HAMMER 55: Performance tuning and bug fixes - MEDIA STRUCTURES CHANGED!
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
blobbdbc00b56beacd2d9ca9d0c548855f3d7898ab9c
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.75 2008/06/14 01:42:13 dillon Exp $
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
42 static int hammer_unload_inode(struct hammer_inode *ip);
43 static void hammer_flush_inode_core(hammer_inode_t ip, int flags);
44 static int hammer_setup_child_callback(hammer_record_t rec, void *data);
45 static int hammer_setup_parent_inodes(hammer_inode_t ip);
46 static int hammer_setup_parent_inodes_helper(hammer_record_t record);
47 static void hammer_inode_wakereclaims(hammer_inode_t ip);
49 #ifdef DEBUG_TRUNCATE
50 extern struct hammer_inode *HammerTruncIp;
51 #endif
54 * The kernel is not actively referencing this vnode but is still holding
55 * it cached.
57 * This is called from the frontend.
59 int
60 hammer_vop_inactive(struct vop_inactive_args *ap)
62 struct hammer_inode *ip = VTOI(ap->a_vp);
65 * Degenerate case
67 if (ip == NULL) {
68 vrecycle(ap->a_vp);
69 return(0);
73 * If the inode no longer has visibility in the filesystem and is
74 * fairly clean, try to recycle it immediately. This can deadlock
75 * in vfsync() if we aren't careful.
77 * Do not queue the inode to the flusher if we still have visibility,
78 * otherwise namespace calls such as chmod will unnecessarily generate
79 * multiple inode updates.
81 hammer_inode_unloadable_check(ip, 0);
82 if (ip->ino_data.nlinks == 0) {
83 if (ip->flags & HAMMER_INODE_MODMASK)
84 hammer_flush_inode(ip, 0);
85 else
86 vrecycle(ap->a_vp);
88 return(0);
92 * Release the vnode association. This is typically (but not always)
93 * the last reference on the inode.
95 * Once the association is lost we are on our own with regards to
96 * flushing the inode.
98 int
99 hammer_vop_reclaim(struct vop_reclaim_args *ap)
101 struct hammer_reclaim reclaim;
102 struct hammer_inode *ip;
103 hammer_mount_t hmp;
104 struct vnode *vp;
105 int delay;
107 vp = ap->a_vp;
109 if ((ip = vp->v_data) != NULL) {
110 hmp = ip->hmp;
111 vp->v_data = NULL;
112 ip->vp = NULL;
115 * Setup our reclaim pipeline. We only let so many detached
116 * (and dirty) inodes build up before we start blocking. Do
117 * not bother tracking the immediate increment/decrement if
118 * the inode is not actually dirty.
120 * When we block we don't care *which* inode has finished
121 * reclaiming, as lone as one does.
123 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
124 ((ip->flags|ip->sync_flags) & HAMMER_INODE_MODMASK)) {
125 ++hammer_count_reclaiming;
126 ++hmp->inode_reclaims;
127 ip->flags |= HAMMER_INODE_RECLAIM;
128 if (hmp->inode_reclaims > HAMMER_RECLAIM_PIPESIZE) {
129 reclaim.okydoky = 0;
130 TAILQ_INSERT_TAIL(&hmp->reclaim_list,
131 &reclaim, entry);
132 } else {
133 reclaim.okydoky = 1;
135 } else {
136 reclaim.okydoky = 1;
138 hammer_rel_inode(ip, 1);
141 * Reclaim pipeline. We can't let too many reclaimed inodes
142 * build-up in the flusher or the flusher loses its locality
143 * of reference, or worse blows out our memory. Once we have
144 * exceeded the reclaim pipe size start slowing down. Our
145 * imposed delay can be cut short if the flusher catches up
146 * to us.
148 if (reclaim.okydoky == 0) {
149 delay = (hmp->inode_reclaims -
150 HAMMER_RECLAIM_PIPESIZE) * hz /
151 HAMMER_RECLAIM_PIPESIZE;
152 if (delay <= 0)
153 delay = 1;
154 hammer_flusher_async(hmp);
155 if (reclaim.okydoky == 0) {
156 tsleep(&reclaim, 0, "hmrrcm", delay);
158 if (reclaim.okydoky == 0) {
159 TAILQ_REMOVE(&hmp->reclaim_list, &reclaim,
160 entry);
164 return(0);
168 * Return a locked vnode for the specified inode. The inode must be
169 * referenced but NOT LOCKED on entry and will remain referenced on
170 * return.
172 * Called from the frontend.
175 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
177 hammer_mount_t hmp;
178 struct vnode *vp;
179 int error = 0;
181 hmp = ip->hmp;
183 for (;;) {
184 if ((vp = ip->vp) == NULL) {
185 error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
186 if (error)
187 break;
188 hammer_lock_ex(&ip->lock);
189 if (ip->vp != NULL) {
190 hammer_unlock(&ip->lock);
191 vp->v_type = VBAD;
192 vx_put(vp);
193 continue;
195 hammer_ref(&ip->lock);
196 vp = *vpp;
197 ip->vp = vp;
198 vp->v_type =
199 hammer_get_vnode_type(ip->ino_data.obj_type);
201 hammer_inode_wakereclaims(ip);
203 switch(ip->ino_data.obj_type) {
204 case HAMMER_OBJTYPE_CDEV:
205 case HAMMER_OBJTYPE_BDEV:
206 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
207 addaliasu(vp, ip->ino_data.rmajor,
208 ip->ino_data.rminor);
209 break;
210 case HAMMER_OBJTYPE_FIFO:
211 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
212 break;
213 default:
214 break;
218 * Only mark as the root vnode if the ip is not
219 * historical, otherwise the VFS cache will get
220 * confused. The other half of the special handling
221 * is in hammer_vop_nlookupdotdot().
223 if (ip->obj_id == HAMMER_OBJID_ROOT &&
224 ip->obj_asof == hmp->asof) {
225 vp->v_flag |= VROOT;
228 vp->v_data = (void *)ip;
229 /* vnode locked by getnewvnode() */
230 /* make related vnode dirty if inode dirty? */
231 hammer_unlock(&ip->lock);
232 if (vp->v_type == VREG)
233 vinitvmio(vp, ip->ino_data.size);
234 break;
238 * loop if the vget fails (aka races), or if the vp
239 * no longer matches ip->vp.
241 if (vget(vp, LK_EXCLUSIVE) == 0) {
242 if (vp == ip->vp)
243 break;
244 vput(vp);
247 *vpp = vp;
248 return(error);
252 * Acquire a HAMMER inode. The returned inode is not locked. These functions
253 * do not attach or detach the related vnode (use hammer_get_vnode() for
254 * that).
256 * The flags argument is only applied for newly created inodes, and only
257 * certain flags are inherited.
259 * Called from the frontend.
261 struct hammer_inode *
262 hammer_get_inode(hammer_transaction_t trans, struct hammer_node **cache,
263 u_int64_t obj_id, hammer_tid_t asof, int flags, int *errorp)
265 hammer_mount_t hmp = trans->hmp;
266 struct hammer_inode_info iinfo;
267 struct hammer_cursor cursor;
268 struct hammer_inode *ip;
271 * Determine if we already have an inode cached. If we do then
272 * we are golden.
