kernel - Update AMD topology detection, scheduler NUMA work (TR2) (2)
[dragonfly.git] / sys / vm / vm_page.c
blob14ea14584e1248a707bee26b79f05cf03ee1818d
1 /*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 2003-2011 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * The Mach Operating System project at Carnegie-Mellon University.
9 * This code is derived from software contributed to The DragonFly Project
10 * by Matthew Dillon <dillon@backplane.com>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
44 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56 * Carnegie Mellon requests users of this software to return to
58 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
67 * Resident memory management module. The module manipulates 'VM pages'.
68 * A VM page is the core building block for memory management.
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/vnode.h>
77 #include <sys/kernel.h>
78 #include <sys/alist.h>
79 #include <sys/sysctl.h>
80 #include <sys/cpu_topology.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
95 #include <machine/inttypes.h>
96 #include <machine/md_var.h>
97 #include <machine/specialreg.h>
98 #include <machine/bus_dma.h>
100 #include <vm/vm_page2.h>
101 #include <sys/spinlock2.h>
104 * SET - Minimum required set associative size, must be a power of 2. We
105 * want this to match or exceed the set-associativeness of the cpu.
107 * GRP - A larger set that allows bleed-over into the domains of other
108 * nearby cpus. Also must be a power of 2. Used by the page zeroing
109 * code to smooth things out a bit.
111 #define PQ_SET_ASSOC 16
112 #define PQ_SET_ASSOC_MASK (PQ_SET_ASSOC - 1)
114 #define PQ_GRP_ASSOC (PQ_SET_ASSOC * 2)
115 #define PQ_GRP_ASSOC_MASK (PQ_GRP_ASSOC - 1)
117 static void vm_page_queue_init(void);
118 static void vm_page_free_wakeup(void);
119 static vm_page_t vm_page_select_cache(u_short pg_color);
120 static vm_page_t _vm_page_list_find2(int basequeue, int index);
121 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
122 static void vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes);
125 * Array of tailq lists
127 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
129 static volatile int vm_pages_waiting;
130 static struct alist vm_contig_alist;
131 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
132 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
134 static u_long vm_dma_reserved = 0;
135 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
136 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
137 "Memory reserved for DMA");
138 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
139 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
141 static int vm_contig_verbose = 0;
142 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
144 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
145 vm_pindex_t, pindex);
147 static void
148 vm_page_queue_init(void)
150 int i;
152 for (i = 0; i < PQ_L2_SIZE; i++)
153 vm_page_queues[PQ_FREE+i].cnt_offset =
154 offsetof(struct vmstats, v_free_count);
155 for (i = 0; i < PQ_L2_SIZE; i++)
156 vm_page_queues[PQ_CACHE+i].cnt_offset =
157 offsetof(struct vmstats, v_cache_count);
158 for (i = 0; i < PQ_L2_SIZE; i++)
159 vm_page_queues[PQ_INACTIVE+i].cnt_offset =
160 offsetof(struct vmstats, v_inactive_count);
161 for (i = 0; i < PQ_L2_SIZE; i++)
162 vm_page_queues[PQ_ACTIVE+i].cnt_offset =
163 offsetof(struct vmstats, v_active_count);
164 for (i = 0; i < PQ_L2_SIZE; i++)
165 vm_page_queues[PQ_HOLD+i].cnt_offset =
166 offsetof(struct vmstats, v_active_count);
167 /* PQ_NONE has no queue */
169 for (i = 0; i < PQ_COUNT; i++) {
170 TAILQ_INIT(&vm_page_queues[i].pl);
171 spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
176 * note: place in initialized data section? Is this necessary?
178 vm_pindex_t first_page = 0;
179 vm_pindex_t vm_page_array_size = 0;
180 vm_page_t vm_page_array = NULL;
181 vm_paddr_t vm_low_phys_reserved;
184 * (low level boot)
186 * Sets the page size, perhaps based upon the memory size.
187 * Must be called before any use of page-size dependent functions.
189 void
190 vm_set_page_size(void)
192 if (vmstats.v_page_size == 0)
193 vmstats.v_page_size = PAGE_SIZE;
194 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
195 panic("vm_set_page_size: page size not a power of two");
199 * (low level boot)
201 * Add a new page to the freelist for use by the system. New pages
202 * are added to both the head and tail of the associated free page
203 * queue in a bottom-up fashion, so both zero'd and non-zero'd page
204 * requests pull 'recent' adds (higher physical addresses) first.
206 * Beware that the page zeroing daemon will also be running soon after
207 * boot, moving pages from the head to the tail of the PQ_FREE queues.
209 * Must be called in a critical section.
211 static void
212 vm_add_new_page(vm_paddr_t pa)
214 struct vpgqueues *vpq;
215 vm_page_t m;
217 m = PHYS_TO_VM_PAGE(pa);
218 m->phys_addr = pa;
219 m->flags = 0;
220 m->pat_mode = PAT_WRITE_BACK;
221 m->pc = (pa >> PAGE_SHIFT);
224 * Twist for cpu localization in addition to page coloring, so
225 * different cpus selecting by m->queue get different page colors.
227 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
228 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
229 m->pc &= PQ_L2_MASK;
232 * Reserve a certain number of contiguous low memory pages for
233 * contigmalloc() to use.
235 if (pa < vm_low_phys_reserved) {
236 atomic_add_long(&vmstats.v_page_count, 1);
237 atomic_add_long(&vmstats.v_dma_pages, 1);
238 m->queue = PQ_NONE;
239 m->wire_count = 1;
240 atomic_add_long(&vmstats.v_wire_count, 1);
241 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
242 return;
246 * General page
248 m->queue = m->pc + PQ_FREE;
249 KKASSERT(m->dirty == 0);
251 atomic_add_long(&vmstats.v_page_count, 1);
252 atomic_add_long(&vmstats.v_free_count, 1);
253 vpq = &vm_page_queues[m->queue];
254 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
255 ++vpq->lcnt;
259 * (low level boot)
261 * Initializes the resident memory module.
263 * Preallocates memory for critical VM structures and arrays prior to
264 * kernel_map becoming available.
266 * Memory is allocated from (virtual2_start, virtual2_end) if available,
267 * otherwise memory is allocated from (virtual_start, virtual_end).
269 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
270 * large enough to hold vm_page_array & other structures for machines with
271 * large amounts of ram, so we want to use virtual2* when available.
273 void
274 vm_page_startup(void)
276 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
277 vm_offset_t mapped;
278 vm_pindex_t npages;
279 vm_paddr_t page_range;
280 vm_paddr_t new_end;
281 int i;
282 vm_paddr_t pa;
283 vm_paddr_t last_pa;
284 vm_paddr_t end;
285 vm_paddr_t biggestone, biggestsize;
286 vm_paddr_t total;
287 vm_page_t m;
289 total = 0;
290 biggestsize = 0;
291 biggestone = 0;
292 vaddr = round_page(vaddr);
295 * Make sure ranges are page-aligned.
297 for (i = 0; phys_avail[i].phys_end; ++i) {
298 phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
299 phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
300 if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
301 phys_avail[i].phys_end = phys_avail[i].phys_beg;
305 * Locate largest block
307 for (i = 0; phys_avail[i].phys_end; ++i) {
308 vm_paddr_t size = phys_avail[i].phys_end -
309 phys_avail[i].phys_beg;
311 if (size > biggestsize) {
312 biggestone = i;
313 biggestsize = size;
315 total += size;
317 --i; /* adjust to last entry for use down below */
319 end = phys_avail[biggestone].phys_end;
320 end = trunc_page(end);
323 * Initialize the queue headers for the free queue, the active queue
324 * and the inactive queue.
326 vm_page_queue_init();
328 #if !defined(_KERNEL_VIRTUAL)
330 * VKERNELs don't support minidumps and as such don't need
331 * vm_page_dump
333 * Allocate a bitmap to indicate that a random physical page
334 * needs to be included in a minidump.
336 * The amd64 port needs this to indicate which direct map pages
337 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
339 * However, x86 still needs this workspace internally within the
340 * minidump code. In theory, they are not needed on x86, but are
341 * included should the sf_buf code decide to use them.
343 page_range = phys_avail[i].phys_end / PAGE_SIZE;
344 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
345 end -= vm_page_dump_size;
346 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
347 VM_PROT_READ | VM_PROT_WRITE);
348 bzero((void *)vm_page_dump, vm_page_dump_size);
349 #endif
351 * Compute the number of pages of memory that will be available for
352 * use (taking into account the overhead of a page structure per
353 * page).
355 first_page = phys_avail[0].phys_beg / PAGE_SIZE;
356 page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
357 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
359 #ifndef _KERNEL_VIRTUAL
361 * (only applies to real kernels)
363 * Reserve a large amount of low memory for potential 32-bit DMA
364 * space allocations. Once device initialization is complete we
365 * release most of it, but keep (vm_dma_reserved) memory reserved
366 * for later use. Typically for X / graphics. Through trial and
367 * error we find that GPUs usually requires ~60-100MB or so.
369 * By default, 128M is left in reserve on machines with 2G+ of ram.
371 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
372 if (vm_low_phys_reserved > total / 4)
373 vm_low_phys_reserved = total / 4;
374 if (vm_dma_reserved == 0) {
375 vm_dma_reserved = 128 * 1024 * 1024; /* 128MB */
376 if (vm_dma_reserved > total / 16)
377 vm_dma_reserved = total / 16;
379 #endif
380 alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
381 ALIST_RECORDS_65536);
384 * Initialize the mem entry structures now, and put them in the free
385 * queue.
387 if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
388 kprintf("initializing vm_page_array ");
389 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
390 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
391 vm_page_array = (vm_page_t)mapped;
393 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
395 * since pmap_map on amd64 returns stuff out of a direct-map region,
396 * we have to manually add these pages to the minidump tracking so
397 * that they can be dumped, including the vm_page_array.
399 for (pa = new_end;
400 pa < phys_avail[biggestone].phys_end;
401 pa += PAGE_SIZE) {
402 dump_add_page(pa);
404 #endif
407 * Clear all of the page structures, run basic initialization so
408 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
409 * map.
411 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
412 vm_page_array_size = page_range;
413 if (bootverbose && ctob(physmem) >= 400LL*1024*1024*1024)
414 kprintf("size = 0x%zx\n", vm_page_array_size);
416 m = &vm_page_array[0];
417 pa = ptoa(first_page);
418 for (i = 0; i < page_range; ++i) {
419 spin_init(&m->spin, "vm_page");
420 m->phys_addr = pa;
421 pa += PAGE_SIZE;
422 ++m;
426 * Construct the free queue(s) in ascending order (by physical
427 * address) so that the first 16MB of physical memory is allocated
428 * last rather than first. On large-memory machines, this avoids
429 * the exhaustion of low physical memory before isa_dma_init has run.
431 vmstats.v_page_count = 0;
432 vmstats.v_free_count = 0;
433 for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
434 pa = phys_avail[i].phys_beg;
435 if (i == biggestone)
436 last_pa = new_end;
437 else
438 last_pa = phys_avail[i].phys_end;
439 while (pa < last_pa && npages-- > 0) {
440 vm_add_new_page(pa);
441 pa += PAGE_SIZE;
444 if (virtual2_start)
445 virtual2_start = vaddr;
446 else
447 virtual_start = vaddr;
448 mycpu->gd_vmstats = vmstats;
452 * Reorganize VM pages based on numa data. May be called as many times as
453 * necessary. Will reorganize the vm_page_t page color and related queue(s)
454 * to allow vm_page_alloc() to choose pages based on socket affinity.
456 * NOTE: This function is only called while we are still in UP mode, so
457 * we only need a critical section to protect the queues (which
458 * saves a lot of time, there are likely a ton of pages).
