drm/i915: Update to Linux 3.16
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
blob5f8c4cc0792236ea4c7de5f23dd854ce574bb52d
1 /*
2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38 * to give some inclination as to some of the magic values used in the various
39 * workarounds!
41 #define CACHELINE_BYTES 64
43 static inline int __ring_space(int head, int tail, int size)
45 int space = head - (tail + I915_RING_FREE_SPACE);
46 if (space < 0)
47 space += size;
48 return space;
51 static inline int ring_space(struct intel_engine_cs *ring)
53 struct intel_ringbuffer *ringbuf = ring->buffer;
54 return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
57 static bool intel_ring_stopped(struct intel_engine_cs *ring)
59 struct drm_i915_private *dev_priv = ring->dev->dev_private;
60 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
63 void __intel_ring_advance(struct intel_engine_cs *ring)
65 struct intel_ringbuffer *ringbuf = ring->buffer;
66 ringbuf->tail &= ringbuf->size - 1;
67 if (intel_ring_stopped(ring))
68 return;
69 ring->write_tail(ring, ringbuf->tail);
72 static int
73 gen2_render_ring_flush(struct intel_engine_cs *ring,
74 u32 invalidate_domains,
75 u32 flush_domains)
77 u32 cmd;
78 int ret;
80 cmd = MI_FLUSH;
81 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82 cmd |= MI_NO_WRITE_FLUSH;
84 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85 cmd |= MI_READ_FLUSH;
87 ret = intel_ring_begin(ring, 2);
88 if (ret)
89 return ret;
91 intel_ring_emit(ring, cmd);
92 intel_ring_emit(ring, MI_NOOP);
93 intel_ring_advance(ring);
95 return 0;
98 static int
99 gen4_render_ring_flush(struct intel_engine_cs *ring,
100 u32 invalidate_domains,
101 u32 flush_domains)
103 struct drm_device *dev = ring->dev;
104 u32 cmd;
105 int ret;
108 * read/write caches:
110 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
111 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
112 * also flushed at 2d versus 3d pipeline switches.
114 * read-only caches:
116 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
117 * MI_READ_FLUSH is set, and is always flushed on 965.
119 * I915_GEM_DOMAIN_COMMAND may not exist?
121 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
122 * invalidated when MI_EXE_FLUSH is set.
124 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
125 * invalidated with every MI_FLUSH.
127 * TLBs:
129 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
130 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
131 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
132 * are flushed at any MI_FLUSH.
135 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
136 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
137 cmd &= ~MI_NO_WRITE_FLUSH;
138 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
139 cmd |= MI_EXE_FLUSH;
141 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
142 (IS_G4X(dev) || IS_GEN5(dev)))
143 cmd |= MI_INVALIDATE_ISP;
145 ret = intel_ring_begin(ring, 2);
146 if (ret)
147 return ret;
149 intel_ring_emit(ring, cmd);
150 intel_ring_emit(ring, MI_NOOP);
151 intel_ring_advance(ring);
153 return 0;
157 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
158 * implementing two workarounds on gen6. From section 1.4.7.1
159 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
161 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
162 * produced by non-pipelined state commands), software needs to first
163 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
164 * 0.
166 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
167 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
169 * And the workaround for these two requires this workaround first:
171 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
172 * BEFORE the pipe-control with a post-sync op and no write-cache
173 * flushes.
175 * And this last workaround is tricky because of the requirements on
176 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
177 * volume 2 part 1:
179 * "1 of the following must also be set:
180 * - Render Target Cache Flush Enable ([12] of DW1)
181 * - Depth Cache Flush Enable ([0] of DW1)
182 * - Stall at Pixel Scoreboard ([1] of DW1)
183 * - Depth Stall ([13] of DW1)
184 * - Post-Sync Operation ([13] of DW1)
185 * - Notify Enable ([8] of DW1)"
187 * The cache flushes require the workaround flush that triggered this
188 * one, so we can't use it. Depth stall would trigger the same.
189 * Post-sync nonzero is what triggered this second workaround, so we
190 * can't use that one either. Notify enable is IRQs, which aren't
191 * really our business. That leaves only stall at scoreboard.
193 static int
194 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
196 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
197 int ret;
200 ret = intel_ring_begin(ring, 6);
201 if (ret)
202 return ret;
204 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
205 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
206 PIPE_CONTROL_STALL_AT_SCOREBOARD);
207 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
208 intel_ring_emit(ring, 0); /* low dword */
209 intel_ring_emit(ring, 0); /* high dword */
210 intel_ring_emit(ring, MI_NOOP);
211 intel_ring_advance(ring);
213 ret = intel_ring_begin(ring, 6);
214 if (ret)
215 return ret;
217 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
218 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
219 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
220 intel_ring_emit(ring, 0);
221 intel_ring_emit(ring, 0);
222 intel_ring_emit(ring, MI_NOOP);
223 intel_ring_advance(ring);
225 return 0;
228 static int
229 gen6_render_ring_flush(struct intel_engine_cs *ring,
230 u32 invalidate_domains, u32 flush_domains)
232 u32 flags = 0;
233 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
234 int ret;
236 /* Force SNB workarounds for PIPE_CONTROL flushes */
237 ret = intel_emit_post_sync_nonzero_flush(ring);
238 if (ret)
239 return ret;
241 /* Just flush everything. Experiments have shown that reducing the
242 * number of bits based on the write domains has little performance
243 * impact.
245 if (flush_domains) {
246 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
247 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
249 * Ensure that any following seqno writes only happen
250 * when the render cache is indeed flushed.
252 flags |= PIPE_CONTROL_CS_STALL;
254 if (invalidate_domains) {
255 flags |= PIPE_CONTROL_TLB_INVALIDATE;
256 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
257 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
258 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
259 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
260 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
262 * TLB invalidate requires a post-sync write.
264 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
267 ret = intel_ring_begin(ring, 4);
268 if (ret)
269 return ret;
271 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272 intel_ring_emit(ring, flags);
273 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
274 intel_ring_emit(ring, 0);
275 intel_ring_advance(ring);
277 return 0;
280 static int
281 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
283 int ret;
285 ret = intel_ring_begin(ring, 4);
286 if (ret)
287 return ret;
289 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
290 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
291 PIPE_CONTROL_STALL_AT_SCOREBOARD);
292 intel_ring_emit(ring, 0);
293 intel_ring_emit(ring, 0);
294 intel_ring_advance(ring);
296 return 0;
299 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
301 int ret;
303 if (!ring->fbc_dirty)
304 return 0;
306 ret = intel_ring_begin(ring, 6);
307 if (ret)
308 return ret;
309 /* WaFbcNukeOn3DBlt:ivb/hsw */
310 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
311 intel_ring_emit(ring, MSG_FBC_REND_STATE);
312 intel_ring_emit(ring, value);
313 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
314 intel_ring_emit(ring, MSG_FBC_REND_STATE);
315 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
316 intel_ring_advance(ring);
318 ring->fbc_dirty = false;
319 return 0;
322 static int
323 gen7_render_ring_flush(struct intel_engine_cs *ring,
324 u32 invalidate_domains, u32 flush_domains)
326 u32 flags = 0;
327 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
328 int ret;
331 * Ensure that any following seqno writes only happen when the render
332 * cache is indeed flushed.
334 * Workaround: 4th PIPE_CONTROL command (except the ones with only
335 * read-cache invalidate bits set) must have the CS_STALL bit set. We
336 * don't try to be clever and just set it unconditionally.
338 flags |= PIPE_CONTROL_CS_STALL;
340 /* Just flush everything. Experiments have shown that reducing the
341 * number of bits based on the write domains has little performance
342 * impact.
344 if (flush_domains) {
345 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
346 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
348 if (invalidate_domains) {
349 flags |= PIPE_CONTROL_TLB_INVALIDATE;
350 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
351 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
352 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
353 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
354 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
356 * TLB invalidate requires a post-sync write.
