1 /* $OpenBSD: umac.c,v 1.1 2007/06/07 19:37:34 pvalchev Exp $ */
2 /* -----------------------------------------------------------------------
4 * umac.c -- C Implementation UMAC Message Authentication
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
12 * Copyright (c) 1999-2006 Ted Krovetz
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
23 * ---------------------------------------------------------------------- */
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
27 * 1) This version does not work properly on messages larger than 16MB
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
49 /////////////////////////////////////////////////////////////////////// */
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
55 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
56 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
57 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
58 /* #define SSE2 0 Is SSE2 is available? */
59 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
60 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
62 /* ---------------------------------------------------------------------- */
63 /* -- Global Includes --------------------------------------------------- */
64 /* ---------------------------------------------------------------------- */
67 #include <sys/types.h>
74 /* ---------------------------------------------------------------------- */
75 /* --- Primitive Data Types --- */
76 /* ---------------------------------------------------------------------- */
78 /* The following assumptions may need change on your system */
79 typedef u_int8_t UINT8
; /* 1 byte */
80 typedef u_int16_t UINT16
; /* 2 byte */
81 typedef u_int32_t UINT32
; /* 4 byte */
82 typedef u_int64_t UINT64
; /* 8 bytes */
83 typedef unsigned int UWORD
; /* Register */
85 /* ---------------------------------------------------------------------- */
86 /* --- Constants -------------------------------------------------------- */
87 /* ---------------------------------------------------------------------- */
89 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
91 /* Message "words" are read from memory in an endian-specific manner. */
92 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
93 /* be set true if the host computer is little-endian. */
95 #if BYTE_ORDER == LITTLE_ENDIAN
96 #define __LITTLE_ENDIAN__ 1
98 #define __LITTLE_ENDIAN__ 0
101 /* ---------------------------------------------------------------------- */
102 /* ---------------------------------------------------------------------- */
103 /* ----- Architecture Specific ------------------------------------------ */
104 /* ---------------------------------------------------------------------- */
105 /* ---------------------------------------------------------------------- */
108 /* ---------------------------------------------------------------------- */
109 /* ---------------------------------------------------------------------- */
110 /* ----- Primitive Routines --------------------------------------------- */
111 /* ---------------------------------------------------------------------- */
112 /* ---------------------------------------------------------------------- */
115 /* ---------------------------------------------------------------------- */
116 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
117 /* ---------------------------------------------------------------------- */
119 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
121 /* ---------------------------------------------------------------------- */
122 /* --- Endian Conversion --- Forcing assembly on some platforms */
123 /* ---------------------------------------------------------------------- */
126 #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
127 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
128 #else /* HAVE_SWAP32 */
130 static UINT32
LOAD_UINT32_REVERSED(void *ptr
)
132 UINT32 temp
= *(UINT32
*)ptr
;
133 temp
= (temp
>> 24) | ((temp
& 0x00FF0000) >> 8 )
134 | ((temp
& 0x0000FF00) << 8 ) | (temp
<< 24);
138 static void STORE_UINT32_REVERSED(void *ptr
, UINT32 x
)
140 UINT32 i
= (UINT32
)x
;
141 *(UINT32
*)ptr
= (i
>> 24) | ((i
& 0x00FF0000) >> 8 )
142 | ((i
& 0x0000FF00) << 8 ) | (i
<< 24);
144 #endif /* HAVE_SWAP32 */
146 /* The following definitions use the above reversal-primitives to do the right
147 * thing on endian specific load and stores.
150 #if (__LITTLE_ENDIAN__)
151 #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
152 #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
154 #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
155 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
158 /* ---------------------------------------------------------------------- */
159 /* ---------------------------------------------------------------------- */
160 /* ----- Begin KDF & PDF Section ---------------------------------------- */
161 /* ---------------------------------------------------------------------- */
162 /* ---------------------------------------------------------------------- */
164 /* UMAC uses AES with 16 byte block and key lengths */
165 #define AES_BLOCK_LEN 16
168 #include "openbsd-compat/openssl-compat.h"
169 #ifndef USE_BUILTIN_RIJNDAEL
170 # include <openssl/aes.h>
172 typedef AES_KEY aes_int_key
[1];
173 #define aes_encryption(in,out,int_key) \
174 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
175 #define aes_key_setup(key,int_key) \
176 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
178 /* The user-supplied UMAC key is stretched using AES in a counter
179 * mode to supply all random bits needed by UMAC. The kdf function takes
180 * an AES internal key representation 'key' and writes a stream of
181 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
182 * 'ndx' causes a distinct byte stream.
184 static void kdf(void *buffer_ptr
, aes_int_key key
, UINT8 ndx
, int nbytes
)
186 UINT8 in_buf
[AES_BLOCK_LEN
] = {0};
187 UINT8 out_buf
[AES_BLOCK_LEN
];
188 UINT8
*dst_buf
= (UINT8
*)buffer_ptr
;
191 /* Setup the initial value */
192 in_buf
[AES_BLOCK_LEN
-9] = ndx
;
193 in_buf
[AES_BLOCK_LEN
-1] = i
= 1;
195 while (nbytes
>= AES_BLOCK_LEN
) {
196 aes_encryption(in_buf
, out_buf
, key
);
197 memcpy(dst_buf
,out_buf
,AES_BLOCK_LEN
);
198 in_buf
[AES_BLOCK_LEN
-1] = ++i
;
199 nbytes
-= AES_BLOCK_LEN
;
200 dst_buf
+= AES_BLOCK_LEN
;
203 aes_encryption(in_buf
, out_buf
, key
);
204 memcpy(dst_buf
,out_buf
,nbytes
);
208 /* The final UHASH result is XOR'd with the output of a pseudorandom
209 * function. Here, we use AES to generate random output and
210 * xor the appropriate bytes depending on the last bits of nonce.
