ELF_VER_CHR)
1234 return TRUE;
1236 if (override)
1238 /* We are overridden by an old definition. We need to check if we
1239 need to create the indirect symbol from the default name. */
1240 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1241 FALSE, FALSE);
1242 BFD_ASSERT (hi != NULL);
1243 if (hi == h)
1244 return TRUE;
1245 while (hi->root.type == bfd_link_hash_indirect
1246 || hi->root.type == bfd_link_hash_warning)
1248 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1249 if (hi == h)
1250 return TRUE;
1254 bed = get_elf_backend_data (abfd);
1255 collect = bed->collect;
1256 dynamic = (abfd->flags & DYNAMIC) != 0;
1258 shortlen = p - name;
1259 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1260 if (shortname == NULL)
1261 return FALSE;
1262 memcpy (shortname, name, shortlen);
1263 shortname[shortlen] = '\0';
1265 /* We are going to create a new symbol. Merge it with any existing
1266 symbol with this name. For the purposes of the merge, act as
1267 though we were defining the symbol we just defined, although we
1268 actually going to define an indirect symbol. */
1269 type_change_ok = FALSE;
1270 size_change_ok = FALSE;
1271 sec = *psec;
1272 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1273 &hi, &skip, &override, &type_change_ok,
1274 &size_change_ok))
1275 return FALSE;
1277 if (skip)
1278 goto nondefault;
1280 if (! override)
1282 bh = &hi->root;
1283 if (! (_bfd_generic_link_add_one_symbol
1284 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1285 0, name, FALSE, collect, &bh)))
1286 return FALSE;
1287 hi = (struct elf_link_hash_entry *) bh;
1289 else
1291 /* In this case the symbol named SHORTNAME is overriding the
1292 indirect symbol we want to add. We were planning on making
1293 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1294 is the name without a version. NAME is the fully versioned
1295 name, and it is the default version.
1297 Overriding means that we already saw a definition for the
1298 symbol SHORTNAME in a regular object, and it is overriding
1299 the symbol defined in the dynamic object.
1301 When this happens, we actually want to change NAME, the
1302 symbol we just added, to refer to SHORTNAME. This will cause
1303 references to NAME in the shared object to become references
1304 to SHORTNAME in the regular object. This is what we expect
1305 when we override a function in a shared object: that the
1306 references in the shared object will be mapped to the
1307 definition in the regular object. */
1309 while (hi->root.type == bfd_link_hash_indirect
1310 || hi->root.type == bfd_link_hash_warning)
1311 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1313 h->root.type = bfd_link_hash_indirect;
1314 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1315 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1317 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1318 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1319 if (hi->elf_link_hash_flags
1320 & (ELF_LINK_HASH_REF_REGULAR
1321 | ELF_LINK_HASH_DEF_REGULAR))
1323 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1324 return FALSE;
1328 /* Now set HI to H, so that the following code will set the
1329 other fields correctly. */
1330 hi = h;
1333 /* If there is a duplicate definition somewhere, then HI may not
1334 point to an indirect symbol. We will have reported an error to
1335 the user in that case. */
1337 if (hi->root.type == bfd_link_hash_indirect)
1339 struct elf_link_hash_entry *ht;
1341 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1342 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1344 /* See if the new flags lead us to realize that the symbol must
1345 be dynamic. */
1346 if (! *dynsym)
1348 if (! dynamic)
1350 if (info->shared
1351 || ((hi->elf_link_hash_flags
1352 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1353 *dynsym = TRUE;
1355 else
1357 if ((hi->elf_link_hash_flags
1358 & ELF_LINK_HASH_REF_REGULAR) != 0)
1359 *dynsym = TRUE;
1364 /* We also need to define an indirection from the nondefault version
1365 of the symbol. */
1367 nondefault:
1368 len = strlen (name);
1369 shortname = bfd_hash_allocate (&info->hash->table, len);
1370 if (shortname == NULL)
1371 return FALSE;
1372 memcpy (shortname, name, shortlen);
1373 memcpy (shortname + shortlen, p + 1, len - shortlen);
1375 /* Once again, merge with any existing symbol. */
1376 type_change_ok = FALSE;
1377 size_change_ok = FALSE;
1378 sec = *psec;
1379 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1380 &hi, &skip, &override, &type_change_ok,
1381 &size_change_ok))
1382 return FALSE;
1384 if (skip)
1385 return TRUE;
1387 if (override)
1389 /* Here SHORTNAME is a versioned name, so we don't expect to see
1390 the type of override we do in the case above unless it is
1391 overridden by a versioned definition. */
1392 if (hi->root.type != bfd_link_hash_defined
1393 && hi->root.type != bfd_link_hash_defweak)
1394 (*_bfd_error_handler)
1395 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1396 bfd_archive_filename (abfd), shortname);
1398 else
1400 bh = &hi->root;
1401 if (! (_bfd_generic_link_add_one_symbol
1402 (info, abfd, shortname, BSF_INDIRECT,
1403 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1404 return FALSE;
1405 hi = (struct elf_link_hash_entry *) bh;
1407 /* If there is a duplicate definition somewhere, then HI may not
1408 point to an indirect symbol. We will have reported an error
1409 to the user in that case. */
1411 if (hi->root.type == bfd_link_hash_indirect)
1413 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1415 /* See if the new flags lead us to realize that the symbol
1416 must be dynamic. */
1417 if (! *dynsym)
1419 if (! dynamic)
1421 if (info->shared
1422 || ((hi->elf_link_hash_flags
1423 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1424 *dynsym = TRUE;
1426 else
1428 if ((hi->elf_link_hash_flags
1429 & ELF_LINK_HASH_REF_REGULAR) != 0)
1430 *dynsym = TRUE;
1436 return TRUE;
1439 /* This routine is used to export all defined symbols into the dynamic
1440 symbol table. It is called via elf_link_hash_traverse. */
1442 bfd_boolean
1443 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1445 struct elf_info_failed *eif = data;
1447 /* Ignore indirect symbols. These are added by the versioning code. */
1448 if (h->root.type == bfd_link_hash_indirect)
1449 return TRUE;
1451 if (h->root.type == bfd_link_hash_warning)
1452 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1454 if (h->dynindx == -1
1455 && (h->elf_link_hash_flags
1456 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1458 struct bfd_elf_version_tree *t;
1459 struct bfd_elf_version_expr *d;
1461 for (t = eif->verdefs; t != NULL; t = t->next)
1463 if (t->globals.list != NULL)
1465 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1466 if (d != NULL)
1467 goto doit;
1470 if (t->locals.list != NULL)
1472 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1473 if (d != NULL)
1474 return TRUE;
1478 if (!eif->verdefs)
1480 doit:
1481 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1483 eif->failed = TRUE;
1484 return FALSE;
1489 return TRUE;
1492 /* Look through the symbols which are defined in other shared
1493 libraries and referenced here. Update the list of version
1494 dependencies. This will be put into the .gnu.version_r section.
1495 This function is called via elf_link_hash_traverse. */
1497 bfd_boolean
1498 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1499 void *data)
1501 struct elf_find_verdep_info *rinfo = data;
1502 Elf_Internal_Verneed *t;
1503 Elf_Internal_Vernaux *a;
1504 bfd_size_type amt;
1506 if (h->root.type == bfd_link_hash_warning)
1507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1509 /* We only care about symbols defined in shared objects with version
1510 information. */
1511 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1513 || h->dynindx == -1
1514 || h->verinfo.verdef == NULL)
1515 return TRUE;
1517 /* See if we already know about this version. */
1518 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1520 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1521 continue;
1523 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1524 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1525 return TRUE;
1527 break;
1530 /* This is a new version. Add it to tree we are building. */
1532 if (t == NULL)
1534 amt = sizeof *t;
1535 t = bfd_zalloc (rinfo->output_bfd, amt);
1536 if (t == NULL)
1538 rinfo->failed = TRUE;
1539 return FALSE;
1542 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1543 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1544 elf_tdata (rinfo->output_bfd)->verref = t;
1547 amt = sizeof *a;
1548 a = bfd_zalloc (rinfo->output_bfd, amt);
1550 /* Note that we are copying a string pointer here, and testing it
1551 above. If bfd_elf_string_from_elf_section is ever changed to
1552 discard the string data when low in memory, this will have to be
1553 fixed. */
1554 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1556 a->vna_flags = h->verinfo.verdef->vd_flags;
1557 a->vna_nextptr = t->vn_auxptr;
1559 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1560 ++rinfo->vers;
1562 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1564 t->vn_auxptr = a;
1566 return TRUE;
1569 /* Figure out appropriate versions for all the symbols. We may not
1570 have the version number script until we have read all of the input
1571 files, so until that point we don't know which symbols should be
1572 local. This function is called via elf_link_hash_traverse. */
1574 bfd_boolean
1575 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1577 struct elf_assign_sym_version_info *sinfo;
1578 struct bfd_link_info *info;
1579 const struct elf_backend_data *bed;
1580 struct elf_info_failed eif;
1581 char *p;
1582 bfd_size_type amt;
1584 sinfo = data;
1585 info = sinfo->info;
1587 if (h->root.type == bfd_link_hash_warning)
1588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1590 /* Fix the symbol flags. */
1591 eif.failed = FALSE;
1592 eif.info = info;
1593 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1595 if (eif.failed)
1596 sinfo->failed = TRUE;
1597 return FALSE;
1600 /* We only need version numbers for symbols defined in regular
1601 objects. */
1602 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1603 return TRUE;
1605 bed = get_elf_backend_data (sinfo->output_bfd);
1606 p = strchr (h->root.root.string, ELF_VER_CHR);
1607 if (p != NULL && h->verinfo.vertree == NULL)
1609 struct bfd_elf_version_tree *t;
1610 bfd_boolean hidden;
1612 hidden = TRUE;
1614 /* There are two consecutive ELF_VER_CHR characters if this is
1615 not a hidden symbol. */
1616 ++p;
1617 if (*p == ELF_VER_CHR)
1619 hidden = FALSE;
1620 ++p;
1623 /* If there is no version string, we can just return out. */
1624 if (*p == '\0')
1626 if (hidden)
1627 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1628 return TRUE;
1631 /* Look for the version. If we find it, it is no longer weak. */
1632 for (t = sinfo->verdefs; t != NULL; t = t->next)
1634 if (strcmp (t->name, p) == 0)
1636 size_t len;
1637 char *alc;
1638 struct bfd_elf_version_expr *d;
1640 len = p - h->root.root.string;
1641 alc = bfd_malloc (len);
1642 if (alc == NULL)
1643 return FALSE;
1644 memcpy (alc, h->root.root.string, len - 1);
1645 alc[len - 1] = '\0';
1646 if (alc[len - 2] == ELF_VER_CHR)
1647 alc[len - 2] = '\0';
1649 h->verinfo.vertree = t;
1650 t->used = TRUE;
1651 d = NULL;
1653 if (t->globals.list != NULL)
1654 d = (*t->match) (&t->globals, NULL, alc);
1656 /* See if there is anything to force this symbol to
1657 local scope. */
1658 if (d == NULL && t->locals.list != NULL)
1660 d = (*t->match) (&t->locals, NULL, alc);
1661 if (d != NULL
1662 && h->dynindx != -1
1663 && info->shared
1664 && ! info->export_dynamic)
1665 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1668 free (alc);
1669 break;
1673 /* If we are building an application, we need to create a
1674 version node for this version. */
1675 if (t == NULL && info->executable)
1677 struct bfd_elf_version_tree **pp;
1678 int version_index;
1680 /* If we aren't going to export this symbol, we don't need
1681 to worry about it. */
1682 if (h->dynindx == -1)
1683 return TRUE;
1685 amt = sizeof *t;
1686 t = bfd_zalloc (sinfo->output_bfd, amt);
1687 if (t == NULL)
1689 sinfo->failed = TRUE;
1690 return FALSE;
1693 t->name = p;
1694 t->name_indx = (unsigned int) -1;
1695 t->used = TRUE;
1697 version_index = 1;
1698 /* Don't count anonymous version tag. */
1699 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1700 version_index = 0;
1701 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1702 ++version_index;
1703 t->vernum = version_index;
1705 *pp = t;
1707 h->verinfo.vertree = t;
1709 else if (t == NULL)
1711 /* We could not find the version for a symbol when
1712 generating a shared archive. Return an error. */
1713 (*_bfd_error_handler)
1714 (_("%s: undefined versioned symbol name %s"),
1715 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
1716 bfd_set_error (bfd_error_bad_value);
1717 sinfo->failed = TRUE;
1718 return FALSE;
1721 if (hidden)
1722 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1725 /* If we don't have a version for this symbol, see if we can find
1726 something. */
1727 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1729 struct bfd_elf_version_tree *t;
1730 struct bfd_elf_version_tree *local_ver;
1731 struct bfd_elf_version_expr *d;
1733 /* See if can find what version this symbol is in. If the
1734 symbol is supposed to be local, then don't actually register
1735 it. */
1736 local_ver = NULL;
1737 for (t = sinfo->verdefs; t != NULL; t = t->next)
1739 if (t->globals.list != NULL)
1741 bfd_boolean matched;
1743 matched = FALSE;
1744 d = NULL;
1745 while ((d = (*t->match) (&t->globals, d,
1746 h->root.root.string)) != NULL)
1747 if (d->symver)
1748 matched = TRUE;
1749 else
1751 /* There is a version without definition. Make
1752 the symbol the default definition for this
1753 version. */
1754 h->verinfo.vertree = t;
1755 local_ver = NULL;
1756 d->script = 1;
1757 break;
1759 if (d != NULL)
1760 break;
1761 else if (matched)
1762 /* There is no undefined version for this symbol. Hide the
1763 default one. */
1764 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1767 if (t->locals.list != NULL)
1769 d = NULL;
1770 while ((d = (*t->match) (&t->locals, d,
1771 h->root.root.string)) != NULL)
1773 local_ver = t;
1774 /* If the match is "*", keep looking for a more
1775 explicit, perhaps even global, match.
1776 XXX: Shouldn't this be !d->wildcard instead? */
1777 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1778 break;
1781 if (d != NULL)
1782 break;
1786 if (local_ver != NULL)
1788 h->verinfo.vertree = local_ver;
1789 if (h->dynindx != -1
1790 && info->shared
1791 && ! info->export_dynamic)
1793 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1798 return TRUE;
1801 /* Read and swap the relocs from the section indicated by SHDR. This
1802 may be either a REL or a RELA section. The relocations are
1803 translated into RELA relocations and stored in INTERNAL_RELOCS,
1804 which should have already been allocated to contain enough space.
1805 The EXTERNAL_RELOCS are a buffer where the external form of the
1806 relocations should be stored.
1808 Returns FALSE if something goes wrong. */
1810 static bfd_boolean
1811 elf_link_read_relocs_from_section (bfd *abfd,
1812 asection *sec,
1813 Elf_Internal_Shdr *shdr,
1814 void *external_relocs,
1815 Elf_Internal_Rela *internal_relocs)
1817 const struct elf_backend_data *bed;
1818 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1819 const bfd_byte *erela;
1820 const bfd_byte *erelaend;
1821 Elf_Internal_Rela *irela;
1822 Elf_Internal_Shdr *symtab_hdr;
1823 size_t nsyms;
1825 /* Position ourselves at the start of the section. */
1826 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1827 return FALSE;
1829 /* Read the relocations. */
1830 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1831 return FALSE;
1833 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1834 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1836 bed = get_elf_backend_data (abfd);
1838 /* Convert the external relocations to the internal format. */
1839 if (shdr->sh_entsize == bed->s->sizeof_rel)
1840 swap_in = bed->s->swap_reloc_in;
1841 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1842 swap_in = bed->s->swap_reloca_in;
1843 else
1845 bfd_set_error (bfd_error_wrong_format);
1846 return FALSE;
1849 erela = external_relocs;
1850 erelaend = erela + shdr->sh_size;
1851 irela = internal_relocs;
1852 while (erela < erelaend)
1854 bfd_vma r_symndx;
1856 (*swap_in) (abfd, erela, irela);
1857 r_symndx = ELF32_R_SYM (irela->r_info);
1858 if (bed->s->arch_size == 64)
1859 r_symndx >>= 24;
1860 if ((size_t) r_symndx >= nsyms)
1862 char *sec_name = bfd_get_section_ident (sec);
1863 (*_bfd_error_handler)
1864 (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"),
1865 bfd_archive_filename (abfd), (unsigned long) r_symndx,
1866 (unsigned long) nsyms, irela->r_offset,
1867 sec_name ? sec_name : sec->name);
1868 if (sec_name)
1869 free (sec_name);
1870 bfd_set_error (bfd_error_bad_value);
1871 return FALSE;
1873 irela += bed->s->int_rels_per_ext_rel;
1874 erela += shdr->sh_entsize;
1877 return TRUE;
1880 /* Read and swap the relocs for a section O. They may have been
1881 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1882 not NULL, they are used as buffers to read into. They are known to
1883 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1884 the return value is allocated using either malloc or bfd_alloc,
1885 according to the KEEP_MEMORY argument. If O has two relocation
1886 sections (both REL and RELA relocations), then the REL_HDR
1887 relocations will appear first in INTERNAL_RELOCS, followed by the
1888 REL_HDR2 relocations. */
1890 Elf_Internal_Rela *
1891 _bfd_elf_link_read_relocs (bfd *abfd,
1892 asection *o,
1893 void *external_relocs,
1894 Elf_Internal_Rela *internal_relocs,
1895 bfd_boolean keep_memory)
1897 Elf_Internal_Shdr *rel_hdr;
1898 void *alloc1 = NULL;
1899 Elf_Internal_Rela *alloc2 = NULL;
1900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1902 if (elf_section_data (o)->relocs != NULL)
1903 return elf_section_data (o)->relocs;
1905 if (o->reloc_count == 0)
1906 return NULL;
1908 rel_hdr = &elf_section_data (o)->rel_hdr;
1910 if (internal_relocs == NULL)
1912 bfd_size_type size;
1914 size = o->reloc_count;
1915 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1916 if (keep_memory)
1917 internal_relocs = bfd_alloc (abfd, size);
1918 else
1919 internal_relocs = alloc2 = bfd_malloc (size);
1920 if (internal_relocs == NULL)
1921 goto error_return;
1924 if (external_relocs == NULL)
1926 bfd_size_type size = rel_hdr->sh_size;
1928 if (elf_section_data (o)->rel_hdr2)
1929 size += elf_section_data (o)->rel_hdr2->sh_size;
1930 alloc1 = bfd_malloc (size);
1931 if (alloc1 == NULL)
1932 goto error_return;
1933 external_relocs = alloc1;
1936 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
1937 external_relocs,
1938 internal_relocs))
1939 goto error_return;
1940 if (elf_section_data (o)->rel_hdr2
1941 && (!elf_link_read_relocs_from_section
1942 (abfd, o,
1943 elf_section_data (o)->rel_hdr2,
1944 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
1945 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
1946 * bed->s->int_rels_per_ext_rel))))
1947 goto error_return;
1949 /* Cache the results for next time, if we can. */
1950 if (keep_memory)
1951 elf_section_data (o)->relocs = internal_relocs;
1953 if (alloc1 != NULL)
1954 free (alloc1);
1956 /* Don't free alloc2, since if it was allocated we are passing it
1957 back (under the name of internal_relocs). */
1959 return internal_relocs;
1961 error_return:
1962 if (alloc1 != NULL)
1963 free (alloc1);
1964 if (alloc2 != NULL)
1965 free (alloc2);
1966 return NULL;
1969 /* Compute the size of, and allocate space for, REL_HDR which is the
1970 section header for a section containing relocations for O. */
1972 bfd_boolean
1973 _bfd_elf_link_size_reloc_section (bfd *abfd,
1974 Elf_Internal_Shdr *rel_hdr,
1975 asection *o)
1977 bfd_size_type reloc_count;
1978 bfd_size_type num_rel_hashes;
1980 /* Figure out how many relocations there will be. */
1981 if (rel_hdr == &elf_section_data (o)->rel_hdr)
1982 reloc_count = elf_section_data (o)->rel_count;
1983 else
1984 reloc_count = elf_section_data (o)->rel_count2;
1986 num_rel_hashes = o->reloc_count;
1987 if (num_rel_hashes < reloc_count)
1988 num_rel_hashes = reloc_count;
1990 /* That allows us to calculate the size of the section. */
1991 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
1993 /* The contents field must last into write_object_contents, so we
1994 allocate it with bfd_alloc rather than malloc. Also since we
1995 cannot be sure that the contents will actually be filled in,
1996 we zero the allocated space. */
1997 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
1998 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
1999 return FALSE;
2001 /* We only allocate one set of hash entries, so we only do it the
2002 first time we are called. */
2003 if (elf_section_data (o)->rel_hashes == NULL
2004 && num_rel_hashes)
2006 struct elf_link_hash_entry **p;
2008 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2009 if (p == NULL)
2010 return FALSE;
2012 elf_section_data (o)->rel_hashes = p;
2015 return TRUE;
2018 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2019 originated from the section given by INPUT_REL_HDR) to the
2020 OUTPUT_BFD. */
2022 bfd_boolean
2023 _bfd_elf_link_output_relocs (bfd *output_bfd,
2024 asection *input_section,
2025 Elf_Internal_Shdr *input_rel_hdr,
2026 Elf_Internal_Rela *internal_relocs)
2028 Elf_Internal_Rela *irela;
2029 Elf_Internal_Rela *irelaend;
2030 bfd_byte *erel;
2031 Elf_Internal_Shdr *output_rel_hdr;
2032 asection *output_section;
2033 unsigned int *rel_countp = NULL;
2034 const struct elf_backend_data *bed;
2035 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2037 output_section = input_section->output_section;
2038 output_rel_hdr = NULL;
2040 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2041 == input_rel_hdr->sh_entsize)
2043 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2044 rel_countp = &elf_section_data (output_section)->rel_count;
2046 else if (elf_section_data (output_section)->rel_hdr2
2047 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2048 == input_rel_hdr->sh_entsize))
2050 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2051 rel_countp = &elf_section_data (output_section)->rel_count2;
2053 else
2055 char *sec_name = bfd_get_section_ident (input_section);
2056 (*_bfd_error_handler)
2057 (_("%s: relocation size mismatch in %s section %s"),
2058 bfd_get_filename (output_bfd),
2059 bfd_archive_filename (input_section->owner),
2060 sec_name ? sec_name : input_section->name);
2061 if (sec_name)
2062 free (sec_name);
2063 bfd_set_error (bfd_error_wrong_object_format);
2064 return FALSE;
2067 bed = get_elf_backend_data (output_bfd);
2068 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2069 swap_out = bed->s->swap_reloc_out;
2070 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2071 swap_out = bed->s->swap_reloca_out;
2072 else
2073 abort ();
2075 erel = output_rel_hdr->contents;
2076 erel += *rel_countp * input_rel_hdr->sh_entsize;
2077 irela = internal_relocs;
2078 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2079 * bed->s->int_rels_per_ext_rel);
2080 while (irela < irelaend)
2082 (*swap_out) (output_bfd, irela, erel);
2083 irela += bed->s->int_rels_per_ext_rel;
2084 erel += input_rel_hdr->sh_entsize;
2087 /* Bump the counter, so that we know where to add the next set of
2088 relocations. */
2089 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2091 return TRUE;
2094 /* Fix up the flags for a symbol. This handles various cases which
2095 can only be fixed after all the input files are seen. This is
2096 currently called by both adjust_dynamic_symbol and
2097 assign_sym_version, which is unnecessary but perhaps more robust in
2098 the face of future changes. */
2100 bfd_boolean
2101 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2102 struct elf_info_failed *eif)
2104 /* If this symbol was mentioned in a non-ELF file, try to set
2105 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2106 permit a non-ELF file to correctly refer to a symbol defined in
2107 an ELF dynamic object. */
2108 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2110 while (h->root.type == bfd_link_hash_indirect)
2111 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2113 if (h->root.type != bfd_link_hash_defined
2114 && h->root.type != bfd_link_hash_defweak)
2115 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2116 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2117 else
2119 if (h->root.u.def.section->owner != NULL
2120 && (bfd_get_flavour (h->root.u.def.section->owner)
2121 == bfd_target_elf_flavour))
2122 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2123 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2124 else
2125 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2128 if (h->dynindx == -1
2129 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2130 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2132 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2134 eif->failed = TRUE;
2135 return FALSE;
2139 else
2141 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2142 was first seen in a non-ELF file. Fortunately, if the symbol
2143 was first seen in an ELF file, we're probably OK unless the
2144 symbol was defined in a non-ELF file. Catch that case here.
2145 FIXME: We're still in trouble if the symbol was first seen in
2146 a dynamic object, and then later in a non-ELF regular object. */
2147 if ((h->root.type == bfd_link_hash_defined
2148 || h->root.type == bfd_link_hash_defweak)
2149 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2150 && (h->root.u.def.section->owner != NULL
2151 ? (bfd_get_flavour (h->root.u.def.section->owner)
2152 != bfd_target_elf_flavour)
2153 : (bfd_is_abs_section (h->root.u.def.section)
2154 && (h->elf_link_hash_flags
2155 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
2156 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2159 /* If this is a final link, and the symbol was defined as a common
2160 symbol in a regular object file, and there was no definition in
2161 any dynamic object, then the linker will have allocated space for
2162 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2163 flag will not have been set. */
2164 if (h->root.type == bfd_link_hash_defined
2165 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2166 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2167 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2168 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2169 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2171 /* If -Bsymbolic was used (which means to bind references to global
2172 symbols to the definition within the shared object), and this
2173 symbol was defined in a regular object, then it actually doesn't
2174 need a PLT entry. Likewise, if the symbol has non-default
2175 visibility. If the symbol has hidden or internal visibility, we
2176 will force it local. */
2177 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
2178 && eif->info->shared
2179 && is_elf_hash_table (eif->info->hash)
2180 && (eif->info->symbolic
2181 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2182 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2184 const struct elf_backend_data *bed;
2185 bfd_boolean force_local;
2187 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2189 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2190 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2191 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2194 /* If a weak undefined symbol has non-default visibility, we also
2195 hide it from the dynamic linker. */
2196 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2197 && h->root.type == bfd_link_hash_undefweak)
2199 const struct elf_backend_data *bed;
2200 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2201 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2204 /* If this is a weak defined symbol in a dynamic object, and we know
2205 the real definition in the dynamic object, copy interesting flags
2206 over to the real definition. */
2207 if (h->weakdef != NULL)
2209 struct elf_link_hash_entry *weakdef;
2211 weakdef = h->weakdef;
2212 if (h->root.type == bfd_link_hash_indirect)
2213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2215 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2216 || h->root.type == bfd_link_hash_defweak);
2217 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2218 || weakdef->root.type == bfd_link_hash_defweak);
2219 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
2221 /* If the real definition is defined by a regular object file,
2222 don't do anything special. See the longer description in
2223 _bfd_elf_adjust_dynamic_symbol, below. */
2224 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2225 h->weakdef = NULL;
2226 else
2228 const struct elf_backend_data *bed;
2230 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2231 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2235 return TRUE;
2238 /* Make the backend pick a good value for a dynamic symbol. This is
2239 called via elf_link_hash_traverse, and also calls itself
2240 recursively. */
2242 bfd_boolean
2243 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2245 struct elf_info_failed *eif = data;
2246 bfd *dynobj;
2247 const struct elf_backend_data *bed;
2249 if (! is_elf_hash_table (eif->info->hash))
2250 return FALSE;
2252 if (h->root.type == bfd_link_hash_warning)
2254 h->plt = elf_hash_table (eif->info)->init_offset;
2255 h->got = elf_hash_table (eif->info)->init_offset;
2257 /* When warning symbols are created, they **replace** the "real"
2258 entry in the hash table, thus we never get to see the real
2259 symbol in a hash traversal. So look at it now. */
2260 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2263 /* Ignore indirect symbols. These are added by the versioning code. */
2264 if (h->root.type == bfd_link_hash_indirect)
2265 return TRUE;
2267 /* Fix the symbol flags. */
2268 if (! _bfd_elf_fix_symbol_flags (h, eif))
2269 return FALSE;
2271 /* If this symbol does not require a PLT entry, and it is not
2272 defined by a dynamic object, or is not referenced by a regular
2273 object, ignore it. We do have to handle a weak defined symbol,
2274 even if no regular object refers to it, if we decided to add it
2275 to the dynamic symbol table. FIXME: Do we normally need to worry
2276 about symbols which are defined by one dynamic object and
2277 referenced by another one? */
2278 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
2279 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2280 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2281 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
2282 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
2284 h->plt = elf_hash_table (eif->info)->init_offset;
2285 return TRUE;
2288 /* If we've already adjusted this symbol, don't do it again. This
2289 can happen via a recursive call. */
2290 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
2291 return TRUE;
2293 /* Don't look at this symbol again. Note that we must set this
2294 after checking the above conditions, because we may look at a
2295 symbol once, decide not to do anything, and then get called
2296 recursively later after REF_REGULAR is set below. */
2297 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
2299 /* If this is a weak definition, and we know a real definition, and
2300 the real symbol is not itself defined by a regular object file,
2301 then get a good value for the real definition. We handle the
2302 real symbol first, for the convenience of the backend routine.
