kernel - Improve pmap hinting, improve performance
[dragonfly.git] / sys / vm / vm_fault.c
blobfe3b9d7e7fd4491af5fc8c614399ea34554e21b7
1 /*
2 * Copyright (c) 2003-2014 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * ---
36 * Copyright (c) 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * Copyright (c) 1994 John S. Dyson
39 * All rights reserved.
40 * Copyright (c) 1994 David Greenman
41 * All rights reserved.
44 * This code is derived from software contributed to Berkeley by
45 * The Mach Operating System project at Carnegie-Mellon University.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * ---
73 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74 * All rights reserved.
76 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
78 * Permission to use, copy, modify and distribute this software and
79 * its documentation is hereby granted, provided that both the copyright
80 * notice and this permission notice appear in all copies of the
81 * software, derivative works or modified versions, and any portions
82 * thereof, and that both notices appear in supporting documentation.
84 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
88 * Carnegie Mellon requests users of this software to return to
90 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
91 * School of Computer Science
92 * Carnegie Mellon University
93 * Pittsburgh PA 15213-3890
95 * any improvements or extensions that they make and grant Carnegie the
96 * rights to redistribute these changes.
100 * Page fault handling module.
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
114 #include <cpu/lwbuf.h>
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
131 struct faultstate {
132 vm_page_t m;
133 vm_object_t object;
134 vm_pindex_t pindex;
135 vm_prot_t prot;
136 vm_page_t first_m;
137 vm_object_t first_object;
138 vm_prot_t first_prot;
139 vm_map_t map;
140 vm_map_entry_t entry;
141 int lookup_still_valid;
142 int hardfault;
143 int fault_flags;
144 int map_generation;
145 int shared;
146 int first_shared;
147 boolean_t wired;
148 struct vnode *vp;
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 "Allow shared token on vm_object");
160 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
161 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
162 vpte_t, int, int);
163 #if 0
164 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
165 #endif
166 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
167 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
168 vm_map_entry_t entry, int prot, int fault_flags);
169 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
170 vm_map_entry_t entry, int prot, int fault_flags);
172 static __inline void
173 release_page(struct faultstate *fs)
175 vm_page_deactivate(fs->m);
176 vm_page_wakeup(fs->m);
177 fs->m = NULL;
181 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
182 * requires relocking and then checking the timestamp.
184 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
185 * not have to update fs->map_generation here.
187 * NOTE: This function can fail due to a deadlock against the caller's
188 * holding of a vm_page BUSY.
190 static __inline int
191 relock_map(struct faultstate *fs)
193 int error;
195 if (fs->lookup_still_valid == FALSE && fs->map) {
196 error = vm_map_lock_read_to(fs->map);
197 if (error == 0)
198 fs->lookup_still_valid = TRUE;
199 } else {
200 error = 0;
202 return error;
205 static __inline void
206 unlock_map(struct faultstate *fs)
208 if (fs->lookup_still_valid && fs->map) {
209 vm_map_lookup_done(fs->map, fs->entry, 0);
210 fs->lookup_still_valid = FALSE;
215 * Clean up after a successful call to vm_fault_object() so another call
216 * to vm_fault_object() can be made.
218 static void
219 _cleanup_successful_fault(struct faultstate *fs, int relock)
222 * We allocated a junk page for a COW operation that did
223 * not occur, the page must be freed.
225 if (fs->object != fs->first_object) {
226 KKASSERT(fs->first_shared == 0);
227 vm_page_free(fs->first_m);
228 vm_object_pip_wakeup(fs->object);
229 fs->first_m = NULL;
233 * Reset fs->object.
235 fs->object = fs->first_object;
236 if (relock && fs->lookup_still_valid == FALSE) {
237 if (fs->map)
238 vm_map_lock_read(fs->map);
239 fs->lookup_still_valid = TRUE;
243 static void
244 _unlock_things(struct faultstate *fs, int dealloc)
246 _cleanup_successful_fault(fs, 0);
247 if (dealloc) {
248 /*vm_object_deallocate(fs->first_object);*/
249 /*fs->first_object = NULL; drop used later on */
251 unlock_map(fs);
252 if (fs->vp != NULL) {
253 vput(fs->vp);
254 fs->vp = NULL;
258 #define unlock_things(fs) _unlock_things(fs, 0)
259 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
260 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
263 * TRYPAGER
265 * Determine if the pager for the current object *might* contain the page.
267 * We only need to try the pager if this is not a default object (default
268 * objects are zero-fill and have no real pager), and if we are not taking
269 * a wiring fault or if the FS entry is wired.
271 #define TRYPAGER(fs) \
272 (fs->object->type != OBJT_DEFAULT && \
273 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
276 * vm_fault:
278 * Handle a page fault occuring at the given address, requiring the given
279 * permissions, in the map specified. If successful, the page is inserted
280 * into the associated physical map.
282 * NOTE: The given address should be truncated to the proper page address.
284 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
285 * a standard error specifying why the fault is fatal is returned.
287 * The map in question must be referenced, and remains so.
288 * The caller may hold no locks.
289 * No other requirements.
292 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
294 int result;
295 vm_pindex_t first_pindex;
296 struct faultstate fs;
297 struct lwp *lp;
298 struct proc *p;
299 thread_t td;
300 struct vm_map_ilock ilock;
301 int didilock;
302 int growstack;
303 int retry = 0;
304 int inherit_prot;
306 inherit_prot = fault_type & VM_PROT_NOSYNC;
307 fs.hardfault = 0;
308 fs.fault_flags = fault_flags;
309 fs.vp = NULL;
310 fs.shared = vm_shared_fault;
311 fs.first_shared = vm_shared_fault;
312 growstack = 1;
315 * vm_map interactions
317 td = curthread;
318 if ((lp = td->td_lwp) != NULL)
319 lp->lwp_flags |= LWP_PAGING;
321 RetryFault:
323 * Find the vm_map_entry representing the backing store and resolve
324 * the top level object and page index. This may have the side
325 * effect of executing a copy-on-write on the map entry,
326 * creating a shadow object, or splitting an anonymous entry for
327 * performance, but will not COW any actual VM pages.
329 * On success fs.map is left read-locked and various other fields
330 * are initialized but not otherwise referenced or locked.
332 * NOTE! vm_map_lookup will try to upgrade the fault_type to
333 * VM_FAULT_WRITE if the map entry is a virtual page table
334 * and also writable, so we can set the 'A'accessed bit in
335 * the virtual page table entry.
337 fs.map = map;
338 result = vm_map_lookup(&fs.map, vaddr, fault_type,
339 &fs.entry, &fs.first_object,
340 &first_pindex, &fs.first_prot, &fs.wired);
343 * If the lookup failed or the map protections are incompatible,
344 * the fault generally fails.
346 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
347 * tried to do a COW fault.
349 * If the caller is trying to do a user wiring we have more work
350 * to do.
352 if (result != KERN_SUCCESS) {
353 if (result == KERN_FAILURE_NOFAULT) {
354 result = KERN_FAILURE;
355 goto done;
357 if (result != KERN_PROTECTION_FAILURE ||
358 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
360 if (result == KERN_INVALID_ADDRESS && growstack &&
361 map != &kernel_map && curproc != NULL) {
362 result = vm_map_growstack(map, vaddr);
363 if (result == KERN_SUCCESS) {
364 growstack = 0;
365 ++retry;
366 goto RetryFault;
368 result = KERN_FAILURE;
370 goto done;
374 * If we are user-wiring a r/w segment, and it is COW, then
375 * we need to do the COW operation. Note that we don't
376 * currently COW RO sections now, because it is NOT desirable
377 * to COW .text. We simply keep .text from ever being COW'ed
378 * and take the heat that one cannot debug wired .text sections.
380 result = vm_map_lookup(&fs.map, vaddr,
381 VM_PROT_READ|VM_PROT_WRITE|
382 VM_PROT_OVERRIDE_WRITE,
383 &fs.entry, &fs.first_object,
384 &first_pindex, &fs.first_prot,
385 &fs.wired);
386 if (result != KERN_SUCCESS) {
387 /* could also be KERN_FAILURE_NOFAULT */
388 result = KERN_FAILURE;
389 goto done;
393 * If we don't COW now, on a user wire, the user will never
394 * be able to write to the mapping. If we don't make this
395 * restriction, the bookkeeping would be nearly impossible.
397 * XXX We have a shared lock, this will have a MP race but
398 * I don't see how it can hurt anything.
400 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
401 atomic_clear_char(&fs.entry->max_protection,
402 VM_PROT_WRITE);
407 * fs.map is read-locked
409 * Misc checks. Save the map generation number to detect races.
411 fs.map_generation = fs.map->timestamp;
412 fs.lookup_still_valid = TRUE;
413 fs.first_m = NULL;
414 fs.object = fs.first_object; /* so unlock_and_deallocate works */
415 fs.prot = fs.first_prot; /* default (used by uksmap) */
417 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
418 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
419 panic("vm_fault: fault on nofault entry, addr: %p",
420 (void *)vaddr);
422 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
423 vaddr >= fs.entry->start &&
424 vaddr < fs.entry->start + PAGE_SIZE) {
425 panic("vm_fault: fault on stack guard, addr: %p",
426 (void *)vaddr);
431 * A user-kernel shared map has no VM object and bypasses
432 * everything. We execute the uksmap function with a temporary
433 * fictitious vm_page. The address is directly mapped with no
434 * management.
436 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
437 struct vm_page fakem;
439 bzero(&fakem, sizeof(fakem));
440 fakem.pindex = first_pindex;
441 fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
442 fakem.busy_count = PBUSY_LOCKED;
443 fakem.valid = VM_PAGE_BITS_ALL;
444 fakem.pat_mode = VM_MEMATTR_DEFAULT;
445 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
446 result = KERN_FAILURE;
447 unlock_things(&fs);
448 goto done2;
450 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
451 fs.wired, fs.entry);
452 goto done_success;
456 * A system map entry may return a NULL object. No object means
457 * no pager means an unrecoverable kernel fault.
459 if (fs.first_object == NULL) {
460 panic("vm_fault: unrecoverable fault at %p in entry %p",
461 (void *)vaddr, fs.entry);
465 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
466 * is set.
468 * Unfortunately a deadlock can occur if we are forced to page-in
469 * from swap, but diving all the way into the vm_pager_get_page()
470 * function to find out is too much. Just check the object type.
472 * The deadlock is a CAM deadlock on a busy VM page when trying
473 * to finish an I/O if another process gets stuck in
474 * vop_helper_read_shortcut() due to a swap fault.
476 if ((td->td_flags & TDF_NOFAULT) &&
477 (retry ||
478 fs.first_object->type == OBJT_VNODE ||
479 fs.first_object->type == OBJT_SWAP ||
480 fs.first_object->backing_object)) {
481 result = KERN_FAILURE;
482 unlock_things(&fs);
483 goto done2;
487 * If the entry is wired we cannot change the page protection.
489 if (fs.wired)
490 fault_type = fs.first_prot;
493 * We generally want to avoid unnecessary exclusive modes on backing
494 * and terminal objects because this can seriously interfere with
495 * heavily fork()'d processes (particularly /bin/sh scripts).