460 void
461 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
463 vm_paddr_t scan_beg;
464 vm_paddr_t scan_end;
465 vm_paddr_t ran_end;
466 struct vpgqueues *vpq;
467 vm_page_t m;
468 vm_page_t mend;
469 int i;
470 int socket_mod;
471 int socket_value;
474 * Check if no physical information, or there was only one socket
475 * (so don't waste time doing nothing!).
477 if (cpu_topology_phys_ids <= 1 ||
478 cpu_topology_core_ids == 0) {
479 return;
483 * Setup for our iteration. Note that ACPI may iterate CPU
484 * sockets starting at 0 or 1 or some other number. The
485 * cpu_topology code mod's it against the socket count.
487 ran_end = ran_beg + bytes;
489 socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
490 socket_value = (physid % cpu_topology_phys_ids) * socket_mod;
491 mend = &vm_page_array[vm_page_array_size];
493 crit_enter();
496 * Adjust cpu_topology's phys_mem parameter
498 if (root_cpu_node)
499 vm_numa_add_topology_mem(root_cpu_node, physid, (long)bytes);
502 * Adjust vm_page->pc and requeue all affected pages. The
503 * allocator will then be able to localize memory allocations
504 * to some degree.
506 for (i = 0; phys_avail[i].phys_end; ++i) {
507 scan_beg = phys_avail[i].phys_beg;
508 scan_end = phys_avail[i].phys_end;
509 if (scan_end <= ran_beg)
510 continue;
511 if (scan_beg >= ran_end)
512 continue;
513 if (scan_beg < ran_beg)
514 scan_beg = ran_beg;
515 if (scan_end > ran_end)
516 scan_end = ran_end;
517 if (atop(scan_end) > first_page + vm_page_array_size)
518 scan_end = ptoa(first_page + vm_page_array_size);
520 m = PHYS_TO_VM_PAGE(scan_beg);
521 while (scan_beg < scan_end) {
522 KKASSERT(m < mend);
523 if (m->queue != PQ_NONE) {
524 vpq = &vm_page_queues[m->queue];
525 TAILQ_REMOVE(&vpq->pl, m, pageq);
526 --vpq->lcnt;
527 /* queue doesn't change, no need to adj cnt */
528 m->queue -= m->pc;
529 m->pc %= socket_mod;
530 m->pc += socket_value;
531 m->pc &= PQ_L2_MASK;
532 m->queue += m->pc;
533 vpq = &vm_page_queues[m->queue];
534 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
535 ++vpq->lcnt;
536 /* queue doesn't change, no need to adj cnt */
537 } else {
538 m->pc %= socket_mod;
539 m->pc += socket_value;
540 m->pc &= PQ_L2_MASK;
542 scan_beg += PAGE_SIZE;
543 ++m;
546 crit_exit();
549 static
550 void
551 vm_numa_add_topology_mem(cpu_node_t *cpup, int physid, long bytes)
553 int cpuid;
554 int i;
556 switch(cpup->type) {
557 case PACKAGE_LEVEL:
558 cpup->phys_mem += bytes;
559 break;
560 case CHIP_LEVEL:
562 * All members should have the same chipid, so we only need
563 * to pull out one member.
565 if (CPUMASK_TESTNZERO(cpup->members)) {
566 cpuid = BSFCPUMASK(cpup->members);
567 if (physid ==
568 get_chip_ID_from_APICID(CPUID_TO_APICID(cpuid))) {
569 cpup->phys_mem += bytes;
572 break;
573 case CORE_LEVEL:
574 case THREAD_LEVEL:
576 * Just inherit from the parent node
578 cpup->phys_mem = cpup->parent_node->phys_mem;
579 break;
581 for (i = 0; i < MAXCPU && cpup->child_node[i]; ++i)
582 vm_numa_add_topology_mem(cpup->child_node[i], physid, bytes);
586 * We tended to reserve a ton of memory for contigmalloc(). Now that most
587 * drivers have initialized we want to return most the remaining free
588 * reserve back to the VM page queues so they can be used for normal
589 * allocations.
591 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
593 static void
594 vm_page_startup_finish(void *dummy __unused)
596 alist_blk_t blk;
597 alist_blk_t rblk;
598 alist_blk_t count;
599 alist_blk_t xcount;
600 alist_blk_t bfree;
601 vm_page_t m;
603 spin_lock(&vm_contig_spin);
604 for (;;) {
605 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
606 if (bfree <= vm_dma_reserved / PAGE_SIZE)
607 break;
608 if (count == 0)
609 break;
612 * Figure out how much of the initial reserve we have to
613 * free in order to reach our target.
615 bfree -= vm_dma_reserved / PAGE_SIZE;
616 if (count > bfree) {
617 blk += count - bfree;
618 count = bfree;
622 * Calculate the nearest power of 2 <= count.
624 for (xcount = 1; xcount <= count; xcount <<= 1)
626 xcount >>= 1;
627 blk += count - xcount;
628 count = xcount;
631 * Allocate the pages from the alist, then free them to
632 * the normal VM page queues.
634 * Pages allocated from the alist are wired. We have to
635 * busy, unwire, and free them. We must also adjust
636 * vm_low_phys_reserved before freeing any pages to prevent
637 * confusion.
639 rblk = alist_alloc(&vm_contig_alist, blk, count);
640 if (rblk != blk) {
641 kprintf("vm_page_startup_finish: Unable to return "
642 "dma space @0x%08x/%d -> 0x%08x\n",
643 blk, count, rblk);
644 break;
646 atomic_add_long(&vmstats.v_dma_pages, -(long)count);
647 spin_unlock(&vm_contig_spin);
649 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
650 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
651 while (count) {
652 vm_page_busy_wait(m, FALSE, "cpgfr");
653 vm_page_unwire(m, 0);
654 vm_page_free(m);
655 --count;
656 ++m;
658 spin_lock(&vm_contig_spin);
660 spin_unlock(&vm_contig_spin);
663 * Print out how much DMA space drivers have already allocated and
664 * how much is left over.
666 kprintf("DMA space used: %jdk, remaining available: %jdk\n",
667 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
668 (PAGE_SIZE / 1024),
669 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
671 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
672 vm_page_startup_finish, NULL);
676 * Scan comparison function for Red-Black tree scans. An inclusive
677 * (start,end) is expected. Other fields are not used.
680 rb_vm_page_scancmp(struct vm_page *p, void *data)
682 struct rb_vm_page_scan_info *info = data;
684 if (p->pindex < info->start_pindex)
685 return(-1);
686 if (p->pindex > info->end_pindex)
687 return(1);
688 return(0);
692 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
694 if (p1->pindex < p2->pindex)
695 return(-1);
696 if (p1->pindex > p2->pindex)
697 return(1);
698 return(0);
701 void
702 vm_page_init(vm_page_t m)
704 /* do nothing for now. Called from pmap_page_init() */
708 * Each page queue has its own spin lock, which is fairly optimal for
709 * allocating and freeing pages at least.
711 * The caller must hold the vm_page_spin_lock() before locking a vm_page's
712 * queue spinlock via this function. Also note that m->queue cannot change
713 * unless both the page and queue are locked.
715 static __inline
716 void
717 _vm_page_queue_spin_lock(vm_page_t m)
719 u_short queue;
721 queue = m->queue;
722 if (queue != PQ_NONE) {
723 spin_lock(&vm_page_queues[queue].spin);
724 KKASSERT(queue == m->queue);
728 static __inline
729 void
730 _vm_page_queue_spin_unlock(vm_page_t m)
732 u_short queue;
734 queue = m->queue;
735 cpu_ccfence();
736 if (queue != PQ_NONE)
737 spin_unlock(&vm_page_queues[queue].spin);
740 static __inline
741 void
742 _vm_page_queues_spin_lock(u_short queue)
744 cpu_ccfence();
745 if (queue != PQ_NONE)
746 spin_lock(&vm_page_queues[queue].spin);
750 static __inline
751 void
752 _vm_page_queues_spin_unlock(u_short queue)
754 cpu_ccfence();
755 if (queue != PQ_NONE)
756 spin_unlock(&vm_page_queues[queue].spin);
759 void
760 vm_page_queue_spin_lock(vm_page_t m)
762 _vm_page_queue_spin_lock(m);
765 void
766 vm_page_queues_spin_lock(u_short queue)
768 _vm_page_queues_spin_lock(queue);
771 void
772 vm_page_queue_spin_unlock(vm_page_t m)
774 _vm_page_queue_spin_unlock(m);
777 void
778 vm_page_queues_spin_unlock(u_short queue)
780 _vm_page_queues_spin_unlock(queue);
784 * This locks the specified vm_page and its queue in the proper order
785 * (page first, then queue). The queue may change so the caller must
786 * recheck on return.
788 static __inline
789 void
790 _vm_page_and_queue_spin_lock(vm_page_t m)
792 vm_page_spin_lock(m);
793 _vm_page_queue_spin_lock(m);
796 static __inline
797 void
798 _vm_page_and_queue_spin_unlock(vm_page_t m)
800 _vm_page_queues_spin_unlock(m->queue);
801 vm_page_spin_unlock(m);
804 void
805 vm_page_and_queue_spin_unlock(vm_page_t m)
807 _vm_page_and_queue_spin_unlock(m);
810 void
811 vm_page_and_queue_spin_lock(vm_page_t m)
813 _vm_page_and_queue_spin_lock(m);
817 * Helper function removes vm_page from its current queue.
818 * Returns the base queue the page used to be on.
820 * The vm_page and the queue must be spinlocked.
821 * This function will unlock the queue but leave the page spinlocked.
823 static __inline u_short
824 _vm_page_rem_queue_spinlocked(vm_page_t m)
826 struct vpgqueues *pq;
827 u_short queue;
828 u_short oqueue;
829 long *cnt;
831 queue = m->queue;
832 if (queue != PQ_NONE) {
833 pq = &vm_page_queues[queue];
834 TAILQ_REMOVE(&pq->pl, m, pageq);
837 * Adjust our pcpu stats. In order for the nominal low-memory
838 * algorithms to work properly we don't let any pcpu stat get
839 * too negative before we force it to be rolled-up into the
840 * global stats. Otherwise our pageout and vm_wait tests
841 * will fail badly.
843 * The idea here is to reduce unnecessary SMP cache
844 * mastership changes in the global vmstats, which can be
845 * particularly bad in multi-socket systems.
847 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
848 atomic_add_long(cnt, -1);
849 if (*cnt < -VMMETER_SLOP_COUNT) {
850 u_long copy = atomic_swap_long(cnt, 0);
851 cnt = (long *)((char *)&vmstats + pq->cnt_offset);
852 atomic_add_long(cnt, copy);
853 cnt = (long *)((char *)&mycpu->gd_vmstats +
854 pq->cnt_offset);
855 atomic_add_long(cnt, copy);
857 pq->lcnt--;
858 m->queue = PQ_NONE;
859 oqueue = queue;
860 queue -= m->pc;
861 vm_page_queues_spin_unlock(oqueue); /* intended */
863 return queue;
867 * Helper function places the vm_page on the specified queue. Generally
868 * speaking only PQ_FREE pages are placed at the head, to allow them to
869 * be allocated sooner rather than later on the assumption that they
870 * are cache-hot.
872 * The vm_page must be spinlocked.
873 * This function will return with both the page and the queue locked.
875 static __inline void
876 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
878 struct vpgqueues *pq;
879 u_long *cnt;
881 KKASSERT(m->queue == PQ_NONE);
883 if (queue != PQ_NONE) {
884 vm_page_queues_spin_lock(queue);
885 pq = &vm_page_queues[queue];
886 ++pq->lcnt;
889 * Adjust our pcpu stats. If a system entity really needs
890 * to incorporate the count it will call vmstats_rollup()
891 * to roll it all up into the global vmstats strufture.
893 cnt = (long *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
894 atomic_add_long(cnt, 1);
897 * PQ_FREE is always handled LIFO style to try to provide
898 * cache-hot pages to programs.
