1 /* $FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $ */
2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 #include "opt_inet6.h"
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/malloc.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
44 #include <sys/kernel.h>
45 #include <sys/protosw.h>
46 #include <sys/errno.h>
47 #include <sys/syslog.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/mutex.h>
52 #include <sys/thread2.h>
53 #include <sys/mutex2.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/route.h>
59 #include <net/netisr2.h>
60 #include <net/netmsg2.h>
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
70 #include <net/net_osdep.h>
72 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
73 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
75 #define SIN6(s) ((struct sockaddr_in6 *)s)
76 #define SDL(s) ((struct sockaddr_dl *)s)
79 int nd6_prune
= 1; /* walk list every 1 seconds */
80 int nd6_delay
= 5; /* delay first probe time 5 second */
81 int nd6_umaxtries
= 3; /* maximum unicast query */
82 int nd6_mmaxtries
= 3; /* maximum multicast query */
83 int nd6_useloopback
= 1; /* use loopback interface for local traffic */
84 int nd6_gctimer
= (60 * 60 * 24); /* 1 day: garbage collection timer */
86 /* preventing too many loops in ND option parsing */
87 int nd6_maxndopt
= 10; /* max # of ND options allowed */
89 int nd6_maxnudhint
= 0; /* max # of subsequent upper layer hints */
98 static int nd6_inuse
, nd6_allocated
;
100 struct llinfo_nd6 llinfo_nd6
= {&llinfo_nd6
, &llinfo_nd6
};
101 struct nd_drhead nd_defrouter
;
102 struct nd_prhead nd_prefix
= { 0 };
103 struct mtx nd6_mtx
= MTX_INITIALIZER("nd6");
105 int nd6_recalc_reachtm_interval
= ND6_RECALC_REACHTM_INTERVAL
;
106 static struct sockaddr_in6 all1_sa
;
108 static void nd6_setmtu0 (struct ifnet
*, struct nd_ifinfo
*);
109 static int regen_tmpaddr (struct in6_ifaddr
*);
110 static void nd6_slowtimo(void *);
111 static void nd6_slowtimo_dispatch(netmsg_t
);
112 static void nd6_timer(void *);
113 static void nd6_timer_dispatch(netmsg_t
);
115 static struct callout nd6_slowtimo_ch
;
116 static struct netmsg_base nd6_slowtimo_netmsg
;
118 static struct callout nd6_timer_ch
;
119 static struct netmsg_base nd6_timer_netmsg
;
124 static int nd6_init_done
= 0;
128 log(LOG_NOTICE
, "nd6_init called more than once(ignored)\n");
132 all1_sa
.sin6_family
= AF_INET6
;
133 all1_sa
.sin6_len
= sizeof(struct sockaddr_in6
);
134 for (i
= 0; i
< sizeof(all1_sa
.sin6_addr
); i
++)
135 all1_sa
.sin6_addr
.s6_addr
[i
] = 0xff;
137 /* initialization of the default router list */
138 TAILQ_INIT(&nd_defrouter
);
143 callout_init_mp(&nd6_slowtimo_ch
);
144 netmsg_init(&nd6_slowtimo_netmsg
, NULL
, &netisr_adone_rport
,
145 MSGF_PRIORITY
, nd6_slowtimo_dispatch
);
146 callout_reset_bycpu(&nd6_slowtimo_ch
, ND6_SLOWTIMER_INTERVAL
* hz
,
147 nd6_slowtimo
, NULL
, 0);
151 nd6_ifattach(struct ifnet
*ifp
)
153 struct nd_ifinfo
*nd
;
155 nd
= (struct nd_ifinfo
*)kmalloc(sizeof(*nd
), M_IP6NDP
,
160 nd
->chlim
= IPV6_DEFHLIM
;
161 nd
->basereachable
= REACHABLE_TIME
;
162 nd
->reachable
= ND_COMPUTE_RTIME(nd
->basereachable
);
163 nd
->retrans
= RETRANS_TIMER
;
166 * Note that the default value of ip6_accept_rtadv is 0, which means
167 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
170 nd
->flags
= (ND6_IFF_PERFORMNUD
| ND6_IFF_ACCEPT_RTADV
);
172 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
173 nd6_setmtu0(ifp
, nd
);
178 nd6_ifdetach(struct nd_ifinfo
*nd
)
184 * Reset ND level link MTU. This function is called when the physical MTU
185 * changes, which means we might have to adjust the ND level MTU.
188 nd6_setmtu(struct ifnet
*ifp
)
190 nd6_setmtu0(ifp
, ND_IFINFO(ifp
));
193 struct netmsg_nd6setmtu
{
194 struct netmsg_base nmsg
;
196 struct nd_ifinfo
*ndi
;
199 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
201 nd6_setmtu0_dispatch(netmsg_t msg
)
203 struct netmsg_nd6setmtu
*nmsg
= (struct netmsg_nd6setmtu
*)msg
;
204 struct ifnet
*ifp
= nmsg
->ifp
;
205 struct nd_ifinfo
*ndi
= nmsg
->ndi
;
208 omaxmtu
= ndi
->maxmtu
;
210 switch (ifp
->if_type
) {
212 ndi
->maxmtu
= MIN(ETHERMTU
, ifp
->if_mtu
);
214 case IFT_IEEE1394
: /* XXX should be IEEE1394MTU(1500) */
215 ndi
->maxmtu
= MIN(ETHERMTU
, ifp
->if_mtu
);
218 case IFT_IEEE80211
: /* XXX should be IEEE80211MTU(1500) */
219 ndi
->maxmtu
= MIN(ETHERMTU
, ifp
->if_mtu
);
223 ndi
->maxmtu
= ifp
->if_mtu
;
228 * Decreasing the interface MTU under IPV6 minimum MTU may cause
229 * undesirable situation. We thus notify the operator of the change
230 * explicitly. The check for omaxmtu is necessary to restrict the
231 * log to the case of changing the MTU, not initializing it.
233 if (omaxmtu
>= IPV6_MMTU
&& ndi
->maxmtu
< IPV6_MMTU
) {
234 log(LOG_NOTICE
, "nd6_setmtu0: "
235 "new link MTU on %s (%lu) is too small for IPv6\n",
236 if_name(ifp
), (unsigned long)ndi
->maxmtu
);
239 if (ndi
->maxmtu
> in6_maxmtu
)
240 in6_setmaxmtu(); /* check all interfaces just in case */
242 lwkt_replymsg(&nmsg
->nmsg
.lmsg
, 0);
246 nd6_setmtu0(struct ifnet
*ifp
, struct nd_ifinfo
*ndi
)
248 struct netmsg_nd6setmtu nmsg
;
250 netmsg_init(&nmsg
.nmsg
, NULL
, &curthread
->td_msgport
, 0,
251 nd6_setmtu0_dispatch
);
254 lwkt_domsg(netisr_cpuport(0), &nmsg
.nmsg
.lmsg
, 0);
258 nd6_option_init(void *opt
, int icmp6len
, union nd_opts
*ndopts
)
260 bzero(ndopts
, sizeof(*ndopts
));
261 ndopts
->nd_opts_search
= (struct nd_opt_hdr
*)opt
;
263 = (struct nd_opt_hdr
*)(((u_char
*)opt
) + icmp6len
);
266 ndopts
->nd_opts_done
= 1;
267 ndopts
->nd_opts_search
= NULL
;
272 * Take one ND option.
275 nd6_option(union nd_opts
*ndopts
)
277 struct nd_opt_hdr
*nd_opt
;
281 panic("ndopts == NULL in nd6_option");
282 if (!ndopts
->nd_opts_last
)
283 panic("uninitialized ndopts in nd6_option");
284 if (!ndopts
->nd_opts_search
)
286 if (ndopts
->nd_opts_done
)
289 nd_opt
= ndopts
->nd_opts_search
;
291 /* make sure nd_opt_len is inside the buffer */
292 if ((caddr_t
)&nd_opt
->nd_opt_len
>= (caddr_t
)ndopts
->nd_opts_last
) {
293 bzero(ndopts
, sizeof(*ndopts
));
297 olen
= nd_opt
->nd_opt_len
<< 3;
300 * Message validation requires that all included
301 * options have a length that is greater than zero.