274 iinfo.obj_id = obj_id;
275 iinfo.obj_asof = asof;
276 loop:
277 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
278 if (ip) {
279 hammer_ref(&ip->lock);
280 *errorp = 0;
281 return(ip);
285 * Allocate a new inode structure and deal with races later.
287 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
288 ++hammer_count_inodes;
289 ++hmp->count_inodes;
290 ip->obj_id = obj_id;
291 ip->obj_asof = iinfo.obj_asof;
292 ip->hmp = hmp;
293 ip->flags = flags & HAMMER_INODE_RO;
294 if (hmp->ronly)
295 ip->flags |= HAMMER_INODE_RO;
296 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
297 RB_INIT(&ip->rec_tree);
298 TAILQ_INIT(&ip->target_list);
301 * Locate the on-disk inode.
303 retry:
304 hammer_init_cursor(trans, &cursor, cache, NULL);
305 cursor.key_beg.localization = HAMMER_LOCALIZE_INODE;
306 cursor.key_beg.obj_id = ip->obj_id;
307 cursor.key_beg.key = 0;
308 cursor.key_beg.create_tid = 0;
309 cursor.key_beg.delete_tid = 0;
310 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
311 cursor.key_beg.obj_type = 0;
312 cursor.asof = iinfo.obj_asof;
313 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
314 HAMMER_CURSOR_ASOF;
316 *errorp = hammer_btree_lookup(&cursor);
317 if (*errorp == EDEADLK) {
318 hammer_done_cursor(&cursor);
319 goto retry;
323 * On success the B-Tree lookup will hold the appropriate
324 * buffer cache buffers and provide a pointer to the requested
325 * information. Copy the information to the in-memory inode
326 * and cache the B-Tree node to improve future operations.
328 if (*errorp == 0) {
329 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
330 ip->ino_data = cursor.data->inode;
331 hammer_cache_node(cursor.node, &ip->cache[0]);
332 if (cache)
333 hammer_cache_node(cursor.node, cache);
337 * On success load the inode's record and data and insert the
338 * inode into the B-Tree. It is possible to race another lookup
339 * insertion of the same inode so deal with that condition too.
341 * The cursor's locked node interlocks against others creating and
342 * destroying ip while we were blocked.
344 if (*errorp == 0) {
345 hammer_ref(&ip->lock);
346 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
347 hammer_uncache_node(&ip->cache[0]);
348 hammer_uncache_node(&ip->cache[1]);
349 KKASSERT(ip->lock.refs == 1);
350 --hammer_count_inodes;
351 --hmp->count_inodes;
352 kfree(ip, M_HAMMER);
353 hammer_done_cursor(&cursor);
354 goto loop;
356 ip->flags |= HAMMER_INODE_ONDISK;
357 } else {
359 * Do not panic on read-only accesses which fail, particularly
360 * historical accesses where the snapshot might not have
361 * complete connectivity.
363 if ((flags & HAMMER_INODE_RO) == 0) {
364 kprintf("hammer_get_inode: failed ip %p obj_id %016llx cursor %p error %d\n",
365 ip, ip->obj_id, &cursor, *errorp);
366 Debugger("x");
368 if (ip->flags & HAMMER_INODE_RSV_INODES) {
369 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
370 --hmp->rsv_inodes;
372 hmp->rsv_databufs -= ip->rsv_databufs;
373 ip->rsv_databufs = 0; /* sanity */
375 --hammer_count_inodes;
376 --hmp->count_inodes;
377 kfree(ip, M_HAMMER);
378 ip = NULL;
380 hammer_done_cursor(&cursor);
381 return (ip);
385 * Create a new filesystem object, returning the inode in *ipp. The
386 * returned inode will be referenced.
388 * The inode is created in-memory.
391 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
392 struct ucred *cred, hammer_inode_t dip,
393 struct hammer_inode **ipp)
395 hammer_mount_t hmp;
396 hammer_inode_t ip;
397 uid_t xuid;
399 hmp = trans->hmp;
400 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
401 ++hammer_count_inodes;
402 ++hmp->count_inodes;
403 ip->obj_id = hammer_alloc_objid(trans, dip);
404 KKASSERT(ip->obj_id != 0);
405 ip->obj_asof = hmp->asof;
406 ip->hmp = hmp;
407 ip->flush_state = HAMMER_FST_IDLE;
408 ip->flags = HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES;
410 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
411 RB_INIT(&ip->rec_tree);
412 TAILQ_INIT(&ip->target_list);
414 ip->ino_leaf.atime = trans->time;
415 ip->ino_data.mtime = trans->time;
416 ip->ino_data.size = 0;
417 ip->ino_data.nlinks = 0;
420 * A nohistory designator on the parent directory is inherited by
421 * the child.
423 ip->ino_data.uflags = dip->ino_data.uflags &
424 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
426 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
427 ip->ino_leaf.base.localization = HAMMER_LOCALIZE_INODE;
428 ip->ino_leaf.base.obj_id = ip->obj_id;
429 ip->ino_leaf.base.key = 0;
430 ip->ino_leaf.base.create_tid = 0;
431 ip->ino_leaf.base.delete_tid = 0;
432 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
433 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
435 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
436 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
437 ip->ino_data.mode = vap->va_mode;
438 ip->ino_data.ctime = trans->time;
439 ip->ino_data.parent_obj_id = (dip) ? dip->ino_leaf.base.obj_id : 0;
441 switch(ip->ino_leaf.base.obj_type) {
442 case HAMMER_OBJTYPE_CDEV:
443 case HAMMER_OBJTYPE_BDEV:
444 ip->ino_data.rmajor = vap->va_rmajor;
445 ip->ino_data.rminor = vap->va_rminor;
446 break;
447 default:
448 break;
452 * Calculate default uid/gid and overwrite with information from
453 * the vap.
455 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
456 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode, xuid, cred,
457 &vap->va_mode);
458 ip->ino_data.mode = vap->va_mode;
460 if (vap->va_vaflags & VA_UID_UUID_VALID)
461 ip->ino_data.uid = vap->va_uid_uuid;
462 else if (vap->va_uid != (uid_t)VNOVAL)
463 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
464 else
465 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
467 if (vap->va_vaflags & VA_GID_UUID_VALID)
468 ip->ino_data.gid = vap->va_gid_uuid;
469 else if (vap->va_gid != (gid_t)VNOVAL)
470 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
471 else
472 ip->ino_data.gid = dip->ino_data.gid;
474 hammer_ref(&ip->lock);
475 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
476 hammer_unref(&ip->lock);
477 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
479 *ipp = ip;
480 return(0);
484 * Called by hammer_sync_inode().
486 static int
487 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
489 hammer_transaction_t trans = cursor->trans;
490 hammer_record_t record;
491 int error;
493 retry:
494 error = 0;
497 * If the inode has a presence on-disk then locate it and mark
498 * it deleted, setting DELONDISK.
500 * The record may or may not be physically deleted, depending on
501 * the retention policy.