358 flags |= PIPE_CONTROL_QW_WRITE;
359 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
361 /* Workaround: we must issue a pipe_control with CS-stall bit
362 * set before a pipe_control command that has the state cache
363 * invalidate bit set. */
364 gen7_render_ring_cs_stall_wa(ring);
367 ret = intel_ring_begin(ring, 4);
368 if (ret)
369 return ret;
371 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
372 intel_ring_emit(ring, flags);
373 intel_ring_emit(ring, scratch_addr);
374 intel_ring_emit(ring, 0);
375 intel_ring_advance(ring);
377 if (!invalidate_domains && flush_domains)
378 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
380 return 0;
383 static int
384 gen8_render_ring_flush(struct intel_engine_cs *ring,
385 u32 invalidate_domains, u32 flush_domains)
387 u32 flags = 0;
388 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
389 int ret;
391 flags |= PIPE_CONTROL_CS_STALL;
393 if (flush_domains) {
394 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
395 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
397 if (invalidate_domains) {
398 flags |= PIPE_CONTROL_TLB_INVALIDATE;
399 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
400 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
401 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
402 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
403 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
404 flags |= PIPE_CONTROL_QW_WRITE;
405 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
408 ret = intel_ring_begin(ring, 6);
409 if (ret)
410 return ret;
412 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
413 intel_ring_emit(ring, flags);
414 intel_ring_emit(ring, scratch_addr);
415 intel_ring_emit(ring, 0);
416 intel_ring_emit(ring, 0);
417 intel_ring_emit(ring, 0);
418 intel_ring_advance(ring);
420 return 0;
424 static void ring_write_tail(struct intel_engine_cs *ring,
425 u32 value)
427 struct drm_i915_private *dev_priv = ring->dev->dev_private;
428 I915_WRITE_TAIL(ring, value);
431 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
433 struct drm_i915_private *dev_priv = ring->dev->dev_private;
434 u64 acthd;
436 if (INTEL_INFO(ring->dev)->gen >= 8)
437 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
438 RING_ACTHD_UDW(ring->mmio_base));
439 else if (INTEL_INFO(ring->dev)->gen >= 4)
440 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
441 else
442 acthd = I915_READ(ACTHD);
444 return acthd;
447 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
449 struct drm_i915_private *dev_priv = ring->dev->dev_private;
450 u32 addr;
452 addr = dev_priv->status_page_dmah->busaddr;
453 if (INTEL_INFO(ring->dev)->gen >= 4)
454 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
455 I915_WRITE(HWS_PGA, addr);
458 static bool stop_ring(struct intel_engine_cs *ring)
460 struct drm_i915_private *dev_priv = to_i915(ring->dev);
462 if (!IS_GEN2(ring->dev)) {
463 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
464 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
465 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
466 return false;
470 I915_WRITE_CTL(ring, 0);
471 I915_WRITE_HEAD(ring, 0);
472 ring->write_tail(ring, 0);
474 if (!IS_GEN2(ring->dev)) {
475 (void)I915_READ_CTL(ring);
476 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
479 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
482 static int init_ring_common(struct intel_engine_cs *ring)
484 struct drm_device *dev = ring->dev;
485 struct drm_i915_private *dev_priv = dev->dev_private;
486 struct intel_ringbuffer *ringbuf = ring->buffer;
487 struct drm_i915_gem_object *obj = ringbuf->obj;
488 int ret = 0;
490 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
492 if (!stop_ring(ring)) {
493 /* G45 ring initialization often fails to reset head to zero */
494 DRM_DEBUG_KMS("%s head not reset to zero "
495 "ctl %08x head %08x tail %08x start %08x\n",
496 ring->name,
497 I915_READ_CTL(ring),
498 I915_READ_HEAD(ring),
499 I915_READ_TAIL(ring),
500 I915_READ_START(ring));
502 if (!stop_ring(ring)) {
503 DRM_ERROR("failed to set %s head to zero "
504 "ctl %08x head %08x tail %08x start %08x\n",
505 ring->name,
506 I915_READ_CTL(ring),
507 I915_READ_HEAD(ring),
508 I915_READ_TAIL(ring),
509 I915_READ_START(ring));
510 ret = -EIO;
511 goto out;
515 if (I915_NEED_GFX_HWS(dev))
516 intel_ring_setup_status_page(ring);
517 else
518 ring_setup_phys_status_page(ring);
520 /* Initialize the ring. This must happen _after_ we've cleared the ring
521 * registers with the above sequence (the readback of the HEAD registers
522 * also enforces ordering), otherwise the hw might lose the new ring
523 * register values. */
524 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
525 I915_WRITE_CTL(ring,
526 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
527 | RING_VALID);
529 /* If the head is still not zero, the ring is dead */
530 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
531 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
532 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
533 DRM_ERROR("%s initialization failed "
534 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
535 ring->name,
536 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
537 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
538 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
539 ret = -EIO;
540 goto out;
543 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
544 i915_kernel_lost_context(ring->dev);
545 else {
546 ringbuf->head = I915_READ_HEAD(ring);
547 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
548 ringbuf->space = ring_space(ring);
549 ringbuf->last_retired_head = -1;
552 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
554 out:
555 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
557 return ret;
560 static int
561 init_pipe_control(struct intel_engine_cs *ring)
563 int ret;
565 if (ring->scratch.obj)
566 return 0;
568 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
569 if (ring->scratch.obj == NULL) {
570 DRM_ERROR("Failed to allocate seqno page\n");
571 ret = -ENOMEM;
572 goto err;
575 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
576 if (ret)
577 goto err_unref;
579 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
580 if (ret)
581 goto err_unref;
583 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
584 ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
585 if (ring->scratch.cpu_page == NULL) {
586 ret = -ENOMEM;
587 goto err_unpin;
590 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
591 ring->name, ring->scratch.gtt_offset);
592 return 0;
594 err_unpin:
595 i915_gem_object_ggtt_unpin(ring->scratch.obj);
596 err_unref:
597 drm_gem_object_unreference(&ring->scratch.obj->base);
598 err:
599 return ret;
602 static int init_render_ring(struct intel_engine_cs *ring)
604 struct drm_device *dev = ring->dev;
605 struct drm_i915_private *dev_priv = dev->dev_private;
606 int ret = init_ring_common(ring);
608 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
609 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
610 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
612 /* We need to disable the AsyncFlip performance optimisations in order
613 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
614 * programmed to '1' on all products.
616 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
618 if (INTEL_INFO(dev)->gen >= 6)
619 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
621 /* Required for the hardware to program scanline values for waiting */
622 /* WaEnableFlushTlbInvalidationMode:snb */
623 if (INTEL_INFO(dev)->gen == 6)
624 I915_WRITE(GFX_MODE,
625 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
627 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
628 if (IS_GEN7(dev))
629 I915_WRITE(GFX_MODE_GEN7,
630 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
631 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
633 if (INTEL_INFO(dev)->gen >= 5) {
634 ret = init_pipe_control(ring);
635 if (ret)
636 return ret;
639 if (IS_GEN6(dev)) {
640 /* From the Sandybridge PRM, volume 1 part 3, page 24:
641 * "If this bit is set, STCunit will have LRA as replacement
642 * policy. [...] This bit must be reset. LRA replacement
643 * policy is not supported."