303 bzero(ndopts
, sizeof(*ndopts
));
307 ndopts
->nd_opts_search
= (struct nd_opt_hdr
*)((caddr_t
)nd_opt
+ olen
);
308 if (ndopts
->nd_opts_search
> ndopts
->nd_opts_last
) {
309 /* option overruns the end of buffer, invalid */
310 bzero(ndopts
, sizeof(*ndopts
));
312 } else if (ndopts
->nd_opts_search
== ndopts
->nd_opts_last
) {
313 /* reached the end of options chain */
314 ndopts
->nd_opts_done
= 1;
315 ndopts
->nd_opts_search
= NULL
;
321 * Parse multiple ND options.
322 * This function is much easier to use, for ND routines that do not need
323 * multiple options of the same type.
326 nd6_options(union nd_opts
*ndopts
)
328 struct nd_opt_hdr
*nd_opt
;
332 panic("ndopts == NULL in nd6_options");
333 if (!ndopts
->nd_opts_last
)
334 panic("uninitialized ndopts in nd6_options");
335 if (!ndopts
->nd_opts_search
)
339 nd_opt
= nd6_option(ndopts
);
340 if (!nd_opt
&& !ndopts
->nd_opts_last
) {
342 * Message validation requires that all included
343 * options have a length that is greater than zero.
345 icmp6stat
.icp6s_nd_badopt
++;
346 bzero(ndopts
, sizeof(*ndopts
));
353 switch (nd_opt
->nd_opt_type
) {
354 case ND_OPT_SOURCE_LINKADDR
:
355 case ND_OPT_TARGET_LINKADDR
:
357 case ND_OPT_REDIRECTED_HEADER
:
358 if (ndopts
->nd_opt_array
[nd_opt
->nd_opt_type
]) {
360 "duplicated ND6 option found (type=%d)\n",
361 nd_opt
->nd_opt_type
));
364 ndopts
->nd_opt_array
[nd_opt
->nd_opt_type
]
368 case ND_OPT_PREFIX_INFORMATION
:
369 if (ndopts
->nd_opt_array
[nd_opt
->nd_opt_type
] == 0) {
370 ndopts
->nd_opt_array
[nd_opt
->nd_opt_type
]
373 ndopts
->nd_opts_pi_end
=
374 (struct nd_opt_prefix_info
*)nd_opt
;
378 * Unknown options must be silently ignored,
379 * to accomodate future extension to the protocol.
382 "nd6_options: unsupported option %d - "
383 "option ignored\n", nd_opt
->nd_opt_type
));
388 if (i
> nd6_maxndopt
) {
389 icmp6stat
.icp6s_nd_toomanyopt
++;
390 nd6log((LOG_INFO
, "too many loop in nd opt\n"));
394 if (ndopts
->nd_opts_done
)
402 * ND6 timer routine to expire default route list and prefix list
405 nd6_timer_dispatch(netmsg_t nmsg
)
407 struct llinfo_nd6
*ln
;
408 struct nd_defrouter
*dr
;
409 struct nd_prefix
*pr
;
411 struct in6_ifaddr
*ia6
, *nia6
;
416 lwkt_replymsg(&nmsg
->lmsg
, 0); /* reply ASAP */
421 ln
= llinfo_nd6
.ln_next
;
422 while (ln
&& ln
!= &llinfo_nd6
) {
424 struct sockaddr_in6
*dst
;
425 struct llinfo_nd6
*next
= ln
->ln_next
;
426 /* XXX: used for the DELAY case only: */
427 struct nd_ifinfo
*ndi
= NULL
;
429 if ((rt
= ln
->ln_rt
) == NULL
) {
433 if ((ifp
= rt
->rt_ifp
) == NULL
) {
437 ndi
= ND_IFINFO(ifp
);
438 dst
= (struct sockaddr_in6
*)rt_key(rt
);
440 if (ln
->ln_expire
> time_uptime
) {
447 panic("rt=0 in nd6_timer(ln=%p)", ln
);
448 if (rt
->rt_llinfo
&& (struct llinfo_nd6
*)rt
->rt_llinfo
!= ln
)
449 panic("rt_llinfo(%p) is not equal to ln(%p)",
452 panic("dst=0 in nd6_timer(ln=%p)", ln
);
454 switch (ln
->ln_state
) {
455 case ND6_LLINFO_INCOMPLETE
:
456 if (ln
->ln_asked
< nd6_mmaxtries
) {
458 ln
->ln_expire
= time_uptime
+
459 ND_IFINFO(ifp
)->retrans
/ 1000;
460 nd6_ns_output(ifp
, NULL
, &dst
->sin6_addr
,
463 struct mbuf
*m
= ln
->ln_hold
;
467 * Fake rcvif to make ICMP error
468 * more helpful in diagnosing
470 * XXX: should we consider
473 m
->m_pkthdr
.rcvif
= rt
->rt_ifp
;
475 icmp6_error(m
, ICMP6_DST_UNREACH
,
476 ICMP6_DST_UNREACH_ADDR
, 0);
482 case ND6_LLINFO_REACHABLE
:
484 ln
->ln_state
= ND6_LLINFO_STALE
;
485 ln
->ln_expire
= time_uptime
+ nd6_gctimer
;
489 case ND6_LLINFO_STALE
:
490 /* Garbage Collection(RFC 2461 5.3) */
495 case ND6_LLINFO_DELAY
:
496 if (ndi
&& (ndi
->flags
& ND6_IFF_PERFORMNUD
)) {
499 ln
->ln_state
= ND6_LLINFO_PROBE
;
500 ln
->ln_expire
= time_uptime
+
502 nd6_ns_output(ifp
, &dst
->sin6_addr
,
506 ln
->ln_state
= ND6_LLINFO_STALE
; /* XXX */
507 ln
->ln_expire
= time_uptime
+ nd6_gctimer
;
510 case ND6_LLINFO_PROBE
:
511 if (ln
->ln_asked
< nd6_umaxtries
) {
513 ln
->ln_expire
= time_uptime
+
514 ND_IFINFO(ifp
)->retrans
/ 1000;
515 nd6_ns_output(ifp
, &dst
->sin6_addr
,
516 &dst
->sin6_addr
, ln
, 0);
525 /* expire default router list */
526 dr
= TAILQ_FIRST(&nd_defrouter
);
528 if (dr
->expire
&& dr
->expire
< time_uptime
) {
529 struct nd_defrouter
*t
;
530 t
= TAILQ_NEXT(dr
, dr_entry
);
534 dr
= TAILQ_NEXT(dr
, dr_entry
);
539 * expire interface addresses.
540 * in the past the loop was inside prefix expiry processing.
541 * However, from a stricter speci-confrmance standpoint, we should
542 * rather separate address lifetimes and prefix lifetimes.
545 for (ia6
= in6_ifaddr
; ia6
; ia6
= nia6
) {
547 /* check address lifetime */
548 if (IFA6_IS_INVALID(ia6
)) {
552 * If the expiring address is temporary, try
553 * regenerating a new one. This would be useful when
554 * we suspended a laptop PC, then turned it on after a
555 * period that could invalidate all temporary
556 * addresses. Although we may have to restart the
557 * loop (see below), it must be after purging the
558 * address. Otherwise, we'd see an infinite loop of
561 if (ip6_use_tempaddr
&&
562 (ia6
->ia6_flags
& IN6_IFF_TEMPORARY
)) {
563 if (regen_tmpaddr(ia6
) == 0)
567 in6_purgeaddr(&ia6
->ia_ifa
);
570 goto addrloop
; /* XXX: see below */
572 if (IFA6_IS_DEPRECATED(ia6
)) {
573 int oldflags
= ia6
->ia6_flags
;
575 ia6
->ia6_flags
|= IN6_IFF_DEPRECATED
;
578 * If a temporary address has just become deprecated,
579 * regenerate a new one if possible.
581 if (ip6_use_tempaddr
&&
582 (ia6
->ia6_flags
& IN6_IFF_TEMPORARY
) &&
583 !(oldflags
& IN6_IFF_DEPRECATED
)) {
585 if (regen_tmpaddr(ia6
) == 0) {
587 * A new temporary address is
589 * XXX: this means the address chain
590 * has changed while we are still in
591 * the loop. Although the change
592 * would not cause disaster (because
593 * it's not a deletion, but an
594 * addition,) we'd rather restart the
595 * loop just for safety. Or does this
596 * significantly reduce performance??
603 * A new RA might have made a deprecated address
606 ia6
->ia6_flags
&= ~IN6_IFF_DEPRECATED
;
610 /* expire prefix list */
611 pr
= nd_prefix
.lh_first
;
614 * check prefix lifetime.
615 * since pltime is just for autoconf, pltime processing for
616 * prefix is not necessary.