900 m->queue = queue;
901 if (queue - m->pc == PQ_FREE) {
902 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
903 } else if (athead) {
904 TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
905 } else {
906 TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
908 /* leave the queue spinlocked */
913 * Wait until page is no longer BUSY. If also_m_busy is TRUE we wait
914 * until the page is no longer BUSY or SBUSY (busy_count field is 0).
916 * Returns TRUE if it had to sleep, FALSE if we did not. Only one sleep
917 * call will be made before returning.
919 * This function does NOT busy the page and on return the page is not
920 * guaranteed to be available.
922 void
923 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
925 u_int32_t busy_count;
927 for (;;) {
928 busy_count = m->busy_count;
929 cpu_ccfence();
931 if ((busy_count & PBUSY_LOCKED) == 0 &&
932 (also_m_busy == 0 || (busy_count & PBUSY_MASK) == 0)) {
933 break;
935 tsleep_interlock(m, 0);
936 if (atomic_cmpset_int(&m->busy_count, busy_count,
937 busy_count | PBUSY_WANTED)) {
938 atomic_set_int(&m->flags, PG_REFERENCED);
939 tsleep(m, PINTERLOCKED, msg, 0);
940 break;
946 * This calculates and returns a page color given an optional VM object and
947 * either a pindex or an iterator. We attempt to return a cpu-localized
948 * pg_color that is still roughly 16-way set-associative. The CPU topology
949 * is used if it was probed.
951 * The caller may use the returned value to index into e.g. PQ_FREE when
952 * allocating a page in order to nominally obtain pages that are hopefully
953 * already localized to the requesting cpu. This function is not able to
954 * provide any sort of guarantee of this, but does its best to improve
955 * hardware cache management performance.
957 * WARNING! The caller must mask the returned value with PQ_L2_MASK.
959 u_short
960 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
962 u_short pg_color;
963 int phys_id;
964 int core_id;
965 int object_pg_color;
967 phys_id = get_cpu_phys_id(cpuid);
968 core_id = get_cpu_core_id(cpuid);
969 object_pg_color = object ? object->pg_color : 0;
971 if (cpu_topology_phys_ids && cpu_topology_core_ids) {
972 int grpsize;
975 * Break us down by socket and cpu
977 pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
978 pg_color += core_id * PQ_L2_SIZE /
979 (cpu_topology_core_ids * cpu_topology_phys_ids);
982 * Calculate remaining component for object/queue color
984 grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
985 cpu_topology_phys_ids);
986 if (grpsize >= 8) {
987 pg_color += (pindex + object_pg_color) % grpsize;
988 } else {
989 if (grpsize <= 2) {
990 grpsize = 8;
991 } else {
992 /* 3->9, 4->8, 5->10, 6->12, 7->14 */
993 grpsize += grpsize;
994 if (grpsize < 8)
995 grpsize += grpsize;
997 pg_color += (pindex + object_pg_color) % grpsize;
999 } else {
1001 * Unknown topology, distribute things evenly.
1003 pg_color = cpuid * PQ_L2_SIZE / ncpus;
1004 pg_color += pindex + object_pg_color;
1006 return (pg_color & PQ_L2_MASK);
1010 * Wait until BUSY can be set, then set it. If also_m_busy is TRUE we
1011 * also wait for m->busy_count to become 0 before setting PBUSY_LOCKED.
1013 void
1014 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
1015 int also_m_busy, const char *msg
1016 VM_PAGE_DEBUG_ARGS)
1018 u_int32_t busy_count;
1020 for (;;) {
1021 busy_count = m->busy_count;
1022 cpu_ccfence();
1023 if (busy_count & PBUSY_LOCKED) {
1024 tsleep_interlock(m, 0);
1025 if (atomic_cmpset_int(&m->busy_count, busy_count,
1026 busy_count | PBUSY_WANTED)) {
1027 atomic_set_int(&m->flags, PG_REFERENCED);
1028 tsleep(m, PINTERLOCKED, msg, 0);
1030 } else if (also_m_busy && busy_count) {
1031 tsleep_interlock(m, 0);
1032 if (atomic_cmpset_int(&m->busy_count, busy_count,
1033 busy_count | PBUSY_WANTED)) {
1034 atomic_set_int(&m->flags, PG_REFERENCED);
1035 tsleep(m, PINTERLOCKED, msg, 0);
1037 } else {
1038 if (atomic_cmpset_int(&m->busy_count, busy_count,
1039 busy_count | PBUSY_LOCKED)) {
1040 #ifdef VM_PAGE_DEBUG
1041 m->busy_func = func;
1042 m->busy_line = lineno;
1043 #endif
1044 break;
1051 * Attempt to set BUSY. If also_m_busy is TRUE we only succeed if
1052 * m->busy_count is also 0.
1054 * Returns non-zero on failure.
1057 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1058 VM_PAGE_DEBUG_ARGS)
1060 u_int32_t busy_count;
1062 for (;;) {
1063 busy_count = m->busy_count;
1064 cpu_ccfence();
1065 if (busy_count & PBUSY_LOCKED)
1066 return TRUE;
1067 if (also_m_busy && (busy_count & PBUSY_MASK) != 0)
1068 return TRUE;
1069 if (atomic_cmpset_int(&m->busy_count, busy_count,
1070 busy_count | PBUSY_LOCKED)) {
1071 #ifdef VM_PAGE_DEBUG
1072 m->busy_func = func;
1073 m->busy_line = lineno;
1074 #endif
1075 return FALSE;
1081 * Clear the BUSY flag and return non-zero to indicate to the caller
1082 * that a wakeup() should be performed.
1084 * The vm_page must be spinlocked and will remain spinlocked on return.
1085 * The related queue must NOT be spinlocked (which could deadlock us).
1087 * (inline version)
1089 static __inline
1091 _vm_page_wakeup(vm_page_t m)
1093 u_int32_t busy_count;
1095 for (;;) {
1096 busy_count = m->busy_count;
1097 cpu_ccfence();
1098 if (atomic_cmpset_int(&m->busy_count, busy_count,
1099 busy_count &
1100 ~(PBUSY_LOCKED | PBUSY_WANTED))) {
1101 break;
1104 return((int)(busy_count & PBUSY_WANTED));
1108 * Clear the BUSY flag and wakeup anyone waiting for the page. This
1109 * is typically the last call you make on a page before moving onto
1110 * other things.
1112 void
1113 vm_page_wakeup(vm_page_t m)
1115 KASSERT(m->busy_count & PBUSY_LOCKED,
1116 ("vm_page_wakeup: page not busy!!!"));
1117 vm_page_spin_lock(m);
1118 if (_vm_page_wakeup(m)) {
1119 vm_page_spin_unlock(m);
1120 wakeup(m);
1121 } else {
1122 vm_page_spin_unlock(m);
1127 * Holding a page keeps it from being reused. Other parts of the system
1128 * can still disassociate the page from its current object and free it, or
1129 * perform read or write I/O on it and/or otherwise manipulate the page,
1130 * but if the page is held the VM system will leave the page and its data
1131 * intact and not reuse the page for other purposes until the last hold
1132 * reference is released. (see vm_page_wire() if you want to prevent the
1133 * page from being disassociated from its object too).
1135 * The caller must still validate the contents of the page and, if necessary,
1136 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1137 * before manipulating the page.
1139 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1141 void
1142 vm_page_hold(vm_page_t m)
1144 vm_page_spin_lock(m);
1145 atomic_add_int(&m->hold_count, 1);
1146 if (m->queue - m->pc == PQ_FREE) {
1147 _vm_page_queue_spin_lock(m);
1148 _vm_page_rem_queue_spinlocked(m);
1149 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1150 _vm_page_queue_spin_unlock(m);
1152 vm_page_spin_unlock(m);
1156 * The opposite of vm_page_hold(). If the page is on the HOLD queue
1157 * it was freed while held and must be moved back to the FREE queue.
1159 void
1160 vm_page_unhold(vm_page_t m)
1162 KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1163 ("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1164 m, m->hold_count, m->queue - m->pc));
1165 vm_page_spin_lock(m);
1166 atomic_add_int(&m->hold_count, -1);
1167 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1168 _vm_page_queue_spin_lock(m);
1169 _vm_page_rem_queue_spinlocked(m);
1170 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1171 _vm_page_queue_spin_unlock(m);
1173 vm_page_spin_unlock(m);
1177 * vm_page_getfake:
1179 * Create a fictitious page with the specified physical address and
1180 * memory attribute. The memory attribute is the only the machine-
1181 * dependent aspect of a fictitious page that must be initialized.
1184 void
1185 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1188 if ((m->flags & PG_FICTITIOUS) != 0) {
1190 * The page's memattr might have changed since the
1191 * previous initialization. Update the pmap to the
1192 * new memattr.
1194 goto memattr;
1196 m->phys_addr = paddr;
1197 m->queue = PQ_NONE;
1198 /* Fictitious pages don't use "segind". */
1199 /* Fictitious pages don't use "order" or "pool". */
1200 m->flags = PG_FICTITIOUS | PG_UNMANAGED;
1201 m->busy_count = PBUSY_LOCKED;
1202 m->wire_count = 1;
1203 spin_init(&m->spin, "fake_page");
1204 pmap_page_init(m);
1205 memattr:
1206 pmap_page_set_memattr(m, memattr);
1210 * Inserts the given vm_page into the object and object list.
1212 * The pagetables are not updated but will presumably fault the page
1213 * in if necessary, or if a kernel page the caller will at some point
1214 * enter the page into the kernel's pmap. We are not allowed to block
1215 * here so we *can't* do this anyway.
1217 * This routine may not block.
1218 * This routine must be called with the vm_object held.
1219 * This routine must be called with a critical section held.
1221 * This routine returns TRUE if the page was inserted into the object
1222 * successfully, and FALSE if the page already exists in the object.
1225 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1227 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1228 if (m->object != NULL)
1229 panic("vm_page_insert: already inserted");
1231 atomic_add_int(&object->generation, 1);
1234 * Record the object/offset pair in this page and add the
1235 * pv_list_count of the page to the object.
1237 * The vm_page spin lock is required for interactions with the pmap.
1239 vm_page_spin_lock(m);
1240 m->object = object;
1241 m->pindex = pindex;
1242 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1243 m->object = NULL;
1244 m->pindex = 0;
1245 vm_page_spin_unlock(m);
1246 return FALSE;
1248 ++object->resident_page_count;
1249 ++mycpu->gd_vmtotal.t_rm;
1250 vm_page_spin_unlock(m);
1253 * Since we are inserting a new and possibly dirty page,
1254 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1256 if ((m->valid & m->dirty) ||
1257 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1258 vm_object_set_writeable_dirty(object);
1261 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1263 swap_pager_page_inserted(m);
1264 return TRUE;
1268 * Removes the given vm_page_t from the (object,index) table
1270 * The underlying pmap entry (if any) is NOT removed here.
1271 * This routine may not block.
1273 * The page must be BUSY and will remain BUSY on return.
1274 * No other requirements.
1276 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave
1277 * it busy.
1279 void
1280 vm_page_remove(vm_page_t m)
1282 vm_object_t object;
1284 if (m->object == NULL) {
1285 return;
1288 if ((m->busy_count & PBUSY_LOCKED) == 0)
1289 panic("vm_page_remove: page not busy");
1291 object = m->object;
1293 vm_object_hold(object);
1296 * Remove the page from the object and update the object.
1298 * The vm_page spin lock is required for interactions with the pmap.
1300 vm_page_spin_lock(m);
1301 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1302 --object->resident_page_count;
1303 --mycpu->gd_vmtotal.t_rm;
1304 m->object = NULL;
1305 atomic_add_int(&object->generation, 1);
1306 vm_page_spin_unlock(m);
1308 vm_object_drop(object);
1312 * Locate and return the page at (object, pindex), or NULL if the
1313 * page could not be found.
1315 * The caller must hold the vm_object token.