211 * This scheme is optimized for sequential, increasing big-endian nonces.
215 UINT8 cache
[AES_BLOCK_LEN
]; /* Previous AES output is saved */
216 UINT8 nonce
[AES_BLOCK_LEN
]; /* The AES input making above cache */
217 aes_int_key prf_key
; /* Expanded AES key for PDF */
220 static void pdf_init(pdf_ctx
*pc
, aes_int_key prf_key
)
222 UINT8 buf
[UMAC_KEY_LEN
];
224 kdf(buf
, prf_key
, 0, UMAC_KEY_LEN
);
225 aes_key_setup(buf
, pc
->prf_key
);
227 /* Initialize pdf and cache */
228 memset(pc
->nonce
, 0, sizeof(pc
->nonce
));
229 aes_encryption(pc
->nonce
, pc
->cache
, pc
->prf_key
);
232 static void pdf_gen_xor(pdf_ctx
*pc
, UINT8 nonce
[8], UINT8 buf
[8])
234 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
235 * of the AES output. If last time around we returned the ndx-1st
236 * element, then we may have the result in the cache already.
239 #if (UMAC_OUTPUT_LEN == 4)
240 #define LOW_BIT_MASK 3
241 #elif (UMAC_OUTPUT_LEN == 8)
242 #define LOW_BIT_MASK 1
243 #elif (UMAC_OUTPUT_LEN > 8)
244 #define LOW_BIT_MASK 0
247 UINT8 tmp_nonce_lo
[4];
248 #if LOW_BIT_MASK != 0
249 int ndx
= nonce
[7] & LOW_BIT_MASK
;
251 *(UINT32
*)tmp_nonce_lo
= ((UINT32
*)nonce
)[1];
252 tmp_nonce_lo
[3] &= ~LOW_BIT_MASK
; /* zero last bit */
254 if ( (((UINT32
*)tmp_nonce_lo
)[0] != ((UINT32
*)pc
->nonce
)[1]) ||
255 (((UINT32
*)nonce
)[0] != ((UINT32
*)pc
->nonce
)[0]) )
257 ((UINT32
*)pc
->nonce
)[0] = ((UINT32
*)nonce
)[0];
258 ((UINT32
*)pc
->nonce
)[1] = ((UINT32
*)tmp_nonce_lo
)[0];
259 aes_encryption(pc
->nonce
, pc
->cache
, pc
->prf_key
);
262 #if (UMAC_OUTPUT_LEN == 4)
263 *((UINT32
*)buf
) ^= ((UINT32
*)pc
->cache
)[ndx
];
264 #elif (UMAC_OUTPUT_LEN == 8)
265 *((UINT64
*)buf
) ^= ((UINT64
*)pc
->cache
)[ndx
];
266 #elif (UMAC_OUTPUT_LEN == 12)
267 ((UINT64
*)buf
)[0] ^= ((UINT64
*)pc
->cache
)[0];
268 ((UINT32
*)buf
)[2] ^= ((UINT32
*)pc
->cache
)[2];
269 #elif (UMAC_OUTPUT_LEN == 16)
270 ((UINT64
*)buf
)[0] ^= ((UINT64
*)pc
->cache
)[0];
271 ((UINT64
*)buf
)[1] ^= ((UINT64
*)pc
->cache
)[1];
275 /* ---------------------------------------------------------------------- */
276 /* ---------------------------------------------------------------------- */
277 /* ----- Begin NH Hash Section ------------------------------------------ */
278 /* ---------------------------------------------------------------------- */
279 /* ---------------------------------------------------------------------- */
281 /* The NH-based hash functions used in UMAC are described in the UMAC paper
282 * and specification, both of which can be found at the UMAC website.
283 * The interface to this implementation has two
284 * versions, one expects the entire message being hashed to be passed
285 * in a single buffer and returns the hash result immediately. The second
286 * allows the message to be passed in a sequence of buffers. In the
287 * muliple-buffer interface, the client calls the routine nh_update() as
288 * many times as necessary. When there is no more data to be fed to the
289 * hash, the client calls nh_final() which calculates the hash output.
290 * Before beginning another hash calculation the nh_reset() routine
291 * must be called. The single-buffer routine, nh(), is equivalent to
292 * the sequence of calls nh_update() and nh_final(); however it is
293 * optimized and should be prefered whenever the multiple-buffer interface
294 * is not necessary. When using either interface, it is the client's
295 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
297 * The routine nh_init() initializes the nh_ctx data structure and
298 * must be called once, before any other PDF routine.
301 /* The "nh_aux" routines do the actual NH hashing work. They
302 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
303 * produce output for all STREAMS NH iterations in one call,
304 * allowing the parallel implementation of the streams.