618 if (pr
->ndpr_expire
&& pr
->ndpr_expire
< time_uptime
) {
623 * address expiration and prefix expiration are
624 * separate. NEVER perform in6_purgeaddr here.
633 mtx_unlock(&nd6_mtx
);
635 callout_reset(&nd6_timer_ch
, nd6_prune
* hz
, nd6_timer
, NULL
);
639 nd6_timer(void *arg __unused
)
641 struct lwkt_msg
*lmsg
= &nd6_timer_netmsg
.lmsg
;
643 KASSERT(mycpuid
== 0, ("not on cpu0"));
645 if (lmsg
->ms_flags
& MSGF_DONE
)
646 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg
);
653 callout_init_mp(&nd6_timer_ch
);
654 netmsg_init(&nd6_timer_netmsg
, NULL
, &netisr_adone_rport
,
655 MSGF_PRIORITY
, nd6_timer_dispatch
);
656 callout_reset_bycpu(&nd6_timer_ch
, hz
, nd6_timer
, NULL
, 0);
660 regen_tmpaddr(struct in6_ifaddr
*ia6
) /* deprecated/invalidated temporary
663 struct ifaddr_container
*ifac
;
665 struct in6_ifaddr
*public_ifa6
= NULL
;
667 ifp
= ia6
->ia_ifa
.ifa_ifp
;
668 TAILQ_FOREACH(ifac
, &ifp
->if_addrheads
[mycpuid
], ifa_link
) {
669 struct ifaddr
*ifa
= ifac
->ifa
;
670 struct in6_ifaddr
*it6
;
672 if (ifa
->ifa_addr
->sa_family
!= AF_INET6
)
675 it6
= (struct in6_ifaddr
*)ifa
;
677 /* ignore no autoconf addresses. */
678 if (!(it6
->ia6_flags
& IN6_IFF_AUTOCONF
))
681 /* ignore autoconf addresses with different prefixes. */
682 if (it6
->ia6_ndpr
== NULL
|| it6
->ia6_ndpr
!= ia6
->ia6_ndpr
)
686 * Now we are looking at an autoconf address with the same
687 * prefix as ours. If the address is temporary and is still
688 * preferred, do not create another one. It would be rare, but
689 * could happen, for example, when we resume a laptop PC after
692 if ((it6
->ia6_flags
& IN6_IFF_TEMPORARY
) &&
693 !IFA6_IS_DEPRECATED(it6
)) {
699 * This is a public autoconf address that has the same prefix
700 * as ours. If it is preferred, keep it. We can't break the
701 * loop here, because there may be a still-preferred temporary
702 * address with the prefix.
704 if (!IFA6_IS_DEPRECATED(it6
))
708 if (public_ifa6
!= NULL
) {
711 if ((e
= in6_tmpifadd(public_ifa6
, 0)) != 0) {
712 log(LOG_NOTICE
, "regen_tmpaddr: failed to create a new"
713 " tmp addr,errno=%d\n", e
);
723 * Nuke neighbor cache/prefix/default router management table, right before
727 nd6_purge(struct ifnet
*ifp
)
729 struct llinfo_nd6
*ln
, *nln
;
730 struct nd_defrouter
*dr
, *ndr
, drany
;
731 struct nd_prefix
*pr
, *npr
;
733 /* Nuke default router list entries toward ifp */
734 if ((dr
= TAILQ_FIRST(&nd_defrouter
)) != NULL
) {
736 * The first entry of the list may be stored in
737 * the routing table, so we'll delete it later.
739 for (dr
= TAILQ_NEXT(dr
, dr_entry
); dr
; dr
= ndr
) {
740 ndr
= TAILQ_NEXT(dr
, dr_entry
);
744 dr
= TAILQ_FIRST(&nd_defrouter
);
749 /* Nuke prefix list entries toward ifp */
750 for (pr
= nd_prefix
.lh_first
; pr
; pr
= npr
) {
752 if (pr
->ndpr_ifp
== ifp
) {
754 * Previously, pr->ndpr_addr is removed as well,
755 * but I strongly believe we don't have to do it.
756 * nd6_purge() is only called from in6_ifdetach(),
757 * which removes all the associated interface addresses
759 * (jinmei@kame.net 20010129)
765 /* cancel default outgoing interface setting */
766 if (nd6_defifindex
== ifp
->if_index
)
767 nd6_setdefaultiface(0);
769 if (!ip6_forwarding
&& ip6_accept_rtadv
) { /* XXX: too restrictive? */
770 /* refresh default router list */
771 bzero(&drany
, sizeof(drany
));
772 defrouter_delreq(&drany
, 0);
777 * Nuke neighbor cache entries for the ifp.
778 * Note that rt->rt_ifp may not be the same as ifp,
779 * due to KAME goto ours hack. See RTM_RESOLVE case in
780 * nd6_rtrequest(), and ip6_input().
782 ln
= llinfo_nd6
.ln_next
;
783 while (ln
&& ln
!= &llinfo_nd6
) {
785 struct sockaddr_dl
*sdl
;
789 if (rt
&& rt
->rt_gateway
&&
790 rt
->rt_gateway
->sa_family
== AF_LINK
) {
791 sdl
= (struct sockaddr_dl
*)rt
->rt_gateway
;
792 if (sdl
->sdl_index
== ifp
->if_index
)
800 nd6_lookup(struct in6_addr
*addr6
, int create
, struct ifnet
*ifp
)
803 struct sockaddr_in6 sin6
;
805 bzero(&sin6
, sizeof(sin6
));
806 sin6
.sin6_len
= sizeof(struct sockaddr_in6
);
807 sin6
.sin6_family
= AF_INET6
;
808 sin6
.sin6_addr
= *addr6
;
811 rt
= rtlookup((struct sockaddr
*)&sin6
);
813 rt
= rtpurelookup((struct sockaddr
*)&sin6
);
814 if (rt
&& !(rt
->rt_flags
& RTF_LLINFO
)) {
816 * This is the case for the default route.
817 * If we want to create a neighbor cache for the address, we
818 * should free the route for the destination and allocate an
831 * If no route is available and create is set,
832 * we allocate a host route for the destination
833 * and treat it like an interface route.
834 * This hack is necessary for a neighbor which can't
835 * be covered by our own prefix.
839 ifa
= ifaof_ifpforaddr((struct sockaddr
*)&sin6
, ifp
);
844 * Create a new route. RTF_LLINFO is necessary
845 * to create a Neighbor Cache entry for the
846 * destination in nd6_rtrequest which will be
847 * called in rtrequest via ifa->ifa_rtrequest.
849 if ((e
= rtrequest(RTM_ADD
, (struct sockaddr
*)&sin6
,
850 ifa
->ifa_addr
, (struct sockaddr
*)&all1_sa
,
851 (ifa
->ifa_flags
| RTF_HOST
| RTF_LLINFO
) &
852 ~RTF_CLONING
, &rt
)) != 0) {
854 "nd6_lookup: failed to add route for a "
855 "neighbor(%s), errno=%d\n",
856 ip6_sprintf(addr6
), e
);
861 struct llinfo_nd6
*ln
=
862 (struct llinfo_nd6
*)rt
->rt_llinfo
;
864 ln
->ln_state
= ND6_LLINFO_NOSTATE
;
871 * Validation for the entry.
872 * Note that the check for rt_llinfo is necessary because a cloned
873 * route from a parent route that has the L flag (e.g. the default
874 * route to a p2p interface) may have the flag, too, while the
875 * destination is not actually a neighbor.
876 * XXX: we can't use rt->rt_ifp to check for the interface, since
877 * it might be the loopback interface if the entry is for our
878 * own address on a non-loopback interface. Instead, we should
879 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
882 if ((rt
->rt_flags
& RTF_GATEWAY
) || !(rt
->rt_flags
& RTF_LLINFO
) ||
883 rt
->rt_gateway
->sa_family
!= AF_LINK
|| rt
->rt_llinfo
== NULL
||
884 (ifp
&& rt
->rt_ifa
->ifa_ifp
!= ifp
)) {
887 "nd6_lookup: failed to lookup %s (if = %s)\n",
888 ip6_sprintf(addr6
), ifp
? if_name(ifp
) : "unspec");
889 /* xxx more logs... kazu */
897 * Detect if a given IPv6 address identifies a neighbor on a given link.
898 * XXX: should take care of the destination of a p2p link?
901 nd6_is_addr_neighbor(struct sockaddr_in6
*addr
, struct ifnet
*ifp
)
903 struct ifaddr_container
*ifac
;
906 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
907 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
910 * A link-local address is always a neighbor.