503 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
504 HAMMER_INODE_ONDISK) {
505 hammer_normalize_cursor(cursor);
506 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
507 cursor->key_beg.obj_id = ip->obj_id;
508 cursor->key_beg.key = 0;
509 cursor->key_beg.create_tid = 0;
510 cursor->key_beg.delete_tid = 0;
511 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
512 cursor->key_beg.obj_type = 0;
513 cursor->asof = ip->obj_asof;
514 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
515 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
516 cursor->flags |= HAMMER_CURSOR_BACKEND;
518 error = hammer_btree_lookup(cursor);
519 if (hammer_debug_inode)
520 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
521 if (error) {
522 kprintf("error %d\n", error);
523 Debugger("hammer_update_inode");
526 if (error == 0) {
527 error = hammer_ip_delete_record(cursor, ip, trans->tid);
528 if (hammer_debug_inode)
529 kprintf(" error %d\n", error);
530 if (error && error != EDEADLK) {
531 kprintf("error %d\n", error);
532 Debugger("hammer_update_inode2");
534 if (error == 0) {
535 ip->flags |= HAMMER_INODE_DELONDISK;
537 if (cursor->node)
538 hammer_cache_node(cursor->node, &ip->cache[0]);
540 if (error == EDEADLK) {
541 hammer_done_cursor(cursor);
542 error = hammer_init_cursor(trans, cursor,
543 &ip->cache[0], ip);
544 if (hammer_debug_inode)
545 kprintf("IPDED %p %d\n", ip, error);
546 if (error == 0)
547 goto retry;
552 * Ok, write out the initial record or a new record (after deleting
553 * the old one), unless the DELETED flag is set. This routine will
554 * clear DELONDISK if it writes out a record.
556 * Update our inode statistics if this is the first application of
557 * the inode on-disk.
559 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
561 * Generate a record and write it to the media
563 record = hammer_alloc_mem_record(ip, 0);
564 record->type = HAMMER_MEM_RECORD_INODE;
565 record->flush_state = HAMMER_FST_FLUSH;
566 record->leaf = ip->sync_ino_leaf;
567 record->leaf.base.create_tid = trans->tid;
568 record->leaf.data_len = sizeof(ip->sync_ino_data);
569 record->data = (void *)&ip->sync_ino_data;
570 record->flags |= HAMMER_RECF_INTERLOCK_BE;
571 for (;;) {
572 error = hammer_ip_sync_record_cursor(cursor, record);
573 if (hammer_debug_inode)
574 kprintf("GENREC %p rec %08x %d\n",
575 ip, record->flags, error);
576 if (error != EDEADLK)
577 break;
578 hammer_done_cursor(cursor);
579 error = hammer_init_cursor(trans, cursor,
580 &ip->cache[0], ip);
581 if (hammer_debug_inode)
582 kprintf("GENREC reinit %d\n", error);
583 if (error)
584 break;
586 if (error) {
587 kprintf("error %d\n", error);
588 Debugger("hammer_update_inode3");
592 * The record isn't managed by the inode's record tree,
593 * destroy it whether we succeed or fail.
595 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
596 record->flags |= HAMMER_RECF_DELETED_FE;
597 record->flush_state = HAMMER_FST_IDLE;
598 hammer_rel_mem_record(record);
601 * Finish up.
603 if (error == 0) {
604 if (hammer_debug_inode)
605 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
606 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
607 HAMMER_INODE_ITIMES);
608 ip->flags &= ~HAMMER_INODE_DELONDISK;
611 * Root volume count of inodes
613 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
614 hammer_modify_volume_field(trans,
615 trans->rootvol,
616 vol0_stat_inodes);
617 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
618 hammer_modify_volume_done(trans->rootvol);
619 ip->flags |= HAMMER_INODE_ONDISK;
620 if (hammer_debug_inode)
621 kprintf("NOWONDISK %p\n", ip);
627 * If the inode has been destroyed, clean out any left-over flags
628 * that may have been set by the frontend.
630 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
631 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
632 HAMMER_INODE_ITIMES);
634 return(error);
638 * Update only the itimes fields. This is done no-historically. The
639 * record is updated in-place on the disk.
641 static int
642 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
644 hammer_transaction_t trans = cursor->trans;
645 struct hammer_btree_leaf_elm *leaf;
646 int error;
648 retry:
649 error = 0;
650 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
651 HAMMER_INODE_ONDISK) {
652 hammer_normalize_cursor(cursor);
653 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
654 cursor->key_beg.obj_id = ip->obj_id;
655 cursor->key_beg.key = 0;
656 cursor->key_beg.create_tid = 0;
657 cursor->key_beg.delete_tid = 0;
658 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
659 cursor->key_beg.obj_type = 0;
660 cursor->asof = ip->obj_asof;
661 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
662 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
663 cursor->flags |= HAMMER_CURSOR_BACKEND;
665 error = hammer_btree_lookup(cursor);
666 if (error) {
667 kprintf("error %d\n", error);
668 Debugger("hammer_update_itimes1");
670 if (error == 0) {
672 * Do not generate UNDO records for atime updates.
674 leaf = cursor->leaf;
675 hammer_modify_node(trans, cursor->node,
676 &leaf->atime, sizeof(leaf->atime));
677 leaf->atime = ip->sync_ino_leaf.atime;
678 hammer_modify_node_done(cursor->node);
679 /*rec->ino_mtime = ip->sync_ino_rec.ino_mtime;*/
680 ip->sync_flags &= ~HAMMER_INODE_ITIMES;
681 /* XXX recalculate crc */
682 hammer_cache_node(cursor->node, &ip->cache[0]);
684 if (error == EDEADLK) {
685 hammer_done_cursor(cursor);
686 error = hammer_init_cursor(trans, cursor,
687 &ip->cache[0], ip);
688 if (error == 0)
689 goto retry;
692 return(error);
696 * Release a reference on an inode, flush as requested.
698 * On the last reference we queue the inode to the flusher for its final
699 * disposition.
701 void
702 hammer_rel_inode(struct hammer_inode *ip, int flush)
704 hammer_mount_t hmp = ip->hmp;
707 * Handle disposition when dropping the last ref.
709 for (;;) {
710 if (ip->lock.refs == 1) {
712 * Determine whether on-disk action is needed for
713 * the inode's final disposition.
715 KKASSERT(ip->vp == NULL);
716 hammer_inode_unloadable_check(ip, 0);
717 if (ip->flags & HAMMER_INODE_MODMASK) {
718 if (hmp->rsv_inodes > desiredvnodes) {
719 hammer_flush_inode(ip,
720 HAMMER_FLUSH_SIGNAL);
721 } else {
722 hammer_flush_inode(ip, 0);
724 } else if (ip->lock.refs == 1) {
725 hammer_unload_inode(ip);
726 break;
728 } else {
729 if (flush)
730 hammer_flush_inode(ip, 0);
733 * The inode still has multiple refs, try to drop
734 * one ref.
736 KKASSERT(ip->lock.refs >= 1);
737 if (ip->lock.refs > 1) {
738 hammer_unref(&ip->lock);
739 break;
746 * Unload and destroy the specified inode. Must be called with one remaining
747 * reference. The reference is disposed of.
749 * This can only be called in the context of the flusher.