2304 Note that there is a confusing case here. If the real definition
2305 is defined by a regular object file, we don't get the real symbol
2306 from the dynamic object, but we do get the weak symbol. If the
2307 processor backend uses a COPY reloc, then if some routine in the
2308 dynamic object changes the real symbol, we will not see that
2309 change in the corresponding weak symbol. This is the way other
2310 ELF linkers work as well, and seems to be a result of the shared
2311 library model.
2313 I will clarify this issue. Most SVR4 shared libraries define the
2314 variable _timezone and define timezone as a weak synonym. The
2315 tzset call changes _timezone. If you write
2316 extern int timezone;
2317 int _timezone = 5;
2318 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2319 you might expect that, since timezone is a synonym for _timezone,
2320 the same number will print both times. However, if the processor
2321 backend uses a COPY reloc, then actually timezone will be copied
2322 into your process image, and, since you define _timezone
2323 yourself, _timezone will not. Thus timezone and _timezone will
2324 wind up at different memory locations. The tzset call will set
2325 _timezone, leaving timezone unchanged. */
2327 if (h->weakdef != NULL)
2329 /* If we get to this point, we know there is an implicit
2330 reference by a regular object file via the weak symbol H.
2331 FIXME: Is this really true? What if the traversal finds
2332 H->WEAKDEF before it finds H? */
2333 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2335 if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif))
2336 return FALSE;
2339 /* If a symbol has no type and no size and does not require a PLT
2340 entry, then we are probably about to do the wrong thing here: we
2341 are probably going to create a COPY reloc for an empty object.
2342 This case can arise when a shared object is built with assembly
2343 code, and the assembly code fails to set the symbol type. */
2344 if (h->size == 0
2345 && h->type == STT_NOTYPE
2346 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
2347 (*_bfd_error_handler)
2348 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2349 h->root.root.string);
2351 dynobj = elf_hash_table (eif->info)->dynobj;
2352 bed = get_elf_backend_data (dynobj);
2353 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2355 eif->failed = TRUE;
2356 return FALSE;
2359 return TRUE;
2362 /* Adjust all external symbols pointing into SEC_MERGE sections
2363 to reflect the object merging within the sections. */
2365 bfd_boolean
2366 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2368 asection *sec;
2370 if (h->root.type == bfd_link_hash_warning)
2371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2376 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2378 bfd *output_bfd = data;
2380 h->root.u.def.value =
2381 _bfd_merged_section_offset (output_bfd,
2382 &h->root.u.def.section,
2383 elf_section_data (sec)->sec_info,
2384 h->root.u.def.value);
2387 return TRUE;
2390 /* Returns false if the symbol referred to by H should be considered
2391 to resolve local to the current module, and true if it should be
2392 considered to bind dynamically. */
2394 bfd_boolean
2395 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2396 struct bfd_link_info *info,
2397 bfd_boolean ignore_protected)
2399 bfd_boolean binding_stays_local_p;
2401 if (h == NULL)
2402 return FALSE;
2404 while (h->root.type == bfd_link_hash_indirect
2405 || h->root.type == bfd_link_hash_warning)
2406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2408 /* If it was forced local, then clearly it's not dynamic. */
2409 if (h->dynindx == -1)
2410 return FALSE;
2411 if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2412 return FALSE;
2414 /* Identify the cases where name binding rules say that a
2415 visible symbol resolves locally. */
2416 binding_stays_local_p = info->executable || info->symbolic;
2418 switch (ELF_ST_VISIBILITY (h->other))
2420 case STV_INTERNAL:
2421 case STV_HIDDEN:
2422 return FALSE;
2424 case STV_PROTECTED:
2425 /* Proper resolution for function pointer equality may require
2426 that these symbols perhaps be resolved dynamically, even though
2427 we should be resolving them to the current module. */
2428 if (!ignore_protected)
2429 binding_stays_local_p = TRUE;
2430 break;
2432 default:
2433 break;
2436 /* If it isn't defined locally, then clearly it's dynamic. */
2437 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2438 return TRUE;
2440 /* Otherwise, the symbol is dynamic if binding rules don't tell
2441 us that it remains local. */
2442 return !binding_stays_local_p;
2445 /* Return true if the symbol referred to by H should be considered
2446 to resolve local to the current module, and false otherwise. Differs
2447 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2448 undefined symbols and weak symbols. */
2450 bfd_boolean
2451 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2452 struct bfd_link_info *info,
2453 bfd_boolean local_protected)
2455 /* If it's a local sym, of course we resolve locally. */
2456 if (h == NULL)
2457 return TRUE;
2459 /* If we don't have a definition in a regular file, then we can't
2460 resolve locally. The sym is either undefined or dynamic. */
2461 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2462 return FALSE;
2464 /* Forced local symbols resolve locally. */
2465 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2466 return TRUE;
2468 /* As do non-dynamic symbols. */
2469 if (h->dynindx == -1)
2470 return TRUE;
2472 /* At this point, we know the symbol is defined and dynamic. In an
2473 executable it must resolve locally, likewise when building symbolic
2474 shared libraries. */
2475 if (info->executable || info->symbolic)
2476 return TRUE;
2478 /* Now deal with defined dynamic symbols in shared libraries. Ones
2479 with default visibility might not resolve locally. */
2480 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2481 return FALSE;
2483 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2484 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2485 return TRUE;
2487 /* Function pointer equality tests may require that STV_PROTECTED
2488 symbols be treated as dynamic symbols, even when we know that the
2489 dynamic linker will resolve them locally. */
2490 return local_protected;
2493 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2494 aligned. Returns the first TLS output section. */
2496 struct bfd_section *
2497 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2499 struct bfd_section *sec, *tls;
2500 unsigned int align = 0;
2502 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2503 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2504 break;
2505 tls = sec;
2507 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2508 if (sec->alignment_power > align)
2509 align = sec->alignment_power;
2511 elf_hash_table (info)->tls_sec = tls;
2513 /* Ensure the alignment of the first section is the largest alignment,
2514 so that the tls segment starts aligned. */
2515 if (tls != NULL)
2516 tls->alignment_power = align;
2518 return tls;
2521 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2522 static bfd_boolean
2523 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2524 Elf_Internal_Sym *sym)
2526 /* Local symbols do not count, but target specific ones might. */
2527 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2528 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2529 return FALSE;
2531 /* Function symbols do not count. */
2532 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2533 return FALSE;
2535 /* If the section is undefined, then so is the symbol. */
2536 if (sym->st_shndx == SHN_UNDEF)
2537 return FALSE;
2539 /* If the symbol is defined in the common section, then
2540 it is a common definition and so does not count. */
2541 if (sym->st_shndx == SHN_COMMON)
2542 return FALSE;
2544 /* If the symbol is in a target specific section then we
2545 must rely upon the backend to tell us what it is. */
2546 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2547 /* FIXME - this function is not coded yet:
2549 return _bfd_is_global_symbol_definition (abfd, sym);
2551 Instead for now assume that the definition is not global,
2552 Even if this is wrong, at least the linker will behave
2553 in the same way that it used to do. */
2554 return FALSE;
2556 return TRUE;
2559 /* Search the symbol table of the archive element of the archive ABFD
2560 whose archive map contains a mention of SYMDEF, and determine if
2561 the symbol is defined in this element. */
2562 static bfd_boolean
2563 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2565 Elf_Internal_Shdr * hdr;
2566 bfd_size_type symcount;
2567 bfd_size_type extsymcount;
2568 bfd_size_type extsymoff;
2569 Elf_Internal_Sym *isymbuf;
2570 Elf_Internal_Sym *isym;
2571 Elf_Internal_Sym *isymend;
2572 bfd_boolean result;
2574 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2575 if (abfd == NULL)
2576 return FALSE;
2578 if (! bfd_check_format (abfd, bfd_object))
2579 return FALSE;
2581 /* If we have already included the element containing this symbol in the
2582 link then we do not need to include it again. Just claim that any symbol
2583 it contains is not a definition, so that our caller will not decide to
2584 (re)include this element. */
2585 if (abfd->archive_pass)
2586 return FALSE;
2588 /* Select the appropriate symbol table. */
2589 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2590 hdr = &elf_tdata (abfd)->symtab_hdr;
2591 else
2592 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2594 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2596 /* The sh_info field of the symtab header tells us where the
2597 external symbols start. We don't care about the local symbols. */
2598 if (elf_bad_symtab (abfd))
2600 extsymcount = symcount;
2601 extsymoff = 0;
2603 else
2605 extsymcount = symcount - hdr->sh_info;
2606 extsymoff = hdr->sh_info;
2609 if (extsymcount == 0)
2610 return FALSE;
2612 /* Read in the symbol table. */
2613 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2614 NULL, NULL, NULL);
2615 if (isymbuf == NULL)
2616 return FALSE;
2618 /* Scan the symbol table looking for SYMDEF. */
2619 result = FALSE;
2620 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2622 const char *name;
2624 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2625 isym->st_name);
2626 if (name == NULL)
2627 break;
2629 if (strcmp (name, symdef->name) == 0)
2631 result = is_global_data_symbol_definition (abfd, isym);
2632 break;
2636 free (isymbuf);
2638 return result;
2641 /* Add an entry to the .dynamic table. */
2643 bfd_boolean
2644 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2645 bfd_vma tag,
2646 bfd_vma val)
2648 struct elf_link_hash_table *hash_table;
2649 const struct elf_backend_data *bed;
2650 asection *s;
2651 bfd_size_type newsize;
2652 bfd_byte *newcontents;
2653 Elf_Internal_Dyn dyn;
2655 hash_table = elf_hash_table (info);
2656 if (! is_elf_hash_table (hash_table))
2657 return FALSE;
2659 bed = get_elf_backend_data (hash_table->dynobj);
2660 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2661 BFD_ASSERT (s != NULL);
2663 newsize = s->size + bed->s->sizeof_dyn;
2664 newcontents = bfd_realloc (s->contents, newsize);
2665 if (newcontents == NULL)
2666 return FALSE;
2668 dyn.d_tag = tag;
2669 dyn.d_un.d_val = val;
2670 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2672 s->size = newsize;
2673 s->contents = newcontents;
2675 return TRUE;
2678 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2679 otherwise just check whether one already exists. Returns -1 on error,
2680 1 if a DT_NEEDED tag already exists, and 0 on success. */
2682 static int
2683 elf_add_dt_needed_tag (struct bfd_link_info *info,
2684 const char *soname,
2685 bfd_boolean do_it)
2687 struct elf_link_hash_table *hash_table;
2688 bfd_size_type oldsize;
2689 bfd_size_type strindex;
2691 hash_table = elf_hash_table (info);
2692 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2693 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2694 if (strindex == (bfd_size_type) -1)
2695 return -1;
2697 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2699 asection *sdyn;
2700 const struct elf_backend_data *bed;
2701 bfd_byte *extdyn;
2703 bed = get_elf_backend_data (hash_table->dynobj);
2704 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2705 BFD_ASSERT (sdyn != NULL);
2707 for (extdyn = sdyn->contents;
2708 extdyn < sdyn->contents + sdyn->size;
2709 extdyn += bed->s->sizeof_dyn)
2711 Elf_Internal_Dyn dyn;
2713 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2714 if (dyn.d_tag == DT_NEEDED
2715 && dyn.d_un.d_val == strindex)
2717 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2718 return 1;
2723 if (do_it)
2725 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2726 return -1;
2728 else
2729 /* We were just checking for existence of the tag. */
2730 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2732 return 0;
2735 /* Sort symbol by value and section. */
2736 static int
2737 elf_sort_symbol (const void *arg1, const void *arg2)
2739 const struct elf_link_hash_entry *h1;
2740 const struct elf_link_hash_entry *h2;
2741 bfd_signed_vma vdiff;
2743 h1 = *(const struct elf_link_hash_entry **) arg1;
2744 h2 = *(const struct elf_link_hash_entry **) arg2;
2745 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2746 if (vdiff != 0)
2747 return vdiff > 0 ? 1 : -1;
2748 else
2750 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2751 if (sdiff != 0)
2752 return sdiff > 0 ? 1 : -1;
2754 return 0;
2757 /* This function is used to adjust offsets into .dynstr for
2758 dynamic symbols. This is called via elf_link_hash_traverse. */
2760 static bfd_boolean
2761 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2763 struct elf_strtab_hash *dynstr = data;
2765 if (h->root.type == bfd_link_hash_warning)
2766 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2768 if (h->dynindx != -1)
2769 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2770 return TRUE;
2773 /* Assign string offsets in .dynstr, update all structures referencing
2774 them. */
2776 static bfd_boolean
2777 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2779 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2780 struct elf_link_local_dynamic_entry *entry;
2781 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2782 bfd *dynobj = hash_table->dynobj;
2783 asection *sdyn;
2784 bfd_size_type size;
2785 const struct elf_backend_data *bed;
2786 bfd_byte *extdyn;
2788 _bfd_elf_strtab_finalize (dynstr);
2789 size = _bfd_elf_strtab_size (dynstr);
2791 bed = get_elf_backend_data (dynobj);
2792 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2793 BFD_ASSERT (sdyn != NULL);
2795 /* Update all .dynamic entries referencing .dynstr strings. */
2796 for (extdyn = sdyn->contents;
2797 extdyn < sdyn->contents + sdyn->size;
2798 extdyn += bed->s->sizeof_dyn)
2800 Elf_Internal_Dyn dyn;
2802 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2803 switch (dyn.d_tag)
2805 case DT_STRSZ:
2806 dyn.d_un.d_val = size;
2807 break;
2808 case DT_NEEDED:
2809 case DT_SONAME:
2810 case DT_RPATH:
2811 case DT_RUNPATH:
2812 case DT_FILTER:
2813 case DT_AUXILIARY:
2814 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2815 break;
2816 default:
2817 continue;
2819 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2822 /* Now update local dynamic symbols. */
2823 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2824 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2825 entry->isym.st_name);
2827 /* And the rest of dynamic symbols. */
2828 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2830 /* Adjust version definitions. */
2831 if (elf_tdata (output_bfd)->cverdefs)
2833 asection *s;
2834 bfd_byte *p;
2835 bfd_size_type i;
2836 Elf_Internal_Verdef def;
2837 Elf_Internal_Verdaux defaux;
2839 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2840 p = s->contents;
2843 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2844 &def);
2845 p += sizeof (Elf_External_Verdef);
2846 for (i = 0; i < def.vd_cnt; ++i)
2848 _bfd_elf_swap_verdaux_in (output_bfd,
2849 (Elf_External_Verdaux *) p, &defaux);
2850 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2851 defaux.vda_name);
2852 _bfd_elf_swap_verdaux_out (output_bfd,
2853 &defaux, (Elf_External_Verdaux *) p);
2854 p += sizeof (Elf_External_Verdaux);
2857 while (def.vd_next);
2860 /* Adjust version references. */
2861 if (elf_tdata (output_bfd)->verref)
2863 asection *s;
2864 bfd_byte *p;
2865 bfd_size_type i;
2866 Elf_Internal_Verneed need;
2867 Elf_Internal_Vernaux needaux;
2869 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2870 p = s->contents;
2873 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2874 &need);
2875 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2876 _bfd_elf_swap_verneed_out (output_bfd, &need,
2877 (Elf_External_Verneed *) p);
2878 p += sizeof (Elf_External_Verneed);
2879 for (i = 0; i < need.vn_cnt; ++i)
2881 _bfd_elf_swap_vernaux_in (output_bfd,
2882 (Elf_External_Vernaux *) p, &needaux);
2883 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2884 needaux.vna_name);
2885 _bfd_elf_swap_vernaux_out (output_bfd,
2886 &needaux,
2887 (Elf_External_Vernaux *) p);
2888 p += sizeof (Elf_External_Vernaux);
2891 while (need.vn_next);
2894 return TRUE;
2897 /* Add symbols from an ELF object file to the linker hash table. */
2899 static bfd_boolean
2900 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2902 bfd_boolean (*add_symbol_hook)
2903 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
2904 const char **, flagword *, asection **, bfd_vma *);
2905 bfd_boolean (*check_relocs)
2906 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
2907 bfd_boolean (*check_directives)
2908 (bfd *, struct bfd_link_info *);
2909 bfd_boolean collect;
2910 Elf_Internal_Shdr *hdr;
2911 bfd_size_type symcount;
2912 bfd_size_type extsymcount;
2913 bfd_size_type extsymoff;
2914 struct elf_link_hash_entry **sym_hash;
2915 bfd_boolean dynamic;
2916 Elf_External_Versym *extversym = NULL;
2917 Elf_External_Versym *ever;
2918 struct elf_link_hash_entry *weaks;
2919 struct elf_link_hash_entry **nondeflt_vers = NULL;
2920 bfd_size_type nondeflt_vers_cnt = 0;
2921 Elf_Internal_Sym *isymbuf = NULL;
2922 Elf_Internal_Sym *isym;
2923 Elf_Internal_Sym *isymend;
2924 const struct elf_backend_data *bed;
2925 bfd_boolean add_needed;
2926 struct elf_link_hash_table * hash_table;
2927 bfd_size_type amt;
2929 hash_table = elf_hash_table (info);
2931 bed = get_elf_backend_data (abfd);
2932 add_symbol_hook = bed->elf_add_symbol_hook;
2933 collect = bed->collect;
2935 if ((abfd->flags & DYNAMIC) == 0)
2936 dynamic = FALSE;
2937 else
2939 dynamic = TRUE;
2941 /* You can't use -r against a dynamic object. Also, there's no
2942 hope of using a dynamic object which does not exactly match
2943 the format of the output file. */
2944 if (info->relocatable
2945 || !is_elf_hash_table (hash_table)
2946 || hash_table->root.creator != abfd->xvec)
2948 bfd_set_error (bfd_error_invalid_operation);
2949 goto error_return;
2953 /* As a GNU extension, any input sections which are named
2954 .gnu.warning.SYMBOL are treated as warning symbols for the given
2955 symbol. This differs from .gnu.warning sections, which generate
2956 warnings when they are included in an output file. */
2957 if (info->executable)
2959 asection *s;
2961 for (s = abfd->sections; s != NULL; s = s->next)
2963 const char *name;
2965 name = bfd_get_section_name (abfd, s);
2966 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
2968 char *msg;
2969 bfd_size_type sz;
2970 bfd_size_type prefix_len;
2971 const char * gnu_warning_prefix = _("warning: ");
2973 name += sizeof ".gnu.warning." - 1;
2975 /* If this is a shared object, then look up the symbol
2976 in the hash table. If it is there, and it is already
2977 been defined, then we will not be using the entry
2978 from this shared object, so we don't need to warn.
2979 FIXME: If we see the definition in a regular object
2980 later on, we will warn, but we shouldn't. The only
2981 fix is to keep track of what warnings we are supposed
2982 to emit, and then handle them all at the end of the
2983 link. */
2984 if (dynamic)
2986 struct elf_link_hash_entry *h;
2988 h = elf_link_hash_lookup (hash_table, name,
2989 FALSE, FALSE, TRUE);
2991 /* FIXME: What about bfd_link_hash_common? */
2992 if (h != NULL
2993 && (h->root.type == bfd_link_hash_defined
2994 || h->root.type == bfd_link_hash_defweak))
2996 /* We don't want to issue this warning. Clobber
2997 the section size so that the warning does not
2998 get copied into the output file. */
2999 s->size = 0;
3000 continue;
3004 sz = s->size;
3005 prefix_len = strlen (gnu_warning_prefix);
3006 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3007 if (msg == NULL)
3008 goto error_return;
3010 strcpy (msg, gnu_warning_prefix);
3011 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3012 goto error_return;
3014 msg[prefix_len + sz] = '\0';
3016 if (! (_bfd_generic_link_add_one_symbol
3017 (info, abfd, name, BSF_WARNING, s, 0, msg,
3018 FALSE, collect, NULL)))
3019 goto error_return;
3021 if (! info->relocatable)
3023 /* Clobber the section size so that the warning does
3024 not get copied into the output file. */
3025 s->size = 0;
3031 add_needed = TRUE;
3032 if (! dynamic)
3034 /* If we are creating a shared library, create all the dynamic
3035 sections immediately. We need to attach them to something,
3036 so we attach them to this BFD, provided it is the right
3037 format. FIXME: If there are no input BFD's of the same
3038 format as the output, we can't make a shared library. */
3039 if (info->shared
3040 && is_elf_hash_table (hash_table)
3041 && hash_table->root.creator == abfd->xvec
3042 && ! hash_table->dynamic_sections_created)
3044 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3045 goto error_return;
3048 else if (!is_elf_hash_table (hash_table))
3049 goto error_return;
3050 else
3052 asection *s;
3053 const char *soname = NULL;
3054 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3055 int ret;
3057 /* ld --just-symbols and dynamic objects don't mix very well.
3058 Test for --just-symbols by looking at info set up by
3059 _bfd_elf_link_just_syms. */
3060 if ((s = abfd->sections) != NULL
3061 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3062 goto error_return;
3064 /* If this dynamic lib was specified on the command line with
3065 --as-needed in effect, then we don't want to add a DT_NEEDED
3066 tag unless the lib is actually used. Similary for libs brought
3067 in by another lib's DT_NEEDED. */
3068 add_needed = elf_dyn_lib_class (abfd) == DYN_NORMAL;
3070 s = bfd_get_section_by_name (abfd, ".dynamic");
3071 if (s != NULL)
3073 bfd_byte *dynbuf;
3074 bfd_byte *extdyn;
3075 int elfsec;
3076 unsigned long shlink;
3078 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3079 goto error_free_dyn;
3081 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3082 if (elfsec == -1)
3083 goto error_free_dyn;
3084 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3086 for (extdyn = dynbuf;
3087 extdyn < dynbuf + s->size;
3088 extdyn += bed->s->sizeof_dyn)
3090 Elf_Internal_Dyn dyn;
3092 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3093 if (dyn.d_tag == DT_SONAME)
3095 unsigned int tagv = dyn.d_un.d_val;
3096 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3097 if (soname == NULL)
3098 goto error_free_dyn;
3100 if (dyn.d_tag == DT_NEEDED)
3102 struct bfd_link_needed_list *n, **pn;
3103 char *fnm, *anm;
3104 unsigned int tagv = dyn.d_un.d_val;
3106 amt = sizeof (struct bfd_link_needed_list);
3107 n = bfd_alloc (abfd, amt);
3108 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3109 if (n == NULL || fnm == NULL)
3110 goto error_free_dyn;
3111 amt = strlen (fnm) + 1;
3112 anm = bfd_alloc (abfd, amt);
3113 if (anm == NULL)
3114 goto error_free_dyn;
3115 memcpy (anm, fnm, amt);
3116 n->name = anm;
3117 n->by = abfd;
3118 n->next = NULL;
3119 for (pn = & hash_table->needed;
3120 *pn != NULL;
3121 pn = &(*pn)->next)
3123 *pn = n;
3125 if (dyn.d_tag == DT_RUNPATH)
3127 struct bfd_link_needed_list *n, **pn;
3128 char *fnm, *anm;
3129 unsigned int tagv = dyn.d_un.d_val;
3131 amt = sizeof (struct bfd_link_needed_list);
3132 n = bfd_alloc (abfd, amt);
3133 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3134 if (n == NULL || fnm == NULL)
3135 goto error_free_dyn;
3136 amt = strlen (fnm) + 1;
3137 anm = bfd_alloc (abfd, amt);
3138 if (anm == NULL)
3139 goto error_free_dyn;
3140 memcpy (anm, fnm, amt);
3141 n->name = anm;
3142 n->by = abfd;
3143 n->next = NULL;
3144 for (pn = & runpath;
3145 *pn != NULL;
3146 pn = &(*pn)->next)
3148 *pn = n;
3150 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3151 if (!runpath && dyn.d_tag == DT_RPATH)
3153 struct bfd_link_needed_list *n, **pn;
3154 char *fnm, *anm;
3155 unsigned int tagv = dyn.d_un.d_val;
3157 amt = sizeof (struct bfd_link_needed_list);
3158 n = bfd_alloc (abfd, amt);
3159 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3160 if (n == NULL || fnm == NULL)
3161 goto error_free_dyn;
3162 amt = strlen (fnm) + 1;
3163 anm = bfd_alloc (abfd, amt);
3164 if (anm == NULL)
3166 error_free_dyn:
3167 free (dynbuf);
3168 goto error_return;
3170 memcpy (anm, fnm, amt);
3171 n->name = anm;
3172 n->by = abfd;
3173 n->next = NULL;
3174 for (pn = & rpath;
3175 *pn != NULL;
3176 pn = &(*pn)->next)
3178 *pn = n;
3182 free (dynbuf);
3185 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3186 frees all more recently bfd_alloc'd blocks as well. */
3187 if (runpath)
3188 rpath = runpath;
3190 if (rpath)
3192 struct bfd_link_needed_list **pn;
3193 for (pn = & hash_table->runpath;
3194 *pn != NULL;
3195 pn = &(*pn)->next)
3197 *pn = rpath;
3200 /* We do not want to include any of the sections in a dynamic
3201 object in the output file. We hack by simply clobbering the
3202 list of sections in the BFD. This could be handled more
3203 cleanly by, say, a new section flag; the existing
3204 SEC_NEVER_LOAD flag is not the one we want, because that one
3205 still implies that the section takes up space in the output
3206 file. */
3207 bfd_section_list_clear (abfd);
3209 /* If this is the first dynamic object found in the link, create
3210 the special sections required for dynamic linking. */
3211 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3212 goto error_return;
3214 /* Find the name to use in a DT_NEEDED entry that refers to this
3215 object. If the object has a DT_SONAME entry, we use it.
