ipfw: Add icmpcodes support.
[dragonfly.git] / sys / vfs / hammer2 / hammer2_vfsops.c
blobb8db5e4457793ac51a1cff9a01d71e65d9d18d04
1 /*
2 * Copyright (c) 2011-2017 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific, prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
49 #include <sys/proc.h>
50 #include <sys/namei.h>
51 #include <sys/mountctl.h>
52 #include <sys/dirent.h>
53 #include <sys/uio.h>
55 #include <sys/mutex.h>
56 #include <sys/mutex2.h>
58 #include "hammer2.h"
59 #include "hammer2_disk.h"
60 #include "hammer2_mount.h"
61 #include "hammer2_lz4.h"
63 #include "zlib/hammer2_zlib.h"
65 #define REPORT_REFS_ERRORS 1 /* XXX remove me */
67 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
69 struct hammer2_sync_info {
70 int error;
71 int waitfor;
74 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
75 static struct hammer2_mntlist hammer2_mntlist;
77 struct hammer2_pfslist hammer2_pfslist;
78 struct lock hammer2_mntlk;
80 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT;
81 int hammer2_debug;
82 int hammer2_cluster_meta_read = 1; /* physical read-ahead */
83 int hammer2_cluster_data_read = 4; /* physical read-ahead */
84 int hammer2_dedup_enable = 1;
85 int hammer2_always_compress = 0; /* always try to compress */
86 int hammer2_inval_enable = 0;
87 int hammer2_flush_pipe = 100;
88 int hammer2_synchronous_flush = 1;
89 int hammer2_dio_count;
90 int hammer2_limit_dio = 256;
91 int hammer2_bulkfree_tps = 5000;
92 long hammer2_chain_allocs;
93 long hammer2_chain_frees;
94 long hammer2_limit_dirty_chains;
95 long hammer2_count_modified_chains;
96 long hammer2_iod_invals;
97 long hammer2_iod_file_read;
98 long hammer2_iod_meta_read;
99 long hammer2_iod_indr_read;
100 long hammer2_iod_fmap_read;
101 long hammer2_iod_volu_read;
102 long hammer2_iod_file_write;
103 long hammer2_iod_file_wembed;
104 long hammer2_iod_file_wzero;
105 long hammer2_iod_file_wdedup;
106 long hammer2_iod_meta_write;
107 long hammer2_iod_indr_write;
108 long hammer2_iod_fmap_write;
109 long hammer2_iod_volu_write;
111 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
112 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
113 "Buffer used for compression.");
115 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
116 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
117 "Buffer used for decompression.");
119 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
121 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD,
122 &hammer2_supported_version, 0, "");
123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
124 &hammer2_debug, 0, "");
125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW,
126 &hammer2_cluster_meta_read, 0, "");
127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW,
128 &hammer2_cluster_data_read, 0, "");
129 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW,
130 &hammer2_dedup_enable, 0, "");
131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW,
132 &hammer2_always_compress, 0, "");
133 SYSCTL_INT(_vfs_hammer2, OID_AUTO, inval_enable, CTLFLAG_RW,
134 &hammer2_inval_enable, 0, "");
135 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
136 &hammer2_flush_pipe, 0, "");
137 SYSCTL_INT(_vfs_hammer2, OID_AUTO, synchronous_flush, CTLFLAG_RW,
138 &hammer2_synchronous_flush, 0, "");
139 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW,
140 &hammer2_bulkfree_tps, 0, "");
141 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RW,
142 &hammer2_chain_allocs, 0, "");
143 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_frees, CTLFLAG_RW,
144 &hammer2_chain_frees, 0, "");
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
146 &hammer2_limit_dirty_chains, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW,
148 &hammer2_count_modified_chains, 0, "");
149 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
150 &hammer2_dio_count, 0, "");
151 SYSCTL_INT(_vfs_hammer2, OID_AUTO, limit_dio, CTLFLAG_RW,
152 &hammer2_limit_dio, 0, "");
154 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_invals, CTLFLAG_RW,
155 &hammer2_iod_invals, 0, "");
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
157 &hammer2_iod_file_read, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
159 &hammer2_iod_meta_read, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
161 &hammer2_iod_indr_read, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
163 &hammer2_iod_fmap_read, 0, "");
164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
165 &hammer2_iod_volu_read, 0, "");
167 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
168 &hammer2_iod_file_write, 0, "");
169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW,
170 &hammer2_iod_file_wembed, 0, "");
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW,
172 &hammer2_iod_file_wzero, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW,
174 &hammer2_iod_file_wdedup, 0, "");
175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
176 &hammer2_iod_meta_write, 0, "");
177 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
178 &hammer2_iod_indr_write, 0, "");
179 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
180 &hammer2_iod_fmap_write, 0, "");
181 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
182 &hammer2_iod_volu_write, 0, "");
184 long hammer2_check_icrc32;
185 long hammer2_check_xxhash64;
186 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, check_icrc32, CTLFLAG_RW,
187 &hammer2_check_icrc32, 0, "");
188 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, check_xxhash64, CTLFLAG_RW,
189 &hammer2_check_xxhash64, 0, "");
191 static int hammer2_vfs_init(struct vfsconf *conf);
192 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
193 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
194 struct ucred *cred);
195 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
196 struct vnode *, struct ucred *);
197 static int hammer2_recovery(hammer2_dev_t *hmp);
198 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
199 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
200 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
201 struct ucred *cred);
202 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
203 struct ucred *cred);
204 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
205 struct fid *fhp, struct vnode **vpp);
206 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
207 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
208 int *exflagsp, struct ucred **credanonp);
210 static int hammer2_install_volume_header(hammer2_dev_t *hmp);
211 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
213 static void hammer2_update_pmps(hammer2_dev_t *hmp);
215 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
216 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
217 hammer2_dev_t *hmp);
220 * HAMMER2 vfs operations.
222 static struct vfsops hammer2_vfsops = {
223 .vfs_init = hammer2_vfs_init,
224 .vfs_uninit = hammer2_vfs_uninit,
225 .vfs_sync = hammer2_vfs_sync,
226 .vfs_mount = hammer2_vfs_mount,
227 .vfs_unmount = hammer2_vfs_unmount,
228 .vfs_root = hammer2_vfs_root,
229 .vfs_statfs = hammer2_vfs_statfs,
230 .vfs_statvfs = hammer2_vfs_statvfs,
231 .vfs_vget = hammer2_vfs_vget,
232 .vfs_vptofh = hammer2_vfs_vptofh,
233 .vfs_fhtovp = hammer2_vfs_fhtovp,
234 .vfs_checkexp = hammer2_vfs_checkexp
237 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
239 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE);
240 MODULE_VERSION(hammer2, 1);
242 static
244 hammer2_vfs_init(struct vfsconf *conf)
246 static struct objcache_malloc_args margs_read;
247 static struct objcache_malloc_args margs_write;
248 static struct objcache_malloc_args margs_vop;
250 int error;
252 error = 0;
255 * A large DIO cache is needed to retain dedup enablement masks.
256 * The bulkfree code clears related masks as part of the disk block
257 * recycling algorithm, preventing it from being used for a later
258 * dedup.
260 * NOTE: A large buffer cache can actually interfere with dedup
261 * operation because we dedup based on media physical buffers
262 * and not logical buffers. Try to make the DIO chace large
263 * enough to avoid this problem, but also cap it.
265 hammer2_limit_dio = nbuf * 2;
266 if (hammer2_limit_dio > 100000)
267 hammer2_limit_dio = 100000;
269 if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
270 error = EINVAL;
271 if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
272 error = EINVAL;
273 if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
274 error = EINVAL;
276 if (error)
277 kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
279 margs_read.objsize = 65536;
280 margs_read.mtype = M_HAMMER2_DEBUFFER;
282 margs_write.objsize = 32768;
283 margs_write.mtype = M_HAMMER2_CBUFFER;
285 margs_vop.objsize = sizeof(hammer2_xop_t);
286 margs_vop.mtype = M_HAMMER2;
289 * Note thaht for the XOPS cache we want backing store allocations
290 * to use M_ZERO. This is not allowed in objcache_get() (to avoid
291 * confusion), so use the backing store function that does it. This
292 * means that initial XOPS objects are zerod but REUSED objects are
293 * not. So we are responsible for cleaning the object up sufficiently
294 * for our needs before objcache_put()ing it back (typically just the
295 * FIFO indices).
297 cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
298 0, 1, NULL, NULL, NULL,
299 objcache_malloc_alloc,
300 objcache_malloc_free,
301 &margs_read);
302 cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
303 0, 1, NULL, NULL, NULL,
304 objcache_malloc_alloc,
305 objcache_malloc_free,
306 &margs_write);
307 cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
308 0, 1, NULL, NULL, NULL,
309 objcache_malloc_alloc_zero,
310 objcache_malloc_free,
311 &margs_vop);
314 lockinit(&hammer2_mntlk, "mntlk", 0, 0);
315 TAILQ_INIT(&hammer2_mntlist);
316 TAILQ_INIT(&hammer2_pfslist);
318 hammer2_limit_dirty_chains = maxvnodes / 10;
319 if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS)
320 hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS;
322 return (error);
325 static
327 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
329 objcache_destroy(cache_buffer_read);
330 objcache_destroy(cache_buffer_write);
331 objcache_destroy(cache_xops);
332 return 0;
336 * Core PFS allocator. Used to allocate or reference the pmp structure
337 * for PFS cluster mounts and the spmp structure for media (hmp) structures.
338 * The pmp can be passed in or loaded by this function using the chain and
339 * inode data.
341 * pmp->modify_tid tracks new modify_tid transaction ids for front-end
342 * transactions. Note that synchronization does not use this field.
343 * (typically frontend operations and synchronization cannot run on the
344 * same PFS node at the same time).
346 * XXX check locking
348 hammer2_pfs_t *
349 hammer2_pfsalloc(hammer2_chain_t *chain,
350 const hammer2_inode_data_t *ripdata,
351 hammer2_tid_t modify_tid, hammer2_dev_t *force_local)
353 hammer2_pfs_t *pmp;
354 hammer2_inode_t *iroot;
355 int count;
356 int i;
357 int j;
359 pmp = NULL;
362 * Locate or create the PFS based on the cluster id. If ripdata
363 * is NULL this is a spmp which is unique and is always allocated.
