drm/i915: Revert DisplayPort fast link training feature
[dragonfly.git] / contrib / gcc-5.0 / gcc / var-tracking.c
blob61289482fcd5de7ac877ed785daa2922383471f1
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "hash-set.h"
94 #include "machmode.h"
95 #include "vec.h"
96 #include "double-int.h"
97 #include "input.h"
98 #include "alias.h"
99 #include "symtab.h"
100 #include "wide-int.h"
101 #include "inchash.h"
102 #include "tree.h"
103 #include "varasm.h"
104 #include "stor-layout.h"
105 #include "hash-map.h"
106 #include "hash-table.h"
107 #include "predict.h"
108 #include "hard-reg-set.h"
109 #include "function.h"
110 #include "dominance.h"
111 #include "cfg.h"
112 #include "cfgrtl.h"
113 #include "cfganal.h"
114 #include "basic-block.h"
115 #include "tm_p.h"
116 #include "flags.h"
117 #include "insn-config.h"
118 #include "reload.h"
119 #include "sbitmap.h"
120 #include "alloc-pool.h"
121 #include "regs.h"
122 #include "hashtab.h"
123 #include "statistics.h"
124 #include "real.h"
125 #include "fixed-value.h"
126 #include "expmed.h"
127 #include "dojump.h"
128 #include "explow.h"
129 #include "calls.h"
130 #include "emit-rtl.h"
131 #include "stmt.h"
132 #include "expr.h"
133 #include "tree-pass.h"
134 #include "bitmap.h"
135 #include "tree-dfa.h"
136 #include "tree-ssa.h"
137 #include "cselib.h"
138 #include "target.h"
139 #include "params.h"
140 #include "diagnostic.h"
141 #include "tree-pretty-print.h"
142 #include "recog.h"
143 #include "rtl-iter.h"
144 #include "fibonacci_heap.h"
146 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
147 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
149 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
150 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
151 Currently the value is the same as IDENTIFIER_NODE, which has such
152 a property. If this compile time assertion ever fails, make sure that
153 the new tree code that equals (int) VALUE has the same property. */
154 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
156 /* Type of micro operation. */
157 enum micro_operation_type
159 MO_USE, /* Use location (REG or MEM). */
160 MO_USE_NO_VAR,/* Use location which is not associated with a variable
161 or the variable is not trackable. */
162 MO_VAL_USE, /* Use location which is associated with a value. */
163 MO_VAL_LOC, /* Use location which appears in a debug insn. */
164 MO_VAL_SET, /* Set location associated with a value. */
165 MO_SET, /* Set location. */
166 MO_COPY, /* Copy the same portion of a variable from one
167 location to another. */
168 MO_CLOBBER, /* Clobber location. */
169 MO_CALL, /* Call insn. */
170 MO_ADJUST /* Adjust stack pointer. */
174 static const char * const ATTRIBUTE_UNUSED
175 micro_operation_type_name[] = {
176 "MO_USE",
177 "MO_USE_NO_VAR",
178 "MO_VAL_USE",
179 "MO_VAL_LOC",
180 "MO_VAL_SET",
181 "MO_SET",
182 "MO_COPY",
183 "MO_CLOBBER",
184 "MO_CALL",
185 "MO_ADJUST"
188 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
189 Notes emitted as AFTER_CALL are to take effect during the call,
190 rather than after the call. */
191 enum emit_note_where
193 EMIT_NOTE_BEFORE_INSN,
194 EMIT_NOTE_AFTER_INSN,
195 EMIT_NOTE_AFTER_CALL_INSN
198 /* Structure holding information about micro operation. */
199 typedef struct micro_operation_def
201 /* Type of micro operation. */
202 enum micro_operation_type type;
204 /* The instruction which the micro operation is in, for MO_USE,
205 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
206 instruction or note in the original flow (before any var-tracking
207 notes are inserted, to simplify emission of notes), for MO_SET
208 and MO_CLOBBER. */
209 rtx_insn *insn;
211 union {
212 /* Location. For MO_SET and MO_COPY, this is the SET that
213 performs the assignment, if known, otherwise it is the target
214 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
215 CONCAT of the VALUE and the LOC associated with it. For
216 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
217 associated with it. */
218 rtx loc;
220 /* Stack adjustment. */
221 HOST_WIDE_INT adjust;
222 } u;
223 } micro_operation;
226 /* A declaration of a variable, or an RTL value being handled like a
227 declaration. */
228 typedef void *decl_or_value;
230 /* Return true if a decl_or_value DV is a DECL or NULL. */
231 static inline bool
232 dv_is_decl_p (decl_or_value dv)
234 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
237 /* Return true if a decl_or_value is a VALUE rtl. */
238 static inline bool
239 dv_is_value_p (decl_or_value dv)
241 return dv && !dv_is_decl_p (dv);
244 /* Return the decl in the decl_or_value. */
245 static inline tree
246 dv_as_decl (decl_or_value dv)
248 gcc_checking_assert (dv_is_decl_p (dv));
249 return (tree) dv;
252 /* Return the value in the decl_or_value. */
253 static inline rtx
254 dv_as_value (decl_or_value dv)
256 gcc_checking_assert (dv_is_value_p (dv));
257 return (rtx)dv;
260 /* Return the opaque pointer in the decl_or_value. */
261 static inline void *
262 dv_as_opaque (decl_or_value dv)
264 return dv;
268 /* Description of location of a part of a variable. The content of a physical
269 register is described by a chain of these structures.
270 The chains are pretty short (usually 1 or 2 elements) and thus
271 chain is the best data structure. */
272 typedef struct attrs_def
274 /* Pointer to next member of the list. */
275 struct attrs_def *next;
277 /* The rtx of register. */
278 rtx loc;
280 /* The declaration corresponding to LOC. */
281 decl_or_value dv;
283 /* Offset from start of DECL. */
284 HOST_WIDE_INT offset;
285 } *attrs;
287 /* Structure for chaining the locations. */
288 typedef struct location_chain_def
290 /* Next element in the chain. */
291 struct location_chain_def *next;
293 /* The location (REG, MEM or VALUE). */
294 rtx loc;
296 /* The "value" stored in this location. */
297 rtx set_src;
299 /* Initialized? */
300 enum var_init_status init;
301 } *location_chain;
303 /* A vector of loc_exp_dep holds the active dependencies of a one-part
304 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
305 location of DV. Each entry is also part of VALUE' s linked-list of
306 backlinks back to DV. */
307 typedef struct loc_exp_dep_s
309 /* The dependent DV. */
310 decl_or_value dv;
311 /* The dependency VALUE or DECL_DEBUG. */
312 rtx value;
313 /* The next entry in VALUE's backlinks list. */
314 struct loc_exp_dep_s *next;
315 /* A pointer to the pointer to this entry (head or prev's next) in
316 the doubly-linked list. */
317 struct loc_exp_dep_s **pprev;
318 } loc_exp_dep;
321 /* This data structure holds information about the depth of a variable
322 expansion. */
323 typedef struct expand_depth_struct
325 /* This measures the complexity of the expanded expression. It
326 grows by one for each level of expansion that adds more than one
327 operand. */
328 int complexity;
329 /* This counts the number of ENTRY_VALUE expressions in an
330 expansion. We want to minimize their use. */
331 int entryvals;
332 } expand_depth;
334 /* This data structure is allocated for one-part variables at the time
335 of emitting notes. */
336 struct onepart_aux
338 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
339 computation used the expansion of this variable, and that ought
340 to be notified should this variable change. If the DV's cur_loc
341 expanded to NULL, all components of the loc list are regarded as
342 active, so that any changes in them give us a chance to get a
343 location. Otherwise, only components of the loc that expanded to
344 non-NULL are regarded as active dependencies. */
345 loc_exp_dep *backlinks;
346 /* This holds the LOC that was expanded into cur_loc. We need only
347 mark a one-part variable as changed if the FROM loc is removed,
348 or if it has no known location and a loc is added, or if it gets
349 a change notification from any of its active dependencies. */
350 rtx from;
351 /* The depth of the cur_loc expression. */
352 expand_depth depth;
353 /* Dependencies actively used when expand FROM into cur_loc. */
354 vec<loc_exp_dep, va_heap, vl_embed> deps;
357 /* Structure describing one part of variable. */
358 typedef struct variable_part_def
360 /* Chain of locations of the part. */
361 location_chain loc_chain;
363 /* Location which was last emitted to location list. */
364 rtx cur_loc;
366 union variable_aux
368 /* The offset in the variable, if !var->onepart. */
369 HOST_WIDE_INT offset;
371 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
372 struct onepart_aux *onepaux;
373 } aux;
374 } variable_part;
376 /* Maximum number of location parts. */
377 #define MAX_VAR_PARTS 16
379 /* Enumeration type used to discriminate various types of one-part
380 variables. */
381 typedef enum onepart_enum
383 /* Not a one-part variable. */
384 NOT_ONEPART = 0,
385 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
386 ONEPART_VDECL = 1,
387 /* A DEBUG_EXPR_DECL. */
388 ONEPART_DEXPR = 2,
389 /* A VALUE. */
390 ONEPART_VALUE = 3
391 } onepart_enum_t;
393 /* Structure describing where the variable is located. */
394 typedef struct variable_def
396 /* The declaration of the variable, or an RTL value being handled
397 like a declaration. */
398 decl_or_value dv;
400 /* Reference count. */
401 int refcount;
403 /* Number of variable parts. */
404 char n_var_parts;
406 /* What type of DV this is, according to enum onepart_enum. */
407 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
409 /* True if this variable_def struct is currently in the
410 changed_variables hash table. */
411 bool in_changed_variables;
413 /* The variable parts. */
414 variable_part var_part[1];
415 } *variable;
416 typedef const struct variable_def *const_variable;
418 /* Pointer to the BB's information specific to variable tracking pass. */
419 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
421 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
422 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
424 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
426 /* Access VAR's Ith part's offset, checking that it's not a one-part
427 variable. */
428 #define VAR_PART_OFFSET(var, i) __extension__ \
429 (*({ variable const __v = (var); \
430 gcc_checking_assert (!__v->onepart); \
431 &__v->var_part[(i)].aux.offset; }))
433 /* Access VAR's one-part auxiliary data, checking that it is a
434 one-part variable. */
435 #define VAR_LOC_1PAUX(var) __extension__ \
436 (*({ variable const __v = (var); \
437 gcc_checking_assert (__v->onepart); \
438 &__v->var_part[0].aux.onepaux; }))
440 #else
441 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
442 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
443 #endif
445 /* These are accessor macros for the one-part auxiliary data. When
446 convenient for users, they're guarded by tests that the data was
447 allocated. */
448 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
449 ? VAR_LOC_1PAUX (var)->backlinks \
450 : NULL)
451 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
452 ? &VAR_LOC_1PAUX (var)->backlinks \
453 : NULL)
454 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
455 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
456 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
457 ? &VAR_LOC_1PAUX (var)->deps \
458 : NULL)
462 typedef unsigned int dvuid;
464 /* Return the uid of DV. */
466 static inline dvuid
467 dv_uid (decl_or_value dv)
469 if (dv_is_value_p (dv))
470 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
471 else
472 return DECL_UID (dv_as_decl (dv));
475 /* Compute the hash from the uid. */
477 static inline hashval_t
478 dv_uid2hash (dvuid uid)
480 return uid;
483 /* The hash function for a mask table in a shared_htab chain. */
485 static inline hashval_t
486 dv_htab_hash (decl_or_value dv)
488 return dv_uid2hash (dv_uid (dv));
491 static void variable_htab_free (void *);
493 /* Variable hashtable helpers. */
495 struct variable_hasher
497 typedef variable_def value_type;
498 typedef void compare_type;
499 static inline hashval_t hash (const value_type *);
500 static inline bool equal (const value_type *, const compare_type *);
501 static inline void remove (value_type *);
504 /* The hash function for variable_htab, computes the hash value
505 from the declaration of variable X. */
507 inline hashval_t
508 variable_hasher::hash (const value_type *v)
510 return dv_htab_hash (v->dv);
513 /* Compare the declaration of variable X with declaration Y. */
515 inline bool
516 variable_hasher::equal (const value_type *v, const compare_type *y)
518 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
520 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
523 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
525 inline void
526 variable_hasher::remove (value_type *var)
528 variable_htab_free (var);
531 typedef hash_table<variable_hasher> variable_table_type;
532 typedef variable_table_type::iterator variable_iterator_type;
534 /* Structure for passing some other parameters to function
535 emit_note_insn_var_location. */
536 typedef struct emit_note_data_def
538 /* The instruction which the note will be emitted before/after. */
539 rtx_insn *insn;
541 /* Where the note will be emitted (before/after insn)? */
542 enum emit_note_where where;
544 /* The variables and values active at this point. */
545 variable_table_type *vars;
546 } emit_note_data;
548 /* Structure holding a refcounted hash table. If refcount > 1,
549 it must be first unshared before modified. */
550 typedef struct shared_hash_def
552 /* Reference count. */
553 int refcount;
555 /* Actual hash table. */
556 variable_table_type *htab;
557 } *shared_hash;
559 /* Structure holding the IN or OUT set for a basic block. */
560 typedef struct dataflow_set_def
562 /* Adjustment of stack offset. */
563 HOST_WIDE_INT stack_adjust;
565 /* Attributes for registers (lists of attrs). */
566 attrs regs[FIRST_PSEUDO_REGISTER];
568 /* Variable locations. */
569 shared_hash vars;
571 /* Vars that is being traversed. */
572 shared_hash traversed_vars;
573 } dataflow_set;
575 /* The structure (one for each basic block) containing the information
576 needed for variable tracking. */
577 typedef struct variable_tracking_info_def
579 /* The vector of micro operations. */
580 vec<micro_operation> mos;
582 /* The IN and OUT set for dataflow analysis. */
583 dataflow_set in;
584 dataflow_set out;
586 /* The permanent-in dataflow set for this block. This is used to
587 hold values for which we had to compute entry values. ??? This
588 should probably be dynamically allocated, to avoid using more
589 memory in non-debug builds. */
590 dataflow_set *permp;
592 /* Has the block been visited in DFS? */
593 bool visited;
595 /* Has the block been flooded in VTA? */
596 bool flooded;
598 } *variable_tracking_info;
600 /* Alloc pool for struct attrs_def. */
601 static alloc_pool attrs_pool;
603 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
604 static alloc_pool var_pool;
606 /* Alloc pool for struct variable_def with a single var_part entry. */
607 static alloc_pool valvar_pool;
609 /* Alloc pool for struct location_chain_def. */
610 static alloc_pool loc_chain_pool;
612 /* Alloc pool for struct shared_hash_def. */
613 static alloc_pool shared_hash_pool;
615 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
616 static alloc_pool loc_exp_dep_pool;
618 /* Changed variables, notes will be emitted for them. */
619 static variable_table_type *changed_variables;
621 /* Shall notes be emitted? */
622 static bool emit_notes;
624 /* Values whose dynamic location lists have gone empty, but whose
625 cselib location lists are still usable. Use this to hold the
626 current location, the backlinks, etc, during emit_notes. */
627 static variable_table_type *dropped_values;
629 /* Empty shared hashtable. */
630 static shared_hash empty_shared_hash;
632 /* Scratch register bitmap used by cselib_expand_value_rtx. */
633 static bitmap scratch_regs = NULL;
635 #ifdef HAVE_window_save
636 typedef struct GTY(()) parm_reg {
637 rtx outgoing;
638 rtx incoming;
639 } parm_reg_t;
642 /* Vector of windowed parameter registers, if any. */
643 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
644 #endif
646 /* Variable used to tell whether cselib_process_insn called our hook. */
647 static bool cselib_hook_called;
649 /* Local function prototypes. */
650 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
651 HOST_WIDE_INT *);
652 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
653 HOST_WIDE_INT *);
654 static bool vt_stack_adjustments (void);
656 static void init_attrs_list_set (attrs *);
657 static void attrs_list_clear (attrs *);
658 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
659 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
660 static void attrs_list_copy (attrs *, attrs);
661 static void attrs_list_union (attrs *, attrs);
663 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
664 variable var, enum var_init_status);
665 static void vars_copy (variable_table_type *, variable_table_type *);
666 static tree var_debug_decl (tree);
667 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
668 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
669 enum var_init_status, rtx);
670 static void var_reg_delete (dataflow_set *, rtx, bool);
671 static void var_regno_delete (dataflow_set *, int);
672 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
673 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
674 enum var_init_status, rtx);
675 static void var_mem_delete (dataflow_set *, rtx, bool);
677 static void dataflow_set_init (dataflow_set *);
678 static void dataflow_set_clear (dataflow_set *);
679 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
680 static int variable_union_info_cmp_pos (const void *, const void *);
681 static void dataflow_set_union (dataflow_set *, dataflow_set *);
682 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
683 static bool canon_value_cmp (rtx, rtx);
684 static int loc_cmp (rtx, rtx);
685 static bool variable_part_different_p (variable_part *, variable_part *);
686 static bool onepart_variable_different_p (variable, variable);
687 static bool variable_different_p (variable, variable);
688 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
689 static void dataflow_set_destroy (dataflow_set *);
691 static bool contains_symbol_ref (rtx);
692 static bool track_expr_p (tree, bool);
693 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
694 static void add_uses_1 (rtx *, void *);
695 static void add_stores (rtx, const_rtx, void *);
696 static bool compute_bb_dataflow (basic_block);
697 static bool vt_find_locations (void);
699 static void dump_attrs_list (attrs);
700 static void dump_var (variable);
701 static void dump_vars (variable_table_type *);
702 static void dump_dataflow_set (dataflow_set *);
703 static void dump_dataflow_sets (void);
705 static void set_dv_changed (decl_or_value, bool);
706 static void variable_was_changed (variable, dataflow_set *);
707 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
708 decl_or_value, HOST_WIDE_INT,
709 enum var_init_status, rtx);
710 static void set_variable_part (dataflow_set *, rtx,
711 decl_or_value, HOST_WIDE_INT,
712 enum var_init_status, rtx, enum insert_option);
713 static variable_def **clobber_slot_part (dataflow_set *, rtx,
714 variable_def **, HOST_WIDE_INT, rtx);
715 static void clobber_variable_part (dataflow_set *, rtx,
716 decl_or_value, HOST_WIDE_INT, rtx);
717 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
718 HOST_WIDE_INT);
719 static void delete_variable_part (dataflow_set *, rtx,
720 decl_or_value, HOST_WIDE_INT);
721 static void emit_notes_in_bb (basic_block, dataflow_set *);
722 static void vt_emit_notes (void);
724 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
725 static void vt_add_function_parameters (void);
726 static bool vt_initialize (void);
727 static void vt_finalize (void);
729 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
731 static int
732 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
733 void *arg)
735 if (dest != stack_pointer_rtx)
736 return 0;
738 switch (GET_CODE (op))
740 case PRE_INC:
741 case PRE_DEC:
742 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
743 return 0;
744 case POST_INC:
745 case POST_DEC:
746 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
747 return 0;
748 case PRE_MODIFY:
749 case POST_MODIFY:
750 /* We handle only adjustments by constant amount. */
751 gcc_assert (GET_CODE (src) == PLUS
752 && CONST_INT_P (XEXP (src, 1))
753 && XEXP (src, 0) == stack_pointer_rtx);
754 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
755 -= INTVAL (XEXP (src, 1));
756 return 0;
757 default:
758 gcc_unreachable ();
762 /* Given a SET, calculate the amount of stack adjustment it contains
763 PRE- and POST-modifying stack pointer.
764 This function is similar to stack_adjust_offset. */
766 static void
767 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
768 HOST_WIDE_INT *post)
770 rtx src = SET_SRC (pattern);
771 rtx dest = SET_DEST (pattern);
772 enum rtx_code code;
774 if (dest == stack_pointer_rtx)
776 /* (set (reg sp) (plus (reg sp) (const_int))) */
777 code = GET_CODE (src);
778 if (! (code == PLUS || code == MINUS)
779 || XEXP (src, 0) != stack_pointer_rtx
780 || !CONST_INT_P (XEXP (src, 1)))
781 return;
783 if (code == MINUS)
784 *post += INTVAL (XEXP (src, 1));
785 else
786 *post -= INTVAL (XEXP (src, 1));
787 return;
789 HOST_WIDE_INT res[2] = { 0, 0 };
790 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
791 *pre += res[0];
792 *post += res[1];
795 /* Given an INSN, calculate the amount of stack adjustment it contains
796 PRE- and POST-modifying stack pointer. */
798 static void
799 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
800 HOST_WIDE_INT *post)
802 rtx pattern;
804 *pre = 0;
805 *post = 0;
807 pattern = PATTERN (insn);
808 if (RTX_FRAME_RELATED_P (insn))
810 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
811 if (expr)
812 pattern = XEXP (expr, 0);
815 if (GET_CODE (pattern) == SET)
816 stack_adjust_offset_pre_post (pattern, pre, post);
817 else if (GET_CODE (pattern) == PARALLEL
818 || GET_CODE (pattern) == SEQUENCE)
820 int i;
822 /* There may be stack adjustments inside compound insns. Search
823 for them. */
824 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
825 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
826 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
830 /* Compute stack adjustments for all blocks by traversing DFS tree.
831 Return true when the adjustments on all incoming edges are consistent.
832 Heavily borrowed from pre_and_rev_post_order_compute. */
834 static bool
835 vt_stack_adjustments (void)
837 edge_iterator *stack;
838 int sp;
840 /* Initialize entry block. */
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
842 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
843 = INCOMING_FRAME_SP_OFFSET;
844 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
845 = INCOMING_FRAME_SP_OFFSET;
847 /* Allocate stack for back-tracking up CFG. */
848 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
849 sp = 0;
851 /* Push the first edge on to the stack. */
852 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
854 while (sp)
856 edge_iterator ei;
857 basic_block src;
858 basic_block dest;
860 /* Look at the edge on the top of the stack. */
861 ei = stack[sp - 1];
862 src = ei_edge (ei)->src;
863 dest = ei_edge (ei)->dest;
865 /* Check if the edge destination has been visited yet. */
866 if (!VTI (dest)->visited)
868 rtx_insn *insn;
869 HOST_WIDE_INT pre, post, offset;
870 VTI (dest)->visited = true;
871 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
873 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
874 for (insn = BB_HEAD (dest);
875 insn != NEXT_INSN (BB_END (dest));
876 insn = NEXT_INSN (insn))
877 if (INSN_P (insn))
879 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
880 offset += pre + post;
883 VTI (dest)->out.stack_adjust = offset;
885 if (EDGE_COUNT (dest->succs) > 0)
886 /* Since the DEST node has been visited for the first
887 time, check its successors. */
888 stack[sp++] = ei_start (dest->succs);
890 else
892 /* We can end up with different stack adjustments for the exit block
893 of a shrink-wrapped function if stack_adjust_offset_pre_post
894 doesn't understand the rtx pattern used to restore the stack
895 pointer in the epilogue. For example, on s390(x), the stack
896 pointer is often restored via a load-multiple instruction
897 and so no stack_adjust offset is recorded for it. This means
898 that the stack offset at the end of the epilogue block is the
899 the same as the offset before the epilogue, whereas other paths
900 to the exit block will have the correct stack_adjust.
902 It is safe to ignore these differences because (a) we never
903 use the stack_adjust for the exit block in this pass and
904 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
905 function are correct.
907 We must check whether the adjustments on other edges are
908 the same though. */
909 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
910 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
912 free (stack);
913 return false;
916 if (! ei_one_before_end_p (ei))
917 /* Go to the next edge. */
918 ei_next (&stack[sp - 1]);
919 else
920 /* Return to previous level if there are no more edges. */
921 sp--;
925 free (stack);
926 return true;
929 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
930 hard_frame_pointer_rtx is being mapped to it and offset for it. */
931 static rtx cfa_base_rtx;
932 static HOST_WIDE_INT cfa_base_offset;
934 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
935 or hard_frame_pointer_rtx. */
937 static inline rtx
938 compute_cfa_pointer (HOST_WIDE_INT adjustment)
940 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
943 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
944 or -1 if the replacement shouldn't be done. */
945 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
947 /* Data for adjust_mems callback. */
949 struct adjust_mem_data
951 bool store;
952 machine_mode mem_mode;
953 HOST_WIDE_INT stack_adjust;
954 rtx_expr_list *side_effects;
957 /* Helper for adjust_mems. Return true if X is suitable for
958 transformation of wider mode arithmetics to narrower mode. */
960 static bool
961 use_narrower_mode_test (rtx x, const_rtx subreg)
963 subrtx_var_iterator::array_type array;
964 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
966 rtx x = *iter;
967 if (CONSTANT_P (x))
968 iter.skip_subrtxes ();
969 else
970 switch (GET_CODE (x))
972 case REG:
973 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
974 return false;
975 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
976 subreg_lowpart_offset (GET_MODE (subreg),
977 GET_MODE (x))))
978 return false;
979 break;
980 case PLUS:
981 case MINUS:
982 case MULT:
983 break;
984 case ASHIFT:
985 iter.substitute (XEXP (x, 0));
986 break;
987 default:
988 return false;
991 return true;
994 /* Transform X into narrower mode MODE from wider mode WMODE. */
996 static rtx
997 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
999 rtx op0, op1;
1000 if (CONSTANT_P (x))
1001 return lowpart_subreg (mode, x, wmode);
1002 switch (GET_CODE (x))
1004 case REG:
1005 return lowpart_subreg (mode, x, wmode);
1006 case PLUS:
1007 case MINUS:
1008 case MULT:
1009 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1010 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1011 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1012 case ASHIFT:
1013 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1014 op1 = XEXP (x, 1);
1015 /* Ensure shift amount is not wider than mode. */
1016 if (GET_MODE (op1) == VOIDmode)
1017 op1 = lowpart_subreg (mode, op1, wmode);
1018 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1019 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1020 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1021 default:
1022 gcc_unreachable ();
1026 /* Helper function for adjusting used MEMs. */
1028 static rtx
1029 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1031 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1032 rtx mem, addr = loc, tem;
1033 machine_mode mem_mode_save;
1034 bool store_save;
1035 switch (GET_CODE (loc))
1037 case REG:
1038 /* Don't do any sp or fp replacements outside of MEM addresses
1039 on the LHS. */
1040 if (amd->mem_mode == VOIDmode && amd->store)
1041 return loc;
1042 if (loc == stack_pointer_rtx
1043 && !frame_pointer_needed
1044 && cfa_base_rtx)
1045 return compute_cfa_pointer (amd->stack_adjust);
1046 else if (loc == hard_frame_pointer_rtx
1047 && frame_pointer_needed
1048 && hard_frame_pointer_adjustment != -1
1049 && cfa_base_rtx)
1050 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1051 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1052 return loc;
1053 case MEM:
1054 mem = loc;
1055 if (!amd->store)
1057 mem = targetm.delegitimize_address (mem);
1058 if (mem != loc && !MEM_P (mem))
1059 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1062 addr = XEXP (mem, 0);
1063 mem_mode_save = amd->mem_mode;
1064 amd->mem_mode = GET_MODE (mem);
1065 store_save = amd->store;
1066 amd->store = false;
1067 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1068 amd->store = store_save;
1069 amd->mem_mode = mem_mode_save;
1070 if (mem == loc)
1071 addr = targetm.delegitimize_address (addr);
1072 if (addr != XEXP (mem, 0))
1073 mem = replace_equiv_address_nv (mem, addr);
1074 if (!amd->store)
1075 mem = avoid_constant_pool_reference (mem);
1076 return mem;
1077 case PRE_INC:
1078 case PRE_DEC:
1079 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1080 gen_int_mode (GET_CODE (loc) == PRE_INC
1081 ? GET_MODE_SIZE (amd->mem_mode)
1082 : -GET_MODE_SIZE (amd->mem_mode),
1083 GET_MODE (loc)));
1084 case POST_INC:
1085 case POST_DEC:
1086 if (addr == loc)
1087 addr = XEXP (loc, 0);
1088 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1089 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1090 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1091 gen_int_mode ((GET_CODE (loc) == PRE_INC
1092 || GET_CODE (loc) == POST_INC)
1093 ? GET_MODE_SIZE (amd->mem_mode)
1094 : -GET_MODE_SIZE (amd->mem_mode),
1095 GET_MODE (loc)));
1096 store_save = amd->store;
1097 amd->store = false;
1098 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1099 amd->store = store_save;
1100 amd->side_effects = alloc_EXPR_LIST (0,
1101 gen_rtx_SET (VOIDmode,
1102 XEXP (loc, 0), tem),
1103 amd->side_effects);
1104 return addr;
1105 case PRE_MODIFY:
1106 addr = XEXP (loc, 1);
1107 case POST_MODIFY:
1108 if (addr == loc)
1109 addr = XEXP (loc, 0);
1110 gcc_assert (amd->mem_mode != VOIDmode);
1111 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1112 store_save = amd->store;
1113 amd->store = false;
1114 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1115 adjust_mems, data);
1116 amd->store = store_save;
1117 amd->side_effects = alloc_EXPR_LIST (0,
1118 gen_rtx_SET (VOIDmode,
1119 XEXP (loc, 0), tem),
1120 amd->side_effects);
1121 return addr;
1122 case SUBREG:
1123 /* First try without delegitimization of whole MEMs and
1124 avoid_constant_pool_reference, which is more likely to succeed. */
1125 store_save = amd->store;
1126 amd->store = true;
1127 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1128 data);
1129 amd->store = store_save;
1130 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1131 if (mem == SUBREG_REG (loc))
1133 tem = loc;
1134 goto finish_subreg;
1136 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1137 GET_MODE (SUBREG_REG (loc)),
1138 SUBREG_BYTE (loc));
1139 if (tem)
1140 goto finish_subreg;
1141 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1142 GET_MODE (SUBREG_REG (loc)),
1143 SUBREG_BYTE (loc));
1144 if (tem == NULL_RTX)
1145 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1146 finish_subreg:
1147 if (MAY_HAVE_DEBUG_INSNS
1148 && GET_CODE (tem) == SUBREG
1149 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1150 || GET_CODE (SUBREG_REG (tem)) == MINUS
1151 || GET_CODE (SUBREG_REG (tem)) == MULT
1152 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1153 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1154 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1155 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1156 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1157 && GET_MODE_PRECISION (GET_MODE (tem))
1158 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1159 && subreg_lowpart_p (tem)
1160 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1161 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1162 GET_MODE (SUBREG_REG (tem)));
1163 return tem;
1164 case ASM_OPERANDS:
1165 /* Don't do any replacements in second and following
1166 ASM_OPERANDS of inline-asm with multiple sets.
1167 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1168 and ASM_OPERANDS_LABEL_VEC need to be equal between
1169 all the ASM_OPERANDs in the insn and adjust_insn will
1170 fix this up. */
1171 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1172 return loc;
1173 break;
1174 default:
1175 break;
1177 return NULL_RTX;
1180 /* Helper function for replacement of uses. */
1182 static void
1183 adjust_mem_uses (rtx *x, void *data)
1185 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1186 if (new_x != *x)
1187 validate_change (NULL_RTX, x, new_x, true);
1190 /* Helper function for replacement of stores. */
1192 static void
1193 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1195 if (MEM_P (loc))
1197 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1198 adjust_mems, data);
1199 if (new_dest != SET_DEST (expr))
1201 rtx xexpr = CONST_CAST_RTX (expr);
1202 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1207 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1208 replace them with their value in the insn and add the side-effects
1209 as other sets to the insn. */
1211 static void
1212 adjust_insn (basic_block bb, rtx_insn *insn)
1214 struct adjust_mem_data amd;
1215 rtx set;
1217 #ifdef HAVE_window_save
1218 /* If the target machine has an explicit window save instruction, the
1219 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1220 if (RTX_FRAME_RELATED_P (insn)
1221 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1223 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1224 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1225 parm_reg_t *p;
1227 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1229 XVECEXP (rtl, 0, i * 2)
1230 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1231 /* Do not clobber the attached DECL, but only the REG. */
1232 XVECEXP (rtl, 0, i * 2 + 1)
1233 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1234 gen_raw_REG (GET_MODE (p->outgoing),
1235 REGNO (p->outgoing)));
1238 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1239 return;
1241 #endif
1243 amd.mem_mode = VOIDmode;
1244 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1245 amd.side_effects = NULL;
1247 amd.store = true;
1248 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1250 amd.store = false;
1251 if (GET_CODE (PATTERN (insn)) == PARALLEL
1252 && asm_noperands (PATTERN (insn)) > 0
1253 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1255 rtx body, set0;
1256 int i;
1258 /* inline-asm with multiple sets is tiny bit more complicated,
1259 because the 3 vectors in ASM_OPERANDS need to be shared between
1260 all ASM_OPERANDS in the instruction. adjust_mems will
1261 not touch ASM_OPERANDS other than the first one, asm_noperands
1262 test above needs to be called before that (otherwise it would fail)
1263 and afterwards this code fixes it up. */
1264 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1265 body = PATTERN (insn);
1266 set0 = XVECEXP (body, 0, 0);
1267 gcc_checking_assert (GET_CODE (set0) == SET
1268 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1269 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1270 for (i = 1; i < XVECLEN (body, 0); i++)
1271 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1272 break;
1273 else
1275 set = XVECEXP (body, 0, i);
1276 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1277 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1278 == i);
1279 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1280 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1281 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1282 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1283 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1284 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1286 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1287 ASM_OPERANDS_INPUT_VEC (newsrc)
1288 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1289 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1290 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1291 ASM_OPERANDS_LABEL_VEC (newsrc)
1292 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1293 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1297 else
1298 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1300 /* For read-only MEMs containing some constant, prefer those
1301 constants. */
1302 set = single_set (insn);
1303 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1305 rtx note = find_reg_equal_equiv_note (insn);
1307 if (note && CONSTANT_P (XEXP (note, 0)))
1308 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1311 if (amd.side_effects)
1313 rtx *pat, new_pat, s;
1314 int i, oldn, newn;
1316 pat = &PATTERN (insn);
1317 if (GET_CODE (*pat) == COND_EXEC)
1318 pat = &COND_EXEC_CODE (*pat);
1319 if (GET_CODE (*pat) == PARALLEL)
1320 oldn = XVECLEN (*pat, 0);
1321 else
1322 oldn = 1;
1323 for (s = amd.side_effects, newn = 0; s; newn++)
1324 s = XEXP (s, 1);
1325 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1326 if (GET_CODE (*pat) == PARALLEL)
1327 for (i = 0; i < oldn; i++)
1328 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1329 else
1330 XVECEXP (new_pat, 0, 0) = *pat;
1331 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1332 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1333 free_EXPR_LIST_list (&amd.side_effects);
1334 validate_change (NULL_RTX, pat, new_pat, true);
1338 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1339 static inline rtx
1340 dv_as_rtx (decl_or_value dv)
1342 tree decl;
1344 if (dv_is_value_p (dv))
1345 return dv_as_value (dv);
1347 decl = dv_as_decl (dv);
1349 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1350 return DECL_RTL_KNOWN_SET (decl);
1353 /* Return nonzero if a decl_or_value must not have more than one
1354 variable part. The returned value discriminates among various
1355 kinds of one-part DVs ccording to enum onepart_enum. */
1356 static inline onepart_enum_t
1357 dv_onepart_p (decl_or_value dv)
1359 tree decl;
1361 if (!MAY_HAVE_DEBUG_INSNS)
1362 return NOT_ONEPART;
1364 if (dv_is_value_p (dv))
1365 return ONEPART_VALUE;
1367 decl = dv_as_decl (dv);
1369 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1370 return ONEPART_DEXPR;
1372 if (target_for_debug_bind (decl) != NULL_TREE)
1373 return ONEPART_VDECL;
1375 return NOT_ONEPART;
1378 /* Return the variable pool to be used for a dv of type ONEPART. */
1379 static inline alloc_pool
1380 onepart_pool (onepart_enum_t onepart)
1382 return onepart ? valvar_pool : var_pool;
1385 /* Build a decl_or_value out of a decl. */
1386 static inline decl_or_value
1387 dv_from_decl (tree decl)
1389 decl_or_value dv;
1390 dv = decl;
1391 gcc_checking_assert (dv_is_decl_p (dv));
1392 return dv;
1395 /* Build a decl_or_value out of a value. */
1396 static inline decl_or_value
1397 dv_from_value (rtx value)
1399 decl_or_value dv;
1400 dv = value;
1401 gcc_checking_assert (dv_is_value_p (dv));
1402 return dv;
1405 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1406 static inline decl_or_value
1407 dv_from_rtx (rtx x)
1409 decl_or_value dv;
1411 switch (GET_CODE (x))
1413 case DEBUG_EXPR:
1414 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1415 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1416 break;
1418 case VALUE:
1419 dv = dv_from_value (x);
1420 break;
1422 default:
1423 gcc_unreachable ();
1426 return dv;
1429 extern void debug_dv (decl_or_value dv);
1431 DEBUG_FUNCTION void
1432 debug_dv (decl_or_value dv)
1434 if (dv_is_value_p (dv))
1435 debug_rtx (dv_as_value (dv));
1436 else
1437 debug_generic_stmt (dv_as_decl (dv));
1440 static void loc_exp_dep_clear (variable var);
1442 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1444 static void
1445 variable_htab_free (void *elem)
1447 int i;
1448 variable var = (variable) elem;
1449 location_chain node, next;
1451 gcc_checking_assert (var->refcount > 0);
1453 var->refcount--;
1454 if (var->refcount > 0)
1455 return;
1457 for (i = 0; i < var->n_var_parts; i++)
1459 for (node = var->var_part[i].loc_chain; node; node = next)
1461 next = node->next;
1462 pool_free (loc_chain_pool, node);
1464 var->var_part[i].loc_chain = NULL;
1466 if (var->onepart && VAR_LOC_1PAUX (var))
1468 loc_exp_dep_clear (var);
1469 if (VAR_LOC_DEP_LST (var))
1470 VAR_LOC_DEP_LST (var)->pprev = NULL;
1471 XDELETE (VAR_LOC_1PAUX (var));
1472 /* These may be reused across functions, so reset
1473 e.g. NO_LOC_P. */
1474 if (var->onepart == ONEPART_DEXPR)
1475 set_dv_changed (var->dv, true);
1477 pool_free (onepart_pool (var->onepart), var);
1480 /* Initialize the set (array) SET of attrs to empty lists. */
1482 static void
1483 init_attrs_list_set (attrs *set)
1485 int i;
1487 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1488 set[i] = NULL;
1491 /* Make the list *LISTP empty. */
1493 static void
1494 attrs_list_clear (attrs *listp)
1496 attrs list, next;
1498 for (list = *listp; list; list = next)
1500 next = list->next;
1501 pool_free (attrs_pool, list);
1503 *listp = NULL;
1506 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1508 static attrs
1509 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1511 for (; list; list = list->next)
1512 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1513 return list;
1514 return NULL;
1517 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1519 static void
1520 attrs_list_insert (attrs *listp, decl_or_value dv,
1521 HOST_WIDE_INT offset, rtx loc)
1523 attrs list;
1525 list = (attrs) pool_alloc (attrs_pool);
1526 list->loc = loc;
1527 list->dv = dv;
1528 list->offset = offset;
1529 list->next = *listp;
1530 *listp = list;
1533 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1535 static void
1536 attrs_list_copy (attrs *dstp, attrs src)
1538 attrs n;
1540 attrs_list_clear (dstp);
1541 for (; src; src = src->next)
1543 n = (attrs) pool_alloc (attrs_pool);
1544 n->loc = src->loc;
1545 n->dv = src->dv;
1546 n->offset = src->offset;
1547 n->next = *dstp;
1548 *dstp = n;
1552 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1554 static void
1555 attrs_list_union (attrs *dstp, attrs src)
1557 for (; src; src = src->next)
1559 if (!attrs_list_member (*dstp, src->dv, src->offset))
1560 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1564 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1565 *DSTP. */
1567 static void
1568 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1570 gcc_assert (!*dstp);
1571 for (; src; src = src->next)
1573 if (!dv_onepart_p (src->dv))
1574 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1576 for (src = src2; src; src = src->next)
1578 if (!dv_onepart_p (src->dv)
1579 && !attrs_list_member (*dstp, src->dv, src->offset))
1580 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1584 /* Shared hashtable support. */
1586 /* Return true if VARS is shared. */
1588 static inline bool
1589 shared_hash_shared (shared_hash vars)
1591 return vars->refcount > 1;
1594 /* Return the hash table for VARS. */
1596 static inline variable_table_type *
1597 shared_hash_htab (shared_hash vars)
1599 return vars->htab;
1602 /* Return true if VAR is shared, or maybe because VARS is shared. */
1604 static inline bool
1605 shared_var_p (variable var, shared_hash vars)
1607 /* Don't count an entry in the changed_variables table as a duplicate. */
1608 return ((var->refcount > 1 + (int) var->in_changed_variables)
1609 || shared_hash_shared (vars));
1612 /* Copy variables into a new hash table. */
1614 static shared_hash
1615 shared_hash_unshare (shared_hash vars)
1617 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1618 gcc_assert (vars->refcount > 1);
1619 new_vars->refcount = 1;
1620 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1621 vars_copy (new_vars->htab, vars->htab);
1622 vars->refcount--;
1623 return new_vars;
1626 /* Increment reference counter on VARS and return it. */
1628 static inline shared_hash
1629 shared_hash_copy (shared_hash vars)
1631 vars->refcount++;
1632 return vars;
1635 /* Decrement reference counter and destroy hash table if not shared
1636 anymore. */
1638 static void
1639 shared_hash_destroy (shared_hash vars)
1641 gcc_checking_assert (vars->refcount > 0);
1642 if (--vars->refcount == 0)
1644 delete vars->htab;
1645 pool_free (shared_hash_pool, vars);
1649 /* Unshare *PVARS if shared and return slot for DV. If INS is
1650 INSERT, insert it if not already present. */
1652 static inline variable_def **
1653 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1654 hashval_t dvhash, enum insert_option ins)
1656 if (shared_hash_shared (*pvars))
1657 *pvars = shared_hash_unshare (*pvars);
1658 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1661 static inline variable_def **
1662 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1663 enum insert_option ins)
1665 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1668 /* Return slot for DV, if it is already present in the hash table.
1669 If it is not present, insert it only VARS is not shared, otherwise
1670 return NULL. */
1672 static inline variable_def **
1673 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1675 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1676 shared_hash_shared (vars)
1677 ? NO_INSERT : INSERT);
1680 static inline variable_def **
1681 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1683 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1686 /* Return slot for DV only if it is already present in the hash table. */
1688 static inline variable_def **
1689 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1690 hashval_t dvhash)
1692 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1695 static inline variable_def **
1696 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1698 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1701 /* Return variable for DV or NULL if not already present in the hash
1702 table. */
1704 static inline variable
1705 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1707 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1710 static inline variable
1711 shared_hash_find (shared_hash vars, decl_or_value dv)
1713 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1716 /* Return true if TVAL is better than CVAL as a canonival value. We
1717 choose lowest-numbered VALUEs, using the RTX address as a
1718 tie-breaker. The idea is to arrange them into a star topology,
1719 such that all of them are at most one step away from the canonical
1720 value, and the canonical value has backlinks to all of them, in
1721 addition to all the actual locations. We don't enforce this
1722 topology throughout the entire dataflow analysis, though.
1725 static inline bool
1726 canon_value_cmp (rtx tval, rtx cval)
1728 return !cval
1729 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1732 static bool dst_can_be_shared;
1734 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1736 static variable_def **
1737 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1738 enum var_init_status initialized)
1740 variable new_var;
1741 int i;
1743 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1744 new_var->dv = var->dv;
1745 new_var->refcount = 1;
1746 var->refcount--;
1747 new_var->n_var_parts = var->n_var_parts;
1748 new_var->onepart = var->onepart;
1749 new_var->in_changed_variables = false;
1751 if (! flag_var_tracking_uninit)
1752 initialized = VAR_INIT_STATUS_INITIALIZED;
1754 for (i = 0; i < var->n_var_parts; i++)
1756 location_chain node;
1757 location_chain *nextp;
1759 if (i == 0 && var->onepart)
1761 /* One-part auxiliary data is only used while emitting
1762 notes, so propagate it to the new variable in the active
1763 dataflow set. If we're not emitting notes, this will be
1764 a no-op. */
1765 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1766 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1767 VAR_LOC_1PAUX (var) = NULL;
1769 else
1770 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1771 nextp = &new_var->var_part[i].loc_chain;
1772 for (node = var->var_part[i].loc_chain; node; node = node->next)
1774 location_chain new_lc;
1776 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1777 new_lc->next = NULL;
1778 if (node->init > initialized)
1779 new_lc->init = node->init;
1780 else
1781 new_lc->init = initialized;
1782 if (node->set_src && !(MEM_P (node->set_src)))
1783 new_lc->set_src = node->set_src;
1784 else
1785 new_lc->set_src = NULL;
1786 new_lc->loc = node->loc;
1788 *nextp = new_lc;
1789 nextp = &new_lc->next;
1792 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1795 dst_can_be_shared = false;
1796 if (shared_hash_shared (set->vars))
1797 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1798 else if (set->traversed_vars && set->vars != set->traversed_vars)
1799 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1800 *slot = new_var;
1801 if (var->in_changed_variables)
1803 variable_def **cslot
1804 = changed_variables->find_slot_with_hash (var->dv,
1805 dv_htab_hash (var->dv),
1806 NO_INSERT);
1807 gcc_assert (*cslot == (void *) var);
1808 var->in_changed_variables = false;
1809 variable_htab_free (var);
1810 *cslot = new_var;
1811 new_var->in_changed_variables = true;
1813 return slot;
1816 /* Copy all variables from hash table SRC to hash table DST. */
1818 static void
1819 vars_copy (variable_table_type *dst, variable_table_type *src)
1821 variable_iterator_type hi;
1822 variable var;
1824 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1826 variable_def **dstp;
1827 var->refcount++;
1828 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1829 INSERT);
1830 *dstp = var;
1834 /* Map a decl to its main debug decl. */
1836 static inline tree
1837 var_debug_decl (tree decl)
1839 if (decl && TREE_CODE (decl) == VAR_DECL
1840 && DECL_HAS_DEBUG_EXPR_P (decl))
1842 tree debugdecl = DECL_DEBUG_EXPR (decl);
1843 if (DECL_P (debugdecl))
1844 decl = debugdecl;
1847 return decl;
1850 /* Set the register LOC to contain DV, OFFSET. */
1852 static void
1853 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1854 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1855 enum insert_option iopt)
1857 attrs node;
1858 bool decl_p = dv_is_decl_p (dv);
1860 if (decl_p)
1861 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1863 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1864 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1865 && node->offset == offset)
1866 break;
1867 if (!node)
1868 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1869 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1872 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1874 static void
1875 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1876 rtx set_src)
1878 tree decl = REG_EXPR (loc);
1879 HOST_WIDE_INT offset = REG_OFFSET (loc);
1881 var_reg_decl_set (set, loc, initialized,
1882 dv_from_decl (decl), offset, set_src, INSERT);
1885 static enum var_init_status
1886 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1888 variable var;
1889 int i;
1890 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1892 if (! flag_var_tracking_uninit)
1893 return VAR_INIT_STATUS_INITIALIZED;
1895 var = shared_hash_find (set->vars, dv);
1896 if (var)
1898 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1900 location_chain nextp;
1901 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1902 if (rtx_equal_p (nextp->loc, loc))
1904 ret_val = nextp->init;
1905 break;
1910 return ret_val;
1913 /* Delete current content of register LOC in dataflow set SET and set
1914 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1915 MODIFY is true, any other live copies of the same variable part are
1916 also deleted from the dataflow set, otherwise the variable part is
1917 assumed to be copied from another location holding the same
1918 part. */
1920 static void
1921 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1922 enum var_init_status initialized, rtx set_src)
1924 tree decl = REG_EXPR (loc);
1925 HOST_WIDE_INT offset = REG_OFFSET (loc);
1926 attrs node, next;
1927 attrs *nextp;
1929 decl = var_debug_decl (decl);
1931 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1932 initialized = get_init_value (set, loc, dv_from_decl (decl));
1934 nextp = &set->regs[REGNO (loc)];
1935 for (node = *nextp; node; node = next)
1937 next = node->next;
1938 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1940 delete_variable_part (set, node->loc, node->dv, node->offset);
1941 pool_free (attrs_pool, node);
1942 *nextp = next;
1944 else
1946 node->loc = loc;
1947 nextp = &node->next;
1950 if (modify)
1951 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1952 var_reg_set (set, loc, initialized, set_src);
1955 /* Delete the association of register LOC in dataflow set SET with any
1956 variables that aren't onepart. If CLOBBER is true, also delete any
1957 other live copies of the same variable part, and delete the
1958 association with onepart dvs too. */
1960 static void
1961 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1963 attrs *nextp = &set->regs[REGNO (loc)];
1964 attrs node, next;
1966 if (clobber)
1968 tree decl = REG_EXPR (loc);
1969 HOST_WIDE_INT offset = REG_OFFSET (loc);
1971 decl = var_debug_decl (decl);
1973 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1976 for (node = *nextp; node; node = next)
1978 next = node->next;
1979 if (clobber || !dv_onepart_p (node->dv))
1981 delete_variable_part (set, node->loc, node->dv, node->offset);
1982 pool_free (attrs_pool, node);
1983 *nextp = next;
1985 else
1986 nextp = &node->next;
1990 /* Delete content of register with number REGNO in dataflow set SET. */
1992 static void
1993 var_regno_delete (dataflow_set *set, int regno)
1995 attrs *reg = &set->regs[regno];
1996 attrs node, next;
1998 for (node = *reg; node; node = next)
2000 next = node->next;
2001 delete_variable_part (set, node->loc, node->dv, node->offset);
2002 pool_free (attrs_pool, node);
2004 *reg = NULL;
2007 /* Return true if I is the negated value of a power of two. */
2008 static bool
2009 negative_power_of_two_p (HOST_WIDE_INT i)
2011 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2012 return x == (x & -x);
2015 /* Strip constant offsets and alignments off of LOC. Return the base
2016 expression. */
2018 static rtx
2019 vt_get_canonicalize_base (rtx loc)
2021 while ((GET_CODE (loc) == PLUS
2022 || GET_CODE (loc) == AND)
2023 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2024 && (GET_CODE (loc) != AND
2025 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2026 loc = XEXP (loc, 0);
2028 return loc;
2031 /* This caches canonicalized addresses for VALUEs, computed using
2032 information in the global cselib table. */
2033 static hash_map<rtx, rtx> *global_get_addr_cache;
2035 /* This caches canonicalized addresses for VALUEs, computed using
2036 information from the global cache and information pertaining to a
2037 basic block being analyzed. */
2038 static hash_map<rtx, rtx> *local_get_addr_cache;
2040 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2042 /* Return the canonical address for LOC, that must be a VALUE, using a
2043 cached global equivalence or computing it and storing it in the
2044 global cache. */
2046 static rtx
2047 get_addr_from_global_cache (rtx const loc)
2049 rtx x;
2051 gcc_checking_assert (GET_CODE (loc) == VALUE);
2053 bool existed;
2054 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2055 if (existed)
2056 return *slot;
2058 x = canon_rtx (get_addr (loc));
2060 /* Tentative, avoiding infinite recursion. */
2061 *slot = x;
2063 if (x != loc)
2065 rtx nx = vt_canonicalize_addr (NULL, x);
2066 if (nx != x)
2068 /* The table may have moved during recursion, recompute
2069 SLOT. */
2070 *global_get_addr_cache->get (loc) = x = nx;
2074 return x;
2077 /* Return the canonical address for LOC, that must be a VALUE, using a
2078 cached local equivalence or computing it and storing it in the
2079 local cache. */
2081 static rtx
2082 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2084 rtx x;
2085 decl_or_value dv;
2086 variable var;
2087 location_chain l;
2089 gcc_checking_assert (GET_CODE (loc) == VALUE);
2091 bool existed;
2092 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2093 if (existed)
2094 return *slot;
2096 x = get_addr_from_global_cache (loc);
2098 /* Tentative, avoiding infinite recursion. */
2099 *slot = x;
2101 /* Recurse to cache local expansion of X, or if we need to search
2102 for a VALUE in the expansion. */
2103 if (x != loc)
2105 rtx nx = vt_canonicalize_addr (set, x);
2106 if (nx != x)
2108 slot = local_get_addr_cache->get (loc);
2109 *slot = x = nx;
2111 return x;
2114 dv = dv_from_rtx (x);
2115 var = shared_hash_find (set->vars, dv);
2116 if (!var)
2117 return x;
2119 /* Look for an improved equivalent expression. */
2120 for (l = var->var_part[0].loc_chain; l; l = l->next)
2122 rtx base = vt_get_canonicalize_base (l->loc);
2123 if (GET_CODE (base) == VALUE
2124 && canon_value_cmp (base, loc))
2126 rtx nx = vt_canonicalize_addr (set, l->loc);
2127 if (x != nx)
2129 slot = local_get_addr_cache->get (loc);
2130 *slot = x = nx;
2132 break;
2136 return x;
2139 /* Canonicalize LOC using equivalences from SET in addition to those
2140 in the cselib static table. It expects a VALUE-based expression,
2141 and it will only substitute VALUEs with other VALUEs or
2142 function-global equivalences, so that, if two addresses have base
2143 VALUEs that are locally or globally related in ways that
2144 memrefs_conflict_p cares about, they will both canonicalize to
2145 expressions that have the same base VALUE.
2147 The use of VALUEs as canonical base addresses enables the canonical
2148 RTXs to remain unchanged globally, if they resolve to a constant,
2149 or throughout a basic block otherwise, so that they can be cached
2150 and the cache needs not be invalidated when REGs, MEMs or such
2151 change. */
2153 static rtx
2154 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2156 HOST_WIDE_INT ofst = 0;
2157 machine_mode mode = GET_MODE (oloc);
2158 rtx loc = oloc;
2159 rtx x;
2160 bool retry = true;
2162 while (retry)
2164 while (GET_CODE (loc) == PLUS
2165 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2167 ofst += INTVAL (XEXP (loc, 1));
2168 loc = XEXP (loc, 0);
2171 /* Alignment operations can't normally be combined, so just
2172 canonicalize the base and we're done. We'll normally have
2173 only one stack alignment anyway. */
2174 if (GET_CODE (loc) == AND
2175 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2176 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2178 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2179 if (x != XEXP (loc, 0))
2180 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2181 retry = false;
2184 if (GET_CODE (loc) == VALUE)
2186 if (set)
2187 loc = get_addr_from_local_cache (set, loc);
2188 else
2189 loc = get_addr_from_global_cache (loc);
2191 /* Consolidate plus_constants. */
2192 while (ofst && GET_CODE (loc) == PLUS
2193 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2195 ofst += INTVAL (XEXP (loc, 1));
2196 loc = XEXP (loc, 0);
2199 retry = false;
2201 else
2203 x = canon_rtx (loc);
2204 if (retry)
2205 retry = (x != loc);
2206 loc = x;
2210 /* Add OFST back in. */
2211 if (ofst)
2213 /* Don't build new RTL if we can help it. */
2214 if (GET_CODE (oloc) == PLUS
2215 && XEXP (oloc, 0) == loc
2216 && INTVAL (XEXP (oloc, 1)) == ofst)
2217 return oloc;
2219 loc = plus_constant (mode, loc, ofst);
2222 return loc;
2225 /* Return true iff there's a true dependence between MLOC and LOC.
2226 MADDR must be a canonicalized version of MLOC's address. */
2228 static inline bool
2229 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2231 if (GET_CODE (loc) != MEM)
2232 return false;
2234 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2235 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2236 return false;
2238 return true;
2241 /* Hold parameters for the hashtab traversal function
2242 drop_overlapping_mem_locs, see below. */
2244 struct overlapping_mems
2246 dataflow_set *set;
2247 rtx loc, addr;
2250 /* Remove all MEMs that overlap with COMS->LOC from the location list
2251 of a hash table entry for a value. COMS->ADDR must be a
2252 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2253 canonicalized itself. */
2256 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2258 dataflow_set *set = coms->set;
2259 rtx mloc = coms->loc, addr = coms->addr;
2260 variable var = *slot;
2262 if (var->onepart == ONEPART_VALUE)
2264 location_chain loc, *locp;
2265 bool changed = false;
2266 rtx cur_loc;
2268 gcc_assert (var->n_var_parts == 1);
2270 if (shared_var_p (var, set->vars))
2272 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2273 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2274 break;
2276 if (!loc)
2277 return 1;
2279 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2280 var = *slot;
2281 gcc_assert (var->n_var_parts == 1);
2284 if (VAR_LOC_1PAUX (var))
2285 cur_loc = VAR_LOC_FROM (var);
2286 else
2287 cur_loc = var->var_part[0].cur_loc;
2289 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2290 loc; loc = *locp)
2292 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2294 locp = &loc->next;
2295 continue;
2298 *locp = loc->next;
2299 /* If we have deleted the location which was last emitted
2300 we have to emit new location so add the variable to set
2301 of changed variables. */
2302 if (cur_loc == loc->loc)
2304 changed = true;
2305 var->var_part[0].cur_loc = NULL;
2306 if (VAR_LOC_1PAUX (var))
2307 VAR_LOC_FROM (var) = NULL;
2309 pool_free (loc_chain_pool, loc);
2312 if (!var->var_part[0].loc_chain)
2314 var->n_var_parts--;
2315 changed = true;
2317 if (changed)
2318 variable_was_changed (var, set);
2321 return 1;
2324 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2326 static void
2327 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2329 struct overlapping_mems coms;
2331 gcc_checking_assert (GET_CODE (loc) == MEM);
2333 coms.set = set;
2334 coms.loc = canon_rtx (loc);
2335 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2337 set->traversed_vars = set->vars;
2338 shared_hash_htab (set->vars)
2339 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2340 set->traversed_vars = NULL;
2343 /* Set the location of DV, OFFSET as the MEM LOC. */
2345 static void
2346 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2347 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2348 enum insert_option iopt)
2350 if (dv_is_decl_p (dv))
2351 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2353 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2356 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2357 SET to LOC.