3216 Otherwise, if the generic linker stuck something in
3217 elf_dt_name, we use that. Otherwise, we just use the file
3218 name. */
3219 if (soname == NULL || *soname == '\0')
3221 soname = elf_dt_name (abfd);
3222 if (soname == NULL || *soname == '\0')
3223 soname = bfd_get_filename (abfd);
3226 /* Save the SONAME because sometimes the linker emulation code
3227 will need to know it. */
3228 elf_dt_name (abfd) = soname;
3230 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3231 if (ret < 0)
3232 goto error_return;
3234 /* If we have already included this dynamic object in the
3235 link, just ignore it. There is no reason to include a
3236 particular dynamic object more than once. */
3237 if (ret > 0)
3238 return TRUE;
3241 /* If this is a dynamic object, we always link against the .dynsym
3242 symbol table, not the .symtab symbol table. The dynamic linker
3243 will only see the .dynsym symbol table, so there is no reason to
3244 look at .symtab for a dynamic object. */
3246 if (! dynamic || elf_dynsymtab (abfd) == 0)
3247 hdr = &elf_tdata (abfd)->symtab_hdr;
3248 else
3249 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3251 symcount = hdr->sh_size / bed->s->sizeof_sym;
3253 /* The sh_info field of the symtab header tells us where the
3254 external symbols start. We don't care about the local symbols at
3255 this point. */
3256 if (elf_bad_symtab (abfd))
3258 extsymcount = symcount;
3259 extsymoff = 0;
3261 else
3263 extsymcount = symcount - hdr->sh_info;
3264 extsymoff = hdr->sh_info;
3267 sym_hash = NULL;
3268 if (extsymcount != 0)
3270 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3271 NULL, NULL, NULL);
3272 if (isymbuf == NULL)
3273 goto error_return;
3275 /* We store a pointer to the hash table entry for each external
3276 symbol. */
3277 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3278 sym_hash = bfd_alloc (abfd, amt);
3279 if (sym_hash == NULL)
3280 goto error_free_sym;
3281 elf_sym_hashes (abfd) = sym_hash;
3284 if (dynamic)
3286 /* Read in any version definitions. */
3287 if (! _bfd_elf_slurp_version_tables (abfd))
3288 goto error_free_sym;
3290 /* Read in the symbol versions, but don't bother to convert them
3291 to internal format. */
3292 if (elf_dynversym (abfd) != 0)
3294 Elf_Internal_Shdr *versymhdr;
3296 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3297 extversym = bfd_malloc (versymhdr->sh_size);
3298 if (extversym == NULL)
3299 goto error_free_sym;
3300 amt = versymhdr->sh_size;
3301 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3302 || bfd_bread (extversym, amt, abfd) != amt)
3303 goto error_free_vers;
3307 weaks = NULL;
3309 ever = extversym != NULL ? extversym + extsymoff : NULL;
3310 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3311 isym < isymend;
3312 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3314 int bind;
3315 bfd_vma value;
3316 asection *sec;
3317 flagword flags;
3318 const char *name;
3319 struct elf_link_hash_entry *h;
3320 bfd_boolean definition;
3321 bfd_boolean size_change_ok;
3322 bfd_boolean type_change_ok;
3323 bfd_boolean new_weakdef;
3324 bfd_boolean override;
3325 unsigned int old_alignment;
3326 bfd *old_bfd;
3328 override = FALSE;
3330 flags = BSF_NO_FLAGS;
3331 sec = NULL;
3332 value = isym->st_value;
3333 *sym_hash = NULL;
3335 bind = ELF_ST_BIND (isym->st_info);
3336 if (bind == STB_LOCAL)
3338 /* This should be impossible, since ELF requires that all
3339 global symbols follow all local symbols, and that sh_info
3340 point to the first global symbol. Unfortunately, Irix 5
3341 screws this up. */
3342 continue;
3344 else if (bind == STB_GLOBAL)
3346 if (isym->st_shndx != SHN_UNDEF
3347 && isym->st_shndx != SHN_COMMON)
3348 flags = BSF_GLOBAL;
3350 else if (bind == STB_WEAK)
3351 flags = BSF_WEAK;
3352 else
3354 /* Leave it up to the processor backend. */
3357 if (isym->st_shndx == SHN_UNDEF)
3358 sec = bfd_und_section_ptr;
3359 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3361 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3362 if (sec == NULL)
3363 sec = bfd_abs_section_ptr;
3364 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3365 value -= sec->vma;
3367 else if (isym->st_shndx == SHN_ABS)
3368 sec = bfd_abs_section_ptr;
3369 else if (isym->st_shndx == SHN_COMMON)
3371 sec = bfd_com_section_ptr;
3372 /* What ELF calls the size we call the value. What ELF
3373 calls the value we call the alignment. */
3374 value = isym->st_size;
3376 else
3378 /* Leave it up to the processor backend. */
3381 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3382 isym->st_name);
3383 if (name == NULL)
3384 goto error_free_vers;
3386 if (isym->st_shndx == SHN_COMMON
3387 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3389 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3391 if (tcomm == NULL)
3393 tcomm = bfd_make_section (abfd, ".tcommon");
3394 if (tcomm == NULL
3395 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3396 | SEC_IS_COMMON
3397 | SEC_LINKER_CREATED
3398 | SEC_THREAD_LOCAL)))
3399 goto error_free_vers;
3401 sec = tcomm;
3403 else if (add_symbol_hook)
3405 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3406 &value))
3407 goto error_free_vers;
3409 /* The hook function sets the name to NULL if this symbol
3410 should be skipped for some reason. */
3411 if (name == NULL)
3412 continue;
3415 /* Sanity check that all possibilities were handled. */
3416 if (sec == NULL)
3418 bfd_set_error (bfd_error_bad_value);
3419 goto error_free_vers;
3422 if (bfd_is_und_section (sec)
3423 || bfd_is_com_section (sec))
3424 definition = FALSE;
3425 else
3426 definition = TRUE;
3428 size_change_ok = FALSE;
3429 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3430 old_alignment = 0;
3431 old_bfd = NULL;
3433 if (is_elf_hash_table (hash_table))
3435 Elf_Internal_Versym iver;
3436 unsigned int vernum = 0;
3437 bfd_boolean skip;
3439 if (ever != NULL)
3441 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3442 vernum = iver.vs_vers & VERSYM_VERSION;
3444 /* If this is a hidden symbol, or if it is not version
3445 1, we append the version name to the symbol name.
3446 However, we do not modify a non-hidden absolute
3447 symbol, because it might be the version symbol
3448 itself. FIXME: What if it isn't? */
3449 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3450 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3452 const char *verstr;
3453 size_t namelen, verlen, newlen;
3454 char *newname, *p;
3456 if (isym->st_shndx != SHN_UNDEF)
3458 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
3460 (*_bfd_error_handler)
3461 (_("%s: %s: invalid version %u (max %d)"),
3462 bfd_archive_filename (abfd), name, vernum,
3463 elf_tdata (abfd)->dynverdef_hdr.sh_info);
3464 bfd_set_error (bfd_error_bad_value);
3465 goto error_free_vers;
3467 else if (vernum > 1)
3468 verstr =
3469 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3470 else
3471 verstr = "";
3473 else
3475 /* We cannot simply test for the number of
3476 entries in the VERNEED section since the
3477 numbers for the needed versions do not start
3478 at 0. */
3479 Elf_Internal_Verneed *t;
3481 verstr = NULL;
3482 for (t = elf_tdata (abfd)->verref;
3483 t != NULL;
3484 t = t->vn_nextref)
3486 Elf_Internal_Vernaux *a;
3488 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3490 if (a->vna_other == vernum)
3492 verstr = a->vna_nodename;
3493 break;
3496 if (a != NULL)
3497 break;
3499 if (verstr == NULL)
3501 (*_bfd_error_handler)
3502 (_("%s: %s: invalid needed version %d"),
3503 bfd_archive_filename (abfd), name, vernum);
3504 bfd_set_error (bfd_error_bad_value);
3505 goto error_free_vers;
3509 namelen = strlen (name);
3510 verlen = strlen (verstr);
3511 newlen = namelen + verlen + 2;
3512 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3513 && isym->st_shndx != SHN_UNDEF)
3514 ++newlen;
3516 newname = bfd_alloc (abfd, newlen);
3517 if (newname == NULL)
3518 goto error_free_vers;
3519 memcpy (newname, name, namelen);
3520 p = newname + namelen;
3521 *p++ = ELF_VER_CHR;
3522 /* If this is a defined non-hidden version symbol,
3523 we add another @ to the name. This indicates the
3524 default version of the symbol. */
3525 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3526 && isym->st_shndx != SHN_UNDEF)
3527 *p++ = ELF_VER_CHR;
3528 memcpy (p, verstr, verlen + 1);
3530 name = newname;
3534 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3535 sym_hash, &skip, &override,
3536 &type_change_ok, &size_change_ok))
3537 goto error_free_vers;
3539 if (skip)
3540 continue;
3542 if (override)
3543 definition = FALSE;
3545 h = *sym_hash;
3546 while (h->root.type == bfd_link_hash_indirect
3547 || h->root.type == bfd_link_hash_warning)
3548 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3550 /* Remember the old alignment if this is a common symbol, so
3551 that we don't reduce the alignment later on. We can't
3552 check later, because _bfd_generic_link_add_one_symbol
3553 will set a default for the alignment which we want to
3554 override. We also remember the old bfd where the existing
3555 definition comes from. */
3556 switch (h->root.type)
3558 default:
3559 break;
3561 case bfd_link_hash_defined:
3562 case bfd_link_hash_defweak:
3563 old_bfd = h->root.u.def.section->owner;
3564 break;
3566 case bfd_link_hash_common:
3567 old_bfd = h->root.u.c.p->section->owner;
3568 old_alignment = h->root.u.c.p->alignment_power;
3569 break;
3572 if (elf_tdata (abfd)->verdef != NULL
3573 && ! override
3574 && vernum > 1
3575 && definition)
3576 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3579 if (! (_bfd_generic_link_add_one_symbol
3580 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3581 (struct bfd_link_hash_entry **) sym_hash)))
3582 goto error_free_vers;
3584 h = *sym_hash;
3585 while (h->root.type == bfd_link_hash_indirect
3586 || h->root.type == bfd_link_hash_warning)
3587 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3588 *sym_hash = h;
3590 new_weakdef = FALSE;
3591 if (dynamic
3592 && definition
3593 && (flags & BSF_WEAK) != 0
3594 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3595 && is_elf_hash_table (hash_table)
3596 && h->weakdef == NULL)
3598 /* Keep a list of all weak defined non function symbols from
3599 a dynamic object, using the weakdef field. Later in this
3600 function we will set the weakdef field to the correct
3601 value. We only put non-function symbols from dynamic
3602 objects on this list, because that happens to be the only
3603 time we need to know the normal symbol corresponding to a
3604 weak symbol, and the information is time consuming to
3605 figure out. If the weakdef field is not already NULL,
3606 then this symbol was already defined by some previous
3607 dynamic object, and we will be using that previous
3608 definition anyhow. */
3610 h->weakdef = weaks;
3611 weaks = h;
3612 new_weakdef = TRUE;
3615 /* Set the alignment of a common symbol. */
3616 if (isym->st_shndx == SHN_COMMON
3617 && h->root.type == bfd_link_hash_common)
3619 unsigned int align;
3621 align = bfd_log2 (isym->st_value);
3622 if (align > old_alignment
3623 /* Permit an alignment power of zero if an alignment of one
3624 is specified and no other alignments have been specified. */
3625 || (isym->st_value == 1 && old_alignment == 0))
3626 h->root.u.c.p->alignment_power = align;
3627 else
3628 h->root.u.c.p->alignment_power = old_alignment;
3631 if (is_elf_hash_table (hash_table))
3633 int old_flags;
3634 bfd_boolean dynsym;
3635 int new_flag;
3637 /* Check the alignment when a common symbol is involved. This
3638 can change when a common symbol is overridden by a normal
3639 definition or a common symbol is ignored due to the old
3640 normal definition. We need to make sure the maximum
3641 alignment is maintained. */
3642 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3643 && h->root.type != bfd_link_hash_common)
3645 unsigned int common_align;
3646 unsigned int normal_align;
3647 unsigned int symbol_align;
3648 bfd *normal_bfd;
3649 bfd *common_bfd;
3651 symbol_align = ffs (h->root.u.def.value) - 1;
3652 if (h->root.u.def.section->owner != NULL
3653 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3655 normal_align = h->root.u.def.section->alignment_power;
3656 if (normal_align > symbol_align)
3657 normal_align = symbol_align;
3659 else
3660 normal_align = symbol_align;
3662 if (old_alignment)
3664 common_align = old_alignment;
3665 common_bfd = old_bfd;
3666 normal_bfd = abfd;
3668 else
3670 common_align = bfd_log2 (isym->st_value);
3671 common_bfd = abfd;
3672 normal_bfd = old_bfd;
3675 if (normal_align < common_align)
3676 (*_bfd_error_handler)
3677 (_("Warning: alignment %u of symbol `%s' in %s is smaller than %u in %s"),
3678 1 << normal_align,
3679 name,
3680 bfd_archive_filename (normal_bfd),
3681 1 << common_align,
3682 bfd_archive_filename (common_bfd));
3685 /* Remember the symbol size and type. */
3686 if (isym->st_size != 0
3687 && (definition || h->size == 0))
3689 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3690 (*_bfd_error_handler)
3691 (_("Warning: size of symbol `%s' changed from %lu in %s to %lu in %s"),
3692 name, (unsigned long) h->size,
3693 bfd_archive_filename (old_bfd),
3694 (unsigned long) isym->st_size,
3695 bfd_archive_filename (abfd));
3697 h->size = isym->st_size;
3700 /* If this is a common symbol, then we always want H->SIZE
3701 to be the size of the common symbol. The code just above
3702 won't fix the size if a common symbol becomes larger. We
3703 don't warn about a size change here, because that is
3704 covered by --warn-common. */
3705 if (h->root.type == bfd_link_hash_common)
3706 h->size = h->root.u.c.size;
3708 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3709 && (definition || h->type == STT_NOTYPE))
3711 if (h->type != STT_NOTYPE
3712 && h->type != ELF_ST_TYPE (isym->st_info)
3713 && ! type_change_ok)
3714 (*_bfd_error_handler)
3715 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
3716 name, h->type, ELF_ST_TYPE (isym->st_info),
3717 bfd_archive_filename (abfd));
3719 h->type = ELF_ST_TYPE (isym->st_info);
3722 /* If st_other has a processor-specific meaning, specific
3723 code might be needed here. We never merge the visibility
3724 attribute with the one from a dynamic object. */
3725 if (bed->elf_backend_merge_symbol_attribute)
3726 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3727 dynamic);
3729 if (isym->st_other != 0 && !dynamic)
3731 unsigned char hvis, symvis, other, nvis;
3733 /* Take the balance of OTHER from the definition. */
3734 other = (definition ? isym->st_other : h->other);
3735 other &= ~ ELF_ST_VISIBILITY (-1);
3737 /* Combine visibilities, using the most constraining one. */
3738 hvis = ELF_ST_VISIBILITY (h->other);
3739 symvis = ELF_ST_VISIBILITY (isym->st_other);
3740 if (! hvis)
3741 nvis = symvis;
3742 else if (! symvis)
3743 nvis = hvis;
3744 else
3745 nvis = hvis < symvis ? hvis : symvis;
3747 h->other = other | nvis;
3750 /* Set a flag in the hash table entry indicating the type of
3751 reference or definition we just found. Keep a count of
3752 the number of dynamic symbols we find. A dynamic symbol
3753 is one which is referenced or defined by both a regular
3754 object and a shared object. */
3755 old_flags = h->elf_link_hash_flags;
3756 dynsym = FALSE;
3757 if (! dynamic)
3759 if (! definition)
3761 new_flag = ELF_LINK_HASH_REF_REGULAR;
3762 if (bind != STB_WEAK)
3763 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3765 else
3766 new_flag = ELF_LINK_HASH_DEF_REGULAR;
3767 if (! info->executable
3768 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
3769 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
3770 dynsym = TRUE;
3772 else
3774 if (! definition)
3775 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
3776 else
3777 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
3778 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
3779 | ELF_LINK_HASH_REF_REGULAR)) != 0
3780 || (h->weakdef != NULL
3781 && ! new_weakdef
3782 && h->weakdef->dynindx != -1))
3783 dynsym = TRUE;
3786 h->elf_link_hash_flags |= new_flag;
3788 /* Check to see if we need to add an indirect symbol for
3789 the default name. */
3790 if (definition || h->root.type == bfd_link_hash_common)
3791 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3792 &sec, &value, &dynsym,
3793 override))
3794 goto error_free_vers;
3796 if (definition && !dynamic)
3798 char *p = strchr (name, ELF_VER_CHR);
3799 if (p != NULL && p[1] != ELF_VER_CHR)
3801 /* Queue non-default versions so that .symver x, x@FOO
3802 aliases can be checked. */
3803 if (! nondeflt_vers)
3805 amt = (isymend - isym + 1)
3806 * sizeof (struct elf_link_hash_entry *);
3807 nondeflt_vers = bfd_malloc (amt);
3809 nondeflt_vers [nondeflt_vers_cnt++] = h;
3813 if (dynsym && h->dynindx == -1)
3815 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3816 goto error_free_vers;
3817 if (h->weakdef != NULL
3818 && ! new_weakdef
3819 && h->weakdef->dynindx == -1)
3821 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
3822 goto error_free_vers;
3825 else if (dynsym && h->dynindx != -1)
3826 /* If the symbol already has a dynamic index, but
3827 visibility says it should not be visible, turn it into
3828 a local symbol. */
3829 switch (ELF_ST_VISIBILITY (h->other))
3831 case STV_INTERNAL:
3832 case STV_HIDDEN:
3833 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3834 dynsym = FALSE;
3835 break;
3838 if (!add_needed
3839 && definition
3840 && dynsym
3841 && (h->elf_link_hash_flags
3842 & ELF_LINK_HASH_REF_REGULAR) != 0)
3844 int ret;
3845 const char *soname = elf_dt_name (abfd);
3847 /* A symbol from a library loaded via DT_NEEDED of some
3848 other library is referenced by a regular object.
3849 Add a DT_NEEDED entry for it. */
3850 add_needed = TRUE;
3851 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3852 if (ret < 0)
3853 goto error_free_vers;
3855 BFD_ASSERT (ret == 0);
3860 /* Now that all the symbols from this input file are created, handle
3861 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3862 if (nondeflt_vers != NULL)
3864 bfd_size_type cnt, symidx;
3866 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3868 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3869 char *shortname, *p;
3871 p = strchr (h->root.root.string, ELF_VER_CHR);
3872 if (p == NULL
3873 || (h->root.type != bfd_link_hash_defined
3874 && h->root.type != bfd_link_hash_defweak))
3875 continue;
3877 amt = p - h->root.root.string;
3878 shortname = bfd_malloc (amt + 1);
3879 memcpy (shortname, h->root.root.string, amt);
3880 shortname[amt] = '\0';
3882 hi = (struct elf_link_hash_entry *)
3883 bfd_link_hash_lookup (&hash_table->root, shortname,
3884 FALSE, FALSE, FALSE);
3885 if (hi != NULL
3886 && hi->root.type == h->root.type
3887 && hi->root.u.def.value == h->root.u.def.value
3888 && hi->root.u.def.section == h->root.u.def.section)
3890 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
3891 hi->root.type = bfd_link_hash_indirect;
3892 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
3893 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
3894 sym_hash = elf_sym_hashes (abfd);
3895 if (sym_hash)
3896 for (symidx = 0; symidx < extsymcount; ++symidx)
3897 if (sym_hash[symidx] == hi)
3899 sym_hash[symidx] = h;
3900 break;
3903 free (shortname);
3905 free (nondeflt_vers);
3906 nondeflt_vers = NULL;
3909 if (extversym != NULL)
3911 free (extversym);
3912 extversym = NULL;
3915 if (isymbuf != NULL)
3916 free (isymbuf);
3917 isymbuf = NULL;
3919 /* Now set the weakdefs field correctly for all the weak defined
3920 symbols we found. The only way to do this is to search all the
3921 symbols. Since we only need the information for non functions in
3922 dynamic objects, that's the only time we actually put anything on
3923 the list WEAKS. We need this information so that if a regular
3924 object refers to a symbol defined weakly in a dynamic object, the
3925 real symbol in the dynamic object is also put in the dynamic
3926 symbols; we also must arrange for both symbols to point to the
3927 same memory location. We could handle the general case of symbol
3928 aliasing, but a general symbol alias can only be generated in
3929 assembler code, handling it correctly would be very time
3930 consuming, and other ELF linkers don't handle general aliasing
3931 either. */
3932 if (weaks != NULL)
3934 struct elf_link_hash_entry **hpp;
3935 struct elf_link_hash_entry **hppend;
3936 struct elf_link_hash_entry **sorted_sym_hash;
3937 struct elf_link_hash_entry *h;
3938 size_t sym_count;
3940 /* Since we have to search the whole symbol list for each weak
3941 defined symbol, search time for N weak defined symbols will be
3942 O(N^2). Binary search will cut it down to O(NlogN). */
3943 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3944 sorted_sym_hash = bfd_malloc (amt);
3945 if (sorted_sym_hash == NULL)
3946 goto error_return;
3947 sym_hash = sorted_sym_hash;
3948 hpp = elf_sym_hashes (abfd);
3949 hppend = hpp + extsymcount;
3950 sym_count = 0;
3951 for (; hpp < hppend; hpp++)
3953 h = *hpp;
3954 if (h != NULL
3955 && h->root.type == bfd_link_hash_defined
3956 && h->type != STT_FUNC)
3958 *sym_hash = h;
3959 sym_hash++;
3960 sym_count++;
3964 qsort (sorted_sym_hash, sym_count,
3965 sizeof (struct elf_link_hash_entry *),
3966 elf_sort_symbol);
3968 while (weaks != NULL)
3970 struct elf_link_hash_entry *hlook;
3971 asection *slook;
3972 bfd_vma vlook;
3973 long ilook;
3974 size_t i, j, idx;
3976 hlook = weaks;
3977 weaks = hlook->weakdef;
3978 hlook->weakdef = NULL;
3980 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
3981 || hlook->root.type == bfd_link_hash_defweak
3982 || hlook->root.type == bfd_link_hash_common
3983 || hlook->root.type == bfd_link_hash_indirect);
3984 slook = hlook->root.u.def.section;
3985 vlook = hlook->root.u.def.value;
3987 ilook = -1;
3988 i = 0;
3989 j = sym_count;
3990 while (i < j)
3992 bfd_signed_vma vdiff;
3993 idx = (i + j) / 2;
3994 h = sorted_sym_hash [idx];
3995 vdiff = vlook - h->root.u.def.value;
3996 if (vdiff < 0)
3997 j = idx;
3998 else if (vdiff > 0)
3999 i = idx + 1;
4000 else
4002 long sdiff = slook->id - h->root.u.def.section->id;
4003 if (sdiff < 0)
4004 j = idx;
4005 else if (sdiff > 0)
4006 i = idx + 1;
4007 else
4009 ilook = idx;
4010 break;
4015 /* We didn't find a value/section match. */
4016 if (ilook == -1)
4017 continue;
4019 for (i = ilook; i < sym_count; i++)
4021 h = sorted_sym_hash [i];
4023 /* Stop if value or section doesn't match. */
4024 if (h->root.u.def.value != vlook
4025 || h->root.u.def.section != slook)
4026 break;
4027 else if (h != hlook)
4029 hlook->weakdef = h;
4031 /* If the weak definition is in the list of dynamic
4032 symbols, make sure the real definition is put
4033 there as well. */
4034 if (hlook->dynindx != -1 && h->dynindx == -1)
4036 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4037 goto error_return;
4040 /* If the real definition is in the list of dynamic
4041 symbols, make sure the weak definition is put
4042 there as well. If we don't do this, then the
4043 dynamic loader might not merge the entries for the
4044 real definition and the weak definition. */
4045 if (h->dynindx != -1 && hlook->dynindx == -1)
4047 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4048 goto error_return;
4050 break;
4055 free (sorted_sym_hash);
4058 check_directives = get_elf_backend_data (abfd)->check_directives;
4059 if (check_directives)
4060 check_directives (abfd, info);
4062 /* If this object is the same format as the output object, and it is
4063 not a shared library, then let the backend look through the
4064 relocs.
4066 This is required to build global offset table entries and to
4067 arrange for dynamic relocs. It is not required for the
4068 particular common case of linking non PIC code, even when linking
4069 against shared libraries, but unfortunately there is no way of
4070 knowing whether an object file has been compiled PIC or not.
4071 Looking through the relocs is not particularly time consuming.
4072 The problem is that we must either (1) keep the relocs in memory,
4073 which causes the linker to require additional runtime memory or
4074 (2) read the relocs twice from the input file, which wastes time.
4075 This would be a good case for using mmap.
4077 I have no idea how to handle linking PIC code into a file of a
4078 different format. It probably can't be done. */
4079 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4080 if (! dynamic
4081 && is_elf_hash_table (hash_table)
4082 && hash_table->root.creator == abfd->xvec
4083 && check_relocs != NULL)
4085 asection *o;
4087 for (o = abfd->sections; o != NULL; o = o->next)
4089 Elf_Internal_Rela *internal_relocs;
4090 bfd_boolean ok;
4092 if ((o->flags & SEC_RELOC) == 0
4093 || o->reloc_count == 0
4094 || ((info->strip == strip_all || info->strip == strip_debugger)
4095 && (o->flags & SEC_DEBUGGING) != 0)
4096 || bfd_is_abs_section (o->output_section))
4097 continue;
4099 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4100 info->keep_memory);
4101 if (internal_relocs == NULL)
4102 goto error_return;
4104 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4106 if (elf_section_data (o)->relocs != internal_relocs)
4107 free (internal_relocs);
4109 if (! ok)
4110 goto error_return;
4114 /* If this is a non-traditional link, try to optimize the handling
4115 of the .stab/.stabstr sections. */
4116 if (! dynamic
4117 && ! info->traditional_format
4118 && is_elf_hash_table (hash_table)
4119 && (info->strip != strip_all && info->strip != strip_debugger))
4121 asection *stabstr;
4123 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4124 if (stabstr != NULL)
4126 bfd_size_type string_offset = 0;
4127 asection *stab;
4129 for (stab = abfd->sections; stab; stab = stab->next)
4130 if (strncmp (".stab", stab->name, 5) == 0
4131 && (!stab->name[5] ||
4132 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4133 && (stab->flags & SEC_MERGE) == 0
4134 && !bfd_is_abs_section (stab->output_section))
4136 struct bfd_elf_section_data *secdata;
4138 secdata = elf_section_data (stab);
4139 if (! _bfd_link_section_stabs (abfd,
4140 &hash_table->stab_info,
4141 stab, stabstr,
4142 &secdata->sec_info,
4143 &string_offset))
4144 goto error_return;
4145 if (secdata->sec_info)
4146 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4151 if (is_elf_hash_table (hash_table))
4153 /* Add this bfd to the loaded list. */
4154 struct elf_link_loaded_list *n;
4156 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4157 if (n == NULL)
4158 goto error_return;
4159 n->abfd = abfd;
4160 n->next = hash_table->loaded;
4161 hash_table->loaded = n;
4164 return TRUE;
4166 error_free_vers:
4167 if (nondeflt_vers != NULL)
4168 free (nondeflt_vers);
4169 if (extversym != NULL)
4170 free (extversym);
4171 error_free_sym:
4172 if (isymbuf != NULL)
4173 free (isymbuf);
4174 error_return:
4175 return FALSE;
4178 /* Add symbols from an ELF archive file to the linker hash table. We
4179 don't use _bfd_generic_link_add_archive_symbols because of a
4180 problem which arises on UnixWare. The UnixWare libc.so is an
4181 archive which includes an entry libc.so.1 which defines a bunch of
4182 symbols. The libc.so archive also includes a number of other
4183 object files, which also define symbols, some of which are the same
4184 as those defined in libc.so.1. Correct linking requires that we
4185 consider each object file in turn, and include it if it defines any
4186 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4187 this; it looks through the list of undefined symbols, and includes
4188 any object file which defines them. When this algorithm is used on
4189 UnixWare, it winds up pulling in libc.so.1 early and defining a
4190 bunch of symbols. This means that some of the other objects in the
4191 archive are not included in the link, which is incorrect since they
4192 precede libc.so.1 in the archive.