497 * However, we also want to avoid unnecessary retries due to needed
498 * shared->exclusive promotion for common faults. Exclusive mode is
499 * always needed if any page insertion, rename, or free occurs in an
500 * object (and also indirectly if any I/O is done).
502 * The main issue here is going to be fs.first_shared. If the
503 * first_object has a backing object which isn't shadowed and the
504 * process is single-threaded we might as well use an exclusive
505 * lock/chain right off the bat.
507 if (fs.first_shared && fs.first_object->backing_object &&
508 LIST_EMPTY(&fs.first_object->shadow_head) &&
509 td->td_proc && td->td_proc->p_nthreads == 1) {
510 fs.first_shared = 0;
514 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
515 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
516 * we can try shared first.
518 if (fault_flags & VM_FAULT_UNSWAP) {
519 fs.first_shared = 0;
523 * Obtain a top-level object lock, shared or exclusive depending
524 * on fs.first_shared. If a shared lock winds up being insufficient
525 * we will retry with an exclusive lock.
527 * The vnode pager lock is always shared.
529 if (fs.first_shared)
530 vm_object_hold_shared(fs.first_object);
531 else
532 vm_object_hold(fs.first_object);
533 if (fs.vp == NULL)
534 fs.vp = vnode_pager_lock(fs.first_object);
537 * The page we want is at (first_object, first_pindex), but if the
538 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
539 * page table to figure out the actual pindex.
541 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
542 * ONLY
544 didilock = 0;
545 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
546 vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
547 didilock = 1;
548 result = vm_fault_vpagetable(&fs, &first_pindex,
549 fs.entry->aux.master_pde,
550 fault_type, 1);
551 if (result == KERN_TRY_AGAIN) {
552 vm_map_deinterlock(fs.map, &ilock);
553 vm_object_drop(fs.first_object);
554 ++retry;
555 goto RetryFault;
557 if (result != KERN_SUCCESS) {
558 vm_map_deinterlock(fs.map, &ilock);
559 goto done;
564 * Now we have the actual (object, pindex), fault in the page. If
565 * vm_fault_object() fails it will unlock and deallocate the FS
566 * data. If it succeeds everything remains locked and fs->object
567 * will have an additional PIP count if it is not equal to
568 * fs->first_object
570 * vm_fault_object will set fs->prot for the pmap operation. It is
571 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
572 * page can be safely written. However, it will force a read-only
573 * mapping for a read fault if the memory is managed by a virtual
574 * page table.
576 * If the fault code uses the shared object lock shortcut
577 * we must not try to burst (we can't allocate VM pages).
579 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
581 if (debug_fault > 0) {
582 --debug_fault;
583 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
584 "fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
585 result, (intmax_t)vaddr, fault_type, fault_flags,
586 fs.m, fs.prot, fs.wired, fs.entry);
589 if (result == KERN_TRY_AGAIN) {
590 if (didilock)
591 vm_map_deinterlock(fs.map, &ilock);
592 vm_object_drop(fs.first_object);
593 ++retry;
594 goto RetryFault;
596 if (result != KERN_SUCCESS) {
597 if (didilock)
598 vm_map_deinterlock(fs.map, &ilock);
599 goto done;
603 * On success vm_fault_object() does not unlock or deallocate, and fs.m
604 * will contain a busied page.
606 * Enter the page into the pmap and do pmap-related adjustments.
608 KKASSERT(fs.lookup_still_valid == TRUE);
609 vm_page_flag_set(fs.m, PG_REFERENCED);
610 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
611 fs.wired, fs.entry);
613 if (didilock)
614 vm_map_deinterlock(fs.map, &ilock);
616 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
617 KKASSERT(fs.m->busy_count & PBUSY_LOCKED);
620 * If the page is not wired down, then put it where the pageout daemon
621 * can find it.
623 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
624 if (fs.wired)
625 vm_page_wire(fs.m);
626 else
627 vm_page_unwire(fs.m, 1);
628 } else {
629 vm_page_activate(fs.m);
631 vm_page_wakeup(fs.m);
634 * Burst in a few more pages if possible. The fs.map should still
635 * be locked. To avoid interlocking against a vnode->getblk
636 * operation we had to be sure to unbusy our primary vm_page above
637 * first.
639 * A normal burst can continue down backing store, only execute
640 * if we are holding an exclusive lock, otherwise the exclusive
641 * locks the burst code gets might cause excessive SMP collisions.
643 * A quick burst can be utilized when there is no backing object
644 * (i.e. a shared file mmap).
646 if ((fault_flags & VM_FAULT_BURST) &&
647 (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
648 fs.wired == 0) {
649 if (fs.first_shared == 0 && fs.shared == 0) {
650 vm_prefault(fs.map->pmap, vaddr,
651 fs.entry, fs.prot, fault_flags);
652 } else {
653 vm_prefault_quick(fs.map->pmap, vaddr,
654 fs.entry, fs.prot, fault_flags);
658 done_success:
659 mycpu->gd_cnt.v_vm_faults++;
660 if (td->td_lwp)
661 ++td->td_lwp->lwp_ru.ru_minflt;
664 * Unlock everything, and return
666 unlock_things(&fs);
668 if (td->td_lwp) {
669 if (fs.hardfault) {
670 td->td_lwp->lwp_ru.ru_majflt++;
671 } else {
672 td->td_lwp->lwp_ru.ru_minflt++;
676 /*vm_object_deallocate(fs.first_object);*/
677 /*fs.m = NULL; */
678 /*fs.first_object = NULL; must still drop later */
680 result = KERN_SUCCESS;
681 done:
682 if (fs.first_object)
683 vm_object_drop(fs.first_object);
684 done2:
685 if (lp)
686 lp->lwp_flags &= ~LWP_PAGING;
688 #if !defined(NO_SWAPPING)
690 * Check the process RSS limit and force deactivation and
691 * (asynchronous) paging if necessary. This is a complex operation,
692 * only do it for direct user-mode faults, for now.
694 * To reduce overhead implement approximately a ~16MB hysteresis.
696 p = td->td_proc;
697 if ((fault_flags & VM_FAULT_USERMODE) && lp &&
698 p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
699 map != &kernel_map) {
700 vm_pindex_t limit;
701 vm_pindex_t size;
703 limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
704 p->p_rlimit[RLIMIT_RSS].rlim_max));
705 size = pmap_resident_tlnw_count(map->pmap);
706 if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
707 vm_pageout_map_deactivate_pages(map, limit);
710 #endif
712 return (result);
716 * Fault in the specified virtual address in the current process map,
717 * returning a held VM page or NULL. See vm_fault_page() for more
718 * information.
720 * No requirements.
722 vm_page_t
723 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
724 int *errorp, int *busyp)
726 struct lwp *lp = curthread->td_lwp;
727 vm_page_t m;
729 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
730 fault_type, VM_FAULT_NORMAL,
731 errorp, busyp);
732 return(m);
736 * Fault in the specified virtual address in the specified map, doing all
737 * necessary manipulation of the object store and all necessary I/O. Return
738 * a held VM page or NULL, and set *errorp. The related pmap is not
739 * updated.
741 * If busyp is not NULL then *busyp will be set to TRUE if this routine
742 * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
743 * does not (VM_PROT_WRITE not specified or busyp is NULL). If busyp is
744 * NULL the returned page is only held.
746 * If the caller has no intention of writing to the page's contents, busyp
747 * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
748 * without busying the page.
750 * The returned page will also be marked PG_REFERENCED.
752 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
753 * error will be returned.
755 * No requirements.
757 vm_page_t
758 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
759 int fault_flags, int *errorp, int *busyp)
761 vm_pindex_t first_pindex;
762 struct faultstate fs;
763 int result;
764 int retry;
765 int growstack;
766 vm_prot_t orig_fault_type = fault_type;
768 retry = 0;
769 fs.hardfault = 0;
770 fs.fault_flags = fault_flags;
771 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
774 * Dive the pmap (concurrency possible). If we find the
775 * appropriate page we can terminate early and quickly.
777 * This works great for normal programs but will always return
778 * NULL for host lookups of vkernel maps in VMM mode.
780 * NOTE: pmap_fault_page_quick() might not busy the page. If
781 * VM_PROT_WRITE or VM_PROT_OVERRIDE_WRITE is set in
782 * fault_type and pmap_fault_page_quick() returns non-NULL,
783 * it will safely dirty the returned vm_page_t for us. We
784 * cannot safely dirty it here (it might not be busy).
786 fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
787 if (fs.m) {
788 *errorp = 0;
789 return(fs.m);
793 * Otherwise take a concurrency hit and do a formal page
794 * fault.
796 fs.vp = NULL;
797 fs.shared = vm_shared_fault;
798 fs.first_shared = vm_shared_fault;
799 growstack = 1;
802 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
803 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
804 * we can try shared first.
806 if (fault_flags & VM_FAULT_UNSWAP) {
807 fs.first_shared = 0;
810 RetryFault:
812 * Find the vm_map_entry representing the backing store and resolve
813 * the top level object and page index. This may have the side
814 * effect of executing a copy-on-write on the map entry and/or
815 * creating a shadow object, but will not COW any actual VM pages.
817 * On success fs.map is left read-locked and various other fields
818 * are initialized but not otherwise referenced or locked.
820 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
821 * if the map entry is a virtual page table and also writable,
822 * so we can set the 'A'accessed bit in the virtual page table
823 * entry.
825 fs.map = map;
826 result = vm_map_lookup(&fs.map, vaddr, fault_type,
827 &fs.entry, &fs.first_object,
828 &first_pindex, &fs.first_prot, &fs.wired);
830 if (result != KERN_SUCCESS) {
831 if (result == KERN_FAILURE_NOFAULT) {
832 *errorp = KERN_FAILURE;
833 fs.m = NULL;
834 goto done;
836 if (result != KERN_PROTECTION_FAILURE ||
837 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
839 if (result == KERN_INVALID_ADDRESS && growstack &&
840 map != &kernel_map && curproc != NULL) {
841 result = vm_map_growstack(map, vaddr);
842 if (result == KERN_SUCCESS) {
843 growstack = 0;
844 ++retry;
845 goto RetryFault;
847 result = KERN_FAILURE;
849 fs.m = NULL;
850 *errorp = result;
851 goto done;
855 * If we are user-wiring a r/w segment, and it is COW, then
856 * we need to do the COW operation. Note that we don't
857 * currently COW RO sections now, because it is NOT desirable
858 * to COW .text. We simply keep .text from ever being COW'ed
859 * and take the heat that one cannot debug wired .text sections.
861 result = vm_map_lookup(&fs.map, vaddr,
862 VM_PROT_READ|VM_PROT_WRITE|
863 VM_PROT_OVERRIDE_WRITE,
864 &fs.entry, &fs.first_object,
865 &first_pindex, &fs.first_prot,
866 &fs.wired);
867 if (result != KERN_SUCCESS) {
868 /* could also be KERN_FAILURE_NOFAULT */
869 *errorp = KERN_FAILURE;
870 fs.m = NULL;
871 goto done;
875 * If we don't COW now, on a user wire, the user will never
876 * be able to write to the mapping. If we don't make this
877 * restriction, the bookkeeping would be nearly impossible.
