HAMMER VFS - version 2 work - move directory entries to inode localization
[dragonfly.git] / sys / vfs / hammer / hammer_object.c
blob4f3f5c4c94647d49310fd9262cdd42e471253d74
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.97 2008/09/23 22:28:56 dillon Exp $
37 #include "hammer.h"
39 static int hammer_mem_lookup(hammer_cursor_t cursor);
40 static void hammer_mem_first(hammer_cursor_t cursor);
41 static int hammer_frontend_trunc_callback(hammer_record_t record,
42 void *data __unused);
43 static int hammer_bulk_scan_callback(hammer_record_t record, void *data);
44 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
46 hammer_btree_leaf_elm_t leaf);
48 struct rec_trunc_info {
49 u_int16_t rec_type;
50 int64_t trunc_off;
53 struct hammer_bulk_info {
54 hammer_record_t record;
55 struct hammer_btree_leaf_elm leaf;
59 * Red-black tree support. Comparison code for insertion.
61 static int
62 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
64 if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
65 return(-1);
66 if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
67 return(1);
69 if (rec1->leaf.base.key < rec2->leaf.base.key)
70 return(-1);
71 if (rec1->leaf.base.key > rec2->leaf.base.key)
72 return(1);
75 * For search & insertion purposes records deleted by the
76 * frontend or deleted/committed by the backend are silently
77 * ignored. Otherwise pipelined insertions will get messed
78 * up.
80 * rec1 is greater then rec2 if rec1 is marked deleted.
81 * rec1 is less then rec2 if rec2 is marked deleted.
83 * Multiple deleted records may be present, do not return 0
84 * if both are marked deleted.
86 if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
87 HAMMER_RECF_COMMITTED)) {
88 return(1);
90 if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
91 HAMMER_RECF_COMMITTED)) {
92 return(-1);
95 return(0);
99 * Basic record comparison code similar to hammer_btree_cmp().
101 static int
102 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
104 if (elm->rec_type < rec->leaf.base.rec_type)
105 return(-3);
106 if (elm->rec_type > rec->leaf.base.rec_type)
107 return(3);
109 if (elm->key < rec->leaf.base.key)
110 return(-2);
111 if (elm->key > rec->leaf.base.key)
112 return(2);
115 * Never match against an item deleted by the frontend
116 * or backend, or committed by the backend.
118 * elm is less then rec if rec is marked deleted.
120 if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
121 HAMMER_RECF_COMMITTED)) {
122 return(-1);
124 return(0);
128 * Ranged scan to locate overlapping record(s). This is used by
129 * hammer_ip_get_bulk() to locate an overlapping record. We have
130 * to use a ranged scan because the keys for data records with the
131 * same file base offset can be different due to differing data_len's.
133 * NOTE: The base file offset of a data record is (key - data_len), not (key).
135 static int
136 hammer_rec_overlap_cmp(hammer_record_t rec, void *data)
138 struct hammer_bulk_info *info = data;
139 hammer_btree_leaf_elm_t leaf = &info->leaf;
141 if (rec->leaf.base.rec_type < leaf->base.rec_type)
142 return(-3);
143 if (rec->leaf.base.rec_type > leaf->base.rec_type)
144 return(3);
147 * Overlap compare
149 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
150 /* rec_beg >= leaf_end */
151 if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key)
152 return(2);
153 /* rec_end <= leaf_beg */
154 if (rec->leaf.base.key <= leaf->base.key - leaf->data_len)
155 return(-2);
156 } else {
157 if (rec->leaf.base.key < leaf->base.key)
158 return(-2);
159 if (rec->leaf.base.key > leaf->base.key)
160 return(2);
164 * We have to return 0 at this point, even if DELETED_FE is set,
165 * because returning anything else will cause the scan to ignore
166 * one of the branches when we really want it to check both.
168 return(0);
172 * RB_SCAN comparison code for hammer_mem_first(). The argument order
173 * is reversed so the comparison result has to be negated. key_beg and
174 * key_end are both range-inclusive.
176 * Localized deletions are not cached in-memory.
178 static
180 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
182 hammer_cursor_t cursor = data;
183 int r;
185 r = hammer_rec_cmp(&cursor->key_beg, rec);
186 if (r > 1)
187 return(-1);
188 r = hammer_rec_cmp(&cursor->key_end, rec);
189 if (r < -1)
190 return(1);
191 return(0);
195 * This compare function is used when simply looking up key_beg.
197 static
199 hammer_rec_find_cmp(hammer_record_t rec, void *data)
201 hammer_cursor_t cursor = data;
202 int r;
204 r = hammer_rec_cmp(&cursor->key_beg, rec);
205 if (r > 1)
206 return(-1);
207 if (r < -1)
208 return(1);
209 return(0);
213 * Locate blocks within the truncation range. Partial blocks do not count.
215 static
217 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
219 struct rec_trunc_info *info = data;
221 if (rec->leaf.base.rec_type < info->rec_type)
222 return(-1);
223 if (rec->leaf.base.rec_type > info->rec_type)
224 return(1);
226 switch(rec->leaf.base.rec_type) {
227 case HAMMER_RECTYPE_DB:
229 * DB record key is not beyond the truncation point, retain.
231 if (rec->leaf.base.key < info->trunc_off)
232 return(-1);
233 break;
234 case HAMMER_RECTYPE_DATA:
236 * DATA record offset start is not beyond the truncation point,
237 * retain.
239 if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
240 return(-1);
241 break;
242 default:
243 panic("hammer_rec_trunc_cmp: unexpected record type");
247 * The record start is >= the truncation point, return match,
248 * the record should be destroyed.
250 return(0);
253 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
256 * Allocate a record for the caller to finish filling in. The record is
257 * returned referenced.
259 hammer_record_t
260 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
262 hammer_record_t record;
263 hammer_mount_t hmp;
265 hmp = ip->hmp;
266 ++hammer_count_records;
267 record = kmalloc(sizeof(*record), hmp->m_misc,
268 M_WAITOK | M_ZERO | M_USE_RESERVE);
269 record->flush_state = HAMMER_FST_IDLE;
270 record->ip = ip;
271 record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
272 record->leaf.data_len = data_len;
273 hammer_ref(&record->lock);
275 if (data_len) {
276 record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO);
277 record->flags |= HAMMER_RECF_ALLOCDATA;
278 ++hammer_count_record_datas;
281 return (record);
284 void
285 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
287 while (record->flush_state == HAMMER_FST_FLUSH) {
288 record->flags |= HAMMER_RECF_WANTED;
289 tsleep(record, 0, ident, 0);
294 * Called from the backend, hammer_inode.c, after a record has been
295 * flushed to disk. The record has been exclusively locked by the
296 * caller and interlocked with BE.
298 * We clean up the state, unlock, and release the record (the record
299 * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
301 void
302 hammer_flush_record_done(hammer_record_t record, int error)
304 hammer_inode_t target_ip;
306 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
307 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
310 * If an error occured, the backend was unable to sync the
311 * record to its media. Leave the record intact.
313 if (error) {
314 hammer_critical_error(record->ip->hmp, record->ip, error,
315 "while flushing record");
318 --record->flush_group->refs;
319 record->flush_group = NULL;
322 * Adjust the flush state and dependancy based on success or
323 * failure.
325 if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
326 if ((target_ip = record->target_ip) != NULL) {
327 TAILQ_REMOVE(&target_ip->target_list, record,
328 target_entry);
329 record->target_ip = NULL;
330 hammer_test_inode(target_ip);
332 record->flush_state = HAMMER_FST_IDLE;
333 } else {
334 if (record->target_ip) {
335 record->flush_state = HAMMER_FST_SETUP;
336 hammer_test_inode(record->ip);
337 hammer_test_inode(record->target_ip);
338 } else {
339 record->flush_state = HAMMER_FST_IDLE;
342 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
345 * Cleanup
347 if (record->flags & HAMMER_RECF_WANTED) {
348 record->flags &= ~HAMMER_RECF_WANTED;
349 wakeup(record);
351 hammer_rel_mem_record(record);
355 * Release a memory record. Records marked for deletion are immediately
356 * removed from the RB-Tree but otherwise left intact until the last ref
357 * goes away.
359 void
360 hammer_rel_mem_record(struct hammer_record *record)
362 hammer_mount_t hmp;
363 hammer_reserve_t resv;
364 hammer_inode_t ip;
365 hammer_inode_t target_ip;
367 hammer_unref(&record->lock);
369 if (record->lock.refs == 0) {
371 * Upon release of the last reference wakeup any waiters.
372 * The record structure may get destroyed so callers will
373 * loop up and do a relookup.
375 * WARNING! Record must be removed from RB-TREE before we
376 * might possibly block. hammer_test_inode() can block!