307 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
308 #define L1_KEY_LEN 1024 /* Internal key bytes */
309 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
310 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
311 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
312 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
315 UINT8 nh_key
[L1_KEY_LEN
+ L1_KEY_SHIFT
* (STREAMS
- 1)]; /* NH Key */
316 UINT8 data
[HASH_BUF_BYTES
]; /* Incomming data buffer */
317 int next_data_empty
; /* Bookeeping variable for data buffer. */
318 int bytes_hashed
; /* Bytes (out of L1_KEY_LEN) incorperated. */
319 UINT64 state
[STREAMS
]; /* on-line state */
323 #if (UMAC_OUTPUT_LEN == 4)
325 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
326 /* NH hashing primitive. Previous (partial) hash result is loaded and
327 * then stored via hp pointer. The length of the data pointed at by "dp",
328 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
329 * is expected to be endian compensated in memory at key setup.
334 UINT32
*k
= (UINT32
*)kp
;
335 UINT32
*d
= (UINT32
*)dp
;
336 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
337 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
;
341 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
342 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
343 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
344 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
345 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
346 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
347 h
+= MUL64((k0
+ d0
), (k4
+ d4
));
348 h
+= MUL64((k1
+ d1
), (k5
+ d5
));
349 h
+= MUL64((k2
+ d2
), (k6
+ d6
));
350 h
+= MUL64((k3
+ d3
), (k7
+ d7
));
358 #elif (UMAC_OUTPUT_LEN == 8)
360 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
361 /* Same as previous nh_aux, but two streams are handled in one pass,
362 * reading and writing 16 bytes of hash-state per call.
367 UINT32
*k
= (UINT32
*)kp
;
368 UINT32
*d
= (UINT32
*)dp
;
369 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
370 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
373 h1
= *((UINT64
*)hp
);
374 h2
= *((UINT64
*)hp
+ 1);
375 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
377 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
378 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
379 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
380 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
381 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
382 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
384 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
385 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
387 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
388 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
390 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
391 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
393 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
394 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
396 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
401 ((UINT64
*)hp
)[0] = h1
;
402 ((UINT64
*)hp
)[1] = h2
;
405 #elif (UMAC_OUTPUT_LEN == 12)
407 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
408 /* Same as previous nh_aux, but two streams are handled in one pass,
409 * reading and writing 24 bytes of hash-state per call.
414 UINT32
*k
= (UINT32
*)kp
;
415 UINT32
*d
= (UINT32
*)dp
;
416 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
417 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
418 k8
,k9
,k10
,k11
,k12
,k13
,k14
,k15
;
420 h1
= *((UINT64
*)hp
);
421 h2
= *((UINT64
*)hp
+ 1);
422 h3
= *((UINT64
*)hp
+ 2);
423 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
424 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
426 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
427 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
428 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
429 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
430 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
431 k12
= *(k
+12); k13
= *(k
+13); k14
= *(k
+14); k15
= *(k
+15);
433 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
434 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
435 h3
+= MUL64((k8
+ d0
), (k12
+ d4
));
437 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
438 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
439 h3
+= MUL64((k9
+ d1
), (k13
+ d5
));
441 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
442 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
443 h3
+= MUL64((k10
+ d2
), (k14
+ d6
));
445 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
446 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
447 h3
+= MUL64((k11
+ d3
), (k15
+ d7
));
449 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
450 k4
= k12
; k5
= k13
; k6
= k14
; k7
= k15
;
455 ((UINT64
*)hp
)[0] = h1
;
456 ((UINT64
*)hp
)[1] = h2
;
457 ((UINT64
*)hp
)[2] = h3
;
460 #elif (UMAC_OUTPUT_LEN == 16)
462 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
463 /* Same as previous nh_aux, but two streams are handled in one pass,
464 * reading and writing 24 bytes of hash-state per call.
469 UINT32
*k
= (UINT32
*)kp
;
470 UINT32
*d
= (UINT32
*)dp
;
471 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
472 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
473 k8
,k9
,k10
,k11
,k12
,k13
,k14
,k15
,
476 h1
= *((UINT64
*)hp
);
477 h2
= *((UINT64
*)hp
+ 1);
478 h3
= *((UINT64
*)hp
+ 2);
479 h4
= *((UINT64
*)hp
+ 3);
480 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
481 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
483 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
484 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
485 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
486 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
487 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
488 k12
= *(k
+12); k13
= *(k
+13); k14
= *(k
+14); k15
= *(k
+15);
489 k16
= *(k
+16); k17
= *(k
+17); k18
= *(k
+18); k19
= *(k
+19);
491 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
492 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
493 h3
+= MUL64((k8
+ d0
), (k12
+ d4
));
494 h4
+= MUL64((k12
+ d0
), (k16
+ d4
));
496 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
497 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
498 h3
+= MUL64((k9
+ d1
), (k13
+ d5
));
499 h4
+= MUL64((k13
+ d1
), (k17
+ d5
));
501 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
502 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
503 h3
+= MUL64((k10
+ d2
), (k14
+ d6
));
504 h4
+= MUL64((k14
+ d2
), (k18
+ d6
));
506 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
507 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
508 h3
+= MUL64((k11
+ d3
), (k15
+ d7
));
509 h4
+= MUL64((k15
+ d3
), (k19
+ d7
));
511 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
512 k4
= k12
; k5
= k13
; k6
= k14
; k7
= k15
;
513 k8
= k16
; k9
= k17
; k10
= k18
; k11
= k19
;
518 ((UINT64
*)hp
)[0] = h1
;
519 ((UINT64
*)hp
)[1] = h2
;
520 ((UINT64
*)hp
)[2] = h3
;
521 ((UINT64
*)hp
)[3] = h4
;
524 /* ---------------------------------------------------------------------- */
525 #endif /* UMAC_OUTPUT_LENGTH */
526 /* ---------------------------------------------------------------------- */
529 /* ---------------------------------------------------------------------- */
531 static void nh_transform(nh_ctx
*hc
, UINT8
*buf
, UINT32 nbytes
)
532 /* This function is a wrapper for the primitive NH hash functions. It takes
533 * as argument "hc" the current hash context and a buffer which must be a
534 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
535 * appropriately according to how much message has been hashed already.