911 * XXX: we should use the sin6_scope_id field rather than the embedded
914 if (IN6_IS_ADDR_LINKLOCAL(&addr
->sin6_addr
) &&
915 ntohs(*(u_int16_t
*)&addr
->sin6_addr
.s6_addr
[2]) == ifp
->if_index
)
919 * If the address matches one of our addresses,
920 * it should be a neighbor.
922 TAILQ_FOREACH(ifac
, &ifp
->if_addrheads
[mycpuid
], ifa_link
) {
923 struct ifaddr
*ifa
= ifac
->ifa
;
925 if (ifa
->ifa_addr
->sa_family
!= AF_INET6
)
928 for (i
= 0; i
< 4; i
++) {
929 if ((IFADDR6(ifa
).s6_addr32
[i
] ^
930 addr
->sin6_addr
.s6_addr32
[i
]) &
931 IFMASK6(ifa
).s6_addr32
[i
])
938 * Even if the address matches none of our addresses, it might be
939 * in the neighbor cache.
941 if (nd6_lookup(&addr
->sin6_addr
, 0, ifp
) != NULL
)
950 * Free an nd6 llinfo entry.
953 nd6_free(struct rtentry
*rt
)
955 struct llinfo_nd6
*ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
, *next
;
956 struct in6_addr in6
= ((struct sockaddr_in6
*)rt_key(rt
))->sin6_addr
;
957 struct nd_defrouter
*dr
;
960 * we used to have kpfctlinput(PRC_HOSTDEAD) here.
961 * even though it is not harmful, it was not really necessary.
964 if (!ip6_forwarding
&& ip6_accept_rtadv
) { /* XXX: too restrictive? */
966 dr
= defrouter_lookup(
967 &((struct sockaddr_in6
*)rt_key(rt
))->sin6_addr
,
970 if (ln
->ln_router
|| dr
) {
972 * rt6_flush must be called whether or not the neighbor
973 * is in the Default Router List.
974 * See a corresponding comment in nd6_na_input().
976 rt6_flush(&in6
, rt
->rt_ifp
);
981 * Unreachablity of a router might affect the default
982 * router selection and on-link detection of advertised
987 * Temporarily fake the state to choose a new default
988 * router and to perform on-link determination of
989 * prefixes correctly.
990 * Below the state will be set correctly,
991 * or the entry itself will be deleted.
993 ln
->ln_state
= ND6_LLINFO_INCOMPLETE
;
996 * Since defrouter_select() does not affect the
997 * on-link determination and MIP6 needs the check
998 * before the default router selection, we perform
1001 pfxlist_onlink_check();
1003 if (dr
== TAILQ_FIRST(&nd_defrouter
)) {
1005 * It is used as the current default router,
1006 * so we have to move it to the end of the
1007 * list and choose a new one.
1008 * XXX: it is not very efficient if this is
1011 TAILQ_REMOVE(&nd_defrouter
, dr
, dr_entry
);
1012 TAILQ_INSERT_TAIL(&nd_defrouter
, dr
, dr_entry
);
1017 mtx_unlock(&nd6_mtx
);
1021 * Before deleting the entry, remember the next entry as the
1022 * return value. We need this because pfxlist_onlink_check() above
1023 * might have freed other entries (particularly the old next entry) as
1024 * a side effect (XXX).
1029 * Detach the route from the routing tree and the list of neighbor
1030 * caches, and disable the route entry not to be used in already
1033 rtrequest(RTM_DELETE
, rt_key(rt
), NULL
, rt_mask(rt
), 0, NULL
);
1039 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1041 * XXX cost-effective metods?
1044 nd6_nud_hint(struct rtentry
*rt
, struct in6_addr
*dst6
, int force
)
1046 struct llinfo_nd6
*ln
;
1049 * If the caller specified "rt", use that. Otherwise, resolve the
1050 * routing table by supplied "dst6".
1055 if (!(rt
= nd6_lookup(dst6
, 0, NULL
)))
1059 if ((rt
->rt_flags
& RTF_GATEWAY
) ||
1060 !(rt
->rt_flags
& RTF_LLINFO
) ||
1061 rt
->rt_llinfo
== NULL
|| rt
->rt_gateway
== NULL
||
1062 rt
->rt_gateway
->sa_family
!= AF_LINK
) {
1063 /* This is not a host route. */
1067 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1068 if (ln
->ln_state
< ND6_LLINFO_REACHABLE
)
1072 * if we get upper-layer reachability confirmation many times,
1073 * it is possible we have false information.
1077 if (ln
->ln_byhint
> nd6_maxnudhint
)
1081 ln
->ln_state
= ND6_LLINFO_REACHABLE
;
1083 ln
->ln_expire
= time_uptime
+
1084 ND_IFINFO(rt
->rt_ifp
)->reachable
;
1088 nd6_rtrequest(int req
, struct rtentry
*rt
)
1090 struct sockaddr
*gate
= rt
->rt_gateway
;
1091 struct llinfo_nd6
*ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1092 static struct sockaddr_dl null_sdl
= {sizeof(null_sdl
), AF_LINK
};
1093 struct ifnet
*ifp
= rt
->rt_ifp
;
1096 if ((rt
->rt_flags
& RTF_GATEWAY
))
1099 if (nd6_need_cache(ifp
) == 0 && !(rt
->rt_flags
& RTF_HOST
)) {
1101 * This is probably an interface direct route for a link
1102 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1103 * We do not need special treatment below for such a route.
1104 * Moreover, the RTF_LLINFO flag which would be set below
1105 * would annoy the ndp(8) command.
1110 if (req
== RTM_RESOLVE
&&
1111 (nd6_need_cache(ifp
) == 0 || /* stf case */
1112 !nd6_is_addr_neighbor((struct sockaddr_in6
*)rt_key(rt
), ifp
))) {
1114 * FreeBSD and BSD/OS often make a cloned host route based
1115 * on a less-specific route (e.g. the default route).
1116 * If the less specific route does not have a "gateway"
1117 * (this is the case when the route just goes to a p2p or an
1118 * stf interface), we'll mistakenly make a neighbor cache for
1119 * the host route, and will see strange neighbor solicitation
1120 * for the corresponding destination. In order to avoid the
1121 * confusion, we check if the destination of the route is
1122 * a neighbor in terms of neighbor discovery, and stop the
1123 * process if not. Additionally, we remove the LLINFO flag
1124 * so that ndp(8) will not try to get the neighbor information
1125 * of the destination.
1127 rt
->rt_flags
&= ~RTF_LLINFO
;
1134 * There is no backward compatibility :)
1136 * if (!(rt->rt_flags & RTF_HOST) &&
1137 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1138 * rt->rt_flags |= RTF_CLONING;
1140 if (rt
->rt_flags
& (RTF_CLONING
| RTF_LLINFO
)) {
1142 * Case 1: This route should come from
1143 * a route to interface. RTF_LLINFO flag is set
1144 * for a host route whose destination should be
1145 * treated as on-link.
1147 rt_setgate(rt
, rt_key(rt
),
1148 (struct sockaddr
*)&null_sdl
,
1150 gate
= rt
->rt_gateway
;
1151 SDL(gate
)->sdl_type
= ifp
->if_type
;
1152 SDL(gate
)->sdl_index
= ifp
->if_index
;
1154 ln
->ln_expire
= time_uptime
;
1155 if (ln
&& ln
->ln_expire
== 0) {
1156 /* kludge for desktops */
1159 if ((rt
->rt_flags
& RTF_CLONING
))
1163 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1164 * We don't do that here since llinfo is not ready yet.
1166 * There are also couple of other things to be discussed:
1167 * - unsolicited NA code needs improvement beforehand
1168 * - RFC2461 says we MAY send multicast unsolicited NA
1169 * (7.2.6 paragraph 4), however, it also says that we
1170 * SHOULD provide a mechanism to prevent multicast NA storm.
1171 * we don't have anything like it right now.
1172 * note that the mechanism needs a mutual agreement
1173 * between proxies, which means that we need to implement
1174 * a new protocol, or a new kludge.
1175 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1176 * we need to check ip6forwarding before sending it.
1177 * (or should we allow proxy ND configuration only for
1178 * routers? there's no mention about proxy ND from hosts)
1181 /* XXX it does not work */
1182 if ((rt
->rt_flags
& RTF_ANNOUNCE
) && mycpuid
== 0) {
1184 &SIN6(rt_key(rt
))->sin6_addr
,
1185 &SIN6(rt_key(rt
))->sin6_addr
,
1186 ip6_forwarding
? ND_NA_FLAG_ROUTER
: 0,
1192 if ((ifp
->if_flags
& (IFF_POINTOPOINT
| IFF_LOOPBACK
)) == 0) {
1194 * Address resolution isn't necessary for a point to
1195 * point link, so we can skip this test for a p2p link.