879 * XXX We have a shared lock, this will have a MP race but
880 * I don't see how it can hurt anything.
882 if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
883 atomic_clear_char(&fs.entry->max_protection,
884 VM_PROT_WRITE);
889 * fs.map is read-locked
891 * Misc checks. Save the map generation number to detect races.
893 fs.map_generation = fs.map->timestamp;
894 fs.lookup_still_valid = TRUE;
895 fs.first_m = NULL;
896 fs.object = fs.first_object; /* so unlock_and_deallocate works */
898 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
899 panic("vm_fault: fault on nofault entry, addr: %lx",
900 (u_long)vaddr);
904 * A user-kernel shared map has no VM object and bypasses
905 * everything. We execute the uksmap function with a temporary
906 * fictitious vm_page. The address is directly mapped with no
907 * management.
909 if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
910 struct vm_page fakem;
912 bzero(&fakem, sizeof(fakem));
913 fakem.pindex = first_pindex;
914 fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
915 fakem.busy_count = PBUSY_LOCKED;
916 fakem.valid = VM_PAGE_BITS_ALL;
917 fakem.pat_mode = VM_MEMATTR_DEFAULT;
918 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
919 *errorp = KERN_FAILURE;
920 fs.m = NULL;
921 unlock_things(&fs);
922 goto done2;
924 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
925 vm_page_hold(fs.m);
926 if (busyp)
927 *busyp = 0; /* don't need to busy R or W */
928 unlock_things(&fs);
929 *errorp = 0;
930 goto done;
935 * A system map entry may return a NULL object. No object means
936 * no pager means an unrecoverable kernel fault.
938 if (fs.first_object == NULL) {
939 panic("vm_fault: unrecoverable fault at %p in entry %p",
940 (void *)vaddr, fs.entry);
944 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
945 * is set.
947 * Unfortunately a deadlock can occur if we are forced to page-in
948 * from swap, but diving all the way into the vm_pager_get_page()
949 * function to find out is too much. Just check the object type.
951 if ((curthread->td_flags & TDF_NOFAULT) &&
952 (retry ||
953 fs.first_object->type == OBJT_VNODE ||
954 fs.first_object->type == OBJT_SWAP ||
955 fs.first_object->backing_object)) {
956 *errorp = KERN_FAILURE;
957 unlock_things(&fs);
958 fs.m = NULL;
959 goto done2;
963 * If the entry is wired we cannot change the page protection.
965 if (fs.wired)
966 fault_type = fs.first_prot;
969 * Make a reference to this object to prevent its disposal while we
970 * are messing with it. Once we have the reference, the map is free
971 * to be diddled. Since objects reference their shadows (and copies),
972 * they will stay around as well.
974 * The reference should also prevent an unexpected collapse of the
975 * parent that might move pages from the current object into the
976 * parent unexpectedly, resulting in corruption.
978 * Bump the paging-in-progress count to prevent size changes (e.g.
979 * truncation operations) during I/O. This must be done after
980 * obtaining the vnode lock in order to avoid possible deadlocks.
982 if (fs.first_shared)
983 vm_object_hold_shared(fs.first_object);
984 else
985 vm_object_hold(fs.first_object);
986 if (fs.vp == NULL)
987 fs.vp = vnode_pager_lock(fs.first_object); /* shared */
990 * The page we want is at (first_object, first_pindex), but if the
991 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
992 * page table to figure out the actual pindex.
994 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
995 * ONLY
997 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
998 result = vm_fault_vpagetable(&fs, &first_pindex,
999 fs.entry->aux.master_pde,
1000 fault_type, 1);
1001 if (result == KERN_TRY_AGAIN) {
1002 vm_object_drop(fs.first_object);
1003 ++retry;
1004 goto RetryFault;
1006 if (result != KERN_SUCCESS) {
1007 *errorp = result;
1008 fs.m = NULL;
1009 goto done;
1014 * Now we have the actual (object, pindex), fault in the page. If
1015 * vm_fault_object() fails it will unlock and deallocate the FS
1016 * data. If it succeeds everything remains locked and fs->object
1017 * will have an additinal PIP count if it is not equal to
1018 * fs->first_object
1020 fs.m = NULL;
1021 result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1023 if (result == KERN_TRY_AGAIN) {
1024 vm_object_drop(fs.first_object);
1025 ++retry;
1026 goto RetryFault;
1028 if (result != KERN_SUCCESS) {
1029 *errorp = result;
1030 fs.m = NULL;
1031 goto done;
1034 if ((orig_fault_type & VM_PROT_WRITE) &&
1035 (fs.prot & VM_PROT_WRITE) == 0) {
1036 *errorp = KERN_PROTECTION_FAILURE;
1037 unlock_and_deallocate(&fs);
1038 fs.m = NULL;
1039 goto done;
1043 * DO NOT UPDATE THE PMAP!!! This function may be called for
1044 * a pmap unrelated to the current process pmap, in which case
1045 * the current cpu core will not be listed in the pmap's pm_active
1046 * mask. Thus invalidation interlocks will fail to work properly.
1048 * (for example, 'ps' uses procfs to read program arguments from
1049 * each process's stack).
1051 * In addition to the above this function will be called to acquire
1052 * a page that might already be faulted in, re-faulting it
1053 * continuously is a waste of time.
1055 * XXX could this have been the cause of our random seg-fault
1056 * issues? procfs accesses user stacks.
1058 vm_page_flag_set(fs.m, PG_REFERENCED);
1059 #if 0
1060 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
1061 mycpu->gd_cnt.v_vm_faults++;
1062 if (curthread->td_lwp)
1063 ++curthread->td_lwp->lwp_ru.ru_minflt;
1064 #endif
1067 * On success vm_fault_object() does not unlock or deallocate, and fs.m
1068 * will contain a busied page. So we must unlock here after having
1069 * messed with the pmap.
1071 unlock_things(&fs);
1074 * Return a held page. We are not doing any pmap manipulation so do
1075 * not set PG_MAPPED. However, adjust the page flags according to
1076 * the fault type because the caller may not use a managed pmapping
1077 * (so we don't want to lose the fact that the page will be dirtied
1078 * if a write fault was specified).
1080 if (fault_type & VM_PROT_WRITE)
1081 vm_page_dirty(fs.m);
1082 vm_page_activate(fs.m);
1084 if (curthread->td_lwp) {
1085 if (fs.hardfault) {
1086 curthread->td_lwp->lwp_ru.ru_majflt++;
1087 } else {
1088 curthread->td_lwp->lwp_ru.ru_minflt++;
1093 * Unlock everything, and return the held or busied page.
1095 if (busyp) {
1096 if (fault_type & (VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE)) {
1097 vm_page_dirty(fs.m);
1098 *busyp = 1;
1099 } else {
1100 *busyp = 0;
1101 vm_page_hold(fs.m);
1102 vm_page_wakeup(fs.m);
1104 } else {
1105 vm_page_hold(fs.m);
1106 vm_page_wakeup(fs.m);
1108 /*vm_object_deallocate(fs.first_object);*/
1109 /*fs.first_object = NULL; */
1110 *errorp = 0;
1112 done:
1113 if (fs.first_object)
1114 vm_object_drop(fs.first_object);
1115 done2:
1116 return(fs.m);
1120 * Fault in the specified (object,offset), dirty the returned page as
1121 * needed. If the requested fault_type cannot be done NULL and an
1122 * error is returned.
1124 * A held (but not busied) page is returned.
1126 * The passed in object must be held as specified by the shared
1127 * argument.
1129 vm_page_t
1130 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1131 vm_prot_t fault_type, int fault_flags,
1132 int *sharedp, int *errorp)
1134 int result;
1135 vm_pindex_t first_pindex;
1136 struct faultstate fs;
1137 struct vm_map_entry entry;
1139 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1140 bzero(&entry, sizeof(entry));
1141 entry.object.vm_object = object;
1142 entry.maptype = VM_MAPTYPE_NORMAL;
1143 entry.protection = entry.max_protection = fault_type;
1145 fs.hardfault = 0;
1146 fs.fault_flags = fault_flags;
1147 fs.map = NULL;
1148 fs.shared = vm_shared_fault;
1149 fs.first_shared = *sharedp;
1150 fs.vp = NULL;
1151 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1154 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1155 * VM_FAULT_DIRTY - may require swap_pager_unswapped() later, but
1156 * we can try shared first.
1158 if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1159 fs.first_shared = 0;
1160 vm_object_upgrade(object);
1164 * Retry loop as needed (typically for shared->exclusive transitions)
1166 RetryFault:
1167 *sharedp = fs.first_shared;
1168 first_pindex = OFF_TO_IDX(offset);
1169 fs.first_object = object;
1170 fs.entry = &entry;
1171 fs.first_prot = fault_type;
1172 fs.wired = 0;
1173 /*fs.map_generation = 0; unused */
1176 * Make a reference to this object to prevent its disposal while we
1177 * are messing with it. Once we have the reference, the map is free
1178 * to be diddled. Since objects reference their shadows (and copies),
1179 * they will stay around as well.
1181 * The reference should also prevent an unexpected collapse of the
1182 * parent that might move pages from the current object into the
1183 * parent unexpectedly, resulting in corruption.
1185 * Bump the paging-in-progress count to prevent size changes (e.g.
1186 * truncation operations) during I/O. This must be done after
1187 * obtaining the vnode lock in order to avoid possible deadlocks.
1189 if (fs.vp == NULL)
1190 fs.vp = vnode_pager_lock(fs.first_object);
1192 fs.lookup_still_valid = TRUE;
1193 fs.first_m = NULL;
1194 fs.object = fs.first_object; /* so unlock_and_deallocate works */
1196 #if 0
1197 /* XXX future - ability to operate on VM object using vpagetable */
1198 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1199 result = vm_fault_vpagetable(&fs, &first_pindex,
1200 fs.entry->aux.master_pde,
1201 fault_type, 0);
1202 if (result == KERN_TRY_AGAIN) {
1203 if (fs.first_shared == 0 && *sharedp)
1204 vm_object_upgrade(object);
1205 goto RetryFault;
1207 if (result != KERN_SUCCESS) {
1208 *errorp = result;
1209 return (NULL);
1212 #endif
1215 * Now we have the actual (object, pindex), fault in the page. If
1216 * vm_fault_object() fails it will unlock and deallocate the FS
1217 * data. If it succeeds everything remains locked and fs->object
1218 * will have an additinal PIP count if it is not equal to
1219 * fs->first_object
1221 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1222 * We may have to upgrade its lock to handle the requested fault.
1224 result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1226 if (result == KERN_TRY_AGAIN) {
1227 if (fs.first_shared == 0 && *sharedp)
1228 vm_object_upgrade(object);
1229 goto RetryFault;
1231 if (result != KERN_SUCCESS) {
1232 *errorp = result;
1233 return(NULL);
1236 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1237 *errorp = KERN_PROTECTION_FAILURE;
1238 unlock_and_deallocate(&fs);
1239 return(NULL);
1243 * On success vm_fault_object() does not unlock or deallocate, so we
1244 * do it here. Note that the returned fs.m will be busied.