540 key
= hc
->nh_key
+ hc
->bytes_hashed
;
541 nh_aux(key
, buf
, hc
->state
, nbytes
);
544 /* ---------------------------------------------------------------------- */
546 static void endian_convert(void *buf
, UWORD bpw
, UINT32 num_bytes
)
547 /* We endian convert the keys on little-endian computers to */
548 /* compensate for the lack of big-endian memory reads during hashing. */
550 UWORD iters
= num_bytes
/ bpw
;
552 UINT32
*p
= (UINT32
*)buf
;
554 *p
= LOAD_UINT32_REVERSED(p
);
557 } else if (bpw
== 8) {
558 UINT32
*p
= (UINT32
*)buf
;
561 t
= LOAD_UINT32_REVERSED(p
+1);
562 p
[1] = LOAD_UINT32_REVERSED(p
);
568 #if (__LITTLE_ENDIAN__)
569 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
571 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
574 /* ---------------------------------------------------------------------- */
576 static void nh_reset(nh_ctx
*hc
)
577 /* Reset nh_ctx to ready for hashing of new data */
579 hc
->bytes_hashed
= 0;
580 hc
->next_data_empty
= 0;
582 #if (UMAC_OUTPUT_LEN >= 8)
585 #if (UMAC_OUTPUT_LEN >= 12)
588 #if (UMAC_OUTPUT_LEN == 16)
594 /* ---------------------------------------------------------------------- */
596 static void nh_init(nh_ctx
*hc
, aes_int_key prf_key
)
597 /* Generate nh_key, endian convert and reset to be ready for hashing. */
599 kdf(hc
->nh_key
, prf_key
, 1, sizeof(hc
->nh_key
));
600 endian_convert_if_le(hc
->nh_key
, 4, sizeof(hc
->nh_key
));
604 /* ---------------------------------------------------------------------- */
606 static void nh_update(nh_ctx
*hc
, UINT8
*buf
, UINT32 nbytes
)
607 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
608 /* even multiple of HASH_BUF_BYTES. */
612 j
= hc
->next_data_empty
;
613 if ((j
+ nbytes
) >= HASH_BUF_BYTES
) {
615 i
= HASH_BUF_BYTES
- j
;
616 memcpy(hc
->data
+j
, buf
, i
);
617 nh_transform(hc
,hc
->data
,HASH_BUF_BYTES
);
620 hc
->bytes_hashed
+= HASH_BUF_BYTES
;
622 if (nbytes
>= HASH_BUF_BYTES
) {
623 i
= nbytes
& ~(HASH_BUF_BYTES
- 1);
624 nh_transform(hc
, buf
, i
);
627 hc
->bytes_hashed
+= i
;
631 memcpy(hc
->data
+ j
, buf
, nbytes
);
632 hc
->next_data_empty
= j
+ nbytes
;
635 /* ---------------------------------------------------------------------- */
637 static void zero_pad(UINT8
*p
, int nbytes
)
639 /* Write "nbytes" of zeroes, beginning at "p" */
640 if (nbytes
>= (int)sizeof(UWORD
)) {
641 while ((ptrdiff_t)p
% sizeof(UWORD
)) {
646 while (nbytes
>= (int)sizeof(UWORD
)) {
648 nbytes
-= sizeof(UWORD
);
659 /* ---------------------------------------------------------------------- */
661 static void nh_final(nh_ctx
*hc
, UINT8
*result
)
662 /* After passing some number of data buffers to nh_update() for integration
663 * into an NH context, nh_final is called to produce a hash result. If any
664 * bytes are in the buffer hc->data, incorporate them into the
665 * NH context. Finally, add into the NH accumulation "state" the total number
666 * of bits hashed. The resulting numbers are written to the buffer "result".