1197 if (gate
->sa_family
!= AF_LINK
||
1198 gate
->sa_len
< sizeof(null_sdl
)) {
1200 "nd6_rtrequest: bad gateway value: %s\n",
1204 SDL(gate
)->sdl_type
= ifp
->if_type
;
1205 SDL(gate
)->sdl_index
= ifp
->if_index
;
1208 break; /* This happens on a route change */
1210 * Case 2: This route may come from cloning, or a manual route
1211 * add with a LL address.
1213 R_Malloc(ln
, struct llinfo_nd6
*, sizeof(*ln
));
1214 rt
->rt_llinfo
= (caddr_t
)ln
;
1216 log(LOG_DEBUG
, "nd6_rtrequest: malloc failed\n");
1221 bzero(ln
, sizeof(*ln
));
1223 /* this is required for "ndp" command. - shin */
1224 if (req
== RTM_ADD
) {
1226 * gate should have some valid AF_LINK entry,
1227 * and ln->ln_expire should have some lifetime
1228 * which is specified by ndp command.
1230 ln
->ln_state
= ND6_LLINFO_REACHABLE
;
1234 * When req == RTM_RESOLVE, rt is created and
1235 * initialized in rtrequest(), so rt_expire is 0.
1237 ln
->ln_state
= ND6_LLINFO_NOSTATE
;
1238 ln
->ln_expire
= time_uptime
;
1240 rt
->rt_flags
|= RTF_LLINFO
;
1241 ln
->ln_next
= llinfo_nd6
.ln_next
;
1242 llinfo_nd6
.ln_next
= ln
;
1243 ln
->ln_prev
= &llinfo_nd6
;
1244 ln
->ln_next
->ln_prev
= ln
;
1247 * check if rt_key(rt) is one of my address assigned
1250 ifa
= (struct ifaddr
*)in6ifa_ifpwithaddr(rt
->rt_ifp
,
1251 &SIN6(rt_key(rt
))->sin6_addr
);
1253 caddr_t macp
= nd6_ifptomac(ifp
);
1255 ln
->ln_state
= ND6_LLINFO_REACHABLE
;
1258 bcopy(macp
, LLADDR(SDL(gate
)), ifp
->if_addrlen
);
1259 SDL(gate
)->sdl_alen
= ifp
->if_addrlen
;
1261 if (nd6_useloopback
) {
1262 rt
->rt_ifp
= &loif
[0]; /* XXX */
1264 * Make sure rt_ifa be equal to the ifaddr
1265 * corresponding to the address.
1266 * We need this because when we refer
1267 * rt_ifa->ia6_flags in ip6_input, we assume
1268 * that the rt_ifa points to the address instead
1269 * of the loopback address.
1271 if (ifa
!= rt
->rt_ifa
) {
1272 IFAFREE(rt
->rt_ifa
);
1277 } else if (rt
->rt_flags
& RTF_ANNOUNCE
) {
1279 ln
->ln_state
= ND6_LLINFO_REACHABLE
;
1283 * Join solicited node multicast for proxy ND, and only
1284 * join it once on cpu0.
1286 if ((ifp
->if_flags
& IFF_MULTICAST
) && mycpuid
== 0) {
1287 struct in6_addr llsol
;
1290 llsol
= SIN6(rt_key(rt
))->sin6_addr
;
1291 llsol
.s6_addr16
[0] = htons(0xff02);
1292 llsol
.s6_addr16
[1] = htons(ifp
->if_index
);
1293 llsol
.s6_addr32
[1] = 0;
1294 llsol
.s6_addr32
[2] = htonl(1);
1295 llsol
.s6_addr8
[12] = 0xff;
1297 if (!in6_addmulti(&llsol
, ifp
, &error
)) {
1298 nd6log((LOG_ERR
, "%s: failed to join "
1299 "%s (errno=%d)\n", if_name(ifp
),
1300 ip6_sprintf(&llsol
), error
));
1310 * Leave from solicited node multicast for proxy ND, and only
1311 * leave it once on cpu0 (since we joined it once on cpu0).
1313 if ((rt
->rt_flags
& RTF_ANNOUNCE
) &&
1314 (ifp
->if_flags
& IFF_MULTICAST
) && mycpuid
== 0) {
1315 struct in6_addr llsol
;
1316 struct in6_multi
*in6m
;
1318 llsol
= SIN6(rt_key(rt
))->sin6_addr
;
1319 llsol
.s6_addr16
[0] = htons(0xff02);
1320 llsol
.s6_addr16
[1] = htons(ifp
->if_index
);
1321 llsol
.s6_addr32
[1] = 0;
1322 llsol
.s6_addr32
[2] = htonl(1);
1323 llsol
.s6_addr8
[12] = 0xff;
1325 in6m
= IN6_LOOKUP_MULTI(&llsol
, ifp
);
1330 ln
->ln_next
->ln_prev
= ln
->ln_prev
;
1331 ln
->ln_prev
->ln_next
= ln
->ln_next
;
1334 rt
->rt_flags
&= ~RTF_LLINFO
;
1336 m_freem(ln
->ln_hold
);
1342 nd6_ioctl(u_long cmd
, caddr_t data
, struct ifnet
*ifp
)
1344 struct in6_drlist
*drl
= (struct in6_drlist
*)data
;
1345 struct in6_prlist
*prl
= (struct in6_prlist
*)data
;
1346 struct in6_ndireq
*ndi
= (struct in6_ndireq
*)data
;
1347 struct in6_nbrinfo
*nbi
= (struct in6_nbrinfo
*)data
;
1348 struct in6_ndifreq
*ndif
= (struct in6_ndifreq
*)data
;
1349 struct nd_defrouter
*dr
, any
;
1350 struct nd_prefix
*pr
;
1352 int i
= 0, error
= 0;
1355 case SIOCGDRLST_IN6
:
1357 * obsolete API, use sysctl under net.inet6.icmp6
1359 bzero(drl
, sizeof(*drl
));
1361 dr
= TAILQ_FIRST(&nd_defrouter
);
1362 while (dr
&& i
< DRLSTSIZ
) {
1363 drl
->defrouter
[i
].rtaddr
= dr
->rtaddr
;
1364 if (IN6_IS_ADDR_LINKLOCAL(&drl
->defrouter
[i
].rtaddr
)) {
1365 /* XXX: need to this hack for KAME stack */
1366 drl
->defrouter
[i
].rtaddr
.s6_addr16
[1] = 0;
1369 "default router list contains a "
1370 "non-linklocal address(%s)\n",
1371 ip6_sprintf(&drl
->defrouter
[i
].rtaddr
));
1373 drl
->defrouter
[i
].flags
= dr
->flags
;
1374 drl
->defrouter
[i
].rtlifetime
= dr
->rtlifetime
;
1375 drl
->defrouter
[i
].expire
= dr
->expire
;
1376 drl
->defrouter
[i
].if_index
= dr
->ifp
->if_index
;
1378 dr
= TAILQ_NEXT(dr
, dr_entry
);
1380 mtx_unlock(&nd6_mtx
);
1382 case SIOCGPRLST_IN6
:
1384 * obsolete API, use sysctl under net.inet6.icmp6
1387 * XXX meaning of fields, especialy "raflags", is very
1388 * differnet between RA prefix list and RR/static prefix list.
1389 * how about separating ioctls into two?
