kernel - pmap - add additional logic for cpu_invltlb()
[dragonfly.git] / sys / platform / pc32 / i386 / pmap.c
blob637783809ae9dac0cbcb3148a1471711fb55f463
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
42 * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
43 * $DragonFly: src/sys/platform/pc32/i386/pmap.c,v 1.87 2008/08/25 17:01:38 dillon Exp $
47 * Manages physical address maps.
49 * In addition to hardware address maps, this
50 * module is called upon to provide software-use-only
51 * maps which may or may not be stored in the same
52 * form as hardware maps. These pseudo-maps are
53 * used to store intermediate results from copy
54 * operations to and from address spaces.
56 * Since the information managed by this module is
57 * also stored by the logical address mapping module,
58 * this module may throw away valid virtual-to-physical
59 * mappings at almost any time. However, invalidations
60 * of virtual-to-physical mappings must be done as
61 * requested.
63 * In order to cope with hardware architectures which
64 * make virtual-to-physical map invalidates expensive,
65 * this module may delay invalidate or reduced protection
66 * operations until such time as they are actually
67 * necessary. This module is given full information as
68 * to which processors are currently using which maps,
69 * and to when physical maps must be made correct.
72 * PMAP_DEBUG - see platform/pc32/include/pmap.h
75 #include "opt_disable_pse.h"
76 #include "opt_pmap.h"
77 #include "opt_msgbuf.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/msgbuf.h>
84 #include <sys/vmmeter.h>
85 #include <sys/mman.h>
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <sys/sysctl.h>
90 #include <sys/lock.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_pager.h>
98 #include <vm/vm_zone.h>
100 #include <sys/user.h>
101 #include <sys/thread2.h>
102 #include <sys/sysref2.h>
104 #include <machine/cputypes.h>
105 #include <machine/md_var.h>
106 #include <machine/specialreg.h>
107 #include <machine/smp.h>
108 #include <machine_base/apic/apicreg.h>
109 #include <machine/globaldata.h>
110 #include <machine/pmap.h>
111 #include <machine/pmap_inval.h>
113 #define PMAP_KEEP_PDIRS
114 #ifndef PMAP_SHPGPERPROC
115 #define PMAP_SHPGPERPROC 200
116 #endif
118 #if defined(DIAGNOSTIC)
119 #define PMAP_DIAGNOSTIC
120 #endif
122 #define MINPV 2048
124 #if !defined(PMAP_DIAGNOSTIC)
125 #define PMAP_INLINE __inline
126 #else
127 #define PMAP_INLINE
128 #endif
131 * Get PDEs and PTEs for user/kernel address space
133 #define pmap_pde(m, v) (&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
136 #define pmap_pde_v(pte) ((*(int *)pte & PG_V) != 0)
137 #define pmap_pte_w(pte) ((*(int *)pte & PG_W) != 0)
138 #define pmap_pte_m(pte) ((*(int *)pte & PG_M) != 0)
139 #define pmap_pte_u(pte) ((*(int *)pte & PG_A) != 0)
140 #define pmap_pte_v(pte) ((*(int *)pte & PG_V) != 0)
144 * Given a map and a machine independent protection code,
145 * convert to a vax protection code.
147 #define pte_prot(m, p) \
148 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
149 static int protection_codes[8];
151 struct pmap kernel_pmap;
152 static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
154 vm_paddr_t avail_start; /* PA of first available physical page */
155 vm_paddr_t avail_end; /* PA of last available physical page */
156 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
157 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
158 vm_offset_t KvaStart; /* VA start of KVA space */
159 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
160 vm_offset_t KvaSize; /* max size of kernel virtual address space */
161 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
162 static int pgeflag; /* PG_G or-in */
163 static int pseflag; /* PG_PS or-in */
165 static vm_object_t kptobj;
167 static int nkpt;
168 vm_offset_t kernel_vm_end;
171 * Data for the pv entry allocation mechanism
173 static vm_zone_t pvzone;
174 static struct vm_zone pvzone_store;
175 static struct vm_object pvzone_obj;
176 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
177 static int pmap_pagedaemon_waken = 0;
178 static struct pv_entry *pvinit;
181 * All those kernel PT submaps that BSD is so fond of
183 pt_entry_t *CMAP1 = 0, *ptmmap;
184 caddr_t CADDR1 = 0, ptvmmap = 0;
185 static pt_entry_t *msgbufmap;
186 struct msgbuf *msgbufp=0;
189 * Crashdump maps.
191 static pt_entry_t *pt_crashdumpmap;
192 static caddr_t crashdumpmap;
194 extern pt_entry_t *SMPpt;
196 static PMAP_INLINE void free_pv_entry (pv_entry_t pv);
197 static unsigned * get_ptbase (pmap_t pmap);
198 static pv_entry_t get_pv_entry (void);
199 static void i386_protection_init (void);
200 static __inline void pmap_clearbit (vm_page_t m, int bit);
202 static void pmap_remove_all (vm_page_t m);
203 static void pmap_enter_quick (pmap_t pmap, vm_offset_t va, vm_page_t m);
204 static int pmap_remove_pte (struct pmap *pmap, unsigned *ptq,
205 vm_offset_t sva, pmap_inval_info_t info);
206 static void pmap_remove_page (struct pmap *pmap,
207 vm_offset_t va, pmap_inval_info_t info);
208 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
209 vm_offset_t va, pmap_inval_info_t info);
210 static boolean_t pmap_testbit (vm_page_t m, int bit);
211 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
212 vm_page_t mpte, vm_page_t m);
214 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
216 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
217 static vm_page_t _pmap_allocpte (pmap_t pmap, unsigned ptepindex);
218 static unsigned * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
219 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
220 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t, pmap_inval_info_t);
221 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
223 static unsigned pdir4mb;
226 * Move the kernel virtual free pointer to the next
227 * 4MB. This is used to help improve performance
228 * by using a large (4MB) page for much of the kernel
229 * (.text, .data, .bss)
231 static vm_offset_t
232 pmap_kmem_choose(vm_offset_t addr)
234 vm_offset_t newaddr = addr;
235 #ifndef DISABLE_PSE
236 if (cpu_feature & CPUID_PSE) {
237 newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
239 #endif
240 return newaddr;
244 * pmap_pte:
246 * Extract the page table entry associated with the given map/virtual
247 * pair.
249 * This function may NOT be called from an interrupt.
251 PMAP_INLINE unsigned *
252 pmap_pte(pmap_t pmap, vm_offset_t va)
254 unsigned *pdeaddr;
256 if (pmap) {
257 pdeaddr = (unsigned *) pmap_pde(pmap, va);
258 if (*pdeaddr & PG_PS)
259 return pdeaddr;
260 if (*pdeaddr) {
261 return get_ptbase(pmap) + i386_btop(va);
264 return (0);
268 * pmap_pte_quick:
270 * Super fast pmap_pte routine best used when scanning the pv lists.
271 * This eliminates many course-grained invltlb calls. Note that many of
272 * the pv list scans are across different pmaps and it is very wasteful
273 * to do an entire invltlb when checking a single mapping.
275 * Should only be called while in a critical section.
277 * Unlike get_ptbase(), this function MAY be called from an interrupt or
278 * interrupt thread.
280 static unsigned *
281 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
283 struct mdglobaldata *gd = mdcpu;
284 unsigned pde, newpf;
286 if ((pde = (unsigned) pmap->pm_pdir[va >> PDRSHIFT]) != 0) {
287 unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
288 unsigned index = i386_btop(va);
289 /* are we current address space or kernel? */
290 if ((pmap == &kernel_pmap) ||
291 (frame == (((unsigned) PTDpde) & PG_FRAME))) {
292 return (unsigned *) PTmap + index;
294 newpf = pde & PG_FRAME;
295 if ( ((* (unsigned *) gd->gd_PMAP1) & PG_FRAME) != newpf) {
296 * (unsigned *) gd->gd_PMAP1 = newpf | PG_RW | PG_V;
297 cpu_invlpg(gd->gd_PADDR1);
299 return gd->gd_PADDR1 + ((unsigned) index & (NPTEPG - 1));
301 return (0);
306 * Bootstrap the system enough to run with virtual memory.
308 * On the i386 this is called after mapping has already been enabled
309 * and just syncs the pmap module with what has already been done.
310 * [We can't call it easily with mapping off since the kernel is not
311 * mapped with PA == VA, hence we would have to relocate every address
312 * from the linked base (virtual) address "KERNBASE" to the actual
313 * (physical) address starting relative to 0]
315 void
316 pmap_bootstrap(vm_paddr_t firstaddr, vm_paddr_t loadaddr)
318 vm_offset_t va;
319 pt_entry_t *pte;
320 struct mdglobaldata *gd;
321 int i;
322 int pg;
324 KvaStart = (vm_offset_t)VADDR(PTDPTDI, 0);
325 KvaSize = (vm_offset_t)VADDR(APTDPTDI, 0) - KvaStart;
326 KvaEnd = KvaStart + KvaSize;
328 avail_start = firstaddr;
331 * XXX The calculation of virtual_start is wrong. It's NKPT*PAGE_SIZE
332 * too large. It should instead be correctly calculated in locore.s and
333 * not based on 'first' (which is a physical address, not a virtual
334 * address, for the start of unused physical memory). The kernel
335 * page tables are NOT double mapped and thus should not be included
336 * in this calculation.
338 virtual_start = (vm_offset_t) KERNBASE + firstaddr;
339 virtual_start = pmap_kmem_choose(virtual_start);
340 virtual_end = VADDR(KPTDI+NKPDE-1, NPTEPG-1);
343 * Initialize protection array.
345 i386_protection_init();
348 * The kernel's pmap is statically allocated so we don't have to use
349 * pmap_create, which is unlikely to work correctly at this part of
350 * the boot sequence (XXX and which no longer exists).
352 kernel_pmap.pm_pdir = (pd_entry_t *)(KERNBASE + (u_int)IdlePTD);
353 kernel_pmap.pm_count = 1;
354 kernel_pmap.pm_active = (cpumask_t)-1; /* don't allow deactivation */
355 TAILQ_INIT(&kernel_pmap.pm_pvlist);
356 nkpt = NKPT;
359 * Reserve some special page table entries/VA space for temporary
360 * mapping of pages.
362 #define SYSMAP(c, p, v, n) \
363 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
365 va = virtual_start;
366 pte = (pt_entry_t *) pmap_pte(&kernel_pmap, va);
369 * CMAP1/CMAP2 are used for zeroing and copying pages.
371 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
374 * Crashdump maps.
376 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
379 * ptvmmap is used for reading arbitrary physical pages via
380 * /dev/mem.
382 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
385 * msgbufp is used to map the system message buffer.
386 * XXX msgbufmap is not used.
388 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
389 atop(round_page(MSGBUF_SIZE)))
391 virtual_start = va;
393 *(int *) CMAP1 = 0;
394 for (i = 0; i < NKPT; i++)
395 PTD[i] = 0;
398 * PG_G is terribly broken on SMP because we IPI invltlb's in some
399 * cases rather then invl1pg. Actually, I don't even know why it
400 * works under UP because self-referential page table mappings
402 #ifdef SMP
403 pgeflag = 0;
404 #else
405 if (cpu_feature & CPUID_PGE)
406 pgeflag = PG_G;
407 #endif
410 * Initialize the 4MB page size flag
412 pseflag = 0;
414 * The 4MB page version of the initial
415 * kernel page mapping.
417 pdir4mb = 0;
419 #if !defined(DISABLE_PSE)
420 if (cpu_feature & CPUID_PSE) {
421 unsigned ptditmp;
423 * Note that we have enabled PSE mode
425 pseflag = PG_PS;
426 ptditmp = *((unsigned *)PTmap + i386_btop(KERNBASE));
427 ptditmp &= ~(NBPDR - 1);
428 ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
429 pdir4mb = ptditmp;
431 #ifndef SMP
433 * Enable the PSE mode. If we are SMP we can't do this
434 * now because the APs will not be able to use it when
435 * they boot up.
437 load_cr4(rcr4() | CR4_PSE);
440 * We can do the mapping here for the single processor
441 * case. We simply ignore the old page table page from
442 * now on.