365 * If the device is mounted in local mode all PFSs are considered
366 * independent and not part of any cluster (for debugging only).
368 if (ripdata) {
369 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
370 if (force_local != pmp->force_local)
371 continue;
372 if (force_local == NULL &&
373 bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
374 sizeof(pmp->pfs_clid)) == 0) {
375 break;
376 } else if (force_local && pmp->pfs_names[0] &&
377 strcmp(pmp->pfs_names[0], ripdata->filename) == 0) {
378 break;
383 if (pmp == NULL) {
384 pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
385 pmp->force_local = force_local;
386 hammer2_trans_manage_init(pmp);
387 kmalloc_create(&pmp->minode, "HAMMER2-inodes");
388 kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg");
389 lockinit(&pmp->lock, "pfslk", 0, 0);
390 lockinit(&pmp->lock_nlink, "h2nlink", 0, 0);
391 spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
392 spin_init(&pmp->xop_spin, "h2xop");
393 spin_init(&pmp->lru_spin, "h2lru");
394 RB_INIT(&pmp->inum_tree);
395 TAILQ_INIT(&pmp->sideq);
396 TAILQ_INIT(&pmp->lru_list);
397 spin_init(&pmp->list_spin, "hm2pfsalloc_list");
400 * Distribute backend operations to threads
402 for (i = 0; i < HAMMER2_XOPGROUPS; ++i)
403 hammer2_xop_group_init(pmp, &pmp->xop_groups[i]);
406 * Save the last media transaction id for the flusher. Set
407 * initial
409 if (ripdata)
410 pmp->pfs_clid = ripdata->meta.pfs_clid;
411 TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
414 * The synchronization thread may start too early, make
415 * sure it stays frozen until we are ready to let it go.
416 * XXX
419 pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
420 HAMMER2_THREAD_REMASTER;
425 * Create the PFS's root inode and any missing XOP helper threads.
427 if ((iroot = pmp->iroot) == NULL) {
428 iroot = hammer2_inode_get(pmp, NULL, NULL, -1);
429 if (ripdata)
430 iroot->meta = ripdata->meta;
431 pmp->iroot = iroot;
432 hammer2_inode_ref(iroot);
433 hammer2_inode_unlock(iroot);
437 * Stop here if no chain is passed in.
439 if (chain == NULL)
440 goto done;
443 * When a chain is passed in we must add it to the PFS's root
444 * inode, update pmp->pfs_types[], and update the syncronization
445 * threads.
447 * When forcing local mode, mark the PFS as a MASTER regardless.
449 * At the moment empty spots can develop due to removals or failures.
450 * Ultimately we want to re-fill these spots but doing so might
451 * confused running code. XXX
453 hammer2_inode_ref(iroot);
454 hammer2_mtx_ex(&iroot->lock);
455 j = iroot->cluster.nchains;
457 if (j == HAMMER2_MAXCLUSTER) {
458 kprintf("hammer2_mount: cluster full!\n");
459 /* XXX fatal error? */
460 } else {
461 KKASSERT(chain->pmp == NULL);
462 chain->pmp = pmp;
463 hammer2_chain_ref(chain);
464 iroot->cluster.array[j].chain = chain;
465 if (force_local)
466 pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER;
467 else
468 pmp->pfs_types[j] = ripdata->meta.pfs_type;
469 pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
470 pmp->pfs_hmps[j] = chain->hmp;
473 * If the PFS is already mounted we must account
474 * for the mount_count here.
476 if (pmp->mp)
477 ++chain->hmp->mount_count;
480 * May have to fixup dirty chain tracking. Previous
481 * pmp was NULL so nothing to undo.
483 if (chain->flags & HAMMER2_CHAIN_MODIFIED)
484 hammer2_pfs_memory_inc(pmp);
485 ++j;
487 iroot->cluster.nchains = j;
490 * Update nmasters from any PFS inode which is part of the cluster.
491 * It is possible that this will result in a value which is too
492 * high. MASTER PFSs are authoritative for pfs_nmasters and will
493 * override this value later on.
495 * (This informs us of masters that might not currently be
496 * discoverable by this mount).
498 if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
499 pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
503 * Count visible masters. Masters are usually added with
504 * ripdata->meta.pfs_nmasters set to 1. This detects when there
505 * are more (XXX and must update the master inodes).
507 count = 0;
508 for (i = 0; i < iroot->cluster.nchains; ++i) {
509 if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
510 ++count;
512 if (pmp->pfs_nmasters < count)
513 pmp->pfs_nmasters = count;
516 * Create missing synchronization and support threads.
518 * Single-node masters (including snapshots) have nothing to
519 * synchronize and do not require this thread.
521 * Multi-node masters or any number of soft masters, slaves, copy,
522 * or other PFS types need the thread.
524 * Each thread is responsible for its particular cluster index.
525 * We use independent threads so stalls or mismatches related to
526 * any given target do not affect other targets.
528 for (i = 0; i < iroot->cluster.nchains; ++i) {
530 * Single-node masters (including snapshots) have nothing
531 * to synchronize and will make direct xops support calls,
532 * thus they do not require this thread.
534 * Note that there can be thousands of snapshots. We do not
535 * want to create thousands of threads.
537 if (pmp->pfs_nmasters <= 1 &&
538 pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
539 continue;
543 * Sync support thread
545 if (pmp->sync_thrs[i].td == NULL) {
546 hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL,
547 "h2nod", i, -1,
548 hammer2_primary_sync_thread);
553 * Create missing Xop threads
555 * NOTE: We create helper threads for all mounted PFSs or any
556 * PFSs with 2+ nodes (so the sync thread can update them,
557 * even if not mounted).
559 if (pmp->mp || iroot->cluster.nchains >= 2)
560 hammer2_xop_helper_create(pmp);
562 hammer2_mtx_unlock(&iroot->lock);
563 hammer2_inode_drop(iroot);
564 done:
565 return pmp;
569 * Deallocate an element of a probed PFS. If destroying and this is a
570 * MASTER, adjust nmasters.
572 * This function does not physically destroy the PFS element in its device
573 * under the super-root (see hammer2_ioctl_pfs_delete()).
575 void
576 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying)
578 hammer2_inode_t *iroot;
579 hammer2_chain_t *chain;
580 int j;
583 * Cleanup our reference on iroot. iroot is (should) not be needed
584 * by the flush code.
586 iroot = pmp->iroot;
587 if (iroot) {
589 * Stop synchronizing
591 * XXX flush after acquiring the iroot lock.
592 * XXX clean out the cluster index from all inode structures.
594 hammer2_thr_delete(&pmp->sync_thrs[clindex]);
597 * Remove the cluster index from the group. If destroying
598 * the PFS and this is a master, adjust pfs_nmasters.
600 hammer2_mtx_ex(&iroot->lock);
601 chain = iroot->cluster.array[clindex].chain;
602 iroot->cluster.array[clindex].chain = NULL;
604 switch(pmp->pfs_types[clindex]) {
605 case HAMMER2_PFSTYPE_MASTER:
606 if (destroying && pmp->pfs_nmasters > 0)
607 --pmp->pfs_nmasters;
608 /* XXX adjust ripdata->meta.pfs_nmasters */
609 break;
610 default:
611 break;
613 pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE;
615 hammer2_mtx_unlock(&iroot->lock);
618 * Release the chain.
620 if (chain) {
621 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
622 hammer2_chain_drop(chain);
626 * Terminate all XOP threads for the cluster index.
628 for (j = 0; j < HAMMER2_XOPGROUPS; ++j)
629 hammer2_thr_delete(&pmp->xop_groups[j].thrs[clindex]);
634 * Destroy a PFS, typically only occurs after the last mount on a device
635 * has gone away.
637 static void
638 hammer2_pfsfree(hammer2_pfs_t *pmp)
640 hammer2_inode_t *iroot;
641 hammer2_chain_t *chain;
642 int i;
643 int j;
646 * Cleanup our reference on iroot. iroot is (should) not be needed
647 * by the flush code.
649 TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
651 iroot = pmp->iroot;
652 if (iroot) {
653 for (i = 0; i < iroot->cluster.nchains; ++i) {
654 hammer2_thr_delete(&pmp->sync_thrs[i]);
655 for (j = 0; j < HAMMER2_XOPGROUPS; ++j)
656 hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
658 #if REPORT_REFS_ERRORS
659 if (pmp->iroot->refs != 1)
660 kprintf("PMP->IROOT %p REFS WRONG %d\n",
661 pmp->iroot, pmp->iroot->refs);
662 #else
663 KKASSERT(pmp->iroot->refs == 1);
664 #endif
665 /* ref for pmp->iroot */
666 hammer2_inode_drop(pmp->iroot);
667 pmp->iroot = NULL;
671 * Cleanup chains remaining on LRU list.
673 while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) {
674 hammer2_chain_ref(chain);
675 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
676 hammer2_chain_drop(chain);
680 * Free remaining pmp resources
682 kmalloc_destroy(&pmp->mmsg);
683 kmalloc_destroy(&pmp->minode);
685 kfree(pmp, M_HAMMER2);
689 * Remove all references to hmp from the pfs list. Any PFS which becomes
690 * empty is terminated and freed.
692 * XXX inefficient.
694 static void
695 hammer2_pfsfree_scan(hammer2_dev_t *hmp)
697 hammer2_pfs_t *pmp;
698 hammer2_inode_t *iroot;
699 hammer2_chain_t *rchain;
700 int didfreeze;
701 int i;
702 int j;
704 again:
705 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
706 if ((iroot = pmp->iroot) == NULL)
707 continue;
708 hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
709 hammer2_inode_run_sideq(pmp, 1);
710 hammer2_bioq_sync(pmp);
711 hammer2_trans_done(pmp);
712 if (hmp->spmp == pmp) {
713 hmp->spmp = NULL;
714 hmp->vchain.pmp = NULL;
715 hmp->fchain.pmp = NULL;
719 * Determine if this PFS is affected. If it is we must
720 * freeze all management threads and lock its iroot.
722 * Freezing a management thread forces it idle, operations
723 * in-progress will be aborted and it will have to start
724 * over again when unfrozen, or exit if told to exit.