1391 bzero(prl
, sizeof(*prl
));
1393 pr
= nd_prefix
.lh_first
;
1394 while (pr
&& i
< PRLSTSIZ
) {
1395 struct nd_pfxrouter
*pfr
;
1398 in6_embedscope(&prl
->prefix
[i
].prefix
,
1399 &pr
->ndpr_prefix
, NULL
, NULL
);
1400 prl
->prefix
[i
].raflags
= pr
->ndpr_raf
;
1401 prl
->prefix
[i
].prefixlen
= pr
->ndpr_plen
;
1402 prl
->prefix
[i
].vltime
= pr
->ndpr_vltime
;
1403 prl
->prefix
[i
].pltime
= pr
->ndpr_pltime
;
1404 prl
->prefix
[i
].if_index
= pr
->ndpr_ifp
->if_index
;
1405 prl
->prefix
[i
].expire
= pr
->ndpr_expire
;
1407 pfr
= pr
->ndpr_advrtrs
.lh_first
;
1411 #define RTRADDR prl->prefix[i].advrtr[j]
1412 RTRADDR
= pfr
->router
->rtaddr
;
1413 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR
)) {
1414 /* XXX: hack for KAME */
1415 RTRADDR
.s6_addr16
[1] = 0;
1418 "a router(%s) advertises "
1420 "non-link local address\n",
1421 ip6_sprintf(&RTRADDR
));
1425 pfr
= pfr
->pfr_next
;
1427 prl
->prefix
[i
].advrtrs
= j
;
1428 prl
->prefix
[i
].origin
= PR_ORIG_RA
;
1433 mtx_unlock(&nd6_mtx
);
1436 case OSIOCGIFINFO_IN6
:
1437 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1438 bzero(&ndi
->ndi
, sizeof(ndi
->ndi
));
1439 ndi
->ndi
.linkmtu
= IN6_LINKMTU(ifp
);
1440 ndi
->ndi
.maxmtu
= ND_IFINFO(ifp
)->maxmtu
;
1441 ndi
->ndi
.basereachable
= ND_IFINFO(ifp
)->basereachable
;
1442 ndi
->ndi
.reachable
= ND_IFINFO(ifp
)->reachable
;
1443 ndi
->ndi
.retrans
= ND_IFINFO(ifp
)->retrans
;
1444 ndi
->ndi
.flags
= ND_IFINFO(ifp
)->flags
;
1445 ndi
->ndi
.recalctm
= ND_IFINFO(ifp
)->recalctm
;
1446 ndi
->ndi
.chlim
= ND_IFINFO(ifp
)->chlim
;
1448 case SIOCGIFINFO_IN6
:
1449 ndi
->ndi
= *ND_IFINFO(ifp
);
1450 ndi
->ndi
.linkmtu
= IN6_LINKMTU(ifp
);
1452 case SIOCSIFINFO_FLAGS
:
1453 ND_IFINFO(ifp
)->flags
= ndi
->ndi
.flags
;
1455 case SIOCSNDFLUSH_IN6
: /* XXX: the ioctl name is confusing... */
1456 /* flush default router list */
1458 * xxx sumikawa: should not delete route if default
1459 * route equals to the top of default router list
1461 bzero(&any
, sizeof(any
));
1462 defrouter_delreq(&any
, 0);
1464 /* xxx sumikawa: flush prefix list */
1466 case SIOCSPFXFLUSH_IN6
:
1468 /* flush all the prefix advertised by routers */
1469 struct nd_prefix
*pr
, *next
;
1472 for (pr
= nd_prefix
.lh_first
; pr
; pr
= next
) {
1473 struct in6_ifaddr
*ia
, *ia_next
;
1475 next
= pr
->ndpr_next
;
1477 if (IN6_IS_ADDR_LINKLOCAL(&pr
->ndpr_prefix
.sin6_addr
))
1480 /* do we really have to remove addresses as well? */
1481 for (ia
= in6_ifaddr
; ia
; ia
= ia_next
) {
1482 /* ia might be removed. keep the next ptr. */
1483 ia_next
= ia
->ia_next
;
1485 if (!(ia
->ia6_flags
& IN6_IFF_AUTOCONF
))
1488 if (ia
->ia6_ndpr
== pr
)
1489 in6_purgeaddr(&ia
->ia_ifa
);
1493 mtx_unlock(&nd6_mtx
);
1496 case SIOCSRTRFLUSH_IN6
:
1498 /* flush all the default routers */
1499 struct nd_defrouter
*dr
, *next
;
1502 if ((dr
= TAILQ_FIRST(&nd_defrouter
)) != NULL
) {
1504 * The first entry of the list may be stored in
1505 * the routing table, so we'll delete it later.
1507 for (dr
= TAILQ_NEXT(dr
, dr_entry
); dr
; dr
= next
) {
1508 next
= TAILQ_NEXT(dr
, dr_entry
);
1511 defrtrlist_del(TAILQ_FIRST(&nd_defrouter
));
1513 mtx_unlock(&nd6_mtx
);
1516 case SIOCGNBRINFO_IN6
:
1518 struct llinfo_nd6
*ln
;
1519 struct in6_addr nb_addr
= nbi
->addr
; /* make local for safety */
1522 * XXX: KAME specific hack for scoped addresses
1523 * XXXX: for other scopes than link-local?
1525 if (IN6_IS_ADDR_LINKLOCAL(&nbi
->addr
) ||
1526 IN6_IS_ADDR_MC_LINKLOCAL(&nbi
->addr
)) {
1527 u_int16_t
*idp
= (u_int16_t
*)&nb_addr
.s6_addr
[2];
1530 *idp
= htons(ifp
->if_index
);
1534 if ((rt
= nd6_lookup(&nb_addr
, 0, ifp
)) == NULL
) {
1536 mtx_unlock(&nd6_mtx
);
1539 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1540 nbi
->state
= ln
->ln_state
;
1541 nbi
->asked
= ln
->ln_asked
;
1542 nbi
->isrouter
= ln
->ln_router
;
1543 nbi
->expire
= ln
->ln_expire
;
1544 mtx_unlock(&nd6_mtx
);
1548 case SIOCGDEFIFACE_IN6
: /* XXX: should be implemented as a sysctl? */
1549 ndif
->ifindex
= nd6_defifindex
;
1551 case SIOCSDEFIFACE_IN6
: /* XXX: should be implemented as a sysctl? */
1552 return (nd6_setdefaultiface(ndif
->ifindex
));
1558 * Create neighbor cache entry and cache link-layer address,
1559 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1562 nd6_cache_lladdr(struct ifnet
*ifp
, struct in6_addr
*from
, char *lladdr
,
1564 int type
, /* ICMP6 type */
1565 int code
/* type dependent information */)
1567 struct rtentry
*rt
= NULL
;
1568 struct llinfo_nd6
*ln
= NULL
;
1570 struct sockaddr_dl
*sdl
= NULL
;
1577 panic("ifp == NULL in nd6_cache_lladdr");
1579 panic("from == NULL in nd6_cache_lladdr");
1581 /* nothing must be updated for unspecified address */
1582 if (IN6_IS_ADDR_UNSPECIFIED(from
))
1586 * Validation about ifp->if_addrlen and lladdrlen must be done in
1589 * XXX If the link does not have link-layer adderss, what should
1590 * we do? (ifp->if_addrlen == 0)
1591 * Spec says nothing in sections for RA, RS and NA. There's small
1592 * description on it in NS section (RFC 2461 7.2.3).
1595 rt
= nd6_lookup(from
, 0, ifp
);
1598 /* nothing must be done if there's no lladdr */
1599 if (!lladdr
|| !lladdrlen
)
1603 rt
= nd6_lookup(from
, 1, ifp
);
1606 /* do nothing if static ndp is set */
1607 if (rt
->rt_flags
& RTF_STATIC
)
1614 if ((rt
->rt_flags
& (RTF_GATEWAY
| RTF_LLINFO
)) != RTF_LLINFO
) {
1619 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1622 if (!rt
->rt_gateway
)
1624 if (rt
->rt_gateway
->sa_family
!= AF_LINK
)
1626 sdl
= SDL(rt
->rt_gateway
);
1628 olladdr
= (sdl
->sdl_alen
) ? 1 : 0;
1629 if (olladdr
&& lladdr
) {
1630 if (bcmp(lladdr
, LLADDR(sdl
), ifp
->if_addrlen
))
1638 * newentry olladdr lladdr llchange (*=record)
1641 * 0 n y -- (3) * STALE
1643 * 0 y y y (5) * STALE
1644 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1645 * 1 -- y -- (7) * STALE
1648 if (lladdr
) { /* (3-5) and (7) */
1650 * Record source link-layer address
1651 * XXX is it dependent to ifp->if_type?
1653 sdl
->sdl_alen
= ifp
->if_addrlen
;
1654 bcopy(lladdr
, LLADDR(sdl
), ifp
->if_addrlen
);
1658 if ((!olladdr
&& lladdr
) || /* (3) */
1659 (olladdr
&& lladdr
&& llchange
)) { /* (5) */
1661 newstate
= ND6_LLINFO_STALE
;
1662 } else { /* (1-2,4) */
1667 if (!lladdr
) /* (6) */
1668 newstate
= ND6_LLINFO_NOSTATE
;
1670 newstate
= ND6_LLINFO_STALE
;
1675 * Update the state of the neighbor cache.