445 * For SMP, we still need 4K pages to bootstrap APs,
446 * PSE will be enabled as soon as all APs are up.
448 PTD[KPTDI] = (pd_entry_t)ptditmp;
449 kernel_pmap.pm_pdir[KPTDI] = (pd_entry_t)ptditmp;
450 cpu_invltlb();
451 #endif
453 #endif
456 * We need to finish setting up the globaldata page for the BSP.
457 * locore has already populated the page table for the mdglobaldata
458 * portion.
460 pg = MDGLOBALDATA_BASEALLOC_PAGES;
461 gd = &CPU_prvspace[0].mdglobaldata;
462 gd->gd_CMAP1 = &SMPpt[pg + 0];
463 gd->gd_CMAP2 = &SMPpt[pg + 1];
464 gd->gd_CMAP3 = &SMPpt[pg + 2];
465 gd->gd_PMAP1 = &SMPpt[pg + 3];
466 gd->gd_GDMAP1 = &PTD[KGDTDI];
467 gd->gd_CADDR1 = CPU_prvspace[0].CPAGE1;
468 gd->gd_CADDR2 = CPU_prvspace[0].CPAGE2;
469 gd->gd_CADDR3 = CPU_prvspace[0].CPAGE3;
470 gd->gd_PADDR1 = (unsigned *)CPU_prvspace[0].PPAGE1;
471 gd->gd_GDADDR1= (unsigned *)VADDR(KGDTDI, 0);
473 cpu_invltlb();
476 #ifdef SMP
478 * Set 4mb pdir for mp startup
480 void
481 pmap_set_opt(void)
483 if (pseflag && (cpu_feature & CPUID_PSE)) {
484 load_cr4(rcr4() | CR4_PSE);
485 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
486 kernel_pmap.pm_pdir[KPTDI] =
487 PTD[KPTDI] = (pd_entry_t)pdir4mb;
488 cpu_invltlb();
492 #endif
495 * Initialize the pmap module.
496 * Called by vm_init, to initialize any structures that the pmap
497 * system needs to map virtual memory.
498 * pmap_init has been enhanced to support in a fairly consistant
499 * way, discontiguous physical memory.
501 void
502 pmap_init(void)
504 int i;
505 int initial_pvs;
508 * object for kernel page table pages
510 kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
513 * Allocate memory for random pmap data structures. Includes the
514 * pv_head_table.
517 for(i = 0; i < vm_page_array_size; i++) {
518 vm_page_t m;
520 m = &vm_page_array[i];
521 TAILQ_INIT(&m->md.pv_list);
522 m->md.pv_list_count = 0;
526 * init the pv free list
528 initial_pvs = vm_page_array_size;
529 if (initial_pvs < MINPV)
530 initial_pvs = MINPV;
531 pvzone = &pvzone_store;
532 pvinit = (struct pv_entry *) kmem_alloc(&kernel_map,
533 initial_pvs * sizeof (struct pv_entry));
534 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
535 initial_pvs);
538 * Now it is safe to enable pv_table recording.
540 pmap_initialized = TRUE;
544 * Initialize the address space (zone) for the pv_entries. Set a
545 * high water mark so that the system can recover from excessive
546 * numbers of pv entries.
548 void
549 pmap_init2(void)
551 int shpgperproc = PMAP_SHPGPERPROC;
553 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
554 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
555 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
556 pv_entry_high_water = 9 * (pv_entry_max / 10);
557 zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
561 /***************************************************
562 * Low level helper routines.....
563 ***************************************************/
565 #ifdef PMAP_DEBUG
567 static void
568 test_m_maps_pv(vm_page_t m, pv_entry_t pv)
570 pv_entry_t spv;
572 crit_enter();
573 #ifdef PMAP_DEBUG
574 KKASSERT(pv->pv_m == m);
575 #endif
576 TAILQ_FOREACH(spv, &m->md.pv_list, pv_list) {
577 if (pv == spv) {
578 crit_exit();
579 return;
582 crit_exit();
583 panic("test_m_maps_pv: failed m %p pv %p\n", m, pv);
586 static void
587 ptbase_assert(struct pmap *pmap)
589 unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
591 /* are we current address space or kernel? */
592 if (pmap == &kernel_pmap || frame == (((unsigned)PTDpde) & PG_FRAME)) {
593 return;
595 KKASSERT(frame == (*mycpu->gd_GDMAP1 & PG_FRAME));
598 #else
600 #define test_m_maps_pv(m, pv)
601 #define ptbase_assert(pmap)
603 #endif
605 #if defined(PMAP_DIAGNOSTIC)
608 * This code checks for non-writeable/modified pages.
609 * This should be an invalid condition.
611 static int
612 pmap_nw_modified(pt_entry_t ptea)
614 int pte;
616 pte = (int) ptea;
618 if ((pte & (PG_M|PG_RW)) == PG_M)
619 return 1;
620 else
621 return 0;
623 #endif
627 * this routine defines the region(s) of memory that should
628 * not be tested for the modified bit.
630 static PMAP_INLINE int
631 pmap_track_modified(vm_offset_t va)
633 if ((va < clean_sva) || (va >= clean_eva))
634 return 1;
635 else
636 return 0;
640 * Retrieve the mapped page table base for a particular pmap. Use our self
641 * mapping for the kernel_pmap or our current pmap.
643 * For foreign pmaps we use the per-cpu page table map. Since this involves
644 * installing a ptd it's actually (per-process x per-cpu). However, we
645 * still cannot depend on our mapping to survive thread switches because
646 * the process might be threaded and switching to another thread for the
647 * same process on the same cpu will allow that other thread to make its
648 * own mapping.
650 * This could be a bit confusing but the jist is for something like the
651 * vkernel which uses foreign pmaps all the time this represents a pretty
652 * good cache that avoids unnecessary invltlb()s.
654 static unsigned *
655 get_ptbase(pmap_t pmap)
657 unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
658 struct mdglobaldata *gd = mdcpu;
661 * We can use PTmap if the pmap is our current address space or
662 * the kernel address space.
664 if (pmap == &kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
665 return (unsigned *) PTmap;
669 * Otherwise we use the per-cpu alternative page table map. Each
670 * cpu gets its own map. Because of this we cannot use this map
671 * from interrupts or threads which can preempt.
673 * Even if we already have the map cached we may still have to
674 * invalidate the TLB if another cpu modified a PDE in the map.
676 KKASSERT(gd->mi.gd_intr_nesting_level == 0 &&
677 (gd->mi.gd_curthread->td_flags & TDF_INTTHREAD) == 0);
679 if ((*gd->gd_GDMAP1 & PG_FRAME) != frame) {
680 *gd->gd_GDMAP1 = frame | PG_RW | PG_V;
681 pmap->pm_cached |= gd->mi.gd_cpumask;
682 cpu_invltlb();
683 } else if ((pmap->pm_cached & gd->mi.gd_cpumask) == 0) {
684 pmap->pm_cached |= gd->mi.gd_cpumask;
685 cpu_invltlb();
687 return ((unsigned *)gd->gd_GDADDR1);
691 * pmap_extract:
693 * Extract the physical page address associated with the map/VA pair.
695 * This function may not be called from an interrupt if the pmap is
696 * not kernel_pmap.
698 vm_paddr_t
699 pmap_extract(pmap_t pmap, vm_offset_t va)
701 vm_offset_t rtval;
702 vm_offset_t pdirindex;
704 pdirindex = va >> PDRSHIFT;
705 if (pmap && (rtval = (unsigned) pmap->pm_pdir[pdirindex])) {
706 unsigned *pte;
707 if ((rtval & PG_PS) != 0) {
708 rtval &= ~(NBPDR - 1);
709 rtval |= va & (NBPDR - 1);
710 return rtval;
712 pte = get_ptbase(pmap) + i386_btop(va);
713 rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
714 return rtval;
716 return 0;
719 /***************************************************
720 * Low level mapping routines.....
721 ***************************************************/
724 * Routine: pmap_kenter
725 * Function:
726 * Add a wired page to the KVA
727 * NOTE! note that in order for the mapping to take effect -- you
728 * should do an invltlb after doing the pmap_kenter().
730 void
731 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
733 unsigned *pte;
734 unsigned npte;
735 pmap_inval_info info;
737 pmap_inval_init(&info);
738 npte = pa | PG_RW | PG_V | pgeflag;
739 pte = (unsigned *)vtopte(va);
740 pmap_inval_add(&info, &kernel_pmap, va);
741 *pte = npte;
742 pmap_inval_flush(&info);
746 * Routine: pmap_kenter_quick
747 * Function:
748 * Similar to pmap_kenter(), except we only invalidate the
749 * mapping on the current CPU.
751 void
752 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
754 unsigned *pte;
755 unsigned npte;
757 npte = pa | PG_RW | PG_V | pgeflag;
758 pte = (unsigned *)vtopte(va);
759 *pte = npte;
760 cpu_invlpg((void *)va);
763 void
764 pmap_kenter_sync(vm_offset_t va)
766 pmap_inval_info info;
768 pmap_inval_init(&info);
769 pmap_inval_add(&info, &kernel_pmap, va);
770 pmap_inval_flush(&info);
773 void
774 pmap_kenter_sync_quick(vm_offset_t va)
776 cpu_invlpg((void *)va);
780 * remove a page from the kernel pagetables
782 void
783 pmap_kremove(vm_offset_t va)
785 unsigned *pte;
786 pmap_inval_info info;
788 pmap_inval_init(&info);
789 pte = (unsigned *)vtopte(va);
790 pmap_inval_add(&info, &kernel_pmap, va);
791 *pte = 0;
792 pmap_inval_flush(&info);
795 void
796 pmap_kremove_quick(vm_offset_t va)
798 unsigned *pte;
799 pte = (unsigned *)vtopte(va);
800 *pte = 0;
801 cpu_invlpg((void *)va);
805 * XXX these need to be recoded. They are not used in any critical path.
807 void
808 pmap_kmodify_rw(vm_offset_t va)
810 *vtopte(va) |= PG_RW;
811 cpu_invlpg((void *)va);
814 void
815 pmap_kmodify_nc(vm_offset_t va)
817 *vtopte(va) |= PG_N;
818 cpu_invlpg((void *)va);
822 * Used to map a range of physical addresses into kernel
823 * virtual address space.
825 * For now, VM is already on, we only need to map the
826 * specified memory.
828 vm_offset_t
829 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
831 vm_offset_t sva, virt;
833 sva = virt = *virtp;
834 while (start < end) {
835 pmap_kenter(virt, start);
836 virt += PAGE_SIZE;
837 start += PAGE_SIZE;
839 *virtp = virt;
840 return (sva);
845 * Add a list of wired pages to the kva
846 * this routine is only used for temporary
847 * kernel mappings that do not need to have
848 * page modification or references recorded.
849 * Note that old mappings are simply written
850 * over. The page *must* be wired.
852 void
853 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
855 vm_offset_t end_va;
857 end_va = va + count * PAGE_SIZE;
859 while (va < end_va) {
860 unsigned *pte;
862 pte = (unsigned *)vtopte(va);
863 *pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
864 cpu_invlpg((void *)va);
865 va += PAGE_SIZE;
866 m++;
868 #ifdef SMP
869 smp_invltlb(); /* XXX */
870 #endif
873 void
874 pmap_qenter2(vm_offset_t va, vm_page_t *m, int count, cpumask_t *mask)
876 vm_offset_t end_va;
877 cpumask_t cmask = mycpu->gd_cpumask;
879 end_va = va + count * PAGE_SIZE;
881 while (va < end_va) {
882 unsigned *pte;
883 unsigned pteval;
886 * Install the new PTE. If the pte changed from the prior
887 * mapping we must reset the cpu mask and invalidate the page.
888 * If the pte is the same but we have not seen it on the
889 * current cpu, invlpg the existing mapping. Otherwise the
890 * entry is optimal and no invalidation is required.