4194 Fortunately, ELF archive handling is simpler than that done by
4195 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4196 oddities. In ELF, if we find a symbol in the archive map, and the
4197 symbol is currently undefined, we know that we must pull in that
4198 object file.
4200 Unfortunately, we do have to make multiple passes over the symbol
4201 table until nothing further is resolved. */
4203 static bfd_boolean
4204 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4206 symindex c;
4207 bfd_boolean *defined = NULL;
4208 bfd_boolean *included = NULL;
4209 carsym *symdefs;
4210 bfd_boolean loop;
4211 bfd_size_type amt;
4213 if (! bfd_has_map (abfd))
4215 /* An empty archive is a special case. */
4216 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4217 return TRUE;
4218 bfd_set_error (bfd_error_no_armap);
4219 return FALSE;
4222 /* Keep track of all symbols we know to be already defined, and all
4223 files we know to be already included. This is to speed up the
4224 second and subsequent passes. */
4225 c = bfd_ardata (abfd)->symdef_count;
4226 if (c == 0)
4227 return TRUE;
4228 amt = c;
4229 amt *= sizeof (bfd_boolean);
4230 defined = bfd_zmalloc (amt);
4231 included = bfd_zmalloc (amt);
4232 if (defined == NULL || included == NULL)
4233 goto error_return;
4235 symdefs = bfd_ardata (abfd)->symdefs;
4239 file_ptr last;
4240 symindex i;
4241 carsym *symdef;
4242 carsym *symdefend;
4244 loop = FALSE;
4245 last = -1;
4247 symdef = symdefs;
4248 symdefend = symdef + c;
4249 for (i = 0; symdef < symdefend; symdef++, i++)
4251 struct elf_link_hash_entry *h;
4252 bfd *element;
4253 struct bfd_link_hash_entry *undefs_tail;
4254 symindex mark;
4256 if (defined[i] || included[i])
4257 continue;
4258 if (symdef->file_offset == last)
4260 included[i] = TRUE;
4261 continue;
4264 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
4265 FALSE, FALSE, FALSE);
4267 if (h == NULL)
4269 char *p, *copy;
4270 size_t len, first;
4272 /* If this is a default version (the name contains @@),
4273 look up the symbol again with only one `@' as well
4274 as without the version. The effect is that references
4275 to the symbol with and without the version will be
4276 matched by the default symbol in the archive. */
4278 p = strchr (symdef->name, ELF_VER_CHR);
4279 if (p == NULL || p[1] != ELF_VER_CHR)
4280 continue;
4282 /* First check with only one `@'. */
4283 len = strlen (symdef->name);
4284 copy = bfd_alloc (abfd, len);
4285 if (copy == NULL)
4286 goto error_return;
4287 first = p - symdef->name + 1;
4288 memcpy (copy, symdef->name, first);
4289 memcpy (copy + first, symdef->name + first + 1, len - first);
4291 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4292 FALSE, FALSE, FALSE);
4294 if (h == NULL)
4296 /* We also need to check references to the symbol
4297 without the version. */
4299 copy[first - 1] = '\0';
4300 h = elf_link_hash_lookup (elf_hash_table (info),
4301 copy, FALSE, FALSE, FALSE);
4304 bfd_release (abfd, copy);
4307 if (h == NULL)
4308 continue;
4310 if (h->root.type == bfd_link_hash_common)
4312 /* We currently have a common symbol. The archive map contains
4313 a reference to this symbol, so we may want to include it. We
4314 only want to include it however, if this archive element
4315 contains a definition of the symbol, not just another common
4316 declaration of it.
4318 Unfortunately some archivers (including GNU ar) will put
4319 declarations of common symbols into their archive maps, as
4320 well as real definitions, so we cannot just go by the archive
4321 map alone. Instead we must read in the element's symbol
4322 table and check that to see what kind of symbol definition
4323 this is. */
4324 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4325 continue;
4327 else if (h->root.type != bfd_link_hash_undefined)
4329 if (h->root.type != bfd_link_hash_undefweak)
4330 defined[i] = TRUE;
4331 continue;
4334 /* We need to include this archive member. */
4335 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4336 if (element == NULL)
4337 goto error_return;
4339 if (! bfd_check_format (element, bfd_object))
4340 goto error_return;
4342 /* Doublecheck that we have not included this object
4343 already--it should be impossible, but there may be
4344 something wrong with the archive. */
4345 if (element->archive_pass != 0)
4347 bfd_set_error (bfd_error_bad_value);
4348 goto error_return;
4350 element->archive_pass = 1;
4352 undefs_tail = info->hash->undefs_tail;
4354 if (! (*info->callbacks->add_archive_element) (info, element,
4355 symdef->name))
4356 goto error_return;
4357 if (! bfd_link_add_symbols (element, info))
4358 goto error_return;
4360 /* If there are any new undefined symbols, we need to make
4361 another pass through the archive in order to see whether
4362 they can be defined. FIXME: This isn't perfect, because
4363 common symbols wind up on undefs_tail and because an
4364 undefined symbol which is defined later on in this pass
4365 does not require another pass. This isn't a bug, but it
4366 does make the code less efficient than it could be. */
4367 if (undefs_tail != info->hash->undefs_tail)
4368 loop = TRUE;
4370 /* Look backward to mark all symbols from this object file
4371 which we have already seen in this pass. */
4372 mark = i;
4375 included[mark] = TRUE;
4376 if (mark == 0)
4377 break;
4378 --mark;
4380 while (symdefs[mark].file_offset == symdef->file_offset);
4382 /* We mark subsequent symbols from this object file as we go
4383 on through the loop. */
4384 last = symdef->file_offset;
4387 while (loop);
4389 free (defined);
4390 free (included);
4392 return TRUE;
4394 error_return:
4395 if (defined != NULL)
4396 free (defined);
4397 if (included != NULL)
4398 free (included);
4399 return FALSE;
4402 /* Given an ELF BFD, add symbols to the global hash table as
4403 appropriate. */
4405 bfd_boolean
4406 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4408 switch (bfd_get_format (abfd))
4410 case bfd_object:
4411 return elf_link_add_object_symbols (abfd, info);
4412 case bfd_archive:
4413 return elf_link_add_archive_symbols (abfd, info);
4414 default:
4415 bfd_set_error (bfd_error_wrong_format);
4416 return FALSE;
4420 /* This function will be called though elf_link_hash_traverse to store
4421 all hash value of the exported symbols in an array. */
4423 static bfd_boolean
4424 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4426 unsigned long **valuep = data;
4427 const char *name;
4428 char *p;
4429 unsigned long ha;
4430 char *alc = NULL;
4432 if (h->root.type == bfd_link_hash_warning)
4433 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4435 /* Ignore indirect symbols. These are added by the versioning code. */
4436 if (h->dynindx == -1)
4437 return TRUE;
4439 name = h->root.root.string;
4440 p = strchr (name, ELF_VER_CHR);
4441 if (p != NULL)
4443 alc = bfd_malloc (p - name + 1);
4444 memcpy (alc, name, p - name);
4445 alc[p - name] = '\0';
4446 name = alc;
4449 /* Compute the hash value. */
4450 ha = bfd_elf_hash (name);
4452 /* Store the found hash value in the array given as the argument. */
4453 *(*valuep)++ = ha;
4455 /* And store it in the struct so that we can put it in the hash table
4456 later. */
4457 h->elf_hash_value = ha;
4459 if (alc != NULL)
4460 free (alc);
4462 return TRUE;
4465 /* Array used to determine the number of hash table buckets to use
4466 based on the number of symbols there are. If there are fewer than
4467 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4468 fewer than 37 we use 17 buckets, and so forth. We never use more
4469 than 32771 buckets. */
4471 static const size_t elf_buckets[] =
4473 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4474 16411, 32771, 0
4477 /* Compute bucket count for hashing table. We do not use a static set
4478 of possible tables sizes anymore. Instead we determine for all
4479 possible reasonable sizes of the table the outcome (i.e., the
4480 number of collisions etc) and choose the best solution. The
4481 weighting functions are not too simple to allow the table to grow
4482 without bounds. Instead one of the weighting factors is the size.
4483 Therefore the result is always a good payoff between few collisions
4484 (= short chain lengths) and table size. */
4485 static size_t
4486 compute_bucket_count (struct bfd_link_info *info)
4488 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4489 size_t best_size = 0;
4490 unsigned long int *hashcodes;
4491 unsigned long int *hashcodesp;
4492 unsigned long int i;
4493 bfd_size_type amt;
4495 /* Compute the hash values for all exported symbols. At the same
4496 time store the values in an array so that we could use them for
4497 optimizations. */
4498 amt = dynsymcount;
4499 amt *= sizeof (unsigned long int);
4500 hashcodes = bfd_malloc (amt);
4501 if (hashcodes == NULL)
4502 return 0;
4503 hashcodesp = hashcodes;
4505 /* Put all hash values in HASHCODES. */
4506 elf_link_hash_traverse (elf_hash_table (info),
4507 elf_collect_hash_codes, &hashcodesp);
4509 /* We have a problem here. The following code to optimize the table
4510 size requires an integer type with more the 32 bits. If
4511 BFD_HOST_U_64_BIT is set we know about such a type. */
4512 #ifdef BFD_HOST_U_64_BIT
4513 if (info->optimize)
4515 unsigned long int nsyms = hashcodesp - hashcodes;
4516 size_t minsize;
4517 size_t maxsize;
4518 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4519 unsigned long int *counts ;
4520 bfd *dynobj = elf_hash_table (info)->dynobj;
4521 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4523 /* Possible optimization parameters: if we have NSYMS symbols we say
4524 that the hashing table must at least have NSYMS/4 and at most
4525 2*NSYMS buckets. */
4526 minsize = nsyms / 4;
4527 if (minsize == 0)
4528 minsize = 1;
4529 best_size = maxsize = nsyms * 2;
4531 /* Create array where we count the collisions in. We must use bfd_malloc
4532 since the size could be large. */
4533 amt = maxsize;
4534 amt *= sizeof (unsigned long int);
4535 counts = bfd_malloc (amt);
4536 if (counts == NULL)
4538 free (hashcodes);
4539 return 0;
4542 /* Compute the "optimal" size for the hash table. The criteria is a
4543 minimal chain length. The minor criteria is (of course) the size
4544 of the table. */
4545 for (i = minsize; i < maxsize; ++i)
4547 /* Walk through the array of hashcodes and count the collisions. */
4548 BFD_HOST_U_64_BIT max;
4549 unsigned long int j;
4550 unsigned long int fact;
4552 memset (counts, '\0', i * sizeof (unsigned long int));
4554 /* Determine how often each hash bucket is used. */
4555 for (j = 0; j < nsyms; ++j)
4556 ++counts[hashcodes[j] % i];
4558 /* For the weight function we need some information about the
4559 pagesize on the target. This is information need not be 100%
4560 accurate. Since this information is not available (so far) we
4561 define it here to a reasonable default value. If it is crucial
4562 to have a better value some day simply define this value. */
4563 # ifndef BFD_TARGET_PAGESIZE
4564 # define BFD_TARGET_PAGESIZE (4096)
4565 # endif
4567 /* We in any case need 2 + NSYMS entries for the size values and
4568 the chains. */
4569 max = (2 + nsyms) * (bed->s->arch_size / 8);
4571 # if 1
4572 /* Variant 1: optimize for short chains. We add the squares
4573 of all the chain lengths (which favors many small chain
4574 over a few long chains). */
4575 for (j = 0; j < i; ++j)
4576 max += counts[j] * counts[j];
4578 /* This adds penalties for the overall size of the table. */
4579 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4580 max *= fact * fact;
4581 # else
4582 /* Variant 2: Optimize a lot more for small table. Here we
4583 also add squares of the size but we also add penalties for
4584 empty slots (the +1 term). */
4585 for (j = 0; j < i; ++j)
4586 max += (1 + counts[j]) * (1 + counts[j]);
4588 /* The overall size of the table is considered, but not as
4589 strong as in variant 1, where it is squared. */
4590 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4591 max *= fact;
4592 # endif
4594 /* Compare with current best results. */
4595 if (max < best_chlen)
4597 best_chlen = max;
4598 best_size = i;
4602 free (counts);
4604 else
4605 #endif /* defined (BFD_HOST_U_64_BIT) */
4607 /* This is the fallback solution if no 64bit type is available or if we
4608 are not supposed to spend much time on optimizations. We select the
4609 bucket count using a fixed set of numbers. */
4610 for (i = 0; elf_buckets[i] != 0; i++)
4612 best_size = elf_buckets[i];
4613 if (dynsymcount < elf_buckets[i + 1])
4614 break;
4618 /* Free the arrays we needed. */
4619 free (hashcodes);
4621 return best_size;
4624 /* Set up the sizes and contents of the ELF dynamic sections. This is
4625 called by the ELF linker emulation before_allocation routine. We
4626 must set the sizes of the sections before the linker sets the
4627 addresses of the various sections. */
4629 bfd_boolean
4630 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4631 const char *soname,
4632 const char *rpath,
4633 const char *filter_shlib,
4634 const char * const *auxiliary_filters,
4635 struct bfd_link_info *info,
4636 asection **sinterpptr,
4637 struct bfd_elf_version_tree *verdefs)
4639 bfd_size_type soname_indx;
4640 bfd *dynobj;
4641 const struct elf_backend_data *bed;
4642 struct elf_assign_sym_version_info asvinfo;
4644 *sinterpptr = NULL;
4646 soname_indx = (bfd_size_type) -1;
4648 if (!is_elf_hash_table (info->hash))
4649 return TRUE;
4651 elf_tdata (output_bfd)->relro = info->relro;
4652 if (info->execstack)
4653 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4654 else if (info->noexecstack)
4655 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4656 else
4658 bfd *inputobj;
4659 asection *notesec = NULL;
4660 int exec = 0;
4662 for (inputobj = info->input_bfds;
4663 inputobj;
4664 inputobj = inputobj->link_next)
4666 asection *s;
4668 if (inputobj->flags & DYNAMIC)
4669 continue;
4670 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4671 if (s)
4673 if (s->flags & SEC_CODE)
4674 exec = PF_X;
4675 notesec = s;
4677 else
4678 exec = PF_X;
4680 if (notesec)
4682 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4683 if (exec && info->relocatable
4684 && notesec->output_section != bfd_abs_section_ptr)
4685 notesec->output_section->flags |= SEC_CODE;
4689 /* Any syms created from now on start with -1 in
4690 got.refcount/offset and plt.refcount/offset. */
4691 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4693 /* The backend may have to create some sections regardless of whether
4694 we're dynamic or not. */
4695 bed = get_elf_backend_data (output_bfd);
4696 if (bed->elf_backend_always_size_sections
4697 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4698 return FALSE;
4700 dynobj = elf_hash_table (info)->dynobj;
4702 /* If there were no dynamic objects in the link, there is nothing to
4703 do here. */
4704 if (dynobj == NULL)
4705 return TRUE;
4707 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4708 return FALSE;
4710 if (elf_hash_table (info)->dynamic_sections_created)
4712 struct elf_info_failed eif;
4713 struct elf_link_hash_entry *h;
4714 asection *dynstr;
4715 struct bfd_elf_version_tree *t;
4716 struct bfd_elf_version_expr *d;
4717 bfd_boolean all_defined;
4719 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4720 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4722 if (soname != NULL)
4724 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4725 soname, TRUE);
4726 if (soname_indx == (bfd_size_type) -1
4727 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4728 return FALSE;
4731 if (info->symbolic)
4733 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4734 return FALSE;
4735 info->flags |= DF_SYMBOLIC;
4738 if (rpath != NULL)
4740 bfd_size_type indx;
4742 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4743 TRUE);
4744 if (indx == (bfd_size_type) -1
4745 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4746 return FALSE;
4748 if (info->new_dtags)
4750 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4751 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4752 return FALSE;
4756 if (filter_shlib != NULL)
4758 bfd_size_type indx;
4760 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4761 filter_shlib, TRUE);
4762 if (indx == (bfd_size_type) -1
4763 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4764 return FALSE;
4767 if (auxiliary_filters != NULL)
4769 const char * const *p;
4771 for (p = auxiliary_filters; *p != NULL; p++)
4773 bfd_size_type indx;
4775 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4776 *p, TRUE);
4777 if (indx == (bfd_size_type) -1
4778 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4779 return FALSE;
4783 eif.info = info;
4784 eif.verdefs = verdefs;
4785 eif.failed = FALSE;
4787 /* If we are supposed to export all symbols into the dynamic symbol
4788 table (this is not the normal case), then do so. */
4789 if (info->export_dynamic)
4791 elf_link_hash_traverse (elf_hash_table (info),
4792 _bfd_elf_export_symbol,
4793 &eif);
4794 if (eif.failed)
4795 return FALSE;
4798 /* Make all global versions with definition. */
4799 for (t = verdefs; t != NULL; t = t->next)
4800 for (d = t->globals.list; d != NULL; d = d->next)
4801 if (!d->symver && d->symbol)
4803 const char *verstr, *name;
4804 size_t namelen, verlen, newlen;
4805 char *newname, *p;
4806 struct elf_link_hash_entry *newh;
4808 name = d->symbol;
4809 namelen = strlen (name);
4810 verstr = t->name;
4811 verlen = strlen (verstr);
4812 newlen = namelen + verlen + 3;
4814 newname = bfd_malloc (newlen);
4815 if (newname == NULL)
4816 return FALSE;
4817 memcpy (newname, name, namelen);
4819 /* Check the hidden versioned definition. */
4820 p = newname + namelen;
4821 *p++ = ELF_VER_CHR;
4822 memcpy (p, verstr, verlen + 1);
4823 newh = elf_link_hash_lookup (elf_hash_table (info),
4824 newname, FALSE, FALSE,
4825 FALSE);
4826 if (newh == NULL
4827 || (newh->root.type != bfd_link_hash_defined
4828 && newh->root.type != bfd_link_hash_defweak))
4830 /* Check the default versioned definition. */
4831 *p++ = ELF_VER_CHR;
4832 memcpy (p, verstr, verlen + 1);
4833 newh = elf_link_hash_lookup (elf_hash_table (info),
4834 newname, FALSE, FALSE,
4835 FALSE);
4837 free (newname);
4839 /* Mark this version if there is a definition and it is
4840 not defined in a shared object. */
4841 if (newh != NULL
4842 && ((newh->elf_link_hash_flags
4843 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
4844 && (newh->root.type == bfd_link_hash_defined
4845 || newh->root.type == bfd_link_hash_defweak))
4846 d->symver = 1;
4849 /* Attach all the symbols to their version information. */
4850 asvinfo.output_bfd = output_bfd;
4851 asvinfo.info = info;
4852 asvinfo.verdefs = verdefs;
4853 asvinfo.failed = FALSE;
4855 elf_link_hash_traverse (elf_hash_table (info),
4856 _bfd_elf_link_assign_sym_version,
4857 &asvinfo);
4858 if (asvinfo.failed)
4859 return FALSE;
4861 if (!info->allow_undefined_version)
4863 /* Check if all global versions have a definition. */
4864 all_defined = TRUE;
4865 for (t = verdefs; t != NULL; t = t->next)
4866 for (d = t->globals.list; d != NULL; d = d->next)
4867 if (!d->symver && !d->script)
4869 (*_bfd_error_handler)
4870 (_("%s: undefined version: %s"),
4871 d->pattern, t->name);
4872 all_defined = FALSE;
4875 if (!all_defined)
4877 bfd_set_error (bfd_error_bad_value);
4878 return FALSE;
4882 /* Find all symbols which were defined in a dynamic object and make
4883 the backend pick a reasonable value for them. */
4884 elf_link_hash_traverse (elf_hash_table (info),
4885 _bfd_elf_adjust_dynamic_symbol,
4886 &eif);
4887 if (eif.failed)
4888 return FALSE;
4890 /* Add some entries to the .dynamic section. We fill in some of the
4891 values later, in elf_bfd_final_link, but we must add the entries
4892 now so that we know the final size of the .dynamic section. */
4894 /* If there are initialization and/or finalization functions to
4895 call then add the corresponding DT_INIT/DT_FINI entries. */
4896 h = (info->init_function
4897 ? elf_link_hash_lookup (elf_hash_table (info),
4898 info->init_function, FALSE,
4899 FALSE, FALSE)
4900 : NULL);
4901 if (h != NULL
4902 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4903 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4905 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
4906 return FALSE;
4908 h = (info->fini_function
4909 ? elf_link_hash_lookup (elf_hash_table (info),
4910 info->fini_function, FALSE,
4911 FALSE, FALSE)
4912 : NULL);
4913 if (h != NULL
4914 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4915 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4917 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
4918 return FALSE;
4921 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
4923 /* DT_PREINIT_ARRAY is not allowed in shared library. */
4924 if (! info->executable)
4926 bfd *sub;
4927 asection *o;
4929 for (sub = info->input_bfds; sub != NULL;
4930 sub = sub->link_next)
4931 for (o = sub->sections; o != NULL; o = o->next)
4932 if (elf_section_data (o)->this_hdr.sh_type
4933 == SHT_PREINIT_ARRAY)
4935 (*_bfd_error_handler)
4936 (_("%s: .preinit_array section is not allowed in DSO"),
4937 bfd_archive_filename (sub));
4938 break;
4941 bfd_set_error (bfd_error_nonrepresentable_section);
4942 return FALSE;
4945 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
4946 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
4947 return FALSE;
4949 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
4951 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
4952 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
4953 return FALSE;
4955 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
4957 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
4958 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
4959 return FALSE;
4962 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
4963 /* If .dynstr is excluded from the link, we don't want any of
4964 these tags. Strictly, we should be checking each section
4965 individually; This quick check covers for the case where
4966 someone does a /DISCARD/ : { *(*) }. */
4967 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
4969 bfd_size_type strsize;
4971 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
4972 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
4973 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
4974 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
4975 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
4976 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
4977 bed->s->sizeof_sym))
4978 return FALSE;
4982 /* The backend must work out the sizes of all the other dynamic
4983 sections. */
4984 if (bed->elf_backend_size_dynamic_sections
4985 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
4986 return FALSE;
4988 if (elf_hash_table (info)->dynamic_sections_created)
4990 bfd_size_type dynsymcount;
4991 asection *s;
4992 size_t bucketcount = 0;
4993 size_t hash_entry_size;
4994 unsigned int dtagcount;
4996 /* Set up the version definition section. */
4997 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
4998 BFD_ASSERT (s != NULL);
5000 /* We may have created additional version definitions if we are
5001 just linking a regular application. */
5002 verdefs = asvinfo.verdefs;
5004 /* Skip anonymous version tag. */
5005 if (verdefs != NULL && verdefs->vernum == 0)
5006 verdefs = verdefs->next;
5008 if (verdefs == NULL)
5009 _bfd_strip_section_from_output (info, s);
5010 else
5012 unsigned int cdefs;
5013 bfd_size_type size;
5014 struct bfd_elf_version_tree *t;
5015 bfd_byte *p;
5016 Elf_Internal_Verdef def;
5017 Elf_Internal_Verdaux defaux;
5019 cdefs = 0;
5020 size = 0;
5022 /* Make space for the base version. */
5023 size += sizeof (Elf_External_Verdef);
5024 size += sizeof (Elf_External_Verdaux);
5025 ++cdefs;
5027 for (t = verdefs; t != NULL; t = t->next)
5029 struct bfd_elf_version_deps *n;
5031 size += sizeof (Elf_External_Verdef);
5032 size += sizeof (Elf_External_Verdaux);
5033 ++cdefs;
5035 for (n = t->deps; n != NULL; n = n->next)
5036 size += sizeof (Elf_External_Verdaux);
5039 s->size = size;
5040 s->contents = bfd_alloc (output_bfd, s->size);
5041 if (s->contents == NULL && s->size != 0)
5042 return FALSE;
5044 /* Fill in the version definition section. */
5046 p = s->contents;
5048 def.vd_version = VER_DEF_CURRENT;
5049 def.vd_flags = VER_FLG_BASE;
5050 def.vd_ndx = 1;
5051 def.vd_cnt = 1;
5052 def.vd_aux = sizeof (Elf_External_Verdef);
5053 def.vd_next = (sizeof (Elf_External_Verdef)
5054 + sizeof (Elf_External_Verdaux));
5056 if (soname_indx != (bfd_size_type) -1)
5058 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5059 soname_indx);
5060 def.vd_hash = bfd_elf_hash (soname);
5061 defaux.vda_name = soname_indx;
5063 else
5065 const char *name;
5066 bfd_size_type indx;
5068 name = basename (output_bfd->filename);
5069 def.vd_hash = bfd_elf_hash (name);
5070 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5071 name, FALSE);
5072 if (indx == (bfd_size_type) -1)
5073 return FALSE;
5074 defaux.vda_name = indx;
5076 defaux.vda_next = 0;
5078 _bfd_elf_swap_verdef_out (output_bfd, &def,
5079 (Elf_External_Verdef *) p);
5080 p += sizeof (Elf_External_Verdef);
5081 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5082 (Elf_External_Verdaux *) p);
5083 p += sizeof (Elf_External_Verdaux);
5085 for (t = verdefs; t != NULL; t = t->next)
5087 unsigned int cdeps;
5088 struct bfd_elf_version_deps *n;
5089 struct elf_link_hash_entry *h;
5090 struct bfd_link_hash_entry *bh;
5092 cdeps = 0;
5093 for (n = t->deps; n != NULL; n = n->next)
5094 ++cdeps;
5096 /* Add a symbol representing this version. */
5097 bh = NULL;
5098 if (! (_bfd_generic_link_add_one_symbol
5099 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5100 0, NULL, FALSE,
5101 get_elf_backend_data (dynobj)->collect, &bh)))
5102 return FALSE;
5103 h = (struct elf_link_hash_entry *) bh;
5104 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
5105 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5106 h->type = STT_OBJECT;
5107 h->verinfo.vertree = t;
5109 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5110 return FALSE;
5112 def.vd_version = VER_DEF_CURRENT;
5113 def.vd_flags = 0;
5114 if (t->globals.list == NULL
5115 && t->locals.list == NULL
5116 && ! t->used)
5117 def.vd_flags |= VER_FLG_WEAK;
5118 def.vd_ndx = t->vernum + 1;
5119 def.vd_cnt = cdeps + 1;
5120 def.vd_hash = bfd_elf_hash (t->name);
5121 def.vd_aux = sizeof (Elf_External_Verdef);
5122 def.vd_next = 0;
5123 if (t->next != NULL)
5124 def.vd_next = (sizeof (Elf_External_Verdef)
5125 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5127 _bfd_elf_swap_verdef_out (output_bfd, &def,
5128 (Elf_External_Verdef *) p);
5129 p += sizeof (Elf_External_Verdef);
5131 defaux.vda_name = h->dynstr_index;
5132 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5133 h->dynstr_index);
5134 defaux.vda_next = 0;
5135 if (t->deps != NULL)
5136 defaux.vda_next = sizeof (Elf_External_Verdaux);
5137 t->name_indx = defaux.vda_name;
5139 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5140 (Elf_External_Verdaux *) p);
5141 p += sizeof (Elf_External_Verdaux);
5143 for (n = t->deps; n != NULL; n = n->next)
5145 if (n->version_needed == NULL)
5147 /* This can happen if there was an error in the
5148 version script. */
5149 defaux.vda_name = 0;
5151 else
5153 defaux.vda_name = n->version_needed->name_indx;
5154 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5155 defaux.vda_name);
5157 if (n->next == NULL)
5158 defaux.vda_next = 0;
5159 else
5160 defaux.vda_next = sizeof (Elf_External_Verdaux);
5162 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5163 (Elf_External_Verdaux *) p);
5164 p += sizeof (Elf_External_Verdaux);
5168 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5169 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5170 return FALSE;
5172 elf_tdata (output_bfd)->cverdefs = cdefs;
5175 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5177 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5178 return FALSE;
5180 else if (info->flags & DF_BIND_NOW)
5182 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5183 return FALSE;
5186 if (info->flags_1)
5188 if (info->executable)
5189 info->flags_1 &= ~ (DF_1_INITFIRST
5190 | DF_1_NODELETE
5191 | DF_1_NOOPEN);
5192 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5193 return FALSE;
5196 /* Work out the size of the version reference section. */
5198 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5199 BFD_ASSERT (s != NULL);
5201 struct elf_find_verdep_info sinfo;
5203 sinfo.output_bfd = output_bfd;
5204 sinfo.info = info;
5205 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5206 if (sinfo.vers == 0)
5207 sinfo.vers = 1;
5208 sinfo.failed = FALSE;
5210 elf_link_hash_traverse (elf_hash_table (info),
5211 _bfd_elf_link_find_version_dependencies,
5212 &sinfo);
5214 if (elf_tdata (output_bfd)->verref == NULL)
5215 _bfd_strip_section_from_output (info, s);
5216 else
5218 Elf_Internal_Verneed *t;
5219 unsigned int size;
5220 unsigned int crefs;
5221 bfd_byte *p;
5223 /* Build the version definition section. */
5224 size = 0;
5225 crefs = 0;
5226 for (t = elf_tdata (output_bfd)->verref;
5227 t != NULL;
5228 t = t->vn_nextref)
5230 Elf_Internal_Vernaux *a;
5232 size += sizeof (Elf_External_Verneed);
5233 ++crefs;
5234 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5235 size += sizeof (Elf_External_Vernaux);
5238 s->size = size;
5239 s->contents = bfd_alloc (output_bfd, s->size);
5240 if (s->contents == NULL)
5241 return FALSE;
5243 p = s->contents;
5244 for (t = elf_tdata (output_bfd)->verref;
5245 t != NULL;
5246 t = t->vn_nextref)
5248 unsigned int caux;
5249 Elf_Internal_Vernaux *a;
5250 bfd_size_type indx;
5252 caux = 0;
5253 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5254 ++caux;
5256 t->vn_version = VER_NEED_CURRENT;
5257 t->vn_cnt = caux;
5258 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5259 elf_dt_name (t->vn_bfd) != NULL
5260 ? elf_dt_name (t->vn_bfd)
5261 : basename (t->vn_bfd->filename),
5262 FALSE);
5263 if (indx == (bfd_size_type) -1)
5264 return FALSE;
5265 t->vn_file = indx;
5266 t->vn_aux = sizeof (Elf_External_Verneed);
5267 if (t->vn_nextref == NULL)
5268 t->vn_next = 0;
5269 else
5270 t->vn_next = (sizeof (Elf_External_Verneed)
5271 + caux * sizeof (Elf_External_Vernaux));
5273 _bfd_elf_swap_verneed_out (output_bfd, t,
5274 (Elf_External_Verneed *) p);
5275 p += sizeof (Elf_External_Verneed);
5277 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5279 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5280 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5281 a->vna_nodename, FALSE);
5282 if (indx == (bfd_size_type) -1)
5283 return FALSE;
5284 a->vna_name = indx;
5285 if (a->vna_nextptr == NULL)
5286 a->vna_next = 0;
5287 else
5288 a->vna_next = sizeof (Elf_External_Vernaux);
5290 _bfd_elf_swap_vernaux_out (output_bfd, a,
5291 (Elf_External_Vernaux *) p);
5292 p += sizeof (Elf_External_Vernaux);
5296 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5297 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5298 return FALSE;
5300 elf_tdata (output_bfd)->cverrefs = crefs;
5304 /* Assign dynsym indicies. In a shared library we generate a
5305 section symbol for each output section, which come first.