645 I915_WRITE(CACHE_MODE_0,
646 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
649 if (INTEL_INFO(dev)->gen >= 6)
650 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
652 if (HAS_L3_DPF(dev))
653 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
655 return ret;
658 static void render_ring_cleanup(struct intel_engine_cs *ring)
660 struct drm_device *dev = ring->dev;
662 if (ring->scratch.obj == NULL)
663 return;
665 if (INTEL_INFO(dev)->gen >= 5) {
666 kunmap(ring->scratch.obj->pages[0]);
667 i915_gem_object_ggtt_unpin(ring->scratch.obj);
670 drm_gem_object_unreference(&ring->scratch.obj->base);
671 ring->scratch.obj = NULL;
674 static int gen6_signal(struct intel_engine_cs *signaller,
675 unsigned int num_dwords)
677 struct drm_device *dev = signaller->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 struct intel_engine_cs *useless;
680 int i, ret;
682 /* NB: In order to be able to do semaphore MBOX updates for varying
683 * number of rings, it's easiest if we round up each individual update
684 * to a multiple of 2 (since ring updates must always be a multiple of
685 * 2) even though the actual update only requires 3 dwords.
687 #define MBOX_UPDATE_DWORDS 4
688 if (i915_semaphore_is_enabled(dev))
689 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
690 else
691 return intel_ring_begin(signaller, num_dwords);
693 ret = intel_ring_begin(signaller, num_dwords);
694 if (ret)
695 return ret;
696 #undef MBOX_UPDATE_DWORDS
698 for_each_ring(useless, dev_priv, i) {
699 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
700 if (mbox_reg != GEN6_NOSYNC) {
701 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
702 intel_ring_emit(signaller, mbox_reg);
703 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
704 intel_ring_emit(signaller, MI_NOOP);
705 } else {
706 intel_ring_emit(signaller, MI_NOOP);
707 intel_ring_emit(signaller, MI_NOOP);
708 intel_ring_emit(signaller, MI_NOOP);
709 intel_ring_emit(signaller, MI_NOOP);
713 return 0;
717 * gen6_add_request - Update the semaphore mailbox registers
719 * @ring - ring that is adding a request
720 * @seqno - return seqno stuck into the ring
722 * Update the mailbox registers in the *other* rings with the current seqno.
723 * This acts like a signal in the canonical semaphore.
725 static int
726 gen6_add_request(struct intel_engine_cs *ring)
728 int ret;
730 ret = ring->semaphore.signal(ring, 4);
731 if (ret)
732 return ret;
734 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
735 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
736 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
737 intel_ring_emit(ring, MI_USER_INTERRUPT);
738 __intel_ring_advance(ring);
740 return 0;
743 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
744 u32 seqno)
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 return dev_priv->last_seqno < seqno;
751 * intel_ring_sync - sync the waiter to the signaller on seqno
753 * @waiter - ring that is waiting
754 * @signaller - ring which has, or will signal
755 * @seqno - seqno which the waiter will block on
757 static int
758 gen6_ring_sync(struct intel_engine_cs *waiter,
759 struct intel_engine_cs *signaller,
760 u32 seqno)
762 u32 dw1 = MI_SEMAPHORE_MBOX |
763 MI_SEMAPHORE_COMPARE |
764 MI_SEMAPHORE_REGISTER;
765 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
766 int ret;
768 /* Throughout all of the GEM code, seqno passed implies our current
769 * seqno is >= the last seqno executed. However for hardware the
770 * comparison is strictly greater than.
772 seqno -= 1;
774 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
776 ret = intel_ring_begin(waiter, 4);
777 if (ret)
778 return ret;
780 /* If seqno wrap happened, omit the wait with no-ops */
781 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
782 intel_ring_emit(waiter, dw1 | wait_mbox);
783 intel_ring_emit(waiter, seqno);
784 intel_ring_emit(waiter, 0);
785 intel_ring_emit(waiter, MI_NOOP);
786 } else {
787 intel_ring_emit(waiter, MI_NOOP);
788 intel_ring_emit(waiter, MI_NOOP);
789 intel_ring_emit(waiter, MI_NOOP);
790 intel_ring_emit(waiter, MI_NOOP);
792 intel_ring_advance(waiter);
794 return 0;
797 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
798 do { \
799 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
800 PIPE_CONTROL_DEPTH_STALL); \
801 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
802 intel_ring_emit(ring__, 0); \
803 intel_ring_emit(ring__, 0); \
804 } while (0)
806 static int
807 pc_render_add_request(struct intel_engine_cs *ring)
809 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
810 int ret;
812 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
813 * incoherent with writes to memory, i.e. completely fubar,
814 * so we need to use PIPE_NOTIFY instead.
816 * However, we also need to workaround the qword write
817 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
818 * memory before requesting an interrupt.
820 ret = intel_ring_begin(ring, 32);
821 if (ret)
822 return ret;
824 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
825 PIPE_CONTROL_WRITE_FLUSH |
826 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
827 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
828 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
829 intel_ring_emit(ring, 0);
830 PIPE_CONTROL_FLUSH(ring, scratch_addr);
831 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
832 PIPE_CONTROL_FLUSH(ring, scratch_addr);
833 scratch_addr += 2 * CACHELINE_BYTES;
834 PIPE_CONTROL_FLUSH(ring, scratch_addr);
835 scratch_addr += 2 * CACHELINE_BYTES;
836 PIPE_CONTROL_FLUSH(ring, scratch_addr);
837 scratch_addr += 2 * CACHELINE_BYTES;
838 PIPE_CONTROL_FLUSH(ring, scratch_addr);
839 scratch_addr += 2 * CACHELINE_BYTES;
840 PIPE_CONTROL_FLUSH(ring, scratch_addr);
842 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
843 PIPE_CONTROL_WRITE_FLUSH |
844 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
845 PIPE_CONTROL_NOTIFY);
846 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
847 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
848 intel_ring_emit(ring, 0);
849 __intel_ring_advance(ring);
851 return 0;
854 static u32
855 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
857 /* Workaround to force correct ordering between irq and seqno writes on
858 * ivb (and maybe also on snb) by reading from a CS register (like
859 * ACTHD) before reading the status page. */
860 if (!lazy_coherency) {
861 struct drm_i915_private *dev_priv = ring->dev->dev_private;
862 POSTING_READ(RING_ACTHD(ring->mmio_base));
865 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
868 static u32
869 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
871 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
874 static void
875 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
877 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
880 static u32
881 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
883 return ring->scratch.cpu_page[0];
886 static void
887 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
889 ring->scratch.cpu_page[0] = seqno;
892 static bool
893 gen5_ring_get_irq(struct intel_engine_cs *ring)
895 struct drm_device *dev = ring->dev;
896 struct drm_i915_private *dev_priv = dev->dev_private;
898 if (!dev->irq_enabled)
899 return false;
901 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
902 if (ring->irq_refcount++ == 0)
903 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
904 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
906 return true;
909 static void
910 gen5_ring_put_irq(struct intel_engine_cs *ring)
912 struct drm_device *dev = ring->dev;
913 struct drm_i915_private *dev_priv = dev->dev_private;
915 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
916 if (--ring->irq_refcount == 0)
917 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
918 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
921 static bool
922 i9xx_ring_get_irq(struct intel_engine_cs *ring)
924 struct drm_device *dev = ring->dev;
925 struct drm_i915_private *dev_priv = dev->dev_private;
927 if (!dev->irq_enabled)
928 return false;
930 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
931 if (ring->irq_refcount++ == 0) {
932 dev_priv->irq_mask &= ~ring->irq_enable_mask;
933 I915_WRITE(IMR, dev_priv->irq_mask);
934 POSTING_READ(IMR);
936 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
938 return true;
941 static void
942 i9xx_ring_put_irq(struct intel_engine_cs *ring)
944 struct drm_device *dev = ring->dev;
945 struct drm_i915_private *dev_priv = dev->dev_private;
947 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
948 if (--ring->irq_refcount == 0) {
949 dev_priv->irq_mask |= ring->irq_enable_mask;
950 I915_WRITE(IMR, dev_priv->irq_mask);
951 POSTING_READ(IMR);
953 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
956 static bool
957 i8xx_ring_get_irq(struct intel_engine_cs *ring)
959 struct drm_device *dev = ring->dev;
960 struct drm_i915_private *dev_priv = dev->dev_private;
962 if (!dev->irq_enabled)
963 return false;
965 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
966 if (ring->irq_refcount++ == 0) {
967 dev_priv->irq_mask &= ~ring->irq_enable_mask;
968 I915_WRITE16(IMR, dev_priv->irq_mask);
969 POSTING_READ16(IMR);
971 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
973 return true;
976 static void
977 i8xx_ring_put_irq(struct intel_engine_cs *ring)
979 struct drm_device *dev = ring->dev;
980 struct drm_i915_private *dev_priv = dev->dev_private;
982 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
983 if (--ring->irq_refcount == 0) {
984 dev_priv->irq_mask |= ring->irq_enable_mask;
985 I915_WRITE16(IMR, dev_priv->irq_mask);
986 POSTING_READ16(IMR);
988 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
991 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
993 struct drm_device *dev = ring->dev;
994 struct drm_i915_private *dev_priv = ring->dev->dev_private;
995 u32 mmio = 0;
997 /* The ring status page addresses are no longer next to the rest of
998 * the ring registers as of gen7.