1246 unlock_things(&fs);
1249 * Return a held page. We are not doing any pmap manipulation so do
1250 * not set PG_MAPPED. However, adjust the page flags according to
1251 * the fault type because the caller may not use a managed pmapping
1252 * (so we don't want to lose the fact that the page will be dirtied
1253 * if a write fault was specified).
1255 vm_page_hold(fs.m);
1256 vm_page_activate(fs.m);
1257 if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1258 vm_page_dirty(fs.m);
1259 if (fault_flags & VM_FAULT_UNSWAP)
1260 swap_pager_unswapped(fs.m);
1263 * Indicate that the page was accessed.
1265 vm_page_flag_set(fs.m, PG_REFERENCED);
1267 if (curthread->td_lwp) {
1268 if (fs.hardfault) {
1269 curthread->td_lwp->lwp_ru.ru_majflt++;
1270 } else {
1271 curthread->td_lwp->lwp_ru.ru_minflt++;
1276 * Unlock everything, and return the held page.
1278 vm_page_wakeup(fs.m);
1279 /*vm_object_deallocate(fs.first_object);*/
1280 /*fs.first_object = NULL; */
1282 *errorp = 0;
1283 return(fs.m);
1287 * Translate the virtual page number (first_pindex) that is relative
1288 * to the address space into a logical page number that is relative to the
1289 * backing object. Use the virtual page table pointed to by (vpte).
1291 * Possibly downgrade the protection based on the vpte bits.
1293 * This implements an N-level page table. Any level can terminate the
1294 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
1295 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1297 static
1299 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1300 vpte_t vpte, int fault_type, int allow_nofault)
1302 struct lwbuf *lwb;
1303 struct lwbuf lwb_cache;
1304 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1305 int result;
1306 vpte_t *ptep;
1308 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1309 for (;;) {
1311 * We cannot proceed if the vpte is not valid, not readable
1312 * for a read fault, not writable for a write fault, or
1313 * not executable for an instruction execution fault.
1315 if ((vpte & VPTE_V) == 0) {
1316 unlock_and_deallocate(fs);
1317 return (KERN_FAILURE);
1319 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1320 unlock_and_deallocate(fs);
1321 return (KERN_FAILURE);
1323 if ((fault_type & VM_PROT_EXECUTE) && (vpte & VPTE_NX)) {
1324 unlock_and_deallocate(fs);
1325 return (KERN_FAILURE);
1327 if ((vpte & VPTE_PS) || vshift == 0)
1328 break;
1331 * Get the page table page. Nominally we only read the page
1332 * table, but since we are actively setting VPTE_M and VPTE_A,
1333 * tell vm_fault_object() that we are writing it.
1335 * There is currently no real need to optimize this.
1337 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1338 VM_PROT_READ|VM_PROT_WRITE,
1339 allow_nofault);
1340 if (result != KERN_SUCCESS)
1341 return (result);
1344 * Process the returned fs.m and look up the page table
1345 * entry in the page table page.
1347 vshift -= VPTE_PAGE_BITS;
1348 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1349 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1350 ((*pindex >> vshift) & VPTE_PAGE_MASK));
1351 vm_page_activate(fs->m);
1354 * Page table write-back - entire operation including
1355 * validation of the pte must be atomic to avoid races
1356 * against the vkernel changing the pte.
1358 * If the vpte is valid for the* requested operation, do
1359 * a write-back to the page table.
1361 * XXX VPTE_M is not set properly for page directory pages.
1362 * It doesn't get set in the page directory if the page table
1363 * is modified during a read access.
1365 for (;;) {
1366 vpte_t nvpte;
1369 * Reload for the cmpset, but make sure the pte is
1370 * still valid.
1372 vpte = *ptep;
1373 cpu_ccfence();
1374 nvpte = vpte;
1376 if ((vpte & VPTE_V) == 0)
1377 break;
1379 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1380 nvpte |= VPTE_M | VPTE_A;
1381 if (fault_type & (VM_PROT_READ | VM_PROT_EXECUTE))
1382 nvpte |= VPTE_A;
1383 if (vpte == nvpte)
1384 break;
1385 if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1386 vm_page_dirty(fs->m);
1387 break;
1390 lwbuf_free(lwb);
1391 vm_page_flag_set(fs->m, PG_REFERENCED);
1392 vm_page_wakeup(fs->m);
1393 fs->m = NULL;
1394 cleanup_successful_fault(fs);
1398 * When the vkernel sets VPTE_RW it expects the real kernel to
1399 * reflect VPTE_M back when the page is modified via the mapping.
1400 * In order to accomplish this the real kernel must map the page
1401 * read-only for read faults and use write faults to reflect VPTE_M
1402 * back.
1404 * Once VPTE_M has been set, the real kernel's pte allows writing.
1405 * If the vkernel clears VPTE_M the vkernel must be sure to
1406 * MADV_INVAL the real kernel's mappings to force the real kernel
1407 * to re-fault on the next write so oit can set VPTE_M again.
1409 if ((fault_type & VM_PROT_WRITE) == 0 &&
1410 (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1411 fs->first_prot &= ~VM_PROT_WRITE;
1415 * Disable EXECUTE perms if NX bit is set.
1417 if (vpte & VPTE_NX)
1418 fs->first_prot &= ~VM_PROT_EXECUTE;
1421 * Combine remaining address bits with the vpte.
1423 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1424 (*pindex & ((1L << vshift) - 1));
1425 return (KERN_SUCCESS);
1430 * This is the core of the vm_fault code.
1432 * Do all operations required to fault-in (fs.first_object, pindex). Run
1433 * through the shadow chain as necessary and do required COW or virtual
1434 * copy operations. The caller has already fully resolved the vm_map_entry
1435 * and, if appropriate, has created a copy-on-write layer. All we need to
1436 * do is iterate the object chain.
1438 * On failure (fs) is unlocked and deallocated and the caller may return or
1439 * retry depending on the failure code. On success (fs) is NOT unlocked or
1440 * deallocated, fs.m will contained a resolved, busied page, and fs.object
1441 * will have an additional PIP count if it is not equal to fs.first_object.
1443 * If locks based on fs->first_shared or fs->shared are insufficient,
1444 * clear the appropriate field(s) and return RETRY. COWs require that
1445 * first_shared be 0, while page allocations (or frees) require that
1446 * shared be 0. Renames require that both be 0.
1448 * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1449 * we will have to retry with it exclusive if the vm_page is
1450 * PG_SWAPPED.
1452 * fs->first_object must be held on call.
1454 static
1456 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1457 vm_prot_t fault_type, int allow_nofault)
1459 vm_object_t next_object;
1460 vm_pindex_t pindex;
1461 int error;
1463 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1464 fs->prot = fs->first_prot;
1465 fs->object = fs->first_object;
1466 pindex = first_pindex;
1468 vm_object_chain_acquire(fs->first_object, fs->shared);
1469 vm_object_pip_add(fs->first_object, 1);
1472 * If a read fault occurs we try to upgrade the page protection
1473 * and make it also writable if possible. There are three cases
1474 * where we cannot make the page mapping writable:
1476 * (1) The mapping is read-only or the VM object is read-only,
1477 * fs->prot above will simply not have VM_PROT_WRITE set.
1479 * (2) If the mapping is a virtual page table fs->first_prot will
1480 * have already been properly adjusted by vm_fault_vpagetable().
1481 * to detect writes so we can set VPTE_M in the virtual page
1482 * table. Used by vkernels.
1484 * (3) If the VM page is read-only or copy-on-write, upgrading would
1485 * just result in an unnecessary COW fault.
1487 * (4) If the pmap specifically requests A/M bit emulation, downgrade
1488 * here.
1490 #if 0
1491 /* see vpagetable code */
1492 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1493 if ((fault_type & VM_PROT_WRITE) == 0)
1494 fs->prot &= ~VM_PROT_WRITE;
1496 #endif
1498 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1499 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1500 if ((fault_type & VM_PROT_WRITE) == 0)
1501 fs->prot &= ~VM_PROT_WRITE;
1504 /* vm_object_hold(fs->object); implied b/c object == first_object */
1506 for (;;) {
1508 * The entire backing chain from first_object to object
1509 * inclusive is chainlocked.
1511 * If the object is dead, we stop here
1513 if (fs->object->flags & OBJ_DEAD) {
1514 vm_object_pip_wakeup(fs->first_object);
1515 vm_object_chain_release_all(fs->first_object,
1516 fs->object);
1517 if (fs->object != fs->first_object)
1518 vm_object_drop(fs->object);
1519 unlock_and_deallocate(fs);
1520 return (KERN_PROTECTION_FAILURE);
1524 * See if the page is resident. Wait/Retry if the page is
1525 * busy (lots of stuff may have changed so we can't continue
1526 * in that case).
1528 * We can theoretically allow the soft-busy case on a read
1529 * fault if the page is marked valid, but since such
1530 * pages are typically already pmap'd, putting that
1531 * special case in might be more effort then it is
1532 * worth. We cannot under any circumstances mess
1533 * around with a vm_page_t->busy page except, perhaps,
1534 * to pmap it.
1536 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1537 TRUE, &error);
1538 if (error) {
1539 vm_object_pip_wakeup(fs->first_object);
1540 vm_object_chain_release_all(fs->first_object,
1541 fs->object);
1542 if (fs->object != fs->first_object)
1543 vm_object_drop(fs->object);
1544 unlock_things(fs);
1545 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1546 mycpu->gd_cnt.v_intrans++;
1547 /*vm_object_deallocate(fs->first_object);*/
1548 /*fs->first_object = NULL;*/
1549 fs->m = NULL;
1550 return (KERN_TRY_AGAIN);
1552 if (fs->m) {
1554 * The page is busied for us.
1556 * If reactivating a page from PQ_CACHE we may have
1557 * to rate-limit.
1559 int queue = fs->m->queue;
1560 vm_page_unqueue_nowakeup(fs->m);
1562 if ((queue - fs->m->pc) == PQ_CACHE &&
1563 vm_page_count_severe()) {
1564 vm_page_activate(fs->m);
1565 vm_page_wakeup(fs->m);
1566 fs->m = NULL;
1567 vm_object_pip_wakeup(fs->first_object);
1568 vm_object_chain_release_all(fs->first_object,
1569 fs->object);
1570 if (fs->object != fs->first_object)
1571 vm_object_drop(fs->object);
1572 unlock_and_deallocate(fs);
1573 if (allow_nofault == 0 ||
1574 (curthread->td_flags & TDF_NOFAULT) == 0) {
1575 thread_t td;
1577 vm_wait_pfault();
1578 td = curthread;
1579 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1580 return (KERN_PROTECTION_FAILURE);
1582 return (KERN_TRY_AGAIN);
1586 * If it still isn't completely valid (readable),
1587 * or if a read-ahead-mark is set on the VM page,
1588 * jump to readrest, else we found the page and
1589 * can return.
1591 * We can release the spl once we have marked the
1592 * page busy.