726 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
727 if (pmp->pfs_hmps[i] == hmp)
728 break;
730 if (i != HAMMER2_MAXCLUSTER) {
732 * Make sure all synchronization threads are locked
733 * down.
735 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
736 if (pmp->pfs_hmps[i] == NULL)
737 continue;
738 hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
739 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
740 hammer2_thr_freeze_async(
741 &pmp->xop_groups[j].thrs[i]);
744 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
745 if (pmp->pfs_hmps[i] == NULL)
746 continue;
747 hammer2_thr_freeze(&pmp->sync_thrs[i]);
748 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
749 hammer2_thr_freeze(
750 &pmp->xop_groups[j].thrs[i]);
755 * Lock the inode and clean out matching chains.
756 * Note that we cannot use hammer2_inode_lock_*()
757 * here because that would attempt to validate the
758 * cluster that we are in the middle of ripping
759 * apart.
761 * WARNING! We are working directly on the inodes
762 * embedded cluster.
764 hammer2_mtx_ex(&iroot->lock);
767 * Remove the chain from matching elements of the PFS.
769 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
770 if (pmp->pfs_hmps[i] != hmp)
771 continue;
772 hammer2_thr_delete(&pmp->sync_thrs[i]);
773 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
774 hammer2_thr_delete(
775 &pmp->xop_groups[j].thrs[i]);
777 rchain = iroot->cluster.array[i].chain;
778 iroot->cluster.array[i].chain = NULL;
779 pmp->pfs_types[i] = 0;
780 if (pmp->pfs_names[i]) {
781 kfree(pmp->pfs_names[i], M_HAMMER2);
782 pmp->pfs_names[i] = NULL;
784 if (rchain) {
785 hammer2_chain_drop(rchain);
786 /* focus hint */
787 if (iroot->cluster.focus == rchain)
788 iroot->cluster.focus = NULL;
790 pmp->pfs_hmps[i] = NULL;
792 hammer2_mtx_unlock(&iroot->lock);
793 didfreeze = 1; /* remaster, unfreeze down below */
794 } else {
795 didfreeze = 0;
799 * Cleanup trailing chains. Gaps may remain.
801 for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
802 if (pmp->pfs_hmps[i])
803 break;
805 iroot->cluster.nchains = i + 1;
808 * If the PMP has no elements remaining we can destroy it.
809 * (this will transition management threads from frozen->exit).
811 if (iroot->cluster.nchains == 0) {
812 hammer2_pfsfree(pmp);
813 goto again;
817 * If elements still remain we need to set the REMASTER
818 * flag and unfreeze it.
820 if (didfreeze) {
821 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
822 if (pmp->pfs_hmps[i] == NULL)
823 continue;
824 hammer2_thr_remaster(&pmp->sync_thrs[i]);
825 hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
826 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
827 hammer2_thr_remaster(
828 &pmp->xop_groups[j].thrs[i]);
829 hammer2_thr_unfreeze(
830 &pmp->xop_groups[j].thrs[i]);
838 * Mount or remount HAMMER2 fileystem from physical media
840 * mountroot
841 * mp mount point structure
842 * path NULL
843 * data <unused>
844 * cred <unused>
846 * mount
847 * mp mount point structure
848 * path path to mount point
849 * data pointer to argument structure in user space
850 * volume volume path (device@LABEL form)
851 * hflags user mount flags
852 * cred user credentials
854 * RETURNS: 0 Success
855 * !0 error number
857 static
859 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
860 struct ucred *cred)
862 struct hammer2_mount_info info;
863 hammer2_pfs_t *pmp;
864 hammer2_pfs_t *spmp;
865 hammer2_dev_t *hmp;
866 hammer2_dev_t *force_local;
867 hammer2_key_t key_next;
868 hammer2_key_t key_dummy;
869 hammer2_key_t lhc;
870 struct vnode *devvp;
871 struct nlookupdata nd;
872 hammer2_chain_t *parent;
873 hammer2_chain_t *chain;
874 hammer2_cluster_t *cluster;
875 const hammer2_inode_data_t *ripdata;
876 hammer2_blockref_t bref;
877 struct file *fp;
878 char devstr[MNAMELEN];
879 size_t size;
880 size_t done;
881 char *dev;
882 char *label;
883 int ronly = 1;
884 int error;
885 int i;
887 hmp = NULL;
888 pmp = NULL;
889 dev = NULL;
890 label = NULL;
891 devvp = NULL;
893 kprintf("hammer2_mount\n");
895 if (path == NULL) {
897 * Root mount
899 bzero(&info, sizeof(info));
900 info.cluster_fd = -1;
901 ksnprintf(devstr, sizeof(devstr), "%s",
902 mp->mnt_stat.f_mntfromname);
903 kprintf("hammer2_mount: root '%s'\n", devstr);
904 } else {
906 * Non-root mount or updating a mount
908 error = copyin(data, &info, sizeof(info));
909 if (error)
910 return (error);
912 error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
913 if (error)
914 return (error);
918 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA
919 * if no label specified, based on the partition id. Error out if no
920 * label or device (with partition id) is specified. This is strictly
921 * a convenience to match the default label created by newfs_hammer2,
922 * our preference is that a label always be specified.
924 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command
925 * that does not specify a device, as long as some H2 label
926 * has already been mounted from that device. This makes
927 * mounting snapshots a lot easier.
929 dev = devstr;
930 label = strchr(devstr, '@');
931 if (label && ((label + 1) - dev) > done)
932 return (EINVAL);
933 if (label == NULL || label[1] == 0) {
934 char slice;
936 if (label == NULL)
937 label = devstr + strlen(devstr);
938 slice = label[-1];
939 switch(slice) {
940 case 'a':
941 label = "BOOT";
942 break;
943 case 'd':
944 label = "ROOT";
945 break;
946 default:
947 label = "DATA";
948 break;
950 } else {
951 *label = '\0';
952 label++;
955 kprintf("hammer2_mount: dev=\"%s\" label=\"%s\" rdonly=%d\n",
956 dev, label, (mp->mnt_flag & MNT_RDONLY));
958 if (mp->mnt_flag & MNT_UPDATE) {
960 * Update mount. Note that pmp->iroot->cluster is
961 * an inode-embedded cluster and thus cannot be
962 * directly locked.
964 * XXX HAMMER2 needs to implement NFS export via
965 * mountctl.
967 pmp = MPTOPMP(mp);
968 pmp->hflags = info.hflags;
969 cluster = &pmp->iroot->cluster;
970 for (i = 0; i < cluster->nchains; ++i) {
971 if (cluster->array[i].chain == NULL)
972 continue;
973 hmp = cluster->array[i].chain->hmp;
974 devvp = hmp->devvp;
975 error = hammer2_remount(hmp, mp, path,
976 devvp, cred);
977 if (error)
978 break;
981 return error;
985 * HMP device mount
987 * If a path is specified and dev is not an empty string, lookup the
988 * name and verify that it referes to a block device.
990 * If a path is specified and dev is an empty string we fall through
991 * and locate the label in the hmp search.
993 if (path && *dev != 0) {
994 error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW);
995 if (error == 0)
996 error = nlookup(&nd);
997 if (error == 0)
998 error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp);
999 nlookup_done(&nd);
1000 } else if (path == NULL) {
1001 /* root mount */
1002 cdev_t cdev = kgetdiskbyname(dev);
1003 error = bdevvp(cdev, &devvp);
1004 if (error)
1005 kprintf("hammer2: cannot find '%s'\n", dev);
1006 } else {
1008 * We will locate the hmp using the label in the hmp loop.
1010 error = 0;
1014 * Make sure its a block device. Do not check to see if it is
1015 * already mounted until we determine that its a fresh H2 device.
1017 if (error == 0 && devvp) {
1018 vn_isdisk(devvp, &error);
1022 * Determine if the device has already been mounted. After this
1023 * check hmp will be non-NULL if we are doing the second or more
1024 * hammer2 mounts from the same device.
1026 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1027 if (devvp) {
1029 * Match the device. Due to the way devfs works,
1030 * we may not be able to directly match the vnode pointer,
1031 * so also check to see if the underlying device matches.
1033 TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1034 if (hmp->devvp == devvp)
1035 break;
1036 if (devvp->v_rdev &&
1037 hmp->devvp->v_rdev == devvp->v_rdev) {
1038 break;
1043 * If no match this may be a fresh H2 mount, make sure
1044 * the device is not mounted on anything else.
1046 if (hmp == NULL)
1047 error = vfs_mountedon(devvp);
1048 } else if (error == 0) {
1050 * Match the label to a pmp already probed.
1052 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
1053 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
1054 if (pmp->pfs_names[i] &&
1055 strcmp(pmp->pfs_names[i], label) == 0) {
1056 hmp = pmp->pfs_hmps[i];
1057 break;
1060 if (hmp)
1061 break;
1063 if (hmp == NULL)
1064 error = ENOENT;
1068 * Open the device if this isn't a secondary mount and construct
1069 * the H2 device mount (hmp).
1071 if (hmp == NULL) {
1072 hammer2_chain_t *schain;
1073 hammer2_xid_t xid;
1075 if (error == 0 && vcount(devvp) > 0) {
1076 kprintf("Primary device already has references\n");
1077 error = EBUSY;
1081 * Now open the device
1083 if (error == 0) {
1084 ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
1085 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1086 error = vinvalbuf(devvp, V_SAVE, 0, 0);
1087 if (error == 0) {
1088 error = VOP_OPEN(devvp,
1089 (ronly ? FREAD : FREAD | FWRITE),
1090 FSCRED, NULL);
1092 vn_unlock(devvp);
1094 if (error && devvp) {
1095 vrele(devvp);
1096 devvp = NULL;
1098 if (error) {
1099 lockmgr(&hammer2_mntlk, LK_RELEASE);
1100 return error;
1102 hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
1103 ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
1104 hmp->ronly = ronly;
1105 hmp->devvp = devvp;
1106 hmp->hflags = info.hflags & HMNT2_DEVFLAGS;
1107 kmalloc_create(&hmp->mchain, "HAMMER2-chains");
1108 TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
1109 RB_INIT(&hmp->iotree);
1110 spin_init(&hmp->io_spin, "hm2mount_io");
1111 spin_init(&hmp->list_spin, "hm2mount_list");
1112 TAILQ_INIT(&hmp->flushq);
1114 lockinit(&hmp->vollk, "h2vol", 0, 0);
1115 lockinit(&hmp->bulklk, "h2bulk", 0, 0);
1116 lockinit(&hmp->bflock, "h2bflk", 0, 0);
1119 * vchain setup. vchain.data is embedded.