5306 Next come all of the back-end allocated local dynamic syms,
5307 followed by the rest of the global symbols. */
5309 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5311 /* Work out the size of the symbol version section. */
5312 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5313 BFD_ASSERT (s != NULL);
5314 if (dynsymcount == 0
5315 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
5317 _bfd_strip_section_from_output (info, s);
5318 /* The DYNSYMCOUNT might have changed if we were going to
5319 output a dynamic symbol table entry for S. */
5320 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5322 else
5324 s->size = dynsymcount * sizeof (Elf_External_Versym);
5325 s->contents = bfd_zalloc (output_bfd, s->size);
5326 if (s->contents == NULL)
5327 return FALSE;
5329 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5330 return FALSE;
5333 /* Set the size of the .dynsym and .hash sections. We counted
5334 the number of dynamic symbols in elf_link_add_object_symbols.
5335 We will build the contents of .dynsym and .hash when we build
5336 the final symbol table, because until then we do not know the
5337 correct value to give the symbols. We built the .dynstr
5338 section as we went along in elf_link_add_object_symbols. */
5339 s = bfd_get_section_by_name (dynobj, ".dynsym");
5340 BFD_ASSERT (s != NULL);
5341 s->size = dynsymcount * bed->s->sizeof_sym;
5342 s->contents = bfd_alloc (output_bfd, s->size);
5343 if (s->contents == NULL && s->size != 0)
5344 return FALSE;
5346 if (dynsymcount != 0)
5348 Elf_Internal_Sym isym;
5350 /* The first entry in .dynsym is a dummy symbol. */
5351 isym.st_value = 0;
5352 isym.st_size = 0;
5353 isym.st_name = 0;
5354 isym.st_info = 0;
5355 isym.st_other = 0;
5356 isym.st_shndx = 0;
5357 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5360 /* Compute the size of the hashing table. As a side effect this
5361 computes the hash values for all the names we export. */
5362 bucketcount = compute_bucket_count (info);
5364 s = bfd_get_section_by_name (dynobj, ".hash");
5365 BFD_ASSERT (s != NULL);
5366 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5367 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5368 s->contents = bfd_zalloc (output_bfd, s->size);
5369 if (s->contents == NULL)
5370 return FALSE;
5372 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5373 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5374 s->contents + hash_entry_size);
5376 elf_hash_table (info)->bucketcount = bucketcount;
5378 s = bfd_get_section_by_name (dynobj, ".dynstr");
5379 BFD_ASSERT (s != NULL);
5381 elf_finalize_dynstr (output_bfd, info);
5383 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5385 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5386 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5387 return FALSE;
5390 return TRUE;
5393 /* Final phase of ELF linker. */
5395 /* A structure we use to avoid passing large numbers of arguments. */
5397 struct elf_final_link_info
5399 /* General link information. */
5400 struct bfd_link_info *info;
5401 /* Output BFD. */
5402 bfd *output_bfd;
5403 /* Symbol string table. */
5404 struct bfd_strtab_hash *symstrtab;
5405 /* .dynsym section. */
5406 asection *dynsym_sec;
5407 /* .hash section. */
5408 asection *hash_sec;
5409 /* symbol version section (.gnu.version). */
5410 asection *symver_sec;
5411 /* Buffer large enough to hold contents of any section. */
5412 bfd_byte *contents;
5413 /* Buffer large enough to hold external relocs of any section. */
5414 void *external_relocs;
5415 /* Buffer large enough to hold internal relocs of any section. */
5416 Elf_Internal_Rela *internal_relocs;
5417 /* Buffer large enough to hold external local symbols of any input
5418 BFD. */
5419 bfd_byte *external_syms;
5420 /* And a buffer for symbol section indices. */
5421 Elf_External_Sym_Shndx *locsym_shndx;
5422 /* Buffer large enough to hold internal local symbols of any input
5423 BFD. */
5424 Elf_Internal_Sym *internal_syms;
5425 /* Array large enough to hold a symbol index for each local symbol
5426 of any input BFD. */
5427 long *indices;
5428 /* Array large enough to hold a section pointer for each local
5429 symbol of any input BFD. */
5430 asection **sections;
5431 /* Buffer to hold swapped out symbols. */
5432 bfd_byte *symbuf;
5433 /* And one for symbol section indices. */
5434 Elf_External_Sym_Shndx *symshndxbuf;
5435 /* Number of swapped out symbols in buffer. */
5436 size_t symbuf_count;
5437 /* Number of symbols which fit in symbuf. */
5438 size_t symbuf_size;
5439 /* And same for symshndxbuf. */
5440 size_t shndxbuf_size;
5443 /* This struct is used to pass information to elf_link_output_extsym. */
5445 struct elf_outext_info
5447 bfd_boolean failed;
5448 bfd_boolean localsyms;
5449 struct elf_final_link_info *finfo;
5452 /* When performing a relocatable link, the input relocations are
5453 preserved. But, if they reference global symbols, the indices
5454 referenced must be updated. Update all the relocations in
5455 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5457 static void
5458 elf_link_adjust_relocs (bfd *abfd,
5459 Elf_Internal_Shdr *rel_hdr,
5460 unsigned int count,
5461 struct elf_link_hash_entry **rel_hash)
5463 unsigned int i;
5464 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5465 bfd_byte *erela;
5466 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5467 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5468 bfd_vma r_type_mask;
5469 int r_sym_shift;
5471 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5473 swap_in = bed->s->swap_reloc_in;
5474 swap_out = bed->s->swap_reloc_out;
5476 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5478 swap_in = bed->s->swap_reloca_in;
5479 swap_out = bed->s->swap_reloca_out;
5481 else
5482 abort ();
5484 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5485 abort ();
5487 if (bed->s->arch_size == 32)
5489 r_type_mask = 0xff;
5490 r_sym_shift = 8;
5492 else
5494 r_type_mask = 0xffffffff;
5495 r_sym_shift = 32;
5498 erela = rel_hdr->contents;
5499 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5501 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5502 unsigned int j;
5504 if (*rel_hash == NULL)
5505 continue;
5507 BFD_ASSERT ((*rel_hash)->indx >= 0);
5509 (*swap_in) (abfd, erela, irela);
5510 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5511 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5512 | (irela[j].r_info & r_type_mask));
5513 (*swap_out) (abfd, irela, erela);
5517 struct elf_link_sort_rela
5519 union {
5520 bfd_vma offset;
5521 bfd_vma sym_mask;
5522 } u;
5523 enum elf_reloc_type_class type;
5524 /* We use this as an array of size int_rels_per_ext_rel. */
5525 Elf_Internal_Rela rela[1];
5528 static int
5529 elf_link_sort_cmp1 (const void *A, const void *B)
5531 const struct elf_link_sort_rela *a = A;
5532 const struct elf_link_sort_rela *b = B;
5533 int relativea, relativeb;
5535 relativea = a->type == reloc_class_relative;
5536 relativeb = b->type == reloc_class_relative;
5538 if (relativea < relativeb)
5539 return 1;
5540 if (relativea > relativeb)
5541 return -1;
5542 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5543 return -1;
5544 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5545 return 1;
5546 if (a->rela->r_offset < b->rela->r_offset)
5547 return -1;
5548 if (a->rela->r_offset > b->rela->r_offset)
5549 return 1;
5550 return 0;
5553 static int
5554 elf_link_sort_cmp2 (const void *A, const void *B)
5556 const struct elf_link_sort_rela *a = A;
5557 const struct elf_link_sort_rela *b = B;
5558 int copya, copyb;
5560 if (a->u.offset < b->u.offset)
5561 return -1;
5562 if (a->u.offset > b->u.offset)
5563 return 1;
5564 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5565 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5566 if (copya < copyb)
5567 return -1;
5568 if (copya > copyb)
5569 return 1;
5570 if (a->rela->r_offset < b->rela->r_offset)
5571 return -1;
5572 if (a->rela->r_offset > b->rela->r_offset)
5573 return 1;
5574 return 0;
5577 static size_t
5578 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5580 asection *reldyn;
5581 bfd_size_type count, size;
5582 size_t i, ret, sort_elt, ext_size;
5583 bfd_byte *sort, *s_non_relative, *p;
5584 struct elf_link_sort_rela *sq;
5585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5586 int i2e = bed->s->int_rels_per_ext_rel;
5587 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5588 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5589 struct bfd_link_order *lo;
5590 bfd_vma r_sym_mask;
5592 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5593 if (reldyn == NULL || reldyn->size == 0)
5595 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5596 if (reldyn == NULL || reldyn->size == 0)
5597 return 0;
5598 ext_size = bed->s->sizeof_rel;
5599 swap_in = bed->s->swap_reloc_in;
5600 swap_out = bed->s->swap_reloc_out;
5602 else
5604 ext_size = bed->s->sizeof_rela;
5605 swap_in = bed->s->swap_reloca_in;
5606 swap_out = bed->s->swap_reloca_out;
5608 count = reldyn->size / ext_size;
5610 size = 0;
5611 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5612 if (lo->type == bfd_indirect_link_order)
5614 asection *o = lo->u.indirect.section;
5615 size += o->size;
5618 if (size != reldyn->size)
5619 return 0;
5621 sort_elt = (sizeof (struct elf_link_sort_rela)
5622 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5623 sort = bfd_zmalloc (sort_elt * count);
5624 if (sort == NULL)
5626 (*info->callbacks->warning)
5627 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5628 return 0;
5631 if (bed->s->arch_size == 32)
5632 r_sym_mask = ~(bfd_vma) 0xff;
5633 else
5634 r_sym_mask = ~(bfd_vma) 0xffffffff;
5636 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5637 if (lo->type == bfd_indirect_link_order)
5639 bfd_byte *erel, *erelend;
5640 asection *o = lo->u.indirect.section;
5642 erel = o->contents;
5643 erelend = o->contents + o->size;
5644 p = sort + o->output_offset / ext_size * sort_elt;
5645 while (erel < erelend)
5647 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5648 (*swap_in) (abfd, erel, s->rela);
5649 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5650 s->u.sym_mask = r_sym_mask;
5651 p += sort_elt;
5652 erel += ext_size;
5656 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5658 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5660 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5661 if (s->type != reloc_class_relative)
5662 break;
5664 ret = i;
5665 s_non_relative = p;
5667 sq = (struct elf_link_sort_rela *) s_non_relative;
5668 for (; i < count; i++, p += sort_elt)
5670 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5671 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5672 sq = sp;
5673 sp->u.offset = sq->rela->r_offset;
5676 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5678 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5679 if (lo->type == bfd_indirect_link_order)
5681 bfd_byte *erel, *erelend;
5682 asection *o = lo->u.indirect.section;
5684 erel = o->contents;
5685 erelend = o->contents + o->size;
5686 p = sort + o->output_offset / ext_size * sort_elt;
5687 while (erel < erelend)
5689 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5690 (*swap_out) (abfd, s->rela, erel);
5691 p += sort_elt;
5692 erel += ext_size;
5696 free (sort);
5697 *psec = reldyn;
5698 return ret;
5701 /* Flush the output symbols to the file. */
5703 static bfd_boolean
5704 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5705 const struct elf_backend_data *bed)
5707 if (finfo->symbuf_count > 0)
5709 Elf_Internal_Shdr *hdr;
5710 file_ptr pos;
5711 bfd_size_type amt;
5713 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5714 pos = hdr->sh_offset + hdr->sh_size;
5715 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5716 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5717 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5718 return FALSE;
5720 hdr->sh_size += amt;
5721 finfo->symbuf_count = 0;
5724 return TRUE;
5727 /* Add a symbol to the output symbol table. */
5729 static bfd_boolean
5730 elf_link_output_sym (struct elf_final_link_info *finfo,
5731 const char *name,
5732 Elf_Internal_Sym *elfsym,
5733 asection *input_sec,
5734 struct elf_link_hash_entry *h)
5736 bfd_byte *dest;
5737 Elf_External_Sym_Shndx *destshndx;
5738 bfd_boolean (*output_symbol_hook)
5739 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5740 struct elf_link_hash_entry *);
5741 const struct elf_backend_data *bed;
5743 bed = get_elf_backend_data (finfo->output_bfd);
5744 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5745 if (output_symbol_hook != NULL)
5747 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5748 return FALSE;
5751 if (name == NULL || *name == '\0')
5752 elfsym->st_name = 0;
5753 else if (input_sec->flags & SEC_EXCLUDE)
5754 elfsym->st_name = 0;
5755 else
5757 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5758 name, TRUE, FALSE);
5759 if (elfsym->st_name == (unsigned long) -1)
5760 return FALSE;
5763 if (finfo->symbuf_count >= finfo->symbuf_size)
5765 if (! elf_link_flush_output_syms (finfo, bed))
5766 return FALSE;
5769 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5770 destshndx = finfo->symshndxbuf;
5771 if (destshndx != NULL)
5773 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5775 bfd_size_type amt;
5777 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5778 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5779 if (destshndx == NULL)
5780 return FALSE;
5781 memset ((char *) destshndx + amt, 0, amt);
5782 finfo->shndxbuf_size *= 2;
5784 destshndx += bfd_get_symcount (finfo->output_bfd);
5787 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5788 finfo->symbuf_count += 1;
5789 bfd_get_symcount (finfo->output_bfd) += 1;
5791 return TRUE;
5794 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5795 allowing an unsatisfied unversioned symbol in the DSO to match a
5796 versioned symbol that would normally require an explicit version.
5797 We also handle the case that a DSO references a hidden symbol
5798 which may be satisfied by a versioned symbol in another DSO. */
5800 static bfd_boolean
5801 elf_link_check_versioned_symbol (struct bfd_link_info *info,
5802 const struct elf_backend_data *bed,
5803 struct elf_link_hash_entry *h)
5805 bfd *abfd;
5806 struct elf_link_loaded_list *loaded;
5808 if (!is_elf_hash_table (info->hash))
5809 return FALSE;
5811 switch (h->root.type)
5813 default:
5814 abfd = NULL;
5815 break;
5817 case bfd_link_hash_undefined:
5818 case bfd_link_hash_undefweak:
5819 abfd = h->root.u.undef.abfd;
5820 if ((abfd->flags & DYNAMIC) == 0
5821 || elf_dyn_lib_class (abfd) != DYN_DT_NEEDED)
5822 return FALSE;
5823 break;
5825 case bfd_link_hash_defined:
5826 case bfd_link_hash_defweak:
5827 abfd = h->root.u.def.section->owner;
5828 break;
5830 case bfd_link_hash_common:
5831 abfd = h->root.u.c.p->section->owner;
5832 break;
5834 BFD_ASSERT (abfd != NULL);
5836 for (loaded = elf_hash_table (info)->loaded;
5837 loaded != NULL;
5838 loaded = loaded->next)
5840 bfd *input;
5841 Elf_Internal_Shdr *hdr;
5842 bfd_size_type symcount;
5843 bfd_size_type extsymcount;
5844 bfd_size_type extsymoff;
5845 Elf_Internal_Shdr *versymhdr;
5846 Elf_Internal_Sym *isym;
5847 Elf_Internal_Sym *isymend;
5848 Elf_Internal_Sym *isymbuf;
5849 Elf_External_Versym *ever;
5850 Elf_External_Versym *extversym;
5852 input = loaded->abfd;
5854 /* We check each DSO for a possible hidden versioned definition. */
5855 if (input == abfd
5856 || (input->flags & DYNAMIC) == 0
5857 || elf_dynversym (input) == 0)
5858 continue;
5860 hdr = &elf_tdata (input)->dynsymtab_hdr;
5862 symcount = hdr->sh_size / bed->s->sizeof_sym;
5863 if (elf_bad_symtab (input))
5865 extsymcount = symcount;
5866 extsymoff = 0;
5868 else
5870 extsymcount = symcount - hdr->sh_info;
5871 extsymoff = hdr->sh_info;
5874 if (extsymcount == 0)
5875 continue;
5877 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
5878 NULL, NULL, NULL);
5879 if (isymbuf == NULL)
5880 return FALSE;
5882 /* Read in any version definitions. */
5883 versymhdr = &elf_tdata (input)->dynversym_hdr;
5884 extversym = bfd_malloc (versymhdr->sh_size);
5885 if (extversym == NULL)
5886 goto error_ret;
5888 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
5889 || (bfd_bread (extversym, versymhdr->sh_size, input)
5890 != versymhdr->sh_size))
5892 free (extversym);
5893 error_ret:
5894 free (isymbuf);
5895 return FALSE;
5898 ever = extversym + extsymoff;
5899 isymend = isymbuf + extsymcount;
5900 for (isym = isymbuf; isym < isymend; isym++, ever++)
5902 const char *name;
5903 Elf_Internal_Versym iver;
5904 unsigned short version_index;
5906 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
5907 || isym->st_shndx == SHN_UNDEF)
5908 continue;
5910 name = bfd_elf_string_from_elf_section (input,
5911 hdr->sh_link,
5912 isym->st_name);
5913 if (strcmp (name, h->root.root.string) != 0)
5914 continue;
5916 _bfd_elf_swap_versym_in (input, ever, &iver);
5918 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
5920 /* If we have a non-hidden versioned sym, then it should
5921 have provided a definition for the undefined sym. */
5922 abort ();
5925 version_index = iver.vs_vers & VERSYM_VERSION;
5926 if (version_index == 1 || version_index == 2)
5928 /* This is the base or first version. We can use it. */
5929 free (extversym);
5930 free (isymbuf);
5931 return TRUE;
5935 free (extversym);
5936 free (isymbuf);
5939 return FALSE;
5942 /* Add an external symbol to the symbol table. This is called from
5943 the hash table traversal routine. When generating a shared object,
5944 we go through the symbol table twice. The first time we output
5945 anything that might have been forced to local scope in a version
5946 script. The second time we output the symbols that are still
5947 global symbols. */
5949 static bfd_boolean
5950 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
5952 struct elf_outext_info *eoinfo = data;
5953 struct elf_final_link_info *finfo = eoinfo->finfo;
5954 bfd_boolean strip;
5955 Elf_Internal_Sym sym;
5956 asection *input_sec;
5957 const struct elf_backend_data *bed;
5959 if (h->root.type == bfd_link_hash_warning)
5961 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5962 if (h->root.type == bfd_link_hash_new)
5963 return TRUE;
5966 /* Decide whether to output this symbol in this pass. */
5967 if (eoinfo->localsyms)
5969 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5970 return TRUE;
5972 else
5974 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5975 return TRUE;
5978 bed = get_elf_backend_data (finfo->output_bfd);
5980 /* If we have an undefined symbol reference here then it must have
5981 come from a shared library that is being linked in. (Undefined
5982 references in regular files have already been handled). If we
5983 are reporting errors for this situation then do so now. */
5984 if (h->root.type == bfd_link_hash_undefined
5985 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5986 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
5987 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
5988 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
5990 if (! ((*finfo->info->callbacks->undefined_symbol)
5991 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5992 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
5994 eoinfo->failed = TRUE;
5995 return FALSE;
5999 /* We should also warn if a forced local symbol is referenced from
6000 shared libraries. */
6001 if (! finfo->info->relocatable
6002 && (! finfo->info->shared)
6003 && (h->elf_link_hash_flags
6004 & (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_DYNAMIC_DEF | ELF_LINK_DYNAMIC_WEAK))
6005 == (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC)
6006 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6008 (*_bfd_error_handler)
6009 (_("%s: %s symbol `%s' in %s is referenced by DSO"),
6010 bfd_get_filename (finfo->output_bfd),
6011 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6012 ? "internal"
6013 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6014 ? "hidden" : "local",
6015 h->root.root.string,
6016 bfd_archive_filename (h->root.u.def.section->owner));
6017 eoinfo->failed = TRUE;
6018 return FALSE;
6021 /* We don't want to output symbols that have never been mentioned by
6022 a regular file, or that we have been told to strip. However, if
6023 h->indx is set to -2, the symbol is used by a reloc and we must
6024 output it. */
6025 if (h->indx == -2)
6026 strip = FALSE;
6027 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6028 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6029 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6030 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6031 strip = TRUE;
6032 else if (finfo->info->strip == strip_all)
6033 strip = TRUE;
6034 else if (finfo->info->strip == strip_some
6035 && bfd_hash_lookup (finfo->info->keep_hash,
6036 h->root.root.string, FALSE, FALSE) == NULL)
6037 strip = TRUE;
6038 else if (finfo->info->strip_discarded
6039 && (h->root.type == bfd_link_hash_defined
6040 || h->root.type == bfd_link_hash_defweak)
6041 && elf_discarded_section (h->root.u.def.section))
6042 strip = TRUE;
6043 else
6044 strip = FALSE;
6046 /* If we're stripping it, and it's not a dynamic symbol, there's
6047 nothing else to do unless it is a forced local symbol. */
6048 if (strip
6049 && h->dynindx == -1
6050 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6051 return TRUE;
6053 sym.st_value = 0;
6054 sym.st_size = h->size;
6055 sym.st_other = h->other;
6056 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6057 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6058 else if (h->root.type == bfd_link_hash_undefweak
6059 || h->root.type == bfd_link_hash_defweak)
6060 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6061 else
6062 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6064 switch (h->root.type)
6066 default:
6067 case bfd_link_hash_new:
6068 case bfd_link_hash_warning:
6069 abort ();
6070 return FALSE;
6072 case bfd_link_hash_undefined:
6073 case bfd_link_hash_undefweak:
6074 input_sec = bfd_und_section_ptr;
6075 sym.st_shndx = SHN_UNDEF;
6076 break;
6078 case bfd_link_hash_defined:
6079 case bfd_link_hash_defweak:
6081 input_sec = h->root.u.def.section;
6082 if (input_sec->output_section != NULL)
6084 sym.st_shndx =
6085 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6086 input_sec->output_section);
6087 if (sym.st_shndx == SHN_BAD)
6089 char *sec_name = bfd_get_section_ident (input_sec);
6090 (*_bfd_error_handler)
6091 (_("%s: could not find output section %s for input section %s"),
6092 bfd_get_filename (finfo->output_bfd),
6093 input_sec->output_section->name,
6094 sec_name ? sec_name : input_sec->name);
6095 if (sec_name)
6096 free (sec_name);
6097 eoinfo->failed = TRUE;
6098 return FALSE;
6101 /* ELF symbols in relocatable files are section relative,
6102 but in nonrelocatable files they are virtual
6103 addresses. */
6104 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6105 if (! finfo->info->relocatable)
6107 sym.st_value += input_sec->output_section->vma;
6108 if (h->type == STT_TLS)
6110 /* STT_TLS symbols are relative to PT_TLS segment
6111 base. */
6112 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6113 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6117 else
6119 BFD_ASSERT (input_sec->owner == NULL
6120 || (input_sec->owner->flags & DYNAMIC) != 0);
6121 sym.st_shndx = SHN_UNDEF;
6122 input_sec = bfd_und_section_ptr;
6125 break;
6127 case bfd_link_hash_common:
6128 input_sec = h->root.u.c.p->section;
6129 sym.st_shndx = SHN_COMMON;
6130 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6131 break;
6133 case bfd_link_hash_indirect:
6134 /* These symbols are created by symbol versioning. They point
6135 to the decorated version of the name. For example, if the
6136 symbol foo@@GNU_1.2 is the default, which should be used when
6137 foo is used with no version, then we add an indirect symbol
6138 foo which points to foo@@GNU_1.2. We ignore these symbols,
6139 since the indirected symbol is already in the hash table. */
6140 return TRUE;
6143 /* Give the processor backend a chance to tweak the symbol value,
6144 and also to finish up anything that needs to be done for this
6145 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6146 forced local syms when non-shared is due to a historical quirk. */
6147 if ((h->dynindx != -1
6148 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6149 && ((finfo->info->shared
6150 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6151 || h->root.type != bfd_link_hash_undefweak))
6152 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6153 && elf_hash_table (finfo->info)->dynamic_sections_created)
6155 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6156 (finfo->output_bfd, finfo->info, h, &sym)))
6158 eoinfo->failed = TRUE;
6159 return FALSE;
6163 /* If we are marking the symbol as undefined, and there are no
6164 non-weak references to this symbol from a regular object, then
6165 mark the symbol as weak undefined; if there are non-weak
6166 references, mark the symbol as strong. We can't do this earlier,
6167 because it might not be marked as undefined until the
6168 finish_dynamic_symbol routine gets through with it. */
6169 if (sym.st_shndx == SHN_UNDEF
6170 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6171 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6172 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6174 int bindtype;
6176 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6177 bindtype = STB_GLOBAL;
6178 else
6179 bindtype = STB_WEAK;
6180 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6183 /* If a non-weak symbol with non-default visibility is not defined
6184 locally, it is a fatal error. */
6185 if (! finfo->info->relocatable
6186 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6187 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6188 && h->root.type == bfd_link_hash_undefined
6189 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6191 (*_bfd_error_handler)
6192 (_("%s: %s symbol `%s' isn't defined"),
6193 bfd_get_filename (finfo->output_bfd),
6194 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6195 ? "protected"
6196 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6197 ? "internal" : "hidden",
6198 h->root.root.string);
6199 eoinfo->failed = TRUE;
6200 return FALSE;
6203 /* If this symbol should be put in the .dynsym section, then put it
6204 there now. We already know the symbol index. We also fill in
6205 the entry in the .hash section. */
6206 if (h->dynindx != -1
6207 && elf_hash_table (finfo->info)->dynamic_sections_created)
6209 size_t bucketcount;
6210 size_t bucket;
6211 size_t hash_entry_size;
6212 bfd_byte *bucketpos;
6213 bfd_vma chain;
6214 bfd_byte *esym;
6216 sym.st_name = h->dynstr_index;
6217 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6218 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6220 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6221 bucket = h->elf_hash_value % bucketcount;
6222 hash_entry_size
6223 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6224 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6225 + (bucket + 2) * hash_entry_size);
6226 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6227 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6228 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6229 ((bfd_byte *) finfo->hash_sec->contents
6230 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6232 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6234 Elf_Internal_Versym iversym;
6235 Elf_External_Versym *eversym;
6237 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6239 if (h->verinfo.verdef == NULL)
6240 iversym.vs_vers = 0;
6241 else
6242 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6244 else
6246 if (h->verinfo.vertree == NULL)
6247 iversym.vs_vers = 1;
6248 else
6249 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6252 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6253 iversym.vs_vers |= VERSYM_HIDDEN;
6255 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6256 eversym += h->dynindx;
6257 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6261 /* If we're stripping it, then it was just a dynamic symbol, and
6262 there's nothing else to do. */
6263 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6264 return TRUE;
6266 h->indx = bfd_get_symcount (finfo->output_bfd);
6268 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6270 eoinfo->failed = TRUE;
6271 return FALSE;
6274 return TRUE;
6277 /* Return TRUE if special handling is done for relocs in SEC against
6278 symbols defined in discarded sections. */
6280 static bfd_boolean
6281 elf_section_ignore_discarded_relocs (asection *sec)
6283 const struct elf_backend_data *bed;
6285 switch (sec->sec_info_type)
6287 case ELF_INFO_TYPE_STABS:
6288 case ELF_INFO_TYPE_EH_FRAME:
6289 return TRUE;
6290 default:
6291 break;
6294 bed = get_elf_backend_data (sec->owner);
6295 if (bed->elf_backend_ignore_discarded_relocs != NULL
6296 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6297 return TRUE;
6299 return FALSE;
6302 /* Return TRUE if we should complain about a reloc in SEC against a
6303 symbol defined in a discarded section. */
6305 static bfd_boolean
6306 elf_section_complain_discarded (asection *sec)
6308 if (strncmp (".stab", sec->name, 5) == 0
6309 && (!sec->name[5] ||
6310 (sec->name[5] == '.' && ISDIGIT (sec->name[6]))))
6311 return FALSE;
6313 if (strcmp (".eh_frame", sec->name) == 0)
6314 return FALSE;
6316 if (strcmp (".gcc_except_table", sec->name) == 0)
6317 return FALSE;
6319 return TRUE;
6322 /* Link an input file into the linker output file. This function
6323 handles all the sections and relocations of the input file at once.