1317 vm_page_t
1318 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1320 vm_page_t m;
1323 * Search the hash table for this object/offset pair
1325 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1326 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1327 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1328 return(m);
1331 vm_page_t
1332 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1333 vm_pindex_t pindex,
1334 int also_m_busy, const char *msg
1335 VM_PAGE_DEBUG_ARGS)
1337 u_int32_t busy_count;
1338 vm_page_t m;
1340 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1341 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1342 while (m) {
1343 KKASSERT(m->object == object && m->pindex == pindex);
1344 busy_count = m->busy_count;
1345 cpu_ccfence();
1346 if (busy_count & PBUSY_LOCKED) {
1347 tsleep_interlock(m, 0);
1348 if (atomic_cmpset_int(&m->busy_count, busy_count,
1349 busy_count | PBUSY_WANTED)) {
1350 atomic_set_int(&m->flags, PG_REFERENCED);
1351 tsleep(m, PINTERLOCKED, msg, 0);
1352 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1353 pindex);
1355 } else if (also_m_busy && busy_count) {
1356 tsleep_interlock(m, 0);
1357 if (atomic_cmpset_int(&m->busy_count, busy_count,
1358 busy_count | PBUSY_WANTED)) {
1359 atomic_set_int(&m->flags, PG_REFERENCED);
1360 tsleep(m, PINTERLOCKED, msg, 0);
1361 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1362 pindex);
1364 } else if (atomic_cmpset_int(&m->busy_count, busy_count,
1365 busy_count | PBUSY_LOCKED)) {
1366 #ifdef VM_PAGE_DEBUG
1367 m->busy_func = func;
1368 m->busy_line = lineno;
1369 #endif
1370 break;
1373 return m;
1377 * Attempt to lookup and busy a page.
1379 * Returns NULL if the page could not be found
1381 * Returns a vm_page and error == TRUE if the page exists but could not
1382 * be busied.
1384 * Returns a vm_page and error == FALSE on success.
1386 vm_page_t
1387 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1388 vm_pindex_t pindex,
1389 int also_m_busy, int *errorp
1390 VM_PAGE_DEBUG_ARGS)
1392 u_int32_t busy_count;
1393 vm_page_t m;
1395 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1396 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1397 *errorp = FALSE;
1398 while (m) {
1399 KKASSERT(m->object == object && m->pindex == pindex);
1400 busy_count = m->busy_count;
1401 cpu_ccfence();
1402 if (busy_count & PBUSY_LOCKED) {
1403 *errorp = TRUE;
1404 break;
1406 if (also_m_busy && busy_count) {
1407 *errorp = TRUE;
1408 break;
1410 if (atomic_cmpset_int(&m->busy_count, busy_count,
1411 busy_count | PBUSY_LOCKED)) {
1412 #ifdef VM_PAGE_DEBUG
1413 m->busy_func = func;
1414 m->busy_line = lineno;
1415 #endif
1416 break;
1419 return m;
1423 * Returns a page that is only soft-busied for use by the caller in
1424 * a read-only fashion. Returns NULL if the page could not be found,
1425 * the soft busy could not be obtained, or the page data is invalid.
1427 vm_page_t
1428 vm_page_lookup_sbusy_try(struct vm_object *object, vm_pindex_t pindex,
1429 int pgoff, int pgbytes)
1431 vm_page_t m;
1433 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1434 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1435 if (m) {
1436 if ((m->valid != VM_PAGE_BITS_ALL &&
1437 !vm_page_is_valid(m, pgoff, pgbytes)) ||
1438 (m->flags & PG_FICTITIOUS)) {
1439 m = NULL;
1440 } else if (vm_page_sbusy_try(m)) {
1441 m = NULL;
1442 } else if ((m->valid != VM_PAGE_BITS_ALL &&
1443 !vm_page_is_valid(m, pgoff, pgbytes)) ||
1444 (m->flags & PG_FICTITIOUS)) {
1445 vm_page_sbusy_drop(m);
1446 m = NULL;
1449 return m;
1453 * Caller must hold the related vm_object
1455 vm_page_t
1456 vm_page_next(vm_page_t m)
1458 vm_page_t next;
1460 next = vm_page_rb_tree_RB_NEXT(m);
1461 if (next && next->pindex != m->pindex + 1)
1462 next = NULL;
1463 return (next);
1467 * vm_page_rename()
1469 * Move the given vm_page from its current object to the specified
1470 * target object/offset. The page must be busy and will remain so
1471 * on return.
1473 * new_object must be held.
1474 * This routine might block. XXX ?
1476 * NOTE: Swap associated with the page must be invalidated by the move. We
1477 * have to do this for several reasons: (1) we aren't freeing the
1478 * page, (2) we are dirtying the page, (3) the VM system is probably
1479 * moving the page from object A to B, and will then later move
1480 * the backing store from A to B and we can't have a conflict.
1482 * NOTE: We *always* dirty the page. It is necessary both for the
1483 * fact that we moved it, and because we may be invalidating
1484 * swap. If the page is on the cache, we have to deactivate it
1485 * or vm_page_dirty() will panic. Dirty pages are not allowed
1486 * on the cache.
1488 void
1489 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1491 KKASSERT(m->busy_count & PBUSY_LOCKED);
1492 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1493 if (m->object) {
1494 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1495 vm_page_remove(m);
1497 if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1498 panic("vm_page_rename: target exists (%p,%"PRIu64")",
1499 new_object, new_pindex);
1501 if (m->queue - m->pc == PQ_CACHE)
1502 vm_page_deactivate(m);
1503 vm_page_dirty(m);
1507 * vm_page_unqueue() without any wakeup. This routine is used when a page
1508 * is to remain BUSYied by the caller.
1510 * This routine may not block.
1512 void
1513 vm_page_unqueue_nowakeup(vm_page_t m)
1515 vm_page_and_queue_spin_lock(m);
1516 (void)_vm_page_rem_queue_spinlocked(m);
1517 vm_page_spin_unlock(m);
1521 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1522 * if necessary.
1524 * This routine may not block.
1526 void
1527 vm_page_unqueue(vm_page_t m)
1529 u_short queue;
1531 vm_page_and_queue_spin_lock(m);
1532 queue = _vm_page_rem_queue_spinlocked(m);
1533 if (queue == PQ_FREE || queue == PQ_CACHE) {
1534 vm_page_spin_unlock(m);
1535 pagedaemon_wakeup();
1536 } else {
1537 vm_page_spin_unlock(m);
1542 * vm_page_list_find()
1544 * Find a page on the specified queue with color optimization.
1546 * The page coloring optimization attempts to locate a page that does
1547 * not overload other nearby pages in the object in the cpu's L1 or L2
1548 * caches. We need this optimization because cpu caches tend to be
1549 * physical caches, while object spaces tend to be virtual.
1551 * The page coloring optimization also, very importantly, tries to localize
1552 * memory to cpus and physical sockets.
1554 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1555 * and the algorithm is adjusted to localize allocations on a per-core basis.
1556 * This is done by 'twisting' the colors.
1558 * The page is returned spinlocked and removed from its queue (it will
1559 * be on PQ_NONE), or NULL. The page is not BUSY'd. The caller
1560 * is responsible for dealing with the busy-page case (usually by
1561 * deactivating the page and looping).
1563 * NOTE: This routine is carefully inlined. A non-inlined version
1564 * is available for outside callers but the only critical path is
1565 * from within this source file.
1567 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1568 * represent stable storage, allowing us to order our locks vm_page
1569 * first, then queue.
1571 static __inline
1572 vm_page_t
1573 _vm_page_list_find(int basequeue, int index)
1575 vm_page_t m;
1577 for (;;) {
1578 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1579 if (m == NULL) {
1580 m = _vm_page_list_find2(basequeue, index);
1581 return(m);
1583 vm_page_and_queue_spin_lock(m);
1584 if (m->queue == basequeue + index) {
1585 _vm_page_rem_queue_spinlocked(m);
1586 /* vm_page_t spin held, no queue spin */
1587 break;
1589 vm_page_and_queue_spin_unlock(m);
1591 return(m);
1595 * If we could not find the page in the desired queue try to find it in
1596 * a nearby queue.
1598 static vm_page_t
1599 _vm_page_list_find2(int basequeue, int index)
1601 struct vpgqueues *pq;
1602 vm_page_t m = NULL;
1603 int pqmask = PQ_SET_ASSOC_MASK >> 1;
1604 int pqi;
1605 int i;
1607 index &= PQ_L2_MASK;
1608 pq = &vm_page_queues[basequeue];
1611 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1612 * else fails (PQ_L2_MASK which is 255).
1614 do {
1615 pqmask = (pqmask << 1) | 1;
1616 for (i = 0; i <= pqmask; ++i) {
1617 pqi = (index & ~pqmask) | ((index + i) & pqmask);
1618 m = TAILQ_FIRST(&pq[pqi].pl);
1619 if (m) {
1620 _vm_page_and_queue_spin_lock(m);
1621 if (m->queue == basequeue + pqi) {
1622 _vm_page_rem_queue_spinlocked(m);
1623 return(m);
1625 _vm_page_and_queue_spin_unlock(m);
1626 --i;
1627 continue;
1630 } while (pqmask != PQ_L2_MASK);
1632 return(m);
1636 * Returns a vm_page candidate for allocation. The page is not busied so
1637 * it can move around. The caller must busy the page (and typically
1638 * deactivate it if it cannot be busied!)
1640 * Returns a spinlocked vm_page that has been removed from its queue.
1642 vm_page_t
1643 vm_page_list_find(int basequeue, int index)
1645 return(_vm_page_list_find(basequeue, index));
1649 * Find a page on the cache queue with color optimization, remove it
1650 * from the queue, and busy it. The returned page will not be spinlocked.
1652 * A candidate failure will be deactivated. Candidates can fail due to
1653 * being busied by someone else, in which case they will be deactivated.
1655 * This routine may not block.
1658 static vm_page_t
1659 vm_page_select_cache(u_short pg_color)
1661 vm_page_t m;
1663 for (;;) {
1664 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1665 if (m == NULL)
1666 break;
1668 * (m) has been removed from its queue and spinlocked
1670 if (vm_page_busy_try(m, TRUE)) {
1671 _vm_page_deactivate_locked(m, 0);
1672 vm_page_spin_unlock(m);
1673 } else {
1675 * We successfully busied the page
1677 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1678 m->hold_count == 0 &&
1679 m->wire_count == 0 &&
1680 (m->dirty & m->valid) == 0) {
1681 vm_page_spin_unlock(m);
1682 pagedaemon_wakeup();
1683 return(m);
1687 * The page cannot be recycled, deactivate it.
1689 _vm_page_deactivate_locked(m, 0);
1690 if (_vm_page_wakeup(m)) {
1691 vm_page_spin_unlock(m);
1692 wakeup(m);
1693 } else {
1694 vm_page_spin_unlock(m);
1698 return (m);
1702 * Find a free page. We attempt to inline the nominal case and fall back
1703 * to _vm_page_select_free() otherwise. A busied page is removed from
1704 * the queue and returned.
1706 * This routine may not block.
1708 static __inline vm_page_t
1709 vm_page_select_free(u_short pg_color)
1711 vm_page_t m;
1713 for (;;) {
1714 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1715 if (m == NULL)
1716 break;
1717 if (vm_page_busy_try(m, TRUE)) {
1719 * Various mechanisms such as a pmap_collect can
1720 * result in a busy page on the free queue. We
1721 * have to move the page out of the way so we can
1722 * retry the allocation. If the other thread is not
1723 * allocating the page then m->valid will remain 0 and
1724 * the pageout daemon will free the page later on.
1726 * Since we could not busy the page, however, we
1727 * cannot make assumptions as to whether the page
1728 * will be allocated by the other thread or not,
1729 * so all we can do is deactivate it to move it out
1730 * of the way. In particular, if the other thread
1731 * wires the page it may wind up on the inactive
1732 * queue and the pageout daemon will have to deal
1733 * with that case too.
