Only print sense data diagnostics if debugging is enabled with the
[dragonfly.git] / sys / vm / vm_fault.c
blobd8ec499a4057f361317a3dd420fc0d52d625eede
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
69 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70 * $DragonFly: src/sys/vm/vm_fault.c,v 1.44 2007/08/28 01:09:07 dillon Exp $
74 * Page fault handling module.
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
107 struct faultstate {
108 vm_page_t m;
109 vm_object_t object;
110 vm_pindex_t pindex;
111 vm_prot_t prot;
112 vm_page_t first_m;
113 vm_object_t first_object;
114 vm_prot_t first_prot;
115 vm_map_t map;
116 vm_map_entry_t entry;
117 int lookup_still_valid;
118 int didlimit;
119 int hardfault;
120 int fault_flags;
121 int map_generation;
122 boolean_t wired;
123 struct vnode *vp;
126 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
127 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
128 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
129 static int vm_fault_ratelimit(struct vmspace *);
131 static __inline void
132 release_page(struct faultstate *fs)
134 vm_page_wakeup(fs->m);
135 vm_page_deactivate(fs->m);
136 fs->m = NULL;
139 static __inline void
140 unlock_map(struct faultstate *fs)
142 if (fs->lookup_still_valid && fs->map) {
143 vm_map_lookup_done(fs->map, fs->entry, 0);
144 fs->lookup_still_valid = FALSE;
149 * Clean up after a successful call to vm_fault_object() so another call
150 * to vm_fault_object() can be made.
152 static void
153 _cleanup_successful_fault(struct faultstate *fs, int relock)
155 if (fs->object != fs->first_object) {
156 vm_page_free(fs->first_m);
157 vm_object_pip_wakeup(fs->object);
158 fs->first_m = NULL;
160 fs->object = fs->first_object;
161 if (relock && fs->lookup_still_valid == FALSE) {
162 if (fs->map)
163 vm_map_lock_read(fs->map);
164 fs->lookup_still_valid = TRUE;
168 static void
169 _unlock_things(struct faultstate *fs, int dealloc)
171 vm_object_pip_wakeup(fs->first_object);
172 _cleanup_successful_fault(fs, 0);
173 if (dealloc) {
174 vm_object_deallocate(fs->first_object);
176 unlock_map(fs);
177 if (fs->vp != NULL) {
178 vput(fs->vp);
179 fs->vp = NULL;
183 #define unlock_things(fs) _unlock_things(fs, 0)
184 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
185 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
188 * TRYPAGER
190 * Determine if the pager for the current object *might* contain the page.
192 * We only need to try the pager if this is not a default object (default
193 * objects are zero-fill and have no real pager), and if we are not taking
194 * a wiring fault or if the FS entry is wired.
196 #define TRYPAGER(fs) \
197 (fs->object->type != OBJT_DEFAULT && \
198 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
201 * vm_fault:
203 * Handle a page fault occuring at the given address, requiring the given
204 * permissions, in the map specified. If successful, the page is inserted
205 * into the associated physical map.
207 * NOTE: The given address should be truncated to the proper page address.
209 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
210 * a standard error specifying why the fault is fatal is returned.
212 * The map in question must be referenced, and remains so.
213 * The caller may hold no locks.
216 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
218 int result;
219 vm_pindex_t first_pindex;
220 struct faultstate fs;
222 mycpu->gd_cnt.v_vm_faults++;
224 fs.didlimit = 0;
225 fs.hardfault = 0;
226 fs.fault_flags = fault_flags;
228 RetryFault:
230 * Find the vm_map_entry representing the backing store and resolve
231 * the top level object and page index. This may have the side
232 * effect of executing a copy-on-write on the map entry and/or
233 * creating a shadow object, but will not COW any actual VM pages.
235 * On success fs.map is left read-locked and various other fields
236 * are initialized but not otherwise referenced or locked.
238 * NOTE! vm_map_lookup will try to upgrade the fault_type to
239 * VM_FAULT_WRITE if the map entry is a virtual page table and also
240 * writable, so we can set the 'A'accessed bit in the virtual page
241 * table entry.
243 fs.map = map;
244 result = vm_map_lookup(&fs.map, vaddr, fault_type,
245 &fs.entry, &fs.first_object,
246 &first_pindex, &fs.first_prot, &fs.wired);
249 * If the lookup failed or the map protections are incompatible,
250 * the fault generally fails. However, if the caller is trying
251 * to do a user wiring we have more work to do.
253 if (result != KERN_SUCCESS) {
254 if (result != KERN_PROTECTION_FAILURE)
255 return result;
256 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
257 return result;
260 * If we are user-wiring a r/w segment, and it is COW, then
261 * we need to do the COW operation. Note that we don't
262 * currently COW RO sections now, because it is NOT desirable
263 * to COW .text. We simply keep .text from ever being COW'ed
264 * and take the heat that one cannot debug wired .text sections.
266 result = vm_map_lookup(&fs.map, vaddr,
267 VM_PROT_READ|VM_PROT_WRITE|
268 VM_PROT_OVERRIDE_WRITE,
269 &fs.entry, &fs.first_object,
270 &first_pindex, &fs.first_prot,
271 &fs.wired);
272 if (result != KERN_SUCCESS)
273 return result;
276 * If we don't COW now, on a user wire, the user will never
277 * be able to write to the mapping. If we don't make this
278 * restriction, the bookkeeping would be nearly impossible.
280 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
281 fs.entry->max_protection &= ~VM_PROT_WRITE;
285 * fs.map is read-locked
287 * Misc checks. Save the map generation number to detect races.
289 fs.map_generation = fs.map->timestamp;
291 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
292 panic("vm_fault: fault on nofault entry, addr: %lx",
293 (u_long)vaddr);
297 * A system map entry may return a NULL object. No object means
298 * no pager means an unrecoverable kernel fault.