1594 if (fs->m->object != &kernel_object) {
1595 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1596 VM_PAGE_BITS_ALL) {
1597 goto readrest;
1599 if (fs->m->flags & PG_RAM) {
1600 if (debug_cluster)
1601 kprintf("R");
1602 vm_page_flag_clear(fs->m, PG_RAM);
1603 goto readrest;
1606 break; /* break to PAGE HAS BEEN FOUND */
1610 * Page is not resident, If this is the search termination
1611 * or the pager might contain the page, allocate a new page.
1613 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1615 * Allocating, must be exclusive.
1617 if (fs->object == fs->first_object &&
1618 fs->first_shared) {
1619 fs->first_shared = 0;
1620 vm_object_pip_wakeup(fs->first_object);
1621 vm_object_chain_release_all(fs->first_object,
1622 fs->object);
1623 if (fs->object != fs->first_object)
1624 vm_object_drop(fs->object);
1625 unlock_and_deallocate(fs);
1626 return (KERN_TRY_AGAIN);
1628 if (fs->object != fs->first_object &&
1629 fs->shared) {
1630 fs->first_shared = 0;
1631 fs->shared = 0;
1632 vm_object_pip_wakeup(fs->first_object);
1633 vm_object_chain_release_all(fs->first_object,
1634 fs->object);
1635 if (fs->object != fs->first_object)
1636 vm_object_drop(fs->object);
1637 unlock_and_deallocate(fs);
1638 return (KERN_TRY_AGAIN);
1642 * If the page is beyond the object size we fail
1644 if (pindex >= fs->object->size) {
1645 vm_object_pip_wakeup(fs->first_object);
1646 vm_object_chain_release_all(fs->first_object,
1647 fs->object);
1648 if (fs->object != fs->first_object)
1649 vm_object_drop(fs->object);
1650 unlock_and_deallocate(fs);
1651 return (KERN_PROTECTION_FAILURE);
1655 * Allocate a new page for this object/offset pair.
1657 * It is possible for the allocation to race, so
1658 * handle the case.
1660 fs->m = NULL;
1661 if (!vm_page_count_severe()) {
1662 fs->m = vm_page_alloc(fs->object, pindex,
1663 ((fs->vp || fs->object->backing_object) ?
1664 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1665 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1666 VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1668 if (fs->m == NULL) {
1669 vm_object_pip_wakeup(fs->first_object);
1670 vm_object_chain_release_all(fs->first_object,
1671 fs->object);
1672 if (fs->object != fs->first_object)
1673 vm_object_drop(fs->object);
1674 unlock_and_deallocate(fs);
1675 if (allow_nofault == 0 ||
1676 (curthread->td_flags & TDF_NOFAULT) == 0) {
1677 thread_t td;
1679 vm_wait_pfault();
1680 td = curthread;
1681 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1682 return (KERN_PROTECTION_FAILURE);
1684 return (KERN_TRY_AGAIN);
1688 * Fall through to readrest. We have a new page which
1689 * will have to be paged (since m->valid will be 0).
1693 readrest:
1695 * We have found an invalid or partially valid page, a
1696 * page with a read-ahead mark which might be partially or
1697 * fully valid (and maybe dirty too), or we have allocated
1698 * a new page.
1700 * Attempt to fault-in the page if there is a chance that the
1701 * pager has it, and potentially fault in additional pages
1702 * at the same time.
1704 * If TRYPAGER is true then fs.m will be non-NULL and busied
1705 * for us.
1707 if (TRYPAGER(fs)) {
1708 int rv;
1709 int seqaccess;
1710 u_char behavior = vm_map_entry_behavior(fs->entry);
1712 if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1713 seqaccess = 0;
1714 else
1715 seqaccess = -1;
1718 * Doing I/O may synchronously insert additional
1719 * pages so we can't be shared at this point either.
1721 * NOTE: We can't free fs->m here in the allocated
1722 * case (fs->object != fs->first_object) as
1723 * this would require an exclusively locked
1724 * VM object.
1726 if (fs->object == fs->first_object &&
1727 fs->first_shared) {
1728 vm_page_deactivate(fs->m);
1729 vm_page_wakeup(fs->m);
1730 fs->m = NULL;
1731 fs->first_shared = 0;
1732 vm_object_pip_wakeup(fs->first_object);
1733 vm_object_chain_release_all(fs->first_object,
1734 fs->object);
1735 if (fs->object != fs->first_object)
1736 vm_object_drop(fs->object);
1737 unlock_and_deallocate(fs);
1738 return (KERN_TRY_AGAIN);
1740 if (fs->object != fs->first_object &&
1741 fs->shared) {
1742 vm_page_deactivate(fs->m);
1743 vm_page_wakeup(fs->m);
1744 fs->m = NULL;
1745 fs->first_shared = 0;
1746 fs->shared = 0;
1747 vm_object_pip_wakeup(fs->first_object);
1748 vm_object_chain_release_all(fs->first_object,
1749 fs->object);
1750 if (fs->object != fs->first_object)
1751 vm_object_drop(fs->object);
1752 unlock_and_deallocate(fs);
1753 return (KERN_TRY_AGAIN);
1757 * Avoid deadlocking against the map when doing I/O.
1758 * fs.object and the page is BUSY'd.
1760 * NOTE: Once unlocked, fs->entry can become stale
1761 * so this will NULL it out.
1763 * NOTE: fs->entry is invalid until we relock the
1764 * map and verify that the timestamp has not
1765 * changed.
1767 unlock_map(fs);
1770 * Acquire the page data. We still hold a ref on
1771 * fs.object and the page has been BUSY's.
1773 * The pager may replace the page (for example, in
1774 * order to enter a fictitious page into the
1775 * object). If it does so it is responsible for
1776 * cleaning up the passed page and properly setting
1777 * the new page BUSY.
1779 * If we got here through a PG_RAM read-ahead
1780 * mark the page may be partially dirty and thus
1781 * not freeable. Don't bother checking to see
1782 * if the pager has the page because we can't free
1783 * it anyway. We have to depend on the get_page
1784 * operation filling in any gaps whether there is
1785 * backing store or not.
1787 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1789 if (rv == VM_PAGER_OK) {
1791 * Relookup in case pager changed page. Pager
1792 * is responsible for disposition of old page
1793 * if moved.
1795 * XXX other code segments do relookups too.
1796 * It's a bad abstraction that needs to be
1797 * fixed/removed.
1799 fs->m = vm_page_lookup(fs->object, pindex);
1800 if (fs->m == NULL) {
1801 vm_object_pip_wakeup(fs->first_object);
1802 vm_object_chain_release_all(
1803 fs->first_object, fs->object);
1804 if (fs->object != fs->first_object)
1805 vm_object_drop(fs->object);
1806 unlock_and_deallocate(fs);
1807 return (KERN_TRY_AGAIN);
1809 ++fs->hardfault;
1810 break; /* break to PAGE HAS BEEN FOUND */
1814 * Remove the bogus page (which does not exist at this
1815 * object/offset); before doing so, we must get back
1816 * our object lock to preserve our invariant.
1818 * Also wake up any other process that may want to bring
1819 * in this page.
1821 * If this is the top-level object, we must leave the
1822 * busy page to prevent another process from rushing
1823 * past us, and inserting the page in that object at
1824 * the same time that we are.
1826 if (rv == VM_PAGER_ERROR) {
1827 if (curproc) {
1828 kprintf("vm_fault: pager read error, "
1829 "pid %d (%s)\n",
1830 curproc->p_pid,
1831 curproc->p_comm);
1832 } else {
1833 kprintf("vm_fault: pager read error, "
1834 "thread %p (%s)\n",
1835 curthread,
1836 curproc->p_comm);
1841 * Data outside the range of the pager or an I/O error
1843 * The page may have been wired during the pagein,
1844 * e.g. by the buffer cache, and cannot simply be
1845 * freed. Call vnode_pager_freepage() to deal with it.
1847 * Also note that we cannot free the page if we are
1848 * holding the related object shared. XXX not sure
1849 * what to do in that case.
1851 if (fs->object != fs->first_object) {
1853 * Scrap the page. Check to see if the
1854 * vm_pager_get_page() call has already
1855 * dealt with it.
1857 if (fs->m) {
1858 vnode_pager_freepage(fs->m);
1859 fs->m = NULL;
1863 * XXX - we cannot just fall out at this
1864 * point, m has been freed and is invalid!
1868 * XXX - the check for kernel_map is a kludge to work
1869 * around having the machine panic on a kernel space
1870 * fault w/ I/O error.
1872 if (((fs->map != &kernel_map) &&
1873 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1874 if (fs->m) {
1875 if (fs->first_shared) {
1876 vm_page_deactivate(fs->m);
1877 vm_page_wakeup(fs->m);
1878 } else {
1879 vnode_pager_freepage(fs->m);
1881 fs->m = NULL;
1883 vm_object_pip_wakeup(fs->first_object);
1884 vm_object_chain_release_all(fs->first_object,
1885 fs->object);
1886 if (fs->object != fs->first_object)
1887 vm_object_drop(fs->object);
1888 unlock_and_deallocate(fs);
1889 if (rv == VM_PAGER_ERROR)
1890 return (KERN_FAILURE);
1891 else
1892 return (KERN_PROTECTION_FAILURE);
1893 /* NOT REACHED */
1898 * We get here if the object has a default pager (or unwiring)
1899 * or the pager doesn't have the page.
1901 * fs->first_m will be used for the COW unless we find a
1902 * deeper page to be mapped read-only, in which case the
1903 * unlock*(fs) will free first_m.
1905 if (fs->object == fs->first_object)
1906 fs->first_m = fs->m;
1909 * Move on to the next object. The chain lock should prevent
1910 * the backing_object from getting ripped out from under us.
1912 * The object lock for the next object is governed by
1913 * fs->shared.
1915 if ((next_object = fs->object->backing_object) != NULL) {
1916 if (fs->shared)
1917 vm_object_hold_shared(next_object);
1918 else
1919 vm_object_hold(next_object);
1920 vm_object_chain_acquire(next_object, fs->shared);
1921 KKASSERT(next_object == fs->object->backing_object);
1922 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1925 if (next_object == NULL) {
1927 * If there's no object left, fill the page in the top
1928 * object with zeros.
1930 if (fs->object != fs->first_object) {
1931 #if 0
1932 if (fs->first_object->backing_object !=
1933 fs->object) {
1934 vm_object_hold(fs->first_object->backing_object);
1936 #endif
1937 vm_object_chain_release_all(
1938 fs->first_object->backing_object,
1939 fs->object);
1940 #if 0
1941 if (fs->first_object->backing_object !=
1942 fs->object) {
1943 vm_object_drop(fs->first_object->backing_object);
1945 #endif
1946 vm_object_pip_wakeup(fs->object);
1947 vm_object_drop(fs->object);
1948 fs->object = fs->first_object;
1949 pindex = first_pindex;
1950 fs->m = fs->first_m;
1952 fs->first_m = NULL;
1955 * Zero the page and mark it valid.
1957 vm_page_zero_fill(fs->m);
1958 mycpu->gd_cnt.v_zfod++;
1959 fs->m->valid = VM_PAGE_BITS_ALL;
1960 break; /* break to PAGE HAS BEEN FOUND */
1962 if (fs->object != fs->first_object) {
1963 vm_object_pip_wakeup(fs->object);
1964 vm_object_lock_swap();
1965 vm_object_drop(fs->object);
1967 KASSERT(fs->object != next_object,
1968 ("object loop %p", next_object));
1969 fs->object = next_object;
1970 vm_object_pip_add(fs->object, 1);
1974 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1975 * is held.]