892 pte = (unsigned *)vtopte(va);
893 pteval = VM_PAGE_TO_PHYS(*m) | PG_A | PG_RW | PG_V | pgeflag;
894 if (*pte != pteval) {
895 *mask = 0;
896 *pte = pteval;
897 cpu_invlpg((void *)va);
898 } else if ((*mask & cmask) == 0) {
899 cpu_invlpg((void *)va);
901 va += PAGE_SIZE;
902 m++;
904 *mask |= cmask;
908 * This routine jerks page mappings from the
909 * kernel -- it is meant only for temporary mappings.
911 * MPSAFE, INTERRUPT SAFE (cluster callback)
913 void
914 pmap_qremove(vm_offset_t va, int count)
916 vm_offset_t end_va;
918 end_va = va + count*PAGE_SIZE;
920 while (va < end_va) {
921 unsigned *pte;
923 pte = (unsigned *)vtopte(va);
924 *pte = 0;
925 cpu_invlpg((void *)va);
926 va += PAGE_SIZE;
928 #ifdef SMP
929 smp_invltlb();
930 #endif
934 * This routine works like vm_page_lookup() but also blocks as long as the
935 * page is busy. This routine does not busy the page it returns.
937 * Unless the caller is managing objects whos pages are in a known state,
938 * the call should be made with a critical section held so the page's object
939 * association remains valid on return.
941 static vm_page_t
942 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
944 vm_page_t m;
946 do {
947 m = vm_page_lookup(object, pindex);
948 } while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
950 return(m);
954 * Create a new thread and optionally associate it with a (new) process.
955 * NOTE! the new thread's cpu may not equal the current cpu.
957 void
958 pmap_init_thread(thread_t td)
960 /* enforce pcb placement */
961 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
962 td->td_savefpu = &td->td_pcb->pcb_save;
963 td->td_sp = (char *)td->td_pcb - 16;
967 * This routine directly affects the fork perf for a process.
969 void
970 pmap_init_proc(struct proc *p)
975 * Dispose the UPAGES for a process that has exited.
976 * This routine directly impacts the exit perf of a process.
978 void
979 pmap_dispose_proc(struct proc *p)
981 KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
984 /***************************************************
985 * Page table page management routines.....
986 ***************************************************/
989 * This routine unholds page table pages, and if the hold count
990 * drops to zero, then it decrements the wire count.
992 static int
993 _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, pmap_inval_info_t info)
996 * Wait until we can busy the page ourselves. We cannot have
997 * any active flushes if we block.
999 if (m->flags & PG_BUSY) {
1000 pmap_inval_flush(info);
1001 while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1004 KASSERT(m->queue == PQ_NONE,
1005 ("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1007 if (m->hold_count == 1) {
1009 * Unmap the page table page.
1011 * NOTE: We must clear pm_cached for all cpus, including
1012 * the current one, when clearing a page directory
1013 * entry.
1015 vm_page_busy(m);
1016 pmap_inval_add(info, pmap, -1);
1017 KKASSERT(pmap->pm_pdir[m->pindex]);
1018 pmap->pm_pdir[m->pindex] = 0;
1019 pmap->pm_cached = 0;
1021 KKASSERT(pmap->pm_stats.resident_count > 0);
1022 --pmap->pm_stats.resident_count;
1024 if (pmap->pm_ptphint == m)
1025 pmap->pm_ptphint = NULL;
1028 * This was our last hold, the page had better be unwired
1029 * after we decrement wire_count.
1031 * FUTURE NOTE: shared page directory page could result in
1032 * multiple wire counts.
1034 vm_page_unhold(m);
1035 --m->wire_count;
1036 KKASSERT(m->wire_count == 0);
1037 --vmstats.v_wire_count;
1038 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1039 vm_page_flash(m);
1040 vm_page_free_zero(m);
1041 return 1;
1042 } else {
1043 KKASSERT(m->hold_count > 1);
1044 vm_page_unhold(m);
1045 return 0;
1049 static PMAP_INLINE int
1050 pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, pmap_inval_info_t info)
1052 KKASSERT(m->hold_count > 0);
1053 if (m->hold_count > 1) {
1054 vm_page_unhold(m);
1055 return 0;
1056 } else {
1057 return _pmap_unwire_pte_hold(pmap, m, info);
1062 * After removing a page table entry, this routine is used to
1063 * conditionally free the page, and manage the hold/wire counts.
1065 * WARNING: This function can block
1067 static int
1068 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
1069 pmap_inval_info_t info)
1071 unsigned ptepindex;
1072 if (va >= UPT_MIN_ADDRESS)
1073 return 0;
1075 if (mpte == NULL) {
1076 ptepindex = (va >> PDRSHIFT);
1077 if (pmap->pm_ptphint &&
1078 (pmap->pm_ptphint->pindex == ptepindex)) {
1079 mpte = pmap->pm_ptphint;
1080 } else {
1081 pmap_inval_flush(info);
1082 mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1083 pmap->pm_ptphint = mpte;
1087 return pmap_unwire_pte_hold(pmap, mpte, info);
1091 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1092 * it, and IdlePTD, represents the template used to update all other pmaps.
1094 * On architectures where the kernel pmap is not integrated into the user
1095 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1096 * kernel_pmap should be used to directly access the kernel_pmap.
1098 void
1099 pmap_pinit0(struct pmap *pmap)
1101 pmap->pm_pdir =
1102 (pd_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1103 pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t) IdlePTD);
1104 pmap->pm_count = 1;
1105 pmap->pm_active = 0;
1106 pmap->pm_cached = 0;
1107 pmap->pm_ptphint = NULL;
1108 TAILQ_INIT(&pmap->pm_pvlist);
1109 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1113 * Initialize a preallocated and zeroed pmap structure,
1114 * such as one in a vmspace structure.
1116 void
1117 pmap_pinit(struct pmap *pmap)
1119 vm_page_t ptdpg;
1122 * No need to allocate page table space yet but we do need a valid
1123 * page directory table.
1125 if (pmap->pm_pdir == NULL) {
1126 pmap->pm_pdir =
1127 (pd_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1131 * Allocate an object for the ptes
1133 if (pmap->pm_pteobj == NULL)
1134 pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1137 * Allocate the page directory page, unless we already have
1138 * one cached. If we used the cached page the wire_count will
1139 * already be set appropriately.
1141 if ((ptdpg = pmap->pm_pdirm) == NULL) {
1142 ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1143 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1144 pmap->pm_pdirm = ptdpg;
1145 vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1146 ptdpg->valid = VM_PAGE_BITS_ALL;
1147 ptdpg->wire_count = 1;
1148 ++vmstats.v_wire_count;
1149 pmap_kenter((vm_offset_t)pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
1151 if ((ptdpg->flags & PG_ZERO) == 0)
1152 bzero(pmap->pm_pdir, PAGE_SIZE);
1153 #ifdef PMAP_DEBUG
1154 else
1155 pmap_page_assertzero(VM_PAGE_TO_PHYS(ptdpg));
1156 #endif
1158 pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1160 /* install self-referential address mapping entry */
1161 *(unsigned *) (pmap->pm_pdir + PTDPTDI) =
1162 VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1164 pmap->pm_count = 1;
1165 pmap->pm_active = 0;
1166 pmap->pm_cached = 0;
1167 pmap->pm_ptphint = NULL;
1168 TAILQ_INIT(&pmap->pm_pvlist);
1169 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1170 pmap->pm_stats.resident_count = 1;
1174 * Clean up a pmap structure so it can be physically freed. This routine
1175 * is called by the vmspace dtor function. A great deal of pmap data is
1176 * left passively mapped to improve vmspace management so we have a bit
1177 * of cleanup work to do here.
1179 void
1180 pmap_puninit(pmap_t pmap)
1182 vm_page_t p;
1184 KKASSERT(pmap->pm_active == 0);
1185 if ((p = pmap->pm_pdirm) != NULL) {
1186 KKASSERT(pmap->pm_pdir != NULL);
1187 pmap_kremove((vm_offset_t)pmap->pm_pdir);
1188 p->wire_count--;
1189 vmstats.v_wire_count--;
1190 KKASSERT((p->flags & PG_BUSY) == 0);
1191 vm_page_busy(p);
1192 vm_page_free_zero(p);
1193 pmap->pm_pdirm = NULL;
1195 if (pmap->pm_pdir) {
1196 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pdir, PAGE_SIZE);
1197 pmap->pm_pdir = NULL;
1199 if (pmap->pm_pteobj) {
1200 vm_object_deallocate(pmap->pm_pteobj);
1201 pmap->pm_pteobj = NULL;
1206 * Wire in kernel global address entries. To avoid a race condition
1207 * between pmap initialization and pmap_growkernel, this procedure
1208 * adds the pmap to the master list (which growkernel scans to update),
1209 * then copies the template.
1211 void
1212 pmap_pinit2(struct pmap *pmap)
1214 crit_enter();
1215 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1216 /* XXX copies current process, does not fill in MPPTDI */
1217 bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1218 crit_exit();
1222 * Attempt to release and free a vm_page in a pmap. Returns 1 on success,
1223 * 0 on failure (if the procedure had to sleep).
1225 * When asked to remove the page directory page itself, we actually just
1226 * leave it cached so we do not have to incur the SMP inval overhead of
1227 * removing the kernel mapping. pmap_puninit() will take care of it.
1229 static int
1230 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1232 unsigned *pde = (unsigned *) pmap->pm_pdir;
1234 * This code optimizes the case of freeing non-busy
1235 * page-table pages. Those pages are zero now, and
1236 * might as well be placed directly into the zero queue.
1238 if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1239 return 0;
1241 vm_page_busy(p);
1244 * Remove the page table page from the processes address space.
1246 KKASSERT(pmap->pm_stats.resident_count > 0);
1247 KKASSERT(pde[p->pindex]);
1248 pde[p->pindex] = 0;
1249 --pmap->pm_stats.resident_count;
1251 if (p->hold_count) {
1252 panic("pmap_release: freeing held page table page");
1254 if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1255 pmap->pm_ptphint = NULL;
1258 * We leave the page directory page cached, wired, and mapped in
1259 * the pmap until the dtor function (pmap_puninit()) gets called.
1260 * However, still clean it up so we can set PG_ZERO.
1262 * The pmap has already been removed from the pmap_list in the
1263 * PTDPTDI case.
1265 if (p->pindex == PTDPTDI) {
1266 bzero(pde + KPTDI, nkpt * PTESIZE);
1267 bzero(pde + KGDTDI, (NPDEPG - KGDTDI) * PTESIZE);
1268 vm_page_flag_set(p, PG_ZERO);
1269 vm_page_wakeup(p);
1270 } else {
1271 p->wire_count--;
1272 vmstats.v_wire_count--;
1273 vm_page_free_zero(p);
1275 return 1;
1279 * this routine is called if the page table page is not
1280 * mapped correctly.
1282 static vm_page_t
1283 _pmap_allocpte(pmap_t pmap, unsigned ptepindex)
1285 vm_offset_t pteva, ptepa;
1286 vm_page_t m;
1289 * Find or fabricate a new pagetable page
1291 m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1292 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1294 KASSERT(m->queue == PQ_NONE,
1295 ("_pmap_allocpte: %p->queue != PQ_NONE", m));
1298 * Increment the hold count for the page we will be returning to
1299 * the caller.
1301 m->hold_count++;
1304 * It is possible that someone else got in and mapped by the page
1305 * directory page while we were blocked, if so just unbusy and
1306 * return the held page.
1308 if ((ptepa = pmap->pm_pdir[ptepindex]) != 0) {
1309 KKASSERT((ptepa & PG_FRAME) == VM_PAGE_TO_PHYS(m));
1310 vm_page_wakeup(m);
1311 return(m);
1314 if (m->wire_count == 0)
1315 vmstats.v_wire_count++;
1316 m->wire_count++;
1320 * Map the pagetable page into the process address space, if
1321 * it isn't already there.
1323 * NOTE: For safety clear pm_cached for all cpus including the
1324 * current one when adding a PDE to the map.
1326 ++pmap->pm_stats.resident_count;
1328 ptepa = VM_PAGE_TO_PHYS(m);
1329 pmap->pm_pdir[ptepindex] =
1330 (pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1331 pmap->pm_cached = 0;
1334 * Set the page table hint
1336 pmap->pm_ptphint = m;
1339 * Try to use the new mapping, but if we cannot, then
1340 * do it with the routine that maps the page explicitly.