1120 * vchain.refs is initialized and will never drop to 0.
1122 * NOTE! voldata is not yet loaded.
1124 hmp->vchain.hmp = hmp;
1125 hmp->vchain.refs = 1;
1126 hmp->vchain.data = (void *)&hmp->voldata;
1127 hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
1128 hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1129 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1131 hammer2_chain_core_init(&hmp->vchain);
1132 /* hmp->vchain.u.xxx is left NULL */
1135 * fchain setup. fchain.data is embedded.
1136 * fchain.refs is initialized and will never drop to 0.
1138 * The data is not used but needs to be initialized to
1139 * pass assertion muster. We use this chain primarily
1140 * as a placeholder for the freemap's top-level RBTREE
1141 * so it does not interfere with the volume's topology
1142 * RBTREE.
1144 hmp->fchain.hmp = hmp;
1145 hmp->fchain.refs = 1;
1146 hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
1147 hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
1148 hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
1149 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1150 hmp->fchain.bref.methods =
1151 HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
1152 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
1154 hammer2_chain_core_init(&hmp->fchain);
1155 /* hmp->fchain.u.xxx is left NULL */
1158 * Install the volume header and initialize fields from
1159 * voldata.
1161 error = hammer2_install_volume_header(hmp);
1162 if (error) {
1163 hammer2_unmount_helper(mp, NULL, hmp);
1164 lockmgr(&hammer2_mntlk, LK_RELEASE);
1165 hammer2_vfs_unmount(mp, MNT_FORCE);
1166 return error;
1170 * Really important to get these right or flush will get
1171 * confused.
1173 hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0, NULL);
1174 kprintf("alloc spmp %p tid %016jx\n",
1175 hmp->spmp, hmp->voldata.mirror_tid);
1176 spmp = hmp->spmp;
1179 * Dummy-up vchain and fchain's modify_tid. mirror_tid
1180 * is inherited from the volume header.
1182 xid = 0;
1183 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
1184 hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
1185 hmp->vchain.pmp = spmp;
1186 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
1187 hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
1188 hmp->fchain.pmp = spmp;
1191 * First locate the super-root inode, which is key 0
1192 * relative to the volume header's blockset.
1194 * Then locate the root inode by scanning the directory keyspace
1195 * represented by the label.
1197 parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1198 schain = hammer2_chain_lookup(&parent, &key_dummy,
1199 HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1200 &error, 0);
1201 hammer2_chain_lookup_done(parent);
1202 if (schain == NULL) {
1203 kprintf("hammer2_mount: invalid super-root\n");
1204 hammer2_unmount_helper(mp, NULL, hmp);
1205 lockmgr(&hammer2_mntlk, LK_RELEASE);
1206 hammer2_vfs_unmount(mp, MNT_FORCE);
1207 return EINVAL;
1209 if (schain->error) {
1210 kprintf("hammer2_mount: error %s reading super-root\n",
1211 hammer2_error_str(schain->error));
1212 hammer2_chain_unlock(schain);
1213 hammer2_chain_drop(schain);
1214 schain = NULL;
1215 hammer2_unmount_helper(mp, NULL, hmp);
1216 lockmgr(&hammer2_mntlk, LK_RELEASE);
1217 hammer2_vfs_unmount(mp, MNT_FORCE);
1218 return EINVAL;
1222 * The super-root always uses an inode_tid of 1 when
1223 * creating PFSs.
1225 spmp->inode_tid = 1;
1226 spmp->modify_tid = schain->bref.modify_tid + 1;
1229 * Sanity-check schain's pmp and finish initialization.
1230 * Any chain belonging to the super-root topology should
1231 * have a NULL pmp (not even set to spmp).
1233 ripdata = &hammer2_chain_rdata(schain)->ipdata;
1234 KKASSERT(schain->pmp == NULL);
1235 spmp->pfs_clid = ripdata->meta.pfs_clid;
1238 * Replace the dummy spmp->iroot with a real one. It's
1239 * easier to just do a wholesale replacement than to try
1240 * to update the chain and fixup the iroot fields.
1242 * The returned inode is locked with the supplied cluster.
1244 cluster = hammer2_cluster_from_chain(schain);
1245 hammer2_inode_drop(spmp->iroot);
1246 spmp->iroot = NULL;
1247 spmp->iroot = hammer2_inode_get(spmp, NULL, cluster, -1);
1248 spmp->spmp_hmp = hmp;
1249 spmp->pfs_types[0] = ripdata->meta.pfs_type;
1250 spmp->pfs_hmps[0] = hmp;
1251 hammer2_inode_ref(spmp->iroot);
1252 hammer2_inode_unlock(spmp->iroot);
1253 hammer2_cluster_unlock(cluster);
1254 hammer2_cluster_drop(cluster);
1255 schain = NULL;
1256 /* leave spmp->iroot with one ref */
1258 if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1259 error = hammer2_recovery(hmp);
1260 /* XXX do something with error */
1262 hammer2_update_pmps(hmp);
1263 hammer2_iocom_init(hmp);
1264 hammer2_bulkfree_init(hmp);
1267 * Ref the cluster management messaging descriptor. The mount
1268 * program deals with the other end of the communications pipe.
1270 * Root mounts typically do not supply one.
1272 if (info.cluster_fd >= 0) {
1273 fp = holdfp(curproc->p_fd, info.cluster_fd, -1);
1274 if (fp) {
1275 hammer2_cluster_reconnect(hmp, fp);
1276 } else {
1277 kprintf("hammer2_mount: bad cluster_fd!\n");
1280 } else {
1281 spmp = hmp->spmp;
1282 if (info.hflags & HMNT2_DEVFLAGS) {
1283 kprintf("hammer2: Warning: mount flags pertaining "
1284 "to the whole device may only be specified "
1285 "on the first mount of the device: %08x\n",
1286 info.hflags & HMNT2_DEVFLAGS);
1291 * Force local mount (disassociate all PFSs from their clusters).
1292 * Used primarily for debugging.
1294 force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1297 * Lookup the mount point under the media-localized super-root.
1298 * Scanning hammer2_pfslist doesn't help us because it represents
1299 * PFS cluster ids which can aggregate several named PFSs together.
1301 * cluster->pmp will incorrectly point to spmp and must be fixed
1302 * up later on.
1304 hammer2_inode_lock(spmp->iroot, 0);
1305 parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1306 lhc = hammer2_dirhash(label, strlen(label));
1307 chain = hammer2_chain_lookup(&parent, &key_next,
1308 lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1309 &error, 0);
1310 while (chain) {
1311 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1312 strcmp(label, chain->data->ipdata.filename) == 0) {
1313 break;
1315 chain = hammer2_chain_next(&parent, chain, &key_next,
1316 key_next,
1317 lhc + HAMMER2_DIRHASH_LOMASK,
1318 &error, 0);
1320 if (parent) {
1321 hammer2_chain_unlock(parent);
1322 hammer2_chain_drop(parent);
1324 hammer2_inode_unlock(spmp->iroot);
1327 * PFS could not be found?
1329 if (chain == NULL) {
1330 if (error)
1331 kprintf("hammer2_mount: PFS label I/O error\n");
1332 else
1333 kprintf("hammer2_mount: PFS label not found\n");
1334 hammer2_unmount_helper(mp, NULL, hmp);
1335 lockmgr(&hammer2_mntlk, LK_RELEASE);
1336 hammer2_vfs_unmount(mp, MNT_FORCE);
1338 return EINVAL;
1342 * Acquire the pmp structure (it should have already been allocated
1343 * via hammer2_update_pmps() so do not pass cluster in to add to
1344 * available chains).
1346 * Check if the cluster has already been mounted. A cluster can
1347 * only be mounted once, use null mounts to mount additional copies.
1349 if (chain->error) {
1350 kprintf("hammer2_mount: PFS label I/O error\n");
1351 } else {
1352 ripdata = &chain->data->ipdata;
1353 bref = chain->bref;
1354 pmp = hammer2_pfsalloc(NULL, ripdata,
1355 bref.modify_tid, force_local);
1357 hammer2_chain_unlock(chain);
1358 hammer2_chain_drop(chain);
1361 * Finish the mount
1363 kprintf("hammer2_mount hmp=%p pmp=%p\n", hmp, pmp);
1365 if (pmp->mp) {
1366 kprintf("hammer2_mount: PFS already mounted!\n");
1367 hammer2_unmount_helper(mp, NULL, hmp);
1368 lockmgr(&hammer2_mntlk, LK_RELEASE);
1369 hammer2_vfs_unmount(mp, MNT_FORCE);
1371 return EBUSY;
1374 pmp->hflags = info.hflags;
1375 mp->mnt_flag |= MNT_LOCAL;
1376 mp->mnt_kern_flag |= MNTK_ALL_MPSAFE; /* all entry pts are SMP */
1377 mp->mnt_kern_flag |= MNTK_THR_SYNC; /* new vsyncscan semantics */
1380 * required mount structure initializations
1382 mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1383 mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1385 mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1386 mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1389 * Optional fields
1391 mp->mnt_iosize_max = MAXPHYS;
1394 * Connect up mount pointers.
1396 hammer2_mount_helper(mp, pmp);
1398 lockmgr(&hammer2_mntlk, LK_RELEASE);
1401 * Finish setup
1403 vfs_getnewfsid(mp);
1404 vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1405 vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1406 vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1408 if (path) {
1409 copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1410 MNAMELEN - 1, &size);
1411 bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1412 } /* else root mount, already in there */
1414 bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1415 if (path) {
1416 copyinstr(path, mp->mnt_stat.f_mntonname,
1417 sizeof(mp->mnt_stat.f_mntonname) - 1,
1418 &size);
1419 } else {
1420 /* root mount */
1421 mp->mnt_stat.f_mntonname[0] = '/';
1425 * Initial statfs to prime mnt_stat.
1427 hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1429 return 0;
1433 * Scan PFSs under the super-root and create hammer2_pfs structures.