1000 if (IS_GEN7(dev)) {
1001 switch (ring->id) {
1002 case RCS:
1003 mmio = RENDER_HWS_PGA_GEN7;
1004 break;
1005 case BCS:
1006 mmio = BLT_HWS_PGA_GEN7;
1007 break;
1009 * VCS2 actually doesn't exist on Gen7. Only shut up
1010 * gcc switch check warning
1012 case VCS2:
1013 case VCS:
1014 mmio = BSD_HWS_PGA_GEN7;
1015 break;
1016 case VECS:
1017 mmio = VEBOX_HWS_PGA_GEN7;
1018 break;
1020 } else if (IS_GEN6(ring->dev)) {
1021 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1022 } else {
1023 /* XXX: gen8 returns to sanity */
1024 mmio = RING_HWS_PGA(ring->mmio_base);
1027 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1028 POSTING_READ(mmio);
1031 * Flush the TLB for this page
1033 * FIXME: These two bits have disappeared on gen8, so a question
1034 * arises: do we still need this and if so how should we go about
1035 * invalidating the TLB?
1037 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1038 u32 reg = RING_INSTPM(ring->mmio_base);
1040 /* ring should be idle before issuing a sync flush*/
1041 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1043 I915_WRITE(reg,
1044 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1045 INSTPM_SYNC_FLUSH));
1046 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1047 1000))
1048 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1049 ring->name);
1053 static int
1054 bsd_ring_flush(struct intel_engine_cs *ring,
1055 u32 invalidate_domains,
1056 u32 flush_domains)
1058 int ret;
1060 ret = intel_ring_begin(ring, 2);
1061 if (ret)
1062 return ret;
1064 intel_ring_emit(ring, MI_FLUSH);
1065 intel_ring_emit(ring, MI_NOOP);
1066 intel_ring_advance(ring);
1067 return 0;
1070 static int
1071 i9xx_add_request(struct intel_engine_cs *ring)
1073 int ret;
1075 ret = intel_ring_begin(ring, 4);
1076 if (ret)
1077 return ret;
1079 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1080 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1081 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1082 intel_ring_emit(ring, MI_USER_INTERRUPT);
1083 __intel_ring_advance(ring);
1085 return 0;
1088 static bool
1089 gen6_ring_get_irq(struct intel_engine_cs *ring)
1091 struct drm_device *dev = ring->dev;
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1094 if (!dev->irq_enabled)
1095 return false;
1097 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1098 if (ring->irq_refcount++ == 0) {
1099 if (HAS_L3_DPF(dev) && ring->id == RCS)
1100 I915_WRITE_IMR(ring,
1101 ~(ring->irq_enable_mask |
1102 GT_PARITY_ERROR(dev)));
1103 else
1104 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1105 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1107 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1109 return true;
1112 static void
1113 gen6_ring_put_irq(struct intel_engine_cs *ring)
1115 struct drm_device *dev = ring->dev;
1116 struct drm_i915_private *dev_priv = dev->dev_private;
1118 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1119 if (--ring->irq_refcount == 0) {
1120 if (HAS_L3_DPF(dev) && ring->id == RCS)
1121 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1122 else
1123 I915_WRITE_IMR(ring, ~0);
1124 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1126 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1129 static bool
1130 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1132 struct drm_device *dev = ring->dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1135 if (!dev->irq_enabled)
1136 return false;
1138 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1139 if (ring->irq_refcount++ == 0) {
1140 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1141 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1143 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1145 return true;
1148 static void
1149 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1151 struct drm_device *dev = ring->dev;
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1154 if (!dev->irq_enabled)
1155 return;
1157 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1158 if (--ring->irq_refcount == 0) {
1159 I915_WRITE_IMR(ring, ~0);
1160 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1162 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1165 static bool
1166 gen8_ring_get_irq(struct intel_engine_cs *ring)
1168 struct drm_device *dev = ring->dev;
1169 struct drm_i915_private *dev_priv = dev->dev_private;
1171 if (!dev->irq_enabled)
1172 return false;
1174 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1175 if (ring->irq_refcount++ == 0) {
1176 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1177 I915_WRITE_IMR(ring,
1178 ~(ring->irq_enable_mask |
1179 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1180 } else {
1181 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1183 POSTING_READ(RING_IMR(ring->mmio_base));
1185 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1187 return true;
1190 static void
1191 gen8_ring_put_irq(struct intel_engine_cs *ring)
1193 struct drm_device *dev = ring->dev;
1194 struct drm_i915_private *dev_priv = dev->dev_private;
1196 lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1197 if (--ring->irq_refcount == 0) {
1198 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1199 I915_WRITE_IMR(ring,
1200 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1201 } else {
1202 I915_WRITE_IMR(ring, ~0);
1204 POSTING_READ(RING_IMR(ring->mmio_base));
1206 lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1209 static int
1210 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1211 u64 offset, u32 length,
1212 unsigned flags)
1214 int ret;
1216 ret = intel_ring_begin(ring, 2);
1217 if (ret)
1218 return ret;
1220 intel_ring_emit(ring,
1221 MI_BATCH_BUFFER_START |
1222 MI_BATCH_GTT |
1223 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1224 intel_ring_emit(ring, offset);
1225 intel_ring_advance(ring);
1227 return 0;
1230 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1231 #define I830_BATCH_LIMIT (256*1024)
1232 static int
1233 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1234 u64 offset, u32 len,
1235 unsigned flags)
1237 int ret;
1239 if (flags & I915_DISPATCH_PINNED) {
1240 ret = intel_ring_begin(ring, 4);
1241 if (ret)
1242 return ret;
1244 intel_ring_emit(ring, MI_BATCH_BUFFER);
1245 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1246 intel_ring_emit(ring, offset + len - 8);
1247 intel_ring_emit(ring, MI_NOOP);
1248 intel_ring_advance(ring);
1249 } else {
1250 u32 cs_offset = ring->scratch.gtt_offset;
1252 if (len > I830_BATCH_LIMIT)
1253 return -ENOSPC;
1255 ret = intel_ring_begin(ring, 9+3);
1256 if (ret)
1257 return ret;
1258 /* Blit the batch (which has now all relocs applied) to the stable batch
1259 * scratch bo area (so that the CS never stumbles over its tlb
1260 * invalidation bug) ... */
1261 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1262 XY_SRC_COPY_BLT_WRITE_ALPHA |
1263 XY_SRC_COPY_BLT_WRITE_RGB);
1264 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1265 intel_ring_emit(ring, 0);
1266 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1267 intel_ring_emit(ring, cs_offset);
1268 intel_ring_emit(ring, 0);
1269 intel_ring_emit(ring, 4096);
1270 intel_ring_emit(ring, offset);
1271 intel_ring_emit(ring, MI_FLUSH);
1273 /* ... and execute it. */
1274 intel_ring_emit(ring, MI_BATCH_BUFFER);
1275 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1276 intel_ring_emit(ring, cs_offset + len - 8);
1277 intel_ring_advance(ring);
1280 return 0;
1283 static int
1284 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1285 u64 offset, u32 len,
1286 unsigned flags)
1288 int ret;
1290 ret = intel_ring_begin(ring, 2);
1291 if (ret)
1292 return ret;