1735 _vm_page_deactivate_locked(m, 0);
1736 vm_page_spin_unlock(m);
1737 } else {
1739 * Theoretically if we are able to busy the page
1740 * atomic with the queue removal (using the vm_page
1741 * lock) nobody else should be able to mess with the
1742 * page before us.
1744 KKASSERT((m->flags & (PG_UNMANAGED |
1745 PG_NEED_COMMIT)) == 0);
1746 KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1747 "pg %p q=%d flags=%08x hold=%d wire=%d",
1748 m, m->queue, m->flags, m->hold_count, m->wire_count));
1749 KKASSERT(m->wire_count == 0);
1750 vm_page_spin_unlock(m);
1751 pagedaemon_wakeup();
1753 /* return busied and removed page */
1754 return(m);
1757 return(m);
1761 * vm_page_alloc()
1763 * Allocate and return a memory cell associated with this VM object/offset
1764 * pair. If object is NULL an unassociated page will be allocated.
1766 * The returned page will be busied and removed from its queues. This
1767 * routine can block and may return NULL if a race occurs and the page
1768 * is found to already exist at the specified (object, pindex).
1770 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain
1771 * VM_ALLOC_QUICK like normal but cannot use cache
1772 * VM_ALLOC_SYSTEM greater free drain
1773 * VM_ALLOC_INTERRUPT allow free list to be completely drained
1774 * VM_ALLOC_ZERO advisory request for pre-zero'd page only
1775 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only
1776 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision
1777 * (see vm_page_grab())
1778 * VM_ALLOC_USE_GD ok to use per-gd cache
1780 * VM_ALLOC_CPU(n) allocate using specified cpu localization
1782 * The object must be held if not NULL
1783 * This routine may not block
1785 * Additional special handling is required when called from an interrupt
1786 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache
1787 * in this case.
1789 vm_page_t
1790 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1792 globaldata_t gd;
1793 vm_object_t obj;
1794 vm_page_t m;
1795 u_short pg_color;
1796 int cpuid_local;
1798 #if 0
1800 * Special per-cpu free VM page cache. The pages are pre-busied
1801 * and pre-zerod for us.
1803 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1804 crit_enter_gd(gd);
1805 if (gd->gd_vmpg_count) {
1806 m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1807 crit_exit_gd(gd);
1808 goto done;
1810 crit_exit_gd(gd);
1812 #endif
1813 m = NULL;
1816 * CPU LOCALIZATION
1818 * CPU localization algorithm. Break the page queues up by physical
1819 * id and core id (note that two cpu threads will have the same core
1820 * id, and core_id != gd_cpuid).
1822 * This is nowhere near perfect, for example the last pindex in a
1823 * subgroup will overflow into the next cpu or package. But this
1824 * should get us good page reuse locality in heavy mixed loads.
1826 * (may be executed before the APs are started, so other GDs might
1827 * not exist!)
1829 if (page_req & VM_ALLOC_CPU_SPEC)
1830 cpuid_local = VM_ALLOC_GETCPU(page_req);
1831 else
1832 cpuid_local = mycpu->gd_cpuid;
1834 pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1836 KKASSERT(page_req &
1837 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1838 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1841 * Certain system threads (pageout daemon, buf_daemon's) are
1842 * allowed to eat deeper into the free page list.
1844 if (curthread->td_flags & TDF_SYSTHREAD)
1845 page_req |= VM_ALLOC_SYSTEM;
1848 * Impose various limitations. Note that the v_free_reserved test
1849 * must match the opposite of vm_page_count_target() to avoid
1850 * livelocks, be careful.
1852 loop:
1853 gd = mycpu;
1854 if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1855 ((page_req & VM_ALLOC_INTERRUPT) &&
1856 gd->gd_vmstats.v_free_count > 0) ||
1857 ((page_req & VM_ALLOC_SYSTEM) &&
1858 gd->gd_vmstats.v_cache_count == 0 &&
1859 gd->gd_vmstats.v_free_count >
1860 gd->gd_vmstats.v_interrupt_free_min)
1863 * The free queue has sufficient free pages to take one out.
1865 m = vm_page_select_free(pg_color);
1866 } else if (page_req & VM_ALLOC_NORMAL) {
1868 * Allocatable from the cache (non-interrupt only). On
1869 * success, we must free the page and try again, thus
1870 * ensuring that vmstats.v_*_free_min counters are replenished.
1872 #ifdef INVARIANTS
1873 if (curthread->td_preempted) {
1874 kprintf("vm_page_alloc(): warning, attempt to allocate"
1875 " cache page from preempting interrupt\n");
1876 m = NULL;
1877 } else {
1878 m = vm_page_select_cache(pg_color);
1880 #else
1881 m = vm_page_select_cache(pg_color);
1882 #endif
1884 * On success move the page into the free queue and loop.
1886 * Only do this if we can safely acquire the vm_object lock,
1887 * because this is effectively a random page and the caller
1888 * might be holding the lock shared, we don't want to
1889 * deadlock.
1891 if (m != NULL) {
1892 KASSERT(m->dirty == 0,
1893 ("Found dirty cache page %p", m));
1894 if ((obj = m->object) != NULL) {
1895 if (vm_object_hold_try(obj)) {
1896 vm_page_protect(m, VM_PROT_NONE);
1897 vm_page_free(m);
1898 /* m->object NULL here */
1899 vm_object_drop(obj);
1900 } else {
1901 vm_page_deactivate(m);
1902 vm_page_wakeup(m);
1904 } else {
1905 vm_page_protect(m, VM_PROT_NONE);
1906 vm_page_free(m);
1908 goto loop;
1912 * On failure return NULL
1914 atomic_add_int(&vm_pageout_deficit, 1);
1915 pagedaemon_wakeup();
1916 return (NULL);
1917 } else {
1919 * No pages available, wakeup the pageout daemon and give up.
1921 atomic_add_int(&vm_pageout_deficit, 1);
1922 pagedaemon_wakeup();
1923 return (NULL);
1927 * v_free_count can race so loop if we don't find the expected
1928 * page.
1930 if (m == NULL) {
1931 vmstats_rollup();
1932 goto loop;
1936 * Good page found. The page has already been busied for us and
1937 * removed from its queues.
1939 KASSERT(m->dirty == 0,
1940 ("vm_page_alloc: free/cache page %p was dirty", m));
1941 KKASSERT(m->queue == PQ_NONE);
1943 #if 0
1944 done:
1945 #endif
1947 * Initialize the structure, inheriting some flags but clearing
1948 * all the rest. The page has already been busied for us.
1950 vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
1952 KKASSERT(m->wire_count == 0);
1953 KKASSERT((m->busy_count & PBUSY_MASK) == 0);
1954 m->act_count = 0;
1955 m->valid = 0;
1958 * Caller must be holding the object lock (asserted by
1959 * vm_page_insert()).
1961 * NOTE: Inserting a page here does not insert it into any pmaps
1962 * (which could cause us to block allocating memory).
1964 * NOTE: If no object an unassociated page is allocated, m->pindex
1965 * can be used by the caller for any purpose.
1967 if (object) {
1968 if (vm_page_insert(m, object, pindex) == FALSE) {
1969 vm_page_free(m);
1970 if ((page_req & VM_ALLOC_NULL_OK) == 0)
1971 panic("PAGE RACE %p[%ld]/%p",
1972 object, (long)pindex, m);
1973 m = NULL;
1975 } else {
1976 m->pindex = pindex;
1980 * Don't wakeup too often - wakeup the pageout daemon when
1981 * we would be nearly out of memory.
1983 pagedaemon_wakeup();
1986 * A BUSY page is returned.
1988 return (m);
1992 * Returns number of pages available in our DMA memory reserve
1993 * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1995 vm_size_t
1996 vm_contig_avail_pages(void)
1998 alist_blk_t blk;
1999 alist_blk_t count;
2000 alist_blk_t bfree;
2001 spin_lock(&vm_contig_spin);
2002 bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2003 spin_unlock(&vm_contig_spin);
2005 return bfree;
2009 * Attempt to allocate contiguous physical memory with the specified
2010 * requirements.
2012 vm_page_t
2013 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2014 unsigned long alignment, unsigned long boundary,
2015 unsigned long size, vm_memattr_t memattr)
2017 alist_blk_t blk;
2018 vm_page_t m;
2019 vm_pindex_t i;
2020 #if 0
2021 static vm_pindex_t contig_rover;
2022 #endif
2024 alignment >>= PAGE_SHIFT;
2025 if (alignment == 0)
2026 alignment = 1;
2027 boundary >>= PAGE_SHIFT;
2028 if (boundary == 0)
2029 boundary = 1;
2030 size = (size + PAGE_MASK) >> PAGE_SHIFT;
2032 #if 0
2034 * Disabled temporarily until we find a solution for DRM (a flag
2035 * to always use the free space reserve, for performance).
2037 if (high == BUS_SPACE_MAXADDR && alignment <= PAGE_SIZE &&
2038 boundary <= PAGE_SIZE && size == 1 &&
2039 memattr == VM_MEMATTR_DEFAULT) {
2041 * Any page will work, use vm_page_alloc()
2042 * (e.g. when used from kmem_alloc_attr())
2044 m = vm_page_alloc(NULL, (contig_rover++) & 0x7FFFFFFF,
2045 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
2046 VM_ALLOC_INTERRUPT);
2047 m->valid = VM_PAGE_BITS_ALL;
2048 vm_page_wire(m);
2049 vm_page_wakeup(m);
2050 } else
2051 #endif
2054 * Use the low-memory dma reserve
2056 spin_lock(&vm_contig_spin);
2057 blk = alist_alloc(&vm_contig_alist, 0, size);
2058 if (blk == ALIST_BLOCK_NONE) {
2059 spin_unlock(&vm_contig_spin);
2060 if (bootverbose) {
2061 kprintf("vm_page_alloc_contig: %ldk nospace\n",
2062 (size << PAGE_SHIFT) / 1024);
2063 print_backtrace(5);
2065 return(NULL);
2067 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2068 alist_free(&vm_contig_alist, blk, size);
2069 spin_unlock(&vm_contig_spin);
2070 if (bootverbose) {
2071 kprintf("vm_page_alloc_contig: %ldk high "
2072 "%016jx failed\n",
2073 (size << PAGE_SHIFT) / 1024,
2074 (intmax_t)high);
2076 return(NULL);
2078 spin_unlock(&vm_contig_spin);
2079 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2081 if (vm_contig_verbose) {
2082 kprintf("vm_page_alloc_contig: %016jx/%ldk "
2083 "(%016jx-%016jx al=%lu bo=%lu pgs=%lu attr=%d\n",
2084 (intmax_t)m->phys_addr,
2085 (size << PAGE_SHIFT) / 1024,
2086 low, high, alignment, boundary, size, memattr);
2088 if (memattr != VM_MEMATTR_DEFAULT) {
2089 for (i = 0;i < size; i++)
2090 pmap_page_set_memattr(&m[i], memattr);
2092 return m;
2096 * Free contiguously allocated pages. The pages will be wired but not busy.
2097 * When freeing to the alist we leave them wired and not busy.
2099 void
2100 vm_page_free_contig(vm_page_t m, unsigned long size)
2102 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2103 vm_pindex_t start = pa >> PAGE_SHIFT;
2104 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2106 if (vm_contig_verbose) {
2107 kprintf("vm_page_free_contig: %016jx/%ldk\n",
2108 (intmax_t)pa, size / 1024);
2110 if (pa < vm_low_phys_reserved) {
2111 KKASSERT(pa + size <= vm_low_phys_reserved);
2112 spin_lock(&vm_contig_spin);
2113 alist_free(&vm_contig_alist, start, pages);
2114 spin_unlock(&vm_contig_spin);
2115 } else {
2116 while (pages) {
2117 vm_page_busy_wait(m, FALSE, "cpgfr");
2118 vm_page_unwire(m, 0);
2119 vm_page_free(m);
2120 --pages;
2121 ++m;
2129 * Wait for sufficient free memory for nominal heavy memory use kernel
2130 * operations.