751 static int
752 hammer_unload_inode(struct hammer_inode *ip)
754 hammer_mount_t hmp = ip->hmp;
756 KASSERT(ip->lock.refs == 1,
757 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
758 KKASSERT(ip->vp == NULL);
759 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
760 KKASSERT(ip->cursor_ip_refs == 0);
761 KKASSERT(ip->lock.lockcount == 0);
762 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
764 KKASSERT(RB_EMPTY(&ip->rec_tree));
765 KKASSERT(TAILQ_EMPTY(&ip->target_list));
767 RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
769 hammer_uncache_node(&ip->cache[0]);
770 hammer_uncache_node(&ip->cache[1]);
771 if (ip->objid_cache)
772 hammer_clear_objid(ip);
773 --hammer_count_inodes;
774 --hmp->count_inodes;
776 hammer_inode_wakereclaims(ip);
777 kfree(ip, M_HAMMER);
779 return(0);
783 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
784 * the read-only flag for cached inodes.
786 * This routine is called from a RB_SCAN().
789 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
791 hammer_mount_t hmp = ip->hmp;
793 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
794 ip->flags |= HAMMER_INODE_RO;
795 else
796 ip->flags &= ~HAMMER_INODE_RO;
797 return(0);
801 * A transaction has modified an inode, requiring updates as specified by
802 * the passed flags.
804 * HAMMER_INODE_DDIRTY: Inode data has been updated
805 * HAMMER_INODE_XDIRTY: Dirty in-memory records
806 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
807 * HAMMER_INODE_DELETED: Inode record/data must be deleted
808 * HAMMER_INODE_ITIMES: mtime/atime has been updated
810 void
811 hammer_modify_inode(hammer_inode_t ip, int flags)
813 KKASSERT ((ip->flags & HAMMER_INODE_RO) == 0 ||
814 (flags & (HAMMER_INODE_DDIRTY |
815 HAMMER_INODE_XDIRTY | HAMMER_INODE_BUFS |
816 HAMMER_INODE_DELETED | HAMMER_INODE_ITIMES)) == 0);
817 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
818 ip->flags |= HAMMER_INODE_RSV_INODES;
819 ++ip->hmp->rsv_inodes;
822 ip->flags |= flags;
826 * Request that an inode be flushed. This whole mess cannot block and may
827 * recurse (if not synchronous). Once requested HAMMER will attempt to
828 * actively flush the inode until the flush can be done.
830 * The inode may already be flushing, or may be in a setup state. We can
831 * place the inode in a flushing state if it is currently idle and flag it
832 * to reflush if it is currently flushing.
834 * If the HAMMER_FLUSH_SYNCHRONOUS flag is specified we will attempt to
835 * flush the indoe synchronously using the caller's context.
837 void
838 hammer_flush_inode(hammer_inode_t ip, int flags)
840 int good;
843 * Trivial 'nothing to flush' case. If the inode is ina SETUP
844 * state we have to put it back into an IDLE state so we can
845 * drop the extra ref.
847 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
848 if (ip->flush_state == HAMMER_FST_SETUP) {
849 ip->flush_state = HAMMER_FST_IDLE;
850 hammer_rel_inode(ip, 0);
852 return;
856 * Our flush action will depend on the current state.
858 switch(ip->flush_state) {
859 case HAMMER_FST_IDLE:
861 * We have no dependancies and can flush immediately. Some
862 * our children may not be flushable so we have to re-test
863 * with that additional knowledge.
865 hammer_flush_inode_core(ip, flags);
866 break;
867 case HAMMER_FST_SETUP:
869 * Recurse upwards through dependancies via target_list
870 * and start their flusher actions going if possible.
872 * 'good' is our connectivity. -1 means we have none and
873 * can't flush, 0 means there weren't any dependancies, and
874 * 1 means we have good connectivity.
876 good = hammer_setup_parent_inodes(ip);
879 * We can continue if good >= 0. Determine how many records
880 * under our inode can be flushed (and mark them).
882 if (good >= 0) {
883 hammer_flush_inode_core(ip, flags);
884 } else {
885 ip->flags |= HAMMER_INODE_REFLUSH;
886 if (flags & HAMMER_FLUSH_SIGNAL) {
887 ip->flags |= HAMMER_INODE_RESIGNAL;
888 hammer_flusher_async(ip->hmp);
891 break;
892 default:
894 * We are already flushing, flag the inode to reflush
895 * if needed after it completes its current flush.
897 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
898 ip->flags |= HAMMER_INODE_REFLUSH;
899 if (flags & HAMMER_FLUSH_SIGNAL) {
900 ip->flags |= HAMMER_INODE_RESIGNAL;
901 hammer_flusher_async(ip->hmp);
903 break;
908 * Scan ip->target_list, which is a list of records owned by PARENTS to our
909 * ip which reference our ip.
911 * XXX This is a huge mess of recursive code, but not one bit of it blocks
912 * so for now do not ref/deref the structures. Note that if we use the
913 * ref/rel code later, the rel CAN block.
915 static int
916 hammer_setup_parent_inodes(hammer_inode_t ip)
918 hammer_record_t depend;
919 #if 0
920 hammer_record_t next;
921 hammer_inode_t pip;
922 #endif
923 int good;
924 int r;
926 good = 0;
927 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
928 r = hammer_setup_parent_inodes_helper(depend);
929 KKASSERT(depend->target_ip == ip);
930 if (r < 0 && good == 0)
931 good = -1;
932 if (r > 0)
933 good = 1;
935 return(good);
937 #if 0
938 retry:
939 good = 0;
940 next = TAILQ_FIRST(&ip->target_list);
941 if (next) {
942 hammer_ref(&next->lock);
943 hammer_ref(&next->ip->lock);
945 while ((depend = next) != NULL) {
946 if (depend->target_ip == NULL) {
947 pip = depend->ip;
948 hammer_rel_mem_record(depend);
949 hammer_rel_inode(pip, 0);
950 goto retry;
952 KKASSERT(depend->target_ip == ip);
953 next = TAILQ_NEXT(depend, target_entry);
954 if (next) {
955 hammer_ref(&next->lock);
956 hammer_ref(&next->ip->lock);
958 r = hammer_setup_parent_inodes_helper(depend);
959 if (r < 0 && good == 0)
960 good = -1;
961 if (r > 0)
962 good = 1;
963 pip = depend->ip;
964 hammer_rel_mem_record(depend);
965 hammer_rel_inode(pip, 0);
967 return(good);
968 #endif
972 * This helper function takes a record representing the dependancy between
973 * the parent inode and child inode.
975 * record->ip = parent inode
976 * record->target_ip = child inode
978 * We are asked to recurse upwards and convert the record from SETUP
979 * to FLUSH if possible.
981 * Return 1 if the record gives us connectivity
983 * Return 0 if the record is not relevant
985 * Return -1 if we can't resolve the dependancy and there is no connectivity.
987 static int
988 hammer_setup_parent_inodes_helper(hammer_record_t record)
990 hammer_mount_t hmp;
991 hammer_inode_t pip;
992 int good;
994 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
995 pip = record->ip;
996 hmp = pip->hmp;
999 * If the record is already flushing, is it in our flush group?
1001 * If it is in our flush group but it is a general record or a
1002 * delete-on-disk, it does not improve our connectivity (return 0),
1003 * and if the target inode is not trying to destroy itself we can't
1004 * allow the operation yet anyway (the second return -1).