1342 if ((m->flags & PG_ZERO) == 0) {
1343 if ((((unsigned)pmap->pm_pdir[PTDPTDI]) & PG_FRAME) ==
1344 (((unsigned) PTDpde) & PG_FRAME)) {
1345 pteva = UPT_MIN_ADDRESS + i386_ptob(ptepindex);
1346 bzero((caddr_t) pteva, PAGE_SIZE);
1347 } else {
1348 pmap_zero_page(ptepa);
1351 #ifdef PMAP_DEBUG
1352 else {
1353 pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1355 #endif
1357 m->valid = VM_PAGE_BITS_ALL;
1358 vm_page_flag_clear(m, PG_ZERO);
1359 vm_page_flag_set(m, PG_MAPPED);
1360 vm_page_wakeup(m);
1362 return m;
1365 static vm_page_t
1366 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1368 unsigned ptepindex;
1369 vm_offset_t ptepa;
1370 vm_page_t m;
1373 * Calculate pagetable page index
1375 ptepindex = va >> PDRSHIFT;
1378 * Get the page directory entry
1380 ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1383 * This supports switching from a 4MB page to a
1384 * normal 4K page.
1386 if (ptepa & PG_PS) {
1387 pmap->pm_pdir[ptepindex] = 0;
1388 ptepa = 0;
1389 cpu_invltlb();
1390 smp_invltlb();
1394 * If the page table page is mapped, we just increment the
1395 * hold count, and activate it.
1397 if (ptepa) {
1399 * In order to get the page table page, try the
1400 * hint first.
1402 if (pmap->pm_ptphint &&
1403 (pmap->pm_ptphint->pindex == ptepindex)) {
1404 m = pmap->pm_ptphint;
1405 } else {
1406 m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1407 pmap->pm_ptphint = m;
1409 m->hold_count++;
1410 return m;
1413 * Here if the pte page isn't mapped, or if it has been deallocated.
1415 return _pmap_allocpte(pmap, ptepindex);
1419 /***************************************************
1420 * Pmap allocation/deallocation routines.
1421 ***************************************************/
1424 * Release any resources held by the given physical map.
1425 * Called when a pmap initialized by pmap_pinit is being released.
1426 * Should only be called if the map contains no valid mappings.
1428 static int pmap_release_callback(struct vm_page *p, void *data);
1430 void
1431 pmap_release(struct pmap *pmap)
1433 vm_object_t object = pmap->pm_pteobj;
1434 struct rb_vm_page_scan_info info;
1436 KASSERT(pmap->pm_active == 0, ("pmap still active! %08x", pmap->pm_active));
1437 #if defined(DIAGNOSTIC)
1438 if (object->ref_count != 1)
1439 panic("pmap_release: pteobj reference count != 1");
1440 #endif
1442 info.pmap = pmap;
1443 info.object = object;
1444 crit_enter();
1445 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1446 crit_exit();
1448 do {
1449 crit_enter();
1450 info.error = 0;
1451 info.mpte = NULL;
1452 info.limit = object->generation;
1454 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1455 pmap_release_callback, &info);
1456 if (info.error == 0 && info.mpte) {
1457 if (!pmap_release_free_page(pmap, info.mpte))
1458 info.error = 1;
1460 crit_exit();
1461 } while (info.error);
1464 static int
1465 pmap_release_callback(struct vm_page *p, void *data)
1467 struct rb_vm_page_scan_info *info = data;
1469 if (p->pindex == PTDPTDI) {
1470 info->mpte = p;
1471 return(0);
1473 if (!pmap_release_free_page(info->pmap, p)) {
1474 info->error = 1;
1475 return(-1);
1477 if (info->object->generation != info->limit) {
1478 info->error = 1;
1479 return(-1);
1481 return(0);
1485 * Grow the number of kernel page table entries, if needed.
1488 void
1489 pmap_growkernel(vm_offset_t addr)
1491 struct pmap *pmap;
1492 vm_offset_t ptppaddr;
1493 vm_page_t nkpg;
1494 pd_entry_t newpdir;
1496 crit_enter();
1497 if (kernel_vm_end == 0) {
1498 kernel_vm_end = KERNBASE;
1499 nkpt = 0;
1500 while (pdir_pde(PTD, kernel_vm_end)) {
1501 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1502 nkpt++;
1505 addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1506 while (kernel_vm_end < addr) {
1507 if (pdir_pde(PTD, kernel_vm_end)) {
1508 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1509 continue;
1513 * This index is bogus, but out of the way
1515 nkpg = vm_page_alloc(kptobj, nkpt,
1516 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT);
1517 if (nkpg == NULL)
1518 panic("pmap_growkernel: no memory to grow kernel");
1520 vm_page_wire(nkpg);
1521 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1522 pmap_zero_page(ptppaddr);
1523 newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1524 pdir_pde(PTD, kernel_vm_end) = newpdir;
1525 *pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1526 nkpt++;
1529 * This update must be interlocked with pmap_pinit2.
1531 TAILQ_FOREACH(pmap, &pmap_list, pm_pmnode) {
1532 *pmap_pde(pmap, kernel_vm_end) = newpdir;
1534 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1535 ~(PAGE_SIZE * NPTEPG - 1);
1537 crit_exit();
1541 * Retire the given physical map from service.
1542 * Should only be called if the map contains
1543 * no valid mappings.
1545 void
1546 pmap_destroy(pmap_t pmap)
1548 int count;
1550 if (pmap == NULL)
1551 return;
1553 count = --pmap->pm_count;
1554 if (count == 0) {
1555 pmap_release(pmap);
1556 panic("destroying a pmap is not yet implemented");
1561 * Add a reference to the specified pmap.
1563 void
1564 pmap_reference(pmap_t pmap)
1566 if (pmap != NULL) {
1567 pmap->pm_count++;
1571 /***************************************************
1572 * page management routines.
1573 ***************************************************/
1576 * free the pv_entry back to the free list. This function may be
1577 * called from an interrupt.
1579 static PMAP_INLINE void
1580 free_pv_entry(pv_entry_t pv)
1582 #ifdef PMAP_DEBUG
1583 KKASSERT(pv->pv_m != NULL);
1584 pv->pv_m = NULL;
1585 #endif
1586 pv_entry_count--;
1587 zfree(pvzone, pv);
1591 * get a new pv_entry, allocating a block from the system
1592 * when needed. This function may be called from an interrupt.
1594 static pv_entry_t
1595 get_pv_entry(void)
1597 pv_entry_count++;
1598 if (pv_entry_high_water &&
1599 (pv_entry_count > pv_entry_high_water) &&
1600 (pmap_pagedaemon_waken == 0)) {
1601 pmap_pagedaemon_waken = 1;
1602 wakeup (&vm_pages_needed);
1604 return zalloc(pvzone);
1608 * This routine is very drastic, but can save the system
1609 * in a pinch.
1611 void
1612 pmap_collect(void)
1614 int i;
1615 vm_page_t m;
1616 static int warningdone=0;
1618 if (pmap_pagedaemon_waken == 0)
1619 return;
1620 pmap_pagedaemon_waken = 0;
1622 if (warningdone < 5) {
1623 kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1624 warningdone++;
1627 for(i = 0; i < vm_page_array_size; i++) {
1628 m = &vm_page_array[i];
1629 if (m->wire_count || m->hold_count || m->busy ||
1630 (m->flags & PG_BUSY))
1631 continue;
1632 pmap_remove_all(m);
1638 * If it is the first entry on the list, it is actually
1639 * in the header and we must copy the following entry up
1640 * to the header. Otherwise we must search the list for
1641 * the entry. In either case we free the now unused entry.
1643 static int
1644 pmap_remove_entry(struct pmap *pmap, vm_page_t m,
1645 vm_offset_t va, pmap_inval_info_t info)
1647 pv_entry_t pv;
1648 int rtval;
1650 crit_enter();
1651 if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1652 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1653 if (pmap == pv->pv_pmap && va == pv->pv_va)
1654 break;
1656 } else {
1657 TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1658 #ifdef PMAP_DEBUG
1659 KKASSERT(pv->pv_pmap == pmap);
1660 #endif
1661 if (va == pv->pv_va)
1662 break;
1665 KKASSERT(pv);
1667 rtval = 0;
1668 test_m_maps_pv(m, pv);
1669 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1670 m->md.pv_list_count--;
1671 if (TAILQ_EMPTY(&m->md.pv_list))
1672 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1673 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1674 ++pmap->pm_generation;
1675 rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem, info);
1676 free_pv_entry(pv);
1677 crit_exit();
1678 return rtval;
1682 * Create a pv entry for page at pa for
1683 * (pmap, va).
1685 static void
1686 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1688 pv_entry_t pv;
1690 crit_enter();
1691 pv = get_pv_entry();
1692 #ifdef PMAP_DEBUG
1693 KKASSERT(pv->pv_m == NULL);
1694 pv->pv_m = m;
1695 #endif
1696 pv->pv_va = va;
1697 pv->pv_pmap = pmap;
1698 pv->pv_ptem = mpte;
1700 TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1701 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1702 ++pmap->pm_generation;
1703 m->md.pv_list_count++;
1705 crit_exit();
1709 * pmap_remove_pte: do the things to unmap a page in a process.
1711 * WARNING: This function may block (via pmap_remove_entry/pmap_unuse_pt),
1712 * callers using temporary pmaps must reload them.
1714 static int
1715 pmap_remove_pte(struct pmap *pmap, unsigned *ptq, vm_offset_t va,
1716 pmap_inval_info_t info)
1718 unsigned oldpte;
1719 vm_page_t m;
1721 ptbase_assert(pmap);
1722 pmap_inval_add(info, pmap, va);
1723 ptbase_assert(pmap);
1724 oldpte = loadandclear(ptq);
1725 KKASSERT(oldpte);
1726 if (oldpte & PG_W)
1727 pmap->pm_stats.wired_count -= 1;
1729 * Machines that don't support invlpg, also don't support
1730 * PG_G. XXX PG_G is disabled for SMP so don't worry about
1731 * the SMP case.
1733 if (oldpte & PG_G)
1734 cpu_invlpg((void *)va);
1735 KKASSERT(pmap->pm_stats.resident_count > 0);
1736 --pmap->pm_stats.resident_count;
1737 if (oldpte & PG_MANAGED) {
1738 m = PHYS_TO_VM_PAGE(oldpte);
1739 if (oldpte & PG_M) {
1740 #if defined(PMAP_DIAGNOSTIC)
1741 if (pmap_nw_modified((pt_entry_t) oldpte)) {
1742 kprintf("pmap_remove: modified page not "
1743 "writable: va: %p, pte: 0x%lx\n",
1744 (void *)va, (long)oldpte);
1746 #endif
1747 if (pmap_track_modified(va))
1748 vm_page_dirty(m);
1750 if (oldpte & PG_A)
1751 vm_page_flag_set(m, PG_REFERENCED);
1752 return pmap_remove_entry(pmap, m, va, info);
1753 } else {
1754 return pmap_unuse_pt(pmap, va, NULL, info);
1757 return 0;
1761 * pmap_remove_page:
1763 * Remove a single page from a process address space.
1765 * This function may not be called from an interrupt if the pmap is
1766 * not kernel_pmap.
1768 static void
1769 pmap_remove_page(struct pmap *pmap, vm_offset_t va, pmap_inval_info_t info)
1771 unsigned *ptq;
1774 * if there is no pte for this address, just skip it!!! Otherwise
1775 * get a local va for mappings for this pmap and remove the entry.
1777 if (*pmap_pde(pmap, va) != 0) {
1778 ptq = get_ptbase(pmap) + i386_btop(va);
1779 if (*ptq) {
1780 pmap_remove_pte(pmap, ptq, va, info);
1781 /* ptq invalid */
1787 * pmap_remove:
1789 * Remove the given range of addresses from the specified map.
1791 * It is assumed that the start and end are properly
1792 * rounded to the page size.
1794 * This function may not be called from an interrupt if the pmap is
1795 * not kernel_pmap.