667 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
672 if (hc
->next_data_empty
!= 0) {
673 nh_len
= ((hc
->next_data_empty
+ (L1_PAD_BOUNDARY
- 1)) &
674 ~(L1_PAD_BOUNDARY
- 1));
675 zero_pad(hc
->data
+ hc
->next_data_empty
,
676 nh_len
- hc
->next_data_empty
);
677 nh_transform(hc
, hc
->data
, nh_len
);
678 hc
->bytes_hashed
+= hc
->next_data_empty
;
679 } else if (hc
->bytes_hashed
== 0) {
680 nh_len
= L1_PAD_BOUNDARY
;
681 zero_pad(hc
->data
, L1_PAD_BOUNDARY
);
682 nh_transform(hc
, hc
->data
, nh_len
);
685 nbits
= (hc
->bytes_hashed
<< 3);
686 ((UINT64
*)result
)[0] = ((UINT64
*)hc
->state
)[0] + nbits
;
687 #if (UMAC_OUTPUT_LEN >= 8)
688 ((UINT64
*)result
)[1] = ((UINT64
*)hc
->state
)[1] + nbits
;
690 #if (UMAC_OUTPUT_LEN >= 12)
691 ((UINT64
*)result
)[2] = ((UINT64
*)hc
->state
)[2] + nbits
;
693 #if (UMAC_OUTPUT_LEN == 16)
694 ((UINT64
*)result
)[3] = ((UINT64
*)hc
->state
)[3] + nbits
;
699 /* ---------------------------------------------------------------------- */
701 static void nh(nh_ctx
*hc
, UINT8
*buf
, UINT32 padded_len
,
702 UINT32 unpadded_len
, UINT8
*result
)
703 /* All-in-one nh_update() and nh_final() equivalent.
704 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
710 /* Initialize the hash state */
711 nbits
= (unpadded_len
<< 3);
713 ((UINT64
*)result
)[0] = nbits
;
714 #if (UMAC_OUTPUT_LEN >= 8)
715 ((UINT64
*)result
)[1] = nbits
;
717 #if (UMAC_OUTPUT_LEN >= 12)
718 ((UINT64
*)result
)[2] = nbits
;
720 #if (UMAC_OUTPUT_LEN == 16)
721 ((UINT64
*)result
)[3] = nbits
;
724 nh_aux(hc
->nh_key
, buf
, result
, padded_len
);
727 /* ---------------------------------------------------------------------- */
728 /* ---------------------------------------------------------------------- */
729 /* ----- Begin UHASH Section -------------------------------------------- */
730 /* ---------------------------------------------------------------------- */
731 /* ---------------------------------------------------------------------- */
733 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
734 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
735 * unless the initial data to be hashed is short. After the polynomial-
736 * layer, an inner-product hash is used to produce the final UHASH output.
738 * UHASH provides two interfaces, one all-at-once and another where data
739 * buffers are presented sequentially. In the sequential interface, the
740 * UHASH client calls the routine uhash_update() as many times as necessary.
741 * When there is no more data to be fed to UHASH, the client calls
742 * uhash_final() which
743 * calculates the UHASH output. Before beginning another UHASH calculation
744 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
745 * uhash(), is equivalent to the sequence of calls uhash_update() and
746 * uhash_final(); however it is optimized and should be
747 * used whenever the sequential interface is not necessary.
749 * The routine uhash_init() initializes the uhash_ctx data structure and
750 * must be called once, before any other UHASH routine.
753 /* ---------------------------------------------------------------------- */
754 /* ----- Constants and uhash_ctx ---------------------------------------- */
755 /* ---------------------------------------------------------------------- */
757 /* ---------------------------------------------------------------------- */
758 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
759 /* ---------------------------------------------------------------------- */
761 /* Primes and masks */
762 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
763 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
764 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
767 /* ---------------------------------------------------------------------- */
769 typedef struct uhash_ctx
{
770 nh_ctx hash
; /* Hash context for L1 NH hash */
771 UINT64 poly_key_8
[STREAMS
]; /* p64 poly keys */
772 UINT64 poly_accum
[STREAMS
]; /* poly hash result */
773 UINT64 ip_keys
[STREAMS
*4]; /* Inner-product keys */
774 UINT32 ip_trans
[STREAMS
]; /* Inner-product translation */
775 UINT32 msg_len
; /* Total length of data passed */
778 typedef struct uhash_ctx
*uhash_ctx_t
;
780 /* ---------------------------------------------------------------------- */
783 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
784 * word at a time. As described in the specification, poly32 and poly64
785 * require keys from special domains. The following implementations exploit
786 * the special domains to avoid overflow. The results are not guaranteed to
787 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
788 * patches any errant values.
791 static UINT64
poly64(UINT64 cur
, UINT64 key
, UINT64 data
)
793 UINT32 key_hi
= (UINT32
)(key
>> 32),
794 key_lo
= (UINT32
)key
,
795 cur_hi
= (UINT32
)(cur
>> 32),
796 cur_lo
= (UINT32
)cur
,
801 X
= MUL64(key_hi
, cur_lo
) + MUL64(cur_hi
, key_lo
);
803 x_hi
= (UINT32
)(X
>> 32);
805 res
= (MUL64(key_hi
, cur_hi
) + x_hi
) * 59 + MUL64(key_lo
, cur_lo
);
807 T
= ((UINT64
)x_lo
<< 32);
820 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
821 * implementation does not handle all ramp levels. Because we don't handle
822 * the ramp up to p128 modulus in this implementation, we are limited to
823 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
824 * bytes input to UMAC per tag, ie. 16MB).
826 static void poly_hash(uhash_ctx_t hc
, UINT32 data_in
[])
829 UINT64
*data
=(UINT64
*)data_in
;
831 for (i
= 0; i
< STREAMS
; i
++) {
832 if ((UINT32
)(data
[i
] >> 32) == 0xfffffffful
) {
833 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
834 hc
->poly_key_8
[i
], p64
- 1);
835 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
836 hc
->poly_key_8
[i
], (data
[i
] - 59));
838 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
839 hc
->poly_key_8
[i
], data
[i
]);
845 /* ---------------------------------------------------------------------- */
848 /* The final step in UHASH is an inner-product hash. The poly hash
849 * produces a result not neccesarily WORD_LEN bytes long. The inner-
850 * product hash breaks the polyhash output into 16-bit chunks and
851 * multiplies each with a 36 bit key.