1977 * object still held.
1979 * local shared variable may be different from fs->shared.
1981 * If the page is being written, but isn't already owned by the
1982 * top-level object, we have to copy it into a new page owned by the
1983 * top-level object.
1985 KASSERT((fs->m->busy_count & PBUSY_LOCKED) != 0,
1986 ("vm_fault: not busy after main loop"));
1988 if (fs->object != fs->first_object) {
1990 * We only really need to copy if we want to write it.
1992 if (fault_type & VM_PROT_WRITE) {
1994 * This allows pages to be virtually copied from a
1995 * backing_object into the first_object, where the
1996 * backing object has no other refs to it, and cannot
1997 * gain any more refs. Instead of a bcopy, we just
1998 * move the page from the backing object to the
1999 * first object. Note that we must mark the page
2000 * dirty in the first object so that it will go out
2001 * to swap when needed.
2003 if (
2005 * Must be holding exclusive locks
2007 fs->first_shared == 0 &&
2008 fs->shared == 0 &&
2010 * Map, if present, has not changed
2012 (fs->map == NULL ||
2013 fs->map_generation == fs->map->timestamp) &&
2015 * Only one shadow object
2017 (fs->object->shadow_count == 1) &&
2019 * No COW refs, except us
2021 (fs->object->ref_count == 1) &&
2023 * No one else can look this object up
2025 (fs->object->handle == NULL) &&
2027 * No other ways to look the object up
2029 ((fs->object->type == OBJT_DEFAULT) ||
2030 (fs->object->type == OBJT_SWAP)) &&
2032 * We don't chase down the shadow chain
2034 (fs->object == fs->first_object->backing_object) &&
2037 * grab the lock if we need to
2039 (fs->lookup_still_valid ||
2040 fs->map == NULL ||
2041 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
2044 * (first_m) and (m) are both busied. We have
2045 * move (m) into (first_m)'s object/pindex
2046 * in an atomic fashion, then free (first_m).
2048 * first_object is held so second remove
2049 * followed by the rename should wind
2050 * up being atomic. vm_page_free() might
2051 * block so we don't do it until after the
2052 * rename.
2054 fs->lookup_still_valid = 1;
2055 vm_page_protect(fs->first_m, VM_PROT_NONE);
2056 vm_page_remove(fs->first_m);
2057 vm_page_rename(fs->m, fs->first_object,
2058 first_pindex);
2059 vm_page_free(fs->first_m);
2060 fs->first_m = fs->m;
2061 fs->m = NULL;
2062 mycpu->gd_cnt.v_cow_optim++;
2063 } else {
2065 * Oh, well, lets copy it.
2067 * Why are we unmapping the original page
2068 * here? Well, in short, not all accessors
2069 * of user memory go through the pmap. The
2070 * procfs code doesn't have access user memory
2071 * via a local pmap, so vm_fault_page*()
2072 * can't call pmap_enter(). And the umtx*()
2073 * code may modify the COW'd page via a DMAP
2074 * or kernel mapping and not via the pmap,
2075 * leaving the original page still mapped
2076 * read-only into the pmap.
2078 * So we have to remove the page from at
2079 * least the current pmap if it is in it.
2081 * We used to just remove it from all pmaps
2082 * but that creates inefficiencies on SMP,
2083 * particularly for COW program & library
2084 * mappings that are concurrently exec'd.
2085 * Only remove the page from the current
2086 * pmap.
2088 KKASSERT(fs->first_shared == 0);
2089 vm_page_copy(fs->m, fs->first_m);
2090 /*vm_page_protect(fs->m, VM_PROT_NONE);*/
2091 pmap_remove_specific(
2092 &curthread->td_lwp->lwp_vmspace->vm_pmap,
2093 fs->m);
2097 * We no longer need the old page or object.
2099 if (fs->m)
2100 release_page(fs);
2103 * We intend to revert to first_object, undo the
2104 * chain lock through to that.
2106 #if 0
2107 if (fs->first_object->backing_object != fs->object)
2108 vm_object_hold(fs->first_object->backing_object);
2109 #endif
2110 vm_object_chain_release_all(
2111 fs->first_object->backing_object,
2112 fs->object);
2113 #if 0
2114 if (fs->first_object->backing_object != fs->object)
2115 vm_object_drop(fs->first_object->backing_object);
2116 #endif
2119 * fs->object != fs->first_object due to above
2120 * conditional
2122 vm_object_pip_wakeup(fs->object);
2123 vm_object_drop(fs->object);
2126 * Only use the new page below...
2128 mycpu->gd_cnt.v_cow_faults++;
2129 fs->m = fs->first_m;
2130 fs->object = fs->first_object;
2131 pindex = first_pindex;
2132 } else {
2134 * If it wasn't a write fault avoid having to copy
2135 * the page by mapping it read-only.
2137 fs->prot &= ~VM_PROT_WRITE;
2142 * Relock the map if necessary, then check the generation count.
2143 * relock_map() will update fs->timestamp to account for the
2144 * relocking if necessary.
2146 * If the count has changed after relocking then all sorts of
2147 * crap may have happened and we have to retry.
2149 * NOTE: The relock_map() can fail due to a deadlock against
2150 * the vm_page we are holding BUSY.
2152 if (fs->lookup_still_valid == FALSE && fs->map) {
2153 if (relock_map(fs) ||
2154 fs->map->timestamp != fs->map_generation) {
2155 release_page(fs);
2156 vm_object_pip_wakeup(fs->first_object);
2157 vm_object_chain_release_all(fs->first_object,
2158 fs->object);
2159 if (fs->object != fs->first_object)
2160 vm_object_drop(fs->object);
2161 unlock_and_deallocate(fs);
2162 return (KERN_TRY_AGAIN);
2167 * If the fault is a write, we know that this page is being
2168 * written NOW so dirty it explicitly to save on pmap_is_modified()
2169 * calls later.
2171 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2172 * if the page is already dirty to prevent data written with
2173 * the expectation of being synced from not being synced.
2174 * Likewise if this entry does not request NOSYNC then make
2175 * sure the page isn't marked NOSYNC. Applications sharing
2176 * data should use the same flags to avoid ping ponging.
2178 * Also tell the backing pager, if any, that it should remove
2179 * any swap backing since the page is now dirty.
2181 vm_page_activate(fs->m);
2182 if (fs->prot & VM_PROT_WRITE) {
2183 vm_object_set_writeable_dirty(fs->m->object);
2184 vm_set_nosync(fs->m, fs->entry);
2185 if (fs->fault_flags & VM_FAULT_DIRTY) {
2186 vm_page_dirty(fs->m);
2187 if (fs->m->flags & PG_SWAPPED) {
2189 * If the page is swapped out we have to call
2190 * swap_pager_unswapped() which requires an
2191 * exclusive object lock. If we are shared,
2192 * we must clear the shared flag and retry.
2194 if ((fs->object == fs->first_object &&
2195 fs->first_shared) ||
2196 (fs->object != fs->first_object &&
2197 fs->shared)) {
2198 vm_page_wakeup(fs->m);
2199 fs->m = NULL;
2200 if (fs->object == fs->first_object)
2201 fs->first_shared = 0;
2202 else
2203 fs->shared = 0;
2204 vm_object_pip_wakeup(fs->first_object);
2205 vm_object_chain_release_all(
2206 fs->first_object, fs->object);
2207 if (fs->object != fs->first_object)
2208 vm_object_drop(fs->object);
2209 unlock_and_deallocate(fs);
2210 return (KERN_TRY_AGAIN);
2212 swap_pager_unswapped(fs->m);
2217 vm_object_pip_wakeup(fs->first_object);
2218 vm_object_chain_release_all(fs->first_object, fs->object);
2219 if (fs->object != fs->first_object)
2220 vm_object_drop(fs->object);
2223 * Page had better still be busy. We are still locked up and
2224 * fs->object will have another PIP reference if it is not equal
2225 * to fs->first_object.
2227 KASSERT(fs->m->busy_count & PBUSY_LOCKED,
2228 ("vm_fault: page %p not busy!", fs->m));
2231 * Sanity check: page must be completely valid or it is not fit to
2232 * map into user space. vm_pager_get_pages() ensures this.
2234 if (fs->m->valid != VM_PAGE_BITS_ALL) {
2235 vm_page_zero_invalid(fs->m, TRUE);
2236 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2239 return (KERN_SUCCESS);
2243 * Wire down a range of virtual addresses in a map. The entry in question
2244 * should be marked in-transition and the map must be locked. We must
2245 * release the map temporarily while faulting-in the page to avoid a
2246 * deadlock. Note that the entry may be clipped while we are blocked but
2247 * will never be freed.
2249 * No requirements.
2252 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2253 boolean_t user_wire, int kmflags)
2255 boolean_t fictitious;
2256 vm_offset_t start;
2257 vm_offset_t end;
2258 vm_offset_t va;
2259 pmap_t pmap;
2260 int rv;
2261 int wire_prot;
2262 int fault_flags;
2263 vm_page_t m;
2265 if (user_wire) {
2266 wire_prot = VM_PROT_READ;
2267 fault_flags = VM_FAULT_USER_WIRE;
2268 } else {
2269 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2270 fault_flags = VM_FAULT_CHANGE_WIRING;
2272 if (kmflags & KM_NOTLBSYNC)
2273 wire_prot |= VM_PROT_NOSYNC;
2275 pmap = vm_map_pmap(map);
2276 start = entry->start;
2277 end = entry->end;
2279 switch(entry->maptype) {
2280 case VM_MAPTYPE_NORMAL:
2281 case VM_MAPTYPE_VPAGETABLE:
2282 fictitious = entry->object.vm_object &&
2283 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2284 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2285 break;
2286 case VM_MAPTYPE_UKSMAP:
2287 fictitious = TRUE;
2288 break;
2289 default:
2290 fictitious = FALSE;
2291 break;
2294 if (entry->eflags & MAP_ENTRY_KSTACK)
2295 start += PAGE_SIZE;
2296 map->timestamp++;
2297 vm_map_unlock(map);
2300 * We simulate a fault to get the page and enter it in the physical
2301 * map.
2303 for (va = start; va < end; va += PAGE_SIZE) {
2304 rv = vm_fault(map, va, wire_prot, fault_flags);
2305 if (rv) {
2306 while (va > start) {
2307 va -= PAGE_SIZE;
2308 m = pmap_unwire(pmap, va);
2309 if (m && !fictitious) {
2310 vm_page_busy_wait(m, FALSE, "vmwrpg");
2311 vm_page_unwire(m, 1);
2312 vm_page_wakeup(m);
2315 goto done;
2318 rv = KERN_SUCCESS;
2319 done:
2320 vm_map_lock(map);
2322 return (rv);
2326 * Unwire a range of virtual addresses in a map. The map should be
2327 * locked.