1435 static
1436 void
1437 hammer2_update_pmps(hammer2_dev_t *hmp)
1439 const hammer2_inode_data_t *ripdata;
1440 hammer2_chain_t *parent;
1441 hammer2_chain_t *chain;
1442 hammer2_blockref_t bref;
1443 hammer2_dev_t *force_local;
1444 hammer2_pfs_t *spmp;
1445 hammer2_pfs_t *pmp;
1446 hammer2_key_t key_next;
1447 int error;
1450 * Force local mount (disassociate all PFSs from their clusters).
1451 * Used primarily for debugging.
1453 force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL;
1456 * Lookup mount point under the media-localized super-root.
1458 * cluster->pmp will incorrectly point to spmp and must be fixed
1459 * up later on.
1461 spmp = hmp->spmp;
1462 hammer2_inode_lock(spmp->iroot, 0);
1463 parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1464 chain = hammer2_chain_lookup(&parent, &key_next,
1465 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1466 &error, 0);
1467 while (chain) {
1468 if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
1469 continue;
1470 if (chain->error) {
1471 kprintf("I/O error scanning PFS labels\n");
1472 } else {
1473 ripdata = &chain->data->ipdata;
1474 bref = chain->bref;
1476 pmp = hammer2_pfsalloc(chain, ripdata,
1477 bref.modify_tid, force_local);
1479 chain = hammer2_chain_next(&parent, chain, &key_next,
1480 key_next, HAMMER2_KEY_MAX,
1481 &error, 0);
1483 if (parent) {
1484 hammer2_chain_unlock(parent);
1485 hammer2_chain_drop(parent);
1487 hammer2_inode_unlock(spmp->iroot);
1490 static
1492 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1493 struct vnode *devvp, struct ucred *cred)
1495 int error;
1497 if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) {
1498 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1499 VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL);
1500 vn_unlock(devvp);
1501 error = hammer2_recovery(hmp);
1502 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1503 if (error == 0) {
1504 VOP_CLOSE(devvp, FREAD, NULL);
1505 hmp->ronly = 0;
1506 } else {
1507 VOP_CLOSE(devvp, FREAD | FWRITE, NULL);
1509 vn_unlock(devvp);
1510 } else {
1511 error = 0;
1513 return error;
1516 static
1518 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1520 hammer2_pfs_t *pmp;
1521 int flags;
1522 int error = 0;
1524 pmp = MPTOPMP(mp);
1526 if (pmp == NULL)
1527 return(0);
1529 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1532 * If mount initialization proceeded far enough we must flush
1533 * its vnodes and sync the underlying mount points. Three syncs
1534 * are required to fully flush the filesystem (freemap updates lag
1535 * by one flush, and one extra for safety).
1537 if (mntflags & MNT_FORCE)
1538 flags = FORCECLOSE;
1539 else
1540 flags = 0;
1541 if (pmp->iroot) {
1542 error = vflush(mp, 0, flags);
1543 if (error)
1544 goto failed;
1545 hammer2_vfs_sync(mp, MNT_WAIT);
1546 hammer2_vfs_sync(mp, MNT_WAIT);
1547 hammer2_vfs_sync(mp, MNT_WAIT);
1551 * Cleanup the frontend support XOPS threads
1553 hammer2_xop_helper_cleanup(pmp);
1555 if (pmp->mp)
1556 hammer2_unmount_helper(mp, pmp, NULL);
1558 error = 0;
1559 failed:
1560 lockmgr(&hammer2_mntlk, LK_RELEASE);
1562 return (error);
1566 * Mount helper, hook the system mount into our PFS.
1567 * The mount lock is held.
1569 * We must bump the mount_count on related devices for any
1570 * mounted PFSs.
1572 static
1573 void
1574 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1576 hammer2_cluster_t *cluster;
1577 hammer2_chain_t *rchain;
1578 int i;
1580 mp->mnt_data = (qaddr_t)pmp;
1581 pmp->mp = mp;
1584 * After pmp->mp is set we have to adjust hmp->mount_count.
1586 cluster = &pmp->iroot->cluster;
1587 for (i = 0; i < cluster->nchains; ++i) {
1588 rchain = cluster->array[i].chain;
1589 if (rchain == NULL)
1590 continue;
1591 ++rchain->hmp->mount_count;
1592 kprintf("hammer2_mount hmp=%p ++mount_count=%d\n",
1593 rchain->hmp, rchain->hmp->mount_count);
1597 * Create missing Xop threads
1599 hammer2_xop_helper_create(pmp);
1603 * Mount helper, unhook the system mount from our PFS.
1604 * The mount lock is held.
1606 * If hmp is supplied a mount responsible for being the first to open
1607 * the block device failed and the block device and all PFSs using the
1608 * block device must be cleaned up.
1610 * If pmp is supplied multiple devices might be backing the PFS and each
1611 * must be disconnected. This might not be the last PFS using some of the
1612 * underlying devices. Also, we have to adjust our hmp->mount_count
1613 * accounting for the devices backing the pmp which is now undergoing an
1614 * unmount.
1616 static
1617 void
1618 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1620 hammer2_cluster_t *cluster;
1621 hammer2_chain_t *rchain;
1622 struct vnode *devvp;
1623 int dumpcnt;
1624 int ronly;
1625 int i;
1628 * If no device supplied this is a high-level unmount and we have to
1629 * to disconnect the mount, adjust mount_count, and locate devices
1630 * that might now have no mounts.
1632 if (pmp) {
1633 KKASSERT(hmp == NULL);
1634 KKASSERT((void *)(intptr_t)mp->mnt_data == pmp);
1635 pmp->mp = NULL;
1636 mp->mnt_data = NULL;
1639 * After pmp->mp is cleared we have to account for
1640 * mount_count.
1642 cluster = &pmp->iroot->cluster;
1643 for (i = 0; i < cluster->nchains; ++i) {
1644 rchain = cluster->array[i].chain;
1645 if (rchain == NULL)
1646 continue;
1647 --rchain->hmp->mount_count;
1648 /* scrapping hmp now may invalidate the pmp */
1650 again:
1651 TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1652 if (hmp->mount_count == 0) {
1653 hammer2_unmount_helper(NULL, NULL, hmp);
1654 goto again;
1657 return;
1661 * Try to terminate the block device. We can't terminate it if
1662 * there are still PFSs referencing it.
1664 if (hmp->mount_count)
1665 return;
1668 * Decomission the network before we start messing with the
1669 * device and PFS.
1671 hammer2_iocom_uninit(hmp);
1673 hammer2_bulkfree_uninit(hmp);
1674 hammer2_pfsfree_scan(hmp);
1675 hammer2_dev_exlock(hmp); /* XXX order */
1678 * Cycle the volume data lock as a safety (probably not needed any
1679 * more). To ensure everything is out we need to flush at least
1680 * three times. (1) The running of the sideq can dirty the
1681 * filesystem, (2) A normal flush can dirty the freemap, and
1682 * (3) ensure that the freemap is fully synchronized.
1684 * The next mount's recovery scan can clean everything up but we want
1685 * to leave the filesystem in a 100% clean state on a normal unmount.
1687 #if 0
1688 hammer2_voldata_lock(hmp);
1689 hammer2_voldata_unlock(hmp);
1690 #endif
1693 * Flush whatever is left. Unmounted but modified PFS's might still
1694 * have some dirty chains on them.
1696 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS);
1697 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS);
1698 hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP | HAMMER2_FLUSH_ALL);
1699 hammer2_chain_unlock(&hmp->fchain);
1700 hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP | HAMMER2_FLUSH_ALL);
1701 hammer2_chain_unlock(&hmp->vchain);
1703 if ((hmp->vchain.flags | hmp->fchain.flags) &
1704 HAMMER2_CHAIN_FLUSH_MASK) {
1705 kprintf("hammer2_unmount: chains left over "
1706 "after final sync\n");
1707 kprintf(" vchain %08x\n", hmp->vchain.flags);
1708 kprintf(" fchain %08x\n", hmp->fchain.flags);
1710 if (hammer2_debug & 0x0010)
1711 Debugger("entered debugger");
1714 KKASSERT(hmp->spmp == NULL);
1717 * Finish up with the device vnode
1719 if ((devvp = hmp->devvp) != NULL) {
1720 ronly = hmp->ronly;
1721 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1722 kprintf("hammer2_unmount(A): devvp %s rbdirty %p ronly=%d\n",
1723 hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree),
1724 ronly);
1725 vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0);
1726 kprintf("hammer2_unmount(B): devvp %s rbdirty %p\n",
1727 hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree));
1728 hmp->devvp = NULL;
1729 VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL);
1730 vn_unlock(devvp);
1731 vrele(devvp);
1732 devvp = NULL;
1736 * Clear vchain/fchain flags that might prevent final cleanup
1737 * of these chains.
1739 if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1740 atomic_add_long(&hammer2_count_modified_chains, -1);
1741 atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1742 hammer2_pfs_memory_wakeup(hmp->vchain.pmp);
1744 if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1745 atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1748 if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1749 atomic_add_long(&hammer2_count_modified_chains, -1);
1750 atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1751 hammer2_pfs_memory_wakeup(hmp->fchain.pmp);
1753 if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1754 atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1758 * Final drop of embedded freemap root chain to
1759 * clean up fchain.core (fchain structure is not
1760 * flagged ALLOCATED so it is cleaned out and then
1761 * left to rot).
1763 hammer2_chain_drop(&hmp->fchain);
1766 * Final drop of embedded volume root chain to clean
1767 * up vchain.core (vchain structure is not flagged
1768 * ALLOCATED so it is cleaned out and then left to
1769 * rot).