2358 Adjust the address first if it is stack pointer based. */
2360 static void
2361 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2362 rtx set_src)
2364 tree decl = MEM_EXPR (loc);
2365 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2367 var_mem_decl_set (set, loc, initialized,
2368 dv_from_decl (decl), offset, set_src, INSERT);
2371 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2372 dataflow set SET to LOC. If MODIFY is true, any other live copies
2373 of the same variable part are also deleted from the dataflow set,
2374 otherwise the variable part is assumed to be copied from another
2375 location holding the same part.
2376 Adjust the address first if it is stack pointer based. */
2378 static void
2379 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2380 enum var_init_status initialized, rtx set_src)
2382 tree decl = MEM_EXPR (loc);
2383 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2385 clobber_overlapping_mems (set, loc);
2386 decl = var_debug_decl (decl);
2388 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2389 initialized = get_init_value (set, loc, dv_from_decl (decl));
2391 if (modify)
2392 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2393 var_mem_set (set, loc, initialized, set_src);
2396 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2397 true, also delete any other live copies of the same variable part.
2398 Adjust the address first if it is stack pointer based. */
2400 static void
2401 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2403 tree decl = MEM_EXPR (loc);
2404 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2406 clobber_overlapping_mems (set, loc);
2407 decl = var_debug_decl (decl);
2408 if (clobber)
2409 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2410 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2413 /* Return true if LOC should not be expanded for location expressions,
2414 or used in them. */
2416 static inline bool
2417 unsuitable_loc (rtx loc)
2419 switch (GET_CODE (loc))
2421 case PC:
2422 case SCRATCH:
2423 case CC0:
2424 case ASM_INPUT:
2425 case ASM_OPERANDS:
2426 return true;
2428 default:
2429 return false;
2433 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2434 bound to it. */
2436 static inline void
2437 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2439 if (REG_P (loc))
2441 if (modified)
2442 var_regno_delete (set, REGNO (loc));
2443 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2444 dv_from_value (val), 0, NULL_RTX, INSERT);
2446 else if (MEM_P (loc))
2448 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2450 if (modified)
2451 clobber_overlapping_mems (set, loc);
2453 if (l && GET_CODE (l->loc) == VALUE)
2454 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2456 /* If this MEM is a global constant, we don't need it in the
2457 dynamic tables. ??? We should test this before emitting the
2458 micro-op in the first place. */
2459 while (l)
2460 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2461 break;
2462 else
2463 l = l->next;
2465 if (!l)
2466 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2467 dv_from_value (val), 0, NULL_RTX, INSERT);
2469 else
2471 /* Other kinds of equivalences are necessarily static, at least
2472 so long as we do not perform substitutions while merging
2473 expressions. */
2474 gcc_unreachable ();
2475 set_variable_part (set, loc, dv_from_value (val), 0,
2476 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2480 /* Bind a value to a location it was just stored in. If MODIFIED
2481 holds, assume the location was modified, detaching it from any
2482 values bound to it. */
2484 static void
2485 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2486 bool modified)
2488 cselib_val *v = CSELIB_VAL_PTR (val);
2490 gcc_assert (cselib_preserved_value_p (v));
2492 if (dump_file)
2494 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2495 print_inline_rtx (dump_file, loc, 0);
2496 fprintf (dump_file, " evaluates to ");
2497 print_inline_rtx (dump_file, val, 0);
2498 if (v->locs)
2500 struct elt_loc_list *l;
2501 for (l = v->locs; l; l = l->next)
2503 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2504 print_inline_rtx (dump_file, l->loc, 0);
2507 fprintf (dump_file, "\n");
2510 gcc_checking_assert (!unsuitable_loc (loc));
2512 val_bind (set, val, loc, modified);
2515 /* Clear (canonical address) slots that reference X. */
2517 bool
2518 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2520 if (vt_get_canonicalize_base (*slot) == x)
2521 *slot = NULL;
2522 return true;
2525 /* Reset this node, detaching all its equivalences. Return the slot
2526 in the variable hash table that holds dv, if there is one. */
2528 static void
2529 val_reset (dataflow_set *set, decl_or_value dv)
2531 variable var = shared_hash_find (set->vars, dv) ;
2532 location_chain node;
2533 rtx cval;
2535 if (!var || !var->n_var_parts)
2536 return;
2538 gcc_assert (var->n_var_parts == 1);
2540 if (var->onepart == ONEPART_VALUE)
2542 rtx x = dv_as_value (dv);
2544 /* Relationships in the global cache don't change, so reset the
2545 local cache entry only. */
2546 rtx *slot = local_get_addr_cache->get (x);
2547 if (slot)
2549 /* If the value resolved back to itself, odds are that other
2550 values may have cached it too. These entries now refer
2551 to the old X, so detach them too. Entries that used the
2552 old X but resolved to something else remain ok as long as
2553 that something else isn't also reset. */
2554 if (*slot == x)
2555 local_get_addr_cache
2556 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2557 *slot = NULL;
2561 cval = NULL;
2562 for (node = var->var_part[0].loc_chain; node; node = node->next)
2563 if (GET_CODE (node->loc) == VALUE
2564 && canon_value_cmp (node->loc, cval))
2565 cval = node->loc;
2567 for (node = var->var_part[0].loc_chain; node; node = node->next)
2568 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2570 /* Redirect the equivalence link to the new canonical
2571 value, or simply remove it if it would point at
2572 itself. */
2573 if (cval)
2574 set_variable_part (set, cval, dv_from_value (node->loc),
2575 0, node->init, node->set_src, NO_INSERT);
2576 delete_variable_part (set, dv_as_value (dv),
2577 dv_from_value (node->loc), 0);
2580 if (cval)
2582 decl_or_value cdv = dv_from_value (cval);
2584 /* Keep the remaining values connected, accummulating links
2585 in the canonical value. */
2586 for (node = var->var_part[0].loc_chain; node; node = node->next)
2588 if (node->loc == cval)
2589 continue;
2590 else if (GET_CODE (node->loc) == REG)
2591 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2592 node->set_src, NO_INSERT);
2593 else if (GET_CODE (node->loc) == MEM)
2594 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2595 node->set_src, NO_INSERT);
2596 else
2597 set_variable_part (set, node->loc, cdv, 0,
2598 node->init, node->set_src, NO_INSERT);
2602 /* We remove this last, to make sure that the canonical value is not
2603 removed to the point of requiring reinsertion. */
2604 if (cval)
2605 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2607 clobber_variable_part (set, NULL, dv, 0, NULL);
2610 /* Find the values in a given location and map the val to another
2611 value, if it is unique, or add the location as one holding the
2612 value. */
2614 static void
2615 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2617 decl_or_value dv = dv_from_value (val);
2619 if (dump_file && (dump_flags & TDF_DETAILS))
2621 if (insn)
2622 fprintf (dump_file, "%i: ", INSN_UID (insn));
2623 else
2624 fprintf (dump_file, "head: ");
2625 print_inline_rtx (dump_file, val, 0);
2626 fputs (" is at ", dump_file);
2627 print_inline_rtx (dump_file, loc, 0);
2628 fputc ('\n', dump_file);
2631 val_reset (set, dv);
2633 gcc_checking_assert (!unsuitable_loc (loc));
2635 if (REG_P (loc))
2637 attrs node, found = NULL;
2639 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2640 if (dv_is_value_p (node->dv)
2641 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2643 found = node;
2645 /* Map incoming equivalences. ??? Wouldn't it be nice if
2646 we just started sharing the location lists? Maybe a
2647 circular list ending at the value itself or some
2648 such. */
2649 set_variable_part (set, dv_as_value (node->dv),
2650 dv_from_value (val), node->offset,
2651 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2652 set_variable_part (set, val, node->dv, node->offset,
2653 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2656 /* If we didn't find any equivalence, we need to remember that
2657 this value is held in the named register. */
2658 if (found)
2659 return;
2661 /* ??? Attempt to find and merge equivalent MEMs or other
2662 expressions too. */
2664 val_bind (set, val, loc, false);
2667 /* Initialize dataflow set SET to be empty.
2668 VARS_SIZE is the initial size of hash table VARS. */
2670 static void
2671 dataflow_set_init (dataflow_set *set)
2673 init_attrs_list_set (set->regs);
2674 set->vars = shared_hash_copy (empty_shared_hash);
2675 set->stack_adjust = 0;
2676 set->traversed_vars = NULL;
2679 /* Delete the contents of dataflow set SET. */
2681 static void
2682 dataflow_set_clear (dataflow_set *set)
2684 int i;
2686 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2687 attrs_list_clear (&set->regs[i]);
2689 shared_hash_destroy (set->vars);
2690 set->vars = shared_hash_copy (empty_shared_hash);
2693 /* Copy the contents of dataflow set SRC to DST. */
2695 static void
2696 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2698 int i;
2700 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2701 attrs_list_copy (&dst->regs[i], src->regs[i]);
2703 shared_hash_destroy (dst->vars);
2704 dst->vars = shared_hash_copy (src->vars);
2705 dst->stack_adjust = src->stack_adjust;
2708 /* Information for merging lists of locations for a given offset of variable.
2710 struct variable_union_info
2712 /* Node of the location chain. */
2713 location_chain lc;
2715 /* The sum of positions in the input chains. */
2716 int pos;
2718 /* The position in the chain of DST dataflow set. */
2719 int pos_dst;
2722 /* Buffer for location list sorting and its allocated size. */
2723 static struct variable_union_info *vui_vec;
2724 static int vui_allocated;
2726 /* Compare function for qsort, order the structures by POS element. */
2728 static int
2729 variable_union_info_cmp_pos (const void *n1, const void *n2)
2731 const struct variable_union_info *const i1 =
2732 (const struct variable_union_info *) n1;
2733 const struct variable_union_info *const i2 =
2734 ( const struct variable_union_info *) n2;
2736 if (i1->pos != i2->pos)
2737 return i1->pos - i2->pos;
2739 return (i1->pos_dst - i2->pos_dst);
2742 /* Compute union of location parts of variable *SLOT and the same variable
2743 from hash table DATA. Compute "sorted" union of the location chains
2744 for common offsets, i.e. the locations of a variable part are sorted by
2745 a priority where the priority is the sum of the positions in the 2 chains
2746 (if a location is only in one list the position in the second list is
2747 defined to be larger than the length of the chains).
2748 When we are updating the location parts the newest location is in the
2749 beginning of the chain, so when we do the described "sorted" union
2750 we keep the newest locations in the beginning. */
2752 static int
2753 variable_union (variable src, dataflow_set *set)
2755 variable dst;
2756 variable_def **dstp;
2757 int i, j, k;
2759 dstp = shared_hash_find_slot (set->vars, src->dv);
2760 if (!dstp || !*dstp)
2762 src->refcount++;
2764 dst_can_be_shared = false;
2765 if (!dstp)
2766 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2768 *dstp = src;
2770 /* Continue traversing the hash table. */
2771 return 1;
2773 else
2774 dst = *dstp;
2776 gcc_assert (src->n_var_parts);
2777 gcc_checking_assert (src->onepart == dst->onepart);
2779 /* We can combine one-part variables very efficiently, because their
2780 entries are in canonical order. */
2781 if (src->onepart)
2783 location_chain *nodep, dnode, snode;
2785 gcc_assert (src->n_var_parts == 1
2786 && dst->n_var_parts == 1);
2788 snode = src->var_part[0].loc_chain;
2789 gcc_assert (snode);
2791 restart_onepart_unshared:
2792 nodep = &dst->var_part[0].loc_chain;
2793 dnode = *nodep;
2794 gcc_assert (dnode);
2796 while (snode)
2798 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2800 if (r > 0)
2802 location_chain nnode;
2804 if (shared_var_p (dst, set->vars))
2806 dstp = unshare_variable (set, dstp, dst,
2807 VAR_INIT_STATUS_INITIALIZED);
2808 dst = *dstp;
2809 goto restart_onepart_unshared;
2812 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2813 nnode->loc = snode->loc;
2814 nnode->init = snode->init;
2815 if (!snode->set_src || MEM_P (snode->set_src))
2816 nnode->set_src = NULL;
2817 else
2818 nnode->set_src = snode->set_src;
2819 nnode->next = dnode;
2820 dnode = nnode;
2822 else if (r == 0)
2823 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2825 if (r >= 0)
2826 snode = snode->next;
2828 nodep = &dnode->next;
2829 dnode = *nodep;
2832 return 1;
2835 gcc_checking_assert (!src->onepart);
2837 /* Count the number of location parts, result is K. */
2838 for (i = 0, j = 0, k = 0;
2839 i < src->n_var_parts && j < dst->n_var_parts; k++)
2841 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2843 i++;
2844 j++;
2846 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2847 i++;
2848 else
2849 j++;
2851 k += src->n_var_parts - i;
2852 k += dst->n_var_parts - j;
2854 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2855 thus there are at most MAX_VAR_PARTS different offsets. */
2856 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2858 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2860 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2861 dst = *dstp;
2864 i = src->n_var_parts - 1;
2865 j = dst->n_var_parts - 1;
2866 dst->n_var_parts = k;
2868 for (k--; k >= 0; k--)
2870 location_chain node, node2;
2872 if (i >= 0 && j >= 0
2873 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2875 /* Compute the "sorted" union of the chains, i.e. the locations which
2876 are in both chains go first, they are sorted by the sum of
2877 positions in the chains. */
2878 int dst_l, src_l;
2879 int ii, jj, n;
2880 struct variable_union_info *vui;
2882 /* If DST is shared compare the location chains.
2883 If they are different we will modify the chain in DST with
2884 high probability so make a copy of DST. */
2885 if (shared_var_p (dst, set->vars))
2887 for (node = src->var_part[i].loc_chain,
2888 node2 = dst->var_part[j].loc_chain; node && node2;
2889 node = node->next, node2 = node2->next)
2891 if (!((REG_P (node2->loc)
2892 && REG_P (node->loc)
2893 && REGNO (node2->loc) == REGNO (node->loc))
2894 || rtx_equal_p (node2->loc, node->loc)))
2896 if (node2->init < node->init)
2897 node2->init = node->init;
2898 break;
2901 if (node || node2)
2903 dstp = unshare_variable (set, dstp, dst,
2904 VAR_INIT_STATUS_UNKNOWN);
2905 dst = (variable)*dstp;
2909 src_l = 0;
2910 for (node = src->var_part[i].loc_chain; node; node = node->next)
2911 src_l++;
2912 dst_l = 0;
2913 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2914 dst_l++;
2916 if (dst_l == 1)
2918 /* The most common case, much simpler, no qsort is needed. */
2919 location_chain dstnode = dst->var_part[j].loc_chain;
2920 dst->var_part[k].loc_chain = dstnode;
2921 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2922 node2 = dstnode;
2923 for (node = src->var_part[i].loc_chain; node; node = node->next)
2924 if (!((REG_P (dstnode->loc)
2925 && REG_P (node->loc)
2926 && REGNO (dstnode->loc) == REGNO (node->loc))
2927 || rtx_equal_p (dstnode->loc, node->loc)))
2929 location_chain new_node;
2931 /* Copy the location from SRC. */
2932 new_node = (location_chain) pool_alloc (loc_chain_pool);
2933 new_node->loc = node->loc;
2934 new_node->init = node->init;
2935 if (!node->set_src || MEM_P (node->set_src))
2936 new_node->set_src = NULL;
2937 else
2938 new_node->set_src = node->set_src;
2939 node2->next = new_node;
2940 node2 = new_node;
2942 node2->next = NULL;
2944 else
2946 if (src_l + dst_l > vui_allocated)
2948 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2949 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2950 vui_allocated);
2952 vui = vui_vec;
2954 /* Fill in the locations from DST. */
2955 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2956 node = node->next, jj++)
2958 vui[jj].lc = node;
2959 vui[jj].pos_dst = jj;
2961 /* Pos plus value larger than a sum of 2 valid positions. */
2962 vui[jj].pos = jj + src_l + dst_l;
2965 /* Fill in the locations from SRC. */
2966 n = dst_l;
2967 for (node = src->var_part[i].loc_chain, ii = 0; node;
2968 node = node->next, ii++)
2970 /* Find location from NODE. */
2971 for (jj = 0; jj < dst_l; jj++)
2973 if ((REG_P (vui[jj].lc->loc)
2974 && REG_P (node->loc)
2975 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2976 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2978 vui[jj].pos = jj + ii;
2979 break;
2982 if (jj >= dst_l) /* The location has not been found. */
2984 location_chain new_node;
2986 /* Copy the location from SRC. */
2987 new_node = (location_chain) pool_alloc (loc_chain_pool);
2988 new_node->loc = node->loc;
2989 new_node->init = node->init;
2990 if (!node->set_src || MEM_P (node->set_src))
2991 new_node->set_src = NULL;
2992 else
2993 new_node->set_src = node->set_src;
2994 vui[n].lc = new_node;
2995 vui[n].pos_dst = src_l + dst_l;
2996 vui[n].pos = ii + src_l + dst_l;
2997 n++;
3001 if (dst_l == 2)
3003 /* Special case still very common case. For dst_l == 2
3004 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3005 vui[i].pos == i + src_l + dst_l. */
3006 if (vui[0].pos > vui[1].pos)
3008 /* Order should be 1, 0, 2... */
3009 dst->var_part[k].loc_chain = vui[1].lc;
3010 vui[1].lc->next = vui[0].lc;
3011 if (n >= 3)
3013 vui[0].lc->next = vui[2].lc;
3014 vui[n - 1].lc->next = NULL;
3016 else
3017 vui[0].lc->next = NULL;
3018 ii = 3;
3020 else
3022 dst->var_part[k].loc_chain = vui[0].lc;
3023 if (n >= 3 && vui[2].pos < vui[1].pos)
3025 /* Order should be 0, 2, 1, 3... */
3026 vui[0].lc->next = vui[2].lc;
3027 vui[2].lc->next = vui[1].lc;
3028 if (n >= 4)
3030 vui[1].lc->next = vui[3].lc;
3031 vui[n - 1].lc->next = NULL;
3033 else
3034 vui[1].lc->next = NULL;
3035 ii = 4;
3037 else
3039 /* Order should be 0, 1, 2... */
3040 ii = 1;
3041 vui[n - 1].lc->next = NULL;
3044 for (; ii < n; ii++)
3045 vui[ii - 1].lc->next = vui[ii].lc;
3047 else
3049 qsort (vui, n, sizeof (struct variable_union_info),
3050 variable_union_info_cmp_pos);
3052 /* Reconnect the nodes in sorted order. */
3053 for (ii = 1; ii < n; ii++)
3054 vui[ii - 1].lc->next = vui[ii].lc;
3055 vui[n - 1].lc->next = NULL;
3056 dst->var_part[k].loc_chain = vui[0].lc;
3059 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3061 i--;
3062 j--;
3064 else if ((i >= 0 && j >= 0
3065 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3066 || i < 0)
3068 dst->var_part[k] = dst->var_part[j];
3069 j--;
3071 else if ((i >= 0 && j >= 0
3072 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3073 || j < 0)
3075 location_chain *nextp;
3077 /* Copy the chain from SRC. */
3078 nextp = &dst->var_part[k].loc_chain;
3079 for (node = src->var_part[i].loc_chain; node; node = node->next)
3081 location_chain new_lc;
3083 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3084 new_lc->next = NULL;
3085 new_lc->init = node->init;
3086 if (!node->set_src || MEM_P (node->set_src))
3087 new_lc->set_src = NULL;
3088 else
3089 new_lc->set_src = node->set_src;
3090 new_lc->loc = node->loc;
3092 *nextp = new_lc;
3093 nextp = &new_lc->next;
3096 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3097 i--;
3099 dst->var_part[k].cur_loc = NULL;
3102 if (flag_var_tracking_uninit)
3103 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3105 location_chain node, node2;
3106 for (node = src->var_part[i].loc_chain; node; node = node->next)
3107 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3108 if (rtx_equal_p (node->loc, node2->loc))
3110 if (node->init > node2->init)
3111 node2->init = node->init;
3115 /* Continue traversing the hash table. */
3116 return 1;
3119 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3121 static void
3122 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3124 int i;
3126 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3127 attrs_list_union (&dst->regs[i], src->regs[i]);
3129 if (dst->vars == empty_shared_hash)
3131 shared_hash_destroy (dst->vars);
3132 dst->vars = shared_hash_copy (src->vars);
3134 else
3136 variable_iterator_type hi;
3137 variable var;
3139 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3140 var, variable, hi)
3141 variable_union (var, dst);
3145 /* Whether the value is currently being expanded. */
3146 #define VALUE_RECURSED_INTO(x) \
3147 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3149 /* Whether no expansion was found, saving useless lookups.
3150 It must only be set when VALUE_CHANGED is clear. */
3151 #define NO_LOC_P(x) \
3152 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3154 /* Whether cur_loc in the value needs to be (re)computed. */
3155 #define VALUE_CHANGED(x) \
3156 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3157 /* Whether cur_loc in the decl needs to be (re)computed. */
3158 #define DECL_CHANGED(x) TREE_VISITED (x)
3160 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3161 user DECLs, this means they're in changed_variables. Values and
3162 debug exprs may be left with this flag set if no user variable
3163 requires them to be evaluated. */
3165 static inline void
3166 set_dv_changed (decl_or_value dv, bool newv)
3168 switch (dv_onepart_p (dv))
3170 case ONEPART_VALUE:
3171 if (newv)
3172 NO_LOC_P (dv_as_value (dv)) = false;
3173 VALUE_CHANGED (dv_as_value (dv)) = newv;
3174 break;
3176 case ONEPART_DEXPR:
3177 if (newv)
3178 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3179 /* Fall through... */
3181 default:
3182 DECL_CHANGED (dv_as_decl (dv)) = newv;
3183 break;
3187 /* Return true if DV needs to have its cur_loc recomputed. */
3189 static inline bool
3190 dv_changed_p (decl_or_value dv)
3192 return (dv_is_value_p (dv)
3193 ? VALUE_CHANGED (dv_as_value (dv))
3194 : DECL_CHANGED (dv_as_decl (dv)));
3197 /* Return a location list node whose loc is rtx_equal to LOC, in the
3198 location list of a one-part variable or value VAR, or in that of
3199 any values recursively mentioned in the location lists. VARS must
3200 be in star-canonical form. */
3202 static location_chain
3203 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3205 location_chain node;
3206 enum rtx_code loc_code;
3208 if (!var)
3209 return NULL;
3211 gcc_checking_assert (var->onepart);
3213 if (!var->n_var_parts)
3214 return NULL;
3216 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3218 loc_code = GET_CODE (loc);
3219 for (node = var->var_part[0].loc_chain; node; node = node->next)
3221 decl_or_value dv;
3222 variable rvar;
3224 if (GET_CODE (node->loc) != loc_code)
3226 if (GET_CODE (node->loc) != VALUE)
3227 continue;
3229 else if (loc == node->loc)
3230 return node;
3231 else if (loc_code != VALUE)
3233 if (rtx_equal_p (loc, node->loc))
3234 return node;
3235 continue;
3238 /* Since we're in star-canonical form, we don't need to visit
3239 non-canonical nodes: one-part variables and non-canonical
3240 values would only point back to the canonical node. */
3241 if (dv_is_value_p (var->dv)
3242 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3244 /* Skip all subsequent VALUEs. */
3245 while (node->next && GET_CODE (node->next->loc) == VALUE)
3247 node = node->next;
3248 gcc_checking_assert (!canon_value_cmp (node->loc,
3249 dv_as_value (var->dv)));
3250 if (loc == node->loc)
3251 return node;
3253 continue;
3256 gcc_checking_assert (node == var->var_part[0].loc_chain);
3257 gcc_checking_assert (!node->next);
3259 dv = dv_from_value (node->loc);
3260 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3261 return find_loc_in_1pdv (loc, rvar, vars);
3264 /* ??? Gotta look in cselib_val locations too. */
3266 return NULL;
3269 /* Hash table iteration argument passed to variable_merge. */
3270 struct dfset_merge
3272 /* The set in which the merge is to be inserted. */
3273 dataflow_set *dst;
3274 /* The set that we're iterating in. */
3275 dataflow_set *cur;
3276 /* The set that may contain the other dv we are to merge with. */
3277 dataflow_set *src;
3278 /* Number of onepart dvs in src. */
3279 int src_onepart_cnt;
3282 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3283 loc_cmp order, and it is maintained as such. */
3285 static void
3286 insert_into_intersection (location_chain *nodep, rtx loc,
3287 enum var_init_status status)
3289 location_chain node;
3290 int r;
3292 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3293 if ((r = loc_cmp (node->loc, loc)) == 0)
3295 node->init = MIN (node->init, status);
3296 return;
3298 else if (r > 0)
3299 break;
3301 node = (location_chain) pool_alloc (loc_chain_pool);
3303 node->loc = loc;
3304 node->set_src = NULL;
3305 node->init = status;
3306 node->next = *nodep;
3307 *nodep = node;
3310 /* Insert in DEST the intersection of the locations present in both
3311 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3312 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3313 DSM->dst. */
3315 static void
3316 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3317 location_chain s1node, variable s2var)
3319 dataflow_set *s1set = dsm->cur;
3320 dataflow_set *s2set = dsm->src;
3321 location_chain found;
3323 if (s2var)
3325 location_chain s2node;
3327 gcc_checking_assert (s2var->onepart);
3329 if (s2var->n_var_parts)
3331 s2node = s2var->var_part[0].loc_chain;
3333 for (; s1node && s2node;
3334 s1node = s1node->next, s2node = s2node->next)
3335 if (s1node->loc != s2node->loc)
3336 break;
3337 else if (s1node->loc == val)
3338 continue;
3339 else
3340 insert_into_intersection (dest, s1node->loc,
3341 MIN (s1node->init, s2node->init));
3345 for (; s1node; s1node = s1node->next)
3347 if (s1node->loc == val)
3348 continue;
3350 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3351 shared_hash_htab (s2set->vars))))
3353 insert_into_intersection (dest, s1node->loc,
3354 MIN (s1node->init, found->init));
3355 continue;
3358 if (GET_CODE (s1node->loc) == VALUE
3359 && !VALUE_RECURSED_INTO (s1node->loc))
3361 decl_or_value dv = dv_from_value (s1node->loc);
3362 variable svar = shared_hash_find (s1set->vars, dv);
3363 if (svar)
3365 if (svar->n_var_parts == 1)
3367 VALUE_RECURSED_INTO (s1node->loc) = true;
3368 intersect_loc_chains (val, dest, dsm,
3369 svar->var_part[0].loc_chain,
3370 s2var);
3371 VALUE_RECURSED_INTO (s1node->loc) = false;
3376 /* ??? gotta look in cselib_val locations too. */
3378 /* ??? if the location is equivalent to any location in src,
3379 searched recursively
3381 add to dst the values needed to represent the equivalence
3383 telling whether locations S is equivalent to another dv's
3384 location list:
3386 for each location D in the list
3388 if S and D satisfy rtx_equal_p, then it is present
3390 else if D is a value, recurse without cycles
3392 else if S and D have the same CODE and MODE
3394 for each operand oS and the corresponding oD
3396 if oS and oD are not equivalent, then S an D are not equivalent
3398 else if they are RTX vectors
3400 if any vector oS element is not equivalent to its respective oD,
3401 then S and D are not equivalent
3409 /* Return -1 if X should be before Y in a location list for a 1-part
3410 variable, 1 if Y should be before X, and 0 if they're equivalent
3411 and should not appear in the list. */
3413 static int
3414 loc_cmp (rtx x, rtx y)
3416 int i, j, r;
3417 RTX_CODE code = GET_CODE (x);
3418 const char *fmt;
3420 if (x == y)
3421 return 0;
3423 if (REG_P (x))
3425 if (!REG_P (y))
3426 return -1;
3427 gcc_assert (GET_MODE (x) == GET_MODE (y));
3428 if (REGNO (x) == REGNO (y))
3429 return 0;
3430 else if (REGNO (x) < REGNO (y))
3431 return -1;
3432 else
3433 return 1;
3436 if (REG_P (y))
3437 return 1;
3439 if (MEM_P (x))
3441 if (!MEM_P (y))
3442 return -1;
3443 gcc_assert (GET_MODE (x) == GET_MODE (y));
3444 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3447 if (MEM_P (y))
3448 return 1;
3450 if (GET_CODE (x) == VALUE)
3452 if (GET_CODE (y) != VALUE)
3453 return -1;
3454 /* Don't assert the modes are the same, that is true only
3455 when not recursing. (subreg:QI (value:SI 1:1) 0)
3456 and (subreg:QI (value:DI 2:2) 0) can be compared,
3457 even when the modes are different. */
3458 if (canon_value_cmp (x, y))
3459 return -1;
3460 else
3461 return 1;
3464 if (GET_CODE (y) == VALUE)
3465 return 1;
3467 /* Entry value is the least preferable kind of expression. */
3468 if (GET_CODE (x) == ENTRY_VALUE)
3470 if (GET_CODE (y) != ENTRY_VALUE)
3471 return 1;
3472 gcc_assert (GET_MODE (x) == GET_MODE (y));
3473 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3476 if (GET_CODE (y) == ENTRY_VALUE)
3477 return -1;
3479 if (GET_CODE (x) == GET_CODE (y))
3480 /* Compare operands below. */;
3481 else if (GET_CODE (x) < GET_CODE (y))
3482 return -1;
3483 else
3484 return 1;
3486 gcc_assert (GET_MODE (x) == GET_MODE (y));
3488 if (GET_CODE (x) == DEBUG_EXPR)
3490 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3491 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3492 return -1;
3493 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3494 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3495 return 1;
3498 fmt = GET_RTX_FORMAT (code);
3499 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3500 switch (fmt[i])
3502 case 'w':
3503 if (XWINT (x, i) == XWINT (y, i))
3504 break;
3505 else if (XWINT (x, i) < XWINT (y, i))
3506 return -1;
3507 else
3508 return 1;
3510 case 'n':
3511 case 'i':
3512 if (XINT (x, i) == XINT (y, i))
3513 break;
3514 else if (XINT (x, i) < XINT (y, i))
3515 return -1;
3516 else
3517 return 1;
3519 case 'V':
3520 case 'E':
3521 /* Compare the vector length first. */
3522 if (XVECLEN (x, i) == XVECLEN (y, i))
3523 /* Compare the vectors elements. */;
3524 else if (XVECLEN (x, i) < XVECLEN (y, i))
3525 return -1;
3526 else
3527 return 1;
3529 for (j = 0; j < XVECLEN (x, i); j++)
3530 if ((r = loc_cmp (XVECEXP (x, i, j),
3531 XVECEXP (y, i, j))))
3532 return r;
3533 break;
3535 case 'e':
3536 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3537 return r;
3538 break;
3540 case 'S':
3541 case 's':
3542 if (XSTR (x, i) == XSTR (y, i))
3543 break;
3544 if (!XSTR (x, i))
3545 return -1;
3546 if (!XSTR (y, i))
3547 return 1;
3548 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3549 break;
3550 else if (r < 0)
3551 return -1;
3552 else
3553 return 1;
3555 case 'u':
3556 /* These are just backpointers, so they don't matter. */
3557 break;
3559 case '0':
3560 case 't':
3561 break;
3563 /* It is believed that rtx's at this level will never
3564 contain anything but integers and other rtx's,
3565 except for within LABEL_REFs and SYMBOL_REFs. */
3566 default:
3567 gcc_unreachable ();
3569 if (CONST_WIDE_INT_P (x))
3571 /* Compare the vector length first. */
3572 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3573 return 1;
3574 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3575 return -1;
3577 /* Compare the vectors elements. */;
3578 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3580 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3581 return -1;
3582 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3583 return 1;
3587 return 0;
3590 #if ENABLE_CHECKING
3591 /* Check the order of entries in one-part variables. */
3594 canonicalize_loc_order_check (variable_def **slot,
3595 dataflow_set *data ATTRIBUTE_UNUSED)
3597 variable var = *slot;
3598 location_chain node, next;
3600 #ifdef ENABLE_RTL_CHECKING
3601 int i;
3602 for (i = 0; i < var->n_var_parts; i++)
3603 gcc_assert (var->var_part[0].cur_loc == NULL);
3604 gcc_assert (!var->in_changed_variables);
3605 #endif
3607 if (!var->onepart)
3608 return 1;
3610 gcc_assert (var->n_var_parts == 1);
3611 node = var->var_part[0].loc_chain;
3612 gcc_assert (node);
3614 while ((next = node->next))
3616 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3617 node = next;
3620 return 1;
3622 #endif
3624 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3625 more likely to be chosen as canonical for an equivalence set.