1006 if (record->flush_state == HAMMER_FST_FLUSH) {
1007 if (record->flush_group != hmp->flusher.next) {
1008 pip->flags |= HAMMER_INODE_REFLUSH;
1009 return(-1);
1011 if (record->type == HAMMER_MEM_RECORD_ADD)
1012 return(1);
1013 /* GENERAL or DEL */
1014 return(0);
1018 * It must be a setup record. Try to resolve the setup dependancies
1019 * by recursing upwards so we can place ip on the flush list.
1021 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1023 good = hammer_setup_parent_inodes(pip);
1026 * We can't flush ip because it has no connectivity (XXX also check
1027 * nlinks for pre-existing connectivity!). Flag it so any resolution
1028 * recurses back down.
1030 if (good < 0) {
1031 pip->flags |= HAMMER_INODE_REFLUSH;
1032 return(good);
1036 * We are go, place the parent inode in a flushing state so we can
1037 * place its record in a flushing state. Note that the parent
1038 * may already be flushing. The record must be in the same flush
1039 * group as the parent.
1041 if (pip->flush_state != HAMMER_FST_FLUSH)
1042 hammer_flush_inode_core(pip, HAMMER_FLUSH_RECURSION);
1043 KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1044 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1046 #if 0
1047 if (record->type == HAMMER_MEM_RECORD_DEL &&
1048 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1050 * Regardless of flushing state we cannot sync this path if the
1051 * record represents a delete-on-disk but the target inode
1052 * is not ready to sync its own deletion.
1054 * XXX need to count effective nlinks to determine whether
1055 * the flush is ok, otherwise removing a hardlink will
1056 * just leave the DEL record to rot.
1058 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1059 return(-1);
1060 } else
1061 #endif
1062 if (pip->flush_group == pip->hmp->flusher.next) {
1064 * This is the record we wanted to synchronize. If the
1065 * record went into a flush state while we blocked it
1066 * had better be in the correct flush group.
1068 if (record->flush_state != HAMMER_FST_FLUSH) {
1069 record->flush_state = HAMMER_FST_FLUSH;
1070 record->flush_group = pip->flush_group;
1071 hammer_ref(&record->lock);
1072 } else {
1073 KKASSERT(record->flush_group == pip->flush_group);
1075 if (record->type == HAMMER_MEM_RECORD_ADD)
1076 return(1);
1079 * A general or delete-on-disk record does not contribute
1080 * to our visibility. We can still flush it, however.
1082 return(0);
1083 } else {
1085 * We couldn't resolve the dependancies, request that the
1086 * inode be flushed when the dependancies can be resolved.
1088 pip->flags |= HAMMER_INODE_REFLUSH;
1089 return(-1);
1094 * This is the core routine placing an inode into the FST_FLUSH state.
1096 static void
1097 hammer_flush_inode_core(hammer_inode_t ip, int flags)
1099 int go_count;
1102 * Set flush state and prevent the flusher from cycling into
1103 * the next flush group. Do not place the ip on the list yet.
1104 * Inodes not in the idle state get an extra reference.
1106 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1107 if (ip->flush_state == HAMMER_FST_IDLE)
1108 hammer_ref(&ip->lock);
1109 ip->flush_state = HAMMER_FST_FLUSH;
1110 ip->flush_group = ip->hmp->flusher.next;
1111 ++ip->hmp->flusher.group_lock;
1112 ++ip->hmp->count_iqueued;
1113 ++hammer_count_iqueued;
1116 * We need to be able to vfsync/truncate from the backend.
1118 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1119 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1120 ip->flags |= HAMMER_INODE_VHELD;
1121 vref(ip->vp);
1125 * Figure out how many in-memory records we can actually flush
1126 * (not including inode meta-data, buffers, etc).
1128 if (flags & HAMMER_FLUSH_RECURSION) {
1129 go_count = 1;
1130 } else {
1131 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1132 hammer_setup_child_callback, NULL);
1136 * This is a more involved test that includes go_count. If we
1137 * can't flush, flag the inode and return. If go_count is 0 we
1138 * were are unable to flush any records in our rec_tree and
1139 * must ignore the XDIRTY flag.
1141 if (go_count == 0) {
1142 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1143 ip->flags |= HAMMER_INODE_REFLUSH;
1145 --ip->hmp->count_iqueued;
1146 --hammer_count_iqueued;
1148 ip->flush_state = HAMMER_FST_SETUP;
1149 if (ip->flags & HAMMER_INODE_VHELD) {
1150 ip->flags &= ~HAMMER_INODE_VHELD;
1151 vrele(ip->vp);
1153 if (flags & HAMMER_FLUSH_SIGNAL) {
1154 ip->flags |= HAMMER_INODE_RESIGNAL;
1155 hammer_flusher_async(ip->hmp);
1157 if (--ip->hmp->flusher.group_lock == 0)
1158 wakeup(&ip->hmp->flusher.group_lock);
1159 return;
1164 * Snapshot the state of the inode for the backend flusher.
1166 * The truncation must be retained in the frontend until after
1167 * we've actually performed the record deletion.
1169 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1170 * and stays in ip->flags. Once set, it stays set until the
1171 * inode is destroyed.
1173 ip->sync_flags = (ip->flags & HAMMER_INODE_MODMASK);
1174 ip->sync_trunc_off = ip->trunc_off;
1175 ip->sync_ino_leaf = ip->ino_leaf;
1176 ip->sync_ino_data = ip->ino_data;
1177 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1178 ip->flags &= ~HAMMER_INODE_MODMASK;
1179 #ifdef DEBUG_TRUNCATE
1180 if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
1181 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
1182 #endif
1185 * The flusher list inherits our inode and reference.
1187 TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
1188 if (--ip->hmp->flusher.group_lock == 0)
1189 wakeup(&ip->hmp->flusher.group_lock);
1191 if (flags & HAMMER_FLUSH_SIGNAL) {
1192 hammer_flusher_async(ip->hmp);
1197 * Callback for scan of ip->rec_tree. Try to include each record in our
1198 * flush. ip->flush_group has been set but the inode has not yet been
1199 * moved into a flushing state.
1201 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1202 * both inodes.
1204 * We return 1 for any record placed or found in FST_FLUSH, which prevents
1205 * the caller from shortcutting the flush.
1207 static int
1208 hammer_setup_child_callback(hammer_record_t rec, void *data)
1210 hammer_inode_t target_ip;
1211 hammer_inode_t ip;
1212 int r;
1215 * Deleted records are ignored. Note that the flush detects deleted
1216 * front-end records at multiple points to deal with races. This is
1217 * just the first line of defense. The only time DELETED_FE cannot
1218 * be set is when HAMMER_RECF_INTERLOCK_BE is set.
1220 * Don't get confused between record deletion and, say, directory
1221 * entry deletion. The deletion of a directory entry that is on
1222 * the media has nothing to do with the record deletion flags.
1224 if (rec->flags & (HAMMER_RECF_DELETED_FE|HAMMER_RECF_DELETED_BE))
1225 return(0);
1228 * If the record is in an idle state it has no dependancies and
1229 * can be flushed.
1231 ip = rec->ip;
1232 r = 0;
1234 switch(rec->flush_state) {
1235 case HAMMER_FST_IDLE:
1237 * Record has no setup dependancy, we can flush it.