1797 void
1798 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1800 unsigned *ptbase;
1801 vm_offset_t pdnxt;
1802 vm_offset_t ptpaddr;
1803 vm_offset_t sindex, eindex;
1804 struct pmap_inval_info info;
1806 if (pmap == NULL)
1807 return;
1809 if (pmap->pm_stats.resident_count == 0)
1810 return;
1812 pmap_inval_init(&info);
1815 * special handling of removing one page. a very
1816 * common operation and easy to short circuit some
1817 * code.
1819 if (((sva + PAGE_SIZE) == eva) &&
1820 (((unsigned) pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1821 pmap_remove_page(pmap, sva, &info);
1822 pmap_inval_flush(&info);
1823 return;
1827 * Get a local virtual address for the mappings that are being
1828 * worked with.
1830 sindex = i386_btop(sva);
1831 eindex = i386_btop(eva);
1833 for (; sindex < eindex; sindex = pdnxt) {
1834 unsigned pdirindex;
1837 * Calculate index for next page table.
1839 pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1840 if (pmap->pm_stats.resident_count == 0)
1841 break;
1843 pdirindex = sindex / NPDEPG;
1844 if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1845 pmap_inval_add(&info, pmap, -1);
1846 pmap->pm_pdir[pdirindex] = 0;
1847 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1848 pmap->pm_cached = 0;
1849 continue;
1853 * Weed out invalid mappings. Note: we assume that the page
1854 * directory table is always allocated, and in kernel virtual.
1856 if (ptpaddr == 0)
1857 continue;
1860 * Limit our scan to either the end of the va represented
1861 * by the current page table page, or to the end of the
1862 * range being removed.
1864 if (pdnxt > eindex) {
1865 pdnxt = eindex;
1869 * NOTE: pmap_remove_pte() can block and wipe the temporary
1870 * ptbase.
1872 for (; sindex != pdnxt; sindex++) {
1873 vm_offset_t va;
1875 ptbase = get_ptbase(pmap);
1876 if (ptbase[sindex] == 0)
1877 continue;
1878 va = i386_ptob(sindex);
1879 if (pmap_remove_pte(pmap, ptbase + sindex, va, &info))
1880 break;
1883 pmap_inval_flush(&info);
1887 * pmap_remove_all:
1889 * Removes this physical page from all physical maps in which it resides.
1890 * Reflects back modify bits to the pager.
1892 * This routine may not be called from an interrupt.
1895 static void
1896 pmap_remove_all(vm_page_t m)
1898 struct pmap_inval_info info;
1899 unsigned *pte, tpte;
1900 pv_entry_t pv;
1902 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1903 return;
1905 pmap_inval_init(&info);
1906 crit_enter();
1907 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1908 KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
1909 --pv->pv_pmap->pm_stats.resident_count;
1911 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1912 pmap_inval_add(&info, pv->pv_pmap, pv->pv_va);
1913 tpte = loadandclear(pte);
1914 #ifdef PMAP_DEBUG
1915 KKASSERT(PHYS_TO_VM_PAGE(tpte) == m);
1916 #endif
1917 if (tpte & PG_W)
1918 pv->pv_pmap->pm_stats.wired_count--;
1920 if (tpte & PG_A)
1921 vm_page_flag_set(m, PG_REFERENCED);
1924 * Update the vm_page_t clean and reference bits.
1926 if (tpte & PG_M) {
1927 #if defined(PMAP_DIAGNOSTIC)
1928 if (pmap_nw_modified((pt_entry_t) tpte)) {
1929 kprintf("pmap_remove_all: modified page "
1930 "not writable: va: %p, pte: 0x%lx\n",
1931 (void *)pv->pv_va, (long)tpte);
1933 #endif
1934 if (pmap_track_modified(pv->pv_va))
1935 vm_page_dirty(m);
1937 #ifdef PMAP_DEBUG
1938 KKASSERT(pv->pv_m == m);
1939 #endif
1940 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1941 TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1942 ++pv->pv_pmap->pm_generation;
1943 m->md.pv_list_count--;
1944 if (TAILQ_EMPTY(&m->md.pv_list))
1945 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1946 pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem, &info);
1947 free_pv_entry(pv);
1949 crit_exit();
1950 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
1951 pmap_inval_flush(&info);
1955 * pmap_protect:
1957 * Set the physical protection on the specified range of this map
1958 * as requested.
1960 * This function may not be called from an interrupt if the map is
1961 * not the kernel_pmap.
1963 void
1964 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1966 unsigned *ptbase;
1967 vm_offset_t pdnxt, ptpaddr;
1968 vm_pindex_t sindex, eindex;
1969 pmap_inval_info info;
1971 if (pmap == NULL)
1972 return;
1974 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1975 pmap_remove(pmap, sva, eva);
1976 return;
1979 if (prot & VM_PROT_WRITE)
1980 return;
1982 pmap_inval_init(&info);
1984 ptbase = get_ptbase(pmap);
1986 sindex = i386_btop(sva);
1987 eindex = i386_btop(eva);
1989 for (; sindex < eindex; sindex = pdnxt) {
1991 unsigned pdirindex;
1993 pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1995 pdirindex = sindex / NPDEPG;
1996 if (((ptpaddr = (unsigned) pmap->pm_pdir[pdirindex]) & PG_PS) != 0) {
1997 pmap_inval_add(&info, pmap, -1);
1998 pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1999 pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2000 continue;
2004 * Weed out invalid mappings. Note: we assume that the page
2005 * directory table is always allocated, and in kernel virtual.
2007 if (ptpaddr == 0)
2008 continue;
2010 if (pdnxt > eindex) {
2011 pdnxt = eindex;
2014 for (; sindex != pdnxt; sindex++) {
2016 unsigned pbits;
2017 vm_page_t m;
2020 * XXX non-optimal. Note also that there can be
2021 * no pmap_inval_flush() calls until after we modify
2022 * ptbase[sindex] (or otherwise we have to do another
2023 * pmap_inval_add() call).
2025 pmap_inval_add(&info, pmap, i386_ptob(sindex));
2026 pbits = ptbase[sindex];
2028 if (pbits & PG_MANAGED) {
2029 m = NULL;
2030 if (pbits & PG_A) {
2031 m = PHYS_TO_VM_PAGE(pbits);
2032 vm_page_flag_set(m, PG_REFERENCED);
2033 pbits &= ~PG_A;
2035 if (pbits & PG_M) {
2036 if (pmap_track_modified(i386_ptob(sindex))) {
2037 if (m == NULL)
2038 m = PHYS_TO_VM_PAGE(pbits);
2039 vm_page_dirty(m);
2040 pbits &= ~PG_M;
2045 pbits &= ~PG_RW;
2047 if (pbits != ptbase[sindex]) {
2048 ptbase[sindex] = pbits;
2052 pmap_inval_flush(&info);
2056 * Insert the given physical page (p) at
2057 * the specified virtual address (v) in the
2058 * target physical map with the protection requested.
2060 * If specified, the page will be wired down, meaning
2061 * that the related pte can not be reclaimed.
2063 * NB: This is the only routine which MAY NOT lazy-evaluate
2064 * or lose information. That is, this routine must actually
2065 * insert this page into the given map NOW.
2067 void
2068 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2069 boolean_t wired)
2071 vm_paddr_t pa;
2072 unsigned *pte;
2073 vm_paddr_t opa;
2074 vm_offset_t origpte, newpte;
2075 vm_page_t mpte;
2076 pmap_inval_info info;
2078 if (pmap == NULL)
2079 return;
2081 va &= PG_FRAME;
2082 #ifdef PMAP_DIAGNOSTIC
2083 if (va >= KvaEnd)
2084 panic("pmap_enter: toobig");
2085 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS)) {
2086 panic("pmap_enter: invalid to pmap_enter page "
2087 "table pages (va: %p)", (void *)va);
2089 #endif
2090 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2091 kprintf("Warning: pmap_enter called on UVA with kernel_pmap\n");
2092 print_backtrace();
2094 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2095 kprintf("Warning: pmap_enter called on KVA without kernel_pmap\n");
2096 print_backtrace();
2100 * In the case that a page table page is not
2101 * resident, we are creating it here.
2103 if (va < UPT_MIN_ADDRESS)
2104 mpte = pmap_allocpte(pmap, va);
2105 else
2106 mpte = NULL;
2108 pmap_inval_init(&info);
2109 pte = pmap_pte(pmap, va);
2112 * Page Directory table entry not valid, we need a new PT page
2114 if (pte == NULL) {
2115 panic("pmap_enter: invalid page directory pdir=0x%lx, va=%p\n",
2116 (long)pmap->pm_pdir[PTDPTDI], (void *)va);
2119 pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2120 origpte = *(vm_offset_t *)pte;
2121 opa = origpte & PG_FRAME;
2123 if (origpte & PG_PS)
2124 panic("pmap_enter: attempted pmap_enter on 4MB page");
2127 * Mapping has not changed, must be protection or wiring change.
2129 if (origpte && (opa == pa)) {
2131 * Wiring change, just update stats. We don't worry about
2132 * wiring PT pages as they remain resident as long as there
2133 * are valid mappings in them. Hence, if a user page is wired,
2134 * the PT page will be also.
2136 if (wired && ((origpte & PG_W) == 0))
2137 pmap->pm_stats.wired_count++;
2138 else if (!wired && (origpte & PG_W))
2139 pmap->pm_stats.wired_count--;
2141 #if defined(PMAP_DIAGNOSTIC)
2142 if (pmap_nw_modified((pt_entry_t) origpte)) {
2143 kprintf("pmap_enter: modified page not "
2144 "writable: va: %p, pte: 0x%lx\n",
2145 (void *)va, (long )origpte);
2147 #endif
2150 * Remove the extra pte reference. Note that we cannot
2151 * optimize the RO->RW case because we have adjusted the
2152 * wiring count above and may need to adjust the wiring
2153 * bits below.
2155 if (mpte)
2156 mpte->hold_count--;
2159 * We might be turning off write access to the page,
2160 * so we go ahead and sense modify status.
2162 if (origpte & PG_MANAGED) {
2163 if ((origpte & PG_M) && pmap_track_modified(va)) {
2164 vm_page_t om;
2165 om = PHYS_TO_VM_PAGE(opa);
2166 vm_page_dirty(om);
2168 pa |= PG_MANAGED;
2169 KKASSERT(m->flags & PG_MAPPED);
2171 goto validate;
2174 * Mapping has changed, invalidate old range and fall through to
2175 * handle validating new mapping.
2177 * Since we have a ref on the page directory page pmap_pte()
2178 * will always return non-NULL.
2180 * NOTE: pmap_remove_pte() can block and cause the temporary ptbase
2181 * to get wiped. reload the ptbase. I'm not sure if it is
2182 * also possible to race another pmap_enter() but check for
2183 * that case too.
2185 while (opa) {
2186 int err;
2188 KKASSERT((origpte & PG_FRAME) ==
2189 (*(vm_offset_t *)pte & PG_FRAME));
2190 err = pmap_remove_pte(pmap, pte, va, &info);
2191 if (err)
2192 panic("pmap_enter: pte vanished, va: %p", (void *)va);
2193 pte = pmap_pte(pmap, va);
2194 origpte = *(vm_offset_t *)pte;
2195 opa = origpte & PG_FRAME;
2196 if (opa) {
2197 kprintf("pmap_enter: Warning, raced pmap %p va %p\n",
2198 pmap, (void *)va);
2203 * Enter on the PV list if part of our managed memory. Note that we
2204 * raise IPL while manipulating pv_table since pmap_enter can be
2205 * called at interrupt time.
2207 if (pmap_initialized &&
2208 (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2209 pmap_insert_entry(pmap, va, mpte, m);
2210 ptbase_assert(pmap);
2211 pa |= PG_MANAGED;
2212 vm_page_flag_set(m, PG_MAPPED);
2216 * Increment counters
2218 ++pmap->pm_stats.resident_count;
2219 if (wired)
2220 pmap->pm_stats.wired_count++;
2221 KKASSERT(*pte == 0);
2223 validate:
2225 * Now validate mapping with desired protection/wiring.