378 ip = record->ip;
379 hmp = ip->hmp;
382 * Upon release of the last reference a record marked deleted
383 * by the front or backend, or committed by the backend,
384 * is destroyed.
386 if (record->flags & (HAMMER_RECF_DELETED_FE |
387 HAMMER_RECF_DELETED_BE |
388 HAMMER_RECF_COMMITTED)) {
389 KKASSERT(ip->lock.refs > 0);
390 KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
393 * target_ip may have zero refs, we have to ref it
394 * to prevent it from being ripped out from under
395 * us.
397 if ((target_ip = record->target_ip) != NULL) {
398 TAILQ_REMOVE(&target_ip->target_list,
399 record, target_entry);
400 record->target_ip = NULL;
401 hammer_ref(&target_ip->lock);
404 if (record->flags & HAMMER_RECF_ONRBTREE) {
405 RB_REMOVE(hammer_rec_rb_tree,
406 &record->ip->rec_tree,
407 record);
408 KKASSERT(ip->rsv_recs > 0);
409 --hmp->rsv_recs;
410 --ip->rsv_recs;
411 hmp->rsv_databytes -= record->leaf.data_len;
412 record->flags &= ~HAMMER_RECF_ONRBTREE;
414 if (RB_EMPTY(&record->ip->rec_tree)) {
415 record->ip->flags &= ~HAMMER_INODE_XDIRTY;
416 record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
417 hammer_test_inode(record->ip);
422 * We must wait for any direct-IO to complete before
423 * we can destroy the record because the bio may
424 * have a reference to it.
426 if (record->flags &
427 (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) {
428 hammer_io_direct_wait(record);
433 * Do this test after removing record from the B-Tree.
435 if (target_ip) {
436 hammer_test_inode(target_ip);
437 hammer_rel_inode(target_ip, 0);
440 if (record->flags & HAMMER_RECF_ALLOCDATA) {
441 --hammer_count_record_datas;
442 kfree(record->data, hmp->m_misc);
443 record->flags &= ~HAMMER_RECF_ALLOCDATA;
447 * Release the reservation.
449 * If the record was not committed we can theoretically
450 * undo the reservation. However, doing so might
451 * create weird edge cases with the ordering of
452 * direct writes because the related buffer cache
453 * elements are per-vnode. So we don't try.
455 if ((resv = record->resv) != NULL) {
456 /* XXX undo leaf.data_offset,leaf.data_len */
457 hammer_blockmap_reserve_complete(hmp, resv);
458 record->resv = NULL;
460 record->data = NULL;
461 --hammer_count_records;
462 kfree(record, hmp->m_misc);
468 * Record visibility depends on whether the record is being accessed by
469 * the backend or the frontend. Backend tests ignore the frontend delete
470 * flag. Frontend tests do NOT ignore the backend delete/commit flags and
471 * must also check for commit races.
473 * Return non-zero if the record is visible, zero if it isn't or if it is
474 * deleted. Returns 0 if the record has been comitted (unless the special
475 * delete-visibility flag is set). A committed record must be located
476 * via the media B-Tree. Returns non-zero if the record is good.
478 * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory
479 * records to be returned. This is so pending deletions are detected
480 * when using an iterator to locate an unused hash key, or when we need
481 * to locate historical records on-disk to destroy.
483 static __inline
485 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
487 if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY)
488 return(1);
489 if (cursor->flags & HAMMER_CURSOR_BACKEND) {
490 if (record->flags & (HAMMER_RECF_DELETED_BE |
491 HAMMER_RECF_COMMITTED)) {
492 return(0);
494 } else {
495 if (record->flags & (HAMMER_RECF_DELETED_FE |
496 HAMMER_RECF_DELETED_BE |
497 HAMMER_RECF_COMMITTED)) {
498 return(0);
501 return(1);
505 * This callback is used as part of the RB_SCAN function for in-memory
506 * records. We terminate it (return -1) as soon as we get a match.
508 * This routine is used by frontend code.
510 * The primary compare code does not account for ASOF lookups. This
511 * code handles that case as well as a few others.
513 static
515 hammer_rec_scan_callback(hammer_record_t rec, void *data)
517 hammer_cursor_t cursor = data;
520 * We terminate on success, so this should be NULL on entry.
522 KKASSERT(cursor->iprec == NULL);
525 * Skip if the record was marked deleted or committed.
527 if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
528 return(0);
531 * Skip if not visible due to our as-of TID
533 if (cursor->flags & HAMMER_CURSOR_ASOF) {
534 if (cursor->asof < rec->leaf.base.create_tid)
535 return(0);
536 if (rec->leaf.base.delete_tid &&
537 cursor->asof >= rec->leaf.base.delete_tid) {
538 return(0);
543 * ref the record. The record is protected from backend B-Tree
544 * interactions by virtue of the cursor's IP lock.
546 hammer_ref(&rec->lock);
549 * The record may have been deleted or committed while we
550 * were blocked. XXX remove?
552 if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
553 hammer_rel_mem_record(rec);
554 return(0);
558 * Set the matching record and stop the scan.
560 cursor->iprec = rec;
561 return(-1);
566 * Lookup an in-memory record given the key specified in the cursor. Works
567 * just like hammer_btree_lookup() but operates on an inode's in-memory
568 * record list.
570 * The lookup must fail if the record is marked for deferred deletion.
572 * The API for mem/btree_lookup() does not mess with the ATE/EOF bits.
574 static
576 hammer_mem_lookup(hammer_cursor_t cursor)
578 KKASSERT(cursor->ip);
579 if (cursor->iprec) {
580 hammer_rel_mem_record(cursor->iprec);
581 cursor->iprec = NULL;
583 hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
584 hammer_rec_scan_callback, cursor);
586 return (cursor->iprec ? 0 : ENOENT);
590 * hammer_mem_first() - locate the first in-memory record matching the
591 * cursor within the bounds of the key range.
593 * WARNING! API is slightly different from btree_first(). hammer_mem_first()
594 * will set ATEMEM the same as MEMEOF, and does not return any error.
596 static
597 void
598 hammer_mem_first(hammer_cursor_t cursor)
600 hammer_inode_t ip;
602 ip = cursor->ip;
603 KKASSERT(ip != NULL);
605 if (cursor->iprec) {
606 hammer_rel_mem_record(cursor->iprec);
607 cursor->iprec = NULL;
609 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
610 hammer_rec_scan_callback, cursor);
612 if (cursor->iprec)
613 cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM);
614 else
615 cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM;
618 /************************************************************************
619 * HAMMER IN-MEMORY RECORD FUNCTIONS *
620 ************************************************************************
622 * These functions manipulate in-memory records. Such records typically
623 * exist prior to being committed to disk or indexed via the on-disk B-Tree.
627 * Add a directory entry (dip,ncp) which references inode (ip).
629 * Note that the low 32 bits of the namekey are set temporarily to create
630 * a unique in-memory record, and may be modified a second time when the
631 * record is synchronized to disk. In particular, the low 32 bits cannot be
632 * all 0's when synching to disk, which is not handled here.
634 * NOTE: bytes does not include any terminating \0 on name, and name might
635 * not be terminated.
638 hammer_ip_add_directory(struct hammer_transaction *trans,
639 struct hammer_inode *dip, const char *name, int bytes,
640 struct hammer_inode *ip)
642 struct hammer_cursor cursor;
643 hammer_record_t record;
644 int error;
645 u_int32_t max_iterations;
647 record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
649 record->type = HAMMER_MEM_RECORD_ADD;
650 record->leaf.base.localization = dip->obj_localization +
651 hammer_dir_localization(dip);
652 record->leaf.base.obj_id = dip->obj_id;
653 record->leaf.base.key = hammer_directory_namekey(dip, name, bytes,
654 &max_iterations);
655 record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
656 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
657 record->data->entry.obj_id = ip->obj_id;
658 record->data->entry.localization = ip->obj_localization;
659 bcopy(name, record->data->entry.name, bytes);
661 ++ip->ino_data.nlinks;
662 ip->ino_data.ctime = trans->time;
663 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
666 * Find an unused namekey. Both the in-memory record tree and
667 * the B-Tree are checked. We do not want historically deleted
668 * names to create a collision as our iteration space may be limited,
669 * and since create_tid wouldn't match anyway an ASOF search
670 * must be used to locate collisions.
672 * delete-visibility is set so pending deletions do not give us
673 * a false-negative on our ability to use an iterator.
675 * The iterator must not rollover the key. Directory keys only
676 * use the positive key space.