2329 void
2330 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2332 boolean_t fictitious;
2333 vm_offset_t start;
2334 vm_offset_t end;
2335 vm_offset_t va;
2336 pmap_t pmap;
2337 vm_page_t m;
2339 pmap = vm_map_pmap(map);
2340 start = entry->start;
2341 end = entry->end;
2342 fictitious = entry->object.vm_object &&
2343 ((entry->object.vm_object->type == OBJT_DEVICE) ||
2344 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2345 if (entry->eflags & MAP_ENTRY_KSTACK)
2346 start += PAGE_SIZE;
2349 * Since the pages are wired down, we must be able to get their
2350 * mappings from the physical map system.
2352 for (va = start; va < end; va += PAGE_SIZE) {
2353 m = pmap_unwire(pmap, va);
2354 if (m && !fictitious) {
2355 vm_page_busy_wait(m, FALSE, "vmwrpg");
2356 vm_page_unwire(m, 1);
2357 vm_page_wakeup(m);
2363 * Copy all of the pages from a wired-down map entry to another.
2365 * The source and destination maps must be locked for write.
2366 * The source and destination maps token must be held
2367 * The source map entry must be wired down (or be a sharing map
2368 * entry corresponding to a main map entry that is wired down).
2370 * No other requirements.
2372 * XXX do segment optimization
2374 void
2375 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2376 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2378 vm_object_t dst_object;
2379 vm_object_t src_object;
2380 vm_ooffset_t dst_offset;
2381 vm_ooffset_t src_offset;
2382 vm_prot_t prot;
2383 vm_offset_t vaddr;
2384 vm_page_t dst_m;
2385 vm_page_t src_m;
2387 src_object = src_entry->object.vm_object;
2388 src_offset = src_entry->offset;
2391 * Create the top-level object for the destination entry. (Doesn't
2392 * actually shadow anything - we copy the pages directly.)
2394 vm_map_entry_allocate_object(dst_entry);
2395 dst_object = dst_entry->object.vm_object;
2397 prot = dst_entry->max_protection;
2400 * Loop through all of the pages in the entry's range, copying each
2401 * one from the source object (it should be there) to the destination
2402 * object.
2404 vm_object_hold(src_object);
2405 vm_object_hold(dst_object);
2406 for (vaddr = dst_entry->start, dst_offset = 0;
2407 vaddr < dst_entry->end;
2408 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2411 * Allocate a page in the destination object
2413 do {
2414 dst_m = vm_page_alloc(dst_object,
2415 OFF_TO_IDX(dst_offset),
2416 VM_ALLOC_NORMAL);
2417 if (dst_m == NULL) {
2418 vm_wait(0);
2420 } while (dst_m == NULL);
2423 * Find the page in the source object, and copy it in.
2424 * (Because the source is wired down, the page will be in
2425 * memory.)
2427 src_m = vm_page_lookup(src_object,
2428 OFF_TO_IDX(dst_offset + src_offset));
2429 if (src_m == NULL)
2430 panic("vm_fault_copy_wired: page missing");
2432 vm_page_copy(src_m, dst_m);
2435 * Enter it in the pmap...
2437 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2440 * Mark it no longer busy, and put it on the active list.
2442 vm_page_activate(dst_m);
2443 vm_page_wakeup(dst_m);
2445 vm_object_drop(dst_object);
2446 vm_object_drop(src_object);
2449 #if 0
2452 * This routine checks around the requested page for other pages that
2453 * might be able to be faulted in. This routine brackets the viable
2454 * pages for the pages to be paged in.
2456 * Inputs:
2457 * m, rbehind, rahead
2459 * Outputs:
2460 * marray (array of vm_page_t), reqpage (index of requested page)
2462 * Return value:
2463 * number of pages in marray
2465 static int
2466 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2467 vm_page_t *marray, int *reqpage)
2469 int i,j;
2470 vm_object_t object;
2471 vm_pindex_t pindex, startpindex, endpindex, tpindex;
2472 vm_page_t rtm;
2473 int cbehind, cahead;
2475 object = m->object;
2476 pindex = m->pindex;
2479 * we don't fault-ahead for device pager
2481 if ((object->type == OBJT_DEVICE) ||
2482 (object->type == OBJT_MGTDEVICE)) {
2483 *reqpage = 0;
2484 marray[0] = m;
2485 return 1;
2489 * if the requested page is not available, then give up now
2491 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2492 *reqpage = 0; /* not used by caller, fix compiler warn */
2493 return 0;
2496 if ((cbehind == 0) && (cahead == 0)) {
2497 *reqpage = 0;
2498 marray[0] = m;
2499 return 1;
2502 if (rahead > cahead) {
2503 rahead = cahead;
2506 if (rbehind > cbehind) {
2507 rbehind = cbehind;
2511 * Do not do any readahead if we have insufficient free memory.
2513 * XXX code was broken disabled before and has instability
2514 * with this conditonal fixed, so shortcut for now.
2516 if (burst_fault == 0 || vm_page_count_severe()) {
2517 marray[0] = m;
2518 *reqpage = 0;
2519 return 1;
2523 * scan backward for the read behind pages -- in memory
2525 * Assume that if the page is not found an interrupt will not
2526 * create it. Theoretically interrupts can only remove (busy)
2527 * pages, not create new associations.
2529 if (pindex > 0) {
2530 if (rbehind > pindex) {
2531 rbehind = pindex;
2532 startpindex = 0;
2533 } else {
2534 startpindex = pindex - rbehind;
2537 vm_object_hold(object);
2538 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2539 if (vm_page_lookup(object, tpindex - 1))
2540 break;
2543 i = 0;
2544 while (tpindex < pindex) {
2545 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2546 VM_ALLOC_NULL_OK);
2547 if (rtm == NULL) {
2548 for (j = 0; j < i; j++) {
2549 vm_page_free(marray[j]);
2551 vm_object_drop(object);
2552 marray[0] = m;
2553 *reqpage = 0;
2554 return 1;
2556 marray[i] = rtm;
2557 ++i;
2558 ++tpindex;
2560 vm_object_drop(object);
2561 } else {
2562 i = 0;
2566 * Assign requested page
2568 marray[i] = m;
2569 *reqpage = i;
2570 ++i;
2573 * Scan forwards for read-ahead pages
2575 tpindex = pindex + 1;
2576 endpindex = tpindex + rahead;
2577 if (endpindex > object->size)
2578 endpindex = object->size;
2580 vm_object_hold(object);
2581 while (tpindex < endpindex) {
2582 if (vm_page_lookup(object, tpindex))
2583 break;
2584 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2585 VM_ALLOC_NULL_OK);
2586 if (rtm == NULL)
2587 break;
2588 marray[i] = rtm;
2589 ++i;
2590 ++tpindex;
2592 vm_object_drop(object);
2594 return (i);
2597 #endif
2600 * vm_prefault() provides a quick way of clustering pagefaults into a
2601 * processes address space. It is a "cousin" of pmap_object_init_pt,
2602 * except it runs at page fault time instead of mmap time.
2604 * vm.fast_fault Enables pre-faulting zero-fill pages
2606 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to
2607 * prefault. Scan stops in either direction when
2608 * a page is found to already exist.
2610 * This code used to be per-platform pmap_prefault(). It is now
2611 * machine-independent and enhanced to also pre-fault zero-fill pages
2612 * (see vm.fast_fault) as well as make them writable, which greatly
2613 * reduces the number of page faults programs incur.
2615 * Application performance when pre-faulting zero-fill pages is heavily
2616 * dependent on the application. Very tiny applications like /bin/echo
2617 * lose a little performance while applications of any appreciable size
2618 * gain performance. Prefaulting multiple pages also reduces SMP
2619 * congestion and can improve SMP performance significantly.
2621 * NOTE! prot may allow writing but this only applies to the top level
2622 * object. If we wind up mapping a page extracted from a backing
2623 * object we have to make sure it is read-only.
2625 * NOTE! The caller has already handled any COW operations on the
2626 * vm_map_entry via the normal fault code. Do NOT call this
2627 * shortcut unless the normal fault code has run on this entry.
2629 * The related map must be locked.
2630 * No other requirements.
2632 static int vm_prefault_pages = 8;
2633 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2634 "Maximum number of pages to pre-fault");
2635 static int vm_fast_fault = 1;
2636 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2637 "Burst fault zero-fill regions");
2640 * Set PG_NOSYNC if the map entry indicates so, but only if the page
2641 * is not already dirty by other means. This will prevent passive
2642 * filesystem syncing as well as 'sync' from writing out the page.
2644 static void
2645 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2647 if (entry->eflags & MAP_ENTRY_NOSYNC) {
2648 if (m->dirty == 0)
2649 vm_page_flag_set(m, PG_NOSYNC);
2650 } else {
2651 vm_page_flag_clear(m, PG_NOSYNC);
2655 static void
2656 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2657 int fault_flags)
2659 struct lwp *lp;
2660 vm_page_t m;
2661 vm_offset_t addr;
2662 vm_pindex_t index;
2663 vm_pindex_t pindex;
2664 vm_object_t object;
2665 int pprot;
2666 int i;
2667 int noneg;
2668 int nopos;
2669 int maxpages;
2672 * Get stable max count value, disabled if set to 0
2674 maxpages = vm_prefault_pages;
2675 cpu_ccfence();
2676 if (maxpages <= 0)
2677 return;
2680 * We do not currently prefault mappings that use virtual page
2681 * tables. We do not prefault foreign pmaps.
2683 if (entry->maptype != VM_MAPTYPE_NORMAL)
2684 return;
2685 lp = curthread->td_lwp;
2686 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2687 return;
2690 * Limit pre-fault count to 1024 pages.
2692 if (maxpages > 1024)
2693 maxpages = 1024;
2695 object = entry->object.vm_object;
2696 KKASSERT(object != NULL);
2697 KKASSERT(object == entry->object.vm_object);
2700 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2701 * now (or do something more complex XXX).
2703 vm_object_hold(object);
2704 vm_object_chain_acquire(object, 0);
2706 noneg = 0;
2707 nopos = 0;
2708 for (i = 0; i < maxpages; ++i) {
2709 vm_object_t lobject;
2710 vm_object_t nobject;
2711 int allocated = 0;
2712 int error;
2715 * This can eat a lot of time on a heavily contended
2716 * machine so yield on the tick if needed.
2718 if ((i & 7) == 7)
2719 lwkt_yield();
2722 * Calculate the page to pre-fault, stopping the scan in
2723 * each direction separately if the limit is reached.
2725 if (i & 1) {
2726 if (noneg)
2727 continue;
2728 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2729 } else {
2730 if (nopos)
2731 continue;
2732 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2734 if (addr < entry->start) {
2735 noneg = 1;
2736 if (noneg && nopos)
2737 break;
2738 continue;
2740 if (addr >= entry->end) {
2741 nopos = 1;
2742 if (noneg && nopos)
2743 break;
2744 continue;
2748 * Skip pages already mapped, and stop scanning in that
2749 * direction. When the scan terminates in both directions
2750 * we are done.
2752 if (pmap_prefault_ok(pmap, addr) == 0) {
2753 if (i & 1)
2754 noneg = 1;
2755 else
2756 nopos = 1;
2757 if (noneg && nopos)
2758 break;
2759 continue;
2763 * Follow the VM object chain to obtain the page to be mapped
2764 * into the pmap.