3626 Ensure less likely values can reach more likely neighbors, making
3627 the connections bidirectional. */
3630 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3632 variable var = *slot;
3633 decl_or_value dv = var->dv;
3634 rtx val;
3635 location_chain node;
3637 if (!dv_is_value_p (dv))
3638 return 1;
3640 gcc_checking_assert (var->n_var_parts == 1);
3642 val = dv_as_value (dv);
3644 for (node = var->var_part[0].loc_chain; node; node = node->next)
3645 if (GET_CODE (node->loc) == VALUE)
3647 if (canon_value_cmp (node->loc, val))
3648 VALUE_RECURSED_INTO (val) = true;
3649 else
3651 decl_or_value odv = dv_from_value (node->loc);
3652 variable_def **oslot;
3653 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3655 set_slot_part (set, val, oslot, odv, 0,
3656 node->init, NULL_RTX);
3658 VALUE_RECURSED_INTO (node->loc) = true;
3662 return 1;
3665 /* Remove redundant entries from equivalence lists in onepart
3666 variables, canonicalizing equivalence sets into star shapes. */
3669 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3671 variable var = *slot;
3672 decl_or_value dv = var->dv;
3673 location_chain node;
3674 decl_or_value cdv;
3675 rtx val, cval;
3676 variable_def **cslot;
3677 bool has_value;
3678 bool has_marks;
3680 if (!var->onepart)
3681 return 1;
3683 gcc_checking_assert (var->n_var_parts == 1);
3685 if (dv_is_value_p (dv))
3687 cval = dv_as_value (dv);
3688 if (!VALUE_RECURSED_INTO (cval))
3689 return 1;
3690 VALUE_RECURSED_INTO (cval) = false;
3692 else
3693 cval = NULL_RTX;
3695 restart:
3696 val = cval;
3697 has_value = false;
3698 has_marks = false;
3700 gcc_assert (var->n_var_parts == 1);
3702 for (node = var->var_part[0].loc_chain; node; node = node->next)
3703 if (GET_CODE (node->loc) == VALUE)
3705 has_value = true;
3706 if (VALUE_RECURSED_INTO (node->loc))
3707 has_marks = true;
3708 if (canon_value_cmp (node->loc, cval))
3709 cval = node->loc;
3712 if (!has_value)
3713 return 1;
3715 if (cval == val)
3717 if (!has_marks || dv_is_decl_p (dv))
3718 return 1;
3720 /* Keep it marked so that we revisit it, either after visiting a
3721 child node, or after visiting a new parent that might be
3722 found out. */
3723 VALUE_RECURSED_INTO (val) = true;
3725 for (node = var->var_part[0].loc_chain; node; node = node->next)
3726 if (GET_CODE (node->loc) == VALUE
3727 && VALUE_RECURSED_INTO (node->loc))
3729 cval = node->loc;
3730 restart_with_cval:
3731 VALUE_RECURSED_INTO (cval) = false;
3732 dv = dv_from_value (cval);
3733 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3734 if (!slot)
3736 gcc_assert (dv_is_decl_p (var->dv));
3737 /* The canonical value was reset and dropped.
3738 Remove it. */
3739 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3740 return 1;
3742 var = *slot;
3743 gcc_assert (dv_is_value_p (var->dv));
3744 if (var->n_var_parts == 0)
3745 return 1;
3746 gcc_assert (var->n_var_parts == 1);
3747 goto restart;
3750 VALUE_RECURSED_INTO (val) = false;
3752 return 1;
3755 /* Push values to the canonical one. */
3756 cdv = dv_from_value (cval);
3757 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3759 for (node = var->var_part[0].loc_chain; node; node = node->next)
3760 if (node->loc != cval)
3762 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3763 node->init, NULL_RTX);
3764 if (GET_CODE (node->loc) == VALUE)
3766 decl_or_value ndv = dv_from_value (node->loc);
3768 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3769 NO_INSERT);
3771 if (canon_value_cmp (node->loc, val))
3773 /* If it could have been a local minimum, it's not any more,
3774 since it's now neighbor to cval, so it may have to push
3775 to it. Conversely, if it wouldn't have prevailed over
3776 val, then whatever mark it has is fine: if it was to
3777 push, it will now push to a more canonical node, but if
3778 it wasn't, then it has already pushed any values it might
3779 have to. */
3780 VALUE_RECURSED_INTO (node->loc) = true;
3781 /* Make sure we visit node->loc by ensuring we cval is
3782 visited too. */
3783 VALUE_RECURSED_INTO (cval) = true;
3785 else if (!VALUE_RECURSED_INTO (node->loc))
3786 /* If we have no need to "recurse" into this node, it's
3787 already "canonicalized", so drop the link to the old
3788 parent. */
3789 clobber_variable_part (set, cval, ndv, 0, NULL);
3791 else if (GET_CODE (node->loc) == REG)
3793 attrs list = set->regs[REGNO (node->loc)], *listp;
3795 /* Change an existing attribute referring to dv so that it
3796 refers to cdv, removing any duplicate this might
3797 introduce, and checking that no previous duplicates
3798 existed, all in a single pass. */
3800 while (list)
3802 if (list->offset == 0
3803 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3804 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3805 break;
3807 list = list->next;
3810 gcc_assert (list);
3811 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3813 list->dv = cdv;
3814 for (listp = &list->next; (list = *listp); listp = &list->next)
3816 if (list->offset)
3817 continue;
3819 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3821 *listp = list->next;
3822 pool_free (attrs_pool, list);
3823 list = *listp;
3824 break;
3827 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3830 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3832 for (listp = &list->next; (list = *listp); listp = &list->next)
3834 if (list->offset)
3835 continue;
3837 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3839 *listp = list->next;
3840 pool_free (attrs_pool, list);
3841 list = *listp;
3842 break;
3845 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3848 else
3849 gcc_unreachable ();
3851 #if ENABLE_CHECKING
3852 while (list)
3854 if (list->offset == 0
3855 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3856 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3857 gcc_unreachable ();
3859 list = list->next;
3861 #endif
3865 if (val)
3866 set_slot_part (set, val, cslot, cdv, 0,
3867 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3869 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3871 /* Variable may have been unshared. */
3872 var = *slot;
3873 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3874 && var->var_part[0].loc_chain->next == NULL);
3876 if (VALUE_RECURSED_INTO (cval))
3877 goto restart_with_cval;
3879 return 1;
3882 /* Bind one-part variables to the canonical value in an equivalence
3883 set. Not doing this causes dataflow convergence failure in rare
3884 circumstances, see PR42873. Unfortunately we can't do this
3885 efficiently as part of canonicalize_values_star, since we may not
3886 have determined or even seen the canonical value of a set when we
3887 get to a variable that references another member of the set. */
3890 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3892 variable var = *slot;
3893 decl_or_value dv = var->dv;
3894 location_chain node;
3895 rtx cval;
3896 decl_or_value cdv;
3897 variable_def **cslot;
3898 variable cvar;
3899 location_chain cnode;
3901 if (!var->onepart || var->onepart == ONEPART_VALUE)
3902 return 1;
3904 gcc_assert (var->n_var_parts == 1);
3906 node = var->var_part[0].loc_chain;
3908 if (GET_CODE (node->loc) != VALUE)
3909 return 1;
3911 gcc_assert (!node->next);
3912 cval = node->loc;
3914 /* Push values to the canonical one. */
3915 cdv = dv_from_value (cval);
3916 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3917 if (!cslot)
3918 return 1;
3919 cvar = *cslot;
3920 gcc_assert (cvar->n_var_parts == 1);
3922 cnode = cvar->var_part[0].loc_chain;
3924 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3925 that are not “more canonical” than it. */
3926 if (GET_CODE (cnode->loc) != VALUE
3927 || !canon_value_cmp (cnode->loc, cval))
3928 return 1;
3930 /* CVAL was found to be non-canonical. Change the variable to point
3931 to the canonical VALUE. */
3932 gcc_assert (!cnode->next);
3933 cval = cnode->loc;
3935 slot = set_slot_part (set, cval, slot, dv, 0,
3936 node->init, node->set_src);
3937 clobber_slot_part (set, cval, slot, 0, node->set_src);
3939 return 1;
3942 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3943 corresponding entry in DSM->src. Multi-part variables are combined
3944 with variable_union, whereas onepart dvs are combined with
3945 intersection. */
3947 static int
3948 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3950 dataflow_set *dst = dsm->dst;
3951 variable_def **dstslot;
3952 variable s2var, dvar = NULL;
3953 decl_or_value dv = s1var->dv;
3954 onepart_enum_t onepart = s1var->onepart;
3955 rtx val;
3956 hashval_t dvhash;
3957 location_chain node, *nodep;
3959 /* If the incoming onepart variable has an empty location list, then
3960 the intersection will be just as empty. For other variables,
3961 it's always union. */
3962 gcc_checking_assert (s1var->n_var_parts
3963 && s1var->var_part[0].loc_chain);
3965 if (!onepart)
3966 return variable_union (s1var, dst);
3968 gcc_checking_assert (s1var->n_var_parts == 1);
3970 dvhash = dv_htab_hash (dv);
3971 if (dv_is_value_p (dv))
3972 val = dv_as_value (dv);
3973 else
3974 val = NULL;
3976 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3977 if (!s2var)
3979 dst_can_be_shared = false;
3980 return 1;
3983 dsm->src_onepart_cnt--;
3984 gcc_assert (s2var->var_part[0].loc_chain
3985 && s2var->onepart == onepart
3986 && s2var->n_var_parts == 1);
3988 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3989 if (dstslot)
3991 dvar = *dstslot;
3992 gcc_assert (dvar->refcount == 1
3993 && dvar->onepart == onepart
3994 && dvar->n_var_parts == 1);
3995 nodep = &dvar->var_part[0].loc_chain;
3997 else
3999 nodep = &node;
4000 node = NULL;
4003 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4005 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4006 dvhash, INSERT);
4007 *dstslot = dvar = s2var;
4008 dvar->refcount++;
4010 else
4012 dst_can_be_shared = false;
4014 intersect_loc_chains (val, nodep, dsm,
4015 s1var->var_part[0].loc_chain, s2var);
4017 if (!dstslot)
4019 if (node)
4021 dvar = (variable) pool_alloc (onepart_pool (onepart));
4022 dvar->dv = dv;
4023 dvar->refcount = 1;
4024 dvar->n_var_parts = 1;
4025 dvar->onepart = onepart;
4026 dvar->in_changed_variables = false;
4027 dvar->var_part[0].loc_chain = node;
4028 dvar->var_part[0].cur_loc = NULL;
4029 if (onepart)
4030 VAR_LOC_1PAUX (dvar) = NULL;
4031 else
4032 VAR_PART_OFFSET (dvar, 0) = 0;
4034 dstslot
4035 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4036 INSERT);
4037 gcc_assert (!*dstslot);
4038 *dstslot = dvar;
4040 else
4041 return 1;
4045 nodep = &dvar->var_part[0].loc_chain;
4046 while ((node = *nodep))
4048 location_chain *nextp = &node->next;
4050 if (GET_CODE (node->loc) == REG)
4052 attrs list;
4054 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4055 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4056 && dv_is_value_p (list->dv))
4057 break;
4059 if (!list)
4060 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4061 dv, 0, node->loc);
4062 /* If this value became canonical for another value that had
4063 this register, we want to leave it alone. */
4064 else if (dv_as_value (list->dv) != val)
4066 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4067 dstslot, dv, 0,
4068 node->init, NULL_RTX);
4069 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4071 /* Since nextp points into the removed node, we can't
4072 use it. The pointer to the next node moved to nodep.
4073 However, if the variable we're walking is unshared
4074 during our walk, we'll keep walking the location list
4075 of the previously-shared variable, in which case the
4076 node won't have been removed, and we'll want to skip
4077 it. That's why we test *nodep here. */
4078 if (*nodep != node)
4079 nextp = nodep;
4082 else
4083 /* Canonicalization puts registers first, so we don't have to
4084 walk it all. */
4085 break;
4086 nodep = nextp;
4089 if (dvar != *dstslot)
4090 dvar = *dstslot;
4091 nodep = &dvar->var_part[0].loc_chain;
4093 if (val)
4095 /* Mark all referenced nodes for canonicalization, and make sure
4096 we have mutual equivalence links. */
4097 VALUE_RECURSED_INTO (val) = true;
4098 for (node = *nodep; node; node = node->next)
4099 if (GET_CODE (node->loc) == VALUE)
4101 VALUE_RECURSED_INTO (node->loc) = true;
4102 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4103 node->init, NULL, INSERT);
4106 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4107 gcc_assert (*dstslot == dvar);
4108 canonicalize_values_star (dstslot, dst);
4109 gcc_checking_assert (dstslot
4110 == shared_hash_find_slot_noinsert_1 (dst->vars,
4111 dv, dvhash));
4112 dvar = *dstslot;
4114 else
4116 bool has_value = false, has_other = false;
4118 /* If we have one value and anything else, we're going to
4119 canonicalize this, so make sure all values have an entry in
4120 the table and are marked for canonicalization. */
4121 for (node = *nodep; node; node = node->next)
4123 if (GET_CODE (node->loc) == VALUE)
4125 /* If this was marked during register canonicalization,
4126 we know we have to canonicalize values. */
4127 if (has_value)
4128 has_other = true;
4129 has_value = true;
4130 if (has_other)
4131 break;
4133 else
4135 has_other = true;
4136 if (has_value)
4137 break;
4141 if (has_value && has_other)
4143 for (node = *nodep; node; node = node->next)
4145 if (GET_CODE (node->loc) == VALUE)
4147 decl_or_value dv = dv_from_value (node->loc);
4148 variable_def **slot = NULL;
4150 if (shared_hash_shared (dst->vars))
4151 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4152 if (!slot)
4153 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4154 INSERT);
4155 if (!*slot)
4157 variable var = (variable) pool_alloc (onepart_pool
4158 (ONEPART_VALUE));
4159 var->dv = dv;
4160 var->refcount = 1;
4161 var->n_var_parts = 1;
4162 var->onepart = ONEPART_VALUE;
4163 var->in_changed_variables = false;
4164 var->var_part[0].loc_chain = NULL;
4165 var->var_part[0].cur_loc = NULL;
4166 VAR_LOC_1PAUX (var) = NULL;
4167 *slot = var;
4170 VALUE_RECURSED_INTO (node->loc) = true;
4174 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4175 gcc_assert (*dstslot == dvar);
4176 canonicalize_values_star (dstslot, dst);
4177 gcc_checking_assert (dstslot
4178 == shared_hash_find_slot_noinsert_1 (dst->vars,
4179 dv, dvhash));
4180 dvar = *dstslot;
4184 if (!onepart_variable_different_p (dvar, s2var))
4186 variable_htab_free (dvar);
4187 *dstslot = dvar = s2var;
4188 dvar->refcount++;
4190 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4192 variable_htab_free (dvar);
4193 *dstslot = dvar = s1var;
4194 dvar->refcount++;
4195 dst_can_be_shared = false;
4197 else
4198 dst_can_be_shared = false;
4200 return 1;
4203 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4204 multi-part variable. Unions of multi-part variables and
4205 intersections of one-part ones will be handled in
4206 variable_merge_over_cur(). */
4208 static int
4209 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4211 dataflow_set *dst = dsm->dst;
4212 decl_or_value dv = s2var->dv;
4214 if (!s2var->onepart)
4216 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4217 *dstp = s2var;
4218 s2var->refcount++;
4219 return 1;
4222 dsm->src_onepart_cnt++;
4223 return 1;
4226 /* Combine dataflow set information from SRC2 into DST, using PDST
4227 to carry over information across passes. */
4229 static void
4230 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4232 dataflow_set cur = *dst;
4233 dataflow_set *src1 = &cur;
4234 struct dfset_merge dsm;
4235 int i;
4236 size_t src1_elems, src2_elems;
4237 variable_iterator_type hi;
4238 variable var;
4240 src1_elems = shared_hash_htab (src1->vars)->elements ();
4241 src2_elems = shared_hash_htab (src2->vars)->elements ();
4242 dataflow_set_init (dst);
4243 dst->stack_adjust = cur.stack_adjust;
4244 shared_hash_destroy (dst->vars);
4245 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4246 dst->vars->refcount = 1;
4247 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4249 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4250 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4252 dsm.dst = dst;
4253 dsm.src = src2;
4254 dsm.cur = src1;
4255 dsm.src_onepart_cnt = 0;
4257 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4258 var, variable, hi)
4259 variable_merge_over_src (var, &dsm);
4260 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4261 var, variable, hi)
4262 variable_merge_over_cur (var, &dsm);
4264 if (dsm.src_onepart_cnt)
4265 dst_can_be_shared = false;
4267 dataflow_set_destroy (src1);
4270 /* Mark register equivalences. */
4272 static void
4273 dataflow_set_equiv_regs (dataflow_set *set)
4275 int i;
4276 attrs list, *listp;
4278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4280 rtx canon[NUM_MACHINE_MODES];
4282 /* If the list is empty or one entry, no need to canonicalize
4283 anything. */
4284 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4285 continue;
4287 memset (canon, 0, sizeof (canon));
4289 for (list = set->regs[i]; list; list = list->next)
4290 if (list->offset == 0 && dv_is_value_p (list->dv))
4292 rtx val = dv_as_value (list->dv);
4293 rtx *cvalp = &canon[(int)GET_MODE (val)];
4294 rtx cval = *cvalp;
4296 if (canon_value_cmp (val, cval))
4297 *cvalp = val;
4300 for (list = set->regs[i]; list; list = list->next)
4301 if (list->offset == 0 && dv_onepart_p (list->dv))
4303 rtx cval = canon[(int)GET_MODE (list->loc)];
4305 if (!cval)
4306 continue;
4308 if (dv_is_value_p (list->dv))
4310 rtx val = dv_as_value (list->dv);
4312 if (val == cval)
4313 continue;
4315 VALUE_RECURSED_INTO (val) = true;
4316 set_variable_part (set, val, dv_from_value (cval), 0,
4317 VAR_INIT_STATUS_INITIALIZED,
4318 NULL, NO_INSERT);
4321 VALUE_RECURSED_INTO (cval) = true;
4322 set_variable_part (set, cval, list->dv, 0,
4323 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4326 for (listp = &set->regs[i]; (list = *listp);
4327 listp = list ? &list->next : listp)
4328 if (list->offset == 0 && dv_onepart_p (list->dv))
4330 rtx cval = canon[(int)GET_MODE (list->loc)];
4331 variable_def **slot;
4333 if (!cval)
4334 continue;
4336 if (dv_is_value_p (list->dv))
4338 rtx val = dv_as_value (list->dv);
4339 if (!VALUE_RECURSED_INTO (val))
4340 continue;
4343 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4344 canonicalize_values_star (slot, set);
4345 if (*listp != list)
4346 list = NULL;
4351 /* Remove any redundant values in the location list of VAR, which must
4352 be unshared and 1-part. */
4354 static void
4355 remove_duplicate_values (variable var)
4357 location_chain node, *nodep;
4359 gcc_assert (var->onepart);
4360 gcc_assert (var->n_var_parts == 1);
4361 gcc_assert (var->refcount == 1);
4363 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4365 if (GET_CODE (node->loc) == VALUE)
4367 if (VALUE_RECURSED_INTO (node->loc))
4369 /* Remove duplicate value node. */
4370 *nodep = node->next;
4371 pool_free (loc_chain_pool, node);
4372 continue;
4374 else
4375 VALUE_RECURSED_INTO (node->loc) = true;
4377 nodep = &node->next;
4380 for (node = var->var_part[0].loc_chain; node; node = node->next)
4381 if (GET_CODE (node->loc) == VALUE)
4383 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4384 VALUE_RECURSED_INTO (node->loc) = false;
4389 /* Hash table iteration argument passed to variable_post_merge. */
4390 struct dfset_post_merge
4392 /* The new input set for the current block. */
4393 dataflow_set *set;
4394 /* Pointer to the permanent input set for the current block, or
4395 NULL. */
4396 dataflow_set **permp;
4399 /* Create values for incoming expressions associated with one-part
4400 variables that don't have value numbers for them. */
4403 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4405 dataflow_set *set = dfpm->set;
4406 variable var = *slot;
4407 location_chain node;
4409 if (!var->onepart || !var->n_var_parts)
4410 return 1;
4412 gcc_assert (var->n_var_parts == 1);
4414 if (dv_is_decl_p (var->dv))
4416 bool check_dupes = false;
4418 restart:
4419 for (node = var->var_part[0].loc_chain; node; node = node->next)
4421 if (GET_CODE (node->loc) == VALUE)
4422 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4423 else if (GET_CODE (node->loc) == REG)
4425 attrs att, *attp, *curp = NULL;
4427 if (var->refcount != 1)
4429 slot = unshare_variable (set, slot, var,
4430 VAR_INIT_STATUS_INITIALIZED);
4431 var = *slot;
4432 goto restart;
4435 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4436 attp = &att->next)
4437 if (att->offset == 0
4438 && GET_MODE (att->loc) == GET_MODE (node->loc))
4440 if (dv_is_value_p (att->dv))
4442 rtx cval = dv_as_value (att->dv);
4443 node->loc = cval;
4444 check_dupes = true;
4445 break;
4447 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4448 curp = attp;
4451 if (!curp)
4453 curp = attp;
4454 while (*curp)
4455 if ((*curp)->offset == 0
4456 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4457 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4458 break;
4459 else
4460 curp = &(*curp)->next;
4461 gcc_assert (*curp);
4464 if (!att)
4466 decl_or_value cdv;
4467 rtx cval;
4469 if (!*dfpm->permp)
4471 *dfpm->permp = XNEW (dataflow_set);
4472 dataflow_set_init (*dfpm->permp);
4475 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4476 att; att = att->next)
4477 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4479 gcc_assert (att->offset == 0
4480 && dv_is_value_p (att->dv));
4481 val_reset (set, att->dv);
4482 break;
4485 if (att)
4487 cdv = att->dv;
4488 cval = dv_as_value (cdv);
4490 else
4492 /* Create a unique value to hold this register,
4493 that ought to be found and reused in
4494 subsequent rounds. */
4495 cselib_val *v;
4496 gcc_assert (!cselib_lookup (node->loc,
4497 GET_MODE (node->loc), 0,
4498 VOIDmode));
4499 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4500 VOIDmode);
4501 cselib_preserve_value (v);
4502 cselib_invalidate_rtx (node->loc);
4503 cval = v->val_rtx;
4504 cdv = dv_from_value (cval);
4505 if (dump_file)
4506 fprintf (dump_file,
4507 "Created new value %u:%u for reg %i\n",
4508 v->uid, v->hash, REGNO (node->loc));
4511 var_reg_decl_set (*dfpm->permp, node->loc,
4512 VAR_INIT_STATUS_INITIALIZED,
4513 cdv, 0, NULL, INSERT);
4515 node->loc = cval;
4516 check_dupes = true;
4519 /* Remove attribute referring to the decl, which now
4520 uses the value for the register, already existing or
4521 to be added when we bring perm in. */
4522 att = *curp;
4523 *curp = att->next;
4524 pool_free (attrs_pool, att);
4528 if (check_dupes)
4529 remove_duplicate_values (var);
4532 return 1;
4535 /* Reset values in the permanent set that are not associated with the
4536 chosen expression. */
4539 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4541 dataflow_set *set = dfpm->set;
4542 variable pvar = *pslot, var;
4543 location_chain pnode;
4544 decl_or_value dv;
4545 attrs att;
4547 gcc_assert (dv_is_value_p (pvar->dv)
4548 && pvar->n_var_parts == 1);
4549 pnode = pvar->var_part[0].loc_chain;
4550 gcc_assert (pnode
4551 && !pnode->next
4552 && REG_P (pnode->loc));
4554 dv = pvar->dv;
4556 var = shared_hash_find (set->vars, dv);
4557 if (var)
4559 /* Although variable_post_merge_new_vals may have made decls
4560 non-star-canonical, values that pre-existed in canonical form
4561 remain canonical, and newly-created values reference a single
4562 REG, so they are canonical as well. Since VAR has the
4563 location list for a VALUE, using find_loc_in_1pdv for it is
4564 fine, since VALUEs don't map back to DECLs. */
4565 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4566 return 1;
4567 val_reset (set, dv);
4570 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4571 if (att->offset == 0
4572 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4573 && dv_is_value_p (att->dv))
4574 break;
4576 /* If there is a value associated with this register already, create
4577 an equivalence. */
4578 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4580 rtx cval = dv_as_value (att->dv);
4581 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4582 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4583 NULL, INSERT);
4585 else if (!att)
4587 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4588 dv, 0, pnode->loc);
4589 variable_union (pvar, set);
4592 return 1;
4595 /* Just checking stuff and registering register attributes for
4596 now. */
4598 static void
4599 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4601 struct dfset_post_merge dfpm;
4603 dfpm.set = set;
4604 dfpm.permp = permp;
4606 shared_hash_htab (set->vars)
4607 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4608 if (*permp)
4609 shared_hash_htab ((*permp)->vars)
4610 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4611 shared_hash_htab (set->vars)
4612 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4613 shared_hash_htab (set->vars)
4614 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4617 /* Return a node whose loc is a MEM that refers to EXPR in the
4618 location list of a one-part variable or value VAR, or in that of
4619 any values recursively mentioned in the location lists. */
4621 static location_chain
4622 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4624 location_chain node;
4625 decl_or_value dv;
4626 variable var;
4627 location_chain where = NULL;
4629 if (!val)
4630 return NULL;
4632 gcc_assert (GET_CODE (val) == VALUE
4633 && !VALUE_RECURSED_INTO (val));
4635 dv = dv_from_value (val);
4636 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4638 if (!var)
4639 return NULL;
4641 gcc_assert (var->onepart);
4643 if (!var->n_var_parts)
4644 return NULL;
4646 VALUE_RECURSED_INTO (val) = true;
4648 for (node = var->var_part[0].loc_chain; node; node = node->next)
4649 if (MEM_P (node->loc)
4650 && MEM_EXPR (node->loc) == expr
4651 && INT_MEM_OFFSET (node->loc) == 0)
4653 where = node;
4654 break;
4656 else if (GET_CODE (node->loc) == VALUE
4657 && !VALUE_RECURSED_INTO (node->loc)
4658 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4659 break;
4661 VALUE_RECURSED_INTO (val) = false;
4663 return where;
4666 /* Return TRUE if the value of MEM may vary across a call. */
4668 static bool
4669 mem_dies_at_call (rtx mem)
4671 tree expr = MEM_EXPR (mem);
4672 tree decl;
4674 if (!expr)
4675 return true;
4677 decl = get_base_address (expr);
4679 if (!decl)
4680 return true;
4682 if (!DECL_P (decl))
4683 return true;
4685 return (may_be_aliased (decl)
4686 || (!TREE_READONLY (decl) && is_global_var (decl)));
4689 /* Remove all MEMs from the location list of a hash table entry for a
4690 one-part variable, except those whose MEM attributes map back to
4691 the variable itself, directly or within a VALUE. */
4694 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4696 variable var = *slot;
4698 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4700 tree decl = dv_as_decl (var->dv);
4701 location_chain loc, *locp;
4702 bool changed = false;
4704 if (!var->n_var_parts)
4705 return 1;
4707 gcc_assert (var->n_var_parts == 1);
4709 if (shared_var_p (var, set->vars))
4711 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4713 /* We want to remove dying MEMs that doesn't refer to DECL. */
4714 if (GET_CODE (loc->loc) == MEM
4715 && (MEM_EXPR (loc->loc) != decl
4716 || INT_MEM_OFFSET (loc->loc) != 0)
4717 && !mem_dies_at_call (loc->loc))
4718 break;
4719 /* We want to move here MEMs that do refer to DECL. */
4720 else if (GET_CODE (loc->loc) == VALUE
4721 && find_mem_expr_in_1pdv (decl, loc->loc,
4722 shared_hash_htab (set->vars)))
4723 break;
4726 if (!loc)
4727 return 1;
4729 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4730 var = *slot;
4731 gcc_assert (var->n_var_parts == 1);
4734 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4735 loc; loc = *locp)
4737 rtx old_loc = loc->loc;
4738 if (GET_CODE (old_loc) == VALUE)
4740 location_chain mem_node
4741 = find_mem_expr_in_1pdv (decl, loc->loc,
4742 shared_hash_htab (set->vars));
4744 /* ??? This picks up only one out of multiple MEMs that
4745 refer to the same variable. Do we ever need to be
4746 concerned about dealing with more than one, or, given
4747 that they should all map to the same variable
4748 location, their addresses will have been merged and
4749 they will be regarded as equivalent? */
4750 if (mem_node)
4752 loc->loc = mem_node->loc;
4753 loc->set_src = mem_node->set_src;
4754 loc->init = MIN (loc->init, mem_node->init);
4758 if (GET_CODE (loc->loc) != MEM
4759 || (MEM_EXPR (loc->loc) == decl
4760 && INT_MEM_OFFSET (loc->loc) == 0)
4761 || !mem_dies_at_call (loc->loc))
4763 if (old_loc != loc->loc && emit_notes)
4765 if (old_loc == var->var_part[0].cur_loc)
4767 changed = true;
4768 var->var_part[0].cur_loc = NULL;
4771 locp = &loc->next;
4772 continue;
4775 if (emit_notes)
4777 if (old_loc == var->var_part[0].cur_loc)
4779 changed = true;
4780 var->var_part[0].cur_loc = NULL;
4783 *locp = loc->next;
4784 pool_free (loc_chain_pool, loc);
4787 if (!var->var_part[0].loc_chain)
4789 var->n_var_parts--;
4790 changed = true;
4792 if (changed)
4793 variable_was_changed (var, set);
4796 return 1;
4799 /* Remove all MEMs from the location list of a hash table entry for a
4800 value. */
4803 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4805 variable var = *slot;
4807 if (var->onepart == ONEPART_VALUE)
4809 location_chain loc, *locp;
4810 bool changed = false;
4811 rtx cur_loc;
4813 gcc_assert (var->n_var_parts == 1);
4815 if (shared_var_p (var, set->vars))
4817 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4818 if (GET_CODE (loc->loc) == MEM
4819 && mem_dies_at_call (loc->loc))
4820 break;
4822 if (!loc)
4823 return 1;
4825 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4826 var = *slot;
4827 gcc_assert (var->n_var_parts == 1);
4830 if (VAR_LOC_1PAUX (var))
4831 cur_loc = VAR_LOC_FROM (var);
4832 else
4833 cur_loc = var->var_part[0].cur_loc;
4835 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4836 loc; loc = *locp)
4838 if (GET_CODE (loc->loc) != MEM
4839 || !mem_dies_at_call (loc->loc))
4841 locp = &loc->next;
4842 continue;
4845 *locp = loc->next;
4846 /* If we have deleted the location which was last emitted
4847 we have to emit new location so add the variable to set
4848 of changed variables. */
4849 if (cur_loc == loc->loc)
4851 changed = true;
4852 var->var_part[0].cur_loc = NULL;
4853 if (VAR_LOC_1PAUX (var))
4854 VAR_LOC_FROM (var) = NULL;
4856 pool_free (loc_chain_pool, loc);
4859 if (!var->var_part[0].loc_chain)
4861 var->n_var_parts--;
4862 changed = true;
4864 if (changed)
4865 variable_was_changed (var, set);
4868 return 1;
4871 /* Remove all variable-location information about call-clobbered
4872 registers, as well as associations between MEMs and VALUEs. */
4874 static void
4875 dataflow_set_clear_at_call (dataflow_set *set)
4877 unsigned int r;
4878 hard_reg_set_iterator hrsi;
4880 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4881 var_regno_delete (set, r);
4883 if (MAY_HAVE_DEBUG_INSNS)
4885 set->traversed_vars = set->vars;
4886 shared_hash_htab (set->vars)
4887 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4888 set->traversed_vars = set->vars;
4889 shared_hash_htab (set->vars)
4890 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4891 set->traversed_vars = NULL;
4895 static bool
4896 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4898 location_chain lc1, lc2;
4900 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4902 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4904 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4906 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4907 break;
4909 if (rtx_equal_p (lc1->loc, lc2->loc))
4910 break;
4912 if (!lc2)
4913 return true;
4915 return false;
4918 /* Return true if one-part variables VAR1 and VAR2 are different.