678 hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
679 cursor.key_beg = record->leaf.base;
680 cursor.flags |= HAMMER_CURSOR_ASOF;
681 cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
682 cursor.asof = ip->obj_asof;
684 while (hammer_ip_lookup(&cursor) == 0) {
685 ++record->leaf.base.key;
686 KKASSERT(record->leaf.base.key > 0);
687 cursor.key_beg.key = record->leaf.base.key;
688 if (--max_iterations == 0) {
689 hammer_rel_mem_record(record);
690 error = ENOSPC;
691 goto failed;
696 * The target inode and the directory entry are bound together.
698 record->target_ip = ip;
699 record->flush_state = HAMMER_FST_SETUP;
700 TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
703 * The inode now has a dependancy and must be taken out of the idle
704 * state. An inode not in an idle state is given an extra reference.
706 * When transitioning to a SETUP state flag for an automatic reflush
707 * when the dependancies are disposed of if someone is waiting on
708 * the inode.
710 if (ip->flush_state == HAMMER_FST_IDLE) {
711 hammer_ref(&ip->lock);
712 ip->flush_state = HAMMER_FST_SETUP;
713 if (ip->flags & HAMMER_INODE_FLUSHW)
714 ip->flags |= HAMMER_INODE_REFLUSH;
716 error = hammer_mem_add(record);
717 if (error == 0) {
718 dip->ino_data.mtime = trans->time;
719 hammer_modify_inode(dip, HAMMER_INODE_MTIME);
721 failed:
722 hammer_done_cursor(&cursor);
723 return(error);
727 * Delete the directory entry and update the inode link count. The
728 * cursor must be seeked to the directory entry record being deleted.
730 * The related inode should be share-locked by the caller. The caller is
731 * on the frontend. It could also be NULL indicating that the directory
732 * entry being removed has no related inode.
734 * This function can return EDEADLK requiring the caller to terminate
735 * the cursor, any locks, wait on the returned record, and retry.
738 hammer_ip_del_directory(struct hammer_transaction *trans,
739 hammer_cursor_t cursor, struct hammer_inode *dip,
740 struct hammer_inode *ip)
742 hammer_record_t record;
743 int error;
745 if (hammer_cursor_inmem(cursor)) {
747 * In-memory (unsynchronized) records can simply be freed.
749 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
750 * by the backend, we must still avoid races against the
751 * backend potentially syncing the record to the media.
753 * We cannot call hammer_ip_delete_record(), that routine may
754 * only be called from the backend.
756 record = cursor->iprec;
757 if (record->flags & (HAMMER_RECF_INTERLOCK_BE |
758 HAMMER_RECF_DELETED_BE |
759 HAMMER_RECF_COMMITTED)) {
760 KKASSERT(cursor->deadlk_rec == NULL);
761 hammer_ref(&record->lock);
762 cursor->deadlk_rec = record;
763 error = EDEADLK;
764 } else {
765 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
766 record->flags |= HAMMER_RECF_DELETED_FE;
767 error = 0;
769 } else {
771 * If the record is on-disk we have to queue the deletion by
772 * the record's key. This also causes lookups to skip the
773 * record.
775 KKASSERT(dip->flags &
776 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
777 record = hammer_alloc_mem_record(dip, 0);
778 record->type = HAMMER_MEM_RECORD_DEL;
779 record->leaf.base = cursor->leaf->base;
782 * ip may be NULL, indicating the deletion of a directory
783 * entry which has no related inode.
785 record->target_ip = ip;
786 if (ip) {
787 record->flush_state = HAMMER_FST_SETUP;
788 TAILQ_INSERT_TAIL(&ip->target_list, record,
789 target_entry);
790 } else {
791 record->flush_state = HAMMER_FST_IDLE;
795 * The inode now has a dependancy and must be taken out of
796 * the idle state. An inode not in an idle state is given
797 * an extra reference.
799 * When transitioning to a SETUP state flag for an automatic
800 * reflush when the dependancies are disposed of if someone
801 * is waiting on the inode.
803 if (ip && ip->flush_state == HAMMER_FST_IDLE) {
804 hammer_ref(&ip->lock);
805 ip->flush_state = HAMMER_FST_SETUP;
806 if (ip->flags & HAMMER_INODE_FLUSHW)
807 ip->flags |= HAMMER_INODE_REFLUSH;
810 error = hammer_mem_add(record);
814 * One less link. The file may still be open in the OS even after
815 * all links have gone away.
817 * We have to terminate the cursor before syncing the inode to
818 * avoid deadlocking against ourselves. XXX this may no longer
819 * be true.
821 * If nlinks drops to zero and the vnode is inactive (or there is
822 * no vnode), call hammer_inode_unloadable_check() to zonk the
823 * inode. If we don't do this here the inode will not be destroyed
824 * on-media until we unmount.
826 if (error == 0) {
827 if (ip) {
828 --ip->ino_data.nlinks; /* do before we might block */
829 ip->ino_data.ctime = trans->time;
831 dip->ino_data.mtime = trans->time;
832 hammer_modify_inode(dip, HAMMER_INODE_MTIME);
833 if (ip) {
834 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
835 if (ip->ino_data.nlinks == 0 &&
836 (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
837 hammer_done_cursor(cursor);
838 hammer_inode_unloadable_check(ip, 1);
839 hammer_flush_inode(ip, 0);
844 return(error);
848 * Add a record to an inode.
850 * The caller must allocate the record with hammer_alloc_mem_record(ip) and
851 * initialize the following additional fields:
853 * The related inode should be share-locked by the caller. The caller is
854 * on the frontend.
856 * record->rec.entry.base.base.key
857 * record->rec.entry.base.base.rec_type
858 * record->rec.entry.base.base.data_len
859 * record->data (a copy will be kmalloc'd if it cannot be embedded)
862 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
864 hammer_inode_t ip = record->ip;
865 int error;
867 KKASSERT(record->leaf.base.localization != 0);
868 record->leaf.base.obj_id = ip->obj_id;
869 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
870 error = hammer_mem_add(record);
871 return(error);
875 * Locate a bulk record in-memory. Bulk records allow disk space to be
876 * reserved so the front-end can flush large data writes without having
877 * to queue the BIO to the flusher. Only the related record gets queued
878 * to the flusher.
881 static hammer_record_t
882 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes)
884 struct hammer_bulk_info info;
886 bzero(&info, sizeof(info));
887 info.leaf.base.obj_id = ip->obj_id;
888 info.leaf.base.key = file_offset + bytes;
889 info.leaf.base.create_tid = 0;
890 info.leaf.base.delete_tid = 0;
891 info.leaf.base.rec_type = HAMMER_RECTYPE_DATA;
892 info.leaf.base.obj_type = 0; /* unused */
893 info.leaf.base.btype = HAMMER_BTREE_TYPE_RECORD; /* unused */
894 info.leaf.base.localization = ip->obj_localization + /* unused */
895 HAMMER_LOCALIZE_MISC;
896 info.leaf.data_len = bytes;
898 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp,
899 hammer_bulk_scan_callback, &info);
901 return(info.record); /* may be NULL */
905 * Take records vetted by overlap_cmp. The first non-deleted record
906 * (if any) stops the scan.
908 static int
909 hammer_bulk_scan_callback(hammer_record_t record, void *data)
911 struct hammer_bulk_info *info = data;
913 if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
914 HAMMER_RECF_COMMITTED)) {
915 return(0);
917 hammer_ref(&record->lock);
918 info->record = record;
919 return(-1); /* stop scan */
923 * Reserve blockmap space placemarked with an in-memory record.
925 * This routine is called by the frontend in order to be able to directly
926 * flush a buffer cache buffer. The frontend has locked the related buffer
927 * cache buffers and we should be able to manipulate any overlapping
928 * in-memory records.
930 * The caller is responsible for adding the returned record.
932 hammer_record_t
933 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
934 int *errorp)
936 hammer_record_t record;
937 hammer_record_t conflict;
938 int zone;
941 * Deal with conflicting in-memory records. We cannot have multiple
942 * in-memory records for the same base offset without seriously
943 * confusing the backend, including but not limited to the backend
944 * issuing delete-create-delete or create-delete-create sequences
945 * and asserting on the delete_tid being the same as the create_tid.
947 * If we encounter a record with the backend interlock set we cannot
948 * immediately delete it without confusing the backend.
950 while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) {
951 if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) {
952 conflict->flags |= HAMMER_RECF_WANTED;
953 tsleep(conflict, 0, "hmrrc3", 0);
954 } else {
955 conflict->flags |= HAMMER_RECF_DELETED_FE;
957 hammer_rel_mem_record(conflict);
961 * Create a record to cover the direct write. This is called with
962 * the related BIO locked so there should be no possible conflict.
964 * The backend is responsible for finalizing the space reserved in
965 * this record.