1294 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1295 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1296 intel_ring_advance(ring);
1298 return 0;
1301 static void cleanup_status_page(struct intel_engine_cs *ring)
1303 struct drm_i915_gem_object *obj;
1305 obj = ring->status_page.obj;
1306 if (obj == NULL)
1307 return;
1309 kunmap(obj->pages[0]);
1310 i915_gem_object_ggtt_unpin(obj);
1311 drm_gem_object_unreference(&obj->base);
1312 ring->status_page.obj = NULL;
1315 static int init_status_page(struct intel_engine_cs *ring)
1317 struct drm_i915_gem_object *obj;
1319 if ((obj = ring->status_page.obj) == NULL) {
1320 int ret;
1322 obj = i915_gem_alloc_object(ring->dev, 4096);
1323 if (obj == NULL) {
1324 DRM_ERROR("Failed to allocate status page\n");
1325 return -ENOMEM;
1328 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1329 if (ret)
1330 goto err_unref;
1332 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1333 if (ret) {
1334 err_unref:
1335 drm_gem_object_unreference(&obj->base);
1336 return ret;
1339 ring->status_page.obj = obj;
1342 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1343 ring->status_page.page_addr = kmap(obj->pages[0]);
1344 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1346 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1347 ring->name, ring->status_page.gfx_addr);
1349 return 0;
1352 static int init_phys_status_page(struct intel_engine_cs *ring)
1354 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1356 if (!dev_priv->status_page_dmah) {
1357 dev_priv->status_page_dmah =
1358 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1359 if (!dev_priv->status_page_dmah)
1360 return -ENOMEM;
1363 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1364 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1366 return 0;
1369 static int allocate_ring_buffer(struct intel_engine_cs *ring)
1371 struct drm_device *dev = ring->dev;
1372 struct intel_ringbuffer *ringbuf = ring->buffer;
1373 struct drm_i915_gem_object *obj;
1374 int ret;
1376 if (intel_ring_initialized(ring))
1377 return 0;
1379 obj = NULL;
1380 if (!HAS_LLC(dev))
1381 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1382 if (obj == NULL)
1383 obj = i915_gem_alloc_object(dev, ringbuf->size);
1384 if (obj == NULL)
1385 return -ENOMEM;
1387 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1388 if (ret)
1389 goto err_unref;
1391 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1392 if (ret)
1393 goto err_unpin;
1395 ringbuf->virtual_start =
1396 ioremap_wc(dev->agp->base + i915_gem_obj_ggtt_offset(obj),
1397 ringbuf->size);
1398 if (ringbuf->virtual_start == NULL) {
1399 ret = -EINVAL;
1400 goto err_unpin;
1403 ringbuf->obj = obj;
1404 return 0;
1406 err_unpin:
1407 i915_gem_object_ggtt_unpin(obj);
1408 err_unref:
1409 drm_gem_object_unreference(&obj->base);
1410 return ret;
1413 static int intel_init_ring_buffer(struct drm_device *dev,
1414 struct intel_engine_cs *ring)
1416 struct intel_ringbuffer *ringbuf = ring->buffer;
1417 int ret;
1419 if (ringbuf == NULL) {
1420 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1421 if (!ringbuf)
1422 return -ENOMEM;
1423 ring->buffer = ringbuf;
1426 ring->dev = dev;
1427 INIT_LIST_HEAD(&ring->active_list);
1428 INIT_LIST_HEAD(&ring->request_list);
1429 ringbuf->size = 32 * PAGE_SIZE;
1430 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1432 init_waitqueue_head(&ring->irq_queue);
1434 if (I915_NEED_GFX_HWS(dev)) {
1435 ret = init_status_page(ring);
1436 if (ret)
1437 goto error;
1438 } else {
1439 BUG_ON(ring->id != RCS);
1440 ret = init_phys_status_page(ring);
1441 if (ret)
1442 goto error;
1445 ret = allocate_ring_buffer(ring);
1446 if (ret) {
1447 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1448 goto error;
1451 /* Workaround an erratum on the i830 which causes a hang if
1452 * the TAIL pointer points to within the last 2 cachelines
1453 * of the buffer.
1455 ringbuf->effective_size = ringbuf->size;
1456 if (IS_I830(dev) || IS_845G(dev))
1457 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1459 ret = i915_cmd_parser_init_ring(ring);
1460 if (ret)
1461 goto error;
1463 ret = ring->init(ring);
1464 if (ret)
1465 goto error;
1467 return 0;
1469 error:
1470 kfree(ringbuf);
1471 ring->buffer = NULL;
1472 return ret;
1475 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1477 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1478 struct intel_ringbuffer *ringbuf = ring->buffer;
1480 if (!intel_ring_initialized(ring))
1481 return;
1483 intel_stop_ring_buffer(ring);
1484 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1486 pmap_unmapdev((vm_offset_t)ringbuf->virtual_start, ringbuf->size);
1488 i915_gem_object_ggtt_unpin(ringbuf->obj);
1489 drm_gem_object_unreference(&ringbuf->obj->base);
1490 ringbuf->obj = NULL;
1491 ring->preallocated_lazy_request = NULL;
1492 ring->outstanding_lazy_seqno = 0;
1494 if (ring->cleanup)
1495 ring->cleanup(ring);
1497 cleanup_status_page(ring);
1499 i915_cmd_parser_fini_ring(ring);
1501 kfree(ringbuf);
1502 ring->buffer = NULL;
1505 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1507 struct intel_ringbuffer *ringbuf = ring->buffer;
1508 struct drm_i915_gem_request *request;
1509 u32 seqno = 0;
1510 int ret;
1512 if (ringbuf->last_retired_head != -1) {
1513 ringbuf->head = ringbuf->last_retired_head;
1514 ringbuf->last_retired_head = -1;
1516 ringbuf->space = ring_space(ring);
1517 if (ringbuf->space >= n)
1518 return 0;
1521 list_for_each_entry(request, &ring->request_list, list) {
1522 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1523 seqno = request->seqno;
1524 break;
1528 if (seqno == 0)
1529 return -ENOSPC;
1531 ret = i915_wait_seqno(ring, seqno);
1532 if (ret)
1533 return ret;
1535 i915_gem_retire_requests_ring(ring);
1536 ringbuf->head = ringbuf->last_retired_head;
1537 ringbuf->last_retired_head = -1;
1539 ringbuf->space = ring_space(ring);
1540 return 0;
1543 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1545 struct drm_device *dev = ring->dev;
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 struct intel_ringbuffer *ringbuf = ring->buffer;
1548 unsigned long end;
1549 int ret;
1551 ret = intel_ring_wait_request(ring, n);
1552 if (ret != -ENOSPC)
1553 return ret;
1555 /* force the tail write in case we have been skipping them */
1556 __intel_ring_advance(ring);
1558 /* With GEM the hangcheck timer should kick us out of the loop,
1559 * leaving it early runs the risk of corrupting GEM state (due
1560 * to running on almost untested codepaths). But on resume
1561 * timers don't work yet, so prevent a complete hang in that
1562 * case by choosing an insanely large timeout. */
1563 end = jiffies + 60 * HZ;
1565 trace_i915_ring_wait_begin(ring);
1566 do {
1567 ringbuf->head = I915_READ_HEAD(ring);
1568 ringbuf->space = ring_space(ring);
1569 if (ringbuf->space >= n) {
1570 ret = 0;
1571 break;
1574 #if 0
1575 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1576 dev->primary->master) {
1577 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1578 if (master_priv->sarea_priv)
1579 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1581 #else
1582 if (dev_priv->sarea_priv)
1583 dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1584 #endif
1587 msleep(1);
1589 #if 0
1590 if (dev_priv->mm.interruptible && signal_pending(current)) {
1591 ret = -ERESTARTSYS;
1592 break;
1594 #endif
1596 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1597 dev_priv->mm.interruptible);
1598 if (ret)
1599 break;
1601 if (time_after(jiffies, end)) {
1602 ret = -EBUSY;
1603 break;
1605 } while (1);
1606 trace_i915_ring_wait_end(ring);
1607 return ret;
1610 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1612 uint32_t __iomem *virt;