2227 ptbase_assert(pmap);
2228 newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2230 if (wired)
2231 newpte |= PG_W;
2232 if (va < UPT_MIN_ADDRESS)
2233 newpte |= PG_U;
2234 if (pmap == &kernel_pmap)
2235 newpte |= pgeflag;
2238 * if the mapping or permission bits are different, we need
2239 * to update the pte.
2241 if ((origpte & ~(PG_M|PG_A)) != newpte) {
2242 pmap_inval_add(&info, pmap, va);
2243 ptbase_assert(pmap);
2244 KKASSERT(*pte == 0 ||
2245 (*pte & PG_FRAME) == (newpte & PG_FRAME));
2246 *pte = newpte | PG_A;
2247 if (newpte & PG_RW)
2248 vm_page_flag_set(m, PG_WRITEABLE);
2250 KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
2251 pmap_inval_flush(&info);
2255 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2256 * This code also assumes that the pmap has no pre-existing entry for this
2257 * VA.
2259 * This code currently may only be used on user pmaps, not kernel_pmap.
2261 static void
2262 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2264 unsigned *pte;
2265 vm_paddr_t pa;
2266 vm_page_t mpte;
2267 unsigned ptepindex;
2268 vm_offset_t ptepa;
2269 pmap_inval_info info;
2271 pmap_inval_init(&info);
2273 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2274 kprintf("Warning: pmap_enter_quick called on UVA with kernel_pmap\n");
2275 print_backtrace();
2277 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2278 kprintf("Warning: pmap_enter_quick called on KVA without kernel_pmap\n");
2279 print_backtrace();
2282 KKASSERT(va < UPT_MIN_ADDRESS); /* assert used on user pmaps only */
2285 * Calculate the page table page (mpte), allocating it if necessary.
2287 * A held page table page (mpte), or NULL, is passed onto the
2288 * section following.
2290 if (va < UPT_MIN_ADDRESS) {
2292 * Calculate pagetable page index
2294 ptepindex = va >> PDRSHIFT;
2296 do {
2298 * Get the page directory entry
2300 ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
2303 * If the page table page is mapped, we just increment
2304 * the hold count, and activate it.
2306 if (ptepa) {
2307 if (ptepa & PG_PS)
2308 panic("pmap_enter_quick: unexpected mapping into 4MB page");
2309 if (pmap->pm_ptphint &&
2310 (pmap->pm_ptphint->pindex == ptepindex)) {
2311 mpte = pmap->pm_ptphint;
2312 } else {
2313 mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2314 pmap->pm_ptphint = mpte;
2316 if (mpte)
2317 mpte->hold_count++;
2318 } else {
2319 mpte = _pmap_allocpte(pmap, ptepindex);
2321 } while (mpte == NULL);
2322 } else {
2323 mpte = NULL;
2324 /* this code path is not yet used */
2328 * With a valid (and held) page directory page, we can just use
2329 * vtopte() to get to the pte. If the pte is already present
2330 * we do not disturb it.
2332 pte = (unsigned *)vtopte(va);
2333 if (*pte & PG_V) {
2334 if (mpte)
2335 pmap_unwire_pte_hold(pmap, mpte, &info);
2336 pa = VM_PAGE_TO_PHYS(m);
2337 KKASSERT(((*pte ^ pa) & PG_FRAME) == 0);
2338 return;
2342 * Enter on the PV list if part of our managed memory
2344 if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2345 pmap_insert_entry(pmap, va, mpte, m);
2346 vm_page_flag_set(m, PG_MAPPED);
2350 * Increment counters
2352 ++pmap->pm_stats.resident_count;
2354 pa = VM_PAGE_TO_PHYS(m);
2357 * Now validate mapping with RO protection
2359 if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2360 *pte = pa | PG_V | PG_U;
2361 else
2362 *pte = pa | PG_V | PG_U | PG_MANAGED;
2363 /* pmap_inval_add(&info, pmap, va); shouldn't be needed inval->valid */
2364 pmap_inval_flush(&info);
2368 * Make a temporary mapping for a physical address. This is only intended
2369 * to be used for panic dumps.
2371 void *
2372 pmap_kenter_temporary(vm_paddr_t pa, int i)
2374 pmap_kenter((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2375 return ((void *)crashdumpmap);
2378 #define MAX_INIT_PT (96)
2381 * This routine preloads the ptes for a given object into the specified pmap.
2382 * This eliminates the blast of soft faults on process startup and
2383 * immediately after an mmap.
2385 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2387 void
2388 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2389 vm_object_t object, vm_pindex_t pindex,
2390 vm_size_t size, int limit)
2392 struct rb_vm_page_scan_info info;
2393 struct lwp *lp;
2394 int psize;
2397 * We can't preinit if read access isn't set or there is no pmap
2398 * or object.
2400 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2401 return;
2404 * We can't preinit if the pmap is not the current pmap
2406 lp = curthread->td_lwp;
2407 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2408 return;
2410 psize = i386_btop(size);
2412 if ((object->type != OBJT_VNODE) ||
2413 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2414 (object->resident_page_count > MAX_INIT_PT))) {
2415 return;
2418 if (psize + pindex > object->size) {
2419 if (object->size < pindex)
2420 return;
2421 psize = object->size - pindex;
2424 if (psize == 0)
2425 return;
2428 * Use a red-black scan to traverse the requested range and load
2429 * any valid pages found into the pmap.
2431 * We cannot safely scan the object's memq unless we are in a
2432 * critical section since interrupts can remove pages from objects.
2434 info.start_pindex = pindex;
2435 info.end_pindex = pindex + psize - 1;
2436 info.limit = limit;
2437 info.mpte = NULL;
2438 info.addr = addr;
2439 info.pmap = pmap;
2441 crit_enter();
2442 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2443 pmap_object_init_pt_callback, &info);
2444 crit_exit();
2447 static
2449 pmap_object_init_pt_callback(vm_page_t p, void *data)
2451 struct rb_vm_page_scan_info *info = data;
2452 vm_pindex_t rel_index;
2454 * don't allow an madvise to blow away our really
2455 * free pages allocating pv entries.
2457 if ((info->limit & MAP_PREFAULT_MADVISE) &&
2458 vmstats.v_free_count < vmstats.v_free_reserved) {
2459 return(-1);
2461 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2462 (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2463 if ((p->queue - p->pc) == PQ_CACHE)
2464 vm_page_deactivate(p);
2465 vm_page_busy(p);
2466 rel_index = p->pindex - info->start_pindex;
2467 pmap_enter_quick(info->pmap,
2468 info->addr + i386_ptob(rel_index), p);
2469 vm_page_wakeup(p);
2471 return(0);
2475 * pmap_prefault provides a quick way of clustering pagefaults into a
2476 * processes address space. It is a "cousin" of pmap_object_init_pt,
2477 * except it runs at page fault time instead of mmap time.
2479 #define PFBAK 4
2480 #define PFFOR 4
2481 #define PAGEORDER_SIZE (PFBAK+PFFOR)
2483 static int pmap_prefault_pageorder[] = {
2484 -PAGE_SIZE, PAGE_SIZE,
2485 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
2486 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
2487 -4 * PAGE_SIZE, 4 * PAGE_SIZE
2490 void
2491 pmap_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
2493 int i;
2494 vm_offset_t starta;
2495 vm_offset_t addr;
2496 vm_pindex_t pindex;
2497 vm_page_t m;
2498 vm_object_t object;
2499 struct lwp *lp;
2502 * We do not currently prefault mappings that use virtual page
2503 * tables. We do not prefault foreign pmaps.
2505 if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2506 return;
2507 lp = curthread->td_lwp;
2508 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2509 return;
2511 object = entry->object.vm_object;
2513 starta = addra - PFBAK * PAGE_SIZE;
2514 if (starta < entry->start)
2515 starta = entry->start;
2516 else if (starta > addra)
2517 starta = 0;
2520 * critical section protection is required to maintain the
2521 * page/object association, interrupts can free pages and remove
2522 * them from their objects.
2524 crit_enter();
2525 for (i = 0; i < PAGEORDER_SIZE; i++) {
2526 vm_object_t lobject;
2527 unsigned *pte;
2529 addr = addra + pmap_prefault_pageorder[i];
2530 if (addr > addra + (PFFOR * PAGE_SIZE))
2531 addr = 0;
2533 if (addr < starta || addr >= entry->end)
2534 continue;
2536 if ((*pmap_pde(pmap, addr)) == 0)
2537 continue;
2539 pte = (unsigned *) vtopte(addr);
2540 if (*pte)
2541 continue;
2543 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2544 lobject = object;
2546 for (m = vm_page_lookup(lobject, pindex);
2547 (!m && (lobject->type == OBJT_DEFAULT) &&
2548 (lobject->backing_object));
2549 lobject = lobject->backing_object
2551 if (lobject->backing_object_offset & PAGE_MASK)
2552 break;
2553 pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2554 m = vm_page_lookup(lobject->backing_object, pindex);
2558 * give-up when a page is not in memory
2560 if (m == NULL)
2561 break;
2563 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2564 (m->busy == 0) &&
2565 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2567 if ((m->queue - m->pc) == PQ_CACHE) {
2568 vm_page_deactivate(m);
2570 vm_page_busy(m);
2571 pmap_enter_quick(pmap, addr, m);
2572 vm_page_wakeup(m);
2575 crit_exit();
2579 * Routine: pmap_change_wiring
2580 * Function: Change the wiring attribute for a map/virtual-address
2581 * pair.
2582 * In/out conditions:
2583 * The mapping must already exist in the pmap.
2585 void
2586 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2588 unsigned *pte;
2590 if (pmap == NULL)
2591 return;
2593 pte = pmap_pte(pmap, va);
2595 if (wired && !pmap_pte_w(pte))
2596 pmap->pm_stats.wired_count++;
2597 else if (!wired && pmap_pte_w(pte))
2598 pmap->pm_stats.wired_count--;
2601 * Wiring is not a hardware characteristic so there is no need to
2602 * invalidate TLB. However, in an SMP environment we must use
2603 * a locked bus cycle to update the pte (if we are not using
2604 * the pmap_inval_*() API that is)... it's ok to do this for simple
2605 * wiring changes.
2607 #ifdef SMP
2608 if (wired)
2609 atomic_set_int(pte, PG_W);
2610 else
2611 atomic_clear_int(pte, PG_W);
2612 #else
2613 if (wired)
2614 atomic_set_int_nonlocked(pte, PG_W);
2615 else
2616 atomic_clear_int_nonlocked(pte, PG_W);
2617 #endif
2623 * Copy the range specified by src_addr/len
2624 * from the source map to the range dst_addr/len
2625 * in the destination map.
2627 * This routine is only advisory and need not do anything.
2629 void
2630 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2631 vm_size_t len, vm_offset_t src_addr)
2633 #if 0
2634 pmap_inval_info info;
2635 vm_offset_t addr;
2636 vm_offset_t end_addr = src_addr + len;
2637 vm_offset_t pdnxt;
2638 unsigned src_frame, dst_frame;
2639 vm_page_t m;
2640 #endif
2642 if (dst_addr != src_addr)
2643 return;
2645 * XXX BUGGY. Amoung other things srcmpte is assumed to remain
2646 * valid through blocking calls, and that's just not going to
2647 * be the case.
2649 * FIXME!
2651 return;
2652 #if 0
2653 src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2654 if (src_frame != (((unsigned) PTDpde) & PG_FRAME)) {
2655 return;
2658 dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
2659 if ((*gd->gd_GDMAP1 & PG_FRAME) != dst_frame) {
2660 *gd->gd_GDMAP1 = dst_frame | PG_RW | PG_V;
2661 cpu_invltlb();
2664 pmap_inval_init(&info);
2665 pmap_inval_add(&info, dst_pmap, -1);
2666 pmap_inval_add(&info, src_pmap, -1);
2669 * critical section protection is required to maintain the page/object
2670 * association, interrupts can free pages and remove them from
2671 * their objects.