967 * XXX bytes not aligned, depend on the reservation code to
968 * align the reservation.
970 record = hammer_alloc_mem_record(ip, 0);
971 zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
972 HAMMER_ZONE_SMALL_DATA_INDEX;
973 record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
974 &record->leaf.data_offset,
975 errorp);
976 if (record->resv == NULL) {
977 kprintf("hammer_ip_add_bulk: reservation failed\n");
978 hammer_rel_mem_record(record);
979 return(NULL);
981 record->type = HAMMER_MEM_RECORD_DATA;
982 record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
983 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
984 record->leaf.base.obj_id = ip->obj_id;
985 record->leaf.base.key = file_offset + bytes;
986 record->leaf.base.localization = ip->obj_localization +
987 HAMMER_LOCALIZE_MISC;
988 record->leaf.data_len = bytes;
989 hammer_crc_set_leaf(data, &record->leaf);
990 KKASSERT(*errorp == 0);
991 return(record);
995 * Frontend truncation code. Scan in-memory records only. On-disk records
996 * and records in a flushing state are handled by the backend. The vnops
997 * setattr code will handle the block containing the truncation point.
999 * Partial blocks are not deleted.
1002 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
1004 struct rec_trunc_info info;
1006 switch(ip->ino_data.obj_type) {
1007 case HAMMER_OBJTYPE_REGFILE:
1008 info.rec_type = HAMMER_RECTYPE_DATA;
1009 break;
1010 case HAMMER_OBJTYPE_DBFILE:
1011 info.rec_type = HAMMER_RECTYPE_DB;
1012 break;
1013 default:
1014 return(EINVAL);
1016 info.trunc_off = file_size;
1017 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
1018 hammer_frontend_trunc_callback, &info);
1019 return(0);
1022 static int
1023 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
1025 if (record->flags & HAMMER_RECF_DELETED_FE)
1026 return(0);
1027 if (record->flush_state == HAMMER_FST_FLUSH)
1028 return(0);
1029 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1030 hammer_ref(&record->lock);
1031 record->flags |= HAMMER_RECF_DELETED_FE;
1032 hammer_rel_mem_record(record);
1033 return(0);
1037 * Return 1 if the caller must check for and delete existing records
1038 * before writing out a new data record.
1040 * Return 0 if the caller can just insert the record into the B-Tree without
1041 * checking.
1043 static int
1044 hammer_record_needs_overwrite_delete(hammer_record_t record)
1046 hammer_inode_t ip = record->ip;
1047 int64_t file_offset;
1048 int r;
1050 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
1051 file_offset = record->leaf.base.key;
1052 else
1053 file_offset = record->leaf.base.key - record->leaf.data_len;
1054 r = (file_offset < ip->save_trunc_off);
1055 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1056 if (ip->save_trunc_off <= record->leaf.base.key)
1057 ip->save_trunc_off = record->leaf.base.key + 1;
1058 } else {
1059 if (ip->save_trunc_off < record->leaf.base.key)
1060 ip->save_trunc_off = record->leaf.base.key;
1062 return(r);
1066 * Backend code. Sync a record to the media.
1069 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
1071 hammer_transaction_t trans = cursor->trans;
1072 int64_t file_offset;
1073 int bytes;
1074 void *bdata;
1075 int error;
1076 int doprop;
1078 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1079 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
1080 KKASSERT(record->leaf.base.localization != 0);
1083 * Any direct-write related to the record must complete before we
1084 * can sync the record to the on-disk media.
1086 if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL))
1087 hammer_io_direct_wait(record);
1090 * If this is a bulk-data record placemarker there may be an existing
1091 * record on-disk, indicating a data overwrite. If there is the
1092 * on-disk record must be deleted before we can insert our new record.
1094 * We've synthesized this record and do not know what the create_tid
1095 * on-disk is, nor how much data it represents.
1097 * Keep in mind that (key) for data records is (base_offset + len),
1098 * not (base_offset). Also, we only want to get rid of on-disk
1099 * records since we are trying to sync our in-memory record, call
1100 * hammer_ip_delete_range() with truncating set to 1 to make sure
1101 * it skips in-memory records.
1103 * It is ok for the lookup to return ENOENT.
1105 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1106 * to call hammer_ip_delete_range() or not. This also means we must
1107 * update sync_trunc_off() as we write.
1109 if (record->type == HAMMER_MEM_RECORD_DATA &&
1110 hammer_record_needs_overwrite_delete(record)) {
1111 file_offset = record->leaf.base.key - record->leaf.data_len;
1112 bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1113 ~HAMMER_BUFMASK;
1114 KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1115 error = hammer_ip_delete_range(
1116 cursor, record->ip,
1117 file_offset, file_offset + bytes - 1,
1119 if (error && error != ENOENT)
1120 goto done;
1124 * If this is a general record there may be an on-disk version
1125 * that must be deleted before we can insert the new record.
1127 if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1128 error = hammer_delete_general(cursor, record->ip,
1129 &record->leaf);
1130 if (error && error != ENOENT)
1131 goto done;
1135 * Setup the cursor.
1137 hammer_normalize_cursor(cursor);
1138 cursor->key_beg = record->leaf.base;
1139 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1140 cursor->flags |= HAMMER_CURSOR_BACKEND;
1141 cursor->flags &= ~HAMMER_CURSOR_INSERT;
1144 * Records can wind up on-media before the inode itself is on-media.
1145 * Flag the case.
1147 record->ip->flags |= HAMMER_INODE_DONDISK;
1150 * If we are deleting a directory entry an exact match must be
1151 * found on-disk.
1153 if (record->type == HAMMER_MEM_RECORD_DEL) {
1154 error = hammer_btree_lookup(cursor);
1155 if (error == 0) {
1156 KKASSERT(cursor->iprec == NULL);
1157 error = hammer_ip_delete_record(cursor, record->ip,
1158 trans->tid);
1159 if (error == 0) {
1160 record->flags |= HAMMER_RECF_DELETED_BE |
1161 HAMMER_RECF_COMMITTED;
1162 ++record->ip->rec_generation;
1165 goto done;
1169 * We are inserting.
1171 * Issue a lookup to position the cursor and locate the insertion
1172 * point. The target key should not exist. If we are creating a
1173 * directory entry we may have to iterate the low 32 bits of the
1174 * key to find an unused key.
1176 hammer_sync_lock_sh(trans);
1177 cursor->flags |= HAMMER_CURSOR_INSERT;
1178 error = hammer_btree_lookup(cursor);
1179 if (hammer_debug_inode)
1180 kprintf("DOINSERT LOOKUP %d\n", error);
1181 if (error == 0) {
1182 kprintf("hammer_ip_sync_record: duplicate rec "
1183 "at (%016llx)\n", (long long)record->leaf.base.key);
1184 Debugger("duplicate record1");
1185 error = EIO;
1187 #if 0
1188 if (record->type == HAMMER_MEM_RECORD_DATA)
1189 kprintf("sync_record %016llx ---------------- %016llx %d\n",
1190 record->leaf.base.key - record->leaf.data_len,
1191 record->leaf.data_offset, error);
1192 #endif
1194 if (error != ENOENT)
1195 goto done_unlock;
1198 * Allocate the record and data. The result buffers will be
1199 * marked as being modified and further calls to
1200 * hammer_modify_buffer() will result in unneeded UNDO records.
1202 * Support zero-fill records (data == NULL and data_len != 0)
1204 if (record->type == HAMMER_MEM_RECORD_DATA) {
1206 * The data portion of a bulk-data record has already been
1207 * committed to disk, we need only adjust the layer2
1208 * statistics in the same transaction as our B-Tree insert.
1210 KKASSERT(record->leaf.data_offset != 0);
1211 error = hammer_blockmap_finalize(trans,
1212 record->resv,
1213 record->leaf.data_offset,
1214 record->leaf.data_len);
1215 } else if (record->data && record->leaf.data_len) {
1217 * Wholely cached record, with data. Allocate the data.
1219 bdata = hammer_alloc_data(trans, record->leaf.data_len,
1220 record->leaf.base.rec_type,
1221 &record->leaf.data_offset,
1222 &cursor->data_buffer,
1223 0, &error);
1224 if (bdata == NULL)
1225 goto done_unlock;
1226 hammer_crc_set_leaf(record->data, &record->leaf);
1227 hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1228 bcopy(record->data, bdata, record->leaf.data_len);
1229 hammer_modify_buffer_done(cursor->data_buffer);
1230 } else {
1232 * Wholely cached record, without data.