1613 struct intel_ringbuffer *ringbuf = ring->buffer;
1614 int rem = ringbuf->size - ringbuf->tail;
1616 if (ringbuf->space < rem) {
1617 int ret = ring_wait_for_space(ring, rem);
1618 if (ret)
1619 return ret;
1622 virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
1623 rem /= 4;
1624 while (rem--)
1625 iowrite32(MI_NOOP, virt++);
1627 ringbuf->tail = 0;
1628 ringbuf->space = ring_space(ring);
1630 return 0;
1633 int intel_ring_idle(struct intel_engine_cs *ring)
1635 u32 seqno;
1636 int ret;
1638 /* We need to add any requests required to flush the objects and ring */
1639 if (ring->outstanding_lazy_seqno) {
1640 ret = i915_add_request(ring, NULL);
1641 if (ret)
1642 return ret;
1645 /* Wait upon the last request to be completed */
1646 if (list_empty(&ring->request_list))
1647 return 0;
1649 seqno = list_entry(ring->request_list.prev,
1650 struct drm_i915_gem_request,
1651 list)->seqno;
1653 return i915_wait_seqno(ring, seqno);
1656 static int
1657 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1659 if (ring->outstanding_lazy_seqno)
1660 return 0;
1662 if (ring->preallocated_lazy_request == NULL) {
1663 struct drm_i915_gem_request *request;
1665 request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1666 if (request == NULL)
1667 return -ENOMEM;
1669 ring->preallocated_lazy_request = request;
1672 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1675 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1676 int bytes)
1678 struct intel_ringbuffer *ringbuf = ring->buffer;
1679 int ret;
1681 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1682 ret = intel_wrap_ring_buffer(ring);
1683 if (unlikely(ret))
1684 return ret;
1687 if (unlikely(ringbuf->space < bytes)) {
1688 ret = ring_wait_for_space(ring, bytes);
1689 if (unlikely(ret))
1690 return ret;
1693 return 0;
1696 int intel_ring_begin(struct intel_engine_cs *ring,
1697 int num_dwords)
1699 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1700 int ret;
1702 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1703 dev_priv->mm.interruptible);
1704 if (ret)
1705 return ret;
1707 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1708 if (ret)
1709 return ret;
1711 /* Preallocate the olr before touching the ring */
1712 ret = intel_ring_alloc_seqno(ring);
1713 if (ret)
1714 return ret;
1716 ring->buffer->space -= num_dwords * sizeof(uint32_t);
1717 return 0;
1720 /* Align the ring tail to a cacheline boundary */
1721 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1723 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1724 int ret;
1726 if (num_dwords == 0)
1727 return 0;
1729 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1730 ret = intel_ring_begin(ring, num_dwords);
1731 if (ret)
1732 return ret;
1734 while (num_dwords--)
1735 intel_ring_emit(ring, MI_NOOP);
1737 intel_ring_advance(ring);
1739 return 0;
1742 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1744 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1746 BUG_ON(ring->outstanding_lazy_seqno);
1748 if (INTEL_INFO(ring->dev)->gen >= 6) {
1749 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1750 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1751 if (HAS_VEBOX(ring->dev))
1752 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1755 ring->set_seqno(ring, seqno);
1756 ring->hangcheck.seqno = seqno;
1759 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1760 u32 value)
1762 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1764 /* Every tail move must follow the sequence below */
1766 /* Disable notification that the ring is IDLE. The GT
1767 * will then assume that it is busy and bring it out of rc6.
1769 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1770 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1772 /* Clear the context id. Here be magic! */
1773 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1775 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1776 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1777 GEN6_BSD_SLEEP_INDICATOR) == 0,
1778 50))
1779 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1781 /* Now that the ring is fully powered up, update the tail */
1782 I915_WRITE_TAIL(ring, value);
1783 POSTING_READ(RING_TAIL(ring->mmio_base));
1785 /* Let the ring send IDLE messages to the GT again,
1786 * and so let it sleep to conserve power when idle.
1788 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1789 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1792 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1793 u32 invalidate, u32 flush)
1795 uint32_t cmd;
1796 int ret;
1798 ret = intel_ring_begin(ring, 4);
1799 if (ret)
1800 return ret;
1802 cmd = MI_FLUSH_DW;
1803 if (INTEL_INFO(ring->dev)->gen >= 8)
1804 cmd += 1;
1806 * Bspec vol 1c.5 - video engine command streamer:
1807 * "If ENABLED, all TLBs will be invalidated once the flush
1808 * operation is complete. This bit is only valid when the
1809 * Post-Sync Operation field is a value of 1h or 3h."
1811 if (invalidate & I915_GEM_GPU_DOMAINS)
1812 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1813 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1814 intel_ring_emit(ring, cmd);
1815 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1816 if (INTEL_INFO(ring->dev)->gen >= 8) {
1817 intel_ring_emit(ring, 0); /* upper addr */
1818 intel_ring_emit(ring, 0); /* value */
1819 } else {
1820 intel_ring_emit(ring, 0);
1821 intel_ring_emit(ring, MI_NOOP);
1823 intel_ring_advance(ring);
1824 return 0;
1827 static int
1828 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1829 u64 offset, u32 len,
1830 unsigned flags)
1832 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1833 bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1834 !(flags & I915_DISPATCH_SECURE);
1835 int ret;
1837 ret = intel_ring_begin(ring, 4);
1838 if (ret)
1839 return ret;
1841 /* FIXME(BDW): Address space and security selectors. */
1842 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1843 intel_ring_emit(ring, lower_32_bits(offset));
1844 intel_ring_emit(ring, upper_32_bits(offset));
1845 intel_ring_emit(ring, MI_NOOP);
1846 intel_ring_advance(ring);
1848 return 0;
1851 static int
1852 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1853 u64 offset, u32 len,
1854 unsigned flags)
1856 int ret;
1858 ret = intel_ring_begin(ring, 2);
1859 if (ret)
1860 return ret;
1862 intel_ring_emit(ring,
1863 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1864 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1865 /* bit0-7 is the length on GEN6+ */
1866 intel_ring_emit(ring, offset);
1867 intel_ring_advance(ring);
1869 return 0;
1872 static int
1873 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1874 u64 offset, u32 len,
1875 unsigned flags)
1877 int ret;
1879 ret = intel_ring_begin(ring, 2);
1880 if (ret)
1881 return ret;
1883 intel_ring_emit(ring,
1884 MI_BATCH_BUFFER_START |
1885 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1886 /* bit0-7 is the length on GEN6+ */
1887 intel_ring_emit(ring, offset);
1888 intel_ring_advance(ring);
1890 return 0;
1893 /* Blitter support (SandyBridge+) */
1895 static int gen6_ring_flush(struct intel_engine_cs *ring,
1896 u32 invalidate, u32 flush)
1898 struct drm_device *dev = ring->dev;
1899 uint32_t cmd;
1900 int ret;
1902 ret = intel_ring_begin(ring, 4);
1903 if (ret)
1904 return ret;
1906 cmd = MI_FLUSH_DW;
1907 if (INTEL_INFO(ring->dev)->gen >= 8)
1908 cmd += 1;
1910 * Bspec vol 1c.3 - blitter engine command streamer:
1911 * "If ENABLED, all TLBs will be invalidated once the flush
1912 * operation is complete. This bit is only valid when the
1913 * Post-Sync Operation field is a value of 1h or 3h."