1239 KKASSERT(rec->target_ip == NULL);
1240 rec->flush_state = HAMMER_FST_FLUSH;
1241 rec->flush_group = ip->flush_group;
1242 hammer_ref(&rec->lock);
1243 r = 1;
1244 break;
1245 case HAMMER_FST_SETUP:
1247 * Record has a setup dependancy. Try to include the
1248 * target ip in the flush.
1250 * We have to be careful here, if we do not do the right
1251 * thing we can lose track of dirty inodes and the system
1252 * will lockup trying to allocate buffers.
1254 target_ip = rec->target_ip;
1255 KKASSERT(target_ip != NULL);
1256 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1257 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1259 * If the target IP is already flushing in our group
1260 * we are golden, otherwise make sure the target
1261 * reflushes.
1263 if (target_ip->flush_group == ip->flush_group) {
1264 rec->flush_state = HAMMER_FST_FLUSH;
1265 rec->flush_group = ip->flush_group;
1266 hammer_ref(&rec->lock);
1267 r = 1;
1268 } else {
1269 target_ip->flags |= HAMMER_INODE_REFLUSH;
1271 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1273 * If the target IP is not flushing we can force
1274 * it to flush, even if it is unable to write out
1275 * any of its own records we have at least one in
1276 * hand that we CAN deal with.
1278 rec->flush_state = HAMMER_FST_FLUSH;
1279 rec->flush_group = ip->flush_group;
1280 hammer_ref(&rec->lock);
1281 hammer_flush_inode_core(target_ip,
1282 HAMMER_FLUSH_RECURSION);
1283 r = 1;
1284 } else {
1286 * General or delete-on-disk record.
1288 * XXX this needs help. If a delete-on-disk we could
1289 * disconnect the target. If the target has its own
1290 * dependancies they really need to be flushed.
1292 * XXX
1294 rec->flush_state = HAMMER_FST_FLUSH;
1295 rec->flush_group = ip->flush_group;
1296 hammer_ref(&rec->lock);
1297 hammer_flush_inode_core(target_ip,
1298 HAMMER_FLUSH_RECURSION);
1299 r = 1;
1301 break;
1302 case HAMMER_FST_FLUSH:
1304 * Record already associated with a flush group. It had
1305 * better be ours.
1307 KKASSERT(rec->flush_group == ip->flush_group);
1308 r = 1;
1309 break;
1311 return(r);
1315 * Wait for a previously queued flush to complete
1317 void
1318 hammer_wait_inode(hammer_inode_t ip)
1320 while (ip->flush_state != HAMMER_FST_IDLE) {
1321 if (ip->flush_state == HAMMER_FST_SETUP) {
1322 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1323 } else {
1324 ip->flags |= HAMMER_INODE_FLUSHW;
1325 tsleep(&ip->flags, 0, "hmrwin", 0);
1331 * Wait for records to drain
1333 void
1334 hammer_wait_inode_recs(hammer_inode_t ip)
1336 while (ip->rsv_recs > hammer_limit_irecs) {
1337 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1338 if (ip->rsv_recs > hammer_limit_irecs) {
1339 ip->flags |= HAMMER_INODE_PARTIALW;
1340 tsleep(&ip->flags, 0, "hmrwpp", 0);
1346 * Called by the backend code when a flush has been completed.
1347 * The inode has already been removed from the flush list.
1349 * A pipelined flush can occur, in which case we must re-enter the
1350 * inode on the list and re-copy its fields.
1352 void
1353 hammer_flush_inode_done(hammer_inode_t ip)
1355 hammer_mount_t hmp;
1356 int dorel;
1358 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1360 hmp = ip->hmp;
1363 * Merge left-over flags back into the frontend and fix the state.
1365 ip->flags |= ip->sync_flags;
1368 * The backend may have adjusted nlinks, so if the adjusted nlinks
1369 * does not match the fronttend set the frontend's RDIRTY flag again.
1371 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
1372 ip->flags |= HAMMER_INODE_DDIRTY;
1375 * Fix up the dirty buffer status. IO completions will also
1376 * try to clean up rsv_databufs.
1378 if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
1379 ip->flags |= HAMMER_INODE_BUFS;
1380 } else {
1381 hmp->rsv_databufs -= ip->rsv_databufs;
1382 ip->rsv_databufs = 0;
1386 * Re-set the XDIRTY flag if some of the inode's in-memory records
1387 * could not be flushed.
1389 KKASSERT((RB_EMPTY(&ip->rec_tree) &&
1390 (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
1391 (!RB_EMPTY(&ip->rec_tree) &&
1392 (ip->flags & HAMMER_INODE_XDIRTY) != 0));
1395 * Do not lose track of inodes which no longer have vnode
1396 * assocations, otherwise they may never get flushed again.
1398 if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
1399 ip->flags |= HAMMER_INODE_REFLUSH;
1402 * Adjust flush_state. The target state (idle or setup) shouldn't
1403 * be terribly important since we will reflush if we really need
1404 * to do anything. XXX
1406 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1407 ip->flush_state = HAMMER_FST_IDLE;
1408 dorel = 1;
1409 } else {
1410 ip->flush_state = HAMMER_FST_SETUP;
1411 dorel = 0;
1414 --hmp->count_iqueued;
1415 --hammer_count_iqueued;
1418 * Clean up the vnode ref
1420 if (ip->flags & HAMMER_INODE_VHELD) {
1421 ip->flags &= ~HAMMER_INODE_VHELD;
1422 vrele(ip->vp);
1426 * If the frontend made more changes and requested another flush,
1427 * then try to get it running.
1429 if (ip->flags & HAMMER_INODE_REFLUSH) {
1430 ip->flags &= ~HAMMER_INODE_REFLUSH;
1431 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1432 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1433 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1434 } else {
1435 hammer_flush_inode(ip, 0);
1440 * If the inode is now clean drop the space reservation.
1442 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1443 (ip->flags & HAMMER_INODE_RSV_INODES)) {
1444 ip->flags &= ~HAMMER_INODE_RSV_INODES;
1445 --hmp->rsv_inodes;
1449 * Finally, if the frontend is waiting for a flush to complete,
1450 * wake it up.
1452 if (ip->flush_state != HAMMER_FST_FLUSH) {
1453 if (ip->flags & HAMMER_INODE_FLUSHW) {
1454 ip->flags &= ~HAMMER_INODE_FLUSHW;
1455 wakeup(&ip->flags);
1458 if (dorel)
1459 hammer_rel_inode(ip, 0);
1463 * Called from hammer_sync_inode() to synchronize in-memory records
1464 * to the media.
1466 static int
1467 hammer_sync_record_callback(hammer_record_t record, void *data)
1469 hammer_cursor_t cursor = data;
1470 hammer_transaction_t trans = cursor->trans;
1471 int error;
1474 * Skip records that do not belong to the current flush.
1476 ++hammer_stats_record_iterations;
1477 if (record->flush_state != HAMMER_FST_FLUSH)
1478 return(0);
1480 #if 1
1481 if (record->flush_group != record->ip->flush_group) {
1482 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1483 Debugger("blah2");
1484 return(0);
1486 #endif
1487 KKASSERT(record->flush_group == record->ip->flush_group);
1490 * Interlock the record using the BE flag. Once BE is set the
1491 * frontend cannot change the state of FE.