300 if (fs.first_object == NULL) {
301 panic("vm_fault: unrecoverable fault at %p in entry %p",
302 (void *)vaddr, fs.entry);
306 * Make a reference to this object to prevent its disposal while we
307 * are messing with it. Once we have the reference, the map is free
308 * to be diddled. Since objects reference their shadows (and copies),
309 * they will stay around as well.
311 * Bump the paging-in-progress count to prevent size changes (e.g.
312 * truncation operations) during I/O. This must be done after
313 * obtaining the vnode lock in order to avoid possible deadlocks.
315 vm_object_reference(fs.first_object);
316 fs.vp = vnode_pager_lock(fs.first_object);
317 vm_object_pip_add(fs.first_object, 1);
319 fs.lookup_still_valid = TRUE;
320 fs.first_m = NULL;
321 fs.object = fs.first_object; /* so unlock_and_deallocate works */
324 * If the entry is wired we cannot change the page protection.
326 if (fs.wired)
327 fault_type = fs.first_prot;
330 * The page we want is at (first_object, first_pindex), but if the
331 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
332 * page table to figure out the actual pindex.
334 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
335 * ONLY
337 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
338 result = vm_fault_vpagetable(&fs, &first_pindex,
339 fs.entry->aux.master_pde,
340 fault_type);
341 if (result == KERN_TRY_AGAIN)
342 goto RetryFault;
343 if (result != KERN_SUCCESS)
344 return (result);
348 * Now we have the actual (object, pindex), fault in the page. If
349 * vm_fault_object() fails it will unlock and deallocate the FS
350 * data. If it succeeds everything remains locked and fs->object
351 * will have an additinal PIP count if it is not equal to
352 * fs->first_object
354 * vm_fault_object will set fs->prot for the pmap operation. It is
355 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
356 * page can be safely written. However, it will force a read-only
357 * mapping for a read fault if the memory is managed by a virtual
358 * page table.
360 result = vm_fault_object(&fs, first_pindex, fault_type);
362 if (result == KERN_TRY_AGAIN)
363 goto RetryFault;
364 if (result != KERN_SUCCESS)
365 return (result);
368 * On success vm_fault_object() does not unlock or deallocate, and fs.m
369 * will contain a busied page.
371 * Enter the page into the pmap and do pmap-related adjustments.
373 unlock_things(&fs);
374 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
376 if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
377 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
380 vm_page_flag_clear(fs.m, PG_ZERO);
381 vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
384 * If the page is not wired down, then put it where the pageout daemon
385 * can find it.
387 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
388 if (fs.wired)
389 vm_page_wire(fs.m);
390 else
391 vm_page_unwire(fs.m, 1);
392 } else {
393 vm_page_activate(fs.m);
396 if (curthread->td_lwp) {
397 if (fs.hardfault) {
398 curthread->td_lwp->lwp_ru.ru_majflt++;
399 } else {
400 curthread->td_lwp->lwp_ru.ru_minflt++;
405 * Unlock everything, and return
407 vm_page_wakeup(fs.m);
408 vm_object_deallocate(fs.first_object);
410 return (KERN_SUCCESS);
414 * Fault in the specified virtual address in the current process map,
415 * returning a held VM page or NULL. See vm_fault_page() for more
416 * information.
418 vm_page_t
419 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
421 struct lwp *lp = curthread->td_lwp;
422 vm_page_t m;
424 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
425 fault_type, VM_FAULT_NORMAL, errorp);
426 return(m);
430 * Fault in the specified virtual address in the specified map, doing all
431 * necessary manipulation of the object store and all necessary I/O. Return
432 * a held VM page or NULL, and set *errorp. The related pmap is not
433 * updated.
435 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
436 * and marked PG_REFERENCED as well.
438 vm_page_t
439 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
440 int fault_flags, int *errorp)
442 int result;
443 vm_pindex_t first_pindex;
444 struct faultstate fs;
446 mycpu->gd_cnt.v_vm_faults++;
448 fs.didlimit = 0;
449 fs.hardfault = 0;
450 fs.fault_flags = fault_flags;
451 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
453 RetryFault:
455 * Find the vm_map_entry representing the backing store and resolve
456 * the top level object and page index. This may have the side
457 * effect of executing a copy-on-write on the map entry and/or
458 * creating a shadow object, but will not COW any actual VM pages.
460 * On success fs.map is left read-locked and various other fields
461 * are initialized but not otherwise referenced or locked.
463 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
464 * if the map entry is a virtual page table and also writable,
465 * so we can set the 'A'accessed bit in the virtual page table entry.
467 fs.map = map;
468 result = vm_map_lookup(&fs.map, vaddr, fault_type,
469 &fs.entry, &fs.first_object,
470 &first_pindex, &fs.first_prot, &fs.wired);
472 if (result != KERN_SUCCESS) {
473 *errorp = result;
474 return (NULL);
478 * fs.map is read-locked
480 * Misc checks. Save the map generation number to detect races.
482 fs.map_generation = fs.map->timestamp;
484 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
485 panic("vm_fault: fault on nofault entry, addr: %lx",
486 (u_long)vaddr);
490 * A system map entry may return a NULL object. No object means
491 * no pager means an unrecoverable kernel fault.
493 if (fs.first_object == NULL) {
494 panic("vm_fault: unrecoverable fault at %p in entry %p",
495 (void *)vaddr, fs.entry);
499 * Make a reference to this object to prevent its disposal while we
500 * are messing with it. Once we have the reference, the map is free
501 * to be diddled. Since objects reference their shadows (and copies),
502 * they will stay around as well.
504 * Bump the paging-in-progress count to prevent size changes (e.g.
505 * truncation operations) during I/O. This must be done after
506 * obtaining the vnode lock in order to avoid possible deadlocks.
508 vm_object_reference(fs.first_object);
509 fs.vp = vnode_pager_lock(fs.first_object);
510 vm_object_pip_add(fs.first_object, 1);
512 fs.lookup_still_valid = TRUE;
513 fs.first_m = NULL;
514 fs.object = fs.first_object; /* so unlock_and_deallocate works */
517 * If the entry is wired we cannot change the page protection.