1915 if (invalidate & I915_GEM_DOMAIN_RENDER)
1916 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1917 MI_FLUSH_DW_OP_STOREDW;
1918 intel_ring_emit(ring, cmd);
1919 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1920 if (INTEL_INFO(ring->dev)->gen >= 8) {
1921 intel_ring_emit(ring, 0); /* upper addr */
1922 intel_ring_emit(ring, 0); /* value */
1923 } else {
1924 intel_ring_emit(ring, 0);
1925 intel_ring_emit(ring, MI_NOOP);
1927 intel_ring_advance(ring);
1929 if (IS_GEN7(dev) && !invalidate && flush)
1930 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1932 return 0;
1935 int intel_init_render_ring_buffer(struct drm_device *dev)
1937 struct drm_i915_private *dev_priv = dev->dev_private;
1938 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1940 ring->name = "render ring";
1941 ring->id = RCS;
1942 ring->mmio_base = RENDER_RING_BASE;
1944 if (INTEL_INFO(dev)->gen >= 6) {
1945 ring->add_request = gen6_add_request;
1946 ring->flush = gen7_render_ring_flush;
1947 if (INTEL_INFO(dev)->gen == 6)
1948 ring->flush = gen6_render_ring_flush;
1949 if (INTEL_INFO(dev)->gen >= 8) {
1950 ring->flush = gen8_render_ring_flush;
1951 ring->irq_get = gen8_ring_get_irq;
1952 ring->irq_put = gen8_ring_put_irq;
1953 } else {
1954 ring->irq_get = gen6_ring_get_irq;
1955 ring->irq_put = gen6_ring_put_irq;
1957 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1958 ring->get_seqno = gen6_ring_get_seqno;
1959 ring->set_seqno = ring_set_seqno;
1960 ring->semaphore.sync_to = gen6_ring_sync;
1961 ring->semaphore.signal = gen6_signal;
1963 * The current semaphore is only applied on pre-gen8 platform.
1964 * And there is no VCS2 ring on the pre-gen8 platform. So the
1965 * semaphore between RCS and VCS2 is initialized as INVALID.
1966 * Gen8 will initialize the sema between VCS2 and RCS later.
1968 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1969 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1970 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1971 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1972 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1973 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1974 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1975 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1976 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1977 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
1978 } else if (IS_GEN5(dev)) {
1979 ring->add_request = pc_render_add_request;
1980 ring->flush = gen4_render_ring_flush;
1981 ring->get_seqno = pc_render_get_seqno;
1982 ring->set_seqno = pc_render_set_seqno;
1983 ring->irq_get = gen5_ring_get_irq;
1984 ring->irq_put = gen5_ring_put_irq;
1985 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1986 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1987 } else {
1988 ring->add_request = i9xx_add_request;
1989 if (INTEL_INFO(dev)->gen < 4)
1990 ring->flush = gen2_render_ring_flush;
1991 else
1992 ring->flush = gen4_render_ring_flush;
1993 ring->get_seqno = ring_get_seqno;
1994 ring->set_seqno = ring_set_seqno;
1995 if (IS_GEN2(dev)) {
1996 ring->irq_get = i8xx_ring_get_irq;
1997 ring->irq_put = i8xx_ring_put_irq;
1998 } else {
1999 ring->irq_get = i9xx_ring_get_irq;
2000 ring->irq_put = i9xx_ring_put_irq;
2002 ring->irq_enable_mask = I915_USER_INTERRUPT;
2004 ring->write_tail = ring_write_tail;
2005 if (IS_HASWELL(dev))
2006 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2007 else if (IS_GEN8(dev))
2008 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2009 else if (INTEL_INFO(dev)->gen >= 6)
2010 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2011 else if (INTEL_INFO(dev)->gen >= 4)
2012 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2013 else if (IS_I830(dev) || IS_845G(dev))
2014 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2015 else
2016 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2017 ring->init = init_render_ring;
2018 ring->cleanup = render_ring_cleanup;
2020 /* Workaround batchbuffer to combat CS tlb bug. */
2021 if (HAS_BROKEN_CS_TLB(dev)) {
2022 struct drm_i915_gem_object *obj;
2023 int ret;
2025 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2026 if (obj == NULL) {
2027 DRM_ERROR("Failed to allocate batch bo\n");
2028 return -ENOMEM;
2031 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2032 if (ret != 0) {
2033 drm_gem_object_unreference(&obj->base);
2034 DRM_ERROR("Failed to ping batch bo\n");
2035 return ret;
2038 ring->scratch.obj = obj;
2039 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2042 return intel_init_ring_buffer(dev, ring);
2045 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2047 struct drm_i915_private *dev_priv = dev->dev_private;
2048 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2049 struct intel_ringbuffer *ringbuf = ring->buffer;
2050 int ret;
2052 if (ringbuf == NULL) {
2053 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2054 if (!ringbuf)
2055 return -ENOMEM;
2056 ring->buffer = ringbuf;
2059 ring->name = "render ring";
2060 ring->id = RCS;
2061 ring->mmio_base = RENDER_RING_BASE;
2063 if (INTEL_INFO(dev)->gen >= 6) {
2064 /* non-kms not supported on gen6+ */
2065 ret = -ENODEV;
2066 goto err_ringbuf;
2069 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2070 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2071 * the special gen5 functions. */
2072 ring->add_request = i9xx_add_request;
2073 if (INTEL_INFO(dev)->gen < 4)
2074 ring->flush = gen2_render_ring_flush;
2075 else
2076 ring->flush = gen4_render_ring_flush;
2077 ring->get_seqno = ring_get_seqno;
2078 ring->set_seqno = ring_set_seqno;
2079 if (IS_GEN2(dev)) {
2080 ring->irq_get = i8xx_ring_get_irq;
2081 ring->irq_put = i8xx_ring_put_irq;
2082 } else {
2083 ring->irq_get = i9xx_ring_get_irq;
2084 ring->irq_put = i9xx_ring_put_irq;
2086 ring->irq_enable_mask = I915_USER_INTERRUPT;
2087 ring->write_tail = ring_write_tail;
2088 if (INTEL_INFO(dev)->gen >= 4)
2089 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2090 else if (IS_I830(dev) || IS_845G(dev))
2091 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2092 else
2093 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2094 ring->init = init_render_ring;
2095 ring->cleanup = render_ring_cleanup;
2097 ring->dev = dev;
2098 INIT_LIST_HEAD(&ring->active_list);
2099 INIT_LIST_HEAD(&ring->request_list);
2101 ringbuf->size = size;
2102 ringbuf->effective_size = ringbuf->size;
2103 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2104 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2106 ringbuf->virtual_start = ioremap_wc(start, size);
2107 if (ringbuf->virtual_start == NULL) {
2108 DRM_ERROR("can not ioremap virtual address for"
2109 " ring buffer\n");
2110 ret = -ENOMEM;
2111 goto err_ringbuf;
2114 if (!I915_NEED_GFX_HWS(dev)) {
2115 ret = init_phys_status_page(ring);
2116 if (ret)
2117 goto err_vstart;
2120 return 0;
2122 err_vstart:
2123 pmap_unmapdev((vm_offset_t)ring->buffer->virtual_start, size);
2124 err_ringbuf:
2125 kfree(ringbuf);
2126 ring->buffer = NULL;
2127 return ret;
2130 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2132 struct drm_i915_private *dev_priv = dev->dev_private;
2133 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2135 ring->name = "bsd ring";
2136 ring->id = VCS;
2138 ring->write_tail = ring_write_tail;
2139 if (INTEL_INFO(dev)->gen >= 6) {
2140 ring->mmio_base = GEN6_BSD_RING_BASE;
2141 /* gen6 bsd needs a special wa for tail updates */
2142 if (IS_GEN6(dev))
2143 ring->write_tail = gen6_bsd_ring_write_tail;
2144 ring->flush = gen6_bsd_ring_flush;
2145 ring->add_request = gen6_add_request;
2146 ring->get_seqno = gen6_ring_get_seqno;
2147 ring->set_seqno = ring_set_seqno;
2148 if (INTEL_INFO(dev)->gen >= 8) {
2149 ring->irq_enable_mask =
2150 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2151 ring->irq_get = gen8_ring_get_irq;
2152 ring->irq_put = gen8_ring_put_irq;
2153 ring->dispatch_execbuffer =
2154 gen8_ring_dispatch_execbuffer;
2155 } else {
2156 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2157 ring->irq_get = gen6_ring_get_irq;
2158 ring->irq_put = gen6_ring_put_irq;
2159 ring->dispatch_execbuffer =
2160 gen6_ring_dispatch_execbuffer;
2162 ring->semaphore.sync_to = gen6_ring_sync;
2163 ring->semaphore.signal = gen6_signal;
2165 * The current semaphore is only applied on pre-gen8 platform.