1771 dumpcnt = 50;
1772 hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v');
1773 dumpcnt = 50;
1774 hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f');
1775 hammer2_dev_unlock(hmp);
1776 hammer2_chain_drop(&hmp->vchain);
1778 hammer2_io_cleanup(hmp, &hmp->iotree);
1779 if (hmp->iofree_count) {
1780 kprintf("io_cleanup: %d I/O's left hanging\n",
1781 hmp->iofree_count);
1784 TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1785 kmalloc_destroy(&hmp->mchain);
1786 kfree(hmp, M_HAMMER2);
1790 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1791 ino_t ino, struct vnode **vpp)
1793 hammer2_xop_lookup_t *xop;
1794 hammer2_pfs_t *pmp;
1795 hammer2_inode_t *ip;
1796 hammer2_tid_t inum;
1797 int error;
1799 inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK;
1801 error = 0;
1802 pmp = MPTOPMP(mp);
1805 * Easy if we already have it cached
1807 ip = hammer2_inode_lookup(pmp, inum);
1808 if (ip) {
1809 hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED);
1810 *vpp = hammer2_igetv(ip, &error);
1811 hammer2_inode_unlock(ip);
1812 hammer2_inode_drop(ip); /* from lookup */
1814 return error;
1818 * Otherwise we have to find the inode
1820 xop = hammer2_xop_alloc(pmp->iroot, 0);
1821 xop->lhc = inum;
1822 hammer2_xop_start(&xop->head, hammer2_xop_lookup);
1823 error = hammer2_xop_collect(&xop->head, 0);
1825 if (error == 0) {
1826 if (hammer2_cluster_rdata(&xop->head.cluster) == NULL) {
1827 kprintf("vget: no collect error but also no rdata\n");
1828 kprintf("xop %p\n", xop);
1829 while ((hammer2_debug & 0x80000) == 0) {
1830 tsleep(xop, PCATCH, "wait", hz * 10);
1832 ip = NULL;
1833 } else {
1834 ip = hammer2_inode_get(pmp, NULL, &xop->head.cluster, -1);
1837 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1839 if (ip) {
1840 *vpp = hammer2_igetv(ip, &error);
1841 hammer2_inode_unlock(ip);
1842 } else {
1843 *vpp = NULL;
1844 error = ENOENT;
1846 return (error);
1849 static
1851 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1853 hammer2_pfs_t *pmp;
1854 struct vnode *vp;
1855 int error;
1857 pmp = MPTOPMP(mp);
1858 if (pmp->iroot == NULL) {
1859 *vpp = NULL;
1860 return EINVAL;
1863 error = 0;
1864 hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1866 while (pmp->inode_tid == 0) {
1867 hammer2_xop_ipcluster_t *xop;
1868 hammer2_inode_meta_t *meta;
1870 xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1871 hammer2_xop_start(&xop->head, hammer2_xop_ipcluster);
1872 error = hammer2_xop_collect(&xop->head, 0);
1874 if (error == 0) {
1875 meta = &xop->head.cluster.focus->data->ipdata.meta;
1876 pmp->iroot->meta = *meta;
1877 pmp->inode_tid = meta->pfs_inum + 1;
1878 if (pmp->inode_tid < HAMMER2_INODE_START)
1879 pmp->inode_tid = HAMMER2_INODE_START;
1880 pmp->modify_tid =
1881 xop->head.cluster.focus->bref.modify_tid + 1;
1882 kprintf("PFS: Starting inode %jd\n",
1883 (intmax_t)pmp->inode_tid);
1884 kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
1885 pmp->inode_tid, pmp->modify_tid);
1886 wakeup(&pmp->iroot);
1888 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1891 * Prime the mount info.
1893 hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
1894 break;
1898 * Loop, try again
1900 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1901 hammer2_inode_unlock(pmp->iroot);
1902 error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
1903 hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1904 if (error == EINTR)
1905 break;
1908 if (error) {
1909 hammer2_inode_unlock(pmp->iroot);
1910 *vpp = NULL;
1911 } else {
1912 vp = hammer2_igetv(pmp->iroot, &error);
1913 hammer2_inode_unlock(pmp->iroot);
1914 *vpp = vp;
1917 return (error);
1921 * Filesystem status
1923 * XXX incorporate ipdata->meta.inode_quota and data_quota
1925 static
1927 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
1929 hammer2_pfs_t *pmp;
1930 hammer2_dev_t *hmp;
1931 hammer2_blockref_t bref;
1932 struct statfs tmp;
1933 int i;
1936 * NOTE: iroot might not have validated the cluster yet.
1938 pmp = MPTOPMP(mp);
1940 bzero(&tmp, sizeof(tmp));
1942 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
1943 hmp = pmp->pfs_hmps[i];
1944 if (hmp == NULL)
1945 continue;
1946 if (pmp->iroot->cluster.array[i].chain)
1947 bref = pmp->iroot->cluster.array[i].chain->bref;
1948 else
1949 bzero(&bref, sizeof(bref));
1951 tmp.f_files = bref.embed.stats.inode_count;
1952 tmp.f_ffree = 0;
1953 tmp.f_blocks = hmp->voldata.allocator_size /
1954 mp->mnt_vstat.f_bsize;
1955 tmp.f_bfree = hmp->voldata.allocator_free /
1956 mp->mnt_vstat.f_bsize;
1957 tmp.f_bavail = tmp.f_bfree;
1959 if (cred && cred->cr_uid != 0) {
1960 uint64_t adj;
1962 /* 5% */
1963 adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
1964 tmp.f_blocks -= adj;
1965 tmp.f_bfree -= adj;
1966 tmp.f_bavail -= adj;
1969 mp->mnt_stat.f_blocks = tmp.f_blocks;
1970 mp->mnt_stat.f_bfree = tmp.f_bfree;
1971 mp->mnt_stat.f_bavail = tmp.f_bavail;
1972 mp->mnt_stat.f_files = tmp.f_files;
1973 mp->mnt_stat.f_ffree = tmp.f_ffree;
1975 *sbp = mp->mnt_stat;
1977 return (0);
1980 static
1982 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
1984 hammer2_pfs_t *pmp;
1985 hammer2_dev_t *hmp;
1986 hammer2_blockref_t bref;
1987 struct statvfs tmp;
1988 int i;
1991 * NOTE: iroot might not have validated the cluster yet.
1993 pmp = MPTOPMP(mp);
1994 bzero(&tmp, sizeof(tmp));
1996 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
1997 hmp = pmp->pfs_hmps[i];
1998 if (hmp == NULL)
1999 continue;
2000 if (pmp->iroot->cluster.array[i].chain)
2001 bref = pmp->iroot->cluster.array[i].chain->bref;
2002 else
2003 bzero(&bref, sizeof(bref));
2005 tmp.f_files = bref.embed.stats.inode_count;
2006 tmp.f_ffree = 0;
2007 tmp.f_blocks = hmp->voldata.allocator_size /
2008 mp->mnt_vstat.f_bsize;
2009 tmp.f_bfree = hmp->voldata.allocator_free /
2010 mp->mnt_vstat.f_bsize;
2011 tmp.f_bavail = tmp.f_bfree;
2013 if (cred && cred->cr_uid != 0) {
2014 uint64_t adj;
2016 /* 5% */
2017 adj = hmp->free_reserved / mp->mnt_vstat.f_bsize;
2018 tmp.f_blocks -= adj;
2019 tmp.f_bfree -= adj;
2020 tmp.f_bavail -= adj;
2023 mp->mnt_vstat.f_blocks = tmp.f_blocks;
2024 mp->mnt_vstat.f_bfree = tmp.f_bfree;
2025 mp->mnt_vstat.f_bavail = tmp.f_bavail;
2026 mp->mnt_vstat.f_files = tmp.f_files;
2027 mp->mnt_vstat.f_ffree = tmp.f_ffree;
2029 *sbp = mp->mnt_vstat;
2031 return (0);
2035 * Mount-time recovery (RW mounts)
2037 * Updates to the free block table are allowed to lag flushes by one
2038 * transaction. In case of a crash, then on a fresh mount we must do an
2039 * incremental scan of the last committed transaction id and make sure that
2040 * all related blocks have been marked allocated.
2042 * The super-root topology and each PFS has its own transaction id domain,
2043 * so we must track PFS boundary transitions.
2045 struct hammer2_recovery_elm {
2046 TAILQ_ENTRY(hammer2_recovery_elm) entry;
2047 hammer2_chain_t *chain;
2048 hammer2_tid_t sync_tid;
2051 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
2053 struct hammer2_recovery_info {
2054 struct hammer2_recovery_list list;
2055 hammer2_tid_t mtid;
2056 int depth;
2059 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
2060 hammer2_chain_t *parent,
2061 struct hammer2_recovery_info *info,
2062 hammer2_tid_t sync_tid);
2064 #define HAMMER2_RECOVERY_MAXDEPTH 10
2066 static
2068 hammer2_recovery(hammer2_dev_t *hmp)
2070 struct hammer2_recovery_info info;
2071 struct hammer2_recovery_elm *elm;
2072 hammer2_chain_t *parent;
2073 hammer2_tid_t sync_tid;
2074 hammer2_tid_t mirror_tid;
2075 int error;
2077 hammer2_trans_init(hmp->spmp, 0);
2079 sync_tid = hmp->voldata.freemap_tid;
2080 mirror_tid = hmp->voldata.mirror_tid;
2082 kprintf("hammer2 mount \"%s\": ", hmp->devrepname);
2083 if (sync_tid >= mirror_tid) {
2084 kprintf(" no recovery needed\n");
2085 } else {
2086 kprintf(" freemap recovery %016jx-%016jx\n",
2087 sync_tid + 1, mirror_tid);
2090 TAILQ_INIT(&info.list);
2091 info.depth = 0;
2092 parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
2093 error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
2094 hammer2_chain_lookup_done(parent);
2096 while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
2097 TAILQ_REMOVE(&info.list, elm, entry);
2098 parent = elm->chain;
2099 sync_tid = elm->sync_tid;
2100 kfree(elm, M_HAMMER2);
2102 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2103 error |= hammer2_recovery_scan(hmp, parent, &info,
2104 hmp->voldata.freemap_tid);
2105 hammer2_chain_unlock(parent);
2106 hammer2_chain_drop(parent); /* drop elm->chain ref */
2108 hammer2_trans_done(hmp->spmp);
2110 return error;
2113 static
2115 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
2116 struct hammer2_recovery_info *info,
2117 hammer2_tid_t sync_tid)
2119 const hammer2_inode_data_t *ripdata;
2120 hammer2_chain_t *chain;
2121 hammer2_blockref_t bref;
2122 int tmp_error;
2123 int rup_error;
2124 int error;
2125 int first;
2128 * Adjust freemap to ensure that the block(s) are marked allocated.