2766 * If we reach the terminal object without finding a page
2767 * and we determine it would be advantageous, then allocate
2768 * a zero-fill page for the base object. The base object
2769 * is guaranteed to be OBJT_DEFAULT for this case.
2771 * In order to not have to check the pager via *haspage*()
2772 * we stop if any non-default object is encountered. e.g.
2773 * a vnode or swap object would stop the loop.
2775 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2776 lobject = object;
2777 pindex = index;
2778 pprot = prot;
2780 KKASSERT(lobject == entry->object.vm_object);
2781 /*vm_object_hold(lobject); implied */
2783 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2784 TRUE, &error)) == NULL) {
2785 if (lobject->type != OBJT_DEFAULT)
2786 break;
2787 if (lobject->backing_object == NULL) {
2788 if (vm_fast_fault == 0)
2789 break;
2790 if ((prot & VM_PROT_WRITE) == 0 ||
2791 vm_page_count_min(0)) {
2792 break;
2796 * NOTE: Allocated from base object
2798 m = vm_page_alloc(object, index,
2799 VM_ALLOC_NORMAL |
2800 VM_ALLOC_ZERO |
2801 VM_ALLOC_USE_GD |
2802 VM_ALLOC_NULL_OK);
2803 if (m == NULL)
2804 break;
2805 allocated = 1;
2806 pprot = prot;
2807 /* lobject = object .. not needed */
2808 break;
2810 if (lobject->backing_object_offset & PAGE_MASK)
2811 break;
2812 nobject = lobject->backing_object;
2813 vm_object_hold(nobject);
2814 KKASSERT(nobject == lobject->backing_object);
2815 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2816 if (lobject != object) {
2817 vm_object_lock_swap();
2818 vm_object_drop(lobject);
2820 lobject = nobject;
2821 pprot &= ~VM_PROT_WRITE;
2822 vm_object_chain_acquire(lobject, 0);
2826 * NOTE: A non-NULL (m) will be associated with lobject if
2827 * it was found there, otherwise it is probably a
2828 * zero-fill page associated with the base object.
2830 * Give-up if no page is available.
2832 if (m == NULL) {
2833 if (lobject != object) {
2834 #if 0
2835 if (object->backing_object != lobject)
2836 vm_object_hold(object->backing_object);
2837 #endif
2838 vm_object_chain_release_all(
2839 object->backing_object, lobject);
2840 #if 0
2841 if (object->backing_object != lobject)
2842 vm_object_drop(object->backing_object);
2843 #endif
2844 vm_object_drop(lobject);
2846 break;
2850 * The object must be marked dirty if we are mapping a
2851 * writable page. m->object is either lobject or object,
2852 * both of which are still held. Do this before we
2853 * potentially drop the object.
2855 if (pprot & VM_PROT_WRITE)
2856 vm_object_set_writeable_dirty(m->object);
2859 * Do not conditionalize on PG_RAM. If pages are present in
2860 * the VM system we assume optimal caching. If caching is
2861 * not optimal the I/O gravy train will be restarted when we
2862 * hit an unavailable page. We do not want to try to restart
2863 * the gravy train now because we really don't know how much
2864 * of the object has been cached. The cost for restarting
2865 * the gravy train should be low (since accesses will likely
2866 * be I/O bound anyway).
2868 if (lobject != object) {
2869 #if 0
2870 if (object->backing_object != lobject)
2871 vm_object_hold(object->backing_object);
2872 #endif
2873 vm_object_chain_release_all(object->backing_object,
2874 lobject);
2875 #if 0
2876 if (object->backing_object != lobject)
2877 vm_object_drop(object->backing_object);
2878 #endif
2879 vm_object_drop(lobject);
2883 * Enter the page into the pmap if appropriate. If we had
2884 * allocated the page we have to place it on a queue. If not
2885 * we just have to make sure it isn't on the cache queue
2886 * (pages on the cache queue are not allowed to be mapped).
2888 if (allocated) {
2890 * Page must be zerod.
2892 vm_page_zero_fill(m);
2893 mycpu->gd_cnt.v_zfod++;
2894 m->valid = VM_PAGE_BITS_ALL;
2897 * Handle dirty page case
2899 if (pprot & VM_PROT_WRITE)
2900 vm_set_nosync(m, entry);
2901 pmap_enter(pmap, addr, m, pprot, 0, entry);
2902 mycpu->gd_cnt.v_vm_faults++;
2903 if (curthread->td_lwp)
2904 ++curthread->td_lwp->lwp_ru.ru_minflt;
2905 vm_page_deactivate(m);
2906 if (pprot & VM_PROT_WRITE) {
2907 /*vm_object_set_writeable_dirty(m->object);*/
2908 vm_set_nosync(m, entry);
2909 if (fault_flags & VM_FAULT_DIRTY) {
2910 vm_page_dirty(m);
2911 /*XXX*/
2912 swap_pager_unswapped(m);
2915 vm_page_wakeup(m);
2916 } else if (error) {
2917 /* couldn't busy page, no wakeup */
2918 } else if (
2919 ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2920 (m->flags & PG_FICTITIOUS) == 0) {
2922 * A fully valid page not undergoing soft I/O can
2923 * be immediately entered into the pmap.
2925 if ((m->queue - m->pc) == PQ_CACHE)
2926 vm_page_deactivate(m);
2927 if (pprot & VM_PROT_WRITE) {
2928 /*vm_object_set_writeable_dirty(m->object);*/
2929 vm_set_nosync(m, entry);
2930 if (fault_flags & VM_FAULT_DIRTY) {
2931 vm_page_dirty(m);
2932 /*XXX*/
2933 swap_pager_unswapped(m);
2936 if (pprot & VM_PROT_WRITE)
2937 vm_set_nosync(m, entry);
2938 pmap_enter(pmap, addr, m, pprot, 0, entry);
2939 mycpu->gd_cnt.v_vm_faults++;
2940 if (curthread->td_lwp)
2941 ++curthread->td_lwp->lwp_ru.ru_minflt;
2942 vm_page_wakeup(m);
2943 } else {
2944 vm_page_wakeup(m);
2947 vm_object_chain_release(object);
2948 vm_object_drop(object);
2952 * Object can be held shared
2954 static void
2955 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2956 vm_map_entry_t entry, int prot, int fault_flags)
2958 struct lwp *lp;
2959 vm_page_t m;
2960 vm_offset_t addr;
2961 vm_pindex_t pindex;
2962 vm_object_t object;
2963 int i;
2964 int noneg;
2965 int nopos;
2966 int maxpages;
2969 * Get stable max count value, disabled if set to 0
2971 maxpages = vm_prefault_pages;
2972 cpu_ccfence();
2973 if (maxpages <= 0)
2974 return;
2977 * We do not currently prefault mappings that use virtual page
2978 * tables. We do not prefault foreign pmaps.
2980 if (entry->maptype != VM_MAPTYPE_NORMAL)
2981 return;
2982 lp = curthread->td_lwp;
2983 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2984 return;
2985 object = entry->object.vm_object;
2986 if (object->backing_object != NULL)
2987 return;
2988 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2991 * Limit pre-fault count to 1024 pages.
2993 if (maxpages > 1024)
2994 maxpages = 1024;
2996 noneg = 0;
2997 nopos = 0;
2998 for (i = 0; i < maxpages; ++i) {
2999 int error;
3002 * Calculate the page to pre-fault, stopping the scan in
3003 * each direction separately if the limit is reached.
3005 if (i & 1) {
3006 if (noneg)
3007 continue;
3008 addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
3009 } else {
3010 if (nopos)
3011 continue;
3012 addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3014 if (addr < entry->start) {
3015 noneg = 1;
3016 if (noneg && nopos)
3017 break;
3018 continue;
3020 if (addr >= entry->end) {
3021 nopos = 1;
3022 if (noneg && nopos)
3023 break;
3024 continue;
3028 * Follow the VM object chain to obtain the page to be mapped
3029 * into the pmap. This version of the prefault code only
3030 * works with terminal objects.
3032 * The page must already exist. If we encounter a problem
3033 * we stop here.
3035 * WARNING! We cannot call swap_pager_unswapped() or insert
3036 * a new vm_page with a shared token.
3038 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
3041 * Skip pages already mapped, and stop scanning in that
3042 * direction. When the scan terminates in both directions
3043 * we are done.
3045 if (pmap_prefault_ok(pmap, addr) == 0) {
3046 if (i & 1)
3047 noneg = 1;
3048 else
3049 nopos = 1;
3050 if (noneg && nopos)
3051 break;
3052 continue;
3056 * Shortcut the read-only mapping case using the far more
3057 * efficient vm_page_lookup_sbusy_try() function. This
3058 * allows us to acquire the page soft-busied only which
3059 * is especially nice for concurrent execs of the same
3060 * program.
3062 * The lookup function also validates page suitability
3063 * (all valid bits set, and not fictitious).
3065 * If the page is in PQ_CACHE we have to fall-through
3066 * and hard-busy it so we can move it out of PQ_CACHE.
3068 if ((prot & (VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE)) == 0) {
3069 m = vm_page_lookup_sbusy_try(object, pindex);
3070 if (m == NULL)
3071 break;
3072 if ((m->queue - m->pc) != PQ_CACHE) {
3073 pmap_enter(pmap, addr, m, prot, 0, entry);
3074 mycpu->gd_cnt.v_vm_faults++;
3075 if (curthread->td_lwp)
3076 ++curthread->td_lwp->lwp_ru.ru_minflt;
3077 vm_page_sbusy_drop(m);
3078 continue;
3080 vm_page_sbusy_drop(m);
3084 * Fallback to normal vm_page lookup code. This code
3085 * hard-busies the page. Not only that, but the page
3086 * can remain in that state for a significant period
3087 * time due to pmap_enter()'s overhead.
3089 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3090 if (m == NULL || error)
3091 break;
3094 * Stop if the page cannot be trivially entered into the
3095 * pmap.
3097 if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3098 (m->flags & PG_FICTITIOUS) ||
3099 ((m->flags & PG_SWAPPED) &&
3100 (prot & VM_PROT_WRITE) &&
3101 (fault_flags & VM_FAULT_DIRTY))) {
3102 vm_page_wakeup(m);
3103 break;
3107 * Enter the page into the pmap. The object might be held
3108 * shared so we can't do any (serious) modifying operation
3109 * on it.
3111 if ((m->queue - m->pc) == PQ_CACHE)
3112 vm_page_deactivate(m);
3113 if (prot & VM_PROT_WRITE) {
3114 vm_object_set_writeable_dirty(m->object);
3115 vm_set_nosync(m, entry);
3116 if (fault_flags & VM_FAULT_DIRTY) {
3117 vm_page_dirty(m);
3118 /* can't happeen due to conditional above */
3119 /* swap_pager_unswapped(m); */
3122 pmap_enter(pmap, addr, m, prot, 0, entry);
3123 mycpu->gd_cnt.v_vm_faults++;
3124 if (curthread->td_lwp)
3125 ++curthread->td_lwp->lwp_ru.ru_minflt;
3126 vm_page_wakeup(m);