2132 * WARNING! Be sure never to call this in any vm_pageout code path, which
2133 * will trivially deadlock the system.
2135 void
2136 vm_wait_nominal(void)
2138 while (vm_page_count_min(0))
2139 vm_wait(0);
2143 * Test if vm_wait_nominal() would block.
2146 vm_test_nominal(void)
2148 if (vm_page_count_min(0))
2149 return(1);
2150 return(0);
2154 * Block until free pages are available for allocation, called in various
2155 * places before memory allocations.
2157 * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2158 * more generous then that.
2160 void
2161 vm_wait(int timo)
2164 * never wait forever
2166 if (timo == 0)
2167 timo = hz;
2168 lwkt_gettoken(&vm_token);
2170 if (curthread == pagethread ||
2171 curthread == emergpager) {
2173 * The pageout daemon itself needs pages, this is bad.
2175 if (vm_page_count_min(0)) {
2176 vm_pageout_pages_needed = 1;
2177 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2179 } else {
2181 * Wakeup the pageout daemon if necessary and wait.
2183 * Do not wait indefinitely for the target to be reached,
2184 * as load might prevent it from being reached any time soon.
2185 * But wait a little to try to slow down page allocations
2186 * and to give more important threads (the pagedaemon)
2187 * allocation priority.
2189 if (vm_page_count_target()) {
2190 if (vm_pages_needed == 0) {
2191 vm_pages_needed = 1;
2192 wakeup(&vm_pages_needed);
2194 ++vm_pages_waiting; /* SMP race ok */
2195 tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2198 lwkt_reltoken(&vm_token);
2202 * Block until free pages are available for allocation
2204 * Called only from vm_fault so that processes page faulting can be
2205 * easily tracked.
2207 void
2208 vm_wait_pfault(void)
2211 * Wakeup the pageout daemon if necessary and wait.
2213 * Do not wait indefinitely for the target to be reached,
2214 * as load might prevent it from being reached any time soon.
2215 * But wait a little to try to slow down page allocations
2216 * and to give more important threads (the pagedaemon)
2217 * allocation priority.
2219 if (vm_page_count_min(0)) {
2220 lwkt_gettoken(&vm_token);
2221 while (vm_page_count_severe()) {
2222 if (vm_page_count_target()) {
2223 thread_t td;
2225 if (vm_pages_needed == 0) {
2226 vm_pages_needed = 1;
2227 wakeup(&vm_pages_needed);
2229 ++vm_pages_waiting; /* SMP race ok */
2230 tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2233 * Do not stay stuck in the loop if the system is trying
2234 * to kill the process.
2236 td = curthread;
2237 if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2238 break;
2241 lwkt_reltoken(&vm_token);
2246 * Put the specified page on the active list (if appropriate). Ensure
2247 * that act_count is at least ACT_INIT but do not otherwise mess with it.
2249 * The caller should be holding the page busied ? XXX
2250 * This routine may not block.
2252 void
2253 vm_page_activate(vm_page_t m)
2255 u_short oqueue;
2257 vm_page_spin_lock(m);
2258 if (m->queue - m->pc != PQ_ACTIVE) {
2259 _vm_page_queue_spin_lock(m);
2260 oqueue = _vm_page_rem_queue_spinlocked(m);
2261 /* page is left spinlocked, queue is unlocked */
2263 if (oqueue == PQ_CACHE)
2264 mycpu->gd_cnt.v_reactivated++;
2265 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2266 if (m->act_count < ACT_INIT)
2267 m->act_count = ACT_INIT;
2268 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2270 _vm_page_and_queue_spin_unlock(m);
2271 if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2272 pagedaemon_wakeup();
2273 } else {
2274 if (m->act_count < ACT_INIT)
2275 m->act_count = ACT_INIT;
2276 vm_page_spin_unlock(m);
2281 * Helper routine for vm_page_free_toq() and vm_page_cache(). This
2282 * routine is called when a page has been added to the cache or free
2283 * queues.
2285 * This routine may not block.
2287 static __inline void
2288 vm_page_free_wakeup(void)
2290 globaldata_t gd = mycpu;
2293 * If the pageout daemon itself needs pages, then tell it that
2294 * there are some free.
2296 if (vm_pageout_pages_needed &&
2297 gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2298 gd->gd_vmstats.v_pageout_free_min
2300 vm_pageout_pages_needed = 0;
2301 wakeup(&vm_pageout_pages_needed);
2305 * Wakeup processes that are waiting on memory.
2307 * Generally speaking we want to wakeup stuck processes as soon as
2308 * possible. !vm_page_count_min(0) is the absolute minimum point
2309 * where we can do this. Wait a bit longer to reduce degenerate
2310 * re-blocking (vm_page_free_hysteresis). The target check is just
2311 * to make sure the min-check w/hysteresis does not exceed the
2312 * normal target.
2314 if (vm_pages_waiting) {
2315 if (!vm_page_count_min(vm_page_free_hysteresis) ||
2316 !vm_page_count_target()) {
2317 vm_pages_waiting = 0;
2318 wakeup(&vmstats.v_free_count);
2319 ++mycpu->gd_cnt.v_ppwakeups;
2321 #if 0
2322 if (!vm_page_count_target()) {
2324 * Plenty of pages are free, wakeup everyone.
2326 vm_pages_waiting = 0;
2327 wakeup(&vmstats.v_free_count);
2328 ++mycpu->gd_cnt.v_ppwakeups;
2329 } else if (!vm_page_count_min(0)) {
2331 * Some pages are free, wakeup someone.
2333 int wcount = vm_pages_waiting;
2334 if (wcount > 0)
2335 --wcount;
2336 vm_pages_waiting = wcount;
2337 wakeup_one(&vmstats.v_free_count);
2338 ++mycpu->gd_cnt.v_ppwakeups;
2340 #endif
2345 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2346 * it from its VM object.
2348 * The vm_page must be BUSY on entry. BUSY will be released on
2349 * return (the page will have been freed).
2351 void
2352 vm_page_free_toq(vm_page_t m)
2354 mycpu->gd_cnt.v_tfree++;
2355 KKASSERT((m->flags & PG_MAPPED) == 0);
2356 KKASSERT(m->busy_count & PBUSY_LOCKED);
2358 if ((m->busy_count & PBUSY_MASK) || ((m->queue - m->pc) == PQ_FREE)) {
2359 kprintf("vm_page_free: pindex(%lu), busy %08x, "
2360 "hold(%d)\n",
2361 (u_long)m->pindex, m->busy_count, m->hold_count);
2362 if ((m->queue - m->pc) == PQ_FREE)
2363 panic("vm_page_free: freeing free page");
2364 else
2365 panic("vm_page_free: freeing busy page");
2369 * Remove from object, spinlock the page and its queues and
2370 * remove from any queue. No queue spinlock will be held
2371 * after this section (because the page was removed from any
2372 * queue).
2374 vm_page_remove(m);
2375 vm_page_and_queue_spin_lock(m);
2376 _vm_page_rem_queue_spinlocked(m);
2379 * No further management of fictitious pages occurs beyond object
2380 * and queue removal.
2382 if ((m->flags & PG_FICTITIOUS) != 0) {
2383 vm_page_spin_unlock(m);
2384 vm_page_wakeup(m);
2385 return;
2388 m->valid = 0;
2389 vm_page_undirty(m);
2391 if (m->wire_count != 0) {
2392 if (m->wire_count > 1) {
2393 panic(
2394 "vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2395 m->wire_count, (long)m->pindex);
2397 panic("vm_page_free: freeing wired page");
2401 * Clear the UNMANAGED flag when freeing an unmanaged page.
2402 * Clear the NEED_COMMIT flag
2404 if (m->flags & PG_UNMANAGED)
2405 vm_page_flag_clear(m, PG_UNMANAGED);
2406 if (m->flags & PG_NEED_COMMIT)
2407 vm_page_flag_clear(m, PG_NEED_COMMIT);
2409 if (m->hold_count != 0) {
2410 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2411 } else {
2412 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2416 * This sequence allows us to clear BUSY while still holding
2417 * its spin lock, which reduces contention vs allocators. We
2418 * must not leave the queue locked or _vm_page_wakeup() may
2419 * deadlock.
2421 _vm_page_queue_spin_unlock(m);
2422 if (_vm_page_wakeup(m)) {
2423 vm_page_spin_unlock(m);
2424 wakeup(m);
2425 } else {
2426 vm_page_spin_unlock(m);
2428 vm_page_free_wakeup();
2432 * vm_page_unmanage()
2434 * Prevent PV management from being done on the page. The page is
2435 * removed from the paging queues as if it were wired, and as a
2436 * consequence of no longer being managed the pageout daemon will not
2437 * touch it (since there is no way to locate the pte mappings for the
2438 * page). madvise() calls that mess with the pmap will also no longer
2439 * operate on the page.
2441 * Beyond that the page is still reasonably 'normal'. Freeing the page
2442 * will clear the flag.
2444 * This routine is used by OBJT_PHYS objects - objects using unswappable
2445 * physical memory as backing store rather then swap-backed memory and
2446 * will eventually be extended to support 4MB unmanaged physical
2447 * mappings.
2449 * Caller must be holding the page busy.
2451 void
2452 vm_page_unmanage(vm_page_t m)
2454 KKASSERT(m->busy_count & PBUSY_LOCKED);
2455 if ((m->flags & PG_UNMANAGED) == 0) {
2456 if (m->wire_count == 0)
2457 vm_page_unqueue(m);
2459 vm_page_flag_set(m, PG_UNMANAGED);
2463 * Mark this page as wired down by yet another map, removing it from
2464 * paging queues as necessary.
2466 * Caller must be holding the page busy.
2468 void
2469 vm_page_wire(vm_page_t m)
2472 * Only bump the wire statistics if the page is not already wired,
2473 * and only unqueue the page if it is on some queue (if it is unmanaged
2474 * it is already off the queues). Don't do anything with fictitious
2475 * pages because they are always wired.
2477 KKASSERT(m->busy_count & PBUSY_LOCKED);
2478 if ((m->flags & PG_FICTITIOUS) == 0) {
2479 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2480 if ((m->flags & PG_UNMANAGED) == 0)
2481 vm_page_unqueue(m);
2482 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2484 KASSERT(m->wire_count != 0,
2485 ("vm_page_wire: wire_count overflow m=%p", m));
2490 * Release one wiring of this page, potentially enabling it to be paged again.
2492 * Many pages placed on the inactive queue should actually go
2493 * into the cache, but it is difficult to figure out which. What
2494 * we do instead, if the inactive target is well met, is to put
2495 * clean pages at the head of the inactive queue instead of the tail.
2496 * This will cause them to be moved to the cache more quickly and
2497 * if not actively re-referenced, freed more quickly. If we just
2498 * stick these pages at the end of the inactive queue, heavy filesystem
2499 * meta-data accesses can cause an unnecessary paging load on memory bound
2500 * processes. This optimization causes one-time-use metadata to be
2501 * reused more quickly.
2503 * Pages marked PG_NEED_COMMIT are always activated and never placed on
2504 * the inactive queue. This helps the pageout daemon determine memory
2505 * pressure and act on out-of-memory situations more quickly.
2507 * BUT, if we are in a low-memory situation we have no choice but to
2508 * put clean pages on the cache queue.
2510 * A number of routines use vm_page_unwire() to guarantee that the page
2511 * will go into either the inactive or active queues, and will NEVER
2512 * be placed in the cache - for example, just after dirtying a page.
2513 * dirty pages in the cache are not allowed.
2515 * This routine may not block.