1493 * NOTE: If FE is set prior to us setting BE we still sync the
1494 * record out, but the flush completion code converts it to
1495 * a delete-on-disk record instead of destroying it.
1497 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1498 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1501 * The backend may have already disposed of the record.
1503 if (record->flags & HAMMER_RECF_DELETED_BE) {
1504 error = 0;
1505 goto done;
1509 * If the whole inode is being deleting all on-disk records will
1510 * be deleted very soon, we can't sync any new records to disk
1511 * because they will be deleted in the same transaction they were
1512 * created in (delete_tid == create_tid), which will assert.
1514 * XXX There may be a case with RECORD_ADD with DELETED_FE set
1515 * that we currently panic on.
1517 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
1518 switch(record->type) {
1519 case HAMMER_MEM_RECORD_DATA:
1521 * We don't have to do anything, if the record was
1522 * committed the space will have been accounted for
1523 * in the blockmap.
1525 /* fall through */
1526 case HAMMER_MEM_RECORD_GENERAL:
1527 record->flags |= HAMMER_RECF_DELETED_FE;
1528 record->flags |= HAMMER_RECF_DELETED_BE;
1529 error = 0;
1530 goto done;
1531 case HAMMER_MEM_RECORD_ADD:
1532 panic("hammer_sync_record_callback: illegal add "
1533 "during inode deletion record %p", record);
1534 break; /* NOT REACHED */
1535 case HAMMER_MEM_RECORD_INODE:
1536 panic("hammer_sync_record_callback: attempt to "
1537 "sync inode record %p?", record);
1538 break; /* NOT REACHED */
1539 case HAMMER_MEM_RECORD_DEL:
1541 * Follow through and issue the on-disk deletion
1543 break;
1548 * If DELETED_FE is set special handling is needed for directory
1549 * entries. Dependant pieces related to the directory entry may
1550 * have already been synced to disk. If this occurs we have to
1551 * sync the directory entry and then change the in-memory record
1552 * from an ADD to a DELETE to cover the fact that it's been
1553 * deleted by the frontend.
1555 * A directory delete covering record (MEM_RECORD_DEL) can never
1556 * be deleted by the frontend.
1558 * Any other record type (aka DATA) can be deleted by the frontend.
1559 * XXX At the moment the flusher must skip it because there may
1560 * be another data record in the flush group for the same block,
1561 * meaning that some frontend data changes can leak into the backend's
1562 * synchronization point.
1564 if (record->flags & HAMMER_RECF_DELETED_FE) {
1565 if (record->type == HAMMER_MEM_RECORD_ADD) {
1566 record->flags |= HAMMER_RECF_CONVERT_DELETE;
1567 } else {
1568 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
1569 record->flags |= HAMMER_RECF_DELETED_BE;
1570 error = 0;
1571 goto done;
1576 * Assign the create_tid for new records. Deletions already
1577 * have the record's entire key properly set up.
1579 if (record->type != HAMMER_MEM_RECORD_DEL)
1580 record->leaf.base.create_tid = trans->tid;
1581 for (;;) {
1582 error = hammer_ip_sync_record_cursor(cursor, record);
1583 if (error != EDEADLK)
1584 break;
1585 hammer_done_cursor(cursor);
1586 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
1587 record->ip);
1588 if (error)
1589 break;
1591 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1593 if (error) {
1594 error = -error;
1595 if (error != -ENOSPC) {
1596 kprintf("hammer_sync_record_callback: sync failed rec "
1597 "%p, error %d\n", record, error);
1598 Debugger("sync failed rec");
1601 done:
1602 hammer_flush_record_done(record, error);
1603 return(error);
1607 * XXX error handling
1610 hammer_sync_inode(hammer_inode_t ip)
1612 struct hammer_transaction trans;
1613 struct hammer_cursor cursor;
1614 hammer_record_t depend;
1615 hammer_record_t next;
1616 int error, tmp_error;
1617 u_int64_t nlinks;
1619 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
1620 return(0);
1622 hammer_start_transaction_fls(&trans, ip->hmp);
1623 error = hammer_init_cursor(&trans, &cursor, &ip->cache[0], ip);
1624 if (error)
1625 goto done;
1628 * Any directory records referencing this inode which are not in
1629 * our current flush group must adjust our nlink count for the
1630 * purposes of synchronization to disk.
1632 * Records which are in our flush group can be unlinked from our
1633 * inode now, potentially allowing the inode to be physically
1634 * deleted.
1636 * This cannot block.
1638 nlinks = ip->ino_data.nlinks;
1639 next = TAILQ_FIRST(&ip->target_list);
1640 while ((depend = next) != NULL) {
1641 next = TAILQ_NEXT(depend, target_entry);
1642 if (depend->flush_state == HAMMER_FST_FLUSH &&
1643 depend->flush_group == ip->hmp->flusher.act) {
1645 * If this is an ADD that was deleted by the frontend
1646 * the frontend nlinks count will have already been
1647 * decremented, but the backend is going to sync its
1648 * directory entry and must account for it. The
1649 * record will be converted to a delete-on-disk when
1650 * it gets synced.
1652 * If the ADD was not deleted by the frontend we
1653 * can remove the dependancy from our target_list.
1655 if (depend->flags & HAMMER_RECF_DELETED_FE) {
1656 ++nlinks;
1657 } else {
1658 TAILQ_REMOVE(&ip->target_list, depend,
1659 target_entry);
1660 depend->target_ip = NULL;
1662 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
1664 * Not part of our flush group
1666 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
1667 switch(depend->type) {
1668 case HAMMER_MEM_RECORD_ADD:
1669 --nlinks;
1670 break;
1671 case HAMMER_MEM_RECORD_DEL:
1672 ++nlinks;
1673 break;
1674 default:
1675 break;
1681 * Set dirty if we had to modify the link count.
1683 if (ip->sync_ino_data.nlinks != nlinks) {
1684 KKASSERT((int64_t)nlinks >= 0);
1685 ip->sync_ino_data.nlinks = nlinks;
1686 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1690 * If there is a trunction queued destroy any data past the (aligned)
1691 * truncation point. Userland will have dealt with the buffer
1692 * containing the truncation point for us.
1694 * We don't flush pending frontend data buffers until after we've
1695 * dealth with the truncation.
1697 * Don't bother if the inode is or has been deleted.
1699 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
1701 * Interlock trunc_off. The VOP front-end may continue to
1702 * make adjustments to it while we are blocked.
1704 off_t trunc_off;
1705 off_t aligned_trunc_off;
1707 trunc_off = ip->sync_trunc_off;
1708 aligned_trunc_off = (trunc_off + HAMMER_BUFMASK) &
1709 ~HAMMER_BUFMASK64;
1712 * Delete any whole blocks on-media. The front-end has
1713 * already cleaned out any partial block and made it
1714 * pending. The front-end may have updated trunc_off
1715 * while we were blocked so we only use sync_trunc_off.
1717 error = hammer_ip_delete_range(&cursor, ip,
1718 aligned_trunc_off,
1719 0x7FFFFFFFFFFFFFFFLL, 1);
1720 if (error)
1721 Debugger("hammer_ip_delete_range errored");
1724 * Clear the truncation flag on the backend after we have
1725 * complete the deletions. Backend data is now good again
1726 * (including new records we are about to sync, below).