2673 crit_enter();
2674 for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2675 unsigned *src_pte, *dst_pte;
2676 vm_page_t dstmpte, srcmpte;
2677 vm_offset_t srcptepaddr;
2678 unsigned ptepindex;
2680 if (addr >= UPT_MIN_ADDRESS)
2681 panic("pmap_copy: invalid to pmap_copy page tables\n");
2684 * Don't let optional prefaulting of pages make us go
2685 * way below the low water mark of free pages or way
2686 * above high water mark of used pv entries.
2688 if (vmstats.v_free_count < vmstats.v_free_reserved ||
2689 pv_entry_count > pv_entry_high_water)
2690 break;
2692 pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2693 ptepindex = addr >> PDRSHIFT;
2695 srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
2696 if (srcptepaddr == 0)
2697 continue;
2699 if (srcptepaddr & PG_PS) {
2700 if (dst_pmap->pm_pdir[ptepindex] == 0) {
2701 dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
2702 dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2705 continue;
2708 srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2709 if ((srcmpte == NULL) || (srcmpte->hold_count == 0) ||
2710 (srcmpte->flags & PG_BUSY)) {
2711 continue;
2714 if (pdnxt > end_addr)
2715 pdnxt = end_addr;
2717 src_pte = (unsigned *) vtopte(addr);
2718 dst_pte = (unsigned *) avtopte(addr);
2719 while (addr < pdnxt) {
2720 unsigned ptetemp;
2722 ptetemp = *src_pte;
2724 * we only virtual copy managed pages
2726 if ((ptetemp & PG_MANAGED) != 0) {
2728 * We have to check after allocpte for the
2729 * pte still being around... allocpte can
2730 * block.
2732 * pmap_allocpte() can block. If we lose
2733 * our page directory mappings we stop.
2735 dstmpte = pmap_allocpte(dst_pmap, addr);
2737 if (src_frame != (((unsigned) PTDpde) & PG_FRAME) ||
2738 XXX dst_frame != (((unsigned) xxx) & PG_FRAME)
2740 kprintf("WARNING: pmap_copy: detected and corrected race\n");
2741 pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
2742 goto failed;
2743 } else if ((*dst_pte == 0) &&
2744 (ptetemp = *src_pte) != 0 &&
2745 (ptetemp & PG_MANAGED)) {
2747 * Clear the modified and
2748 * accessed (referenced) bits
2749 * during the copy.
2751 m = PHYS_TO_VM_PAGE(ptetemp);
2752 *dst_pte = ptetemp & ~(PG_M | PG_A);
2753 ++dst_pmap->pm_stats.resident_count;
2754 pmap_insert_entry(dst_pmap, addr,
2755 dstmpte, m);
2756 KKASSERT(m->flags & PG_MAPPED);
2757 } else {
2758 kprintf("WARNING: pmap_copy: dst_pte race detected and corrected\n");
2759 pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
2760 goto failed;
2762 if (dstmpte->hold_count >= srcmpte->hold_count)
2763 break;
2765 addr += PAGE_SIZE;
2766 src_pte++;
2767 dst_pte++;
2770 failed:
2771 crit_exit();
2772 pmap_inval_flush(&info);
2773 #endif
2777 * pmap_zero_page:
2779 * Zero the specified PA by mapping the page into KVM and clearing its
2780 * contents.
2782 * This function may be called from an interrupt and no locking is
2783 * required.
2785 void
2786 pmap_zero_page(vm_paddr_t phys)
2788 struct mdglobaldata *gd = mdcpu;
2790 crit_enter();
2791 if (*(int *)gd->gd_CMAP3)
2792 panic("pmap_zero_page: CMAP3 busy");
2793 *(int *)gd->gd_CMAP3 =
2794 PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2795 cpu_invlpg(gd->gd_CADDR3);
2797 #if defined(I686_CPU)
2798 if (cpu_class == CPUCLASS_686)
2799 i686_pagezero(gd->gd_CADDR3);
2800 else
2801 #endif
2802 bzero(gd->gd_CADDR3, PAGE_SIZE);
2803 *(int *) gd->gd_CMAP3 = 0;
2804 crit_exit();
2808 * pmap_page_assertzero:
2810 * Assert that a page is empty, panic if it isn't.
2812 void
2813 pmap_page_assertzero(vm_paddr_t phys)
2815 struct mdglobaldata *gd = mdcpu;
2816 int i;
2818 crit_enter();
2819 if (*(int *)gd->gd_CMAP3)
2820 panic("pmap_zero_page: CMAP3 busy");
2821 *(int *)gd->gd_CMAP3 =
2822 PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2823 cpu_invlpg(gd->gd_CADDR3);
2824 for (i = 0; i < PAGE_SIZE; i += 4) {
2825 if (*(int *)((char *)gd->gd_CADDR3 + i) != 0) {
2826 panic("pmap_page_assertzero() @ %p not zero!\n",
2827 (void *)gd->gd_CADDR3);
2830 *(int *) gd->gd_CMAP3 = 0;
2831 crit_exit();
2835 * pmap_zero_page:
2837 * Zero part of a physical page by mapping it into memory and clearing
2838 * its contents with bzero.
2840 * off and size may not cover an area beyond a single hardware page.
2842 void
2843 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2845 struct mdglobaldata *gd = mdcpu;
2847 crit_enter();
2848 if (*(int *) gd->gd_CMAP3)
2849 panic("pmap_zero_page: CMAP3 busy");
2850 *(int *) gd->gd_CMAP3 = PG_V | PG_RW | (phys & PG_FRAME) | PG_A | PG_M;
2851 cpu_invlpg(gd->gd_CADDR3);
2853 #if defined(I686_CPU)
2854 if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2855 i686_pagezero(gd->gd_CADDR3);
2856 else
2857 #endif
2858 bzero((char *)gd->gd_CADDR3 + off, size);
2859 *(int *) gd->gd_CMAP3 = 0;
2860 crit_exit();
2864 * pmap_copy_page:
2866 * Copy the physical page from the source PA to the target PA.
2867 * This function may be called from an interrupt. No locking
2868 * is required.
2870 void
2871 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2873 struct mdglobaldata *gd = mdcpu;
2875 crit_enter();
2876 if (*(int *) gd->gd_CMAP1)
2877 panic("pmap_copy_page: CMAP1 busy");
2878 if (*(int *) gd->gd_CMAP2)
2879 panic("pmap_copy_page: CMAP2 busy");
2881 *(int *) gd->gd_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2882 *(int *) gd->gd_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2884 cpu_invlpg(gd->gd_CADDR1);
2885 cpu_invlpg(gd->gd_CADDR2);
2887 bcopy(gd->gd_CADDR1, gd->gd_CADDR2, PAGE_SIZE);
2889 *(int *) gd->gd_CMAP1 = 0;
2890 *(int *) gd->gd_CMAP2 = 0;
2891 crit_exit();
2895 * pmap_copy_page_frag:
2897 * Copy the physical page from the source PA to the target PA.
2898 * This function may be called from an interrupt. No locking
2899 * is required.
2901 void
2902 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2904 struct mdglobaldata *gd = mdcpu;
2906 crit_enter();
2907 if (*(int *) gd->gd_CMAP1)
2908 panic("pmap_copy_page: CMAP1 busy");
2909 if (*(int *) gd->gd_CMAP2)
2910 panic("pmap_copy_page: CMAP2 busy");
2912 *(int *) gd->gd_CMAP1 = PG_V | (src & PG_FRAME) | PG_A;
2913 *(int *) gd->gd_CMAP2 = PG_V | PG_RW | (dst & PG_FRAME) | PG_A | PG_M;
2915 cpu_invlpg(gd->gd_CADDR1);
2916 cpu_invlpg(gd->gd_CADDR2);
2918 bcopy((char *)gd->gd_CADDR1 + (src & PAGE_MASK),
2919 (char *)gd->gd_CADDR2 + (dst & PAGE_MASK),
2920 bytes);
2922 *(int *) gd->gd_CMAP1 = 0;
2923 *(int *) gd->gd_CMAP2 = 0;
2924 crit_exit();
2928 * Returns true if the pmap's pv is one of the first
2929 * 16 pvs linked to from this page. This count may
2930 * be changed upwards or downwards in the future; it
2931 * is only necessary that true be returned for a small
2932 * subset of pmaps for proper page aging.
2934 boolean_t
2935 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2937 pv_entry_t pv;
2938 int loops = 0;
2940 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2941 return FALSE;
2943 crit_enter();
2945 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2946 if (pv->pv_pmap == pmap) {
2947 crit_exit();
2948 return TRUE;
2950 loops++;
2951 if (loops >= 16)
2952 break;
2954 crit_exit();
2955 return (FALSE);
2959 * Remove all pages from specified address space
2960 * this aids process exit speeds. Also, this code
2961 * is special cased for current process only, but
2962 * can have the more generic (and slightly slower)
2963 * mode enabled. This is much faster than pmap_remove
2964 * in the case of running down an entire address space.
2966 void
2967 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2969 struct lwp *lp;
2970 unsigned *pte, tpte;
2971 pv_entry_t pv, npv;
2972 vm_page_t m;
2973 pmap_inval_info info;
2974 int iscurrentpmap;
2975 int32_t save_generation;
2977 lp = curthread->td_lwp;
2978 if (lp && pmap == vmspace_pmap(lp->lwp_vmspace))
2979 iscurrentpmap = 1;
2980 else
2981 iscurrentpmap = 0;
2983 pmap_inval_init(&info);
2984 crit_enter();
2985 for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2986 if (pv->pv_va >= eva || pv->pv_va < sva) {
2987 npv = TAILQ_NEXT(pv, pv_plist);
2988 continue;
2991 KKASSERT(pmap == pv->pv_pmap);
2993 if (iscurrentpmap)
2994 pte = (unsigned *)vtopte(pv->pv_va);
2995 else
2996 pte = pmap_pte_quick(pmap, pv->pv_va);
2997 KKASSERT(*pte);
2998 if (pmap->pm_active)
2999 pmap_inval_add(&info, pmap, pv->pv_va);
3002 * We cannot remove wired pages from a process' mapping
3003 * at this time
3005 if (*pte & PG_W) {
3006 npv = TAILQ_NEXT(pv, pv_plist);
3007 continue;
3009 KKASSERT(*pte);
3010 tpte = loadandclear(pte);
3012 m = PHYS_TO_VM_PAGE(tpte);
3013 test_m_maps_pv(m, pv);
3015 KASSERT(m < &vm_page_array[vm_page_array_size],
3016 ("pmap_remove_pages: bad tpte %x", tpte));
3018 KKASSERT(pmap->pm_stats.resident_count > 0);
3019 --pmap->pm_stats.resident_count;
3022 * Update the vm_page_t clean and reference bits.
3024 if (tpte & PG_M) {
3025 vm_page_dirty(m);
3028 npv = TAILQ_NEXT(pv, pv_plist);
3029 #ifdef PMAP_DEBUG
3030 KKASSERT(pv->pv_m == m);
3031 KKASSERT(pv->pv_pmap == pmap);
3032 #endif
3033 TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
3034 save_generation = ++pmap->pm_generation;
3036 m->md.pv_list_count--;
3037 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3038 if (TAILQ_EMPTY(&m->md.pv_list))
3039 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3041 pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem, &info);
3042 free_pv_entry(pv);
3045 * Restart the scan if we blocked during the unuse or free
3046 * calls and other removals were made.
3048 if (save_generation != pmap->pm_generation) {
3049 kprintf("Warning: pmap_remove_pages race-A avoided\n");
3050 npv = TAILQ_FIRST(&pmap->pm_pvlist);
3053 pmap_inval_flush(&info);
3054 crit_exit();
3058 * pmap_testbit tests bits in pte's
3059 * note that the testbit/clearbit routines are inline,
3060 * and a lot of things compile-time evaluate.
3062 static boolean_t
3063 pmap_testbit(vm_page_t m, int bit)
3065 pv_entry_t pv;
3066 unsigned *pte;
3068 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3069 return FALSE;
3071 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3072 return FALSE;
3074 crit_enter();
3076 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3078 * if the bit being tested is the modified bit, then
3079 * mark clean_map and ptes as never
3080 * modified.