6324 This is so that we only have to read the local symbols once, and
6325 don't have to keep them in memory. */
6327 static bfd_boolean
6328 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6330 bfd_boolean (*relocate_section)
6331 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6332 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6333 bfd *output_bfd;
6334 Elf_Internal_Shdr *symtab_hdr;
6335 size_t locsymcount;
6336 size_t extsymoff;
6337 Elf_Internal_Sym *isymbuf;
6338 Elf_Internal_Sym *isym;
6339 Elf_Internal_Sym *isymend;
6340 long *pindex;
6341 asection **ppsection;
6342 asection *o;
6343 const struct elf_backend_data *bed;
6344 bfd_boolean emit_relocs;
6345 struct elf_link_hash_entry **sym_hashes;
6347 output_bfd = finfo->output_bfd;
6348 bed = get_elf_backend_data (output_bfd);
6349 relocate_section = bed->elf_backend_relocate_section;
6351 /* If this is a dynamic object, we don't want to do anything here:
6352 we don't want the local symbols, and we don't want the section
6353 contents. */
6354 if ((input_bfd->flags & DYNAMIC) != 0)
6355 return TRUE;
6357 emit_relocs = (finfo->info->relocatable
6358 || finfo->info->emitrelocations
6359 || bed->elf_backend_emit_relocs);
6361 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6362 if (elf_bad_symtab (input_bfd))
6364 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6365 extsymoff = 0;
6367 else
6369 locsymcount = symtab_hdr->sh_info;
6370 extsymoff = symtab_hdr->sh_info;
6373 /* Read the local symbols. */
6374 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6375 if (isymbuf == NULL && locsymcount != 0)
6377 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6378 finfo->internal_syms,
6379 finfo->external_syms,
6380 finfo->locsym_shndx);
6381 if (isymbuf == NULL)
6382 return FALSE;
6385 /* Find local symbol sections and adjust values of symbols in
6386 SEC_MERGE sections. Write out those local symbols we know are
6387 going into the output file. */
6388 isymend = isymbuf + locsymcount;
6389 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6390 isym < isymend;
6391 isym++, pindex++, ppsection++)
6393 asection *isec;
6394 const char *name;
6395 Elf_Internal_Sym osym;
6397 *pindex = -1;
6399 if (elf_bad_symtab (input_bfd))
6401 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6403 *ppsection = NULL;
6404 continue;
6408 if (isym->st_shndx == SHN_UNDEF)
6409 isec = bfd_und_section_ptr;
6410 else if (isym->st_shndx < SHN_LORESERVE
6411 || isym->st_shndx > SHN_HIRESERVE)
6413 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6414 if (isec
6415 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6416 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6417 isym->st_value =
6418 _bfd_merged_section_offset (output_bfd, &isec,
6419 elf_section_data (isec)->sec_info,
6420 isym->st_value);
6422 else if (isym->st_shndx == SHN_ABS)
6423 isec = bfd_abs_section_ptr;
6424 else if (isym->st_shndx == SHN_COMMON)
6425 isec = bfd_com_section_ptr;
6426 else
6428 /* Who knows? */
6429 isec = NULL;
6432 *ppsection = isec;
6434 /* Don't output the first, undefined, symbol. */
6435 if (ppsection == finfo->sections)
6436 continue;
6438 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6440 /* We never output section symbols. Instead, we use the
6441 section symbol of the corresponding section in the output
6442 file. */
6443 continue;
6446 /* If we are stripping all symbols, we don't want to output this
6447 one. */
6448 if (finfo->info->strip == strip_all)
6449 continue;
6451 /* If we are discarding all local symbols, we don't want to
6452 output this one. If we are generating a relocatable output
6453 file, then some of the local symbols may be required by
6454 relocs; we output them below as we discover that they are
6455 needed. */
6456 if (finfo->info->discard == discard_all)
6457 continue;
6459 /* If this symbol is defined in a section which we are
6460 discarding, we don't need to keep it, but note that
6461 linker_mark is only reliable for sections that have contents.
6462 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6463 as well as linker_mark. */
6464 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6465 && isec != NULL
6466 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6467 || (! finfo->info->relocatable
6468 && (isec->flags & SEC_EXCLUDE) != 0)))
6469 continue;
6471 /* Get the name of the symbol. */
6472 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6473 isym->st_name);
6474 if (name == NULL)
6475 return FALSE;
6477 /* See if we are discarding symbols with this name. */
6478 if ((finfo->info->strip == strip_some
6479 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6480 == NULL))
6481 || (((finfo->info->discard == discard_sec_merge
6482 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6483 || finfo->info->discard == discard_l)
6484 && bfd_is_local_label_name (input_bfd, name)))
6485 continue;
6487 /* If we get here, we are going to output this symbol. */
6489 osym = *isym;
6491 /* Adjust the section index for the output file. */
6492 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6493 isec->output_section);
6494 if (osym.st_shndx == SHN_BAD)
6495 return FALSE;
6497 *pindex = bfd_get_symcount (output_bfd);
6499 /* ELF symbols in relocatable files are section relative, but
6500 in executable files they are virtual addresses. Note that
6501 this code assumes that all ELF sections have an associated
6502 BFD section with a reasonable value for output_offset; below
6503 we assume that they also have a reasonable value for
6504 output_section. Any special sections must be set up to meet
6505 these requirements. */
6506 osym.st_value += isec->output_offset;
6507 if (! finfo->info->relocatable)
6509 osym.st_value += isec->output_section->vma;
6510 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6512 /* STT_TLS symbols are relative to PT_TLS segment base. */
6513 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6514 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6518 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6519 return FALSE;
6522 /* Relocate the contents of each section. */
6523 sym_hashes = elf_sym_hashes (input_bfd);
6524 for (o = input_bfd->sections; o != NULL; o = o->next)
6526 bfd_byte *contents;
6528 if (! o->linker_mark)
6530 /* This section was omitted from the link. */
6531 continue;
6534 if ((o->flags & SEC_HAS_CONTENTS) == 0
6535 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6536 continue;
6538 if ((o->flags & SEC_LINKER_CREATED) != 0)
6540 /* Section was created by _bfd_elf_link_create_dynamic_sections
6541 or somesuch. */
6542 continue;
6545 /* Get the contents of the section. They have been cached by a
6546 relaxation routine. Note that o is a section in an input
6547 file, so the contents field will not have been set by any of
6548 the routines which work on output files. */
6549 if (elf_section_data (o)->this_hdr.contents != NULL)
6550 contents = elf_section_data (o)->this_hdr.contents;
6551 else
6553 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6555 contents = finfo->contents;
6556 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6557 return FALSE;
6560 if ((o->flags & SEC_RELOC) != 0)
6562 Elf_Internal_Rela *internal_relocs;
6563 bfd_vma r_type_mask;
6564 int r_sym_shift;
6566 /* Get the swapped relocs. */
6567 internal_relocs
6568 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6569 finfo->internal_relocs, FALSE);
6570 if (internal_relocs == NULL
6571 && o->reloc_count > 0)
6572 return FALSE;
6574 if (bed->s->arch_size == 32)
6576 r_type_mask = 0xff;
6577 r_sym_shift = 8;
6579 else
6581 r_type_mask = 0xffffffff;
6582 r_sym_shift = 32;
6585 /* Run through the relocs looking for any against symbols
6586 from discarded sections and section symbols from
6587 removed link-once sections. Complain about relocs
6588 against discarded sections. Zero relocs against removed
6589 link-once sections. Preserve debug information as much
6590 as we can. */
6591 if (!elf_section_ignore_discarded_relocs (o))
6593 Elf_Internal_Rela *rel, *relend;
6594 bfd_boolean complain = elf_section_complain_discarded (o);
6596 rel = internal_relocs;
6597 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6598 for ( ; rel < relend; rel++)
6600 unsigned long r_symndx = rel->r_info >> r_sym_shift;
6601 asection **ps, *sec;
6602 struct elf_link_hash_entry *h = NULL;
6603 const char *sym_name;
6605 if (r_symndx >= locsymcount
6606 || (elf_bad_symtab (input_bfd)
6607 && finfo->sections[r_symndx] == NULL))
6609 h = sym_hashes[r_symndx - extsymoff];
6610 while (h->root.type == bfd_link_hash_indirect
6611 || h->root.type == bfd_link_hash_warning)
6612 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6614 if (h->root.type != bfd_link_hash_defined
6615 && h->root.type != bfd_link_hash_defweak)
6616 continue;
6618 ps = &h->root.u.def.section;
6619 sym_name = h->root.root.string;
6621 else
6623 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6624 ps = &finfo->sections[r_symndx];
6625 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
6628 /* Complain if the definition comes from a
6629 discarded section. */
6630 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6632 if ((o->flags & SEC_DEBUGGING) != 0)
6634 BFD_ASSERT (r_symndx != 0);
6636 /* Try to preserve debug information.
6637 FIXME: This is quite broken. Modifying
6638 the symbol here means we will be changing
6639 all uses of the symbol, not just those in
6640 debug sections. The only thing that makes
6641 this half reasonable is that debug sections
6642 tend to come after other sections. Of
6643 course, that doesn't help with globals.
6644 ??? All link-once sections of the same name
6645 ought to define the same set of symbols, so
6646 it would seem that globals ought to always
6647 be defined in the kept section. */
6648 if (sec->kept_section != NULL
6649 && sec->size == sec->kept_section->size)
6651 *ps = sec->kept_section;
6652 continue;
6655 else if (complain)
6657 char *r_sec
6658 = bfd_get_section_ident (o);
6659 char *d_sec
6660 = bfd_get_section_ident (sec);
6661 finfo->info->callbacks->error_handler
6662 (LD_DEFINITION_IN_DISCARDED_SECTION,
6663 _("`%T' referenced in section `%s' of %B: "
6664 "defined in discarded section `%s' of %B\n"),
6665 sym_name, sym_name,
6666 r_sec ? r_sec : o->name, input_bfd,
6667 d_sec ? d_sec : sec->name, sec->owner);
6668 if (r_sec)
6669 free (r_sec);
6670 if (d_sec)
6671 free (d_sec);
6674 /* Remove the symbol reference from the reloc, but
6675 don't kill the reloc completely. This is so that
6676 a zero value will be written into the section,
6677 which may have non-zero contents put there by the
6678 assembler. Zero in things like an eh_frame fde
6679 pc_begin allows stack unwinders to recognize the
6680 fde as bogus. */
6681 rel->r_info &= r_type_mask;
6682 rel->r_addend = 0;
6687 /* Relocate the section by invoking a back end routine.
6689 The back end routine is responsible for adjusting the
6690 section contents as necessary, and (if using Rela relocs
6691 and generating a relocatable output file) adjusting the
6692 reloc addend as necessary.
6694 The back end routine does not have to worry about setting
6695 the reloc address or the reloc symbol index.
6697 The back end routine is given a pointer to the swapped in
6698 internal symbols, and can access the hash table entries
6699 for the external symbols via elf_sym_hashes (input_bfd).
6701 When generating relocatable output, the back end routine
6702 must handle STB_LOCAL/STT_SECTION symbols specially. The
6703 output symbol is going to be a section symbol
6704 corresponding to the output section, which will require
6705 the addend to be adjusted. */
6707 if (! (*relocate_section) (output_bfd, finfo->info,
6708 input_bfd, o, contents,
6709 internal_relocs,
6710 isymbuf,
6711 finfo->sections))
6712 return FALSE;
6714 if (emit_relocs)
6716 Elf_Internal_Rela *irela;
6717 Elf_Internal_Rela *irelaend;
6718 bfd_vma last_offset;
6719 struct elf_link_hash_entry **rel_hash;
6720 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6721 unsigned int next_erel;
6722 bfd_boolean (*reloc_emitter)
6723 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6724 bfd_boolean rela_normal;
6726 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6727 rela_normal = (bed->rela_normal
6728 && (input_rel_hdr->sh_entsize
6729 == bed->s->sizeof_rela));
6731 /* Adjust the reloc addresses and symbol indices. */
6733 irela = internal_relocs;
6734 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6735 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6736 + elf_section_data (o->output_section)->rel_count
6737 + elf_section_data (o->output_section)->rel_count2);
6738 last_offset = o->output_offset;
6739 if (!finfo->info->relocatable)
6740 last_offset += o->output_section->vma;
6741 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6743 unsigned long r_symndx;
6744 asection *sec;
6745 Elf_Internal_Sym sym;
6747 if (next_erel == bed->s->int_rels_per_ext_rel)
6749 rel_hash++;
6750 next_erel = 0;
6753 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6754 finfo->info, o,
6755 irela->r_offset);
6756 if (irela->r_offset >= (bfd_vma) -2)
6758 /* This is a reloc for a deleted entry or somesuch.
6759 Turn it into an R_*_NONE reloc, at the same
6760 offset as the last reloc. elf_eh_frame.c and
6761 elf_bfd_discard_info rely on reloc offsets
6762 being ordered. */
6763 irela->r_offset = last_offset;
6764 irela->r_info = 0;
6765 irela->r_addend = 0;
6766 continue;
6769 irela->r_offset += o->output_offset;
6771 /* Relocs in an executable have to be virtual addresses. */
6772 if (!finfo->info->relocatable)
6773 irela->r_offset += o->output_section->vma;
6775 last_offset = irela->r_offset;
6777 r_symndx = irela->r_info >> r_sym_shift;
6778 if (r_symndx == STN_UNDEF)
6779 continue;
6781 if (r_symndx >= locsymcount
6782 || (elf_bad_symtab (input_bfd)
6783 && finfo->sections[r_symndx] == NULL))
6785 struct elf_link_hash_entry *rh;
6786 unsigned long indx;
6788 /* This is a reloc against a global symbol. We
6789 have not yet output all the local symbols, so
6790 we do not know the symbol index of any global
6791 symbol. We set the rel_hash entry for this
6792 reloc to point to the global hash table entry
6793 for this symbol. The symbol index is then
6794 set at the end of elf_bfd_final_link. */
6795 indx = r_symndx - extsymoff;
6796 rh = elf_sym_hashes (input_bfd)[indx];
6797 while (rh->root.type == bfd_link_hash_indirect
6798 || rh->root.type == bfd_link_hash_warning)
6799 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6801 /* Setting the index to -2 tells
6802 elf_link_output_extsym that this symbol is
6803 used by a reloc. */
6804 BFD_ASSERT (rh->indx < 0);
6805 rh->indx = -2;
6807 *rel_hash = rh;
6809 continue;
6812 /* This is a reloc against a local symbol. */
6814 *rel_hash = NULL;
6815 sym = isymbuf[r_symndx];
6816 sec = finfo->sections[r_symndx];
6817 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6819 /* I suppose the backend ought to fill in the
6820 section of any STT_SECTION symbol against a
6821 processor specific section. */
6822 r_symndx = 0;
6823 if (bfd_is_abs_section (sec))
6825 else if (sec == NULL || sec->owner == NULL)
6827 bfd_set_error (bfd_error_bad_value);
6828 return FALSE;
6830 else
6832 asection *osec = sec->output_section;
6834 /* If we have discarded a section, the output
6835 section will be the absolute section. In
6836 case of discarded link-once and discarded
6837 SEC_MERGE sections, use the kept section. */
6838 if (bfd_is_abs_section (osec)
6839 && sec->kept_section != NULL
6840 && sec->kept_section->output_section != NULL)
6842 osec = sec->kept_section->output_section;
6843 irela->r_addend -= osec->vma;
6846 if (!bfd_is_abs_section (osec))
6848 r_symndx = osec->target_index;
6849 BFD_ASSERT (r_symndx != 0);
6853 /* Adjust the addend according to where the
6854 section winds up in the output section. */
6855 if (rela_normal)
6856 irela->r_addend += sec->output_offset;
6858 else
6860 if (finfo->indices[r_symndx] == -1)
6862 unsigned long shlink;
6863 const char *name;
6864 asection *osec;
6866 if (finfo->info->strip == strip_all)
6868 /* You can't do ld -r -s. */
6869 bfd_set_error (bfd_error_invalid_operation);
6870 return FALSE;
6873 /* This symbol was skipped earlier, but
6874 since it is needed by a reloc, we
6875 must output it now. */
6876 shlink = symtab_hdr->sh_link;
6877 name = (bfd_elf_string_from_elf_section
6878 (input_bfd, shlink, sym.st_name));
6879 if (name == NULL)
6880 return FALSE;
6882 osec = sec->output_section;
6883 sym.st_shndx =
6884 _bfd_elf_section_from_bfd_section (output_bfd,
6885 osec);
6886 if (sym.st_shndx == SHN_BAD)
6887 return FALSE;
6889 sym.st_value += sec->output_offset;
6890 if (! finfo->info->relocatable)
6892 sym.st_value += osec->vma;
6893 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
6895 /* STT_TLS symbols are relative to PT_TLS
6896 segment base. */
6897 BFD_ASSERT (elf_hash_table (finfo->info)
6898 ->tls_sec != NULL);
6899 sym.st_value -= (elf_hash_table (finfo->info)
6900 ->tls_sec->vma);
6904 finfo->indices[r_symndx]
6905 = bfd_get_symcount (output_bfd);
6907 if (! elf_link_output_sym (finfo, name, &sym, sec,
6908 NULL))
6909 return FALSE;
6912 r_symndx = finfo->indices[r_symndx];
6915 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
6916 | (irela->r_info & r_type_mask));
6919 /* Swap out the relocs. */
6920 if (bed->elf_backend_emit_relocs
6921 && !(finfo->info->relocatable
6922 || finfo->info->emitrelocations))
6923 reloc_emitter = bed->elf_backend_emit_relocs;
6924 else
6925 reloc_emitter = _bfd_elf_link_output_relocs;
6927 if (input_rel_hdr->sh_size != 0
6928 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
6929 internal_relocs))
6930 return FALSE;
6932 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
6933 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
6935 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6936 * bed->s->int_rels_per_ext_rel);
6937 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
6938 internal_relocs))
6939 return FALSE;
6944 /* Write out the modified section contents. */
6945 if (bed->elf_backend_write_section
6946 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6948 /* Section written out. */
6950 else switch (o->sec_info_type)
6952 case ELF_INFO_TYPE_STABS:
6953 if (! (_bfd_write_section_stabs
6954 (output_bfd,
6955 &elf_hash_table (finfo->info)->stab_info,
6956 o, &elf_section_data (o)->sec_info, contents)))
6957 return FALSE;
6958 break;
6959 case ELF_INFO_TYPE_MERGE:
6960 if (! _bfd_write_merged_section (output_bfd, o,
6961 elf_section_data (o)->sec_info))
6962 return FALSE;
6963 break;
6964 case ELF_INFO_TYPE_EH_FRAME:
6966 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
6967 o, contents))
6968 return FALSE;
6970 break;
6971 default:
6973 if (! (o->flags & SEC_EXCLUDE)
6974 && ! bfd_set_section_contents (output_bfd, o->output_section,
6975 contents,
6976 (file_ptr) o->output_offset,
6977 o->size))
6978 return FALSE;
6980 break;
6984 return TRUE;
6987 /* Generate a reloc when linking an ELF file. This is a reloc
6988 requested by the linker, and does come from any input file. This
6989 is used to build constructor and destructor tables when linking
6990 with -Ur. */
6992 static bfd_boolean
6993 elf_reloc_link_order (bfd *output_bfd,
6994 struct bfd_link_info *info,
6995 asection *output_section,
6996 struct bfd_link_order *link_order)
6998 reloc_howto_type *howto;
6999 long indx;
7000 bfd_vma offset;
7001 bfd_vma addend;
7002 struct elf_link_hash_entry **rel_hash_ptr;
7003 Elf_Internal_Shdr *rel_hdr;
7004 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7005 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7006 bfd_byte *erel;
7007 unsigned int i;
7009 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7010 if (howto == NULL)
7012 bfd_set_error (bfd_error_bad_value);
7013 return FALSE;
7016 addend = link_order->u.reloc.p->addend;
7018 /* Figure out the symbol index. */
7019 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7020 + elf_section_data (output_section)->rel_count
7021 + elf_section_data (output_section)->rel_count2);
7022 if (link_order->type == bfd_section_reloc_link_order)
7024 indx = link_order->u.reloc.p->u.section->target_index;
7025 BFD_ASSERT (indx != 0);
7026 *rel_hash_ptr = NULL;
7028 else
7030 struct elf_link_hash_entry *h;
7032 /* Treat a reloc against a defined symbol as though it were
7033 actually against the section. */
7034 h = ((struct elf_link_hash_entry *)
7035 bfd_wrapped_link_hash_lookup (output_bfd, info,
7036 link_order->u.reloc.p->u.name,
7037 FALSE, FALSE, TRUE));
7038 if (h != NULL
7039 && (h->root.type == bfd_link_hash_defined
7040 || h->root.type == bfd_link_hash_defweak))
7042 asection *section;
7044 section = h->root.u.def.section;
7045 indx = section->output_section->target_index;
7046 *rel_hash_ptr = NULL;
7047 /* It seems that we ought to add the symbol value to the
7048 addend here, but in practice it has already been added
7049 because it was passed to constructor_callback. */
7050 addend += section->output_section->vma + section->output_offset;
7052 else if (h != NULL)
7054 /* Setting the index to -2 tells elf_link_output_extsym that
7055 this symbol is used by a reloc. */
7056 h->indx = -2;
7057 *rel_hash_ptr = h;
7058 indx = 0;
7060 else
7062 if (! ((*info->callbacks->unattached_reloc)
7063 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7064 return FALSE;
7065 indx = 0;
7069 /* If this is an inplace reloc, we must write the addend into the
7070 object file. */
7071 if (howto->partial_inplace && addend != 0)
7073 bfd_size_type size;
7074 bfd_reloc_status_type rstat;
7075 bfd_byte *buf;
7076 bfd_boolean ok;
7077 const char *sym_name;
7079 size = bfd_get_reloc_size (howto);
7080 buf = bfd_zmalloc (size);
7081 if (buf == NULL)
7082 return FALSE;
7083 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7084 switch (rstat)
7086 case bfd_reloc_ok:
7087 break;
7089 default:
7090 case bfd_reloc_outofrange:
7091 abort ();
7093 case bfd_reloc_overflow:
7094 if (link_order->type == bfd_section_reloc_link_order)
7095 sym_name = bfd_section_name (output_bfd,
7096 link_order->u.reloc.p->u.section);
7097 else
7098 sym_name = link_order->u.reloc.p->u.name;
7099 if (! ((*info->callbacks->reloc_overflow)
7100 (info, sym_name, howto->name, addend, NULL, NULL, 0)))
7102 free (buf);
7103 return FALSE;
7105 break;
7107 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7108 link_order->offset, size);
7109 free (buf);
7110 if (! ok)
7111 return FALSE;
7114 /* The address of a reloc is relative to the section in a
7115 relocatable file, and is a virtual address in an executable
7116 file. */
7117 offset = link_order->offset;
7118 if (! info->relocatable)
7119 offset += output_section->vma;
7121 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7123 irel[i].r_offset = offset;
7124 irel[i].r_info = 0;
7125 irel[i].r_addend = 0;
7127 if (bed->s->arch_size == 32)
7128 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7129 else
7130 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7132 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7133 erel = rel_hdr->contents;
7134 if (rel_hdr->sh_type == SHT_REL)
7136 erel += (elf_section_data (output_section)->rel_count
7137 * bed->s->sizeof_rel);
7138 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7140 else
7142 irel[0].r_addend = addend;
7143 erel += (elf_section_data (output_section)->rel_count
7144 * bed->s->sizeof_rela);
7145 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7148 ++elf_section_data (output_section)->rel_count;
7150 return TRUE;
7153 /* Do the final step of an ELF link. */
7155 bfd_boolean
7156 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7158 bfd_boolean dynamic;
7159 bfd_boolean emit_relocs;
7160 bfd *dynobj;
7161 struct elf_final_link_info finfo;
7162 register asection *o;
7163 register struct bfd_link_order *p;
7164 register bfd *sub;
7165 bfd_size_type max_contents_size;
7166 bfd_size_type max_external_reloc_size;
7167 bfd_size_type max_internal_reloc_count;
7168 bfd_size_type max_sym_count;
7169 bfd_size_type max_sym_shndx_count;
7170 file_ptr off;
7171 Elf_Internal_Sym elfsym;
7172 unsigned int i;
7173 Elf_Internal_Shdr *symtab_hdr;
7174 Elf_Internal_Shdr *symtab_shndx_hdr;
7175 Elf_Internal_Shdr *symstrtab_hdr;
7176 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7177 struct elf_outext_info eoinfo;
7178 bfd_boolean merged;
7179 size_t relativecount = 0;
7180 asection *reldyn = 0;
7181 bfd_size_type amt;
7183 if (! is_elf_hash_table (info->hash))
7184 return FALSE;
7186 if (info->shared)
7187 abfd->flags |= DYNAMIC;
7189 dynamic = elf_hash_table (info)->dynamic_sections_created;
7190 dynobj = elf_hash_table (info)->dynobj;
7192 emit_relocs = (info->relocatable
7193 || info->emitrelocations
7194 || bed->elf_backend_emit_relocs);
7196 finfo.info = info;
7197 finfo.output_bfd = abfd;
7198 finfo.symstrtab = _bfd_elf_stringtab_init ();
7199 if (finfo.symstrtab == NULL)
7200 return FALSE;
7202 if (! dynamic)
7204 finfo.dynsym_sec = NULL;
7205 finfo.hash_sec = NULL;
7206 finfo.symver_sec = NULL;
7208 else
7210 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7211 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7212 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7213 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7214 /* Note that it is OK if symver_sec is NULL. */
7217 finfo.contents = NULL;
7218 finfo.external_relocs = NULL;
7219 finfo.internal_relocs = NULL;
7220 finfo.external_syms = NULL;
7221 finfo.locsym_shndx = NULL;
7222 finfo.internal_syms = NULL;
7223 finfo.indices = NULL;
7224 finfo.sections = NULL;
7225 finfo.symbuf = NULL;
7226 finfo.symshndxbuf = NULL;
7227 finfo.symbuf_count = 0;
7228 finfo.shndxbuf_size = 0;
7230 /* Count up the number of relocations we will output for each output
7231 section, so that we know the sizes of the reloc sections. We
7232 also figure out some maximum sizes. */
7233 max_contents_size = 0;
7234 max_external_reloc_size = 0;
7235 max_internal_reloc_count = 0;
7236 max_sym_count = 0;
7237 max_sym_shndx_count = 0;
7238 merged = FALSE;
7239 for (o = abfd->sections; o != NULL; o = o->next)
7241 struct bfd_elf_section_data *esdo = elf_section_data (o);
7242 o->reloc_count = 0;
7244 for (p = o->link_order_head; p != NULL; p = p->next)
7246 unsigned int reloc_count = 0;
7247 struct bfd_elf_section_data *esdi = NULL;
7248 unsigned int *rel_count1;
7250 if (p->type == bfd_section_reloc_link_order
7251 || p->type == bfd_symbol_reloc_link_order)
7252 reloc_count = 1;
7253 else if (p->type == bfd_indirect_link_order)
7255 asection *sec;
7257 sec = p->u.indirect.section;
7258 esdi = elf_section_data (sec);
7260 /* Mark all sections which are to be included in the
7261 link. This will normally be every section. We need
7262 to do this so that we can identify any sections which
7263 the linker has decided to not include. */
7264 sec->linker_mark = TRUE;
7266 if (sec->flags & SEC_MERGE)
7267 merged = TRUE;
7269 if (info->relocatable || info->emitrelocations)
7270 reloc_count = sec->reloc_count;
7271 else if (bed->elf_backend_count_relocs)
7273 Elf_Internal_Rela * relocs;
7275 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7276 info->keep_memory);
7278 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7280 if (elf_section_data (o)->relocs != relocs)
7281 free (relocs);
7284 if (sec->rawsize > max_contents_size)
7285 max_contents_size = sec->rawsize;
7286 if (sec->size > max_contents_size)
7287 max_contents_size = sec->size;
7289 /* We are interested in just local symbols, not all
7290 symbols. */
7291 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7292 && (sec->owner->flags & DYNAMIC) == 0)
7294 size_t sym_count;
7296 if (elf_bad_symtab (sec->owner))
7297 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7298 / bed->s->sizeof_sym);
7299 else
7300 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7302 if (sym_count > max_sym_count)
7303 max_sym_count = sym_count;
7305 if (sym_count > max_sym_shndx_count
7306 && elf_symtab_shndx (sec->owner) != 0)
7307 max_sym_shndx_count = sym_count;
7309 if ((sec->flags & SEC_RELOC) != 0)
7311 size_t ext_size;
7313 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7314 if (ext_size > max_external_reloc_size)
7315 max_external_reloc_size = ext_size;
7316 if (sec->reloc_count > max_internal_reloc_count)
7317 max_internal_reloc_count = sec->reloc_count;
7322 if (reloc_count == 0)
7323 continue;
7325 o->reloc_count += reloc_count;
7327 /* MIPS may have a mix of REL and RELA relocs on sections.