1234 record->leaf.data_offset = 0;
1235 record->leaf.data_crc = 0;
1238 error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1239 if (hammer_debug_inode && error) {
1240 kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n",
1241 error,
1242 (long long)cursor->node->node_offset,
1243 cursor->index,
1244 (long long)record->leaf.base.key);
1248 * Our record is on-disk and we normally mark the in-memory version
1249 * as having been committed (and not BE-deleted).
1251 * If the record represented a directory deletion but we had to
1252 * sync a valid directory entry to disk due to dependancies,
1253 * we must convert the record to a covering delete so the
1254 * frontend does not have visibility on the synced entry.
1256 if (error == 0) {
1257 if (doprop) {
1258 hammer_btree_do_propagation(cursor,
1259 record->ip->pfsm,
1260 &record->leaf);
1262 if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1264 * Must convert deleted directory entry add
1265 * to a directory entry delete.
1267 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1268 record->flags &= ~HAMMER_RECF_DELETED_FE;
1269 record->type = HAMMER_MEM_RECORD_DEL;
1270 KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1271 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1272 KKASSERT((record->flags & (HAMMER_RECF_COMMITTED |
1273 HAMMER_RECF_DELETED_BE)) == 0);
1274 /* converted record is not yet committed */
1275 /* hammer_flush_record_done takes care of the rest */
1276 } else {
1278 * Everything went fine and we are now done with
1279 * this record.
1281 record->flags |= HAMMER_RECF_COMMITTED;
1282 ++record->ip->rec_generation;
1284 } else {
1285 if (record->leaf.data_offset) {
1286 hammer_blockmap_free(trans, record->leaf.data_offset,
1287 record->leaf.data_len);
1290 done_unlock:
1291 hammer_sync_unlock(trans);
1292 done:
1293 return(error);
1297 * Add the record to the inode's rec_tree. The low 32 bits of a directory
1298 * entry's key is used to deal with hash collisions in the upper 32 bits.
1299 * A unique 64 bit key is generated in-memory and may be regenerated a
1300 * second time when the directory record is flushed to the on-disk B-Tree.
1302 * A referenced record is passed to this function. This function
1303 * eats the reference. If an error occurs the record will be deleted.
1305 * A copy of the temporary record->data pointer provided by the caller
1306 * will be made.
1309 hammer_mem_add(hammer_record_t record)
1311 hammer_mount_t hmp = record->ip->hmp;
1314 * Make a private copy of record->data
1316 if (record->data)
1317 KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1320 * Insert into the RB tree. A unique key should have already
1321 * been selected if this is a directory entry.
1323 if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1324 record->flags |= HAMMER_RECF_DELETED_FE;
1325 hammer_rel_mem_record(record);
1326 return (EEXIST);
1328 ++hmp->count_newrecords;
1329 ++hmp->rsv_recs;
1330 ++record->ip->rsv_recs;
1331 record->ip->hmp->rsv_databytes += record->leaf.data_len;
1332 record->flags |= HAMMER_RECF_ONRBTREE;
1333 hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY);
1334 hammer_rel_mem_record(record);
1335 return(0);
1338 /************************************************************************
1339 * HAMMER INODE MERGED-RECORD FUNCTIONS *
1340 ************************************************************************
1342 * These functions augment the B-Tree scanning functions in hammer_btree.c
1343 * by merging in-memory records with on-disk records.
1347 * Locate a particular record either in-memory or on-disk.
1349 * NOTE: This is basically a standalone routine, hammer_ip_next() may
1350 * NOT be called to iterate results.
1353 hammer_ip_lookup(hammer_cursor_t cursor)
1355 int error;
1358 * If the element is in-memory return it without searching the
1359 * on-disk B-Tree
1361 KKASSERT(cursor->ip);
1362 error = hammer_mem_lookup(cursor);
1363 if (error == 0) {
1364 cursor->leaf = &cursor->iprec->leaf;
1365 return(error);
1367 if (error != ENOENT)
1368 return(error);
1371 * If the inode has on-disk components search the on-disk B-Tree.
1373 if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1374 return(error);
1375 error = hammer_btree_lookup(cursor);
1376 if (error == 0)
1377 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1378 return(error);
1382 * Helper for hammer_ip_first()/hammer_ip_next()
1384 * NOTE: Both ATEDISK and DISKEOF will be set the same. This sets up
1385 * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek
1386 * state if hammer_ip_next() needs to re-seek.
1388 static __inline
1390 _hammer_ip_seek_btree(hammer_cursor_t cursor)
1392 hammer_inode_t ip = cursor->ip;
1393 int error;
1395 if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1396 error = hammer_btree_lookup(cursor);
1397 if (error == ENOENT || error == EDEADLK) {
1398 if (hammer_debug_general & 0x2000) {
1399 kprintf("error %d node %p %016llx index %d\n",
1400 error, cursor->node,
1401 (long long)cursor->node->node_offset,
1402 cursor->index);
1404 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1405 error = hammer_btree_iterate(cursor);
1407 if (error == 0) {
1408 cursor->flags &= ~(HAMMER_CURSOR_DISKEOF |
1409 HAMMER_CURSOR_ATEDISK);
1410 } else {
1411 cursor->flags |= HAMMER_CURSOR_DISKEOF |
1412 HAMMER_CURSOR_ATEDISK;
1413 if (error == ENOENT)
1414 error = 0;
1416 } else {
1417 cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK;
1418 error = 0;
1420 return(error);
1424 * Helper for hammer_ip_next()
1426 * The caller has determined that the media cursor is further along than the
1427 * memory cursor and must be reseeked after a generation number change.
1429 static
1431 _hammer_ip_reseek(hammer_cursor_t cursor)
1433 struct hammer_base_elm save;
1434 hammer_btree_elm_t elm;
1435 int error;
1436 int r;
1437 int again = 0;
1440 * Do the re-seek.
1442 kprintf("HAMMER: Debug: re-seeked during scan @ino=%016llx\n",
1443 (long long)cursor->ip->obj_id);
1444 save = cursor->key_beg;
1445 cursor->key_beg = cursor->iprec->leaf.base;
1446 error = _hammer_ip_seek_btree(cursor);
1447 KKASSERT(error == 0);
1448 cursor->key_beg = save;
1451 * If the memory record was previous returned to
1452 * the caller and the media record matches
1453 * (-1/+1: only create_tid differs), then iterate
1454 * the media record to avoid a double result.
1456 if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 &&
1457 (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) {
1458 elm = &cursor->node->ondisk->elms[cursor->index];
1459 r = hammer_btree_cmp(&elm->base,
1460 &cursor->iprec->leaf.base);
1461 if (cursor->flags & HAMMER_CURSOR_ASOF) {
1462 if (r >= -1 && r <= 1) {
1463 kprintf("HAMMER: Debug: iterated after "
1464 "re-seek (asof r=%d)\n", r);
1465 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1466 again = 1;
1468 } else {
1469 if (r == 0) {
1470 kprintf("HAMMER: Debug: iterated after "
1471 "re-seek\n");
1472 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1473 again = 1;
1477 return(again);
1481 * Locate the first record within the cursor's key_beg/key_end range,
1482 * restricted to a particular inode. 0 is returned on success, ENOENT
1483 * if no records matched the requested range, or some other error.
1485 * When 0 is returned hammer_ip_next() may be used to iterate additional
1486 * records within the requested range.
1488 * This function can return EDEADLK, requiring the caller to terminate
1489 * the cursor and try again.
1493 hammer_ip_first(hammer_cursor_t cursor)
1495 hammer_inode_t ip = cursor->ip;
1496 int error;
1498 KKASSERT(ip != NULL);
1501 * Clean up fields and setup for merged scan
1503 cursor->flags &= ~HAMMER_CURSOR_RETEST;
1506 * Search the in-memory record list (Red-Black tree). Unlike the
1507 * B-Tree search, mem_first checks for records in the range.
1509 * This function will setup both ATEMEM and MEMEOF properly for
1510 * the ip iteration. ATEMEM will be set if MEMEOF is set.
1512 hammer_mem_first(cursor);
1515 * Detect generation changes during blockages, including
1516 * blockages which occur on the initial btree search.
1518 cursor->rec_generation = cursor->ip->rec_generation;
1521 * Initial search and result
1523 error = _hammer_ip_seek_btree(cursor);
1524 if (error == 0)
1525 error = hammer_ip_next(cursor);
1527 return (error);
1531 * Retrieve the next record in a merged iteration within the bounds of the
1532 * cursor. This call may be made multiple times after the cursor has been
1533 * initially searched with hammer_ip_first().
1535 * There are numerous special cases in this code to deal with races between
1536 * in-memory records and on-media records.
1538 * 0 is returned on success, ENOENT if no further records match the
1539 * requested range, or some other error code is returned.