2130 if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
2131 hammer2_freemap_adjust(hmp, &parent->bref,
2132 HAMMER2_FREEMAP_DORECOVER);
2136 * Check type for recursive scan
2138 switch(parent->bref.type) {
2139 case HAMMER2_BREF_TYPE_VOLUME:
2140 /* data already instantiated */
2141 break;
2142 case HAMMER2_BREF_TYPE_INODE:
2144 * Must instantiate data for DIRECTDATA test and also
2145 * for recursion.
2147 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2148 ripdata = &hammer2_chain_rdata(parent)->ipdata;
2149 if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
2150 /* not applicable to recovery scan */
2151 hammer2_chain_unlock(parent);
2152 return 0;
2154 hammer2_chain_unlock(parent);
2155 break;
2156 case HAMMER2_BREF_TYPE_INDIRECT:
2158 * Must instantiate data for recursion
2160 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2161 hammer2_chain_unlock(parent);
2162 break;
2163 case HAMMER2_BREF_TYPE_DIRENT:
2164 case HAMMER2_BREF_TYPE_DATA:
2165 case HAMMER2_BREF_TYPE_FREEMAP:
2166 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2167 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2168 /* not applicable to recovery scan */
2169 return 0;
2170 break;
2171 default:
2172 return HAMMER2_ERROR_BADBREF;
2176 * Defer operation if depth limit reached or if we are crossing a
2177 * PFS boundary.
2179 if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
2180 struct hammer2_recovery_elm *elm;
2182 elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
2183 elm->chain = parent;
2184 elm->sync_tid = sync_tid;
2185 hammer2_chain_ref(parent);
2186 TAILQ_INSERT_TAIL(&info->list, elm, entry);
2187 /* unlocked by caller */
2189 return(0);
2194 * Recursive scan of the last flushed transaction only. We are
2195 * doing this without pmp assignments so don't leave the chains
2196 * hanging around after we are done with them.
2198 * error Cumulative error this level only
2199 * rup_error Cumulative error for recursion
2200 * tmp_error Specific non-cumulative recursion error
2202 chain = NULL;
2203 first = 1;
2204 rup_error = 0;
2205 error = 0;
2207 for (;;) {
2208 error |= hammer2_chain_scan(parent, &chain, &bref,
2209 &first,
2210 HAMMER2_LOOKUP_NODATA);
2213 * Problem during scan or EOF
2215 if (error)
2216 break;
2219 * If this is a leaf
2221 if (chain == NULL) {
2222 if (bref.mirror_tid > sync_tid) {
2223 hammer2_freemap_adjust(hmp, &bref,
2224 HAMMER2_FREEMAP_DORECOVER);
2226 continue;
2230 * This may or may not be a recursive node.
2232 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
2233 if (bref.mirror_tid > sync_tid) {
2234 ++info->depth;
2235 tmp_error = hammer2_recovery_scan(hmp, chain,
2236 info, sync_tid);
2237 --info->depth;
2238 } else {
2239 tmp_error = 0;
2243 * Flush the recovery at the PFS boundary to stage it for
2244 * the final flush of the super-root topology.
2246 if (tmp_error == 0 &&
2247 (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
2248 (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
2249 hammer2_flush(chain, HAMMER2_FLUSH_TOP);
2251 rup_error |= tmp_error;
2253 return ((error | rup_error) & ~HAMMER2_ERROR_EOF);
2257 * Sync a mount point; this is called on a per-mount basis from the
2258 * filesystem syncer process periodically and whenever a user issues
2259 * a sync.
2262 hammer2_vfs_sync(struct mount *mp, int waitfor)
2264 hammer2_xop_flush_t *xop;
2265 struct hammer2_sync_info info;
2266 hammer2_inode_t *iroot;
2267 hammer2_pfs_t *pmp;
2268 int flags;
2269 int error;
2271 pmp = MPTOPMP(mp);
2272 iroot = pmp->iroot;
2273 KKASSERT(iroot);
2274 KKASSERT(iroot->pmp == pmp);
2277 * We can't acquire locks on existing vnodes while in a transaction
2278 * without risking a deadlock. This assumes that vfsync() can be
2279 * called without the vnode locked (which it can in DragonFly).
2280 * Otherwise we'd have to implement a multi-pass or flag the lock
2281 * failures and retry.
2283 * The reclamation code interlocks with the sync list's token
2284 * (by removing the vnode from the scan list) before unlocking
2285 * the inode, giving us time to ref the inode.
2287 /*flags = VMSC_GETVP;*/
2288 flags = 0;
2289 if (waitfor & MNT_LAZY)
2290 flags |= VMSC_ONEPASS;
2293 * Preflush the vnodes using a normal transaction before interlocking
2294 * with a flush transaction. We do this to try to run as much of
2295 * the compression as possible outside the flush transaction.
2297 * For efficiency do an async pass before making sure with a
2298 * synchronous pass on all related buffer cache buffers.
2300 hammer2_trans_init(pmp, 0);
2301 info.error = 0;
2302 info.waitfor = MNT_NOWAIT;
2303 vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
2304 info.waitfor = MNT_WAIT;
2305 vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2306 hammer2_trans_done(pmp);
2309 * Start our flush transaction. This does not return until all
2310 * concurrent transactions have completed and will prevent any
2311 * new transactions from running concurrently, except for the
2312 * buffer cache transactions.
2314 * (1) vfsync() all dirty vnodes via vfsyncscan().
2316 * (2) Flush any remaining dirty inodes (the sideq), including any
2317 * which may have been created during or raced against the
2318 * vfsync(). To catch all cases this must be done after the
2319 * vfsync().
2321 * (3) Wait for any pending BIO I/O to complete (hammer2_bioq_sync()).
2323 * NOTE! It is still possible for the paging code to push pages
2324 * out via a UIO_NOCOPY hammer2_vop_write() during the main
2325 * flush.
2327 hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH);
2329 info.error = 0;
2330 info.waitfor = MNT_NOWAIT;
2331 vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
2332 info.waitfor = MNT_WAIT;
2333 vsyncscan(mp, flags, hammer2_sync_scan2, &info);
2334 hammer2_inode_run_sideq(pmp, 1);
2335 hammer2_bioq_sync(pmp);
2338 * Use the XOP interface to concurrently flush all nodes to
2339 * synchronize the PFSROOT subtopology to the media. A standard
2340 * end-of-scan ENOENT error indicates cluster sufficiency.
2342 * Note that this flush will not be visible on crash recovery until
2343 * we flush the super-root topology in the next loop.
2345 * XXX For now wait for all flushes to complete.
2347 if (iroot) {
2348 xop = hammer2_xop_alloc(iroot, HAMMER2_XOP_MODIFYING);
2349 hammer2_xop_start(&xop->head, hammer2_inode_xop_flush);
2350 error = hammer2_xop_collect(&xop->head,
2351 HAMMER2_XOP_COLLECT_WAITALL);
2352 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2353 if (error == HAMMER2_ERROR_ENOENT)
2354 error = 0;
2355 else
2356 error = hammer2_error_to_errno(error);
2357 } else {
2358 error = 0;
2360 hammer2_trans_done(pmp);
2362 return (error);
2366 * Sync passes.
2368 * Note that we ignore the tranasction mtid we got above. Instead,
2369 * each vfsync below will ultimately get its own via TRANS_BUFCACHE
2370 * transactions.
2372 static int
2373 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
2375 struct hammer2_sync_info *info = data;
2376 hammer2_inode_t *ip;
2377 int error;
2380 * Degenerate cases. Note that ip == NULL typically means the
2381 * syncer vnode itself and we don't want to vclrisdirty() in that
2382 * situation.
2384 ip = VTOI(vp);
2385 if (ip == NULL) {
2386 return(0);
2388 if (vp->v_type == VNON || vp->v_type == VBAD) {
2389 vclrisdirty(vp);
2390 return(0);
2394 * VOP_FSYNC will start a new transaction so replicate some code
2395 * here to do it inline (see hammer2_vop_fsync()).
2397 * WARNING: The vfsync interacts with the buffer cache and might
2398 * block, we can't hold the inode lock at that time.
2399 * However, we MUST ref ip before blocking to ensure that
2400 * it isn't ripped out from under us (since we do not
2401 * hold a lock on the vnode).
2403 hammer2_inode_ref(ip);
2404 if ((ip->flags & HAMMER2_INODE_MODIFIED) ||
2405 !RB_EMPTY(&vp->v_rbdirty_tree)) {
2406 vfsync(vp, info->waitfor, 1, NULL, NULL);
2407 if (ip->flags & (HAMMER2_INODE_RESIZED |
2408 HAMMER2_INODE_MODIFIED)) {
2409 hammer2_inode_lock(ip, 0);
2410 if (ip->flags & (HAMMER2_INODE_RESIZED |
2411 HAMMER2_INODE_MODIFIED)) {
2412 hammer2_inode_chain_sync(ip);
2414 hammer2_inode_unlock(ip);
2417 if ((ip->flags & HAMMER2_INODE_MODIFIED) == 0 &&
2418 RB_EMPTY(&vp->v_rbdirty_tree)) {
2419 vclrisdirty(vp);
2422 hammer2_inode_drop(ip);
2423 #if 1
2424 error = 0;
2425 if (error)
2426 info->error = error;
2427 #endif
2428 return(0);
2431 static
2433 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2435 hammer2_inode_t *ip;
2437 KKASSERT(MAXFIDSZ >= 16);
2438 ip = VTOI(vp);
2439 fhp->fid_len = offsetof(struct fid, fid_data[16]);
2440 fhp->fid_ext = 0;
2441 ((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum;
2442 ((hammer2_tid_t *)fhp->fid_data)[1] = 0;
2444 return 0;
2447 static
2449 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2450 struct fid *fhp, struct vnode **vpp)
2452 hammer2_pfs_t *pmp;
2453 hammer2_tid_t inum;
2454 int error;
2456 pmp = MPTOPMP(mp);
2457 inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK;
2458 if (vpp) {
2459 if (inum == 1)
2460 error = hammer2_vfs_root(mp, vpp);
2461 else
2462 error = hammer2_vfs_vget(mp, NULL, inum, vpp);
2463 } else {
2464 error = 0;
2466 if (error)
2467 kprintf("fhtovp: %016jx -> %p, %d\n", inum, *vpp, error);
2468 return error;
2471 static
2473 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2474 int *exflagsp, struct ucred **credanonp)
2476 hammer2_pfs_t *pmp;
2477 struct netcred *np;
2478 int error;
2480 pmp = MPTOPMP(mp);
2481 np = vfs_export_lookup(mp, &pmp->export, nam);
2482 if (np) {
2483 *exflagsp = np->netc_exflags;
2484 *credanonp = &np->netc_anon;
2485 error = 0;
2486 } else {
2487 error = EACCES;
2489 return error;
2493 * Support code for hammer2_vfs_mount(). Read, verify, and install the volume
2494 * header into the HMP
2496 * XXX read four volhdrs and use the one with the highest TID whos CRC
2497 * matches.