519 if (fs.wired)
520 fault_type = fs.first_prot;
523 * The page we want is at (first_object, first_pindex), but if the
524 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
525 * page table to figure out the actual pindex.
527 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
528 * ONLY
530 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
531 result = vm_fault_vpagetable(&fs, &first_pindex,
532 fs.entry->aux.master_pde,
533 fault_type);
534 if (result == KERN_TRY_AGAIN)
535 goto RetryFault;
536 if (result != KERN_SUCCESS) {
537 *errorp = result;
538 return (NULL);
543 * Now we have the actual (object, pindex), fault in the page. If
544 * vm_fault_object() fails it will unlock and deallocate the FS
545 * data. If it succeeds everything remains locked and fs->object
546 * will have an additinal PIP count if it is not equal to
547 * fs->first_object
549 result = vm_fault_object(&fs, first_pindex, fault_type);
551 if (result == KERN_TRY_AGAIN)
552 goto RetryFault;
553 if (result != KERN_SUCCESS) {
554 *errorp = result;
555 return(NULL);
559 * On success vm_fault_object() does not unlock or deallocate, and fs.m
560 * will contain a busied page.
562 unlock_things(&fs);
565 * Return a held page. We are not doing any pmap manipulation so do
566 * not set PG_MAPPED. However, adjust the page flags according to
567 * the fault type because the caller may not use a managed pmapping
568 * (so we don't want to lose the fact that the page will be dirtied
569 * if a write fault was specified).
571 vm_page_hold(fs.m);
572 vm_page_flag_clear(fs.m, PG_ZERO);
573 if (fault_type & VM_PROT_WRITE)
574 vm_page_dirty(fs.m);
577 * Update the pmap. We really only have to do this if a COW
578 * occured to replace the read-only page with the new page. For
579 * now just do it unconditionally. XXX
581 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
582 vm_page_flag_set(fs.m, PG_REFERENCED|PG_MAPPED);
585 * Unbusy the page by activating it. It remains held and will not
586 * be reclaimed.
588 vm_page_activate(fs.m);
590 if (curthread->td_lwp) {
591 if (fs.hardfault) {
592 curthread->td_lwp->lwp_ru.ru_majflt++;
593 } else {
594 curthread->td_lwp->lwp_ru.ru_minflt++;
599 * Unlock everything, and return the held page.
601 vm_page_wakeup(fs.m);
602 vm_object_deallocate(fs.first_object);
604 *errorp = 0;
605 return(fs.m);
609 * Fault in the specified
611 vm_page_t
612 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
613 vm_prot_t fault_type, int fault_flags, int *errorp)
615 int result;
616 vm_pindex_t first_pindex;
617 struct faultstate fs;
618 struct vm_map_entry entry;
620 bzero(&entry, sizeof(entry));
621 entry.object.vm_object = object;
622 entry.maptype = VM_MAPTYPE_NORMAL;
623 entry.protection = entry.max_protection = fault_type;
625 fs.didlimit = 0;
626 fs.hardfault = 0;
627 fs.fault_flags = fault_flags;
628 fs.map = NULL;
629 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
631 RetryFault:
633 fs.first_object = object;
634 first_pindex = OFF_TO_IDX(offset);
635 fs.entry = &entry;
636 fs.first_prot = fault_type;
637 fs.wired = 0;
638 /*fs.map_generation = 0; unused */
641 * Make a reference to this object to prevent its disposal while we
642 * are messing with it. Once we have the reference, the map is free
643 * to be diddled. Since objects reference their shadows (and copies),
644 * they will stay around as well.
646 * Bump the paging-in-progress count to prevent size changes (e.g.
647 * truncation operations) during I/O. This must be done after
648 * obtaining the vnode lock in order to avoid possible deadlocks.
650 vm_object_reference(fs.first_object);
651 fs.vp = vnode_pager_lock(fs.first_object);
652 vm_object_pip_add(fs.first_object, 1);
654 fs.lookup_still_valid = TRUE;
655 fs.first_m = NULL;
656 fs.object = fs.first_object; /* so unlock_and_deallocate works */
658 #if 0
659 /* XXX future - ability to operate on VM object using vpagetable */
660 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
661 result = vm_fault_vpagetable(&fs, &first_pindex,
662 fs.entry->aux.master_pde,
663 fault_type);
664 if (result == KERN_TRY_AGAIN)
665 goto RetryFault;
666 if (result != KERN_SUCCESS) {
667 *errorp = result;
668 return (NULL);
671 #endif
674 * Now we have the actual (object, pindex), fault in the page. If
675 * vm_fault_object() fails it will unlock and deallocate the FS
676 * data. If it succeeds everything remains locked and fs->object
677 * will have an additinal PIP count if it is not equal to
678 * fs->first_object
680 result = vm_fault_object(&fs, first_pindex, fault_type);
682 if (result == KERN_TRY_AGAIN)
683 goto RetryFault;
684 if (result != KERN_SUCCESS) {
685 *errorp = result;
686 return(NULL);
690 * On success vm_fault_object() does not unlock or deallocate, and fs.m
691 * will contain a busied page.
693 unlock_things(&fs);
696 * Return a held page. We are not doing any pmap manipulation so do
697 * not set PG_MAPPED. However, adjust the page flags according to
698 * the fault type because the caller may not use a managed pmapping
699 * (so we don't want to lose the fact that the page will be dirtied
700 * if a write fault was specified).
702 vm_page_hold(fs.m);
703 vm_page_flag_clear(fs.m, PG_ZERO);
704 if (fault_type & VM_PROT_WRITE)
705 vm_page_dirty(fs.m);
708 * Indicate that the page was accessed.
710 vm_page_flag_set(fs.m, PG_REFERENCED);
713 * Unbusy the page by activating it. It remains held and will not
714 * be reclaimed.
716 vm_page_activate(fs.m);
718 if (curthread->td_lwp) {
719 if (fs.hardfault) {
720 mycpu->gd_cnt.v_vm_faults++;
721 curthread->td_lwp->lwp_ru.ru_majflt++;
722 } else {
723 curthread->td_lwp->lwp_ru.ru_minflt++;
728 * Unlock everything, and return the held page.