7328 To support this curious ABI we keep reloc counts in
7329 elf_section_data too. We must be careful to add the
7330 relocations from the input section to the right output
7331 count. FIXME: Get rid of one count. We have
7332 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7333 rel_count1 = &esdo->rel_count;
7334 if (esdi != NULL)
7336 bfd_boolean same_size;
7337 bfd_size_type entsize1;
7339 entsize1 = esdi->rel_hdr.sh_entsize;
7340 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7341 || entsize1 == bed->s->sizeof_rela);
7342 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7344 if (!same_size)
7345 rel_count1 = &esdo->rel_count2;
7347 if (esdi->rel_hdr2 != NULL)
7349 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7350 unsigned int alt_count;
7351 unsigned int *rel_count2;
7353 BFD_ASSERT (entsize2 != entsize1
7354 && (entsize2 == bed->s->sizeof_rel
7355 || entsize2 == bed->s->sizeof_rela));
7357 rel_count2 = &esdo->rel_count2;
7358 if (!same_size)
7359 rel_count2 = &esdo->rel_count;
7361 /* The following is probably too simplistic if the
7362 backend counts output relocs unusually. */
7363 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7364 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7365 *rel_count2 += alt_count;
7366 reloc_count -= alt_count;
7369 *rel_count1 += reloc_count;
7372 if (o->reloc_count > 0)
7373 o->flags |= SEC_RELOC;
7374 else
7376 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7377 set it (this is probably a bug) and if it is set
7378 assign_section_numbers will create a reloc section. */
7379 o->flags &=~ SEC_RELOC;
7382 /* If the SEC_ALLOC flag is not set, force the section VMA to
7383 zero. This is done in elf_fake_sections as well, but forcing
7384 the VMA to 0 here will ensure that relocs against these
7385 sections are handled correctly. */
7386 if ((o->flags & SEC_ALLOC) == 0
7387 && ! o->user_set_vma)
7388 o->vma = 0;
7391 if (! info->relocatable && merged)
7392 elf_link_hash_traverse (elf_hash_table (info),
7393 _bfd_elf_link_sec_merge_syms, abfd);
7395 /* Figure out the file positions for everything but the symbol table
7396 and the relocs. We set symcount to force assign_section_numbers
7397 to create a symbol table. */
7398 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7399 BFD_ASSERT (! abfd->output_has_begun);
7400 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7401 goto error_return;
7403 /* That created the reloc sections. Set their sizes, and assign
7404 them file positions, and allocate some buffers. */
7405 for (o = abfd->sections; o != NULL; o = o->next)
7407 if ((o->flags & SEC_RELOC) != 0)
7409 if (!(_bfd_elf_link_size_reloc_section
7410 (abfd, &elf_section_data (o)->rel_hdr, o)))
7411 goto error_return;
7413 if (elf_section_data (o)->rel_hdr2
7414 && !(_bfd_elf_link_size_reloc_section
7415 (abfd, elf_section_data (o)->rel_hdr2, o)))
7416 goto error_return;
7419 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7420 to count upwards while actually outputting the relocations. */
7421 elf_section_data (o)->rel_count = 0;
7422 elf_section_data (o)->rel_count2 = 0;
7425 _bfd_elf_assign_file_positions_for_relocs (abfd);
7427 /* We have now assigned file positions for all the sections except
7428 .symtab and .strtab. We start the .symtab section at the current
7429 file position, and write directly to it. We build the .strtab
7430 section in memory. */
7431 bfd_get_symcount (abfd) = 0;
7432 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7433 /* sh_name is set in prep_headers. */
7434 symtab_hdr->sh_type = SHT_SYMTAB;
7435 /* sh_flags, sh_addr and sh_size all start off zero. */
7436 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7437 /* sh_link is set in assign_section_numbers. */
7438 /* sh_info is set below. */
7439 /* sh_offset is set just below. */
7440 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7442 off = elf_tdata (abfd)->next_file_pos;
7443 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7445 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7446 incorrect. We do not yet know the size of the .symtab section.
7447 We correct next_file_pos below, after we do know the size. */
7449 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7450 continuously seeking to the right position in the file. */
7451 if (! info->keep_memory || max_sym_count < 20)
7452 finfo.symbuf_size = 20;
7453 else
7454 finfo.symbuf_size = max_sym_count;
7455 amt = finfo.symbuf_size;
7456 amt *= bed->s->sizeof_sym;
7457 finfo.symbuf = bfd_malloc (amt);
7458 if (finfo.symbuf == NULL)
7459 goto error_return;
7460 if (elf_numsections (abfd) > SHN_LORESERVE)
7462 /* Wild guess at number of output symbols. realloc'd as needed. */
7463 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7464 finfo.shndxbuf_size = amt;
7465 amt *= sizeof (Elf_External_Sym_Shndx);
7466 finfo.symshndxbuf = bfd_zmalloc (amt);
7467 if (finfo.symshndxbuf == NULL)
7468 goto error_return;
7471 /* Start writing out the symbol table. The first symbol is always a
7472 dummy symbol. */
7473 if (info->strip != strip_all
7474 || emit_relocs)
7476 elfsym.st_value = 0;
7477 elfsym.st_size = 0;
7478 elfsym.st_info = 0;
7479 elfsym.st_other = 0;
7480 elfsym.st_shndx = SHN_UNDEF;
7481 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7482 NULL))
7483 goto error_return;
7486 #if 0
7487 /* Some standard ELF linkers do this, but we don't because it causes
7488 bootstrap comparison failures. */
7489 /* Output a file symbol for the output file as the second symbol.
7490 We output this even if we are discarding local symbols, although
7491 I'm not sure if this is correct. */
7492 elfsym.st_value = 0;
7493 elfsym.st_size = 0;
7494 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7495 elfsym.st_other = 0;
7496 elfsym.st_shndx = SHN_ABS;
7497 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7498 &elfsym, bfd_abs_section_ptr, NULL))
7499 goto error_return;
7500 #endif
7502 /* Output a symbol for each section. We output these even if we are
7503 discarding local symbols, since they are used for relocs. These
7504 symbols have no names. We store the index of each one in the
7505 index field of the section, so that we can find it again when
7506 outputting relocs. */
7507 if (info->strip != strip_all
7508 || emit_relocs)
7510 elfsym.st_size = 0;
7511 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7512 elfsym.st_other = 0;
7513 for (i = 1; i < elf_numsections (abfd); i++)
7515 o = bfd_section_from_elf_index (abfd, i);
7516 if (o != NULL)
7517 o->target_index = bfd_get_symcount (abfd);
7518 elfsym.st_shndx = i;
7519 if (info->relocatable || o == NULL)
7520 elfsym.st_value = 0;
7521 else
7522 elfsym.st_value = o->vma;
7523 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7524 goto error_return;
7525 if (i == SHN_LORESERVE - 1)
7526 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7530 /* Allocate some memory to hold information read in from the input
7531 files. */
7532 if (max_contents_size != 0)
7534 finfo.contents = bfd_malloc (max_contents_size);
7535 if (finfo.contents == NULL)
7536 goto error_return;
7539 if (max_external_reloc_size != 0)
7541 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7542 if (finfo.external_relocs == NULL)
7543 goto error_return;
7546 if (max_internal_reloc_count != 0)
7548 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7549 amt *= sizeof (Elf_Internal_Rela);
7550 finfo.internal_relocs = bfd_malloc (amt);
7551 if (finfo.internal_relocs == NULL)
7552 goto error_return;
7555 if (max_sym_count != 0)
7557 amt = max_sym_count * bed->s->sizeof_sym;
7558 finfo.external_syms = bfd_malloc (amt);
7559 if (finfo.external_syms == NULL)
7560 goto error_return;
7562 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7563 finfo.internal_syms = bfd_malloc (amt);
7564 if (finfo.internal_syms == NULL)
7565 goto error_return;
7567 amt = max_sym_count * sizeof (long);
7568 finfo.indices = bfd_malloc (amt);
7569 if (finfo.indices == NULL)
7570 goto error_return;
7572 amt = max_sym_count * sizeof (asection *);
7573 finfo.sections = bfd_malloc (amt);
7574 if (finfo.sections == NULL)
7575 goto error_return;
7578 if (max_sym_shndx_count != 0)
7580 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7581 finfo.locsym_shndx = bfd_malloc (amt);
7582 if (finfo.locsym_shndx == NULL)
7583 goto error_return;
7586 if (elf_hash_table (info)->tls_sec)
7588 bfd_vma base, end = 0;
7589 asection *sec;
7591 for (sec = elf_hash_table (info)->tls_sec;
7592 sec && (sec->flags & SEC_THREAD_LOCAL);
7593 sec = sec->next)
7595 bfd_vma size = sec->size;
7597 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7599 struct bfd_link_order *o;
7601 for (o = sec->link_order_head; o != NULL; o = o->next)
7602 if (size < o->offset + o->size)
7603 size = o->offset + o->size;
7605 end = sec->vma + size;
7607 base = elf_hash_table (info)->tls_sec->vma;
7608 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7609 elf_hash_table (info)->tls_size = end - base;
7612 /* Since ELF permits relocations to be against local symbols, we
7613 must have the local symbols available when we do the relocations.
7614 Since we would rather only read the local symbols once, and we
7615 would rather not keep them in memory, we handle all the
7616 relocations for a single input file at the same time.
7618 Unfortunately, there is no way to know the total number of local
7619 symbols until we have seen all of them, and the local symbol
7620 indices precede the global symbol indices. This means that when
7621 we are generating relocatable output, and we see a reloc against
7622 a global symbol, we can not know the symbol index until we have
7623 finished examining all the local symbols to see which ones we are
7624 going to output. To deal with this, we keep the relocations in
7625 memory, and don't output them until the end of the link. This is
7626 an unfortunate waste of memory, but I don't see a good way around
7627 it. Fortunately, it only happens when performing a relocatable
7628 link, which is not the common case. FIXME: If keep_memory is set
7629 we could write the relocs out and then read them again; I don't
7630 know how bad the memory loss will be. */
7632 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7633 sub->output_has_begun = FALSE;
7634 for (o = abfd->sections; o != NULL; o = o->next)
7636 for (p = o->link_order_head; p != NULL; p = p->next)
7638 if (p->type == bfd_indirect_link_order
7639 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7640 == bfd_target_elf_flavour)
7641 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7643 if (! sub->output_has_begun)
7645 if (! elf_link_input_bfd (&finfo, sub))
7646 goto error_return;
7647 sub->output_has_begun = TRUE;
7650 else if (p->type == bfd_section_reloc_link_order
7651 || p->type == bfd_symbol_reloc_link_order)
7653 if (! elf_reloc_link_order (abfd, info, o, p))
7654 goto error_return;
7656 else
7658 if (! _bfd_default_link_order (abfd, info, o, p))
7659 goto error_return;
7664 /* Output any global symbols that got converted to local in a
7665 version script or due to symbol visibility. We do this in a
7666 separate step since ELF requires all local symbols to appear
7667 prior to any global symbols. FIXME: We should only do this if
7668 some global symbols were, in fact, converted to become local.
7669 FIXME: Will this work correctly with the Irix 5 linker? */
7670 eoinfo.failed = FALSE;
7671 eoinfo.finfo = &finfo;
7672 eoinfo.localsyms = TRUE;
7673 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7674 &eoinfo);
7675 if (eoinfo.failed)
7676 return FALSE;
7678 /* That wrote out all the local symbols. Finish up the symbol table
7679 with the global symbols. Even if we want to strip everything we
7680 can, we still need to deal with those global symbols that got
7681 converted to local in a version script. */
7683 /* The sh_info field records the index of the first non local symbol. */
7684 symtab_hdr->sh_info = bfd_get_symcount (abfd);
7686 if (dynamic
7687 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
7689 Elf_Internal_Sym sym;
7690 bfd_byte *dynsym = finfo.dynsym_sec->contents;
7691 long last_local = 0;
7693 /* Write out the section symbols for the output sections. */
7694 if (info->shared)
7696 asection *s;
7698 sym.st_size = 0;
7699 sym.st_name = 0;
7700 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7701 sym.st_other = 0;
7703 for (s = abfd->sections; s != NULL; s = s->next)
7705 int indx;
7706 bfd_byte *dest;
7707 long dynindx;
7709 dynindx = elf_section_data (s)->dynindx;
7710 if (dynindx <= 0)
7711 continue;
7712 indx = elf_section_data (s)->this_idx;
7713 BFD_ASSERT (indx > 0);
7714 sym.st_shndx = indx;
7715 sym.st_value = s->vma;
7716 dest = dynsym + dynindx * bed->s->sizeof_sym;
7717 if (last_local < dynindx)
7718 last_local = dynindx;
7719 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7723 /* Write out the local dynsyms. */
7724 if (elf_hash_table (info)->dynlocal)
7726 struct elf_link_local_dynamic_entry *e;
7727 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
7729 asection *s;
7730 bfd_byte *dest;
7732 sym.st_size = e->isym.st_size;
7733 sym.st_other = e->isym.st_other;
7735 /* Copy the internal symbol as is.