2499 * XXX check iCRCs.
2501 * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to
2502 * nonexistant locations.
2504 * XXX Record selected volhdr and ring updates to each of 4 volhdrs
2506 static
2508 hammer2_install_volume_header(hammer2_dev_t *hmp)
2510 hammer2_volume_data_t *vd;
2511 struct buf *bp;
2512 hammer2_crc32_t crc0, crc, bcrc0, bcrc;
2513 int error_reported;
2514 int error;
2515 int valid;
2516 int i;
2518 error_reported = 0;
2519 error = 0;
2520 valid = 0;
2521 bp = NULL;
2524 * There are up to 4 copies of the volume header (syncs iterate
2525 * between them so there is no single master). We don't trust the
2526 * volu_size field so we don't know precisely how large the filesystem
2527 * is, so depend on the OS to return an error if we go beyond the
2528 * block device's EOF.
2530 for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) {
2531 error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2532 HAMMER2_VOLUME_BYTES, &bp);
2533 if (error) {
2534 brelse(bp);
2535 bp = NULL;
2536 continue;
2539 vd = (struct hammer2_volume_data *) bp->b_data;
2540 if ((vd->magic != HAMMER2_VOLUME_ID_HBO) &&
2541 (vd->magic != HAMMER2_VOLUME_ID_ABO)) {
2542 brelse(bp);
2543 bp = NULL;
2544 continue;
2547 if (vd->magic == HAMMER2_VOLUME_ID_ABO) {
2548 /* XXX: Reversed-endianness filesystem */
2549 kprintf("hammer2: reverse-endian filesystem detected");
2550 brelse(bp);
2551 bp = NULL;
2552 continue;
2555 crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0];
2556 crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF,
2557 HAMMER2_VOLUME_ICRC0_SIZE);
2558 bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1];
2559 bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF,
2560 HAMMER2_VOLUME_ICRC1_SIZE);
2561 if ((crc0 != crc) || (bcrc0 != bcrc)) {
2562 kprintf("hammer2 volume header crc "
2563 "mismatch copy #%d %08x/%08x\n",
2564 i, crc0, crc);
2565 error_reported = 1;
2566 brelse(bp);
2567 bp = NULL;
2568 continue;
2570 if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) {
2571 valid = 1;
2572 hmp->voldata = *vd;
2573 hmp->volhdrno = i;
2575 brelse(bp);
2576 bp = NULL;
2578 if (valid) {
2579 hmp->volsync = hmp->voldata;
2580 hmp->free_reserved = hmp->voldata.allocator_size / 20;
2581 error = 0;
2582 if (error_reported || bootverbose || 1) { /* 1/DEBUG */
2583 kprintf("hammer2: using volume header #%d\n",
2584 hmp->volhdrno);
2586 } else {
2587 error = EINVAL;
2588 kprintf("hammer2: no valid volume headers found!\n");
2590 return (error);
2594 * This handles hysteresis on regular file flushes. Because the BIOs are
2595 * routed to a thread it is possible for an excessive number to build up
2596 * and cause long front-end stalls long before the runningbuffspace limit
2597 * is hit, so we implement hammer2_flush_pipe to control the
2598 * hysteresis.
2600 * This is a particular problem when compression is used.
2602 void
2603 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
2605 atomic_add_int(&pmp->count_lwinprog, 1);
2608 void
2609 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
2611 int lwinprog;
2613 lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2614 if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2615 (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2616 atomic_clear_int(&pmp->count_lwinprog,
2617 HAMMER2_LWINPROG_WAITING);
2618 wakeup(&pmp->count_lwinprog);
2620 if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
2621 (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
2622 atomic_clear_int(&pmp->count_lwinprog,
2623 HAMMER2_LWINPROG_WAITING0);
2624 wakeup(&pmp->count_lwinprog);
2628 void
2629 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
2631 int lwinprog;
2632 int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
2633 HAMMER2_LWINPROG_WAITING0;
2635 for (;;) {
2636 lwinprog = pmp->count_lwinprog;
2637 cpu_ccfence();
2638 if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2639 break;
2640 tsleep_interlock(&pmp->count_lwinprog, 0);
2641 atomic_set_int(&pmp->count_lwinprog, lwflag);
2642 lwinprog = pmp->count_lwinprog;
2643 if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2644 break;
2645 tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2650 * Manage excessive memory resource use for chain and related
2651 * structures.
2653 void
2654 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp)
2656 uint32_t waiting;
2657 uint32_t count;
2658 uint32_t limit;
2659 #if 0
2660 static int zzticks;
2661 #endif
2664 * Atomic check condition and wait. Also do an early speedup of
2665 * the syncer to try to avoid hitting the wait.
2667 for (;;) {
2668 waiting = pmp->inmem_dirty_chains;
2669 cpu_ccfence();
2670 count = waiting & HAMMER2_DIRTYCHAIN_MASK;
2672 limit = pmp->mp->mnt_nvnodelistsize / 10;
2673 if (limit < hammer2_limit_dirty_chains)
2674 limit = hammer2_limit_dirty_chains;
2675 if (limit < 1000)
2676 limit = 1000;
2678 #if 0
2679 if ((int)(ticks - zzticks) > hz) {
2680 zzticks = ticks;
2681 kprintf("count %ld %ld\n", count, limit);
2683 #endif
2686 * Block if there are too many dirty chains present, wait
2687 * for the flush to clean some out.
2689 if (count > limit) {
2690 tsleep_interlock(&pmp->inmem_dirty_chains, 0);
2691 if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
2692 waiting,
2693 waiting | HAMMER2_DIRTYCHAIN_WAITING)) {
2694 speedup_syncer(pmp->mp);
2695 tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED,
2696 "chnmem", hz);
2698 continue; /* loop on success or fail */
2702 * Try to start an early flush before we are forced to block.
2704 if (count > limit * 7 / 10)
2705 speedup_syncer(pmp->mp);
2706 break;
2710 void
2711 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
2713 if (pmp) {
2714 atomic_add_int(&pmp->inmem_dirty_chains, 1);
2718 void
2719 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp)
2721 uint32_t waiting;
2723 if (pmp) {
2724 waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, -1);
2725 /* don't need --waiting to test flag */
2726 if (waiting & HAMMER2_DIRTYCHAIN_WAITING) {
2727 atomic_clear_int(&pmp->inmem_dirty_chains,
2728 HAMMER2_DIRTYCHAIN_WAITING);
2729 wakeup(&pmp->inmem_dirty_chains);
2735 * Returns 0 if the filesystem has tons of free space
2736 * Returns 1 if the filesystem has less than 10% remaining
2737 * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining.
2740 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred)
2742 hammer2_pfs_t *pmp;
2743 hammer2_dev_t *hmp;
2744 hammer2_off_t free_reserved;
2745 hammer2_off_t free_nominal;
2746 int i;
2748 pmp = ip->pmp;
2750 if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) {
2751 free_reserved = HAMMER2_SEGSIZE;
2752 free_nominal = 0x7FFFFFFFFFFFFFFFLLU;
2753 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
2754 hmp = pmp->pfs_hmps[i];
2755 if (hmp == NULL)
2756 continue;
2757 if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER &&
2758 pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER)
2759 continue;
2761 if (free_nominal > hmp->voldata.allocator_free)
2762 free_nominal = hmp->voldata.allocator_free;
2763 if (free_reserved < hmp->free_reserved)
2764 free_reserved = hmp->free_reserved;
2768 * SMP races ok
2770 pmp->free_reserved = free_reserved;
2771 pmp->free_nominal = free_nominal;
2772 pmp->free_ticks = ticks;
2773 } else {
2774 free_reserved = pmp->free_reserved;
2775 free_nominal = pmp->free_nominal;
2777 if (cred && cred->cr_uid != 0) {
2778 if ((int64_t)(free_nominal - bytes) <
2779 (int64_t)free_reserved) {
2780 return 2;
2782 } else {
2783 if ((int64_t)(free_nominal - bytes) <
2784 (int64_t)free_reserved / 2) {
2785 return 2;
2788 if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2)
2789 return 1;
2790 return 0;
2794 * Debugging
2796 void
2797 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx)
2799 hammer2_chain_t *scan;
2800 hammer2_chain_t *parent;
2802 --*countp;
2803 if (*countp == 0) {
2804 kprintf("%*.*s...\n", tab, tab, "");
2805 return;
2807 if (*countp < 0)
2808 return;
2809 kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n",
2810 tab, tab, "", pfx,
2811 chain, chain->bref.type,
2812 chain->bref.key, chain->bref.keybits,
2813 chain->bref.mirror_tid);
2815 kprintf("%*.*s [%08x] (%s) refs=%d",
2816 tab, tab, "",
2817 chain->flags,
2818 ((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2819 chain->data) ? (char *)chain->data->ipdata.filename : "?"),
2820 chain->refs);
2822 parent = chain->parent;
2823 if (parent)
2824 kprintf("\n%*.*s p=%p [pflags %08x prefs %d",
2825 tab, tab, "",
2826 parent, parent->flags, parent->refs);
2827 if (RB_EMPTY(&chain->core.rbtree)) {
2828 kprintf("\n");
2829 } else {
2830 kprintf(" {\n");
2831 RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree)
2832 hammer2_dump_chain(scan, tab + 4, countp, 'a');
2833 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
2834 kprintf("%*.*s}(%s)\n", tab, tab, "",
2835 chain->data->ipdata.filename);
2836 else
2837 kprintf("%*.*s}\n", tab, tab, "");