730 vm_page_wakeup(fs.m);
731 vm_object_deallocate(fs.first_object);
733 *errorp = 0;
734 return(fs.m);
738 * Translate the virtual page number (first_pindex) that is relative
739 * to the address space into a logical page number that is relative to the
740 * backing object. Use the virtual page table pointed to by (vpte).
742 * This implements an N-level page table. Any level can terminate the
743 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
744 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
746 static
748 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
749 vpte_t vpte, int fault_type)
751 struct sf_buf *sf;
752 int vshift = 32 - PAGE_SHIFT; /* page index bits remaining */
753 int result = KERN_SUCCESS;
754 vpte_t *ptep;
756 for (;;) {
758 * We cannot proceed if the vpte is not valid, not readable
759 * for a read fault, or not writable for a write fault.
761 if ((vpte & VPTE_V) == 0) {
762 unlock_and_deallocate(fs);
763 return (KERN_FAILURE);
765 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
766 unlock_and_deallocate(fs);
767 return (KERN_FAILURE);
769 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
770 unlock_and_deallocate(fs);
771 return (KERN_FAILURE);
773 if ((vpte & VPTE_PS) || vshift == 0)
774 break;
775 KKASSERT(vshift >= VPTE_PAGE_BITS);
778 * Get the page table page. Nominally we only read the page
779 * table, but since we are actively setting VPTE_M and VPTE_A,
780 * tell vm_fault_object() that we are writing it.
782 * There is currently no real need to optimize this.
784 result = vm_fault_object(fs, vpte >> PAGE_SHIFT,
785 VM_PROT_READ|VM_PROT_WRITE);
786 if (result != KERN_SUCCESS)
787 return (result);
790 * Process the returned fs.m and look up the page table
791 * entry in the page table page.
793 vshift -= VPTE_PAGE_BITS;
794 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
795 ptep = ((vpte_t *)sf_buf_kva(sf) +
796 ((*pindex >> vshift) & VPTE_PAGE_MASK));
797 vpte = *ptep;
800 * Page table write-back. If the vpte is valid for the
801 * requested operation, do a write-back to the page table.
803 * XXX VPTE_M is not set properly for page directory pages.
804 * It doesn't get set in the page directory if the page table
805 * is modified during a read access.
807 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
808 (vpte & VPTE_W)) {
809 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
810 atomic_set_int(ptep, VPTE_M|VPTE_A);
811 vm_page_dirty(fs->m);
814 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
815 (vpte & VPTE_R)) {
816 if ((vpte & VPTE_A) == 0) {
817 atomic_set_int(ptep, VPTE_A);
818 vm_page_dirty(fs->m);
821 sf_buf_free(sf);
822 vm_page_flag_set(fs->m, PG_REFERENCED);
823 vm_page_activate(fs->m);
824 vm_page_wakeup(fs->m);
825 cleanup_successful_fault(fs);
828 * Combine remaining address bits with the vpte.
830 *pindex = (vpte >> PAGE_SHIFT) +
831 (*pindex & ((1 << vshift) - 1));
832 return (KERN_SUCCESS);
837 * Do all operations required to fault-in (fs.first_object, pindex). Run
838 * through the shadow chain as necessary and do required COW or virtual
839 * copy operations. The caller has already fully resolved the vm_map_entry
840 * and, if appropriate, has created a copy-on-write layer. All we need to
841 * do is iterate the object chain.
843 * On failure (fs) is unlocked and deallocated and the caller may return or
844 * retry depending on the failure code. On success (fs) is NOT unlocked or
845 * deallocated, fs.m will contained a resolved, busied page, and fs.object
846 * will have an additional PIP count if it is not equal to fs.first_object.
848 static
850 vm_fault_object(struct faultstate *fs,
851 vm_pindex_t first_pindex, vm_prot_t fault_type)
853 vm_object_t next_object;
854 vm_page_t marray[VM_FAULT_READ];
855 vm_pindex_t pindex;
856 int faultcount;
858 fs->prot = fs->first_prot;
859 fs->object = fs->first_object;
860 pindex = first_pindex;
863 * If a read fault occurs we try to make the page writable if
864 * possible. There are three cases where we cannot make the
865 * page mapping writable:
867 * (1) The mapping is read-only or the VM object is read-only,
868 * fs->prot above will simply not have VM_PROT_WRITE set.
870 * (2) If the mapping is a virtual page table we need to be able
871 * to detect writes so we can set VPTE_M in the virtual page
872 * table.
874 * (3) If the VM page is read-only or copy-on-write, upgrading would
875 * just result in an unnecessary COW fault.
877 * VM_PROT_VPAGED is set if faulting via a virtual page table and
878 * causes adjustments to the 'M'odify bit to also turn off write
879 * access to force a re-fault.
881 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
882 if ((fault_type & VM_PROT_WRITE) == 0)
883 fs->prot &= ~VM_PROT_WRITE;
886 for (;;) {
888 * If the object is dead, we stop here
890 if (fs->object->flags & OBJ_DEAD) {
891 unlock_and_deallocate(fs);
892 return (KERN_PROTECTION_FAILURE);
896 * See if page is resident. spl protection is required
897 * to avoid an interrupt unbusy/free race against our
898 * lookup. We must hold the protection through a page
899 * allocation or busy.
901 crit_enter();
902 fs->m = vm_page_lookup(fs->object, pindex);
903 if (fs->m != NULL) {
904 int queue;
906 * Wait/Retry if the page is busy. We have to do this
907 * if the page is busy via either PG_BUSY or
908 * vm_page_t->busy because the vm_pager may be using
909 * vm_page_t->busy for pageouts ( and even pageins if
910 * it is the vnode pager ), and we could end up trying
911 * to pagein and pageout the same page simultaneously.
913 * We can theoretically allow the busy case on a read
914 * fault if the page is marked valid, but since such
915 * pages are typically already pmap'd, putting that
916 * special case in might be more effort then it is
917 * worth. We cannot under any circumstances mess
918 * around with a vm_page_t->busy page except, perhaps,
919 * to pmap it.