2517 void
2518 vm_page_unwire(vm_page_t m, int activate)
2520 KKASSERT(m->busy_count & PBUSY_LOCKED);
2521 if (m->flags & PG_FICTITIOUS) {
2522 /* do nothing */
2523 } else if (m->wire_count <= 0) {
2524 panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2525 } else {
2526 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2527 atomic_add_long(&mycpu->gd_vmstats_adj.v_wire_count,-1);
2528 if (m->flags & PG_UNMANAGED) {
2530 } else if (activate || (m->flags & PG_NEED_COMMIT)) {
2531 vm_page_spin_lock(m);
2532 _vm_page_add_queue_spinlocked(m,
2533 PQ_ACTIVE + m->pc, 0);
2534 _vm_page_and_queue_spin_unlock(m);
2535 } else {
2536 vm_page_spin_lock(m);
2537 vm_page_flag_clear(m, PG_WINATCFLS);
2538 _vm_page_add_queue_spinlocked(m,
2539 PQ_INACTIVE + m->pc, 0);
2540 ++vm_swapcache_inactive_heuristic;
2541 _vm_page_and_queue_spin_unlock(m);
2548 * Move the specified page to the inactive queue. If the page has
2549 * any associated swap, the swap is deallocated.
2551 * Normally athead is 0 resulting in LRU operation. athead is set
2552 * to 1 if we want this page to be 'as if it were placed in the cache',
2553 * except without unmapping it from the process address space.
2555 * vm_page's spinlock must be held on entry and will remain held on return.
2556 * This routine may not block.
2558 static void
2559 _vm_page_deactivate_locked(vm_page_t m, int athead)
2561 u_short oqueue;
2564 * Ignore if already inactive.
2566 if (m->queue - m->pc == PQ_INACTIVE)
2567 return;
2568 _vm_page_queue_spin_lock(m);
2569 oqueue = _vm_page_rem_queue_spinlocked(m);
2571 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2572 if (oqueue == PQ_CACHE)
2573 mycpu->gd_cnt.v_reactivated++;
2574 vm_page_flag_clear(m, PG_WINATCFLS);
2575 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2576 if (athead == 0)
2577 ++vm_swapcache_inactive_heuristic;
2579 /* NOTE: PQ_NONE if condition not taken */
2580 _vm_page_queue_spin_unlock(m);
2581 /* leaves vm_page spinlocked */
2585 * Attempt to deactivate a page.
2587 * No requirements.
2589 void
2590 vm_page_deactivate(vm_page_t m)
2592 vm_page_spin_lock(m);
2593 _vm_page_deactivate_locked(m, 0);
2594 vm_page_spin_unlock(m);
2597 void
2598 vm_page_deactivate_locked(vm_page_t m)
2600 _vm_page_deactivate_locked(m, 0);
2604 * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2606 * This function returns non-zero if it successfully moved the page to
2607 * PQ_CACHE.
2609 * This function unconditionally unbusies the page on return.
2612 vm_page_try_to_cache(vm_page_t m)
2614 vm_page_spin_lock(m);
2615 if (m->dirty || m->hold_count || m->wire_count ||
2616 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2617 if (_vm_page_wakeup(m)) {
2618 vm_page_spin_unlock(m);
2619 wakeup(m);
2620 } else {
2621 vm_page_spin_unlock(m);
2623 return(0);
2625 vm_page_spin_unlock(m);
2628 * Page busied by us and no longer spinlocked. Dirty pages cannot
2629 * be moved to the cache.
2631 vm_page_test_dirty(m);
2632 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2633 vm_page_wakeup(m);
2634 return(0);
2636 vm_page_cache(m);
2637 return(1);
2641 * Attempt to free the page. If we cannot free it, we do nothing.
2642 * 1 is returned on success, 0 on failure.
2644 * No requirements.
2647 vm_page_try_to_free(vm_page_t m)
2649 vm_page_spin_lock(m);
2650 if (vm_page_busy_try(m, TRUE)) {
2651 vm_page_spin_unlock(m);
2652 return(0);
2656 * The page can be in any state, including already being on the free
2657 * queue. Check to see if it really can be freed.
2659 if (m->dirty || /* can't free if it is dirty */
2660 m->hold_count || /* or held (XXX may be wrong) */
2661 m->wire_count || /* or wired */
2662 (m->flags & (PG_UNMANAGED | /* or unmanaged */
2663 PG_NEED_COMMIT)) || /* or needs a commit */
2664 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */
2665 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */
2666 if (_vm_page_wakeup(m)) {
2667 vm_page_spin_unlock(m);
2668 wakeup(m);
2669 } else {
2670 vm_page_spin_unlock(m);
2672 return(0);
2674 vm_page_spin_unlock(m);
2677 * We can probably free the page.
2679 * Page busied by us and no longer spinlocked. Dirty pages will
2680 * not be freed by this function. We have to re-test the
2681 * dirty bit after cleaning out the pmaps.
2683 vm_page_test_dirty(m);
2684 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2685 vm_page_wakeup(m);
2686 return(0);
2688 vm_page_protect(m, VM_PROT_NONE);
2689 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2690 vm_page_wakeup(m);
2691 return(0);
2693 vm_page_free(m);
2694 return(1);
2698 * vm_page_cache
2700 * Put the specified page onto the page cache queue (if appropriate).
2702 * The page must be busy, and this routine will release the busy and
2703 * possibly even free the page.
2705 void
2706 vm_page_cache(vm_page_t m)
2709 * Not suitable for the cache
2711 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2712 (m->busy_count & PBUSY_MASK) ||
2713 m->wire_count || m->hold_count) {
2714 vm_page_wakeup(m);
2715 return;
2719 * Already in the cache (and thus not mapped)
2721 if ((m->queue - m->pc) == PQ_CACHE) {
2722 KKASSERT((m->flags & PG_MAPPED) == 0);
2723 vm_page_wakeup(m);
2724 return;
2728 * Caller is required to test m->dirty, but note that the act of
2729 * removing the page from its maps can cause it to become dirty
2730 * on an SMP system due to another cpu running in usermode.
2732 if (m->dirty) {
2733 panic("vm_page_cache: caching a dirty page, pindex: %ld",
2734 (long)m->pindex);
2738 * Remove all pmaps and indicate that the page is not
2739 * writeable or mapped. Our vm_page_protect() call may
2740 * have blocked (especially w/ VM_PROT_NONE), so recheck
2741 * everything.
2743 vm_page_protect(m, VM_PROT_NONE);
2744 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2745 (m->busy_count & PBUSY_MASK) ||
2746 m->wire_count || m->hold_count) {
2747 vm_page_wakeup(m);
2748 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2749 vm_page_deactivate(m);
2750 vm_page_wakeup(m);
2751 } else {
2752 _vm_page_and_queue_spin_lock(m);
2753 _vm_page_rem_queue_spinlocked(m);
2754 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2755 _vm_page_queue_spin_unlock(m);
2756 if (_vm_page_wakeup(m)) {
2757 vm_page_spin_unlock(m);
2758 wakeup(m);
2759 } else {
2760 vm_page_spin_unlock(m);
2762 vm_page_free_wakeup();
2767 * vm_page_dontneed()
2769 * Cache, deactivate, or do nothing as appropriate. This routine
2770 * is typically used by madvise() MADV_DONTNEED.
2772 * Generally speaking we want to move the page into the cache so
2773 * it gets reused quickly. However, this can result in a silly syndrome
2774 * due to the page recycling too quickly. Small objects will not be
2775 * fully cached. On the otherhand, if we move the page to the inactive
2776 * queue we wind up with a problem whereby very large objects
2777 * unnecessarily blow away our inactive and cache queues.
2779 * The solution is to move the pages based on a fixed weighting. We
2780 * either leave them alone, deactivate them, or move them to the cache,
2781 * where moving them to the cache has the highest weighting.
2782 * By forcing some pages into other queues we eventually force the
2783 * system to balance the queues, potentially recovering other unrelated
2784 * space from active. The idea is to not force this to happen too
2785 * often.
2787 * The page must be busied.
2789 void
2790 vm_page_dontneed(vm_page_t m)
2792 static int dnweight;
2793 int dnw;
2794 int head;
2796 dnw = ++dnweight;
2799 * occassionally leave the page alone
2801 if ((dnw & 0x01F0) == 0 ||
2802 m->queue - m->pc == PQ_INACTIVE ||
2803 m->queue - m->pc == PQ_CACHE
2805 if (m->act_count >= ACT_INIT)
2806 --m->act_count;
2807 return;
2811 * If vm_page_dontneed() is inactivating a page, it must clear
2812 * the referenced flag; otherwise the pagedaemon will see references
2813 * on the page in the inactive queue and reactivate it. Until the
2814 * page can move to the cache queue, madvise's job is not done.
2816 vm_page_flag_clear(m, PG_REFERENCED);
2817 pmap_clear_reference(m);
2819 if (m->dirty == 0)
2820 vm_page_test_dirty(m);
2822 if (m->dirty || (dnw & 0x0070) == 0) {
2824 * Deactivate the page 3 times out of 32.
2826 head = 0;
2827 } else {
2829 * Cache the page 28 times out of every 32. Note that
2830 * the page is deactivated instead of cached, but placed
2831 * at the head of the queue instead of the tail.
2833 head = 1;
2835 vm_page_spin_lock(m);
2836 _vm_page_deactivate_locked(m, head);
2837 vm_page_spin_unlock(m);
2841 * These routines manipulate the 'soft busy' count for a page. A soft busy
2842 * is almost like a hard BUSY except that it allows certain compatible
2843 * operations to occur on the page while it is busy. For example, a page
2844 * undergoing a write can still be mapped read-only.
2846 * We also use soft-busy to quickly pmap_enter shared read-only pages
2847 * without having to hold the page locked.
2849 * The soft-busy count can be > 1 in situations where multiple threads
2850 * are pmap_enter()ing the same page simultaneously, or when two buffer
2851 * cache buffers overlap the same page.
2853 * The caller must hold the page BUSY when making these two calls.
2855 void
2856 vm_page_io_start(vm_page_t m)
2858 uint32_t ocount;
2860 ocount = atomic_fetchadd_int(&m->busy_count, 1);
2861 KKASSERT(ocount & PBUSY_LOCKED);
2864 void
2865 vm_page_io_finish(vm_page_t m)
2867 uint32_t ocount;
2869 ocount = atomic_fetchadd_int(&m->busy_count, -1);
2870 KKASSERT(ocount & PBUSY_MASK);
2871 #if 0
2872 if (((ocount - 1) & (PBUSY_LOCKED | PBUSY_MASK)) == 0)
2873 wakeup(m);
2874 #endif
2878 * Attempt to soft-busy a page. The page must not be PBUSY_LOCKED.
2880 * We can't use fetchadd here because we might race a hard-busy and the
2881 * page freeing code asserts on a non-zero soft-busy count (even if only
2882 * temporary).
2884 * Returns 0 on success, non-zero on failure.
2887 vm_page_sbusy_try(vm_page_t m)
2889 uint32_t ocount;
2891 for (;;) {
2892 ocount = m->busy_count;
2893 cpu_ccfence();
2894 if (ocount & PBUSY_LOCKED)
2895 return 1;
2896 if (atomic_cmpset_int(&m->busy_count, ocount, ocount + 1))
2897 break;
2899 return 0;
2900 #if 0
2901 if (m->busy_count & PBUSY_LOCKED)
2902 return 1;
2903 ocount = atomic_fetchadd_int(&m->busy_count, 1);
2904 if (ocount & PBUSY_LOCKED) {
2905 vm_page_sbusy_drop(m);
2906 return 1;
2908 return 0;
2909 #endif
2913 * Indicate that a clean VM page requires a filesystem commit and cannot
2914 * be reused. Used by tmpfs.