3082 if (bit & (PG_A|PG_M)) {
3083 if (!pmap_track_modified(pv->pv_va))
3084 continue;
3087 #if defined(PMAP_DIAGNOSTIC)
3088 if (!pv->pv_pmap) {
3089 kprintf("Null pmap (tb) at va: %p\n",
3090 (void *)pv->pv_va);
3091 continue;
3093 #endif
3094 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3095 if (*pte & bit) {
3096 crit_exit();
3097 return TRUE;
3100 crit_exit();
3101 return (FALSE);
3105 * this routine is used to modify bits in ptes
3107 static __inline void
3108 pmap_clearbit(vm_page_t m, int bit)
3110 struct pmap_inval_info info;
3111 pv_entry_t pv;
3112 unsigned *pte;
3113 unsigned pbits;
3115 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3116 return;
3118 pmap_inval_init(&info);
3119 crit_enter();
3122 * Loop over all current mappings setting/clearing as appropos If
3123 * setting RO do we need to clear the VAC?
3125 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3127 * don't write protect pager mappings
3129 if (bit == PG_RW) {
3130 if (!pmap_track_modified(pv->pv_va))
3131 continue;
3134 #if defined(PMAP_DIAGNOSTIC)
3135 if (!pv->pv_pmap) {
3136 kprintf("Null pmap (cb) at va: %p\n",
3137 (void *)pv->pv_va);
3138 continue;
3140 #endif
3143 * Careful here. We can use a locked bus instruction to
3144 * clear PG_A or PG_M safely but we need to synchronize
3145 * with the target cpus when we mess with PG_RW.
3147 * We do not have to force synchronization when clearing
3148 * PG_M even for PTEs generated via virtual memory maps,
3149 * because the virtual kernel will invalidate the pmap
3150 * entry when/if it needs to resynchronize the Modify bit.
3152 if (bit & PG_RW)
3153 pmap_inval_add(&info, pv->pv_pmap, pv->pv_va);
3154 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3155 again:
3156 pbits = *pte;
3157 if (pbits & bit) {
3158 if (bit == PG_RW) {
3159 if (pbits & PG_M) {
3160 vm_page_dirty(m);
3161 atomic_clear_int(pte, PG_M|PG_RW);
3162 } else {
3164 * The cpu may be trying to set PG_M
3165 * simultaniously with our clearing
3166 * of PG_RW.
3168 if (!atomic_cmpset_int(pte, pbits,
3169 pbits & ~PG_RW))
3170 goto again;
3172 } else if (bit == PG_M) {
3174 * We could also clear PG_RW here to force
3175 * a fault on write to redetect PG_M for
3176 * virtual kernels, but it isn't necessary
3177 * since virtual kernels invalidate the pte
3178 * when they clear the VPTE_M bit in their
3179 * virtual page tables.
3181 atomic_clear_int(pte, PG_M);
3182 } else {
3183 atomic_clear_int(pte, bit);
3187 pmap_inval_flush(&info);
3188 crit_exit();
3192 * pmap_page_protect:
3194 * Lower the permission for all mappings to a given page.
3196 void
3197 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3199 if ((prot & VM_PROT_WRITE) == 0) {
3200 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3201 pmap_clearbit(m, PG_RW);
3202 vm_page_flag_clear(m, PG_WRITEABLE);
3203 } else {
3204 pmap_remove_all(m);
3209 vm_paddr_t
3210 pmap_phys_address(vm_pindex_t ppn)
3212 return (i386_ptob(ppn));
3216 * pmap_ts_referenced:
3218 * Return a count of reference bits for a page, clearing those bits.
3219 * It is not necessary for every reference bit to be cleared, but it
3220 * is necessary that 0 only be returned when there are truly no
3221 * reference bits set.
3223 * XXX: The exact number of bits to check and clear is a matter that
3224 * should be tested and standardized at some point in the future for
3225 * optimal aging of shared pages.
3228 pmap_ts_referenced(vm_page_t m)
3230 pv_entry_t pv, pvf, pvn;
3231 unsigned *pte;
3232 int rtval = 0;
3234 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3235 return (rtval);
3237 crit_enter();
3239 if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3241 pvf = pv;
3243 do {
3244 pvn = TAILQ_NEXT(pv, pv_list);
3246 crit_enter();
3247 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3248 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3249 crit_exit();
3251 if (!pmap_track_modified(pv->pv_va))
3252 continue;
3254 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3256 if (pte && (*pte & PG_A)) {
3257 #ifdef SMP
3258 atomic_clear_int(pte, PG_A);
3259 #else
3260 atomic_clear_int_nonlocked(pte, PG_A);
3261 #endif
3262 rtval++;
3263 if (rtval > 4) {
3264 break;
3267 } while ((pv = pvn) != NULL && pv != pvf);
3269 crit_exit();
3271 return (rtval);
3275 * pmap_is_modified:
3277 * Return whether or not the specified physical page was modified
3278 * in any physical maps.
3280 boolean_t
3281 pmap_is_modified(vm_page_t m)
3283 return pmap_testbit(m, PG_M);
3287 * Clear the modify bits on the specified physical page.
3289 void
3290 pmap_clear_modify(vm_page_t m)
3292 pmap_clearbit(m, PG_M);
3296 * pmap_clear_reference:
3298 * Clear the reference bit on the specified physical page.
3300 void
3301 pmap_clear_reference(vm_page_t m)
3303 pmap_clearbit(m, PG_A);
3307 * Miscellaneous support routines follow
3310 static void
3311 i386_protection_init(void)
3313 int *kp, prot;
3315 kp = protection_codes;
3316 for (prot = 0; prot < 8; prot++) {
3317 switch (prot) {
3318 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3320 * Read access is also 0. There isn't any execute bit,
3321 * so just make it readable.
3323 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3324 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3325 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3326 *kp++ = 0;
3327 break;
3328 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3329 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3330 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3331 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3332 *kp++ = PG_RW;
3333 break;
3339 * Map a set of physical memory pages into the kernel virtual
3340 * address space. Return a pointer to where it is mapped. This
3341 * routine is intended to be used for mapping device memory,
3342 * NOT real memory.
3344 * NOTE: we can't use pgeflag unless we invalidate the pages one at
3345 * a time.
3347 void *
3348 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3350 vm_offset_t va, tmpva, offset;
3351 unsigned *pte;
3353 offset = pa & PAGE_MASK;
3354 size = roundup(offset + size, PAGE_SIZE);
3356 va = kmem_alloc_nofault(&kernel_map, size);
3357 if (!va)
3358 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3360 pa = pa & PG_FRAME;
3361 for (tmpva = va; size > 0;) {
3362 pte = (unsigned *)vtopte(tmpva);
3363 *pte = pa | PG_RW | PG_V; /* | pgeflag; */
3364 size -= PAGE_SIZE;
3365 tmpva += PAGE_SIZE;
3366 pa += PAGE_SIZE;
3368 cpu_invltlb();
3369 smp_invltlb();
3371 return ((void *)(va + offset));
3374 void
3375 pmap_unmapdev(vm_offset_t va, vm_size_t size)
3377 vm_offset_t base, offset;
3379 base = va & PG_FRAME;
3380 offset = va & PAGE_MASK;
3381 size = roundup(offset + size, PAGE_SIZE);
3382 pmap_qremove(va, size >> PAGE_SHIFT);
3383 kmem_free(&kernel_map, base, size);
3387 * perform the pmap work for mincore
3390 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3392 unsigned *ptep, pte;
3393 vm_page_t m;
3394 int val = 0;
3396 ptep = pmap_pte(pmap, addr);
3397 if (ptep == 0) {
3398 return 0;
3401 if ((pte = *ptep) != 0) {
3402 vm_offset_t pa;
3404 val = MINCORE_INCORE;
3405 if ((pte & PG_MANAGED) == 0)
3406 return val;
3408 pa = pte & PG_FRAME;
3410 m = PHYS_TO_VM_PAGE(pa);
3413 * Modified by us
3415 if (pte & PG_M)
3416 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3418 * Modified by someone
3420 else if (m->dirty || pmap_is_modified(m))
3421 val |= MINCORE_MODIFIED_OTHER;
3423 * Referenced by us
3425 if (pte & PG_A)
3426 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3429 * Referenced by someone
3431 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3432 val |= MINCORE_REFERENCED_OTHER;
3433 vm_page_flag_set(m, PG_REFERENCED);
3436 return val;
3440 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3441 * vmspace will be ref'd and the old one will be deref'd.
3443 * The vmspace for all lwps associated with the process will be adjusted
3444 * and cr3 will be reloaded if any lwp is the current lwp.
3446 void
3447 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3449 struct vmspace *oldvm;
3450 struct lwp *lp;
3452 crit_enter();
3453 oldvm = p->p_vmspace;
3454 if (oldvm != newvm) {
3455 p->p_vmspace = newvm;
3456 KKASSERT(p->p_nthreads == 1);
3457 lp = RB_ROOT(&p->p_lwp_tree);
3458 pmap_setlwpvm(lp, newvm);
3459 if (adjrefs) {
3460 sysref_get(&newvm->vm_sysref);
3461 sysref_put(&oldvm->vm_sysref);
3464 crit_exit();
3468 * Set the vmspace for a LWP. The vmspace is almost universally set the
3469 * same as the process vmspace, but virtual kernels need to swap out contexts
3470 * on a per-lwp basis.
3472 void
3473 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3475 struct vmspace *oldvm;
3476 struct pmap *pmap;
3478 crit_enter();
3479 oldvm = lp->lwp_vmspace;
3481 if (oldvm != newvm) {
3482 lp->lwp_vmspace = newvm;
3483 if (curthread->td_lwp == lp) {
3484 pmap = vmspace_pmap(newvm);
3485 #if defined(SMP)
3486 atomic_set_int(&pmap->pm_active, 1 << mycpu->gd_cpuid);
3487 #else
3488 pmap->pm_active |= 1;
3489 #endif
3490 #if defined(SWTCH_OPTIM_STATS)
3491 tlb_flush_count++;
3492 #endif
3493 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pdir);
3494 load_cr3(curthread->td_pcb->pcb_cr3);
3495 pmap = vmspace_pmap(oldvm);
3496 #if defined(SMP)
3497 atomic_clear_int(&pmap->pm_active,
3498 1 << mycpu->gd_cpuid);
3499 #else
3500 pmap->pm_active &= ~1;
3501 #endif
3504 crit_exit();
3507 vm_offset_t
3508 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3511 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3512 return addr;
3515 addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3516 return addr;
3520 pmap_get_pgeflag(void)
3522 return pgeflag;
3525 #if defined(DEBUG)
3527 static void pads (pmap_t pm);
3528 void pmap_pvdump (vm_paddr_t pa);
3530 /* print address space of pmap*/
3531 static void
3532 pads(pmap_t pm)
3534 unsigned va, i, j;
3535 unsigned *ptep;
3537 if (pm == &kernel_pmap)
3538 return;
3539 crit_enter();
3540 for (i = 0; i < 1024; i++) {
3541 if (pm->pm_pdir[i]) {
3542 for (j = 0; j < 1024; j++) {
3543 va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3544 if (pm == &kernel_pmap && va < KERNBASE)
3545 continue;
3546 if (pm != &kernel_pmap && va > UPT_MAX_ADDRESS)
3547 continue;
3548 ptep = pmap_pte_quick(pm, va);
3549 if (pmap_pte_v(ptep))
3550 kprintf("%x:%x ", va, *(int *) ptep);
3554 crit_exit();
3558 void
3559 pmap_pvdump(vm_paddr_t pa)
3561 pv_entry_t pv;
3562 vm_page_t m;
3564 kprintf("pa %08llx", (long long)pa);
3565 m = PHYS_TO_VM_PAGE(pa);
3566 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3567 #ifdef used_to_be
3568 kprintf(" -> pmap %p, va %p, flags %x",
3569 (void *)pv->pv_pmap, (long)pv->pv_va, pv->pv_flags);
3570 #endif
3571 kprintf(" -> pmap %p, va %p",
3572 (void *)pv->pv_pmap, (void *)pv->pv_va);
3573 pads(pv->pv_pmap);
3575 kprintf(" ");
3577 #endif