921 if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
922 unlock_things(fs);
923 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
924 mycpu->gd_cnt.v_intrans++;
925 vm_object_deallocate(fs->first_object);
926 crit_exit();
927 return (KERN_TRY_AGAIN);
931 * If reactivating a page from PQ_CACHE we may have
932 * to rate-limit.
934 queue = fs->m->queue;
935 vm_page_unqueue_nowakeup(fs->m);
937 if ((queue - fs->m->pc) == PQ_CACHE &&
938 vm_page_count_severe()) {
939 vm_page_activate(fs->m);
940 unlock_and_deallocate(fs);
941 vm_waitpfault();
942 crit_exit();
943 return (KERN_TRY_AGAIN);
947 * Mark page busy for other processes, and the
948 * pagedaemon. If it still isn't completely valid
949 * (readable), jump to readrest, else we found the
950 * page and can return.
952 * We can release the spl once we have marked the
953 * page busy.
955 vm_page_busy(fs->m);
956 crit_exit();
958 if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
959 fs->m->object != &kernel_object) {
960 goto readrest;
962 break; /* break to PAGE HAS BEEN FOUND */
966 * Page is not resident, If this is the search termination
967 * or the pager might contain the page, allocate a new page.
969 * NOTE: We are still in a critical section.
971 if (TRYPAGER(fs) || fs->object == fs->first_object) {
973 * If the page is beyond the object size we fail
975 if (pindex >= fs->object->size) {
976 crit_exit();
977 unlock_and_deallocate(fs);
978 return (KERN_PROTECTION_FAILURE);
982 * Ratelimit.
984 if (fs->didlimit == 0 && curproc != NULL) {
985 int limticks;
987 limticks = vm_fault_ratelimit(curproc->p_vmspace);
988 if (limticks) {
989 crit_exit();
990 unlock_and_deallocate(fs);
991 tsleep(curproc, 0, "vmrate", limticks);
992 fs->didlimit = 1;
993 return (KERN_TRY_AGAIN);
998 * Allocate a new page for this object/offset pair.
1000 fs->m = NULL;
1001 if (!vm_page_count_severe()) {
1002 fs->m = vm_page_alloc(fs->object, pindex,
1003 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1005 if (fs->m == NULL) {
1006 crit_exit();
1007 unlock_and_deallocate(fs);
1008 vm_waitpfault();
1009 return (KERN_TRY_AGAIN);
1012 crit_exit();
1014 readrest:
1016 * We have found a valid page or we have allocated a new page.
1017 * The page thus may not be valid or may not be entirely
1018 * valid.
1020 * Attempt to fault-in the page if there is a chance that the
1021 * pager has it, and potentially fault in additional pages
1022 * at the same time.
1024 * We are NOT in splvm here and if TRYPAGER is true then
1025 * fs.m will be non-NULL and will be PG_BUSY for us.
1028 if (TRYPAGER(fs)) {
1029 int rv;
1030 int reqpage;
1031 int ahead, behind;
1032 u_char behavior = vm_map_entry_behavior(fs->entry);
1034 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
1035 ahead = 0;
1036 behind = 0;
1037 } else {
1038 behind = pindex;
1039 if (behind > VM_FAULT_READ_BEHIND)
1040 behind = VM_FAULT_READ_BEHIND;
1042 ahead = fs->object->size - pindex;
1043 if (ahead < 1)
1044 ahead = 1;
1045 if (ahead > VM_FAULT_READ_AHEAD)
1046 ahead = VM_FAULT_READ_AHEAD;
1049 if ((fs->first_object->type != OBJT_DEVICE) &&
1050 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1051 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1052 pindex >= fs->entry->lastr &&
1053 pindex < fs->entry->lastr + VM_FAULT_READ))
1055 vm_pindex_t firstpindex, tmppindex;
1057 if (first_pindex < 2 * VM_FAULT_READ)
1058 firstpindex = 0;
1059 else
1060 firstpindex = first_pindex - 2 * VM_FAULT_READ;
1063 * note: partially valid pages cannot be
1064 * included in the lookahead - NFS piecemeal
1065 * writes will barf on it badly.
1067 * spl protection is required to avoid races
1068 * between the lookup and an interrupt
1069 * unbusy/free sequence occuring prior to
1070 * our busy check.
1072 crit_enter();
1073 for (tmppindex = first_pindex - 1;
1074 tmppindex >= firstpindex;
1075 --tmppindex
1077 vm_page_t mt;
1079 mt = vm_page_lookup(fs->first_object, tmppindex);
1080 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
1081 break;
1082 if (mt->busy ||
1083 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1084 mt->hold_count ||
1085 mt->wire_count)
1086 continue;
1087 if (mt->dirty == 0)
1088 vm_page_test_dirty(mt);
1089 if (mt->dirty) {
1090 vm_page_protect(mt, VM_PROT_NONE);
1091 vm_page_deactivate(mt);
1092 } else {
1093 vm_page_cache(mt);
1096 crit_exit();
1098 ahead += behind;
1099 behind = 0;
1103 * now we find out if any other pages should be paged
1104 * in at this time this routine checks to see if the
1105 * pages surrounding this fault reside in the same
1106 * object as the page for this fault. If they do,
1107 * then they are faulted in also into the object. The
1108 * array "marray" returned contains an array of
1109 * vm_page_t structs where one of them is the
1110 * vm_page_t passed to the routine. The reqpage
1111 * return value is the index into the marray for the
1112 * vm_page_t passed to the routine.
1114 * fs.m plus the additional pages are PG_BUSY'd.
1116 faultcount = vm_fault_additional_pages(
1117 fs->m, behind, ahead, marray, &reqpage);
1120 * update lastr imperfectly (we do not know how much
1121 * getpages will actually read), but good enough.
1123 fs->entry->lastr = pindex + faultcount - behind;
1126 * Call the pager to retrieve the data, if any, after
1127 * releasing the lock on the map. We hold a ref on
1128 * fs.object and the pages are PG_BUSY'd.