1677 ln
->ln_state
= newstate
;
1679 if (ln
->ln_state
== ND6_LLINFO_STALE
) {
1681 * XXX: since nd6_output() below will cause
1682 * state tansition to DELAY and reset the timer,
1683 * we must set the timer now, although it is actually
1686 ln
->ln_expire
= time_uptime
+ nd6_gctimer
;
1690 * we assume ifp is not a p2p here, so just
1691 * set the 2nd argument as the 1st one.
1693 nd6_output(ifp
, ifp
, ln
->ln_hold
,
1694 (struct sockaddr_in6
*)rt_key(rt
), rt
);
1697 } else if (ln
->ln_state
== ND6_LLINFO_INCOMPLETE
) {
1698 /* probe right away */
1699 ln
->ln_expire
= time_uptime
;
1704 * ICMP6 type dependent behavior.
1706 * NS: clear IsRouter if new entry
1707 * RS: clear IsRouter
1708 * RA: set IsRouter if there's lladdr
1709 * redir: clear IsRouter if new entry
1712 * The spec says that we must set IsRouter in the following cases:
1713 * - If lladdr exist, set IsRouter. This means (1-5).
1714 * - If it is old entry (!newentry), set IsRouter. This means (7).
1715 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1716 * A quetion arises for (1) case. (1) case has no lladdr in the
1717 * neighbor cache, this is similar to (6).
1718 * This case is rare but we figured that we MUST NOT set IsRouter.
1720 * newentry olladdr lladdr llchange NS RS RA redir
1722 * 0 n n -- (1) c ? s
1723 * 0 y n -- (2) c s s
1724 * 0 n y -- (3) c s s
1727 * 1 -- n -- (6) c c c s
1728 * 1 -- y -- (7) c c s c s
1732 switch (type
& 0xff) {
1733 case ND_NEIGHBOR_SOLICIT
:
1735 * New entry must have is_router flag cleared.
1737 if (is_newentry
) /* (6-7) */
1742 * If the icmp is a redirect to a better router, always set the
1743 * is_router flag. Otherwise, if the entry is newly created,
1744 * clear the flag. [RFC 2461, sec 8.3]
1746 if (code
== ND_REDIRECT_ROUTER
)
1748 else if (is_newentry
) /* (6-7) */
1751 case ND_ROUTER_SOLICIT
:
1753 * is_router flag must always be cleared.
1757 case ND_ROUTER_ADVERT
:
1759 * Mark an entry with lladdr as a router.
1761 if ((!is_newentry
&& (olladdr
|| lladdr
)) || /* (2-5) */
1762 (is_newentry
&& lladdr
)) { /* (7) */
1769 * When the link-layer address of a router changes, select the
1770 * best router again. In particular, when the neighbor entry is newly
1771 * created, it might affect the selection policy.
1772 * Question: can we restrict the first condition to the "is_newentry"
1774 * XXX: when we hear an RA from a new router with the link-layer
1775 * address option, defrouter_select() is called twice, since
1776 * defrtrlist_update called the function as well. However, I believe
1777 * we can compromise the overhead, since it only happens the first
1779 * XXX: although defrouter_select() should not have a bad effect
1780 * for those are not autoconfigured hosts, we explicitly avoid such
1783 if (do_update
&& ln
->ln_router
&& !ip6_forwarding
&& ip6_accept_rtadv
)
1790 nd6_slowtimo(void *arg __unused
)
1792 struct lwkt_msg
*lmsg
= &nd6_slowtimo_netmsg
.lmsg
;
1794 KASSERT(mycpuid
== 0, ("not on cpu0"));
1796 if (lmsg
->ms_flags
& MSGF_DONE
)
1797 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg
);
1802 nd6_slowtimo_dispatch(netmsg_t nmsg
)
1804 const struct ifnet_array
*arr
;
1805 struct nd_ifinfo
*nd6if
;
1808 ASSERT_IN_NETISR(0);
1811 lwkt_replymsg(&nmsg
->lmsg
, 0); /* reply ASAP */
1814 arr
= ifnet_array_get();
1817 for (i
= 0; i
< arr
->ifnet_count
; ++i
) {
1818 struct ifnet
*ifp
= arr
->ifnet_arr
[i
];
1820 if (ifp
->if_afdata
[AF_INET6
] == NULL
)
1822 nd6if
= ND_IFINFO(ifp
);
1823 if (nd6if
->basereachable
&& /* already initialized */
1824 (nd6if
->recalctm
-= ND6_SLOWTIMER_INTERVAL
) <= 0) {
1826 * Since reachable time rarely changes by router
1827 * advertisements, we SHOULD insure that a new random
1828 * value gets recomputed at least once every few hours.
1831 nd6if
->recalctm
= nd6_recalc_reachtm_interval
;
1832 nd6if
->reachable
= ND_COMPUTE_RTIME(nd6if
->basereachable
);
1835 mtx_unlock(&nd6_mtx
);
1837 callout_reset(&nd6_slowtimo_ch
, ND6_SLOWTIMER_INTERVAL
* hz
,
1838 nd6_slowtimo
, NULL
);
1841 #define gotoerr(e) { error = (e); goto bad;}
1844 nd6_output(struct ifnet
*ifp
, struct ifnet
*origifp
, struct mbuf
*m
,
1845 struct sockaddr_in6
*dst
, struct rtentry
*rt
)
1847 struct llinfo_nd6
*ln
= NULL
;
1850 if (IN6_IS_ADDR_MULTICAST(&dst
->sin6_addr
))
1853 if (nd6_need_cache(ifp
) == 0)
1857 * Next hop determination. This routine is derived from rt_llroute.
1860 if (!(rt
->rt_flags
& RTF_UP
)) {
1861 rt
= rtlookup((struct sockaddr
*)dst
);
1863 gotoerr(EHOSTUNREACH
);
1865 if (rt
->rt_ifp
!= ifp
) {
1866 /* XXX: loop care? */
1867 return nd6_output(ifp
, origifp
, m
, dst
, rt
);
1870 if (rt
->rt_flags
& RTF_GATEWAY
) {
1871 struct sockaddr_in6
*gw6
;
1874 * We skip link-layer address resolution and NUD
1875 * if the gateway is not a neighbor from ND point
1876 * of view, regardless of the value of nd_ifinfo.flags.
1877 * The second condition is a bit tricky; we skip
1878 * if the gateway is our own address, which is
1879 * sometimes used to install a route to a p2p link.
1881 gw6
= (struct sockaddr_in6
*)rt
->rt_gateway
;
1882 if (!nd6_is_addr_neighbor(gw6
, ifp
) ||
1883 in6ifa_ifpwithaddr(ifp
, &gw6
->sin6_addr
)) {
1885 * We allow this kind of tricky route only
1886 * when the outgoing interface is p2p.
1887 * XXX: we may need a more generic rule here.
1889 if (!(ifp
->if_flags
& IFF_POINTOPOINT
))
1890 gotoerr(EHOSTUNREACH
);
1895 if (rt
->rt_gwroute
== NULL
) {
1896 rt
->rt_gwroute
= rtlookup(rt
->rt_gateway
);
1897 if (rt
->rt_gwroute
== NULL
)
1898 gotoerr(EHOSTUNREACH
);
1899 } else if (!(rt
->rt_gwroute
->rt_flags
& RTF_UP
)) {
1900 rtfree(rt
->rt_gwroute
);
1901 rt
->rt_gwroute
= rtlookup(rt
->rt_gateway
);
1902 if (rt
->rt_gwroute
== NULL
)
1903 gotoerr(EHOSTUNREACH
);
1905 rt
= rt
->rt_gwroute
;
1910 * Address resolution or Neighbor Unreachability Detection
1912 * At this point, the destination of the packet must be a unicast
1913 * or an anycast address(i.e. not a multicast).
1916 /* Look up the neighbor cache for the nexthop */
1917 if (rt
&& (rt
->rt_flags
& RTF_LLINFO
))
1918 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1921 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1922 * the condition below is not very efficient. But we believe
1923 * it is tolerable, because this should be a rare case.