1542 hammer_ip_next(hammer_cursor_t cursor)
1544 hammer_btree_elm_t elm;
1545 hammer_record_t rec;
1546 hammer_record_t tmprec;
1547 int error;
1548 int r;
1550 again:
1552 * Get the next on-disk record
1554 * NOTE: If we deleted the last on-disk record we had scanned
1555 * ATEDISK will be clear and RETEST will be set, forcing
1556 * a call to iterate. The fact that ATEDISK is clear causes
1557 * iterate to re-test the 'current' element. If ATEDISK is
1558 * set, iterate will skip the 'current' element.
1560 error = 0;
1561 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1562 if (cursor->flags & (HAMMER_CURSOR_ATEDISK |
1563 HAMMER_CURSOR_RETEST)) {
1564 error = hammer_btree_iterate(cursor);
1565 cursor->flags &= ~HAMMER_CURSOR_RETEST;
1566 if (error == 0) {
1567 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1568 hammer_cache_node(&cursor->ip->cache[1],
1569 cursor->node);
1570 } else if (error == ENOENT) {
1571 cursor->flags |= HAMMER_CURSOR_DISKEOF |
1572 HAMMER_CURSOR_ATEDISK;
1573 error = 0;
1579 * If the generation changed the backend has deleted or committed
1580 * one or more memory records since our last check.
1582 * When this case occurs if the disk cursor is > current memory record
1583 * or the disk cursor is at EOF, we must re-seek the disk-cursor.
1584 * Since the cursor is ahead it must have not yet been eaten (if
1585 * not at eof anyway). (XXX data offset case?)
1587 * NOTE: we are not doing a full check here. That will be handled
1588 * later on.
1590 * If we have exhausted all memory records we do not have to do any
1591 * further seeks.
1593 while (cursor->rec_generation != cursor->ip->rec_generation &&
1594 error == 0
1596 kprintf("HAMMER: Debug: generation changed during scan @ino=%016llx\n", (long long)cursor->ip->obj_id);
1597 cursor->rec_generation = cursor->ip->rec_generation;
1598 if (cursor->flags & HAMMER_CURSOR_MEMEOF)
1599 break;
1600 if (cursor->flags & HAMMER_CURSOR_DISKEOF) {
1601 r = 1;
1602 } else {
1603 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0);
1604 elm = &cursor->node->ondisk->elms[cursor->index];
1605 r = hammer_btree_cmp(&elm->base,
1606 &cursor->iprec->leaf.base);
1610 * Do we re-seek the media cursor?
1612 if (r > 0) {
1613 if (_hammer_ip_reseek(cursor))
1614 goto again;
1619 * We can now safely get the next in-memory record. We cannot
1620 * block here.
1622 * hammer_rec_scan_cmp: Is the record still in our general range,
1623 * (non-inclusive of snapshot exclusions)?
1624 * hammer_rec_scan_callback: Is the record in our snapshot?
1626 tmprec = NULL;
1627 if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1629 * If the current memory record was eaten then get the next
1630 * one. Stale records are skipped.
1632 if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1633 tmprec = cursor->iprec;
1634 cursor->iprec = NULL;
1635 rec = hammer_rec_rb_tree_RB_NEXT(tmprec);
1636 while (rec) {
1637 if (hammer_rec_scan_cmp(rec, cursor) != 0)
1638 break;
1639 if (hammer_rec_scan_callback(rec, cursor) != 0)
1640 break;
1641 rec = hammer_rec_rb_tree_RB_NEXT(rec);
1643 if (cursor->iprec) {
1644 KKASSERT(cursor->iprec == rec);
1645 cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1646 } else {
1647 cursor->flags |= HAMMER_CURSOR_MEMEOF;
1649 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1654 * MEMORY RECORD VALIDITY TEST
1656 * (We still can't block, which is why tmprec is being held so
1657 * long).
1659 * If the memory record is no longer valid we skip it. It may
1660 * have been deleted by the frontend. If it was deleted or
1661 * committed by the backend the generation change re-seeked the
1662 * disk cursor and the record will be present there.
1664 if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1665 KKASSERT(cursor->iprec);
1666 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0);
1667 if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) {
1668 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1669 if (tmprec)
1670 hammer_rel_mem_record(tmprec);
1671 goto again;
1674 if (tmprec)
1675 hammer_rel_mem_record(tmprec);
1678 * Extract either the disk or memory record depending on their
1679 * relative position.
1681 error = 0;
1682 switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1683 case 0:
1685 * Both entries valid. Compare the entries and nominally
1686 * return the first one in the sort order. Numerous cases
1687 * require special attention, however.
1689 elm = &cursor->node->ondisk->elms[cursor->index];
1690 r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1693 * If the two entries differ only by their key (-2/2) or
1694 * create_tid (-1/1), and are DATA records, we may have a
1695 * nominal match. We have to calculate the base file
1696 * offset of the data.
1698 if (r <= 2 && r >= -2 && r != 0 &&
1699 cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1700 cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1701 int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1702 int64_t base2 = cursor->iprec->leaf.base.key -
1703 cursor->iprec->leaf.data_len;
1704 if (base1 == base2)
1705 r = 0;
1708 if (r < 0) {
1709 error = hammer_btree_extract(cursor,
1710 HAMMER_CURSOR_GET_LEAF);
1711 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1712 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1713 break;
1717 * If the entries match exactly the memory entry is either
1718 * an on-disk directory entry deletion or a bulk data
1719 * overwrite. If it is a directory entry deletion we eat
1720 * both entries.
1722 * For the bulk-data overwrite case it is possible to have
1723 * visibility into both, which simply means the syncer
1724 * hasn't gotten around to doing the delete+insert sequence
1725 * on the B-Tree. Use the memory entry and throw away the
1726 * on-disk entry.
1728 * If the in-memory record is not either of these we
1729 * probably caught the syncer while it was syncing it to
1730 * the media. Since we hold a shared lock on the cursor,
1731 * the in-memory record had better be marked deleted at
1732 * this point.
1734 if (r == 0) {
1735 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1736 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1737 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1738 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1739 goto again;
1741 } else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1742 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1743 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1745 /* fall through to memory entry */
1746 } else {
1747 panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags);
1748 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1749 goto again;
1752 /* fall through to the memory entry */
1753 case HAMMER_CURSOR_ATEDISK:
1755 * Only the memory entry is valid.
1757 cursor->leaf = &cursor->iprec->leaf;
1758 cursor->flags |= HAMMER_CURSOR_ATEMEM;
1759 cursor->flags |= HAMMER_CURSOR_LASTWASMEM;
1762 * If the memory entry is an on-disk deletion we should have
1763 * also had found a B-Tree record. If the backend beat us
1764 * to it it would have interlocked the cursor and we should
1765 * have seen the in-memory record marked DELETED_FE.
1767 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1768 (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1769 panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags);
1771 break;
1772 case HAMMER_CURSOR_ATEMEM:
1774 * Only the disk entry is valid
1776 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1777 cursor->flags |= HAMMER_CURSOR_ATEDISK;
1778 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1779 break;
1780 default:
1782 * Neither entry is valid
1784 * XXX error not set properly
1786 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1787 cursor->leaf = NULL;
1788 error = ENOENT;
1789 break;
1791 return(error);
1795 * Resolve the cursor->data pointer for the current cursor position in
1796 * a merged iteration.
1799 hammer_ip_resolve_data(hammer_cursor_t cursor)
1801 hammer_record_t record;
1802 int error;
1804 if (hammer_cursor_inmem(cursor)) {
1806 * The data associated with an in-memory record is usually
1807 * kmalloced, but reserve-ahead data records will have an
1808 * on-disk reference.
1810 * NOTE: Reserve-ahead data records must be handled in the
1811 * context of the related high level buffer cache buffer
1812 * to interlock against async writes.
1814 record = cursor->iprec;
1815 cursor->data = record->data;
1816 error = 0;
1817 if (cursor->data == NULL) {
1818 KKASSERT(record->leaf.base.rec_type ==
1819 HAMMER_RECTYPE_DATA);
1820 cursor->data = hammer_bread_ext(cursor->trans->hmp,
1821 record->leaf.data_offset,
1822 record->leaf.data_len,
1823 &error,
1824 &cursor->data_buffer);
1826 } else {
1827 cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1828 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1830 return(error);
1834 * Backend truncation / record replacement - delete records in range.
1836 * Delete all records within the specified range for inode ip. In-memory
1837 * records still associated with the frontend are ignored.
1839 * If truncating is non-zero in-memory records associated with the back-end
1840 * are ignored. If truncating is > 1 we can return EWOULDBLOCK.
1842 * NOTES:
1844 * * An unaligned range will cause new records to be added to cover
1845 * the edge cases. (XXX not implemented yet).