1130 unlock_map(fs);
1132 if (faultcount) {
1133 rv = vm_pager_get_pages(fs->object, marray,
1134 faultcount, reqpage);
1135 } else {
1136 rv = VM_PAGER_FAIL;
1139 if (rv == VM_PAGER_OK) {
1141 * Found the page. Leave it busy while we play
1142 * with it.
1146 * Relookup in case pager changed page. Pager
1147 * is responsible for disposition of old page
1148 * if moved.
1150 * XXX other code segments do relookups too.
1151 * It's a bad abstraction that needs to be
1152 * fixed/removed.
1154 fs->m = vm_page_lookup(fs->object, pindex);
1155 if (fs->m == NULL) {
1156 unlock_and_deallocate(fs);
1157 return (KERN_TRY_AGAIN);
1160 ++fs->hardfault;
1161 break; /* break to PAGE HAS BEEN FOUND */
1165 * Remove the bogus page (which does not exist at this
1166 * object/offset); before doing so, we must get back
1167 * our object lock to preserve our invariant.
1169 * Also wake up any other process that may want to bring
1170 * in this page.
1172 * If this is the top-level object, we must leave the
1173 * busy page to prevent another process from rushing
1174 * past us, and inserting the page in that object at
1175 * the same time that we are.
1177 if (rv == VM_PAGER_ERROR) {
1178 if (curproc)
1179 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1180 else
1181 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1184 * Data outside the range of the pager or an I/O error
1186 * The page may have been wired during the pagein,
1187 * e.g. by the buffer cache, and cannot simply be
1188 * freed. Call vnode_pager_freepag() to deal with it.
1191 * XXX - the check for kernel_map is a kludge to work
1192 * around having the machine panic on a kernel space
1193 * fault w/ I/O error.
1195 if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
1196 (rv == VM_PAGER_BAD)) {
1197 vnode_pager_freepage(fs->m);
1198 fs->m = NULL;
1199 unlock_and_deallocate(fs);
1200 if (rv == VM_PAGER_ERROR)
1201 return (KERN_FAILURE);
1202 else
1203 return (KERN_PROTECTION_FAILURE);
1204 /* NOT REACHED */
1206 if (fs->object != fs->first_object) {
1207 vnode_pager_freepage(fs->m);
1208 fs->m = NULL;
1210 * XXX - we cannot just fall out at this
1211 * point, m has been freed and is invalid!
1217 * We get here if the object has a default pager (or unwiring)
1218 * or the pager doesn't have the page.
1220 if (fs->object == fs->first_object)
1221 fs->first_m = fs->m;
1224 * Move on to the next object. Lock the next object before
1225 * unlocking the current one.
1227 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1228 next_object = fs->object->backing_object;
1229 if (next_object == NULL) {
1231 * If there's no object left, fill the page in the top
1232 * object with zeros.
1234 if (fs->object != fs->first_object) {
1235 vm_object_pip_wakeup(fs->object);
1237 fs->object = fs->first_object;
1238 pindex = first_pindex;
1239 fs->m = fs->first_m;
1241 fs->first_m = NULL;
1244 * Zero the page if necessary and mark it valid.
1246 if ((fs->m->flags & PG_ZERO) == 0) {
1247 vm_page_zero_fill(fs->m);
1248 } else {
1249 mycpu->gd_cnt.v_ozfod++;
1251 mycpu->gd_cnt.v_zfod++;
1252 fs->m->valid = VM_PAGE_BITS_ALL;
1253 break; /* break to PAGE HAS BEEN FOUND */
1254 } else {
1255 if (fs->object != fs->first_object) {
1256 vm_object_pip_wakeup(fs->object);
1258 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1259 fs->object = next_object;
1260 vm_object_pip_add(fs->object, 1);
1264 KASSERT((fs->m->flags & PG_BUSY) != 0,
1265 ("vm_fault: not busy after main loop"));
1268 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1269 * is held.]
1273 * If the page is being written, but isn't already owned by the
1274 * top-level object, we have to copy it into a new page owned by the
1275 * top-level object.
1277 if (fs->object != fs->first_object) {
1279 * We only really need to copy if we want to write it.
1281 if (fault_type & VM_PROT_WRITE) {
1283 * This allows pages to be virtually copied from a
1284 * backing_object into the first_object, where the
1285 * backing object has no other refs to it, and cannot
1286 * gain any more refs. Instead of a bcopy, we just
1287 * move the page from the backing object to the
1288 * first object. Note that we must mark the page
1289 * dirty in the first object so that it will go out
1290 * to swap when needed.
1292 if (
1294 * Map, if present, has not changed
1296 (fs->map == NULL ||
1297 fs->map_generation == fs->map->timestamp) &&
1299 * Only one shadow object
1301 (fs->object->shadow_count == 1) &&
1303 * No COW refs, except us
1305 (fs->object->ref_count == 1) &&
1307 * No one else can look this object up
1309 (fs->object->handle == NULL) &&
1311 * No other ways to look the object up
1313 ((fs->object->type == OBJT_DEFAULT) ||
1314 (fs->object->type == OBJT_SWAP)) &&
1316 * We don't chase down the shadow chain
1318 (fs->object == fs->first_object->backing_object) &&
1321 * grab the lock if we need to
1323 (fs->lookup_still_valid ||
1324 fs->map == NULL ||
1325 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1328 fs->lookup_still_valid = 1;
1330 * get rid of the unnecessary page
1332 vm_page_protect(fs->first_m, VM_PROT_NONE);
1333 vm_page_free(fs->first_m);
1334 fs->first_m = NULL;
1337 * grab the page and put it into the
1338 * process'es object. The page is
1339 * automatically made dirty.
1341 vm_page_rename(fs->m, fs->first_object, first_pindex);
1342 fs->first_m = fs->m;
1343 vm_page_busy(fs->first_m);
1344 fs->m = NULL;
1345 mycpu->gd_cnt.v_cow_optim++;
1346 } else {
1348 * Oh, well, lets copy it.