854 static UINT64
ip_aux(UINT64 t
, UINT64
*ipkp
, UINT64 data
)
856 t
= t
+ ipkp
[0] * (UINT64
)(UINT16
)(data
>> 48);
857 t
= t
+ ipkp
[1] * (UINT64
)(UINT16
)(data
>> 32);
858 t
= t
+ ipkp
[2] * (UINT64
)(UINT16
)(data
>> 16);
859 t
= t
+ ipkp
[3] * (UINT64
)(UINT16
)(data
);
864 static UINT32
ip_reduce_p36(UINT64 t
)
866 /* Divisionless modular reduction */
869 ret
= (t
& m36
) + 5 * (t
>> 36);
873 /* return least significant 32 bits */
874 return (UINT32
)(ret
);
878 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
879 * the polyhash stage is skipped and ip_short is applied directly to the
882 static void ip_short(uhash_ctx_t ahc
, UINT8
*nh_res
, u_char
*res
)
885 UINT64
*nhp
= (UINT64
*)nh_res
;
887 t
= ip_aux(0,ahc
->ip_keys
, nhp
[0]);
888 STORE_UINT32_BIG((UINT32
*)res
+0, ip_reduce_p36(t
) ^ ahc
->ip_trans
[0]);
889 #if (UMAC_OUTPUT_LEN >= 8)
890 t
= ip_aux(0,ahc
->ip_keys
+4, nhp
[1]);
891 STORE_UINT32_BIG((UINT32
*)res
+1, ip_reduce_p36(t
) ^ ahc
->ip_trans
[1]);
893 #if (UMAC_OUTPUT_LEN >= 12)
894 t
= ip_aux(0,ahc
->ip_keys
+8, nhp
[2]);
895 STORE_UINT32_BIG((UINT32
*)res
+2, ip_reduce_p36(t
) ^ ahc
->ip_trans
[2]);
897 #if (UMAC_OUTPUT_LEN == 16)
898 t
= ip_aux(0,ahc
->ip_keys
+12, nhp
[3]);
899 STORE_UINT32_BIG((UINT32
*)res
+3, ip_reduce_p36(t
) ^ ahc
->ip_trans
[3]);
903 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
904 * the polyhash stage is not skipped and ip_long is applied to the
907 static void ip_long(uhash_ctx_t ahc
, u_char
*res
)
912 for (i
= 0; i
< STREAMS
; i
++) {
913 /* fix polyhash output not in Z_p64 */
914 if (ahc
->poly_accum
[i
] >= p64
)
915 ahc
->poly_accum
[i
] -= p64
;
916 t
= ip_aux(0,ahc
->ip_keys
+(i
*4), ahc
->poly_accum
[i
]);
917 STORE_UINT32_BIG((UINT32
*)res
+i
,
918 ip_reduce_p36(t
) ^ ahc
->ip_trans
[i
]);
923 /* ---------------------------------------------------------------------- */
925 /* ---------------------------------------------------------------------- */
927 /* Reset uhash context for next hash session */
928 static int uhash_reset(uhash_ctx_t pc
)
932 pc
->poly_accum
[0] = 1;
933 #if (UMAC_OUTPUT_LEN >= 8)
934 pc
->poly_accum
[1] = 1;
936 #if (UMAC_OUTPUT_LEN >= 12)
937 pc
->poly_accum
[2] = 1;
939 #if (UMAC_OUTPUT_LEN == 16)
940 pc
->poly_accum
[3] = 1;
945 /* ---------------------------------------------------------------------- */
947 /* Given a pointer to the internal key needed by kdf() and a uhash context,
948 * initialize the NH context and generate keys needed for poly and inner-
949 * product hashing. All keys are endian adjusted in memory so that native
950 * loads cause correct keys to be in registers during calculation.
952 static void uhash_init(uhash_ctx_t ahc
, aes_int_key prf_key
)
955 UINT8 buf
[(8*STREAMS
+4)*sizeof(UINT64
)];
957 /* Zero the entire uhash context */
958 memset(ahc
, 0, sizeof(uhash_ctx
));
960 /* Initialize the L1 hash */
961 nh_init(&ahc
->hash
, prf_key
);
963 /* Setup L2 hash variables */
964 kdf(buf
, prf_key
, 2, sizeof(buf
)); /* Fill buffer with index 1 key */
965 for (i
= 0; i
< STREAMS
; i
++) {
966 /* Fill keys from the buffer, skipping bytes in the buffer not
967 * used by this implementation. Endian reverse the keys if on a
968 * little-endian computer.