2166 * And there is no VCS2 ring on the pre-gen8 platform. So the
2167 * semaphore between VCS and VCS2 is initialized as INVALID.
2168 * Gen8 will initialize the sema between VCS2 and VCS later.
2170 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2171 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2172 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2173 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2174 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2175 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2176 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2177 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2178 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2179 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2180 } else {
2181 ring->mmio_base = BSD_RING_BASE;
2182 ring->flush = bsd_ring_flush;
2183 ring->add_request = i9xx_add_request;
2184 ring->get_seqno = ring_get_seqno;
2185 ring->set_seqno = ring_set_seqno;
2186 if (IS_GEN5(dev)) {
2187 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2188 ring->irq_get = gen5_ring_get_irq;
2189 ring->irq_put = gen5_ring_put_irq;
2190 } else {
2191 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2192 ring->irq_get = i9xx_ring_get_irq;
2193 ring->irq_put = i9xx_ring_put_irq;
2195 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2197 ring->init = init_ring_common;
2199 return intel_init_ring_buffer(dev, ring);
2203 * Initialize the second BSD ring for Broadwell GT3.
2204 * It is noted that this only exists on Broadwell GT3.
2206 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2208 struct drm_i915_private *dev_priv = dev->dev_private;
2209 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2211 if ((INTEL_INFO(dev)->gen != 8)) {
2212 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2213 return -EINVAL;
2216 ring->name = "bds2_ring";
2217 ring->id = VCS2;
2219 ring->write_tail = ring_write_tail;
2220 ring->mmio_base = GEN8_BSD2_RING_BASE;
2221 ring->flush = gen6_bsd_ring_flush;
2222 ring->add_request = gen6_add_request;
2223 ring->get_seqno = gen6_ring_get_seqno;
2224 ring->set_seqno = ring_set_seqno;
2225 ring->irq_enable_mask =
2226 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2227 ring->irq_get = gen8_ring_get_irq;
2228 ring->irq_put = gen8_ring_put_irq;
2229 ring->dispatch_execbuffer =
2230 gen8_ring_dispatch_execbuffer;
2231 ring->semaphore.sync_to = gen6_ring_sync;
2232 ring->semaphore.signal = gen6_signal;
2234 * The current semaphore is only applied on the pre-gen8. And there
2235 * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2236 * between VCS2 and other ring is initialized as invalid.
2237 * Gen8 will initialize the sema between VCS2 and other ring later.
2239 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2240 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2241 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2242 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2243 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2244 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2245 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2246 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2247 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2248 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2250 ring->init = init_ring_common;
2252 return intel_init_ring_buffer(dev, ring);
2255 int intel_init_blt_ring_buffer(struct drm_device *dev)
2257 struct drm_i915_private *dev_priv = dev->dev_private;
2258 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2260 ring->name = "blitter ring";
2261 ring->id = BCS;
2263 ring->mmio_base = BLT_RING_BASE;
2264 ring->write_tail = ring_write_tail;
2265 ring->flush = gen6_ring_flush;
2266 ring->add_request = gen6_add_request;
2267 ring->get_seqno = gen6_ring_get_seqno;
2268 ring->set_seqno = ring_set_seqno;
2269 if (INTEL_INFO(dev)->gen >= 8) {
2270 ring->irq_enable_mask =
2271 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2272 ring->irq_get = gen8_ring_get_irq;
2273 ring->irq_put = gen8_ring_put_irq;
2274 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2275 } else {
2276 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2277 ring->irq_get = gen6_ring_get_irq;
2278 ring->irq_put = gen6_ring_put_irq;
2279 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2281 ring->semaphore.sync_to = gen6_ring_sync;
2282 ring->semaphore.signal = gen6_signal;
2284 * The current semaphore is only applied on pre-gen8 platform. And
2285 * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2286 * between BCS and VCS2 is initialized as INVALID.
2287 * Gen8 will initialize the sema between BCS and VCS2 later.
2289 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2290 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2291 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2292 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2293 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2294 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2295 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2296 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2297 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2298 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2299 ring->init = init_ring_common;
2301 return intel_init_ring_buffer(dev, ring);
2304 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2306 struct drm_i915_private *dev_priv = dev->dev_private;
2307 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2309 ring->name = "video enhancement ring";
2310 ring->id = VECS;
2312 ring->mmio_base = VEBOX_RING_BASE;
2313 ring->write_tail = ring_write_tail;
2314 ring->flush = gen6_ring_flush;
2315 ring->add_request = gen6_add_request;
2316 ring->get_seqno = gen6_ring_get_seqno;
2317 ring->set_seqno = ring_set_seqno;
2319 if (INTEL_INFO(dev)->gen >= 8) {
2320 ring->irq_enable_mask =
2321 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2322 ring->irq_get = gen8_ring_get_irq;
2323 ring->irq_put = gen8_ring_put_irq;
2324 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2325 } else {
2326 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2327 ring->irq_get = hsw_vebox_get_irq;
2328 ring->irq_put = hsw_vebox_put_irq;
2329 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2331 ring->semaphore.sync_to = gen6_ring_sync;
2332 ring->semaphore.signal = gen6_signal;
2333 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2334 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2335 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2336 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2337 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2338 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2339 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2340 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2341 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2342 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2343 ring->init = init_ring_common;
2345 return intel_init_ring_buffer(dev, ring);
2349 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2351 int ret;
2353 if (!ring->gpu_caches_dirty)
2354 return 0;
2356 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2357 if (ret)
2358 return ret;
2360 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2362 ring->gpu_caches_dirty = false;
2363 return 0;
2367 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2369 uint32_t flush_domains;
2370 int ret;
2372 flush_domains = 0;
2373 if (ring->gpu_caches_dirty)
2374 flush_domains = I915_GEM_GPU_DOMAINS;
2376 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2377 if (ret)
2378 return ret;
2380 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2382 ring->gpu_caches_dirty = false;
2383 return 0;
2386 void
2387 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2389 int ret;
2391 if (!intel_ring_initialized(ring))
2392 return;
2394 ret = intel_ring_idle(ring);
2395 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2396 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2397 ring->name, ret);
2399 stop_ring(ring);