usr.sbin/makefs/hammer2: Remove redundant hammer2_inode_modify()
[dragonfly.git] / contrib / mpc / src / fma.c
blob7f5cd31b8ad5fbfd62df1bbbe96ea445b368ed8a
1 /* mpc_fma -- Fused multiply-add of three complex numbers
3 Copyright (C) 2011, 2012 INRIA
5 This file is part of GNU MPC.
7 GNU MPC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU Lesser General Public License as published by the
9 Free Software Foundation; either version 3 of the License, or (at your
10 option) any later version.
12 GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15 more details.
17 You should have received a copy of the GNU Lesser General Public License
18 along with this program. If not, see http://www.gnu.org/licenses/ .
21 #include "mpc-impl.h"
23 /* return a bound on the precision needed to add or subtract x and y exactly */
24 static mpfr_prec_t
25 bound_prec_addsub (mpfr_srcptr x, mpfr_srcptr y)
27 if (!mpfr_regular_p (x))
28 return mpfr_get_prec (y);
29 else if (!mpfr_regular_p (y))
30 return mpfr_get_prec (x);
31 else /* neither x nor y are NaN, Inf or zero */
33 mpfr_exp_t ex = mpfr_get_exp (x);
34 mpfr_exp_t ey = mpfr_get_exp (y);
35 mpfr_exp_t ulpx = ex - mpfr_get_prec (x);
36 mpfr_exp_t ulpy = ey - mpfr_get_prec (y);
37 return ((ex >= ey) ? ex : ey) + 1 - ((ulpx <= ulpy) ? ulpx : ulpy);
41 /* r <- a*b+c */
42 int
43 mpc_fma_naive (mpc_ptr r, mpc_srcptr a, mpc_srcptr b, mpc_srcptr c, mpc_rnd_t rnd)
45 mpfr_t rea_reb, rea_imb, ima_reb, ima_imb, tmp;
46 mpfr_prec_t pre12, pre13, pre23, pim12, pim13, pim23;
47 int inex_re, inex_im;
49 mpfr_init2 (rea_reb, mpfr_get_prec (mpc_realref(a)) + mpfr_get_prec (mpc_realref(b)));
50 mpfr_init2 (rea_imb, mpfr_get_prec (mpc_realref(a)) + mpfr_get_prec (mpc_imagref(b)));
51 mpfr_init2 (ima_reb, mpfr_get_prec (mpc_imagref(a)) + mpfr_get_prec (mpc_realref(b)));
52 mpfr_init2 (ima_imb, mpfr_get_prec (mpc_imagref(a)) + mpfr_get_prec (mpc_imagref(b)));
54 mpfr_mul (rea_reb, mpc_realref(a), mpc_realref(b), GMP_RNDZ); /* exact */
55 mpfr_mul (rea_imb, mpc_realref(a), mpc_imagref(b), GMP_RNDZ); /* exact */
56 mpfr_mul (ima_reb, mpc_imagref(a), mpc_realref(b), GMP_RNDZ); /* exact */
57 mpfr_mul (ima_imb, mpc_imagref(a), mpc_imagref(b), GMP_RNDZ); /* exact */
59 /* Re(r) <- rea_reb - ima_imb + Re(c) */
61 pre12 = bound_prec_addsub (rea_reb, ima_imb); /* bound on exact precision for
62 rea_reb - ima_imb */
63 pre13 = bound_prec_addsub (rea_reb, mpc_realref(c));
64 /* bound for rea_reb + Re(c) */
65 pre23 = bound_prec_addsub (ima_imb, mpc_realref(c));
66 /* bound for ima_imb - Re(c) */
67 if (pre12 <= pre13 && pre12 <= pre23) /* (rea_reb - ima_imb) + Re(c) */
69 mpfr_init2 (tmp, pre12);
70 mpfr_sub (tmp, rea_reb, ima_imb, GMP_RNDZ); /* exact */
71 inex_re = mpfr_add (mpc_realref(r), tmp, mpc_realref(c), MPC_RND_RE(rnd));
72 /* the only possible bad overlap is between r and c, but since we are
73 only touching the real part of both, it is ok */
75 else if (pre13 <= pre23) /* (rea_reb + Re(c)) - ima_imb */
77 mpfr_init2 (tmp, pre13);
78 mpfr_add (tmp, rea_reb, mpc_realref(c), GMP_RNDZ); /* exact */
79 inex_re = mpfr_sub (mpc_realref(r), tmp, ima_imb, MPC_RND_RE(rnd));
80 /* the only possible bad overlap is between r and c, but since we are
81 only touching the real part of both, it is ok */
83 else /* rea_reb + (Re(c) - ima_imb) */
85 mpfr_init2 (tmp, pre23);
86 mpfr_sub (tmp, mpc_realref(c), ima_imb, GMP_RNDZ); /* exact */
87 inex_re = mpfr_add (mpc_realref(r), tmp, rea_reb, MPC_RND_RE(rnd));
88 /* the only possible bad overlap is between r and c, but since we are
89 only touching the real part of both, it is ok */
92 /* Im(r) <- rea_imb + ima_reb + Im(c) */