7736 Note that we saved a word of storage and overwrote
7737 the original st_name with the dynstr_index. */
7738 sym = e->isym;
7740 if (e->isym.st_shndx != SHN_UNDEF
7741 && (e->isym.st_shndx < SHN_LORESERVE
7742 || e->isym.st_shndx > SHN_HIRESERVE))
7744 s = bfd_section_from_elf_index (e->input_bfd,
7745 e->isym.st_shndx);
7747 sym.st_shndx =
7748 elf_section_data (s->output_section)->this_idx;
7749 sym.st_value = (s->output_section->vma
7750 + s->output_offset
7751 + e->isym.st_value);
7754 if (last_local < e->dynindx)
7755 last_local = e->dynindx;
7757 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
7758 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7762 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
7763 last_local + 1;
7766 /* We get the global symbols from the hash table. */
7767 eoinfo.failed = FALSE;
7768 eoinfo.localsyms = FALSE;
7769 eoinfo.finfo = &finfo;
7770 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7771 &eoinfo);
7772 if (eoinfo.failed)
7773 return FALSE;
7775 /* If backend needs to output some symbols not present in the hash
7776 table, do it now. */
7777 if (bed->elf_backend_output_arch_syms)
7779 typedef bfd_boolean (*out_sym_func)
7780 (void *, const char *, Elf_Internal_Sym *, asection *,
7781 struct elf_link_hash_entry *);
7783 if (! ((*bed->elf_backend_output_arch_syms)
7784 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
7785 return FALSE;
7788 /* Flush all symbols to the file. */
7789 if (! elf_link_flush_output_syms (&finfo, bed))
7790 return FALSE;
7792 /* Now we know the size of the symtab section. */
7793 off += symtab_hdr->sh_size;
7795 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7796 if (symtab_shndx_hdr->sh_name != 0)
7798 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7799 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7800 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7801 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
7802 symtab_shndx_hdr->sh_size = amt;
7804 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
7805 off, TRUE);
7807 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
7808 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
7809 return FALSE;
7813 /* Finish up and write out the symbol string table (.strtab)
7814 section. */
7815 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7816 /* sh_name was set in prep_headers. */
7817 symstrtab_hdr->sh_type = SHT_STRTAB;
7818 symstrtab_hdr->sh_flags = 0;
7819 symstrtab_hdr->sh_addr = 0;
7820 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
7821 symstrtab_hdr->sh_entsize = 0;
7822 symstrtab_hdr->sh_link = 0;
7823 symstrtab_hdr->sh_info = 0;
7824 /* sh_offset is set just below. */
7825 symstrtab_hdr->sh_addralign = 1;
7827 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
7828 elf_tdata (abfd)->next_file_pos = off;
7830 if (bfd_get_symcount (abfd) > 0)
7832 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
7833 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
7834 return FALSE;
7837 /* Adjust the relocs to have the correct symbol indices. */
7838 for (o = abfd->sections; o != NULL; o = o->next)
7840 if ((o->flags & SEC_RELOC) == 0)
7841 continue;
7843 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
7844 elf_section_data (o)->rel_count,
7845 elf_section_data (o)->rel_hashes);
7846 if (elf_section_data (o)->rel_hdr2 != NULL)
7847 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
7848 elf_section_data (o)->rel_count2,
7849 (elf_section_data (o)->rel_hashes
7850 + elf_section_data (o)->rel_count));
7852 /* Set the reloc_count field to 0 to prevent write_relocs from
7853 trying to swap the relocs out itself. */
7854 o->reloc_count = 0;
7857 if (dynamic && info->combreloc && dynobj != NULL)
7858 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
7860 /* If we are linking against a dynamic object, or generating a
7861 shared library, finish up the dynamic linking information. */
7862 if (dynamic)
7864 bfd_byte *dyncon, *dynconend;
7866 /* Fix up .dynamic entries. */
7867 o = bfd_get_section_by_name (dynobj, ".dynamic");
7868 BFD_ASSERT (o != NULL);
7870 dyncon = o->contents;
7871 dynconend = o->contents + o->size;
7872 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
7874 Elf_Internal_Dyn dyn;
7875 const char *name;
7876 unsigned int type;
7878 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
7880 switch (dyn.d_tag)
7882 default:
7883 continue;
7884 case DT_NULL:
7885 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
7887 switch (elf_section_data (reldyn)->this_hdr.sh_type)
7889 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
7890 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
7891 default: continue;
7893 dyn.d_un.d_val = relativecount;
7894 relativecount = 0;
7895 break;
7897 continue;
7899 case DT_INIT:
7900 name = info->init_function;
7901 goto get_sym;
7902 case DT_FINI:
7903 name = info->fini_function;
7904 get_sym:
7906 struct elf_link_hash_entry *h;
7908 h = elf_link_hash_lookup (elf_hash_table (info), name,
7909 FALSE, FALSE, TRUE);
7910 if (h != NULL
7911 && (h->root.type == bfd_link_hash_defined
7912 || h->root.type == bfd_link_hash_defweak))
7914 dyn.d_un.d_val = h->root.u.def.value;
7915 o = h->root.u.def.section;
7916 if (o->output_section != NULL)
7917 dyn.d_un.d_val += (o->output_section->vma
7918 + o->output_offset);
7919 else
7921 /* The symbol is imported from another shared
7922 library and does not apply to this one. */
7923 dyn.d_un.d_val = 0;
7925 break;
7928 continue;
7930 case DT_PREINIT_ARRAYSZ:
7931 name = ".preinit_array";
7932 goto get_size;
7933 case DT_INIT_ARRAYSZ:
7934 name = ".init_array";
7935 goto get_size;
7936 case DT_FINI_ARRAYSZ:
7937 name = ".fini_array";
7938 get_size:
7939 o = bfd_get_section_by_name (abfd, name);
7940 if (o == NULL)
7942 (*_bfd_error_handler)
7943 (_("%s: could not find output section %s"),
7944 bfd_get_filename (abfd), name);
7945 goto error_return;
7947 if (o->size == 0)
7948 (*_bfd_error_handler)
7949 (_("warning: %s section has zero size"), name);
7950 dyn.d_un.d_val = o->size;
7951 break;
7953 case DT_PREINIT_ARRAY:
7954 name = ".preinit_array";
7955 goto get_vma;
7956 case DT_INIT_ARRAY:
7957 name = ".init_array";
7958 goto get_vma;
7959 case DT_FINI_ARRAY:
7960 name = ".fini_array";
7961 goto get_vma;
7963 case DT_HASH:
7964 name = ".hash";
7965 goto get_vma;
7966 case DT_STRTAB:
7967 name = ".dynstr";
7968 goto get_vma;
7969 case DT_SYMTAB:
7970 name = ".dynsym";
7971 goto get_vma;
7972 case DT_VERDEF:
7973 name = ".gnu.version_d";
7974 goto get_vma;
7975 case DT_VERNEED:
7976 name = ".gnu.version_r";
7977 goto get_vma;
7978 case DT_VERSYM:
7979 name = ".gnu.version";
7980 get_vma:
7981 o = bfd_get_section_by_name (abfd, name);
7982 if (o == NULL)
7984 (*_bfd_error_handler)
7985 (_("%s: could not find output section %s"),
7986 bfd_get_filename (abfd), name);
7987 goto error_return;
7989 dyn.d_un.d_ptr = o->vma;
7990 break;
7992 case DT_REL:
7993 case DT_RELA:
7994 case DT_RELSZ:
7995 case DT_RELASZ:
7996 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
7997 type = SHT_REL;
7998 else
7999 type = SHT_RELA;
8000 dyn.d_un.d_val = 0;
8001 for (i = 1; i < elf_numsections (abfd); i++)
8003 Elf_Internal_Shdr *hdr;
8005 hdr = elf_elfsections (abfd)[i];
8006 if (hdr->sh_type == type
8007 && (hdr->sh_flags & SHF_ALLOC) != 0)
8009 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8010 dyn.d_un.d_val += hdr->sh_size;
8011 else
8013 if (dyn.d_un.d_val == 0
8014 || hdr->sh_addr < dyn.d_un.d_val)
8015 dyn.d_un.d_val = hdr->sh_addr;
8019 break;
8021 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8025 /* If we have created any dynamic sections, then output them. */
8026 if (dynobj != NULL)
8028 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8029 goto error_return;
8031 for (o = dynobj->sections; o != NULL; o = o->next)
8033 if ((o->flags & SEC_HAS_CONTENTS) == 0
8034 || o->size == 0
8035 || o->output_section == bfd_abs_section_ptr)
8036 continue;
8037 if ((o->flags & SEC_LINKER_CREATED) == 0)
8039 /* At this point, we are only interested in sections
8040 created by _bfd_elf_link_create_dynamic_sections. */
8041 continue;
8043 if (elf_hash_table (info)->stab_info.stabstr == o)
8044 continue;
8045 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8046 continue;
8047 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8048 != SHT_STRTAB)
8049 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8051 if (! bfd_set_section_contents (abfd, o->output_section,
8052 o->contents,
8053 (file_ptr) o->output_offset,
8054 o->size))
8055 goto error_return;
8057 else
8059 /* The contents of the .dynstr section are actually in a
8060 stringtab. */
8061 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8062 if (bfd_seek (abfd, off, SEEK_SET) != 0
8063 || ! _bfd_elf_strtab_emit (abfd,
8064 elf_hash_table (info)->dynstr))
8065 goto error_return;
8070 if (info->relocatable)
8072 bfd_boolean failed = FALSE;
8074 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8075 if (failed)
8076 goto error_return;
8079 /* If we have optimized stabs strings, output them. */
8080 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8082 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8083 goto error_return;
8086 if (info->eh_frame_hdr)
8088 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8089 goto error_return;
8092 if (finfo.symstrtab != NULL)
8093 _bfd_stringtab_free (finfo.symstrtab);
8094 if (finfo.contents != NULL)
8095 free (finfo.contents);
8096 if (finfo.external_relocs != NULL)
8097 free (finfo.external_relocs);
8098 if (finfo.internal_relocs != NULL)
8099 free (finfo.internal_relocs);
8100 if (finfo.external_syms != NULL)
8101 free (finfo.external_syms);
8102 if (finfo.locsym_shndx != NULL)
8103 free (finfo.locsym_shndx);
8104 if (finfo.internal_syms != NULL)
8105 free (finfo.internal_syms);
8106 if (finfo.indices != NULL)
8107 free (finfo.indices);
8108 if (finfo.sections != NULL)
8109 free (finfo.sections);
8110 if (finfo.symbuf != NULL)
8111 free (finfo.symbuf);
8112 if (finfo.symshndxbuf != NULL)
8113 free (finfo.symshndxbuf);
8114 for (o = abfd->sections; o != NULL; o = o->next)
8116 if ((o->flags & SEC_RELOC) != 0
8117 && elf_section_data (o)->rel_hashes != NULL)
8118 free (elf_section_data (o)->rel_hashes);
8121 elf_tdata (abfd)->linker = TRUE;
8123 return TRUE;
8125 error_return:
8126 if (finfo.symstrtab != NULL)
8127 _bfd_stringtab_free (finfo.symstrtab);
8128 if (finfo.contents != NULL)
8129 free (finfo.contents);
8130 if (finfo.external_relocs != NULL)
8131 free (finfo.external_relocs);
8132 if (finfo.internal_relocs != NULL)
8133 free (finfo.internal_relocs);
8134 if (finfo.external_syms != NULL)
8135 free (finfo.external_syms);
8136 if (finfo.locsym_shndx != NULL)
8137 free (finfo.locsym_shndx);
8138 if (finfo.internal_syms != NULL)
8139 free (finfo.internal_syms);
8140 if (finfo.indices != NULL)
8141 free (finfo.indices);
8142 if (finfo.sections != NULL)
8143 free (finfo.sections);
8144 if (finfo.symbuf != NULL)
8145 free (finfo.symbuf);
8146 if (finfo.symshndxbuf != NULL)
8147 free (finfo.symshndxbuf);
8148 for (o = abfd->sections; o != NULL; o = o->next)
8150 if ((o->flags & SEC_RELOC) != 0
8151 && elf_section_data (o)->rel_hashes != NULL)
8152 free (elf_section_data (o)->rel_hashes);
8155 return FALSE;
8158 /* Garbage collect unused sections. */
8160 /* The mark phase of garbage collection. For a given section, mark
8161 it and any sections in this section's group, and all the sections
8162 which define symbols to which it refers. */
8164 typedef asection * (*gc_mark_hook_fn)
8165 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8166 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8168 static bfd_boolean
8169 elf_gc_mark (struct bfd_link_info *info,
8170 asection *sec,
8171 gc_mark_hook_fn gc_mark_hook)
8173 bfd_boolean ret;
8174 asection *group_sec;
8176 sec->gc_mark = 1;
8178 /* Mark all the sections in the group. */
8179 group_sec = elf_section_data (sec)->next_in_group;
8180 if (group_sec && !group_sec->gc_mark)
8181 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
8182 return FALSE;
8184 /* Look through the section relocs. */
8185 ret = TRUE;
8186 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8188 Elf_Internal_Rela *relstart, *rel, *relend;
8189 Elf_Internal_Shdr *symtab_hdr;
8190 struct elf_link_hash_entry **sym_hashes;
8191 size_t nlocsyms;
8192 size_t extsymoff;
8193 bfd *input_bfd = sec->owner;
8194 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8195 Elf_Internal_Sym *isym = NULL;
8196 int r_sym_shift;
8198 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8199 sym_hashes = elf_sym_hashes (input_bfd);
8201 /* Read the local symbols. */
8202 if (elf_bad_symtab (input_bfd))
8204 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8205 extsymoff = 0;
8207 else
8208 extsymoff = nlocsyms = symtab_hdr->sh_info;
8210 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8211 if (isym == NULL && nlocsyms != 0)
8213 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8214 NULL, NULL, NULL);
8215 if (isym == NULL)
8216 return FALSE;
8219 /* Read the relocations. */
8220 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8221 info->keep_memory);
8222 if (relstart == NULL)
8224 ret = FALSE;
8225 goto out1;
8227 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8229 if (bed->s->arch_size == 32)
8230 r_sym_shift = 8;
8231 else
8232 r_sym_shift = 32;
8234 for (rel = relstart; rel < relend; rel++)
8236 unsigned long r_symndx;
8237 asection *rsec;
8238 struct elf_link_hash_entry *h;
8240 r_symndx = rel->r_info >> r_sym_shift;
8241 if (r_symndx == 0)
8242 continue;
8244 if (r_symndx >= nlocsyms
8245 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8247 h = sym_hashes[r_symndx - extsymoff];
8248 while (h->root.type == bfd_link_hash_indirect
8249 || h->root.type == bfd_link_hash_warning)
8250 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8251 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8253 else
8255 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8258 if (rsec && !rsec->gc_mark)
8260 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8261 rsec->gc_mark = 1;
8262 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
8264 ret = FALSE;
8265 goto out2;
8270 out2:
8271 if (elf_section_data (sec)->relocs != relstart)
8272 free (relstart);
8273 out1:
8274 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8276 if (! info->keep_memory)
8277 free (isym);
8278 else
8279 symtab_hdr->contents = (unsigned char *) isym;
8283 return ret;
8286 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8288 static bfd_boolean
8289 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8291 int *idx = idxptr;
8293 if (h->root.type == bfd_link_hash_warning)
8294 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8296 if (h->dynindx != -1
8297 && ((h->root.type != bfd_link_hash_defined
8298 && h->root.type != bfd_link_hash_defweak)
8299 || h->root.u.def.section->gc_mark))
8300 h->dynindx = (*idx)++;
8302 return TRUE;
8305 /* The sweep phase of garbage collection. Remove all garbage sections. */
8307 typedef bfd_boolean (*gc_sweep_hook_fn)
8308 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8310 static bfd_boolean
8311 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8313 bfd *sub;
8315 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8317 asection *o;
8319 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8320 continue;
8322 for (o = sub->sections; o != NULL; o = o->next)
8324 /* Keep special sections. Keep .debug sections. */
8325 if ((o->flags & SEC_LINKER_CREATED)
8326 || (o->flags & SEC_DEBUGGING))
8327 o->gc_mark = 1;
8329 if (o->gc_mark)
8330 continue;
8332 /* Skip sweeping sections already excluded. */
8333 if (o->flags & SEC_EXCLUDE)
8334 continue;
8336 /* Since this is early in the link process, it is simple
8337 to remove a section from the output. */
8338 o->flags |= SEC_EXCLUDE;
8340 /* But we also have to update some of the relocation
8341 info we collected before. */
8342 if (gc_sweep_hook
8343 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8345 Elf_Internal_Rela *internal_relocs;
8346 bfd_boolean r;
8348 internal_relocs
8349 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8350 info->keep_memory);
8351 if (internal_relocs == NULL)
8352 return FALSE;
8354 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8356 if (elf_section_data (o)->relocs != internal_relocs)
8357 free (internal_relocs);
8359 if (!r)
8360 return FALSE;
8365 /* Remove the symbols that were in the swept sections from the dynamic
8366 symbol table. GCFIXME: Anyone know how to get them out of the
8367 static symbol table as well? */
8369 int i = 0;
8371 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8373 elf_hash_table (info)->dynsymcount = i;
8376 return TRUE;
8379 /* Propagate collected vtable information. This is called through
8380 elf_link_hash_traverse. */
8382 static bfd_boolean
8383 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8385 if (h->root.type == bfd_link_hash_warning)
8386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8388 /* Those that are not vtables. */
8389 if (h->vtable_parent == NULL)
8390 return TRUE;
8392 /* Those vtables that do not have parents, we cannot merge. */
8393 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
8394 return TRUE;
8396 /* If we've already been done, exit. */
8397 if (h->vtable_entries_used && h->vtable_entries_used[-1])
8398 return TRUE;
8400 /* Make sure the parent's table is up to date. */
8401 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
8403 if (h->vtable_entries_used == NULL)
8405 /* None of this table's entries were referenced. Re-use the
8406 parent's table. */
8407 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
8408 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
8410 else
8412 size_t n;
8413 bfd_boolean *cu, *pu;
8415 /* Or the parent's entries into ours. */
8416 cu = h->vtable_entries_used;
8417 cu[-1] = TRUE;
8418 pu = h->vtable_parent->vtable_entries_used;
8419 if (pu != NULL)
8421 const struct elf_backend_data *bed;
8422 unsigned int log_file_align;
8424 bed = get_elf_backend_data (h->root.u.def.section->owner);
8425 log_file_align = bed->s->log_file_align;
8426 n = h->vtable_parent->vtable_entries_size >> log_file_align;
8427 while (n--)
8429 if (*pu)
8430 *cu = TRUE;
8431 pu++;
8432 cu++;
8437 return TRUE;
8440 static bfd_boolean
8441 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8443 asection *sec;
8444 bfd_vma hstart, hend;
8445 Elf_Internal_Rela *relstart, *relend, *rel;
8446 const struct elf_backend_data *bed;
8447 unsigned int log_file_align;
8449 if (h->root.type == bfd_link_hash_warning)
8450 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8452 /* Take care of both those symbols that do not describe vtables as
8453 well as those that are not loaded. */
8454 if (h->vtable_parent == NULL)
8455 return TRUE;
8457 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8458 || h->root.type == bfd_link_hash_defweak);
8460 sec = h->root.u.def.section;
8461 hstart = h->root.u.def.value;
8462 hend = hstart + h->size;
8464 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8465 if (!relstart)
8466 return *(bfd_boolean *) okp = FALSE;
8467 bed = get_elf_backend_data (sec->owner);
8468 log_file_align = bed->s->log_file_align;
8470 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8472 for (rel = relstart; rel < relend; ++rel)
8473 if (rel->r_offset >= hstart && rel->r_offset < hend)
8475 /* If the entry is in use, do nothing. */
8476 if (h->vtable_entries_used
8477 && (rel->r_offset - hstart) < h->vtable_entries_size)
8479 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8480 if (h->vtable_entries_used[entry])
8481 continue;
8483 /* Otherwise, kill it. */
8484 rel->r_offset = rel->r_info = rel->r_addend = 0;
8487 return TRUE;
8490 /* Mark sections containing dynamically referenced symbols. This is called
8491 through elf_link_hash_traverse. */
8493 static bfd_boolean
8494 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8495 void *okp ATTRIBUTE_UNUSED)
8497 if (h->root.type == bfd_link_hash_warning)
8498 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8500 if ((h->root.type == bfd_link_hash_defined
8501 || h->root.type == bfd_link_hash_defweak)
8502 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC))
8503 h->root.u.def.section->flags |= SEC_KEEP;
8505 return TRUE;
8508 /* Do mark and sweep of unused sections. */
8510 bfd_boolean
8511 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8513 bfd_boolean ok = TRUE;
8514 bfd *sub;
8515 asection * (*gc_mark_hook)
8516 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8517 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8519 if (!get_elf_backend_data (abfd)->can_gc_sections
8520 || info->relocatable
8521 || info->emitrelocations
8522 || info->shared
8523 || !is_elf_hash_table (info->hash))
8525 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8526 return TRUE;
8529 /* Apply transitive closure to the vtable entry usage info. */
8530 elf_link_hash_traverse (elf_hash_table (info),
8531 elf_gc_propagate_vtable_entries_used,
8532 &ok);
8533 if (!ok)
8534 return FALSE;
8536 /* Kill the vtable relocations that were not used. */
8537 elf_link_hash_traverse (elf_hash_table (info),
8538 elf_gc_smash_unused_vtentry_relocs,
8539 &ok);
8540 if (!ok)
8541 return FALSE;
8543 /* Mark dynamically referenced symbols. */
8544 if (elf_hash_table (info)->dynamic_sections_created)
8545 elf_link_hash_traverse (elf_hash_table (info),
8546 elf_gc_mark_dynamic_ref_symbol,
8547 &ok);
8548 if (!ok)
8549 return FALSE;
8551 /* Grovel through relocs to find out who stays ... */
8552 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8553 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8555 asection *o;
8557 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8558 continue;
8560 for (o = sub->sections; o != NULL; o = o->next)
8562 if (o->flags & SEC_KEEP)
8564 /* _bfd_elf_discard_section_eh_frame knows how to discard
8565 orphaned FDEs so don't mark sections referenced by the
8566 EH frame section. */
8567 if (strcmp (o->name, ".eh_frame") == 0)
8568 o->gc_mark = 1;
8569 else if (!elf_gc_mark (info, o, gc_mark_hook))
8570 return FALSE;
8575 /* ... and mark SEC_EXCLUDE for those that go. */
8576 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8577 return FALSE;
8579 return TRUE;
8582 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8584 bfd_boolean
8585 bfd_elf_gc_record_vtinherit (bfd *abfd,
8586 asection *sec,
8587 struct elf_link_hash_entry *h,
8588 bfd_vma offset)
8590 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8591 struct elf_link_hash_entry **search, *child;
8592 bfd_size_type extsymcount;
8593 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8594 char *sec_name;
8596 /* The sh_info field of the symtab header tells us where the
8597 external symbols start. We don't care about the local symbols at
8598 this point. */
8599 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8600 if (!elf_bad_symtab (abfd))
8601 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8603 sym_hashes = elf_sym_hashes (abfd);
8604 sym_hashes_end = sym_hashes + extsymcount;
8606 /* Hunt down the child symbol, which is in this section at the same
8607 offset as the relocation. */
8608 for (search = sym_hashes; search != sym_hashes_end; ++search)
8610 if ((child = *search) != NULL
8611 && (child->root.type == bfd_link_hash_defined
8612 || child->root.type == bfd_link_hash_defweak)
8613 && child->root.u.def.section == sec
8614 && child->root.u.def.value == offset)
8615 goto win;
8618 sec_name = bfd_get_section_ident (sec);
8619 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8620 bfd_archive_filename (abfd),
8621 sec_name ? sec_name : sec->name,
8622 (unsigned long) offset);
8623 bfd_set_error (bfd_error_invalid_operation);
8624 return FALSE;
8626 win:
8627 if (!h)
8629 /* This *should* only be the absolute section. It could potentially
8630 be that someone has defined a non-global vtable though, which
8631 would be bad. It isn't worth paging in the local symbols to be
8632 sure though; that case should simply be handled by the assembler. */
8634 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8636 else
8637 child->vtable_parent = h;
8639 return TRUE;
8642 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
8644 bfd_boolean
8645 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
8646 asection *sec ATTRIBUTE_UNUSED,
8647 struct elf_link_hash_entry *h,
8648 bfd_vma addend)
8650 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8651 unsigned int log_file_align = bed->s->log_file_align;
8653 if (addend >= h->vtable_entries_size)
8655 size_t size, bytes, file_align;
8656 bfd_boolean *ptr = h->vtable_entries_used;
8658 /* While the symbol is undefined, we have to be prepared to handle
8659 a zero size. */
8660 file_align = 1 << log_file_align;
8661 if (h->root.type == bfd_link_hash_undefined)
8662 size = addend + file_align;
8663 else
8665 size = h->size;
8666 if (addend >= size)
8668 /* Oops! We've got a reference past the defined end of
8669 the table. This is probably a bug -- shall we warn? */
8670 size = addend + file_align;
8673 size = (size + file_align - 1) & -file_align;
8675 /* Allocate one extra entry for use as a "done" flag for the
8676 consolidation pass. */
8677 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
8679 if (ptr)
8681 ptr = bfd_realloc (ptr - 1, bytes);
8683 if (ptr != NULL)
8685 size_t oldbytes;
8687 oldbytes = (((h->vtable_entries_size >> log_file_align) + 1)
8688 * sizeof (bfd_boolean));
8689 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8692 else
8693 ptr = bfd_zmalloc (bytes);
8695 if (ptr == NULL)
8696 return FALSE;
8698 /* And arrange for that done flag to be at index -1. */
8699 h->vtable_entries_used = ptr + 1;
8700 h->vtable_entries_size = size;
8703 h->vtable_entries_used[addend >> log_file_align] = TRUE;
8705 return TRUE;
8708 struct alloc_got_off_arg {
8709 bfd_vma gotoff;
8710 unsigned int got_elt_size;
8713 /* We need a special top-level link routine to convert got reference counts
8714 to real got offsets. */
8716 static bfd_boolean
8717 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
8719 struct alloc_got_off_arg *gofarg = arg;
8721 if (h->root.type == bfd_link_hash_warning)
8722 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8724 if (h->got.refcount > 0)
8726 h->got.offset = gofarg->gotoff;
8727 gofarg->gotoff += gofarg->got_elt_size;
8729 else
8730 h->got.offset = (bfd_vma) -1;
8732 return TRUE;
8735 /* And an accompanying bit to work out final got entry offsets once
8736 we're done. Should be called from final_link. */
8738 bfd_boolean
8739 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
8740 struct bfd_link_info *info)
8742 bfd *i;
8743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8744 bfd_vma gotoff;
8745 unsigned int got_elt_size = bed->s->arch_size / 8;
8746 struct alloc_got_off_arg gofarg;
8748 if (! is_elf_hash_table (info->hash))
8749 return FALSE;
8751 /* The GOT offset is relative to the .got section, but the GOT header is
8752 put into the .got.plt section, if the backend uses it. */
8753 if (bed->want_got_plt)
8754 gotoff = 0;
8755 else
8756 gotoff = bed->got_header_size;
8758 /* Do the local .got entries first. */
8759 for (i = info->input_bfds; i; i = i->link_next)
8761 bfd_signed_vma *local_got;
8762 bfd_size_type j, locsymcount;
8763 Elf_Internal_Shdr *symtab_hdr;
8765 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8766 continue;
8768 local_got = elf_local_got_refcounts (i);
8769 if (!local_got)
8770 continue;
8772 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8773 if (elf_bad_symtab (i))
8774 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8775 else
8776 locsymcount = symtab_hdr->sh_info;
8778 for (j = 0; j < locsymcount; ++j)
8780 if (local_got[j] > 0)
8782 local_got[j] = gotoff;
8783 gotoff += got_elt_size;
8785 else
8786 local_got[j] = (bfd_vma) -1;
8790 /* Then the global .got entries. .plt refcounts are handled by
8791 adjust_dynamic_symbol */
8792 gofarg.gotoff = gotoff;
8793 gofarg.got_elt_size = got_elt_size;
8794 elf_link_hash_traverse (elf_hash_table (info),
8795 elf_gc_allocate_got_offsets,
8796 &gofarg);
8797 return TRUE;
8800 /* Many folk need no more in the way of final link than this, once
8801 got entry reference counting is enabled. */
8803 bfd_boolean
8804 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
8806 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
8807 return FALSE;
8809 /* Invoke the regular ELF backend linker to do all the work. */
8810 return bfd_elf_final_link (abfd, info);
8813 bfd_boolean
8814 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
8816 struct elf_reloc_cookie *rcookie = cookie;
8818 if (rcookie->bad_symtab)
8819 rcookie->rel = rcookie->rels;
8821 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8823 unsigned long r_symndx;
8825 if (! rcookie->bad_symtab)
8826 if (rcookie->rel->r_offset > offset)
8827 return FALSE;
8828 if (rcookie->rel->r_offset != offset)
8829 continue;
8831 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
8832 if (r_symndx == SHN_UNDEF)
8833 return TRUE;
8835 if (r_symndx >= rcookie->locsymcount
8836 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8838 struct elf_link_hash_entry *h;
8840 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8842 while (h->root.type == bfd_link_hash_indirect
8843 || h->root.type == bfd_link_hash_warning)
8844 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8846 if ((h->root.type == bfd_link_hash_defined
8847 || h->root.type == bfd_link_hash_defweak)
8848 && elf_discarded_section (h->root.u.def.section))
8849 return TRUE;
8850 else
8851 return FALSE;
8853 else
8855 /* It's not a relocation against a global symbol,
8856 but it could be a relocation against a local
8857 symbol for a discarded section. */
8858 asection *isec;
8859 Elf_Internal_Sym *isym;
8861 /* Need to: get the symbol; get the section. */
8862 isym = &rcookie->locsyms[r_symndx];
8863 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8865 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
8866 if (isec != NULL && elf_discarded_section (isec))
8867 return TRUE;
8870 return FALSE;
8872 return FALSE;
8875 /* Discard unneeded references to discarded sections.
8876 Returns TRUE if any section's size was changed. */
8877 /* This function assumes that the relocations are in sorted order,
8878 which is true for all known assemblers. */
8880 bfd_boolean
8881 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
8883 struct elf_reloc_cookie cookie;
8884 asection *stab, *eh;
8885 Elf_Internal_Shdr *symtab_hdr;
8886 const struct elf_backend_data *bed;
8887 bfd *abfd;
8888 unsigned int count;
8889 bfd_boolean ret = FALSE;
8891 if (info->traditional_format
8892 || !is_elf_hash_table (info->hash))
8893 return FALSE;
8895 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8897 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8898 continue;
8900 bed = get_elf_backend_data (abfd);
8902 if ((abfd->flags & DYNAMIC) != 0)
8903 continue;
8905 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8906 if (info->relocatable
8907 || (eh != NULL
8908 && (eh->size == 0
8909 || bfd_is_abs_section (eh->output_section))))
8910 eh = NULL;
8912 stab = bfd_get_section_by_name (abfd, ".stab");
8913 if (stab != NULL
8914 && (stab->size == 0
8915 || bfd_is_abs_section (stab->output_section)
8916 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
8917 stab = NULL;
8919 if (stab == NULL
8920 && eh == NULL
8921 && bed->elf_backend_discard_info == NULL)
8922 continue;
8924 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8925 cookie.abfd = abfd;
8926 cookie.sym_hashes = elf_sym_hashes (abfd);
8927 cookie.bad_symtab = elf_bad_symtab (abfd);
8928 if (cookie.bad_symtab)
8930 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8931 cookie.extsymoff = 0;
8933 else
8935 cookie.locsymcount = symtab_hdr->sh_info;
8936 cookie.extsymoff = symtab_hdr->sh_info;
8939 if (bed->s->arch_size == 32)
8940 cookie.r_sym_shift = 8;
8941 else
8942 cookie.r_sym_shift = 32;
8944 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8945 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8947 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8948 cookie.locsymcount, 0,
8949 NULL, NULL, NULL);
8950 if (cookie.locsyms == NULL)
8951 return FALSE;
8954 if (stab != NULL)
8956 cookie.rels = NULL;
8957 count = stab->reloc_count;
8958 if (count != 0)
8959 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
8960 info->keep_memory);
8961 if (cookie.rels != NULL)
8963 cookie.rel = cookie.rels;
8964 cookie.relend = cookie.rels;
8965 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8966 if (_bfd_discard_section_stabs (abfd, stab,
8967 elf_section_data (stab)->sec_info,
8968 bfd_elf_reloc_symbol_deleted_p,
8969 &cookie))
8970 ret = TRUE;
8971 if (elf_section_data (stab)->relocs != cookie.rels)
8972 free (cookie.rels);
8976 if (eh != NULL)
8978 cookie.rels = NULL;
8979 count = eh->reloc_count;
8980 if (count != 0)
8981 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
8982 info->keep_memory);
8983 cookie.rel = cookie.rels;
8984 cookie.relend = cookie.rels;
8985 if (cookie.rels != NULL)
8986 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8988 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
8989 bfd_elf_reloc_symbol_deleted_p,
8990 &cookie))
8991 ret = TRUE;
8993 if (cookie.rels != NULL
8994 && elf_section_data (eh)->relocs != cookie.rels)
8995 free (cookie.rels);
8998 if (bed->elf_backend_discard_info != NULL
8999 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9000 ret = TRUE;
9002 if (cookie.locsyms != NULL
9003 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9005 if (! info->keep_memory)
9006 free (cookie.locsyms);
9007 else
9008 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9012 if (info->eh_frame_hdr
9013 && !info->relocatable
9014 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9015 ret = TRUE;
9017 return ret;