2916 void
2917 vm_page_need_commit(vm_page_t m)
2919 vm_page_flag_set(m, PG_NEED_COMMIT);
2920 vm_object_set_writeable_dirty(m->object);
2923 void
2924 vm_page_clear_commit(vm_page_t m)
2926 vm_page_flag_clear(m, PG_NEED_COMMIT);
2930 * Grab a page, blocking if it is busy and allocating a page if necessary.
2931 * A busy page is returned or NULL. The page may or may not be valid and
2932 * might not be on a queue (the caller is responsible for the disposition of
2933 * the page).
2935 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2936 * page will be zero'd and marked valid.
2938 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2939 * valid even if it already exists.
2941 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also
2942 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2943 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2945 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2946 * always returned if we had blocked.
2948 * This routine may not be called from an interrupt.
2950 * No other requirements.
2952 vm_page_t
2953 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2955 vm_page_t m;
2956 int error;
2957 int shared = 1;
2959 KKASSERT(allocflags &
2960 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2961 vm_object_hold_shared(object);
2962 for (;;) {
2963 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2964 if (error) {
2965 vm_page_sleep_busy(m, TRUE, "pgrbwt");
2966 if ((allocflags & VM_ALLOC_RETRY) == 0) {
2967 m = NULL;
2968 break;
2970 /* retry */
2971 } else if (m == NULL) {
2972 if (shared) {
2973 vm_object_upgrade(object);
2974 shared = 0;
2976 if (allocflags & VM_ALLOC_RETRY)
2977 allocflags |= VM_ALLOC_NULL_OK;
2978 m = vm_page_alloc(object, pindex,
2979 allocflags & ~VM_ALLOC_RETRY);
2980 if (m)
2981 break;
2982 vm_wait(0);
2983 if ((allocflags & VM_ALLOC_RETRY) == 0)
2984 goto failed;
2985 } else {
2986 /* m found */
2987 break;
2992 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2994 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2995 * valid even if already valid.
2997 * NOTE! We have removed all of the PG_ZERO optimizations and also
2998 * removed the idle zeroing code. These optimizations actually
2999 * slow things down on modern cpus because the zerod area is
3000 * likely uncached, placing a memory-access burden on the
3001 * accesors taking the fault.
3003 * By always zeroing the page in-line with the fault, no
3004 * dynamic ram reads are needed and the caches are hot, ready
3005 * for userland to access the memory.
3007 if (m->valid == 0) {
3008 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
3009 pmap_zero_page(VM_PAGE_TO_PHYS(m));
3010 m->valid = VM_PAGE_BITS_ALL;
3012 } else if (allocflags & VM_ALLOC_FORCE_ZERO) {
3013 pmap_zero_page(VM_PAGE_TO_PHYS(m));
3014 m->valid = VM_PAGE_BITS_ALL;
3016 failed:
3017 vm_object_drop(object);
3018 return(m);
3022 * Mapping function for valid bits or for dirty bits in
3023 * a page. May not block.
3025 * Inputs are required to range within a page.
3027 * No requirements.
3028 * Non blocking.
3031 vm_page_bits(int base, int size)
3033 int first_bit;
3034 int last_bit;
3036 KASSERT(
3037 base + size <= PAGE_SIZE,
3038 ("vm_page_bits: illegal base/size %d/%d", base, size)
3041 if (size == 0) /* handle degenerate case */
3042 return(0);
3044 first_bit = base >> DEV_BSHIFT;
3045 last_bit = (base + size - 1) >> DEV_BSHIFT;
3047 return ((2 << last_bit) - (1 << first_bit));
3051 * Sets portions of a page valid and clean. The arguments are expected
3052 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
3053 * of any partial chunks touched by the range. The invalid portion of
3054 * such chunks will be zero'd.
3056 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
3057 * align base to DEV_BSIZE so as not to mark clean a partially
3058 * truncated device block. Otherwise the dirty page status might be
3059 * lost.
3061 * This routine may not block.
3063 * (base + size) must be less then or equal to PAGE_SIZE.
3065 static void
3066 _vm_page_zero_valid(vm_page_t m, int base, int size)
3068 int frag;
3069 int endoff;
3071 if (size == 0) /* handle degenerate case */
3072 return;
3075 * If the base is not DEV_BSIZE aligned and the valid
3076 * bit is clear, we have to zero out a portion of the
3077 * first block.
3080 if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3081 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3083 pmap_zero_page_area(
3084 VM_PAGE_TO_PHYS(m),
3085 frag,
3086 base - frag
3091 * If the ending offset is not DEV_BSIZE aligned and the
3092 * valid bit is clear, we have to zero out a portion of
3093 * the last block.
3096 endoff = base + size;
3098 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3099 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3101 pmap_zero_page_area(
3102 VM_PAGE_TO_PHYS(m),
3103 endoff,
3104 DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3110 * Set valid, clear dirty bits. If validating the entire
3111 * page we can safely clear the pmap modify bit. We also
3112 * use this opportunity to clear the PG_NOSYNC flag. If a process
3113 * takes a write fault on a MAP_NOSYNC memory area the flag will
3114 * be set again.
3116 * We set valid bits inclusive of any overlap, but we can only
3117 * clear dirty bits for DEV_BSIZE chunks that are fully within
3118 * the range.
3120 * Page must be busied?
3121 * No other requirements.
3123 void
3124 vm_page_set_valid(vm_page_t m, int base, int size)
3126 _vm_page_zero_valid(m, base, size);
3127 m->valid |= vm_page_bits(base, size);
3132 * Set valid bits and clear dirty bits.
3134 * Page must be busied by caller.
3136 * NOTE: This function does not clear the pmap modified bit.
3137 * Also note that e.g. NFS may use a byte-granular base
3138 * and size.
3140 * No other requirements.
3142 void
3143 vm_page_set_validclean(vm_page_t m, int base, int size)
3145 int pagebits;
3147 _vm_page_zero_valid(m, base, size);
3148 pagebits = vm_page_bits(base, size);
3149 m->valid |= pagebits;
3150 m->dirty &= ~pagebits;
3151 if (base == 0 && size == PAGE_SIZE) {
3152 /*pmap_clear_modify(m);*/
3153 vm_page_flag_clear(m, PG_NOSYNC);
3158 * Set valid & dirty. Used by buwrite()
3160 * Page must be busied by caller.
3162 void
3163 vm_page_set_validdirty(vm_page_t m, int base, int size)
3165 int pagebits;
3167 pagebits = vm_page_bits(base, size);
3168 m->valid |= pagebits;
3169 m->dirty |= pagebits;
3170 if (m->object)
3171 vm_object_set_writeable_dirty(m->object);
3175 * Clear dirty bits.
3177 * NOTE: This function does not clear the pmap modified bit.
3178 * Also note that e.g. NFS may use a byte-granular base
3179 * and size.
3181 * Page must be busied?
3182 * No other requirements.
3184 void
3185 vm_page_clear_dirty(vm_page_t m, int base, int size)
3187 m->dirty &= ~vm_page_bits(base, size);
3188 if (base == 0 && size == PAGE_SIZE) {
3189 /*pmap_clear_modify(m);*/
3190 vm_page_flag_clear(m, PG_NOSYNC);
3195 * Make the page all-dirty.
3197 * Also make sure the related object and vnode reflect the fact that the
3198 * object may now contain a dirty page.
3200 * Page must be busied?
3201 * No other requirements.
3203 void
3204 vm_page_dirty(vm_page_t m)
3206 #ifdef INVARIANTS
3207 int pqtype = m->queue - m->pc;
3208 #endif
3209 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3210 ("vm_page_dirty: page in free/cache queue!"));
3211 if (m->dirty != VM_PAGE_BITS_ALL) {
3212 m->dirty = VM_PAGE_BITS_ALL;
3213 if (m->object)
3214 vm_object_set_writeable_dirty(m->object);
3219 * Invalidates DEV_BSIZE'd chunks within a page. Both the
3220 * valid and dirty bits for the effected areas are cleared.
3222 * Page must be busied?
3223 * Does not block.
3224 * No other requirements.
3226 void
3227 vm_page_set_invalid(vm_page_t m, int base, int size)
3229 int bits;
3231 bits = vm_page_bits(base, size);
3232 m->valid &= ~bits;
3233 m->dirty &= ~bits;
3234 atomic_add_int(&m->object->generation, 1);
3238 * The kernel assumes that the invalid portions of a page contain
3239 * garbage, but such pages can be mapped into memory by user code.
3240 * When this occurs, we must zero out the non-valid portions of the
3241 * page so user code sees what it expects.
3243 * Pages are most often semi-valid when the end of a file is mapped
3244 * into memory and the file's size is not page aligned.
3246 * Page must be busied?
3247 * No other requirements.
3249 void
3250 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3252 int b;
3253 int i;
3256 * Scan the valid bits looking for invalid sections that
3257 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
3258 * valid bit may be set ) have already been zerod by
3259 * vm_page_set_validclean().
3261 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3262 if (i == (PAGE_SIZE / DEV_BSIZE) ||
3263 (m->valid & (1 << i))
3265 if (i > b) {
3266 pmap_zero_page_area(
3267 VM_PAGE_TO_PHYS(m),
3268 b << DEV_BSHIFT,
3269 (i - b) << DEV_BSHIFT
3272 b = i + 1;
3277 * setvalid is TRUE when we can safely set the zero'd areas
3278 * as being valid. We can do this if there are no cache consistency
3279 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
3281 if (setvalid)
3282 m->valid = VM_PAGE_BITS_ALL;
3286 * Is a (partial) page valid? Note that the case where size == 0
3287 * will return FALSE in the degenerate case where the page is entirely
3288 * invalid, and TRUE otherwise.
3290 * Does not block.
3291 * No other requirements.
3294 vm_page_is_valid(vm_page_t m, int base, int size)
3296 int bits = vm_page_bits(base, size);
3298 if (m->valid && ((m->valid & bits) == bits))
3299 return 1;
3300 else
3301 return 0;
3305 * update dirty bits from pmap/mmu. May not block.
3307 * Caller must hold the page busy
3309 void
3310 vm_page_test_dirty(vm_page_t m)
3312 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3313 vm_page_dirty(m);
3317 #include "opt_ddb.h"
3318 #ifdef DDB
3319 #include <ddb/ddb.h>
3321 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3323 db_printf("vmstats.v_free_count: %ld\n", vmstats.v_free_count);
3324 db_printf("vmstats.v_cache_count: %ld\n", vmstats.v_cache_count);
3325 db_printf("vmstats.v_inactive_count: %ld\n", vmstats.v_inactive_count);
3326 db_printf("vmstats.v_active_count: %ld\n", vmstats.v_active_count);
3327 db_printf("vmstats.v_wire_count: %ld\n", vmstats.v_wire_count);
3328 db_printf("vmstats.v_free_reserved: %ld\n", vmstats.v_free_reserved);
3329 db_printf("vmstats.v_free_min: %ld\n", vmstats.v_free_min);
3330 db_printf("vmstats.v_free_target: %ld\n", vmstats.v_free_target);
3331 db_printf("vmstats.v_cache_min: %ld\n", vmstats.v_cache_min);
3332 db_printf("vmstats.v_inactive_target: %ld\n",
3333 vmstats.v_inactive_target);
3336 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3338 int i;
3339 db_printf("PQ_FREE:");
3340 for (i = 0; i < PQ_L2_SIZE; i++) {
3341 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3343 db_printf("\n");
3345 db_printf("PQ_CACHE:");
3346 for(i = 0; i < PQ_L2_SIZE; i++) {
3347 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3349 db_printf("\n");
3351 db_printf("PQ_ACTIVE:");
3352 for(i = 0; i < PQ_L2_SIZE; i++) {
3353 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3355 db_printf("\n");
3357 db_printf("PQ_INACTIVE:");
3358 for(i = 0; i < PQ_L2_SIZE; i++) {
3359 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3361 db_printf("\n");
3363 #endif /* DDB */