1847 * * Replacement via reservations (see hammer_ip_sync_record_cursor())
1848 * also do not deal with unaligned ranges.
1850 * * ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1852 * * Record keys for regular file data have to be special-cased since
1853 * they indicate the end of the range (key = base + bytes).
1855 * * This function may be asked to delete ridiculously huge ranges, for
1856 * example if someone truncates or removes a 1TB regular file. We
1857 * must be very careful on restarts and we may have to stop w/
1858 * EWOULDBLOCK to avoid blowing out the buffer cache.
1861 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1862 int64_t ran_beg, int64_t ran_end, int truncating)
1864 hammer_transaction_t trans = cursor->trans;
1865 hammer_btree_leaf_elm_t leaf;
1866 int error;
1867 int64_t off;
1868 int64_t tmp64;
1870 #if 0
1871 kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1872 #endif
1874 KKASSERT(trans->type == HAMMER_TRANS_FLS);
1875 retry:
1876 hammer_normalize_cursor(cursor);
1877 cursor->key_beg.localization = ip->obj_localization +
1878 HAMMER_LOCALIZE_MISC;
1879 cursor->key_beg.obj_id = ip->obj_id;
1880 cursor->key_beg.create_tid = 0;
1881 cursor->key_beg.delete_tid = 0;
1882 cursor->key_beg.obj_type = 0;
1884 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1885 cursor->key_beg.key = ran_beg;
1886 cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1887 } else {
1889 * The key in the B-Tree is (base+bytes), so the first possible
1890 * matching key is ran_beg + 1.
1892 cursor->key_beg.key = ran_beg + 1;
1893 cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1896 cursor->key_end = cursor->key_beg;
1897 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1898 cursor->key_end.key = ran_end;
1899 } else {
1900 tmp64 = ran_end + MAXPHYS + 1; /* work around GCC-4 bug */
1901 if (tmp64 < ran_end)
1902 cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1903 else
1904 cursor->key_end.key = ran_end + MAXPHYS + 1;
1907 cursor->asof = ip->obj_asof;
1908 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1909 cursor->flags |= HAMMER_CURSOR_ASOF;
1910 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1911 cursor->flags |= HAMMER_CURSOR_BACKEND;
1912 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1914 error = hammer_ip_first(cursor);
1917 * Iterate through matching records and mark them as deleted.
1919 while (error == 0) {
1920 leaf = cursor->leaf;
1922 KKASSERT(leaf->base.delete_tid == 0);
1923 KKASSERT(leaf->base.obj_id == ip->obj_id);
1926 * There may be overlap cases for regular file data. Also
1927 * remember the key for a regular file record is (base + len),
1928 * NOT (base).
1930 * Note that do to duplicates (mem & media) allowed by
1931 * DELETE_VISIBILITY, off can wind up less then ran_beg.
1933 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1934 off = leaf->base.key - leaf->data_len;
1936 * Check the left edge case. We currently do not
1937 * split existing records.
1939 if (off < ran_beg && leaf->base.key > ran_beg) {
1940 panic("hammer left edge case %016llx %d\n",
1941 (long long)leaf->base.key,
1942 leaf->data_len);
1946 * Check the right edge case. Note that the
1947 * record can be completely out of bounds, which
1948 * terminates the search.
1950 * base->key is exclusive of the right edge while
1951 * ran_end is inclusive of the right edge. The
1952 * (key - data_len) left boundary is inclusive.
1954 * XXX theory-check this test at some point, are
1955 * we missing a + 1 somewhere? Note that ran_end
1956 * could overflow.
1958 if (leaf->base.key - 1 > ran_end) {
1959 if (leaf->base.key - leaf->data_len > ran_end)
1960 break;
1961 panic("hammer right edge case\n");
1963 } else {
1964 off = leaf->base.key;
1968 * Delete the record. When truncating we do not delete
1969 * in-memory (data) records because they represent data
1970 * written after the truncation.
1972 * This will also physically destroy the B-Tree entry and
1973 * data if the retention policy dictates. The function
1974 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
1975 * to retest the new 'current' element.
1977 if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
1978 error = hammer_ip_delete_record(cursor, ip, trans->tid);
1980 * If we have built up too many meta-buffers we risk
1981 * deadlocking the kernel and must stop. This can
1982 * occur when deleting ridiculously huge files.
1983 * sync_trunc_off is updated so the next cycle does
1984 * not re-iterate records we have already deleted.
1986 * This is only done with formal truncations.
1988 if (truncating > 1 && error == 0 &&
1989 hammer_flusher_meta_limit(ip->hmp)) {
1990 ip->sync_trunc_off = off;
1991 error = EWOULDBLOCK;
1994 if (error)
1995 break;
1996 ran_beg = off; /* for restart */
1997 error = hammer_ip_next(cursor);
1999 if (cursor->node)
2000 hammer_cache_node(&ip->cache[1], cursor->node);
2002 if (error == EDEADLK) {
2003 hammer_done_cursor(cursor);
2004 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2005 if (error == 0)
2006 goto retry;
2008 if (error == ENOENT)
2009 error = 0;
2010 return(error);
2014 * This backend function deletes the specified record on-disk, similar to
2015 * delete_range but for a specific record. Unlike the exact deletions
2016 * used when deleting a directory entry this function uses an ASOF search
2017 * like delete_range.
2019 * This function may be called with ip->obj_asof set for a slave snapshot,
2020 * so don't use it. We always delete non-historical records only.
2022 static int
2023 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
2024 hammer_btree_leaf_elm_t leaf)
2026 hammer_transaction_t trans = cursor->trans;
2027 int error;
2029 KKASSERT(trans->type == HAMMER_TRANS_FLS);
2030 retry:
2031 hammer_normalize_cursor(cursor);
2032 cursor->key_beg = leaf->base;
2033 cursor->asof = HAMMER_MAX_TID;
2034 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2035 cursor->flags |= HAMMER_CURSOR_ASOF;
2036 cursor->flags |= HAMMER_CURSOR_BACKEND;
2037 cursor->flags &= ~HAMMER_CURSOR_INSERT;
2039 error = hammer_btree_lookup(cursor);
2040 if (error == 0) {
2041 error = hammer_ip_delete_record(cursor, ip, trans->tid);
2043 if (error == EDEADLK) {
2044 hammer_done_cursor(cursor);
2045 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2046 if (error == 0)
2047 goto retry;
2049 return(error);
2053 * This function deletes remaining auxillary records when an inode is
2054 * being deleted. This function explicitly does not delete the
2055 * inode record, directory entry, data, or db records. Those must be
2056 * properly disposed of prior to this call.
2059 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
2061 hammer_transaction_t trans = cursor->trans;
2062 hammer_btree_leaf_elm_t leaf;
2063 int error;
2065 KKASSERT(trans->type == HAMMER_TRANS_FLS);
2066 retry:
2067 hammer_normalize_cursor(cursor);
2068 cursor->key_beg.localization = ip->obj_localization +
2069 HAMMER_LOCALIZE_MISC;
2070 cursor->key_beg.obj_id = ip->obj_id;
2071 cursor->key_beg.create_tid = 0;
2072 cursor->key_beg.delete_tid = 0;
2073 cursor->key_beg.obj_type = 0;
2074 cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
2075 cursor->key_beg.key = HAMMER_MIN_KEY;
2077 cursor->key_end = cursor->key_beg;
2078 cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
2079 cursor->key_end.key = HAMMER_MAX_KEY;
2081 cursor->asof = ip->obj_asof;
2082 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2083 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2084 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
2085 cursor->flags |= HAMMER_CURSOR_BACKEND;
2087 error = hammer_ip_first(cursor);
2090 * Iterate through matching records and mark them as deleted.
2092 while (error == 0) {
2093 leaf = cursor->leaf;
2095 KKASSERT(leaf->base.delete_tid == 0);
2098 * Mark the record and B-Tree entry as deleted. This will
2099 * also physically delete the B-Tree entry, record, and
2100 * data if the retention policy dictates. The function
2101 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2102 * to retest the new 'current' element.
2104 * Directory entries (and delete-on-disk directory entries)
2105 * must be synced and cannot be deleted.
2107 error = hammer_ip_delete_record(cursor, ip, trans->tid);
2108 ++*countp;
2109 if (error)
2110 break;
2111 error = hammer_ip_next(cursor);
2113 if (cursor->node)
2114 hammer_cache_node(&ip->cache[1], cursor->node);
2115 if (error == EDEADLK) {
2116 hammer_done_cursor(cursor);
2117 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2118 if (error == 0)
2119 goto retry;
2121 if (error == ENOENT)
2122 error = 0;
2123 return(error);
2127 * Delete the record at the current cursor. On success the cursor will
2128 * be positioned appropriately for an iteration but may no longer be at
2129 * a leaf node.