1925 if (nd6_is_addr_neighbor(dst
, ifp
) &&
1926 (rt
= nd6_lookup(&dst
->sin6_addr
, 1, ifp
)) != NULL
)
1927 ln
= (struct llinfo_nd6
*)rt
->rt_llinfo
;
1930 if (!(ifp
->if_flags
& IFF_POINTOPOINT
) &&
1931 !(ND_IFINFO(ifp
)->flags
& ND6_IFF_PERFORMNUD
)) {
1933 "nd6_output: can't allocate llinfo for %s "
1935 ip6_sprintf(&dst
->sin6_addr
), ln
, rt
);
1936 gotoerr(EIO
); /* XXX: good error? */
1939 goto sendpkt
; /* send anyway */
1942 /* We don't have to do link-layer address resolution on a p2p link. */
1943 if ((ifp
->if_flags
& IFF_POINTOPOINT
) &&
1944 ln
->ln_state
< ND6_LLINFO_REACHABLE
) {
1945 ln
->ln_state
= ND6_LLINFO_STALE
;
1946 ln
->ln_expire
= time_uptime
+ nd6_gctimer
;
1950 * The first time we send a packet to a neighbor whose entry is
1951 * STALE, we have to change the state to DELAY and a sets a timer to
1952 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1953 * neighbor unreachability detection on expiration.
1956 if (ln
->ln_state
== ND6_LLINFO_STALE
) {
1958 ln
->ln_state
= ND6_LLINFO_DELAY
;
1959 ln
->ln_expire
= time_uptime
+ nd6_delay
;
1963 * If the neighbor cache entry has a state other than INCOMPLETE
1964 * (i.e. its link-layer address is already resolved), just
1967 if (ln
->ln_state
> ND6_LLINFO_INCOMPLETE
)
1971 * There is a neighbor cache entry, but no ethernet address
1972 * response yet. Replace the held mbuf (if any) with this
1975 * This code conforms to the rate-limiting rule described in Section
1976 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1979 if (ln
->ln_state
== ND6_LLINFO_NOSTATE
) {
1981 * This neighbor cache entry was just created; change its
1982 * state to INCOMPLETE and start its life cycle.
1984 * We force an NS output below by setting ln_expire to 1
1985 * (nd6_rtrequest() could set it to the current time_uptime)
1986 * and zeroing out ln_asked (XXX this may not be necessary).
1988 ln
->ln_state
= ND6_LLINFO_INCOMPLETE
;
1993 m_freem(ln
->ln_hold
);
1995 if (ln
->ln_expire
) {
1996 if (ln
->ln_asked
< nd6_mmaxtries
&&
1997 ln
->ln_expire
< time_uptime
) {
1999 ln
->ln_expire
= time_uptime
+
2000 ND_IFINFO(ifp
)->retrans
/ 1000;
2001 nd6_ns_output(ifp
, NULL
, &dst
->sin6_addr
, ln
, 0);
2007 if (ifp
->if_flags
& IFF_LOOPBACK
)
2008 error
= ifp
->if_output(origifp
, m
, (struct sockaddr
*)dst
, rt
);
2010 error
= ifp
->if_output(ifp
, m
, (struct sockaddr
*)dst
, rt
);
2020 nd6_need_cache(struct ifnet
*ifp
)
2023 * XXX: we currently do not make neighbor cache on any interface
2024 * other than Ethernet and GIF.
2027 * - unidirectional tunnels needs no ND
2029 switch (ifp
->if_type
) {
2035 #ifdef IFT_IEEE80211
2041 case IFT_GIF
: /* XXX need more cases? */
2049 nd6_storelladdr(struct ifnet
*ifp
, struct rtentry
*rt0
, struct mbuf
*m
,
2050 struct sockaddr
*dst
, u_char
*desten
)
2052 struct sockaddr_dl
*sdl
;
2056 if (m
->m_flags
& M_MCAST
) {
2057 switch (ifp
->if_type
) {
2062 #ifdef IFT_IEEE80211
2065 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst
)->sin6_addr
,
2069 bcopy(ifp
->if_broadcastaddr
, desten
, ifp
->if_addrlen
);
2077 /* this could happen, if we could not allocate memory */
2081 if (rt_llroute(dst
, rt0
, &rt
) != 0) {
2085 if (rt
->rt_gateway
->sa_family
!= AF_LINK
) {
2086 kprintf("nd6_storelladdr: something odd happens\n");
2090 sdl
= SDL(rt
->rt_gateway
);
2091 if (sdl
->sdl_alen
== 0) {
2092 /* this should be impossible, but we bark here for debugging */
2093 kprintf("nd6_storelladdr: sdl_alen == 0\n");
2098 bcopy(LLADDR(sdl
), desten
, sdl
->sdl_alen
);
2102 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS
);
2103 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS
);
2105 SYSCTL_DECL(_net_inet6_icmp6
);
2107 SYSCTL_NODE(_net_inet6_icmp6
, ICMPV6CTL_ND6_DRLIST
, nd6_drlist
,
2108 CTLFLAG_RD
, nd6_sysctl_drlist
, "List default routers");
2109 SYSCTL_NODE(_net_inet6_icmp6
, ICMPV6CTL_ND6_PRLIST
, nd6_prlist
,
2110 CTLFLAG_RD
, nd6_sysctl_prlist
, "List prefixes");
2113 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS
)
2117 struct in6_defrouter
*d
, *de
;
2118 struct nd_defrouter
*dr
;
2124 for (dr
= TAILQ_FIRST(&nd_defrouter
); dr
;
2125 dr
= TAILQ_NEXT(dr
, dr_entry
)) {
2126 d
= (struct in6_defrouter
*)buf
;
2127 de
= (struct in6_defrouter
*)(buf
+ sizeof(buf
));
2130 bzero(d
, sizeof(*d
));
2131 d
->rtaddr
.sin6_family
= AF_INET6
;
2132 d
->rtaddr
.sin6_len
= sizeof(d
->rtaddr
);
2133 if (in6_recoverscope(&d
->rtaddr
, &dr
->rtaddr
,
2137 "default router list (%s)\n",
2138 ip6_sprintf(&dr
->rtaddr
));
2139 d
->flags
= dr
->flags
;
2140 d
->rtlifetime
= dr
->rtlifetime
;
2141 d
->expire
= dr
->expire
;
2142 d
->if_index
= dr
->ifp
->if_index
;
2144 panic("buffer too short");
2146 error
= SYSCTL_OUT(req
, buf
, sizeof(*d
));
2154 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS
)
2158 struct in6_prefix
*p
, *pe
;
2159 struct nd_prefix
*pr
;
2165 for (pr
= nd_prefix
.lh_first
; pr
; pr
= pr
->ndpr_next
) {
2168 struct sockaddr_in6
*sin6
, *s6
;
2169 struct nd_pfxrouter
*pfr
;
2171 p
= (struct in6_prefix
*)buf
;
2172 pe
= (struct in6_prefix
*)(buf
+ sizeof(buf
));
2175 bzero(p
, sizeof(*p
));
2176 sin6
= (struct sockaddr_in6
*)(p
+ 1);
2178 p
->prefix
= pr
->ndpr_prefix
;
2179 if (in6_recoverscope(&p
->prefix
,
2180 &p
->prefix
.sin6_addr
, pr
->ndpr_ifp
) != 0)
2182 "scope error in prefix list (%s)\n",
2183 ip6_sprintf(&p
->prefix
.sin6_addr
));
2184 p
->raflags
= pr
->ndpr_raf
;
2185 p
->prefixlen
= pr
->ndpr_plen
;
2186 p
->vltime
= pr
->ndpr_vltime
;
2187 p
->pltime
= pr
->ndpr_pltime
;
2188 p
->if_index
= pr
->ndpr_ifp
->if_index
;
2189 p
->expire
= pr
->ndpr_expire
;
2190 p
->refcnt
= pr
->ndpr_refcnt
;
2191 p
->flags
= pr
->ndpr_stateflags
;
2192 p
->origin
= PR_ORIG_RA
;
2194 for (pfr
= pr
->ndpr_advrtrs
.lh_first
; pfr
;
2195 pfr
= pfr
->pfr_next
) {
2196 if ((void *)&sin6
[advrtrs
+ 1] > (void *)pe
) {
2200 s6
= &sin6
[advrtrs
];
2201 bzero(s6
, sizeof(*s6
));
2202 s6
->sin6_family
= AF_INET6
;
2203 s6
->sin6_len
= sizeof(*sin6
);
2204 if (in6_recoverscope(s6
, &pfr
->router
->rtaddr
,
2205 pfr
->router
->ifp
) != 0)
2208 "prefix list (%s)\n",
2209 ip6_sprintf(&pfr
->router
->rtaddr
));
2212 p
->advrtrs
= advrtrs
;
2214 panic("buffer too short");
2217 advance
= sizeof(*p
) + sizeof(*sin6
) * advrtrs
;
2218 error
= SYSCTL_OUT(req
, buf
, advance
);