970 memcpy(ahc
->poly_key_8
+i
, buf
+24*i
, 8);
971 endian_convert_if_le(ahc
->poly_key_8
+i
, 8, 8);
972 /* Mask the 64-bit keys to their special domain */
973 ahc
->poly_key_8
[i
] &= ((UINT64
)0x01ffffffu
<< 32) + 0x01ffffffu
;
974 ahc
->poly_accum
[i
] = 1; /* Our polyhash prepends a non-zero word */
977 /* Setup L3-1 hash variables */
978 kdf(buf
, prf_key
, 3, sizeof(buf
)); /* Fill buffer with index 2 key */
979 for (i
= 0; i
< STREAMS
; i
++)
980 memcpy(ahc
->ip_keys
+4*i
, buf
+(8*i
+4)*sizeof(UINT64
),
982 endian_convert_if_le(ahc
->ip_keys
, sizeof(UINT64
),
983 sizeof(ahc
->ip_keys
));
984 for (i
= 0; i
< STREAMS
*4; i
++)
985 ahc
->ip_keys
[i
] %= p36
; /* Bring into Z_p36 */
987 /* Setup L3-2 hash variables */
988 /* Fill buffer with index 4 key */
989 kdf(ahc
->ip_trans
, prf_key
, 4, STREAMS
* sizeof(UINT32
));
990 endian_convert_if_le(ahc
->ip_trans
, sizeof(UINT32
),
991 STREAMS
* sizeof(UINT32
));
994 /* ---------------------------------------------------------------------- */
997 static uhash_ctx_t
uhash_alloc(u_char key
[])
999 /* Allocate memory and force to a 16-byte boundary. */
1001 u_char bytes_to_add
;
1002 aes_int_key prf_key
;
1004 ctx
= (uhash_ctx_t
)malloc(sizeof(uhash_ctx
)+ALLOC_BOUNDARY
);
1006 if (ALLOC_BOUNDARY
) {
1007 bytes_to_add
= ALLOC_BOUNDARY
-
1008 ((ptrdiff_t)ctx
& (ALLOC_BOUNDARY
-1));
1009 ctx
= (uhash_ctx_t
)((u_char
*)ctx
+ bytes_to_add
);
1010 *((u_char
*)ctx
- 1) = bytes_to_add
;
1012 aes_key_setup(key
,prf_key
);
1013 uhash_init(ctx
, prf_key
);
1019 /* ---------------------------------------------------------------------- */
1022 static int uhash_free(uhash_ctx_t ctx
)
1024 /* Free memory allocated by uhash_alloc */
1025 u_char bytes_to_sub
;
1028 if (ALLOC_BOUNDARY
) {
1029 bytes_to_sub
= *((u_char
*)ctx
- 1);
1030 ctx
= (uhash_ctx_t
)((u_char
*)ctx
- bytes_to_sub
);
1037 /* ---------------------------------------------------------------------- */
1039 static int uhash_update(uhash_ctx_t ctx
, u_char
*input
, long len
)
1040 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1041 * hash each one with NH, calling the polyhash on each NH output.
1044 UWORD bytes_hashed
, bytes_remaining
;
1045 UINT8 nh_result
[STREAMS
*sizeof(UINT64
)];
1047 if (ctx
->msg_len
+ len
<= L1_KEY_LEN
) {
1048 nh_update(&ctx
->hash
, (UINT8
*)input
, len
);
1049 ctx
->msg_len
+= len
;
1052 bytes_hashed
= ctx
->msg_len
% L1_KEY_LEN
;
1053 if (ctx
->msg_len
== L1_KEY_LEN
)
1054 bytes_hashed
= L1_KEY_LEN
;
1056 if (bytes_hashed
+ len
>= L1_KEY_LEN
) {
1058 /* If some bytes have been passed to the hash function */
1059 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1060 /* bytes to complete the current nh_block. */
1062 bytes_remaining
= (L1_KEY_LEN
- bytes_hashed
);
1063 nh_update(&ctx
->hash
, (UINT8
*)input
, bytes_remaining
);
1064 nh_final(&ctx
->hash
, nh_result
);
1065 ctx
->msg_len
+= bytes_remaining
;
1066 poly_hash(ctx
,(UINT32
*)nh_result
);
1067 len
-= bytes_remaining
;
1068 input
+= bytes_remaining
;
1071 /* Hash directly from input stream if enough bytes */
1072 while (len
>= L1_KEY_LEN
) {
1073 nh(&ctx
->hash
, (UINT8
*)input
, L1_KEY_LEN
,
1074 L1_KEY_LEN
, nh_result
);
1075 ctx
->msg_len
+= L1_KEY_LEN
;
1077 input
+= L1_KEY_LEN
;
1078 poly_hash(ctx
,(UINT32
*)nh_result
);
1082 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1084 nh_update(&ctx
->hash
, (UINT8
*)input
, len
);
1085 ctx
->msg_len
+= len
;
1092 /* ---------------------------------------------------------------------- */
1094 static int uhash_final(uhash_ctx_t ctx
, u_char
*res
)
1095 /* Incorporate any pending data, pad, and generate tag */
1097 UINT8 nh_result
[STREAMS
*sizeof(UINT64
)];
1099 if (ctx
->msg_len
> L1_KEY_LEN
) {
1100 if (ctx
->msg_len
% L1_KEY_LEN
) {
1101 nh_final(&ctx
->hash
, nh_result
);
1102 poly_hash(ctx
,(UINT32
*)nh_result
);
1106 nh_final(&ctx
->hash
, nh_result
);
1107 ip_short(ctx
,nh_result
, res
);
1113 /* ---------------------------------------------------------------------- */
1116 static int uhash(uhash_ctx_t ahc
, u_char
*msg
, long len
, u_char
*res
)
1117 /* assumes that msg is in a writable buffer of length divisible by */
1118 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1120 UINT8 nh_result
[STREAMS
*sizeof(UINT64
)];
1122 int extra_zeroes_needed
;
1124 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1127 if (len
<= L1_KEY_LEN
) {
1128 if (len
== 0) /* If zero length messages will not */
1129 nh_len
= L1_PAD_BOUNDARY
; /* be seen, comment out this case */
1131 nh_len
= ((len
+ (L1_PAD_BOUNDARY
- 1)) & ~(L1_PAD_BOUNDARY
- 1));
1132 extra_zeroes_needed
= nh_len
- len
;
1133 zero_pad((UINT8
*)msg
+ len
, extra_zeroes_needed
);
1134 nh(&ahc
->hash
, (UINT8
*)msg
, nh_len
, len
, nh_result
);
1135 ip_short(ahc
,nh_result
, res
);
1137 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1138 * output to poly_hash().