4919 They must be in canonical order. */
4921 static bool
4922 onepart_variable_different_p (variable var1, variable var2)
4924 location_chain lc1, lc2;
4926 if (var1 == var2)
4927 return false;
4929 gcc_assert (var1->n_var_parts == 1
4930 && var2->n_var_parts == 1);
4932 lc1 = var1->var_part[0].loc_chain;
4933 lc2 = var2->var_part[0].loc_chain;
4935 gcc_assert (lc1 && lc2);
4937 while (lc1 && lc2)
4939 if (loc_cmp (lc1->loc, lc2->loc))
4940 return true;
4941 lc1 = lc1->next;
4942 lc2 = lc2->next;
4945 return lc1 != lc2;
4948 /* Return true if variables VAR1 and VAR2 are different. */
4950 static bool
4951 variable_different_p (variable var1, variable var2)
4953 int i;
4955 if (var1 == var2)
4956 return false;
4958 if (var1->onepart != var2->onepart)
4959 return true;
4961 if (var1->n_var_parts != var2->n_var_parts)
4962 return true;
4964 if (var1->onepart && var1->n_var_parts)
4966 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4967 && var1->n_var_parts == 1);
4968 /* One-part values have locations in a canonical order. */
4969 return onepart_variable_different_p (var1, var2);
4972 for (i = 0; i < var1->n_var_parts; i++)
4974 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4975 return true;
4976 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4977 return true;
4978 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4979 return true;
4981 return false;
4984 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4986 static bool
4987 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4989 variable_iterator_type hi;
4990 variable var1;
4992 if (old_set->vars == new_set->vars)
4993 return false;
4995 if (shared_hash_htab (old_set->vars)->elements ()
4996 != shared_hash_htab (new_set->vars)->elements ())
4997 return true;
4999 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5000 var1, variable, hi)
5002 variable_table_type *htab = shared_hash_htab (new_set->vars);
5003 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5004 if (!var2)
5006 if (dump_file && (dump_flags & TDF_DETAILS))
5008 fprintf (dump_file, "dataflow difference found: removal of:\n");
5009 dump_var (var1);
5011 return true;
5014 if (variable_different_p (var1, var2))
5016 if (dump_file && (dump_flags & TDF_DETAILS))
5018 fprintf (dump_file, "dataflow difference found: "
5019 "old and new follow:\n");
5020 dump_var (var1);
5021 dump_var (var2);
5023 return true;
5027 /* No need to traverse the second hashtab, if both have the same number
5028 of elements and the second one had all entries found in the first one,
5029 then it can't have any extra entries. */
5030 return false;
5033 /* Free the contents of dataflow set SET. */
5035 static void
5036 dataflow_set_destroy (dataflow_set *set)
5038 int i;
5040 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5041 attrs_list_clear (&set->regs[i]);
5043 shared_hash_destroy (set->vars);
5044 set->vars = NULL;
5047 /* Return true if RTL X contains a SYMBOL_REF. */
5049 static bool
5050 contains_symbol_ref (rtx x)
5052 const char *fmt;
5053 RTX_CODE code;
5054 int i;
5056 if (!x)
5057 return false;
5059 code = GET_CODE (x);
5060 if (code == SYMBOL_REF)
5061 return true;
5063 fmt = GET_RTX_FORMAT (code);
5064 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5066 if (fmt[i] == 'e')
5068 if (contains_symbol_ref (XEXP (x, i)))
5069 return true;
5071 else if (fmt[i] == 'E')
5073 int j;
5074 for (j = 0; j < XVECLEN (x, i); j++)
5075 if (contains_symbol_ref (XVECEXP (x, i, j)))
5076 return true;
5080 return false;
5083 /* Shall EXPR be tracked? */
5085 static bool
5086 track_expr_p (tree expr, bool need_rtl)
5088 rtx decl_rtl;
5089 tree realdecl;
5091 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5092 return DECL_RTL_SET_P (expr);
5094 /* If EXPR is not a parameter or a variable do not track it. */
5095 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5096 return 0;
5098 /* It also must have a name... */
5099 if (!DECL_NAME (expr) && need_rtl)
5100 return 0;
5102 /* ... and a RTL assigned to it. */
5103 decl_rtl = DECL_RTL_IF_SET (expr);
5104 if (!decl_rtl && need_rtl)
5105 return 0;
5107 /* If this expression is really a debug alias of some other declaration, we
5108 don't need to track this expression if the ultimate declaration is
5109 ignored. */
5110 realdecl = expr;
5111 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5113 realdecl = DECL_DEBUG_EXPR (realdecl);
5114 if (!DECL_P (realdecl))
5116 if (handled_component_p (realdecl)
5117 || (TREE_CODE (realdecl) == MEM_REF
5118 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5120 HOST_WIDE_INT bitsize, bitpos, maxsize;
5121 tree innerdecl
5122 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5123 &maxsize);
5124 if (!DECL_P (innerdecl)
5125 || DECL_IGNORED_P (innerdecl)
5126 /* Do not track declarations for parts of tracked parameters
5127 since we want to track them as a whole instead. */
5128 || (TREE_CODE (innerdecl) == PARM_DECL
5129 && DECL_MODE (innerdecl) != BLKmode
5130 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5131 || TREE_STATIC (innerdecl)
5132 || bitsize <= 0
5133 || bitpos + bitsize > 256
5134 || bitsize != maxsize)
5135 return 0;
5136 else
5137 realdecl = expr;
5139 else
5140 return 0;
5144 /* Do not track EXPR if REALDECL it should be ignored for debugging
5145 purposes. */
5146 if (DECL_IGNORED_P (realdecl))
5147 return 0;
5149 /* Do not track global variables until we are able to emit correct location
5150 list for them. */
5151 if (TREE_STATIC (realdecl))
5152 return 0;
5154 /* When the EXPR is a DECL for alias of some variable (see example)
5155 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5156 DECL_RTL contains SYMBOL_REF.
5158 Example:
5159 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5160 char **_dl_argv;
5162 if (decl_rtl && MEM_P (decl_rtl)
5163 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5164 return 0;
5166 /* If RTX is a memory it should not be very large (because it would be
5167 an array or struct). */
5168 if (decl_rtl && MEM_P (decl_rtl))
5170 /* Do not track structures and arrays. */
5171 if (GET_MODE (decl_rtl) == BLKmode
5172 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5173 return 0;
5174 if (MEM_SIZE_KNOWN_P (decl_rtl)
5175 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5176 return 0;
5179 DECL_CHANGED (expr) = 0;
5180 DECL_CHANGED (realdecl) = 0;
5181 return 1;
5184 /* Determine whether a given LOC refers to the same variable part as
5185 EXPR+OFFSET. */
5187 static bool
5188 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5190 tree expr2;
5191 HOST_WIDE_INT offset2;
5193 if (! DECL_P (expr))
5194 return false;
5196 if (REG_P (loc))
5198 expr2 = REG_EXPR (loc);
5199 offset2 = REG_OFFSET (loc);
5201 else if (MEM_P (loc))
5203 expr2 = MEM_EXPR (loc);
5204 offset2 = INT_MEM_OFFSET (loc);
5206 else
5207 return false;
5209 if (! expr2 || ! DECL_P (expr2))
5210 return false;
5212 expr = var_debug_decl (expr);
5213 expr2 = var_debug_decl (expr2);
5215 return (expr == expr2 && offset == offset2);
5218 /* LOC is a REG or MEM that we would like to track if possible.
5219 If EXPR is null, we don't know what expression LOC refers to,
5220 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5221 LOC is an lvalue register.
5223 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5224 is something we can track. When returning true, store the mode of
5225 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5226 from EXPR in *OFFSET_OUT (if nonnull). */
5228 static bool
5229 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5230 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5232 machine_mode mode;
5234 if (expr == NULL || !track_expr_p (expr, true))
5235 return false;
5237 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5238 whole subreg, but only the old inner part is really relevant. */
5239 mode = GET_MODE (loc);
5240 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5242 machine_mode pseudo_mode;
5244 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5245 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5247 offset += byte_lowpart_offset (pseudo_mode, mode);
5248 mode = pseudo_mode;
5252 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5253 Do the same if we are storing to a register and EXPR occupies
5254 the whole of register LOC; in that case, the whole of EXPR is
5255 being changed. We exclude complex modes from the second case
5256 because the real and imaginary parts are represented as separate
5257 pseudo registers, even if the whole complex value fits into one
5258 hard register. */
5259 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5260 || (store_reg_p
5261 && !COMPLEX_MODE_P (DECL_MODE (expr))
5262 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5263 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5265 mode = DECL_MODE (expr);
5266 offset = 0;
5269 if (offset < 0 || offset >= MAX_VAR_PARTS)
5270 return false;
5272 if (mode_out)
5273 *mode_out = mode;
5274 if (offset_out)
5275 *offset_out = offset;
5276 return true;
5279 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5280 want to track. When returning nonnull, make sure that the attributes
5281 on the returned value are updated. */
5283 static rtx
5284 var_lowpart (machine_mode mode, rtx loc)
5286 unsigned int offset, reg_offset, regno;
5288 if (GET_MODE (loc) == mode)
5289 return loc;
5291 if (!REG_P (loc) && !MEM_P (loc))
5292 return NULL;
5294 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5296 if (MEM_P (loc))
5297 return adjust_address_nv (loc, mode, offset);
5299 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5300 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5301 reg_offset, mode);
5302 return gen_rtx_REG_offset (loc, mode, regno, offset);
5305 /* Carry information about uses and stores while walking rtx. */
5307 struct count_use_info
5309 /* The insn where the RTX is. */
5310 rtx_insn *insn;
5312 /* The basic block where insn is. */
5313 basic_block bb;
5315 /* The array of n_sets sets in the insn, as determined by cselib. */
5316 struct cselib_set *sets;
5317 int n_sets;
5319 /* True if we're counting stores, false otherwise. */
5320 bool store_p;
5323 /* Find a VALUE corresponding to X. */
5325 static inline cselib_val *
5326 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5328 int i;
5330 if (cui->sets)
5332 /* This is called after uses are set up and before stores are
5333 processed by cselib, so it's safe to look up srcs, but not
5334 dsts. So we look up expressions that appear in srcs or in
5335 dest expressions, but we search the sets array for dests of
5336 stores. */
5337 if (cui->store_p)
5339 /* Some targets represent memset and memcpy patterns
5340 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5341 (set (mem:BLK ...) (const_int ...)) or
5342 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5343 in that case, otherwise we end up with mode mismatches. */
5344 if (mode == BLKmode && MEM_P (x))
5345 return NULL;
5346 for (i = 0; i < cui->n_sets; i++)
5347 if (cui->sets[i].dest == x)
5348 return cui->sets[i].src_elt;
5350 else
5351 return cselib_lookup (x, mode, 0, VOIDmode);
5354 return NULL;
5357 /* Replace all registers and addresses in an expression with VALUE
5358 expressions that map back to them, unless the expression is a
5359 register. If no mapping is or can be performed, returns NULL. */
5361 static rtx
5362 replace_expr_with_values (rtx loc)
5364 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5365 return NULL;
5366 else if (MEM_P (loc))
5368 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5369 get_address_mode (loc), 0,
5370 GET_MODE (loc));
5371 if (addr)
5372 return replace_equiv_address_nv (loc, addr->val_rtx);
5373 else
5374 return NULL;
5376 else
5377 return cselib_subst_to_values (loc, VOIDmode);
5380 /* Return true if X contains a DEBUG_EXPR. */
5382 static bool
5383 rtx_debug_expr_p (const_rtx x)
5385 subrtx_iterator::array_type array;
5386 FOR_EACH_SUBRTX (iter, array, x, ALL)
5387 if (GET_CODE (*iter) == DEBUG_EXPR)
5388 return true;
5389 return false;
5392 /* Determine what kind of micro operation to choose for a USE. Return
5393 MO_CLOBBER if no micro operation is to be generated. */
5395 static enum micro_operation_type
5396 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5398 tree expr;
5400 if (cui && cui->sets)
5402 if (GET_CODE (loc) == VAR_LOCATION)
5404 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5406 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5407 if (! VAR_LOC_UNKNOWN_P (ploc))
5409 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5410 VOIDmode);
5412 /* ??? flag_float_store and volatile mems are never
5413 given values, but we could in theory use them for
5414 locations. */
5415 gcc_assert (val || 1);
5417 return MO_VAL_LOC;
5419 else
5420 return MO_CLOBBER;
5423 if (REG_P (loc) || MEM_P (loc))
5425 if (modep)
5426 *modep = GET_MODE (loc);
5427 if (cui->store_p)
5429 if (REG_P (loc)
5430 || (find_use_val (loc, GET_MODE (loc), cui)
5431 && cselib_lookup (XEXP (loc, 0),
5432 get_address_mode (loc), 0,
5433 GET_MODE (loc))))
5434 return MO_VAL_SET;
5436 else
5438 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5440 if (val && !cselib_preserved_value_p (val))
5441 return MO_VAL_USE;
5446 if (REG_P (loc))
5448 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5450 if (loc == cfa_base_rtx)
5451 return MO_CLOBBER;
5452 expr = REG_EXPR (loc);
5454 if (!expr)
5455 return MO_USE_NO_VAR;
5456 else if (target_for_debug_bind (var_debug_decl (expr)))
5457 return MO_CLOBBER;
5458 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5459 false, modep, NULL))
5460 return MO_USE;
5461 else
5462 return MO_USE_NO_VAR;
5464 else if (MEM_P (loc))
5466 expr = MEM_EXPR (loc);
5468 if (!expr)
5469 return MO_CLOBBER;
5470 else if (target_for_debug_bind (var_debug_decl (expr)))
5471 return MO_CLOBBER;
5472 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5473 false, modep, NULL)
5474 /* Multi-part variables shouldn't refer to one-part
5475 variable names such as VALUEs (never happens) or
5476 DEBUG_EXPRs (only happens in the presence of debug
5477 insns). */
5478 && (!MAY_HAVE_DEBUG_INSNS
5479 || !rtx_debug_expr_p (XEXP (loc, 0))))
5480 return MO_USE;
5481 else
5482 return MO_CLOBBER;
5485 return MO_CLOBBER;
5488 /* Log to OUT information about micro-operation MOPT involving X in
5489 INSN of BB. */
5491 static inline void
5492 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5493 enum micro_operation_type mopt, FILE *out)
5495 fprintf (out, "bb %i op %i insn %i %s ",
5496 bb->index, VTI (bb)->mos.length (),
5497 INSN_UID (insn), micro_operation_type_name[mopt]);
5498 print_inline_rtx (out, x, 2);
5499 fputc ('\n', out);
5502 /* Tell whether the CONCAT used to holds a VALUE and its location
5503 needs value resolution, i.e., an attempt of mapping the location
5504 back to other incoming values. */
5505 #define VAL_NEEDS_RESOLUTION(x) \
5506 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5507 /* Whether the location in the CONCAT is a tracked expression, that
5508 should also be handled like a MO_USE. */
5509 #define VAL_HOLDS_TRACK_EXPR(x) \
5510 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5511 /* Whether the location in the CONCAT should be handled like a MO_COPY
5512 as well. */
5513 #define VAL_EXPR_IS_COPIED(x) \
5514 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5515 /* Whether the location in the CONCAT should be handled like a
5516 MO_CLOBBER as well. */
5517 #define VAL_EXPR_IS_CLOBBERED(x) \
5518 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5520 /* All preserved VALUEs. */
5521 static vec<rtx> preserved_values;
5523 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5525 static void
5526 preserve_value (cselib_val *val)
5528 cselib_preserve_value (val);
5529 preserved_values.safe_push (val->val_rtx);
5532 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5533 any rtxes not suitable for CONST use not replaced by VALUEs
5534 are discovered. */
5536 static bool
5537 non_suitable_const (const_rtx x)
5539 subrtx_iterator::array_type array;
5540 FOR_EACH_SUBRTX (iter, array, x, ALL)
5542 const_rtx x = *iter;
5543 switch (GET_CODE (x))
5545 case REG:
5546 case DEBUG_EXPR:
5547 case PC:
5548 case SCRATCH:
5549 case CC0:
5550 case ASM_INPUT:
5551 case ASM_OPERANDS:
5552 return true;
5553 case MEM:
5554 if (!MEM_READONLY_P (x))
5555 return true;
5556 break;
5557 default:
5558 break;
5561 return false;
5564 /* Add uses (register and memory references) LOC which will be tracked
5565 to VTI (bb)->mos. */
5567 static void
5568 add_uses (rtx loc, struct count_use_info *cui)
5570 machine_mode mode = VOIDmode;
5571 enum micro_operation_type type = use_type (loc, cui, &mode);
5573 if (type != MO_CLOBBER)
5575 basic_block bb = cui->bb;
5576 micro_operation mo;
5578 mo.type = type;
5579 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5580 mo.insn = cui->insn;
5582 if (type == MO_VAL_LOC)
5584 rtx oloc = loc;
5585 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5586 cselib_val *val;
5588 gcc_assert (cui->sets);
5590 if (MEM_P (vloc)
5591 && !REG_P (XEXP (vloc, 0))
5592 && !MEM_P (XEXP (vloc, 0)))
5594 rtx mloc = vloc;
5595 machine_mode address_mode = get_address_mode (mloc);
5596 cselib_val *val
5597 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5598 GET_MODE (mloc));
5600 if (val && !cselib_preserved_value_p (val))
5601 preserve_value (val);
5604 if (CONSTANT_P (vloc)
5605 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5606 /* For constants don't look up any value. */;
5607 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5608 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5610 machine_mode mode2;
5611 enum micro_operation_type type2;
5612 rtx nloc = NULL;
5613 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5615 if (resolvable)
5616 nloc = replace_expr_with_values (vloc);
5618 if (nloc)
5620 oloc = shallow_copy_rtx (oloc);
5621 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5624 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5626 type2 = use_type (vloc, 0, &mode2);
5628 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5629 || type2 == MO_CLOBBER);
5631 if (type2 == MO_CLOBBER
5632 && !cselib_preserved_value_p (val))
5634 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5635 preserve_value (val);
5638 else if (!VAR_LOC_UNKNOWN_P (vloc))
5640 oloc = shallow_copy_rtx (oloc);
5641 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5644 mo.u.loc = oloc;
5646 else if (type == MO_VAL_USE)
5648 machine_mode mode2 = VOIDmode;
5649 enum micro_operation_type type2;
5650 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5651 rtx vloc, oloc = loc, nloc;
5653 gcc_assert (cui->sets);
5655 if (MEM_P (oloc)
5656 && !REG_P (XEXP (oloc, 0))
5657 && !MEM_P (XEXP (oloc, 0)))
5659 rtx mloc = oloc;
5660 machine_mode address_mode = get_address_mode (mloc);
5661 cselib_val *val
5662 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5663 GET_MODE (mloc));
5665 if (val && !cselib_preserved_value_p (val))
5666 preserve_value (val);
5669 type2 = use_type (loc, 0, &mode2);
5671 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5672 || type2 == MO_CLOBBER);
5674 if (type2 == MO_USE)
5675 vloc = var_lowpart (mode2, loc);
5676 else
5677 vloc = oloc;
5679 /* The loc of a MO_VAL_USE may have two forms:
5681 (concat val src): val is at src, a value-based
5682 representation.
5684 (concat (concat val use) src): same as above, with use as
5685 the MO_USE tracked value, if it differs from src.