1350 vm_page_copy(fs->m, fs->first_m);
1353 if (fs->m) {
1355 * We no longer need the old page or object.
1357 release_page(fs);
1361 * fs->object != fs->first_object due to above
1362 * conditional
1364 vm_object_pip_wakeup(fs->object);
1367 * Only use the new page below...
1370 mycpu->gd_cnt.v_cow_faults++;
1371 fs->m = fs->first_m;
1372 fs->object = fs->first_object;
1373 pindex = first_pindex;
1374 } else {
1376 * If it wasn't a write fault avoid having to copy
1377 * the page by mapping it read-only.
1379 fs->prot &= ~VM_PROT_WRITE;
1384 * We may have had to unlock a map to do I/O. If we did then
1385 * lookup_still_valid will be FALSE. If the map generation count
1386 * also changed then all sorts of things could have happened while
1387 * we were doing the I/O and we need to retry.
1390 if (!fs->lookup_still_valid &&
1391 fs->map != NULL &&
1392 (fs->map->timestamp != fs->map_generation)) {
1393 release_page(fs);
1394 unlock_and_deallocate(fs);
1395 return (KERN_TRY_AGAIN);
1399 * Put this page into the physical map. We had to do the unlock above
1400 * because pmap_enter may cause other faults. We don't put the page
1401 * back on the active queue until later so that the page-out daemon
1402 * won't find us (yet).
1404 if (fs->prot & VM_PROT_WRITE) {
1405 vm_page_flag_set(fs->m, PG_WRITEABLE);
1406 vm_object_set_writeable_dirty(fs->m->object);
1409 * If the fault is a write, we know that this page is being
1410 * written NOW so dirty it explicitly to save on
1411 * pmap_is_modified() calls later.
1413 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1414 * if the page is already dirty to prevent data written with
1415 * the expectation of being synced from not being synced.
1416 * Likewise if this entry does not request NOSYNC then make
1417 * sure the page isn't marked NOSYNC. Applications sharing
1418 * data should use the same flags to avoid ping ponging.
1420 * Also tell the backing pager, if any, that it should remove
1421 * any swap backing since the page is now dirty.
1423 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1424 if (fs->m->dirty == 0)
1425 vm_page_flag_set(fs->m, PG_NOSYNC);
1426 } else {
1427 vm_page_flag_clear(fs->m, PG_NOSYNC);
1429 if (fs->fault_flags & VM_FAULT_DIRTY) {
1430 crit_enter();
1431 vm_page_dirty(fs->m);
1432 vm_pager_page_unswapped(fs->m);
1433 crit_exit();
1438 * Page had better still be busy. We are still locked up and
1439 * fs->object will have another PIP reference if it is not equal
1440 * to fs->first_object.
1442 KASSERT(fs->m->flags & PG_BUSY,
1443 ("vm_fault: page %p not busy!", fs->m));
1446 * Sanity check: page must be completely valid or it is not fit to
1447 * map into user space. vm_pager_get_pages() ensures this.
1449 if (fs->m->valid != VM_PAGE_BITS_ALL) {
1450 vm_page_zero_invalid(fs->m, TRUE);
1451 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1454 return (KERN_SUCCESS);
1458 * Wire down a range of virtual addresses in a map. The entry in question
1459 * should be marked in-transition and the map must be locked. We must
1460 * release the map temporarily while faulting-in the page to avoid a
1461 * deadlock. Note that the entry may be clipped while we are blocked but
1462 * will never be freed.
1465 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1467 boolean_t fictitious;
1468 vm_offset_t start;
1469 vm_offset_t end;
1470 vm_offset_t va;
1471 vm_paddr_t pa;
1472 pmap_t pmap;
1473 int rv;
1475 pmap = vm_map_pmap(map);
1476 start = entry->start;
1477 end = entry->end;
1478 fictitious = entry->object.vm_object &&
1479 (entry->object.vm_object->type == OBJT_DEVICE);
1481 vm_map_unlock(map);
1482 map->timestamp++;
1485 * We simulate a fault to get the page and enter it in the physical
1486 * map.
1488 for (va = start; va < end; va += PAGE_SIZE) {
1489 if (user_wire) {
1490 rv = vm_fault(map, va, VM_PROT_READ,
1491 VM_FAULT_USER_WIRE);
1492 } else {
1493 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1494 VM_FAULT_CHANGE_WIRING);
1496 if (rv) {
1497 while (va > start) {
1498 va -= PAGE_SIZE;
1499 if ((pa = pmap_extract(pmap, va)) == 0)
1500 continue;
1501 pmap_change_wiring(pmap, va, FALSE);
1502 if (!fictitious)
1503 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1505 vm_map_lock(map);
1506 return (rv);
1509 vm_map_lock(map);
1510 return (KERN_SUCCESS);
1514 * Unwire a range of virtual addresses in a map. The map should be
1515 * locked.
1517 void
1518 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1520 boolean_t fictitious;
1521 vm_offset_t start;
1522 vm_offset_t end;
1523 vm_offset_t va;
1524 vm_paddr_t pa;
1525 pmap_t pmap;
1527 pmap = vm_map_pmap(map);
1528 start = entry->start;
1529 end = entry->end;
1530 fictitious = entry->object.vm_object &&
1531 (entry->object.vm_object->type == OBJT_DEVICE);
1534 * Since the pages are wired down, we must be able to get their
1535 * mappings from the physical map system.
1537 for (va = start; va < end; va += PAGE_SIZE) {
1538 pa = pmap_extract(pmap, va);
1539 if (pa != 0) {
1540 pmap_change_wiring(pmap, va, FALSE);
1541 if (!fictitious)
1542 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1548 * Reduce the rate at which memory is allocated to a process based
1549 * on the perceived load on the VM system. As the load increases
1550 * the allocation burst rate goes down and the delay increases.
1552 * Rate limiting does not apply when faulting active or inactive
1553 * pages. When faulting 'cache' pages, rate limiting only applies
1554 * if the system currently has a severe page deficit.