93 pim12 = bound_prec_addsub (rea_imb, ima_reb); /* bound on exact precision for
94 rea_imb + ima_reb */
95 pim13 = bound_prec_addsub (rea_imb, mpc_imagref(c));
96 /* bound for rea_imb + Im(c) */
97 pim23 = bound_prec_addsub (ima_reb, mpc_imagref(c));
98 /* bound for ima_reb + Im(c) */
99 if (pim12 <= pim13 && pim12 <= pim23) /* (rea_imb + ima_reb) + Im(c) */
101 mpfr_set_prec (tmp, pim12);
102 mpfr_add (tmp, rea_imb, ima_reb, GMP_RNDZ); /* exact */
103 inex_im = mpfr_add (mpc_imagref(r), tmp, mpc_imagref(c), MPC_RND_IM(rnd));
104 /* the only possible bad overlap is between r and c, but since we are
105 only touching the imaginary part of both, it is ok */
107 else if (pim13 <= pim23) /* (rea_imb + Im(c)) + ima_reb */
109 mpfr_set_prec (tmp, pim13);
110 mpfr_add (tmp, rea_imb, mpc_imagref(c), GMP_RNDZ); /* exact */
111 inex_im = mpfr_add (mpc_imagref(r), tmp, ima_reb, MPC_RND_IM(rnd));
112 /* the only possible bad overlap is between r and c, but since we are
113 only touching the imaginary part of both, it is ok */
115 else /* rea_imb + (Im(c) + ima_reb) */
117 mpfr_set_prec (tmp, pre23);
118 mpfr_add (tmp, mpc_imagref(c), ima_reb, GMP_RNDZ); /* exact */
119 inex_im = mpfr_add (mpc_imagref(r), tmp, rea_imb, MPC_RND_IM(rnd));
120 /* the only possible bad overlap is between r and c, but since we are
121 only touching the imaginary part of both, it is ok */
124 mpfr_clear (rea_reb);
125 mpfr_clear (rea_imb);
126 mpfr_clear (ima_reb);
127 mpfr_clear (ima_imb);
128 mpfr_clear (tmp);
130 return MPC_INEX(inex_re, inex_im);
133 /* The algorithm is as follows:
134 - in a first pass, we use the target precision + some extra bits
135 - if it fails, we add the number of cancelled bits when adding
136 Re(a*b) and Re(c) [similarly for the imaginary part]
137 - it is fails again, we call the mpc_fma_naive function, which also
138 deals with the special cases */
140 mpc_fma (mpc_ptr r, mpc_srcptr a, mpc_srcptr b, mpc_srcptr c, mpc_rnd_t rnd)
142 mpc_t ab;
143 mpfr_prec_t pre, pim, wpre, wpim;
144 mpfr_exp_t diffre, diffim;
145 int i, inex = 0, okre = 0, okim = 0;
147 if (mpc_fin_p (a) == 0 || mpc_fin_p (b) == 0 || mpc_fin_p (c) == 0)
148 return mpc_fma_naive (r, a, b, c, rnd);
150 pre = mpfr_get_prec (mpc_realref(r));
151 pim = mpfr_get_prec (mpc_imagref(r));
152 wpre = pre + mpc_ceil_log2 (pre) + 10;
153 wpim = pim + mpc_ceil_log2 (pim) + 10;
154 mpc_init3 (ab, wpre, wpim);
155 for (i = 0; i < 2; ++i)
157 mpc_mul (ab, a, b, MPC_RNDZZ);
158 if (mpfr_zero_p (mpc_realref(ab)) || mpfr_zero_p (mpc_imagref(ab)))
159 break;
160 diffre = mpfr_get_exp (mpc_realref(ab));
161 diffim = mpfr_get_exp (mpc_imagref(ab));
162 mpc_add (ab, ab, c, MPC_RNDZZ);
163 if (mpfr_zero_p (mpc_realref(ab)) || mpfr_zero_p (mpc_imagref(ab)))
164 break;
165 diffre -= mpfr_get_exp (mpc_realref(ab));
166 diffim -= mpfr_get_exp (mpc_imagref(ab));
167 diffre = (diffre > 0 ? diffre + 1 : 1);
168 diffim = (diffim > 0 ? diffim + 1 : 1);
169 okre = diffre > (mpfr_exp_t) wpre ? 0 : mpfr_can_round (mpc_realref(ab),
170 wpre - diffre, GMP_RNDN, GMP_RNDZ,
171 pre + (MPC_RND_RE (rnd) == GMP_RNDN));
172 okim = diffim > (mpfr_exp_t) wpim ? 0 : mpfr_can_round (mpc_imagref(ab),
173 wpim - diffim, GMP_RNDN, GMP_RNDZ,
174 pim + (MPC_RND_IM (rnd) == GMP_RNDN));
175 if (okre && okim)
177 inex = mpc_set (r, ab, rnd);
178 break;
180 if (i == 1)
181 break;
182 if (okre == 0 && diffre > 1)
183 wpre += diffre;
184 if (okim == 0 && diffim > 1)
185 wpim += diffim;
186 mpfr_set_prec (mpc_realref(ab), wpre);
187 mpfr_set_prec (mpc_imagref(ab), wpim);
189 mpc_clear (ab);
190 return okre && okim ? inex : mpc_fma_naive (r, a, b, c, rnd);