2131 * This routine is only called from the backend.
2133 * NOTE: This can return EDEADLK, requiring the caller to terminate the
2134 * cursor and retry.
2137 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
2138 hammer_tid_t tid)
2140 hammer_record_t iprec;
2141 hammer_mount_t hmp;
2142 int error;
2144 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
2145 KKASSERT(tid != 0);
2146 hmp = cursor->node->hmp;
2149 * In-memory (unsynchronized) records can simply be freed. This
2150 * only occurs in range iterations since all other records are
2151 * individually synchronized. Thus there should be no confusion with
2152 * the interlock.
2154 * An in-memory record may be deleted before being committed to disk,
2155 * but could have been accessed in the mean time. The reservation
2156 * code will deal with the case.
2158 if (hammer_cursor_inmem(cursor)) {
2159 iprec = cursor->iprec;
2160 KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
2161 iprec->flags |= HAMMER_RECF_DELETED_FE;
2162 iprec->flags |= HAMMER_RECF_DELETED_BE;
2163 KKASSERT(iprec->ip == ip);
2164 ++ip->rec_generation;
2165 return(0);
2169 * On-disk records are marked as deleted by updating their delete_tid.
2170 * This does not effect their position in the B-Tree (which is based
2171 * on their create_tid).
2173 * Frontend B-Tree operations track inodes so we tell
2174 * hammer_delete_at_cursor() not to.
2176 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
2178 if (error == 0) {
2179 error = hammer_delete_at_cursor(
2180 cursor,
2181 HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
2182 cursor->trans->tid,
2183 cursor->trans->time32,
2184 0, NULL);
2186 return(error);
2190 * Delete the B-Tree element at the current cursor and do any necessary
2191 * mirror propagation.
2193 * The cursor must be properly positioned for an iteration on return but
2194 * may be pointing at an internal element.
2196 * An element can be un-deleted by passing a delete_tid of 0 with
2197 * HAMMER_DELETE_ADJUST.
2200 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
2201 hammer_tid_t delete_tid, u_int32_t delete_ts,
2202 int track, int64_t *stat_bytes)
2204 struct hammer_btree_leaf_elm save_leaf;
2205 hammer_transaction_t trans;
2206 hammer_btree_leaf_elm_t leaf;
2207 hammer_node_t node;
2208 hammer_btree_elm_t elm;
2209 hammer_off_t data_offset;
2210 int32_t data_len;
2211 u_int16_t rec_type;
2212 int error;
2213 int icount;
2214 int doprop;
2216 error = hammer_cursor_upgrade(cursor);
2217 if (error)
2218 return(error);
2220 trans = cursor->trans;
2221 node = cursor->node;
2222 elm = &node->ondisk->elms[cursor->index];
2223 leaf = &elm->leaf;
2224 KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
2226 hammer_sync_lock_sh(trans);
2227 doprop = 0;
2228 icount = 0;
2231 * Adjust the delete_tid. Update the mirror_tid propagation field
2232 * as well. delete_tid can be 0 (undelete -- used by mirroring).
2234 if (delete_flags & HAMMER_DELETE_ADJUST) {
2235 if (elm->base.rec_type == HAMMER_RECTYPE_INODE) {
2236 if (elm->leaf.base.delete_tid == 0 && delete_tid)
2237 icount = -1;
2238 if (elm->leaf.base.delete_tid && delete_tid == 0)
2239 icount = 1;
2242 hammer_modify_node(trans, node, elm, sizeof(*elm));
2243 elm->leaf.base.delete_tid = delete_tid;
2244 elm->leaf.delete_ts = delete_ts;
2245 hammer_modify_node_done(node);
2247 if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
2248 hammer_modify_node_field(trans, node, mirror_tid);
2249 node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
2250 hammer_modify_node_done(node);
2251 doprop = 1;
2252 if (hammer_debug_general & 0x0002) {
2253 kprintf("delete_at_cursor: propagate %016llx"
2254 " @%016llx\n",
2255 (long long)elm->leaf.base.delete_tid,
2256 (long long)node->node_offset);
2261 * Adjust for the iteration. We have deleted the current
2262 * element and want to clear ATEDISK so the iteration does
2263 * not skip the element after, which now becomes the current
2264 * element. This element must be re-tested if doing an
2265 * iteration, which is handled by the RETEST flag.
2267 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2268 cursor->flags |= HAMMER_CURSOR_RETEST;
2269 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2273 * An on-disk record cannot have the same delete_tid
2274 * as its create_tid. In a chain of record updates
2275 * this could result in a duplicate record.
2277 KKASSERT(elm->leaf.base.delete_tid !=
2278 elm->leaf.base.create_tid);
2282 * Destroy the B-Tree element if asked (typically if a nohistory
2283 * file or mount, or when called by the pruning code).
2285 * Adjust the ATEDISK flag to properly support iterations.
2287 if (delete_flags & HAMMER_DELETE_DESTROY) {
2288 data_offset = elm->leaf.data_offset;
2289 data_len = elm->leaf.data_len;
2290 rec_type = elm->leaf.base.rec_type;
2291 if (doprop) {
2292 save_leaf = elm->leaf;
2293 leaf = &save_leaf;
2295 if (elm->base.rec_type == HAMMER_RECTYPE_INODE &&
2296 elm->leaf.base.delete_tid == 0) {
2297 icount = -1;
2300 error = hammer_btree_delete(cursor);
2301 if (error == 0) {
2303 * The deletion moves the next element (if any) to
2304 * the current element position. We must clear
2305 * ATEDISK so this element is not skipped and we
2306 * must set RETEST to force any iteration to re-test
2307 * the element.
2309 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2310 cursor->flags |= HAMMER_CURSOR_RETEST;
2311 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2314 if (error == 0) {
2315 switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2316 case HAMMER_ZONE_LARGE_DATA:
2317 case HAMMER_ZONE_SMALL_DATA:
2318 case HAMMER_ZONE_META:
2319 hammer_blockmap_free(trans,
2320 data_offset, data_len);
2321 break;
2322 default:
2323 break;
2329 * Track inode count and next_tid. This is used by the mirroring
2330 * and PFS code. icount can be negative, zero, or positive.
2332 if (error == 0 && track) {
2333 if (icount) {
2334 hammer_modify_volume_field(trans, trans->rootvol,
2335 vol0_stat_inodes);
2336 trans->rootvol->ondisk->vol0_stat_inodes += icount;
2337 hammer_modify_volume_done(trans->rootvol);
2339 if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) {
2340 hammer_modify_volume(trans, trans->rootvol, NULL, 0);
2341 trans->rootvol->ondisk->vol0_next_tid = delete_tid;
2342 hammer_modify_volume_done(trans->rootvol);
2347 * mirror_tid propagation occurs if the node's mirror_tid had to be
2348 * updated while adjusting the delete_tid.
2350 * This occurs when deleting even in nohistory mode, but does not
2351 * occur when pruning an already-deleted node.
2353 * cursor->ip is NULL when called from the pruning, mirroring,
2354 * and pfs code. If non-NULL propagation will be conditionalized
2355 * on whether the PFS is in no-history mode or not.
2357 if (doprop) {
2358 if (cursor->ip)
2359 hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2360 else
2361 hammer_btree_do_propagation(cursor, NULL, leaf);
2363 hammer_sync_unlock(trans);
2364 return (error);
2368 * Determine whether we can remove a directory. This routine checks whether
2369 * a directory is empty or not and enforces flush connectivity.
2371 * Flush connectivity requires that we block if the target directory is
2372 * currently flushing, otherwise it may not end up in the same flush group.
2374 * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2377 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2379 struct hammer_cursor cursor;
2380 int error;
2383 * Check directory empty
2385 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2387 cursor.key_beg.localization = ip->obj_localization +
2388 hammer_dir_localization(ip);
2389 cursor.key_beg.obj_id = ip->obj_id;
2390 cursor.key_beg.create_tid = 0;
2391 cursor.key_beg.delete_tid = 0;
2392 cursor.key_beg.obj_type = 0;
2393 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
2394 cursor.key_beg.key = HAMMER_MIN_KEY;
2396 cursor.key_end = cursor.key_beg;
2397 cursor.key_end.rec_type = 0xFFFF;
2398 cursor.key_end.key = HAMMER_MAX_KEY;
2400 cursor.asof = ip->obj_asof;
2401 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2403 error = hammer_ip_first(&cursor);
2404 if (error == ENOENT)
2405 error = 0;
2406 else if (error == 0)
2407 error = ENOTEMPTY;
2408 hammer_done_cursor(&cursor);
2409 return(error);