1556 * XXX vm_pagesupply should be increased when a page is freed.
1558 * We sleep up to 1/10 of a second.
1560 static int
1561 vm_fault_ratelimit(struct vmspace *vmspace)
1563 if (vm_load_enable == 0)
1564 return(0);
1565 if (vmspace->vm_pagesupply > 0) {
1566 --vmspace->vm_pagesupply;
1567 return(0);
1569 #ifdef INVARIANTS
1570 if (vm_load_debug) {
1571 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1572 vm_load,
1573 (1000 - vm_load ) / 10, vm_load * hz / 10000,
1574 curproc->p_pid, curproc->p_comm);
1576 #endif
1577 vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1578 return(vm_load * hz / 10000);
1582 * Routine:
1583 * vm_fault_copy_entry
1584 * Function:
1585 * Copy all of the pages from a wired-down map entry to another.
1587 * In/out conditions:
1588 * The source and destination maps must be locked for write.
1589 * The source map entry must be wired down (or be a sharing map
1590 * entry corresponding to a main map entry that is wired down).
1593 void
1594 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1595 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1597 vm_object_t dst_object;
1598 vm_object_t src_object;
1599 vm_ooffset_t dst_offset;
1600 vm_ooffset_t src_offset;
1601 vm_prot_t prot;
1602 vm_offset_t vaddr;
1603 vm_page_t dst_m;
1604 vm_page_t src_m;
1606 #ifdef lint
1607 src_map++;
1608 #endif /* lint */
1610 src_object = src_entry->object.vm_object;
1611 src_offset = src_entry->offset;
1614 * Create the top-level object for the destination entry. (Doesn't
1615 * actually shadow anything - we copy the pages directly.)
1617 vm_map_entry_allocate_object(dst_entry);
1618 dst_object = dst_entry->object.vm_object;
1620 prot = dst_entry->max_protection;
1623 * Loop through all of the pages in the entry's range, copying each
1624 * one from the source object (it should be there) to the destination
1625 * object.
1627 for (vaddr = dst_entry->start, dst_offset = 0;
1628 vaddr < dst_entry->end;
1629 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1632 * Allocate a page in the destination object
1634 do {
1635 dst_m = vm_page_alloc(dst_object,
1636 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1637 if (dst_m == NULL) {
1638 vm_wait();
1640 } while (dst_m == NULL);
1643 * Find the page in the source object, and copy it in.
1644 * (Because the source is wired down, the page will be in
1645 * memory.)
1647 src_m = vm_page_lookup(src_object,
1648 OFF_TO_IDX(dst_offset + src_offset));
1649 if (src_m == NULL)
1650 panic("vm_fault_copy_wired: page missing");
1652 vm_page_copy(src_m, dst_m);
1655 * Enter it in the pmap...
1658 vm_page_flag_clear(dst_m, PG_ZERO);
1659 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1660 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1663 * Mark it no longer busy, and put it on the active list.
1665 vm_page_activate(dst_m);
1666 vm_page_wakeup(dst_m);
1672 * This routine checks around the requested page for other pages that
1673 * might be able to be faulted in. This routine brackets the viable
1674 * pages for the pages to be paged in.
1676 * Inputs:
1677 * m, rbehind, rahead
1679 * Outputs:
1680 * marray (array of vm_page_t), reqpage (index of requested page)
1682 * Return value:
1683 * number of pages in marray
1685 static int
1686 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1687 vm_page_t *marray, int *reqpage)
1689 int i,j;
1690 vm_object_t object;
1691 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1692 vm_page_t rtm;
1693 int cbehind, cahead;
1695 object = m->object;
1696 pindex = m->pindex;
1699 * we don't fault-ahead for device pager
1701 if (object->type == OBJT_DEVICE) {
1702 *reqpage = 0;
1703 marray[0] = m;
1704 return 1;
1708 * if the requested page is not available, then give up now
1711 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1712 return 0;
1715 if ((cbehind == 0) && (cahead == 0)) {
1716 *reqpage = 0;
1717 marray[0] = m;
1718 return 1;
1721 if (rahead > cahead) {
1722 rahead = cahead;
1725 if (rbehind > cbehind) {
1726 rbehind = cbehind;
1730 * try to do any readahead that we might have free pages for.
1732 if ((rahead + rbehind) >
1733 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1734 pagedaemon_wakeup();
1735 marray[0] = m;
1736 *reqpage = 0;
1737 return 1;
1741 * scan backward for the read behind pages -- in memory
1743 * Assume that if the page is not found an interrupt will not
1744 * create it. Theoretically interrupts can only remove (busy)
1745 * pages, not create new associations.
1747 if (pindex > 0) {
1748 if (rbehind > pindex) {
1749 rbehind = pindex;
1750 startpindex = 0;
1751 } else {
1752 startpindex = pindex - rbehind;
1755 crit_enter();
1756 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1757 if (vm_page_lookup( object, tpindex)) {
1758 startpindex = tpindex + 1;
1759 break;
1761 if (tpindex == 0)
1762 break;
1765 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1767 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1768 if (rtm == NULL) {
1769 crit_exit();
1770 for (j = 0; j < i; j++) {
1771 vm_page_free(marray[j]);
1773 marray[0] = m;
1774 *reqpage = 0;
1775 return 1;
1778 marray[i] = rtm;
1780 crit_exit();
1781 } else {
1782 startpindex = 0;
1783 i = 0;
1786 marray[i] = m;
1787 /* page offset of the required page */
1788 *reqpage = i;
1790 tpindex = pindex + 1;
1791 i++;
1794 * scan forward for the read ahead pages
1796 endpindex = tpindex + rahead;
1797 if (endpindex > object->size)
1798 endpindex = object->size;
1800 crit_enter();
1801 for( ; tpindex < endpindex; i++, tpindex++) {
1803 if (vm_page_lookup(object, tpindex)) {
1804 break;
1807 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1808 if (rtm == NULL) {
1809 break;
1812 marray[i] = rtm;
1814 crit_exit();
1816 /* return number of bytes of pages */
1817 return i;