1728 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1729 ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1730 } else {
1731 error = 0;
1735 * Now sync related records. These will typically be directory
1736 * entries or delete-on-disk records.
1738 * Not all records will be flushed, but clear XDIRTY anyway. We
1739 * will set it again in the frontend hammer_flush_inode_done()
1740 * if records remain.
1742 if (error == 0) {
1743 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1744 hammer_sync_record_callback, &cursor);
1745 if (tmp_error < 0)
1746 tmp_error = -error;
1747 if (tmp_error)
1748 error = tmp_error;
1752 * If we are deleting the inode the frontend had better not have
1753 * any active references on elements making up the inode.
1755 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
1756 RB_EMPTY(&ip->rec_tree) &&
1757 (ip->sync_flags & HAMMER_INODE_DELETING) &&
1758 (ip->flags & HAMMER_INODE_DELETED) == 0) {
1759 int count1 = 0;
1761 ip->flags |= HAMMER_INODE_DELETED;
1762 error = hammer_ip_delete_range_all(&cursor, ip, &count1);
1763 if (error == 0) {
1764 ip->sync_flags &= ~HAMMER_INODE_DELETING;
1765 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1766 KKASSERT(RB_EMPTY(&ip->rec_tree));
1769 * Set delete_tid in both the frontend and backend
1770 * copy of the inode record. The DELETED flag handles
1771 * this, do not set RDIRTY.
1773 ip->ino_leaf.base.delete_tid = trans.tid;
1774 ip->sync_ino_leaf.base.delete_tid = trans.tid;
1777 * Adjust the inode count in the volume header
1779 if (ip->flags & HAMMER_INODE_ONDISK) {
1780 hammer_modify_volume_field(&trans,
1781 trans.rootvol,
1782 vol0_stat_inodes);
1783 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1784 hammer_modify_volume_done(trans.rootvol);
1786 } else {
1787 ip->flags &= ~HAMMER_INODE_DELETED;
1788 Debugger("hammer_ip_delete_range_all errored");
1792 ip->sync_flags &= ~HAMMER_INODE_BUFS;
1794 if (error)
1795 Debugger("RB_SCAN errored");
1798 * Now update the inode's on-disk inode-data and/or on-disk record.
1799 * DELETED and ONDISK are managed only in ip->flags.
1801 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
1802 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
1804 * If deleted and on-disk, don't set any additional flags.
1805 * the delete flag takes care of things.
1807 * Clear flags which may have been set by the frontend.
1809 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
1810 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1811 HAMMER_INODE_DELETING);
1812 break;
1813 case HAMMER_INODE_DELETED:
1815 * Take care of the case where a deleted inode was never
1816 * flushed to the disk in the first place.
1818 * Clear flags which may have been set by the frontend.
1820 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
1821 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1822 HAMMER_INODE_DELETING);
1823 while (RB_ROOT(&ip->rec_tree)) {
1824 hammer_record_t record = RB_ROOT(&ip->rec_tree);
1825 hammer_ref(&record->lock);
1826 KKASSERT(record->lock.refs == 1);
1827 record->flags |= HAMMER_RECF_DELETED_FE;
1828 record->flags |= HAMMER_RECF_DELETED_BE;
1829 hammer_rel_mem_record(record);
1831 break;
1832 case HAMMER_INODE_ONDISK:
1834 * If already on-disk, do not set any additional flags.
1836 break;
1837 default:
1839 * If not on-disk and not deleted, set both dirty flags
1840 * to force an initial record to be written. Also set
1841 * the create_tid for the inode.
1843 * Set create_tid in both the frontend and backend
1844 * copy of the inode record.
1846 ip->ino_leaf.base.create_tid = trans.tid;
1847 ip->sync_ino_leaf.base.create_tid = trans.tid;
1848 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1849 break;
1853 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
1854 * is already on-disk the old record is marked as deleted.
1856 * If DELETED is set hammer_update_inode() will delete the existing
1857 * record without writing out a new one.
1859 * If *ONLY* the ITIMES flag is set we can update the record in-place.
1861 if (ip->flags & HAMMER_INODE_DELETED) {
1862 error = hammer_update_inode(&cursor, ip);
1863 } else
1864 if ((ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) ==
1865 HAMMER_INODE_ITIMES) {
1866 error = hammer_update_itimes(&cursor, ip);
1867 } else
1868 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) {
1869 error = hammer_update_inode(&cursor, ip);
1871 if (error)
1872 Debugger("hammer_update_itimes/inode errored");
1873 done:
1875 * Save the TID we used to sync the inode with to make sure we
1876 * do not improperly reuse it.
1878 hammer_done_cursor(&cursor);
1879 hammer_done_transaction(&trans);
1880 return(error);
1884 * This routine is called when the OS is no longer actively referencing
1885 * the inode (but might still be keeping it cached), or when releasing
1886 * the last reference to an inode.
1888 * At this point if the inode's nlinks count is zero we want to destroy
1889 * it, which may mean destroying it on-media too.
1891 void
1892 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
1894 struct vnode *vp;
1897 * Set the DELETING flag when the link count drops to 0 and the
1898 * OS no longer has any opens on the inode.
1900 * The backend will clear DELETING (a mod flag) and set DELETED
1901 * (a state flag) when it is actually able to perform the
1902 * operation.
1904 if (ip->ino_data.nlinks == 0 &&
1905 (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
1906 ip->flags |= HAMMER_INODE_DELETING;
1907 ip->flags |= HAMMER_INODE_TRUNCATED;
1908 ip->trunc_off = 0;
1909 vp = NULL;
1910 if (getvp) {
1911 if (hammer_get_vnode(ip, &vp) != 0)
1912 return;
1916 * Final cleanup
1918 if (ip->vp) {
1919 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
1920 vnode_pager_setsize(ip->vp, 0);
1922 if (getvp) {
1923 vput(vp);
1929 * Re-test an inode when a dependancy had gone away to see if we
1930 * can chain flush it.
1932 void
1933 hammer_test_inode(hammer_inode_t ip)
1935 if (ip->flags & HAMMER_INODE_REFLUSH) {
1936 ip->flags &= ~HAMMER_INODE_REFLUSH;
1937 hammer_ref(&ip->lock);
1938 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1939 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1940 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1941 } else {
1942 hammer_flush_inode(ip, 0);
1944 hammer_rel_inode(ip, 0);
1949 * Clear the RECLAIM flag on an inode. This occurs when the inode is
1950 * reassociated with a vp or just before it gets freed.
1952 * Wakeup one thread blocked waiting on reclaims to complete. Note that
1953 * the inode the thread is waiting on behalf of is a different inode then
1954 * the inode we are called with. This is to create a pipeline.
1956 static void
1957 hammer_inode_wakereclaims(hammer_inode_t ip)
1959 struct hammer_reclaim *reclaim;
1960 hammer_mount_t hmp = ip->hmp;
1962 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
1963 return;
1965 --hammer_count_reclaiming;
1966 --hmp->inode_reclaims;
1967 ip->flags &= ~HAMMER_INODE_RECLAIM;
1969 if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
1970 TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
1971 reclaim->okydoky = 1;
1972 wakeup(reclaim);