5689 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5690 nloc = replace_expr_with_values (loc);
5691 if (!nloc)
5692 nloc = oloc;
5694 if (vloc != nloc)
5695 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5696 else
5697 oloc = val->val_rtx;
5699 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5701 if (type2 == MO_USE)
5702 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5703 if (!cselib_preserved_value_p (val))
5705 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5706 preserve_value (val);
5709 else
5710 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5712 if (dump_file && (dump_flags & TDF_DETAILS))
5713 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5714 VTI (bb)->mos.safe_push (mo);
5718 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5720 static void
5721 add_uses_1 (rtx *x, void *cui)
5723 subrtx_var_iterator::array_type array;
5724 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5725 add_uses (*iter, (struct count_use_info *) cui);
5728 /* This is the value used during expansion of locations. We want it
5729 to be unbounded, so that variables expanded deep in a recursion
5730 nest are fully evaluated, so that their values are cached
5731 correctly. We avoid recursion cycles through other means, and we
5732 don't unshare RTL, so excess complexity is not a problem. */
5733 #define EXPR_DEPTH (INT_MAX)
5734 /* We use this to keep too-complex expressions from being emitted as
5735 location notes, and then to debug information. Users can trade
5736 compile time for ridiculously complex expressions, although they're
5737 seldom useful, and they may often have to be discarded as not
5738 representable anyway. */
5739 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5741 /* Attempt to reverse the EXPR operation in the debug info and record
5742 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5743 no longer live we can express its value as VAL - 6. */
5745 static void
5746 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5748 rtx src, arg, ret;
5749 cselib_val *v;
5750 struct elt_loc_list *l;
5751 enum rtx_code code;
5752 int count;
5754 if (GET_CODE (expr) != SET)
5755 return;
5757 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5758 return;
5760 src = SET_SRC (expr);
5761 switch (GET_CODE (src))
5763 case PLUS:
5764 case MINUS:
5765 case XOR:
5766 case NOT:
5767 case NEG:
5768 if (!REG_P (XEXP (src, 0)))
5769 return;
5770 break;
5771 case SIGN_EXTEND:
5772 case ZERO_EXTEND:
5773 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5774 return;
5775 break;
5776 default:
5777 return;
5780 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5781 return;
5783 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5784 if (!v || !cselib_preserved_value_p (v))
5785 return;
5787 /* Use canonical V to avoid creating multiple redundant expressions
5788 for different VALUES equivalent to V. */
5789 v = canonical_cselib_val (v);
5791 /* Adding a reverse op isn't useful if V already has an always valid
5792 location. Ignore ENTRY_VALUE, while it is always constant, we should
5793 prefer non-ENTRY_VALUE locations whenever possible. */
5794 for (l = v->locs, count = 0; l; l = l->next, count++)
5795 if (CONSTANT_P (l->loc)
5796 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5797 return;
5798 /* Avoid creating too large locs lists. */
5799 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5800 return;
5802 switch (GET_CODE (src))
5804 case NOT:
5805 case NEG:
5806 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5807 return;
5808 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5809 break;
5810 case SIGN_EXTEND:
5811 case ZERO_EXTEND:
5812 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5813 break;
5814 case XOR:
5815 code = XOR;
5816 goto binary;
5817 case PLUS:
5818 code = MINUS;
5819 goto binary;
5820 case MINUS:
5821 code = PLUS;
5822 goto binary;
5823 binary:
5824 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5825 return;
5826 arg = XEXP (src, 1);
5827 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5829 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5830 if (arg == NULL_RTX)
5831 return;
5832 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5833 return;
5835 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5836 break;
5837 default:
5838 gcc_unreachable ();
5841 cselib_add_permanent_equiv (v, ret, insn);
5844 /* Add stores (register and memory references) LOC which will be tracked
5845 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5846 CUIP->insn is instruction which the LOC is part of. */
5848 static void
5849 add_stores (rtx loc, const_rtx expr, void *cuip)
5851 machine_mode mode = VOIDmode, mode2;
5852 struct count_use_info *cui = (struct count_use_info *)cuip;
5853 basic_block bb = cui->bb;
5854 micro_operation mo;
5855 rtx oloc = loc, nloc, src = NULL;
5856 enum micro_operation_type type = use_type (loc, cui, &mode);
5857 bool track_p = false;
5858 cselib_val *v;
5859 bool resolve, preserve;
5861 if (type == MO_CLOBBER)
5862 return;
5864 mode2 = mode;
5866 if (REG_P (loc))
5868 gcc_assert (loc != cfa_base_rtx);
5869 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5870 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5871 || GET_CODE (expr) == CLOBBER)
5873 mo.type = MO_CLOBBER;
5874 mo.u.loc = loc;
5875 if (GET_CODE (expr) == SET
5876 && SET_DEST (expr) == loc
5877 && !unsuitable_loc (SET_SRC (expr))
5878 && find_use_val (loc, mode, cui))
5880 gcc_checking_assert (type == MO_VAL_SET);
5881 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5884 else
5886 if (GET_CODE (expr) == SET
5887 && SET_DEST (expr) == loc
5888 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5889 src = var_lowpart (mode2, SET_SRC (expr));
5890 loc = var_lowpart (mode2, loc);
5892 if (src == NULL)
5894 mo.type = MO_SET;
5895 mo.u.loc = loc;
5897 else
5899 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5900 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5902 /* If this is an instruction copying (part of) a parameter
5903 passed by invisible reference to its register location,
5904 pretend it's a SET so that the initial memory location
5905 is discarded, as the parameter register can be reused
5906 for other purposes and we do not track locations based
5907 on generic registers. */
5908 if (MEM_P (src)
5909 && REG_EXPR (loc)
5910 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5911 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5912 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5913 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5914 != arg_pointer_rtx)
5915 mo.type = MO_SET;
5916 else
5917 mo.type = MO_COPY;
5919 else
5920 mo.type = MO_SET;
5921 mo.u.loc = xexpr;
5924 mo.insn = cui->insn;
5926 else if (MEM_P (loc)
5927 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5928 || cui->sets))
5930 if (MEM_P (loc) && type == MO_VAL_SET
5931 && !REG_P (XEXP (loc, 0))
5932 && !MEM_P (XEXP (loc, 0)))
5934 rtx mloc = loc;
5935 machine_mode address_mode = get_address_mode (mloc);
5936 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5937 address_mode, 0,
5938 GET_MODE (mloc));
5940 if (val && !cselib_preserved_value_p (val))
5941 preserve_value (val);
5944 if (GET_CODE (expr) == CLOBBER || !track_p)
5946 mo.type = MO_CLOBBER;
5947 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5949 else
5951 if (GET_CODE (expr) == SET
5952 && SET_DEST (expr) == loc
5953 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5954 src = var_lowpart (mode2, SET_SRC (expr));
5955 loc = var_lowpart (mode2, loc);
5957 if (src == NULL)
5959 mo.type = MO_SET;
5960 mo.u.loc = loc;
5962 else
5964 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5965 if (same_variable_part_p (SET_SRC (xexpr),
5966 MEM_EXPR (loc),
5967 INT_MEM_OFFSET (loc)))
5968 mo.type = MO_COPY;
5969 else
5970 mo.type = MO_SET;
5971 mo.u.loc = xexpr;
5974 mo.insn = cui->insn;
5976 else
5977 return;
5979 if (type != MO_VAL_SET)
5980 goto log_and_return;
5982 v = find_use_val (oloc, mode, cui);
5984 if (!v)
5985 goto log_and_return;
5987 resolve = preserve = !cselib_preserved_value_p (v);
5989 /* We cannot track values for multiple-part variables, so we track only
5990 locations for tracked parameters passed either by invisible reference
5991 or directly in multiple locations. */
5992 if (track_p
5993 && REG_P (loc)
5994 && REG_EXPR (loc)
5995 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5996 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5997 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5998 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5999 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
6000 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
6001 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
6003 /* Although we don't use the value here, it could be used later by the
6004 mere virtue of its existence as the operand of the reverse operation
6005 that gave rise to it (typically extension/truncation). Make sure it
6006 is preserved as required by vt_expand_var_loc_chain. */
6007 if (preserve)
6008 preserve_value (v);
6009 goto log_and_return;
6012 if (loc == stack_pointer_rtx
6013 && hard_frame_pointer_adjustment != -1
6014 && preserve)
6015 cselib_set_value_sp_based (v);
6017 nloc = replace_expr_with_values (oloc);
6018 if (nloc)
6019 oloc = nloc;
6021 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6023 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6025 if (oval == v)
6026 return;
6027 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6029 if (oval && !cselib_preserved_value_p (oval))
6031 micro_operation moa;
6033 preserve_value (oval);
6035 moa.type = MO_VAL_USE;
6036 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6037 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6038 moa.insn = cui->insn;
6040 if (dump_file && (dump_flags & TDF_DETAILS))
6041 log_op_type (moa.u.loc, cui->bb, cui->insn,
6042 moa.type, dump_file);
6043 VTI (bb)->mos.safe_push (moa);
6046 resolve = false;
6048 else if (resolve && GET_CODE (mo.u.loc) == SET)
6050 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6051 nloc = replace_expr_with_values (SET_SRC (expr));
6052 else
6053 nloc = NULL_RTX;
6055 /* Avoid the mode mismatch between oexpr and expr. */
6056 if (!nloc && mode != mode2)
6058 nloc = SET_SRC (expr);
6059 gcc_assert (oloc == SET_DEST (expr));
6062 if (nloc && nloc != SET_SRC (mo.u.loc))
6063 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6064 else
6066 if (oloc == SET_DEST (mo.u.loc))
6067 /* No point in duplicating. */
6068 oloc = mo.u.loc;
6069 if (!REG_P (SET_SRC (mo.u.loc)))
6070 resolve = false;
6073 else if (!resolve)
6075 if (GET_CODE (mo.u.loc) == SET
6076 && oloc == SET_DEST (mo.u.loc))
6077 /* No point in duplicating. */
6078 oloc = mo.u.loc;
6080 else
6081 resolve = false;
6083 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6085 if (mo.u.loc != oloc)
6086 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6088 /* The loc of a MO_VAL_SET may have various forms:
6090 (concat val dst): dst now holds val
6092 (concat val (set dst src)): dst now holds val, copied from src
6094 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6095 after replacing mems and non-top-level regs with values.
6097 (concat (concat val dstv) (set dst src)): dst now holds val,
6098 copied from src. dstv is a value-based representation of dst, if
6099 it differs from dst. If resolution is needed, src is a REG, and
6100 its mode is the same as that of val.
6102 (concat (concat val (set dstv srcv)) (set dst src)): src
6103 copied to dst, holding val. dstv and srcv are value-based
6104 representations of dst and src, respectively.
6108 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6109 reverse_op (v->val_rtx, expr, cui->insn);
6111 mo.u.loc = loc;
6113 if (track_p)
6114 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6115 if (preserve)
6117 VAL_NEEDS_RESOLUTION (loc) = resolve;
6118 preserve_value (v);
6120 if (mo.type == MO_CLOBBER)
6121 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6122 if (mo.type == MO_COPY)
6123 VAL_EXPR_IS_COPIED (loc) = 1;
6125 mo.type = MO_VAL_SET;
6127 log_and_return:
6128 if (dump_file && (dump_flags & TDF_DETAILS))
6129 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6130 VTI (bb)->mos.safe_push (mo);
6133 /* Arguments to the call. */
6134 static rtx call_arguments;
6136 /* Compute call_arguments. */
6138 static void
6139 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6141 rtx link, x, call;
6142 rtx prev, cur, next;
6143 rtx this_arg = NULL_RTX;
6144 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6145 tree obj_type_ref = NULL_TREE;
6146 CUMULATIVE_ARGS args_so_far_v;
6147 cumulative_args_t args_so_far;
6149 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6150 args_so_far = pack_cumulative_args (&args_so_far_v);
6151 call = get_call_rtx_from (insn);
6152 if (call)
6154 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6156 rtx symbol = XEXP (XEXP (call, 0), 0);
6157 if (SYMBOL_REF_DECL (symbol))
6158 fndecl = SYMBOL_REF_DECL (symbol);
6160 if (fndecl == NULL_TREE)
6161 fndecl = MEM_EXPR (XEXP (call, 0));
6162 if (fndecl
6163 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6164 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6165 fndecl = NULL_TREE;
6166 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6167 type = TREE_TYPE (fndecl);
6168 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6170 if (TREE_CODE (fndecl) == INDIRECT_REF
6171 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6172 obj_type_ref = TREE_OPERAND (fndecl, 0);
6173 fndecl = NULL_TREE;
6175 if (type)
6177 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6178 t = TREE_CHAIN (t))
6179 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6180 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6181 break;
6182 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6183 type = NULL;
6184 else
6186 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6187 link = CALL_INSN_FUNCTION_USAGE (insn);
6188 #ifndef PCC_STATIC_STRUCT_RETURN
6189 if (aggregate_value_p (TREE_TYPE (type), type)
6190 && targetm.calls.struct_value_rtx (type, 0) == 0)
6192 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6193 machine_mode mode = TYPE_MODE (struct_addr);
6194 rtx reg;
6195 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6196 nargs + 1);
6197 reg = targetm.calls.function_arg (args_so_far, mode,
6198 struct_addr, true);
6199 targetm.calls.function_arg_advance (args_so_far, mode,
6200 struct_addr, true);
6201 if (reg == NULL_RTX)
6203 for (; link; link = XEXP (link, 1))
6204 if (GET_CODE (XEXP (link, 0)) == USE
6205 && MEM_P (XEXP (XEXP (link, 0), 0)))
6207 link = XEXP (link, 1);
6208 break;
6212 else
6213 #endif
6214 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6215 nargs);
6216 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6218 machine_mode mode;
6219 t = TYPE_ARG_TYPES (type);
6220 mode = TYPE_MODE (TREE_VALUE (t));
6221 this_arg = targetm.calls.function_arg (args_so_far, mode,
6222 TREE_VALUE (t), true);
6223 if (this_arg && !REG_P (this_arg))
6224 this_arg = NULL_RTX;
6225 else if (this_arg == NULL_RTX)
6227 for (; link; link = XEXP (link, 1))
6228 if (GET_CODE (XEXP (link, 0)) == USE
6229 && MEM_P (XEXP (XEXP (link, 0), 0)))
6231 this_arg = XEXP (XEXP (link, 0), 0);
6232 break;
6239 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6241 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6242 if (GET_CODE (XEXP (link, 0)) == USE)
6244 rtx item = NULL_RTX;
6245 x = XEXP (XEXP (link, 0), 0);
6246 if (GET_MODE (link) == VOIDmode
6247 || GET_MODE (link) == BLKmode
6248 || (GET_MODE (link) != GET_MODE (x)
6249 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6250 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6251 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6252 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6253 /* Can't do anything for these, if the original type mode
6254 isn't known or can't be converted. */;
6255 else if (REG_P (x))
6257 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6258 if (val && cselib_preserved_value_p (val))
6259 item = val->val_rtx;
6260 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6261 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6263 machine_mode mode = GET_MODE (x);
6265 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6266 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6268 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6270 if (reg == NULL_RTX || !REG_P (reg))
6271 continue;
6272 val = cselib_lookup (reg, mode, 0, VOIDmode);
6273 if (val && cselib_preserved_value_p (val))
6275 item = val->val_rtx;
6276 break;
6281 else if (MEM_P (x))
6283 rtx mem = x;
6284 cselib_val *val;
6286 if (!frame_pointer_needed)
6288 struct adjust_mem_data amd;
6289 amd.mem_mode = VOIDmode;
6290 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6291 amd.side_effects = NULL;
6292 amd.store = true;
6293 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6294 &amd);
6295 gcc_assert (amd.side_effects == NULL_RTX);
6297 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6298 if (val && cselib_preserved_value_p (val))
6299 item = val->val_rtx;
6300 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6301 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6303 /* For non-integer stack argument see also if they weren't
6304 initialized by integers. */
6305 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6306 if (imode != GET_MODE (mem) && imode != BLKmode)
6308 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6309 imode, 0, VOIDmode);
6310 if (val && cselib_preserved_value_p (val))
6311 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6312 imode);
6316 if (item)
6318 rtx x2 = x;
6319 if (GET_MODE (item) != GET_MODE (link))
6320 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6321 if (GET_MODE (x2) != GET_MODE (link))
6322 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6323 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6324 call_arguments
6325 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6327 if (t && t != void_list_node)
6329 tree argtype = TREE_VALUE (t);
6330 machine_mode mode = TYPE_MODE (argtype);
6331 rtx reg;
6332 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6334 argtype = build_pointer_type (argtype);
6335 mode = TYPE_MODE (argtype);
6337 reg = targetm.calls.function_arg (args_so_far, mode,
6338 argtype, true);
6339 if (TREE_CODE (argtype) == REFERENCE_TYPE
6340 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6341 && reg
6342 && REG_P (reg)
6343 && GET_MODE (reg) == mode
6344 && (GET_MODE_CLASS (mode) == MODE_INT
6345 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6346 && REG_P (x)
6347 && REGNO (x) == REGNO (reg)
6348 && GET_MODE (x) == mode
6349 && item)
6351 machine_mode indmode
6352 = TYPE_MODE (TREE_TYPE (argtype));
6353 rtx mem = gen_rtx_MEM (indmode, x);
6354 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6355 if (val && cselib_preserved_value_p (val))
6357 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6358 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6359 call_arguments);
6361 else
6363 struct elt_loc_list *l;
6364 tree initial;
6366 /* Try harder, when passing address of a constant
6367 pool integer it can be easily read back. */
6368 item = XEXP (item, 1);
6369 if (GET_CODE (item) == SUBREG)
6370 item = SUBREG_REG (item);
6371 gcc_assert (GET_CODE (item) == VALUE);
6372 val = CSELIB_VAL_PTR (item);
6373 for (l = val->locs; l; l = l->next)
6374 if (GET_CODE (l->loc) == SYMBOL_REF
6375 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6376 && SYMBOL_REF_DECL (l->loc)
6377 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6379 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6380 if (tree_fits_shwi_p (initial))
6382 item = GEN_INT (tree_to_shwi (initial));
6383 item = gen_rtx_CONCAT (indmode, mem, item);
6384 call_arguments
6385 = gen_rtx_EXPR_LIST (VOIDmode, item,
6386 call_arguments);
6388 break;
6392 targetm.calls.function_arg_advance (args_so_far, mode,
6393 argtype, true);
6394 t = TREE_CHAIN (t);
6398 /* Add debug arguments. */
6399 if (fndecl
6400 && TREE_CODE (fndecl) == FUNCTION_DECL
6401 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6403 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6404 if (debug_args)
6406 unsigned int ix;
6407 tree param;
6408 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6410 rtx item;
6411 tree dtemp = (**debug_args)[ix + 1];
6412 machine_mode mode = DECL_MODE (dtemp);
6413 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6414 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6415 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6416 call_arguments);
6421 /* Reverse call_arguments chain. */
6422 prev = NULL_RTX;
6423 for (cur = call_arguments; cur; cur = next)
6425 next = XEXP (cur, 1);
6426 XEXP (cur, 1) = prev;
6427 prev = cur;
6429 call_arguments = prev;
6431 x = get_call_rtx_from (insn);
6432 if (x)
6434 x = XEXP (XEXP (x, 0), 0);
6435 if (GET_CODE (x) == SYMBOL_REF)
6436 /* Don't record anything. */;
6437 else if (CONSTANT_P (x))
6439 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6440 pc_rtx, x);
6441 call_arguments
6442 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6444 else
6446 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6447 if (val && cselib_preserved_value_p (val))
6449 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6450 call_arguments
6451 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6455 if (this_arg)
6457 machine_mode mode
6458 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6459 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6460 HOST_WIDE_INT token
6461 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6462 if (token)
6463 clobbered = plus_constant (mode, clobbered,
6464 token * GET_MODE_SIZE (mode));
6465 clobbered = gen_rtx_MEM (mode, clobbered);
6466 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6467 call_arguments
6468 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6472 /* Callback for cselib_record_sets_hook, that records as micro
6473 operations uses and stores in an insn after cselib_record_sets has
6474 analyzed the sets in an insn, but before it modifies the stored
6475 values in the internal tables, unless cselib_record_sets doesn't
6476 call it directly (perhaps because we're not doing cselib in the
6477 first place, in which case sets and n_sets will be 0). */
6479 static void
6480 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6482 basic_block bb = BLOCK_FOR_INSN (insn);
6483 int n1, n2;
6484 struct count_use_info cui;
6485 micro_operation *mos;
6487 cselib_hook_called = true;
6489 cui.insn = insn;
6490 cui.bb = bb;
6491 cui.sets = sets;
6492 cui.n_sets = n_sets;
6494 n1 = VTI (bb)->mos.length ();
6495 cui.store_p = false;
6496 note_uses (&PATTERN (insn), add_uses_1, &cui);
6497 n2 = VTI (bb)->mos.length () - 1;
6498 mos = VTI (bb)->mos.address ();
6500 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6501 MO_VAL_LOC last. */
6502 while (n1 < n2)
6504 while (n1 < n2 && mos[n1].type == MO_USE)
6505 n1++;
6506 while (n1 < n2 && mos[n2].type != MO_USE)
6507 n2--;
6508 if (n1 < n2)
6510 micro_operation sw;
6512 sw = mos[n1];
6513 mos[n1] = mos[n2];
6514 mos[n2] = sw;
6518 n2 = VTI (bb)->mos.length () - 1;
6519 while (n1 < n2)
6521 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6522 n1++;
6523 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6524 n2--;
6525 if (n1 < n2)
6527 micro_operation sw;
6529 sw = mos[n1];
6530 mos[n1] = mos[n2];
6531 mos[n2] = sw;
6535 if (CALL_P (insn))
6537 micro_operation mo;
6539 mo.type = MO_CALL;
6540 mo.insn = insn;
6541 mo.u.loc = call_arguments;
6542 call_arguments = NULL_RTX;
6544 if (dump_file && (dump_flags & TDF_DETAILS))
6545 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6546 VTI (bb)->mos.safe_push (mo);
6549 n1 = VTI (bb)->mos.length ();
6550 /* This will record NEXT_INSN (insn), such that we can
6551 insert notes before it without worrying about any
6552 notes that MO_USEs might emit after the insn. */
6553 cui.store_p = true;
6554 note_stores (PATTERN (insn), add_stores, &cui);
6555 n2 = VTI (bb)->mos.length () - 1;
6556 mos = VTI (bb)->mos.address ();
6558 /* Order the MO_VAL_USEs first (note_stores does nothing
6559 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6560 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6561 while (n1 < n2)
6563 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6564 n1++;
6565 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6566 n2--;
6567 if (n1 < n2)
6569 micro_operation sw;
6571 sw = mos[n1];
6572 mos[n1] = mos[n2];
6573 mos[n2] = sw;
6577 n2 = VTI (bb)->mos.length () - 1;
6578 while (n1 < n2)
6580 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6581 n1++;
6582 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6583 n2--;
6584 if (n1 < n2)
6586 micro_operation sw;
6588 sw = mos[n1];
6589 mos[n1] = mos[n2];
6590 mos[n2] = sw;
6595 static enum var_init_status
6596 find_src_status (dataflow_set *in, rtx src)
6598 tree decl = NULL_TREE;
6599 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6601 if (! flag_var_tracking_uninit)
6602 status = VAR_INIT_STATUS_INITIALIZED;
6604 if (src && REG_P (src))
6605 decl = var_debug_decl (REG_EXPR (src));
6606 else if (src && MEM_P (src))
6607 decl = var_debug_decl (MEM_EXPR (src));
6609 if (src && decl)
6610 status = get_init_value (in, src, dv_from_decl (decl));
6612 return status;
6615 /* SRC is the source of an assignment. Use SET to try to find what
6616 was ultimately assigned to SRC. Return that value if known,
6617 otherwise return SRC itself. */
6619 static rtx
6620 find_src_set_src (dataflow_set *set, rtx src)
6622 tree decl = NULL_TREE; /* The variable being copied around. */
6623 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6624 variable var;
6625 location_chain nextp;
6626 int i;
6627 bool found;
6629 if (src && REG_P (src))
6630 decl = var_debug_decl (REG_EXPR (src));
6631 else if (src && MEM_P (src))
6632 decl = var_debug_decl (MEM_EXPR (src));
6634 if (src && decl)
6636 decl_or_value dv = dv_from_decl (decl);
6638 var = shared_hash_find (set->vars, dv);
6639 if (var)
6641 found = false;
6642 for (i = 0; i < var->n_var_parts && !found; i++)
6643 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6644 nextp = nextp->next)
6645 if (rtx_equal_p (nextp->loc, src))
6647 set_src = nextp->set_src;
6648 found = true;
6654 return set_src;
6657 /* Compute the changes of variable locations in the basic block BB. */
6659 static bool
6660 compute_bb_dataflow (basic_block bb)
6662 unsigned int i;
6663 micro_operation *mo;
6664 bool changed;
6665 dataflow_set old_out;
6666 dataflow_set *in = &VTI (bb)->in;
6667 dataflow_set *out = &VTI (bb)->out;
6669 dataflow_set_init (&old_out);
6670 dataflow_set_copy (&old_out, out);
6671 dataflow_set_copy (out, in);
6673 if (MAY_HAVE_DEBUG_INSNS)
6674 local_get_addr_cache = new hash_map<rtx, rtx>;
6676 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6678 rtx_insn *insn = mo->insn;
6680 switch (mo->type)
6682 case MO_CALL:
6683 dataflow_set_clear_at_call (out);
6684 break;
6686 case MO_USE:
6688 rtx loc = mo->u.loc;
6690 if (REG_P (loc))
6691 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6692 else if (MEM_P (loc))
6693 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6695 break;
6697 case MO_VAL_LOC:
6699 rtx loc = mo->u.loc;
6700 rtx val, vloc;
6701 tree var;
6703 if (GET_CODE (loc) == CONCAT)
6705 val = XEXP (loc, 0);
6706 vloc = XEXP (loc, 1);
6708 else
6710 val = NULL_RTX;
6711 vloc = loc;
6714 var = PAT_VAR_LOCATION_DECL (vloc);
6716 clobber_variable_part (out, NULL_RTX,
6717 dv_from_decl (var), 0, NULL_RTX);
6718 if (val)
6720 if (VAL_NEEDS_RESOLUTION (loc))
6721 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6722 set_variable_part (out, val, dv_from_decl (var), 0,
6723 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6724 INSERT);
6726 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6727 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6728 dv_from_decl (var), 0,
6729 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6730 INSERT);
6732 break;
6734 case MO_VAL_USE:
6736 rtx loc = mo->u.loc;
6737 rtx val, vloc, uloc;
6739 vloc = uloc = XEXP (loc, 1);
6740 val = XEXP (loc, 0);
6742 if (GET_CODE (val) == CONCAT)
6744 uloc = XEXP (val, 1);
6745 val = XEXP (val, 0);
6748 if (VAL_NEEDS_RESOLUTION (loc))
6749 val_resolve (out, val, vloc, insn);
6750 else
6751 val_store (out, val, uloc, insn, false);
6753 if (VAL_HOLDS_TRACK_EXPR (loc))
6755 if (GET_CODE (uloc) == REG)
6756 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6757 NULL);
6758 else if (GET_CODE (uloc) == MEM)
6759 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6760 NULL);
6763 break;
6765 case MO_VAL_SET:
6767 rtx loc = mo->u.loc;
6768 rtx val, vloc, uloc;
6769 rtx dstv, srcv;
6771 vloc = loc;
6772 uloc = XEXP (vloc, 1);
6773 val = XEXP (vloc, 0);
6774 vloc = uloc;
6776 if (GET_CODE (uloc) == SET)
6778 dstv = SET_DEST (uloc);
6779 srcv = SET_SRC (uloc);
6781 else
6783 dstv = uloc;
6784 srcv = NULL;