1141 nh(&ahc
->hash
, (UINT8
*)msg
, L1_KEY_LEN
, L1_KEY_LEN
, nh_result
);
1142 poly_hash(ahc
,(UINT32
*)nh_result
);
1145 } while (len
>= L1_KEY_LEN
);
1147 nh_len
= ((len
+ (L1_PAD_BOUNDARY
- 1)) & ~(L1_PAD_BOUNDARY
- 1));
1148 extra_zeroes_needed
= nh_len
- len
;
1149 zero_pad((UINT8
*)msg
+ len
, extra_zeroes_needed
);
1150 nh(&ahc
->hash
, (UINT8
*)msg
, nh_len
, len
, nh_result
);
1151 poly_hash(ahc
,(UINT32
*)nh_result
);
1162 /* ---------------------------------------------------------------------- */
1163 /* ---------------------------------------------------------------------- */
1164 /* ----- Begin UMAC Section --------------------------------------------- */
1165 /* ---------------------------------------------------------------------- */
1166 /* ---------------------------------------------------------------------- */
1168 /* The UMAC interface has two interfaces, an all-at-once interface where
1169 * the entire message to be authenticated is passed to UMAC in one buffer,
1170 * and a sequential interface where the message is presented a little at a
1171 * time. The all-at-once is more optimaized than the sequential version and
1172 * should be preferred when the sequential interface is not required.
1175 uhash_ctx hash
; /* Hash function for message compression */
1176 pdf_ctx pdf
; /* PDF for hashed output */
1177 void *free_ptr
; /* Address to free this struct via */
1180 /* ---------------------------------------------------------------------- */
1183 int umac_reset(struct umac_ctx
*ctx
)
1184 /* Reset the hash function to begin a new authentication. */
1186 uhash_reset(&ctx
->hash
);
1191 /* ---------------------------------------------------------------------- */
1193 int umac_delete(struct umac_ctx
*ctx
)
1194 /* Deallocate the ctx structure */
1198 ctx
= (struct umac_ctx
*)ctx
->free_ptr
;
1204 /* ---------------------------------------------------------------------- */
1206 struct umac_ctx
*umac_new(u_char key
[])
1207 /* Dynamically allocate a umac_ctx struct, initialize variables,
1208 * generate subkeys from key. Align to 16-byte boundary.
1211 struct umac_ctx
*ctx
, *octx
;
1212 size_t bytes_to_add
;
1213 aes_int_key prf_key
;
1215 octx
= ctx
= malloc(sizeof(*ctx
) + ALLOC_BOUNDARY
);
1217 if (ALLOC_BOUNDARY
) {
1218 bytes_to_add
= ALLOC_BOUNDARY
-
1219 ((ptrdiff_t)ctx
& (ALLOC_BOUNDARY
- 1));
1220 ctx
= (struct umac_ctx
*)((u_char
*)ctx
+ bytes_to_add
);
1222 ctx
->free_ptr
= octx
;
1223 aes_key_setup(key
,prf_key
);
1224 pdf_init(&ctx
->pdf
, prf_key
);
1225 uhash_init(&ctx
->hash
, prf_key
);
1231 /* ---------------------------------------------------------------------- */
1233 int umac_final(struct umac_ctx
*ctx
, u_char tag
[], u_char nonce
[8])
1234 /* Incorporate any pending data, pad, and generate tag */
1236 uhash_final(&ctx
->hash
, (u_char
*)tag
);
1237 pdf_gen_xor(&ctx
->pdf
, (UINT8
*)nonce
, (UINT8
*)tag
);
1242 /* ---------------------------------------------------------------------- */
1244 int umac_update(struct umac_ctx
*ctx
, u_char
*input
, long len
)
1245 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1246 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1247 /* output buffer is full. */
1249 uhash_update(&ctx
->hash
, input
, len
);
1253 /* ---------------------------------------------------------------------- */
1256 int umac(struct umac_ctx
*ctx
, u_char
*input
,
1257 long len
, u_char tag
[],
1259 /* All-in-one version simply calls umac_update() and umac_final(). */
1261 uhash(&ctx
->hash
, input
, len
, (u_char
*)tag
);
1262 pdf_gen_xor(&ctx
->pdf
, (UINT8
*)nonce
, (UINT8
*)tag
);
1268 /* ---------------------------------------------------------------------- */
1269 /* ---------------------------------------------------------------------- */
1270 /* ----- End UMAC Section ----------------------------------------------- */
1271 /* ---------------------------------------------------------------------- */
1272 /* ---------------------------------------------------------------------- */