6787 if (GET_CODE (val) == CONCAT)
6789 dstv = vloc = XEXP (val, 1);
6790 val = XEXP (val, 0);
6793 if (GET_CODE (vloc) == SET)
6795 srcv = SET_SRC (vloc);
6797 gcc_assert (val != srcv);
6798 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6800 dstv = vloc = SET_DEST (vloc);
6802 if (VAL_NEEDS_RESOLUTION (loc))
6803 val_resolve (out, val, srcv, insn);
6805 else if (VAL_NEEDS_RESOLUTION (loc))
6807 gcc_assert (GET_CODE (uloc) == SET
6808 && GET_CODE (SET_SRC (uloc)) == REG);
6809 val_resolve (out, val, SET_SRC (uloc), insn);
6812 if (VAL_HOLDS_TRACK_EXPR (loc))
6814 if (VAL_EXPR_IS_CLOBBERED (loc))
6816 if (REG_P (uloc))
6817 var_reg_delete (out, uloc, true);
6818 else if (MEM_P (uloc))
6820 gcc_assert (MEM_P (dstv));
6821 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6822 var_mem_delete (out, dstv, true);
6825 else
6827 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6828 rtx src = NULL, dst = uloc;
6829 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6831 if (GET_CODE (uloc) == SET)
6833 src = SET_SRC (uloc);
6834 dst = SET_DEST (uloc);
6837 if (copied_p)
6839 if (flag_var_tracking_uninit)
6841 status = find_src_status (in, src);
6843 if (status == VAR_INIT_STATUS_UNKNOWN)
6844 status = find_src_status (out, src);
6847 src = find_src_set_src (in, src);
6850 if (REG_P (dst))
6851 var_reg_delete_and_set (out, dst, !copied_p,
6852 status, srcv);
6853 else if (MEM_P (dst))
6855 gcc_assert (MEM_P (dstv));
6856 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6857 var_mem_delete_and_set (out, dstv, !copied_p,
6858 status, srcv);
6862 else if (REG_P (uloc))
6863 var_regno_delete (out, REGNO (uloc));
6864 else if (MEM_P (uloc))
6866 gcc_checking_assert (GET_CODE (vloc) == MEM);
6867 gcc_checking_assert (dstv == vloc);
6868 if (dstv != vloc)
6869 clobber_overlapping_mems (out, vloc);
6872 val_store (out, val, dstv, insn, true);
6874 break;
6876 case MO_SET:
6878 rtx loc = mo->u.loc;
6879 rtx set_src = NULL;
6881 if (GET_CODE (loc) == SET)
6883 set_src = SET_SRC (loc);
6884 loc = SET_DEST (loc);
6887 if (REG_P (loc))
6888 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6889 set_src);
6890 else if (MEM_P (loc))
6891 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6892 set_src);
6894 break;
6896 case MO_COPY:
6898 rtx loc = mo->u.loc;
6899 enum var_init_status src_status;
6900 rtx set_src = NULL;
6902 if (GET_CODE (loc) == SET)
6904 set_src = SET_SRC (loc);
6905 loc = SET_DEST (loc);
6908 if (! flag_var_tracking_uninit)
6909 src_status = VAR_INIT_STATUS_INITIALIZED;
6910 else
6912 src_status = find_src_status (in, set_src);
6914 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6915 src_status = find_src_status (out, set_src);
6918 set_src = find_src_set_src (in, set_src);
6920 if (REG_P (loc))
6921 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6922 else if (MEM_P (loc))
6923 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6925 break;
6927 case MO_USE_NO_VAR:
6929 rtx loc = mo->u.loc;
6931 if (REG_P (loc))
6932 var_reg_delete (out, loc, false);
6933 else if (MEM_P (loc))
6934 var_mem_delete (out, loc, false);
6936 break;
6938 case MO_CLOBBER:
6940 rtx loc = mo->u.loc;
6942 if (REG_P (loc))
6943 var_reg_delete (out, loc, true);
6944 else if (MEM_P (loc))
6945 var_mem_delete (out, loc, true);
6947 break;
6949 case MO_ADJUST:
6950 out->stack_adjust += mo->u.adjust;
6951 break;
6955 if (MAY_HAVE_DEBUG_INSNS)
6957 delete local_get_addr_cache;
6958 local_get_addr_cache = NULL;
6960 dataflow_set_equiv_regs (out);
6961 shared_hash_htab (out->vars)
6962 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6963 shared_hash_htab (out->vars)
6964 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6965 #if ENABLE_CHECKING
6966 shared_hash_htab (out->vars)
6967 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6968 #endif
6970 changed = dataflow_set_different (&old_out, out);
6971 dataflow_set_destroy (&old_out);
6972 return changed;
6975 /* Find the locations of variables in the whole function. */
6977 static bool
6978 vt_find_locations (void)
6980 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6981 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6982 bb_heap_t *fibheap_swap = NULL;
6983 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6984 basic_block bb;
6985 edge e;
6986 int *bb_order;
6987 int *rc_order;
6988 int i;
6989 int htabsz = 0;
6990 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6991 bool success = true;
6993 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6994 /* Compute reverse completion order of depth first search of the CFG
6995 so that the data-flow runs faster. */
6996 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6997 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6998 pre_and_rev_post_order_compute (NULL, rc_order, false);
6999 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7000 bb_order[rc_order[i]] = i;
7001 free (rc_order);
7003 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
7004 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7005 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7006 bitmap_clear (in_worklist);
7008 FOR_EACH_BB_FN (bb, cfun)
7009 pending->insert (bb_order[bb->index], bb);
7010 bitmap_ones (in_pending);
7012 while (success && !pending->empty ())
7014 fibheap_swap = pending;
7015 pending = worklist;
7016 worklist = fibheap_swap;
7017 sbitmap_swap = in_pending;
7018 in_pending = in_worklist;
7019 in_worklist = sbitmap_swap;
7021 bitmap_clear (visited);
7023 while (!worklist->empty ())
7025 bb = worklist->extract_min ();
7026 bitmap_clear_bit (in_worklist, bb->index);
7027 gcc_assert (!bitmap_bit_p (visited, bb->index));
7028 if (!bitmap_bit_p (visited, bb->index))
7030 bool changed;
7031 edge_iterator ei;
7032 int oldinsz, oldoutsz;
7034 bitmap_set_bit (visited, bb->index);
7036 if (VTI (bb)->in.vars)
7038 htabsz
7039 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7040 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7041 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7042 oldoutsz
7043 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7045 else
7046 oldinsz = oldoutsz = 0;
7048 if (MAY_HAVE_DEBUG_INSNS)
7050 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7051 bool first = true, adjust = false;
7053 /* Calculate the IN set as the intersection of
7054 predecessor OUT sets. */
7056 dataflow_set_clear (in);
7057 dst_can_be_shared = true;
7059 FOR_EACH_EDGE (e, ei, bb->preds)
7060 if (!VTI (e->src)->flooded)
7061 gcc_assert (bb_order[bb->index]
7062 <= bb_order[e->src->index]);
7063 else if (first)
7065 dataflow_set_copy (in, &VTI (e->src)->out);
7066 first_out = &VTI (e->src)->out;
7067 first = false;
7069 else
7071 dataflow_set_merge (in, &VTI (e->src)->out);
7072 adjust = true;
7075 if (adjust)
7077 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7078 #if ENABLE_CHECKING
7079 /* Merge and merge_adjust should keep entries in
7080 canonical order. */
7081 shared_hash_htab (in->vars)
7082 ->traverse <dataflow_set *,
7083 canonicalize_loc_order_check> (in);
7084 #endif
7085 if (dst_can_be_shared)
7087 shared_hash_destroy (in->vars);
7088 in->vars = shared_hash_copy (first_out->vars);
7092 VTI (bb)->flooded = true;
7094 else
7096 /* Calculate the IN set as union of predecessor OUT sets. */
7097 dataflow_set_clear (&VTI (bb)->in);
7098 FOR_EACH_EDGE (e, ei, bb->preds)
7099 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7102 changed = compute_bb_dataflow (bb);
7103 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7104 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7106 if (htabmax && htabsz > htabmax)
7108 if (MAY_HAVE_DEBUG_INSNS)
7109 inform (DECL_SOURCE_LOCATION (cfun->decl),
7110 "variable tracking size limit exceeded with "
7111 "-fvar-tracking-assignments, retrying without");
7112 else
7113 inform (DECL_SOURCE_LOCATION (cfun->decl),
7114 "variable tracking size limit exceeded");
7115 success = false;
7116 break;
7119 if (changed)
7121 FOR_EACH_EDGE (e, ei, bb->succs)
7123 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7124 continue;
7126 if (bitmap_bit_p (visited, e->dest->index))
7128 if (!bitmap_bit_p (in_pending, e->dest->index))
7130 /* Send E->DEST to next round. */
7131 bitmap_set_bit (in_pending, e->dest->index);
7132 pending->insert (bb_order[e->dest->index],
7133 e->dest);
7136 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7138 /* Add E->DEST to current round. */
7139 bitmap_set_bit (in_worklist, e->dest->index);
7140 worklist->insert (bb_order[e->dest->index],
7141 e->dest);
7146 if (dump_file)
7147 fprintf (dump_file,
7148 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7149 bb->index,
7150 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7151 oldinsz,
7152 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7153 oldoutsz,
7154 (int)worklist->nodes (), (int)pending->nodes (),
7155 htabsz);
7157 if (dump_file && (dump_flags & TDF_DETAILS))
7159 fprintf (dump_file, "BB %i IN:\n", bb->index);
7160 dump_dataflow_set (&VTI (bb)->in);
7161 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7162 dump_dataflow_set (&VTI (bb)->out);
7168 if (success && MAY_HAVE_DEBUG_INSNS)
7169 FOR_EACH_BB_FN (bb, cfun)
7170 gcc_assert (VTI (bb)->flooded);
7172 free (bb_order);
7173 delete worklist;
7174 delete pending;
7175 sbitmap_free (visited);
7176 sbitmap_free (in_worklist);
7177 sbitmap_free (in_pending);
7179 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7180 return success;
7183 /* Print the content of the LIST to dump file. */
7185 static void
7186 dump_attrs_list (attrs list)
7188 for (; list; list = list->next)
7190 if (dv_is_decl_p (list->dv))
7191 print_mem_expr (dump_file, dv_as_decl (list->dv));
7192 else
7193 print_rtl_single (dump_file, dv_as_value (list->dv));
7194 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7196 fprintf (dump_file, "\n");
7199 /* Print the information about variable *SLOT to dump file. */
7202 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7204 variable var = *slot;
7206 dump_var (var);
7208 /* Continue traversing the hash table. */
7209 return 1;
7212 /* Print the information about variable VAR to dump file. */
7214 static void
7215 dump_var (variable var)
7217 int i;
7218 location_chain node;
7220 if (dv_is_decl_p (var->dv))
7222 const_tree decl = dv_as_decl (var->dv);
7224 if (DECL_NAME (decl))
7226 fprintf (dump_file, " name: %s",
7227 IDENTIFIER_POINTER (DECL_NAME (decl)));
7228 if (dump_flags & TDF_UID)
7229 fprintf (dump_file, "D.%u", DECL_UID (decl));
7231 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7232 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7233 else
7234 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7235 fprintf (dump_file, "\n");
7237 else
7239 fputc (' ', dump_file);
7240 print_rtl_single (dump_file, dv_as_value (var->dv));
7243 for (i = 0; i < var->n_var_parts; i++)
7245 fprintf (dump_file, " offset %ld\n",
7246 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7247 for (node = var->var_part[i].loc_chain; node; node = node->next)
7249 fprintf (dump_file, " ");
7250 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7251 fprintf (dump_file, "[uninit]");
7252 print_rtl_single (dump_file, node->loc);
7257 /* Print the information about variables from hash table VARS to dump file. */
7259 static void
7260 dump_vars (variable_table_type *vars)
7262 if (vars->elements () > 0)
7264 fprintf (dump_file, "Variables:\n");
7265 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7269 /* Print the dataflow set SET to dump file. */
7271 static void
7272 dump_dataflow_set (dataflow_set *set)
7274 int i;
7276 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7277 set->stack_adjust);
7278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7280 if (set->regs[i])
7282 fprintf (dump_file, "Reg %d:", i);
7283 dump_attrs_list (set->regs[i]);
7286 dump_vars (shared_hash_htab (set->vars));
7287 fprintf (dump_file, "\n");
7290 /* Print the IN and OUT sets for each basic block to dump file. */
7292 static void
7293 dump_dataflow_sets (void)
7295 basic_block bb;
7297 FOR_EACH_BB_FN (bb, cfun)
7299 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7300 fprintf (dump_file, "IN:\n");
7301 dump_dataflow_set (&VTI (bb)->in);
7302 fprintf (dump_file, "OUT:\n");
7303 dump_dataflow_set (&VTI (bb)->out);
7307 /* Return the variable for DV in dropped_values, inserting one if
7308 requested with INSERT. */
7310 static inline variable
7311 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7313 variable_def **slot;
7314 variable empty_var;
7315 onepart_enum_t onepart;
7317 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7319 if (!slot)
7320 return NULL;
7322 if (*slot)
7323 return *slot;
7325 gcc_checking_assert (insert == INSERT);
7327 onepart = dv_onepart_p (dv);
7329 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7331 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7332 empty_var->dv = dv;
7333 empty_var->refcount = 1;
7334 empty_var->n_var_parts = 0;
7335 empty_var->onepart = onepart;
7336 empty_var->in_changed_variables = false;
7337 empty_var->var_part[0].loc_chain = NULL;
7338 empty_var->var_part[0].cur_loc = NULL;
7339 VAR_LOC_1PAUX (empty_var) = NULL;
7340 set_dv_changed (dv, true);
7342 *slot = empty_var;
7344 return empty_var;
7347 /* Recover the one-part aux from dropped_values. */
7349 static struct onepart_aux *
7350 recover_dropped_1paux (variable var)
7352 variable dvar;
7354 gcc_checking_assert (var->onepart);
7356 if (VAR_LOC_1PAUX (var))
7357 return VAR_LOC_1PAUX (var);
7359 if (var->onepart == ONEPART_VDECL)
7360 return NULL;
7362 dvar = variable_from_dropped (var->dv, NO_INSERT);
7364 if (!dvar)
7365 return NULL;
7367 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7368 VAR_LOC_1PAUX (dvar) = NULL;
7370 return VAR_LOC_1PAUX (var);
7373 /* Add variable VAR to the hash table of changed variables and
7374 if it has no locations delete it from SET's hash table. */
7376 static void
7377 variable_was_changed (variable var, dataflow_set *set)
7379 hashval_t hash = dv_htab_hash (var->dv);
7381 if (emit_notes)
7383 variable_def **slot;
7385 /* Remember this decl or VALUE has been added to changed_variables. */
7386 set_dv_changed (var->dv, true);
7388 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7390 if (*slot)
7392 variable old_var = *slot;
7393 gcc_assert (old_var->in_changed_variables);
7394 old_var->in_changed_variables = false;
7395 if (var != old_var && var->onepart)
7397 /* Restore the auxiliary info from an empty variable
7398 previously created for changed_variables, so it is
7399 not lost. */
7400 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7401 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7402 VAR_LOC_1PAUX (old_var) = NULL;
7404 variable_htab_free (*slot);
7407 if (set && var->n_var_parts == 0)
7409 onepart_enum_t onepart = var->onepart;
7410 variable empty_var = NULL;
7411 variable_def **dslot = NULL;
7413 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7415 dslot = dropped_values->find_slot_with_hash (var->dv,
7416 dv_htab_hash (var->dv),
7417 INSERT);
7418 empty_var = *dslot;
7420 if (empty_var)
7422 gcc_checking_assert (!empty_var->in_changed_variables);
7423 if (!VAR_LOC_1PAUX (var))
7425 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7426 VAR_LOC_1PAUX (empty_var) = NULL;
7428 else
7429 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7433 if (!empty_var)
7435 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7436 empty_var->dv = var->dv;
7437 empty_var->refcount = 1;
7438 empty_var->n_var_parts = 0;
7439 empty_var->onepart = onepart;
7440 if (dslot)
7442 empty_var->refcount++;
7443 *dslot = empty_var;
7446 else
7447 empty_var->refcount++;
7448 empty_var->in_changed_variables = true;
7449 *slot = empty_var;
7450 if (onepart)
7452 empty_var->var_part[0].loc_chain = NULL;
7453 empty_var->var_part[0].cur_loc = NULL;
7454 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7455 VAR_LOC_1PAUX (var) = NULL;
7457 goto drop_var;
7459 else
7461 if (var->onepart && !VAR_LOC_1PAUX (var))
7462 recover_dropped_1paux (var);
7463 var->refcount++;
7464 var->in_changed_variables = true;
7465 *slot = var;
7468 else
7470 gcc_assert (set);
7471 if (var->n_var_parts == 0)
7473 variable_def **slot;
7475 drop_var:
7476 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7477 if (slot)
7479 if (shared_hash_shared (set->vars))
7480 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7481 NO_INSERT);
7482 shared_hash_htab (set->vars)->clear_slot (slot);
7488 /* Look for the index in VAR->var_part corresponding to OFFSET.
7489 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7490 referenced int will be set to the index that the part has or should
7491 have, if it should be inserted. */
7493 static inline int
7494 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7495 int *insertion_point)
7497 int pos, low, high;
7499 if (var->onepart)
7501 if (offset != 0)
7502 return -1;
7504 if (insertion_point)
7505 *insertion_point = 0;
7507 return var->n_var_parts - 1;
7510 /* Find the location part. */
7511 low = 0;
7512 high = var->n_var_parts;
7513 while (low != high)
7515 pos = (low + high) / 2;
7516 if (VAR_PART_OFFSET (var, pos) < offset)
7517 low = pos + 1;
7518 else
7519 high = pos;
7521 pos = low;
7523 if (insertion_point)
7524 *insertion_point = pos;
7526 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7527 return pos;
7529 return -1;
7532 static variable_def **
7533 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7534 decl_or_value dv, HOST_WIDE_INT offset,
7535 enum var_init_status initialized, rtx set_src)
7537 int pos;
7538 location_chain node, next;
7539 location_chain *nextp;
7540 variable var;
7541 onepart_enum_t onepart;
7543 var = *slot;
7545 if (var)
7546 onepart = var->onepart;
7547 else
7548 onepart = dv_onepart_p (dv);
7550 gcc_checking_assert (offset == 0 || !onepart);
7551 gcc_checking_assert (loc != dv_as_opaque (dv));
7553 if (! flag_var_tracking_uninit)
7554 initialized = VAR_INIT_STATUS_INITIALIZED;
7556 if (!var)
7558 /* Create new variable information. */
7559 var = (variable) pool_alloc (onepart_pool (onepart));
7560 var->dv = dv;
7561 var->refcount = 1;
7562 var->n_var_parts = 1;
7563 var->onepart = onepart;
7564 var->in_changed_variables = false;
7565 if (var->onepart)
7566 VAR_LOC_1PAUX (var) = NULL;
7567 else
7568 VAR_PART_OFFSET (var, 0) = offset;
7569 var->var_part[0].loc_chain = NULL;
7570 var->var_part[0].cur_loc = NULL;
7571 *slot = var;
7572 pos = 0;
7573 nextp = &var->var_part[0].loc_chain;
7575 else if (onepart)
7577 int r = -1, c = 0;
7579 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7581 pos = 0;
7583 if (GET_CODE (loc) == VALUE)
7585 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7586 nextp = &node->next)
7587 if (GET_CODE (node->loc) == VALUE)
7589 if (node->loc == loc)
7591 r = 0;
7592 break;
7594 if (canon_value_cmp (node->loc, loc))
7595 c++;
7596 else
7598 r = 1;
7599 break;
7602 else if (REG_P (node->loc) || MEM_P (node->loc))
7603 c++;
7604 else
7606 r = 1;
7607 break;
7610 else if (REG_P (loc))
7612 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7613 nextp = &node->next)
7614 if (REG_P (node->loc))
7616 if (REGNO (node->loc) < REGNO (loc))
7617 c++;
7618 else
7620 if (REGNO (node->loc) == REGNO (loc))
7621 r = 0;
7622 else
7623 r = 1;
7624 break;
7627 else
7629 r = 1;
7630 break;
7633 else if (MEM_P (loc))
7635 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7636 nextp = &node->next)
7637 if (REG_P (node->loc))
7638 c++;
7639 else if (MEM_P (node->loc))
7641 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7642 break;
7643 else
7644 c++;
7646 else
7648 r = 1;
7649 break;
7652 else
7653 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7654 nextp = &node->next)
7655 if ((r = loc_cmp (node->loc, loc)) >= 0)
7656 break;
7657 else
7658 c++;
7660 if (r == 0)
7661 return slot;
7663 if (shared_var_p (var, set->vars))
7665 slot = unshare_variable (set, slot, var, initialized);
7666 var = *slot;
7667 for (nextp = &var->var_part[0].loc_chain; c;
7668 nextp = &(*nextp)->next)
7669 c--;
7670 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7673 else
7675 int inspos = 0;
7677 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7679 pos = find_variable_location_part (var, offset, &inspos);
7681 if (pos >= 0)
7683 node = var->var_part[pos].loc_chain;
7685 if (node
7686 && ((REG_P (node->loc) && REG_P (loc)
7687 && REGNO (node->loc) == REGNO (loc))
7688 || rtx_equal_p (node->loc, loc)))
7690 /* LOC is in the beginning of the chain so we have nothing
7691 to do. */
7692 if (node->init < initialized)
7693 node->init = initialized;
7694 if (set_src != NULL)
7695 node->set_src = set_src;
7697 return slot;
7699 else
7701 /* We have to make a copy of a shared variable. */
7702 if (shared_var_p (var, set->vars))
7704 slot = unshare_variable (set, slot, var, initialized);
7705 var = *slot;
7709 else
7711 /* We have not found the location part, new one will be created. */
7713 /* We have to make a copy of the shared variable. */
7714 if (shared_var_p (var, set->vars))
7716 slot = unshare_variable (set, slot, var, initialized);
7717 var = *slot;
7720 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7721 thus there are at most MAX_VAR_PARTS different offsets. */
7722 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7723 && (!var->n_var_parts || !onepart));
7725 /* We have to move the elements of array starting at index
7726 inspos to the next position. */
7727 for (pos = var->n_var_parts; pos > inspos; pos--)
7728 var->var_part[pos] = var->var_part[pos - 1];
7730 var->n_var_parts++;
7731 gcc_checking_assert (!onepart);
7732 VAR_PART_OFFSET (var, pos) = offset;
7733 var->var_part[pos].loc_chain = NULL;
7734 var->var_part[pos].cur_loc = NULL;
7737 /* Delete the location from the list. */
7738 nextp = &var->var_part[pos].loc_chain;
7739 for (node = var->var_part[pos].loc_chain; node; node = next)
7741 next = node->next;
7742 if ((REG_P (node->loc) && REG_P (loc)
7743 && REGNO (node->loc) == REGNO (loc))
7744 || rtx_equal_p (node->loc, loc))
7746 /* Save these values, to assign to the new node, before
7747 deleting this one. */
7748 if (node->init > initialized)
7749 initialized = node->init;
7750 if (node->set_src != NULL && set_src == NULL)
7751 set_src = node->set_src;
7752 if (var->var_part[pos].cur_loc == node->loc)
7753 var->var_part[pos].cur_loc = NULL;
7754 pool_free (loc_chain_pool, node);
7755 *nextp = next;
7756 break;
7758 else
7759 nextp = &node->next;
7762 nextp = &var->var_part[pos].loc_chain;
7765 /* Add the location to the beginning. */
7766 node = (location_chain) pool_alloc (loc_chain_pool);
7767 node->loc = loc;
7768 node->init = initialized;
7769 node->set_src = set_src;
7770 node->next = *nextp;
7771 *nextp = node;
7773 /* If no location was emitted do so. */
7774 if (var->var_part[pos].cur_loc == NULL)
7775 variable_was_changed (var, set);
7777 return slot;
7780 /* Set the part of variable's location in the dataflow set SET. The
7781 variable part is specified by variable's declaration in DV and
7782 offset OFFSET and the part's location by LOC. IOPT should be
7783 NO_INSERT if the variable is known to be in SET already and the
7784 variable hash table must not be resized, and INSERT otherwise. */
7786 static void
7787 set_variable_part (dataflow_set *set, rtx loc,
7788 decl_or_value dv, HOST_WIDE_INT offset,
7789 enum var_init_status initialized, rtx set_src,
7790 enum insert_option iopt)
7792 variable_def **slot;
7794 if (iopt == NO_INSERT)
7795 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7796 else
7798 slot = shared_hash_find_slot (set->vars, dv);
7799 if (!slot)
7800 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7802 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7805 /* Remove all recorded register locations for the given variable part
7806 from dataflow set SET, except for those that are identical to loc.
7807 The variable part is specified by variable's declaration or value
7808 DV and offset OFFSET. */
7810 static variable_def **
7811 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7812 HOST_WIDE_INT offset, rtx set_src)
7814 variable var = *slot;
7815 int pos = find_variable_location_part (var, offset, NULL);
7817 if (pos >= 0)
7819 location_chain node, next;
7821 /* Remove the register locations from the dataflow set. */
7822 next = var->var_part[pos].loc_chain;
7823 for (node = next; node; node = next)
7825 next = node->next;
7826 if (node->loc != loc
7827 && (!flag_var_tracking_uninit
7828 || !set_src
7829 || MEM_P (set_src)
7830 || !rtx_equal_p (set_src, node->set_src)))
7832 if (REG_P (node->loc))
7834 attrs anode, anext;
7835 attrs *anextp;
7837 /* Remove the variable part from the register's
7838 list, but preserve any other variable parts
7839 that might be regarded as live in that same
7840 register. */
7841 anextp = &set->regs[REGNO (node->loc)];
7842 for (anode = *anextp; anode; anode = anext)
7844 anext = anode->next;
7845 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7846 && anode->offset == offset)
7848 pool_free (attrs_pool, anode);
7849 *anextp = anext;
7851 else
7852 anextp = &anode->next;
7856 slot = delete_slot_part (set, node->loc, slot, offset);
7861 return slot;
7864 /* Remove all recorded register locations for the given variable part
7865 from dataflow set SET, except for those that are identical to loc.
7866 The variable part is specified by variable's declaration or value
7867 DV and offset OFFSET. */
7869 static void
7870 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7871 HOST_WIDE_INT offset, rtx set_src)
7873 variable_def **slot;
7875 if (!dv_as_opaque (dv)
7876 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7877 return;
7879 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7880 if (!slot)
7881 return;
7883 clobber_slot_part (set, loc, slot, offset, set_src);
7886 /* Delete the part of variable's location from dataflow set SET. The
7887 variable part is specified by its SET->vars slot SLOT and offset
7888 OFFSET and the part's location by LOC. */
7890 static variable_def **
7891 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7892 HOST_WIDE_INT offset)
7894 variable var = *slot;
7895 int pos = find_variable_location_part (var, offset, NULL);
7897 if (pos >= 0)
7899 location_chain node, next;
7900 location_chain *nextp;
7901 bool changed;
7902 rtx cur_loc;
7904 if (shared_var_p (var, set->vars))
7906 /* If the variable contains the location part we have to
7907 make a copy of the variable. */
7908 for (node = var->var_part[pos].loc_chain; node;
7909 node = node->next)
7911 if ((REG_P (node->loc) && REG_P (loc)
7912 && REGNO (node->loc) == REGNO (loc))
7913 || rtx_equal_p (node->loc, loc))
7915 slot = unshare_variable (set, slot, var,
7916 VAR_INIT_STATUS_UNKNOWN);
7917 var = *slot;
7918 break;
7923 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7924 cur_loc = VAR_LOC_FROM (var);
7925 else
7926 cur_loc = var->var_part[pos].cur_loc;
7928 /* Delete the location part. */
7929 changed = false;
7930 nextp = &var->var_part[pos].loc_chain;
7931 for (node = *nextp; node; node = next)
7933 next = node->next;
7934 if ((REG_P (node->loc) && REG_P (loc)
7935 && REGNO (node->loc) == REGNO (loc))
7936 || rtx_equal_p (node->loc, loc))
7938 /* If we have deleted the location which was last emitted
7939 we have to emit new location so add the variable to set
7940 of changed variables. */
7941 if (cur_loc == node->loc)
7943 changed = true;
7944 var->var_part[pos].cur_loc = NULL;
7945 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7946 VAR_LOC_FROM (var) = NULL;
7948 pool_free (loc_chain_pool, node);
7949 *nextp = next;
7950 break;
7952 else
7953 nextp = &node->next;
7956 if (var->var_part[pos].loc_chain == NULL)
7958 changed = true;
7959 var->n_var_parts--;
7960 while (pos < var->n_var_parts)
7962 var->var_part[pos] = var->var_part[pos + 1];
7963 pos++;
7966 if (changed)
7967 variable_was_changed (var, set);
7970 return slot;
7973 /* Delete the part of variable's location from dataflow set SET. The
7974 variable part is specified by variable's declaration or value DV
7975 and offset OFFSET and the part's location by LOC. */
7977 static void
7978 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7979 HOST_WIDE_INT offset)
7981 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7982 if (!slot)
7983 return;
7985 delete_slot_part (set, loc, slot, offset);
7989 /* Structure for passing some other parameters to function
7990 vt_expand_loc_callback. */
7991 struct expand_loc_callback_data
7993 /* The variables and values active at this point. */
7994 variable_table_type *vars;
7996 /* Stack of values and debug_exprs under expansion, and their
7997 children. */
7998 auto_vec<rtx, 4> expanding;
8000 /* Stack of values and debug_exprs whose expansion hit recursion
8001 cycles. They will have VALUE_RECURSED_INTO marked when added to
8002 this list. This flag will be cleared if any of its dependencies
8003 resolves to a valid location. So, if the flag remains set at the
8004 end of the search, we know no valid location for this one can
8005 possibly exist. */
8006 auto_vec<rtx, 4> pending;
8008 /* The maximum depth among the sub-expressions under expansion.
8009 Zero indicates no expansion so far. */
8010 expand_depth depth;
8013 /* Allocate the one-part auxiliary data structure for VAR, with enough
8014 room for COUNT dependencies. */
8016 static void
8017 loc_exp_dep_alloc (variable var, int count)
8019 size_t allocsize;
8021 gcc_checking_assert (var->onepart);
8023 /* We can be called with COUNT == 0 to allocate the data structure
8024 without any dependencies, e.g. for the backlinks only. However,
8025 if we are specifying a COUNT, then the dependency list must have
8026 been emptied before. It would be possible to adjust pointers or
8027 force it empty here, but this is better done at an earlier point
8028 in the algorithm, so we instead leave an assertion to catch
8029 errors. */
8030 gcc_checking_assert (!count
8031 || VAR_LOC_DEP_VEC (var) == NULL
8032 || VAR_LOC_DEP_VEC (var)->is_empty ());
8034 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8035 return;
8037 allocsize = offsetof (struct onepart_aux, deps)
8038 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8040 if (VAR_LOC_1PAUX (var))
8042 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8043 VAR_LOC_1PAUX (var), allocsize);
8044 /* If the reallocation moves the onepaux structure, the
8045 back-pointer to BACKLINKS in the first list member will still
8046 point to its old location. Adjust it. */
8047 if (VAR_LOC_DEP_LST (var))
8048 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8050 else
8052 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8053 *VAR_LOC_DEP_LSTP (var) = NULL;
8054 VAR_LOC_FROM (var) = NULL;
8055 VAR_LOC_DEPTH (var).complexity = 0;
8056 VAR_LOC_DEPTH (var).entryvals = 0;
8058 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8061 /* Remove all entries from the vector of active dependencies of VAR,
8062 removing them from the back-links lists too. */
8064 static void
8065 loc_exp_dep_clear (variable var)
8067 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8069 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8070 if (led->next)
8071 led->next->pprev = led->pprev;
8072 if (led->pprev)
8073 *led->pprev = led->next;
8074 VAR_LOC_DEP_VEC (var)->pop ();
8078 /* Insert an active dependency from VAR on X to the vector of
8079 dependencies, and add the corresponding back-link to X's list of
8080 back-links in VARS. */
8082 static void
8083 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8085 decl_or_value dv;
8086 variable xvar;
8087 loc_exp_dep *led;
8089 dv = dv_from_rtx (x);
8091 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8092 an additional look up? */
8093 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8095 if (!xvar)
8097 xvar = variable_from_dropped (dv, NO_INSERT);
8098 gcc_checking_assert (xvar);
8101 /* No point in adding the same backlink more than once. This may
8102 arise if say the same value appears in two complex expressions in
8103 the same loc_list, or even more than once in a single
8104 expression. */
8105 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8106 return;
8108 if (var->onepart == NOT_ONEPART)
8109 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8110 else
8112 loc_exp_dep empty;
8113 memset (&empty, 0, sizeof (empty));
8114 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8115 led = &VAR_LOC_DEP_VEC (var)->last ();
8117 led->dv = var->dv;
8118 led->value = x;
8120 loc_exp_dep_alloc (xvar, 0);
8121 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8122 led->next = *led->pprev;
8123 if (led->next)
8124 led->next->pprev = &led->next;
8125 *led->pprev = led;
8128 /* Create active dependencies of VAR on COUNT values starting at
8129 VALUE, and corresponding back-links to the entries in VARS. Return
8130 true if we found any pending-recursion results. */
8132 static bool
8133 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8134 variable_table_type *vars)
8136 bool pending_recursion = false;
8138 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8139 || VAR_LOC_DEP_VEC (var)->is_empty ());
8141 /* Set up all dependencies from last_child (as set up at the end of
8142 the loop above) to the end. */
8143 loc_exp_dep_alloc (var, count);
8145 while (count--)
8147 rtx x = *value++;
8149 if (!pending_recursion)
8150 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8152 loc_exp_insert_dep (var, x, vars);
8155 return pending_recursion;
8158 /* Notify the back-links of IVAR that are pending recursion that we
8159 have found a non-NIL value for it, so they are cleared for another
8160 attempt to compute a current location. */
8162 static void
8163 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8165 loc_exp_dep *led, *next;
8167 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8169 decl_or_value dv = led->dv;
8170 variable var;
8172 next = led->next;
8174 if (dv_is_value_p (dv))
8176 rtx value = dv_as_value (dv);
8178 /* If we have already resolved it, leave it alone. */
8179 if (!VALUE_RECURSED_INTO (value))
8180 continue;
8182 /* Check that VALUE_RECURSED_INTO, true from the test above,
8183 implies NO_LOC_P. */
8184 gcc_checking_assert (NO_LOC_P (value));
8186 /* We won't notify variables that are being expanded,
8187 because their dependency list is cleared before
8188 recursing. */
8189 NO_LOC_P (value) = false;
8190 VALUE_RECURSED_INTO (value) = false;
8192 gcc_checking_assert (dv_changed_p (dv));
8194 else
8196 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8197 if (!dv_changed_p (dv))
8198 continue;
8201 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8203 if (!var)
8204 var = variable_from_dropped (dv, NO_INSERT);
8206 if (var)
8207 notify_dependents_of_resolved_value (var, vars);
8209 if (next)
8210 next->pprev = led->pprev;
8211 if (led->pprev)
8212 *led->pprev = next;
8213 led->next = NULL;
8214 led->pprev = NULL;
8218 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8219 int max_depth, void *data);
8221 /* Return the combined depth, when one sub-expression evaluated to
8222 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8224 static inline expand_depth
8225 update_depth (expand_depth saved_depth, expand_depth best_depth)
8227 /* If we didn't find anything, stick with what we had. */
8228 if (!best_depth.complexity)
8229 return saved_depth;
8231 /* If we found hadn't found anything, use the depth of the current
8232 expression. Do NOT add one extra level, we want to compute the
8233 maximum depth among sub-expressions. We'll increment it later,
8234 if appropriate. */
8235 if (!saved_depth.complexity)
8236 return best_depth;
8238 /* Combine the entryval count so that regardless of which one we
8239 return, the entryval count is accurate. */
8240 best_depth.entryvals = saved_depth.entryvals
8241 = best_depth.entryvals + saved_depth.entryvals;
8243 if (saved_depth.complexity < best_depth.complexity)
8244 return best_depth;
8245 else
8246 return saved_depth;
8249 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8250 DATA for cselib expand callback. If PENDRECP is given, indicate in
8251 it whether any sub-expression couldn't be fully evaluated because
8252 it is pending recursion resolution. */
8254 static inline rtx
8255 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8257 struct expand_loc_callback_data *elcd
8258 = (struct expand_loc_callback_data *) data;
8259 location_chain loc, next;
8260 rtx result = NULL;
8261 int first_child, result_first_child, last_child;
8262 bool pending_recursion;
8263 rtx loc_from = NULL;
8264 struct elt_loc_list *cloc = NULL;
8265 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8266 int wanted_entryvals, found_entryvals = 0;
8268 /* Clear all backlinks pointing at this, so that we're not notified
8269 while we're active. */
8270 loc_exp_dep_clear (var);
8272 retry:
8273 if (var->onepart == ONEPART_VALUE)
8275 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8277 gcc_checking_assert (cselib_preserved_value_p (val));
8279 cloc = val->locs;
8282 first_child = result_first_child = last_child
8283 = elcd->expanding.length ();
8285 wanted_entryvals = found_entryvals;
8287 /* Attempt to expand each available location in turn. */
8288 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8289 loc || cloc; loc = next)
8291 result_first_child = last_child;
8293 if (!loc)
8295 loc_from = cloc->loc;
8296 next = loc;
8297 cloc = cloc->next;
8298 if (unsuitable_loc (loc_from))
8299 continue;
8301 else
8303 loc_from = loc->loc;
8304 next = loc->next;
8307 gcc_checking_assert (!unsuitable_loc (loc_from));
8309 elcd->depth.complexity = elcd->depth.entryvals = 0;
8310 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8311 vt_expand_loc_callback, data);
8312 last_child = elcd->expanding.length ();
8314 if (result)
8316 depth = elcd->depth;
8318 gcc_checking_assert (depth.complexity
8319 || result_first_child == last_child);
8321 if (last_child - result_first_child != 1)
8323 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8324 depth.entryvals++;
8325 depth.complexity++;
8328 if (depth.complexity <= EXPR_USE_DEPTH)
8330 if (depth.entryvals <= wanted_entryvals)
8331 break;
8332 else if (!found_entryvals || depth.entryvals < found_entryvals)
8333 found_entryvals = depth.entryvals;
8336 result = NULL;
8339 /* Set it up in case we leave the loop. */
8340 depth.complexity = depth.entryvals = 0;
8341 loc_from = NULL;
8342 result_first_child = first_child;
8345 if (!loc_from && wanted_entryvals < found_entryvals)
8347 /* We found entries with ENTRY_VALUEs and skipped them. Since
8348 we could not find any expansions without ENTRY_VALUEs, but we
8349 found at least one with them, go back and get an entry with
8350 the minimum number ENTRY_VALUE count that we found. We could
8351 avoid looping, but since each sub-loc is already resolved,
8352 the re-expansion should be trivial. ??? Should we record all
8353 attempted locs as dependencies, so that we retry the
8354 expansion should any of them change, in the hope it can give
8355 us a new entry without an ENTRY_VALUE? */
8356 elcd->expanding.truncate (first_child);
8357 goto retry;
8360 /* Register all encountered dependencies as active. */
8361 pending_recursion = loc_exp_dep_set
8362 (var, result, elcd->expanding.address () + result_first_child,
8363 last_child - result_first_child, elcd->vars);
8365 elcd->expanding.truncate (first_child);
8367 /* Record where the expansion came from. */
8368 gcc_checking_assert (!result || !pending_recursion);
8369 VAR_LOC_FROM (var) = loc_from;
8370 VAR_LOC_DEPTH (var) = depth;
8372 gcc_checking_assert (!depth.complexity == !result);
8374 elcd->depth = update_depth (saved_depth, depth);
8376 /* Indicate whether any of the dependencies are pending recursion
8377 resolution. */
8378 if (pendrecp)
8379 *pendrecp = pending_recursion;
8381 if (!pendrecp || !pending_recursion)
8382 var->var_part[0].cur_loc = result;
8384 return result;
8387 /* Callback for cselib_expand_value, that looks for expressions
8388 holding the value in the var-tracking hash tables. Return X for
8389 standard processing, anything else is to be used as-is. */
8391 static rtx
8392 vt_expand_loc_callback (rtx x, bitmap regs,
8393 int max_depth ATTRIBUTE_UNUSED,
8394 void *data)
8396 struct expand_loc_callback_data *elcd
8397 = (struct expand_loc_callback_data *) data;
8398 decl_or_value dv;
8399 variable var;
8400 rtx result, subreg;
8401 bool pending_recursion = false;
8402 bool from_empty = false;
8404 switch (GET_CODE (x))
8406 case SUBREG:
8407 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8408 EXPR_DEPTH,
8409 vt_expand_loc_callback, data);
8411 if (!subreg)
8412 return NULL;
8414 result = simplify_gen_subreg (GET_MODE (x), subreg,
8415 GET_MODE (SUBREG_REG (x)),
8416 SUBREG_BYTE (x));
8418 /* Invalid SUBREGs are ok in debug info. ??? We could try
8419 alternate expansions for the VALUE as well. */
8420 if (!result)
8421 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8423 return result;
8425 case DEBUG_EXPR:
8426 case VALUE:
8427 dv = dv_from_rtx (x);
8428 break;
8430 default:
8431 return x;
8434 elcd->expanding.safe_push (x);
8436 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8437 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8439 if (NO_LOC_P (x))
8441 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8442 return NULL;
8445 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8447 if (!var)
8449 from_empty = true;
8450 var = variable_from_dropped (dv, INSERT);
8453 gcc_checking_assert (var);
8455 if (!dv_changed_p (dv))
8457 gcc_checking_assert (!NO_LOC_P (x));
8458 gcc_checking_assert (var->var_part[0].cur_loc);
8459 gcc_checking_assert (VAR_LOC_1PAUX (var));
8460 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8462 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8464 return var->var_part[0].cur_loc;
8467 VALUE_RECURSED_INTO (x) = true;
8468 /* This is tentative, but it makes some tests simpler. */
8469 NO_LOC_P (x) = true;
8471 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8473 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8475 if (pending_recursion)
8477 gcc_checking_assert (!result);
8478 elcd->pending.safe_push (x);
8480 else
8482 NO_LOC_P (x) = !result;
8483 VALUE_RECURSED_INTO (x) = false;
8484 set_dv_changed (dv, false);
8486 if (result)
8487 notify_dependents_of_resolved_value (var, elcd->vars);
8490 return result;
8493 /* While expanding variables, we may encounter recursion cycles
8494 because of mutual (possibly indirect) dependencies between two
8495 particular variables (or values), say A and B. If we're trying to
8496 expand A when we get to B, which in turn attempts to expand A, if
8497 we can't find any other expansion for B, we'll add B to this
8498 pending-recursion stack, and tentatively return NULL for its
8499 location. This tentative value will be used for any other
8500 occurrences of B, unless A gets some other location, in which case
8501 it will notify B that it is worth another try at computing a
8502 location for it, and it will use the location computed for A then.
8503 At the end of the expansion, the tentative NULL locations become
8504 final for all members of PENDING that didn't get a notification.
8505 This function performs this finalization of NULL locations. */
8507 static void
8508 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8510 while (!pending->is_empty ())
8512 rtx x = pending->pop ();
8513 decl_or_value dv;
8515 if (!VALUE_RECURSED_INTO (x))
8516 continue;
8518 gcc_checking_assert (NO_LOC_P (x));
8519 VALUE_RECURSED_INTO (x) = false;
8520 dv = dv_from_rtx (x);
8521 gcc_checking_assert (dv_changed_p (dv));
8522 set_dv_changed (dv, false);
8526 /* Initialize expand_loc_callback_data D with variable hash table V.
8527 It must be a macro because of alloca (vec stack). */
8528 #define INIT_ELCD(d, v) \
8529 do \
8531 (d).vars = (v); \
8532 (d).depth.complexity = (d).depth.entryvals = 0; \
8534 while (0)
8535 /* Finalize expand_loc_callback_data D, resolved to location L. */
8536 #define FINI_ELCD(d, l) \
8537 do \
8539 resolve_expansions_pending_recursion (&(d).pending); \
8540 (d).pending.release (); \
8541 (d).expanding.release (); \
8543 if ((l) && MEM_P (l)) \
8544 (l) = targetm.delegitimize_address (l); \
8546 while (0)
8548 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8549 equivalences in VARS, updating their CUR_LOCs in the process. */
8551 static rtx
8552 vt_expand_loc (rtx loc, variable_table_type *vars)
8554 struct expand_loc_callback_data data;
8555 rtx result;
8557 if (!MAY_HAVE_DEBUG_INSNS)
8558 return loc;
8560 INIT_ELCD (data, vars);
8562 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8563 vt_expand_loc_callback, &data);
8565 FINI_ELCD (data, result);
8567 return result;
8570 /* Expand the one-part VARiable to a location, using the equivalences
8571 in VARS, updating their CUR_LOCs in the process. */
8573 static rtx
8574 vt_expand_1pvar (variable var, variable_table_type *vars)
8576 struct expand_loc_callback_data data;
8577 rtx loc;
8579 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8581 if (!dv_changed_p (var->dv))
8582 return var->var_part[0].cur_loc;
8584 INIT_ELCD (data, vars);
8586 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8588 gcc_checking_assert (data.expanding.is_empty ());
8590 FINI_ELCD (data, loc);
8592 return loc;
8595 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8596 additional parameters: WHERE specifies whether the note shall be emitted
8597 before or after instruction INSN. */
8600 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8602 variable var = *varp;
8603 rtx_insn *insn = data->insn;
8604 enum emit_note_where where = data->where;
8605 variable_table_type *vars = data->vars;
8606 rtx_note *note;
8607 rtx note_vl;
8608 int i, j, n_var_parts;
8609 bool complete;
8610 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8611 HOST_WIDE_INT last_limit;
8612 tree type_size_unit;
8613 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8614 rtx loc[MAX_VAR_PARTS];
8615 tree decl;
8616 location_chain lc;
8618 gcc_checking_assert (var->onepart == NOT_ONEPART
8619 || var->onepart == ONEPART_VDECL);
8621 decl = dv_as_decl (var->dv);
8623 complete = true;
8624 last_limit = 0;
8625 n_var_parts = 0;
8626 if (!var->onepart)
8627 for (i = 0; i < var->n_var_parts; i++)
8628 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8629 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8630 for (i = 0; i < var->n_var_parts; i++)
8632 machine_mode mode, wider_mode;
8633 rtx loc2;
8634 HOST_WIDE_INT offset;
8636 if (i == 0 && var->onepart)
8638 gcc_checking_assert (var->n_var_parts == 1);
8639 offset = 0;
8640 initialized = VAR_INIT_STATUS_INITIALIZED;
8641 loc2 = vt_expand_1pvar (var, vars);
8643 else
8645 if (last_limit < VAR_PART_OFFSET (var, i))
8647 complete = false;
8648 break;
8650 else if (last_limit > VAR_PART_OFFSET (var, i))
8651 continue;
8652 offset = VAR_PART_OFFSET (var, i);
8653 loc2 = var->var_part[i].cur_loc;
8654 if (loc2 && GET_CODE (loc2) == MEM
8655 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8657 rtx depval = XEXP (loc2, 0);
8659 loc2 = vt_expand_loc (loc2, vars);
8661 if (loc2)
8662 loc_exp_insert_dep (var, depval, vars);
8664 if (!loc2)
8666 complete = false;
8667 continue;
8669 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8670 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8671 if (var->var_part[i].cur_loc == lc->loc)
8673 initialized = lc->init;
8674 break;
8676 gcc_assert (lc);
8679 offsets[n_var_parts] = offset;
8680 if (!loc2)
8682 complete = false;
8683 continue;
8685 loc[n_var_parts] = loc2;
8686 mode = GET_MODE (var->var_part[i].cur_loc);
8687 if (mode == VOIDmode && var->onepart)
8688 mode = DECL_MODE (decl);
8689 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8691 /* Attempt to merge adjacent registers or memory. */
8692 wider_mode = GET_MODE_WIDER_MODE (mode);
8693 for (j = i + 1; j < var->n_var_parts; j++)
8694 if (last_limit <= VAR_PART_OFFSET (var, j))
8695 break;
8696 if (j < var->n_var_parts
8697 && wider_mode != VOIDmode
8698 && var->var_part[j].cur_loc
8699 && mode == GET_MODE (var->var_part[j].cur_loc)
8700 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8701 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8702 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8703 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8705 rtx new_loc = NULL;
8707 if (REG_P (loc[n_var_parts])
8708 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8709 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8710 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8711 == REGNO (loc2))
8713 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8714 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8715 mode, 0);
8716 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8717 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8718 if (new_loc)
8720 if (!REG_P (new_loc)
8721 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8722 new_loc = NULL;
8723 else
8724 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8727 else if (MEM_P (loc[n_var_parts])
8728 && GET_CODE (XEXP (loc2, 0)) == PLUS
8729 && REG_P (XEXP (XEXP (loc2, 0), 0))
8730 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8732 if ((REG_P (XEXP (loc[n_var_parts], 0))
8733 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8734 XEXP (XEXP (loc2, 0), 0))
8735 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8736 == GET_MODE_SIZE (mode))
8737 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8738 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8739 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8740 XEXP (XEXP (loc2, 0), 0))
8741 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8742 + GET_MODE_SIZE (mode)
8743 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8744 new_loc = adjust_address_nv (loc[n_var_parts],
8745 wider_mode, 0);
8748 if (new_loc)
8750 loc[n_var_parts] = new_loc;
8751 mode = wider_mode;
8752 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8753 i = j;
8756 ++n_var_parts;
8758 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8759 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8760 complete = false;
8762 if (! flag_var_tracking_uninit)
8763 initialized = VAR_INIT_STATUS_INITIALIZED;
8765 note_vl = NULL_RTX;
8766 if (!complete)
8767 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8768 else if (n_var_parts == 1)
8770 rtx expr_list;
8772 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8773 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8774 else
8775 expr_list = loc[0];
8777 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8779 else if (n_var_parts)
8781 rtx parallel;
8783 for (i = 0; i < n_var_parts; i++)
8784 loc[i]
8785 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8787 parallel = gen_rtx_PARALLEL (VOIDmode,
8788 gen_rtvec_v (n_var_parts, loc));
8789 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8790 parallel, initialized);
8793 if (where != EMIT_NOTE_BEFORE_INSN)
8795 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8796 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8797 NOTE_DURING_CALL_P (note) = true;
8799 else
8801 /* Make sure that the call related notes come first. */
8802 while (NEXT_INSN (insn)
8803 && NOTE_P (insn)
8804 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8805 && NOTE_DURING_CALL_P (insn))
8806 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8807 insn = NEXT_INSN (insn);
8808 if (NOTE_P (insn)
8809 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8810 && NOTE_DURING_CALL_P (insn))
8811 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8812 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8813 else
8814 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8816 NOTE_VAR_LOCATION (note) = note_vl;
8818 set_dv_changed (var->dv, false);
8819 gcc_assert (var->in_changed_variables);
8820 var->in_changed_variables = false;
8821 changed_variables->clear_slot (varp);
8823 /* Continue traversing the hash table. */
8824 return 1;
8827 /* While traversing changed_variables, push onto DATA (a stack of RTX
8828 values) entries that aren't user variables. */
8831 var_track_values_to_stack (variable_def **slot,
8832 vec<rtx, va_heap> *changed_values_stack)
8834 variable var = *slot;
8836 if (var->onepart == ONEPART_VALUE)
8837 changed_values_stack->safe_push (dv_as_value (var->dv));
8838 else if (var->onepart == ONEPART_DEXPR)
8839 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8841 return 1;
8844 /* Remove from changed_variables the entry whose DV corresponds to
8845 value or debug_expr VAL. */
8846 static void
8847 remove_value_from_changed_variables (rtx val)
8849 decl_or_value dv = dv_from_rtx (val);
8850 variable_def **slot;
8851 variable var;
8853 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8854 NO_INSERT);
8855 var = *slot;
8856 var->in_changed_variables = false;
8857 changed_variables->clear_slot (slot);
8860 /* If VAL (a value or debug_expr) has backlinks to variables actively
8861 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8862 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8863 have dependencies of their own to notify. */
8865 static void
8866 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8867 vec<rtx, va_heap> *changed_values_stack)
8869 variable_def **slot;
8870 variable var;
8871 loc_exp_dep *led;
8872 decl_or_value dv = dv_from_rtx (val);
8874 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8875 NO_INSERT);
8876 if (!slot)
8877 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8878 if (!slot)
8879 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8880 NO_INSERT);
8881 var = *slot;
8883 while ((led = VAR_LOC_DEP_LST (var)))
8885 decl_or_value ldv = led->dv;
8886 variable ivar;
8888 /* Deactivate and remove the backlink, as it was “used up”. It
8889 makes no sense to attempt to notify the same entity again:
8890 either it will be recomputed and re-register an active
8891 dependency, or it will still have the changed mark. */
8892 if (led->next)
8893 led->next->pprev = led->pprev;
8894 if (led->pprev)
8895 *led->pprev = led->next;
8896 led->next = NULL;
8897 led->pprev = NULL;
8899 if (dv_changed_p (ldv))
8900 continue;
8902 switch (dv_onepart_p (ldv))
8904 case ONEPART_VALUE:
8905 case ONEPART_DEXPR:
8906 set_dv_changed (ldv, true);
8907 changed_values_stack->safe_push (dv_as_rtx (ldv));
8908 break;
8910 case ONEPART_VDECL:
8911 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8912 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8913 variable_was_changed (ivar, NULL);
8914 break;
8916 case NOT_ONEPART:
8917 pool_free (loc_exp_dep_pool, led);
8918 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8919 if (ivar)
8921 int i = ivar->n_var_parts;
8922 while (i--)
8924 rtx loc = ivar->var_part[i].cur_loc;
8926 if (loc && GET_CODE (loc) == MEM
8927 && XEXP (loc, 0) == val)
8929 variable_was_changed (ivar, NULL);
8930 break;
8934 break;
8936 default:
8937 gcc_unreachable ();
8942 /* Take out of changed_variables any entries that don't refer to use
8943 variables. Back-propagate change notifications from values and
8944 debug_exprs to their active dependencies in HTAB or in
8945 CHANGED_VARIABLES. */
8947 static void
8948 process_changed_values (variable_table_type *htab)
8950 int i, n;
8951 rtx val;
8952 auto_vec<rtx, 20> changed_values_stack;
8954 /* Move values from changed_variables to changed_values_stack. */
8955 changed_variables
8956 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8957 (&changed_values_stack);
8959 /* Back-propagate change notifications in values while popping
8960 them from the stack. */
8961 for (n = i = changed_values_stack.length ();
8962 i > 0; i = changed_values_stack.length ())
8964 val = changed_values_stack.pop ();
8965 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8967 /* This condition will hold when visiting each of the entries
8968 originally in changed_variables. We can't remove them
8969 earlier because this could drop the backlinks before we got a
8970 chance to use them. */
8971 if (i == n)
8973 remove_value_from_changed_variables (val);
8974 n--;
8979 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8980 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8981 the notes shall be emitted before of after instruction INSN. */
8983 static void
8984 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8985 shared_hash vars)
8987 emit_note_data data;
8988 variable_table_type *htab = shared_hash_htab (vars);
8990 if (!changed_variables->elements ())
8991 return;
8993 if (MAY_HAVE_DEBUG_INSNS)
8994 process_changed_values (htab);
8996 data.insn = insn;
8997 data.where = where;
8998 data.vars = htab;
9000 changed_variables
9001 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9004 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9005 same variable in hash table DATA or is not there at all. */
9008 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
9010 variable old_var, new_var;
9012 old_var = *slot;
9013 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9015 if (!new_var)
9017 /* Variable has disappeared. */
9018 variable empty_var = NULL;
9020 if (old_var->onepart == ONEPART_VALUE
9021 || old_var->onepart == ONEPART_DEXPR)
9023 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9024 if (empty_var)
9026 gcc_checking_assert (!empty_var->in_changed_variables);
9027 if (!VAR_LOC_1PAUX (old_var))
9029 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9030 VAR_LOC_1PAUX (empty_var) = NULL;
9032 else
9033 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9037 if (!empty_var)
9039 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9040 empty_var->dv = old_var->dv;
9041 empty_var->refcount = 0;
9042 empty_var->n_var_parts = 0;
9043 empty_var->onepart = old_var->onepart;
9044 empty_var->in_changed_variables = false;
9047 if (empty_var->onepart)
9049 /* Propagate the auxiliary data to (ultimately)
9050 changed_variables. */
9051 empty_var->var_part[0].loc_chain = NULL;
9052 empty_var->var_part[0].cur_loc = NULL;
9053 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9054 VAR_LOC_1PAUX (old_var) = NULL;
9056 variable_was_changed (empty_var, NULL);
9057 /* Continue traversing the hash table. */
9058 return 1;
9060 /* Update cur_loc and one-part auxiliary data, before new_var goes
9061 through variable_was_changed. */
9062 if (old_var != new_var && new_var->onepart)
9064 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9065 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9066 VAR_LOC_1PAUX (old_var) = NULL;
9067 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9069 if (variable_different_p (old_var, new_var))
9070 variable_was_changed (new_var, NULL);
9072 /* Continue traversing the hash table. */
9073 return 1;
9076 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9077 table DATA. */
9080 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9082 variable old_var, new_var;
9084 new_var = *slot;
9085 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9086 if (!old_var)
9088 int i;
9089 for (i = 0; i < new_var->n_var_parts; i++)
9090 new_var->var_part[i].cur_loc = NULL;
9091 variable_was_changed (new_var, NULL);
9094 /* Continue traversing the hash table. */
9095 return 1;
9098 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9099 NEW_SET. */
9101 static void
9102 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9103 dataflow_set *new_set)
9105 shared_hash_htab (old_set->vars)
9106 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9107 (shared_hash_htab (new_set->vars));
9108 shared_hash_htab (new_set->vars)
9109 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9110 (shared_hash_htab (old_set->vars));
9111 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9114 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9116 static rtx_insn *
9117 next_non_note_insn_var_location (rtx_insn *insn)
9119 while (insn)
9121 insn = NEXT_INSN (insn);
9122 if (insn == 0
9123 || !NOTE_P (insn)
9124 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9125 break;
9128 return insn;
9131 /* Emit the notes for changes of location parts in the basic block BB. */
9133 static void
9134 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9136 unsigned int i;
9137 micro_operation *mo;
9139 dataflow_set_clear (set);
9140 dataflow_set_copy (set, &VTI (bb)->in);
9142 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9144 rtx_insn *insn = mo->insn;
9145 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9147 switch (mo->type)
9149 case MO_CALL:
9150 dataflow_set_clear_at_call (set);
9151 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9153 rtx arguments = mo->u.loc, *p = &arguments;
9154 rtx_note *note;
9155 while (*p)
9157 XEXP (XEXP (*p, 0), 1)
9158 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9159 shared_hash_htab (set->vars));
9160 /* If expansion is successful, keep it in the list. */
9161 if (XEXP (XEXP (*p, 0), 1))
9162 p = &XEXP (*p, 1);
9163 /* Otherwise, if the following item is data_value for it,
9164 drop it too too. */
9165 else if (XEXP (*p, 1)
9166 && REG_P (XEXP (XEXP (*p, 0), 0))
9167 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9168 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9170 && REGNO (XEXP (XEXP (*p, 0), 0))
9171 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9172 0), 0)))
9173 *p = XEXP (XEXP (*p, 1), 1);
9174 /* Just drop this item. */
9175 else
9176 *p = XEXP (*p, 1);
9178 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9179 NOTE_VAR_LOCATION (note) = arguments;
9181 break;
9183 case MO_USE:
9185 rtx loc = mo->u.loc;
9187 if (REG_P (loc))
9188 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9189 else
9190 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9192 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9194 break;
9196 case MO_VAL_LOC:
9198 rtx loc = mo->u.loc;
9199 rtx val, vloc;
9200 tree var;
9202 if (GET_CODE (loc) == CONCAT)
9204 val = XEXP (loc, 0);
9205 vloc = XEXP (loc, 1);
9207 else
9209 val = NULL_RTX;
9210 vloc = loc;
9213 var = PAT_VAR_LOCATION_DECL (vloc);
9215 clobber_variable_part (set, NULL_RTX,
9216 dv_from_decl (var), 0, NULL_RTX);
9217 if (val)
9219 if (VAL_NEEDS_RESOLUTION (loc))
9220 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9221 set_variable_part (set, val, dv_from_decl (var), 0,
9222 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9223 INSERT);
9225 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9226 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9227 dv_from_decl (var), 0,
9228 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9229 INSERT);
9231 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9233 break;
9235 case MO_VAL_USE:
9237 rtx loc = mo->u.loc;
9238 rtx val, vloc, uloc;
9240 vloc = uloc = XEXP (loc, 1);
9241 val = XEXP (loc, 0);
9243 if (GET_CODE (val) == CONCAT)
9245 uloc = XEXP (val, 1);
9246 val = XEXP (val, 0);
9249 if (VAL_NEEDS_RESOLUTION (loc))
9250 val_resolve (set, val, vloc, insn);
9251 else
9252 val_store (set, val, uloc, insn, false);
9254 if (VAL_HOLDS_TRACK_EXPR (loc))
9256 if (GET_CODE (uloc) == REG)
9257 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9258 NULL);
9259 else if (GET_CODE (uloc) == MEM)
9260 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9261 NULL);
9264 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9266 break;
9268 case MO_VAL_SET:
9270 rtx loc = mo->u.loc;
9271 rtx val, vloc, uloc;
9272 rtx dstv, srcv;
9274 vloc = loc;
9275 uloc = XEXP (vloc, 1);
9276 val = XEXP (vloc, 0);
9277 vloc = uloc;
9279 if (GET_CODE (uloc) == SET)
9281 dstv = SET_DEST (uloc);
9282 srcv = SET_SRC (uloc);
9284 else
9286 dstv = uloc;
9287 srcv = NULL;
9290 if (GET_CODE (val) == CONCAT)
9292 dstv = vloc = XEXP (val, 1);
9293 val = XEXP (val, 0);
9296 if (GET_CODE (vloc) == SET)
9298 srcv = SET_SRC (vloc);
9300 gcc_assert (val != srcv);
9301 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9303 dstv = vloc = SET_DEST (vloc);
9305 if (VAL_NEEDS_RESOLUTION (loc))
9306 val_resolve (set, val, srcv, insn);
9308 else if (VAL_NEEDS_RESOLUTION (loc))
9310 gcc_assert (GET_CODE (uloc) == SET
9311 && GET_CODE (SET_SRC (uloc)) == REG);
9312 val_resolve (set, val, SET_SRC (uloc), insn);
9315 if (VAL_HOLDS_TRACK_EXPR (loc))
9317 if (VAL_EXPR_IS_CLOBBERED (loc))
9319 if (REG_P (uloc))
9320 var_reg_delete (set, uloc, true);
9321 else if (MEM_P (uloc))
9323 gcc_assert (MEM_P (dstv));
9324 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9325 var_mem_delete (set, dstv, true);
9328 else
9330 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9331 rtx src = NULL, dst = uloc;
9332 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9334 if (GET_CODE (uloc) == SET)
9336 src = SET_SRC (uloc);
9337 dst = SET_DEST (uloc);
9340 if (copied_p)
9342 status = find_src_status (set, src);
9344 src = find_src_set_src (set, src);
9347 if (REG_P (dst))
9348 var_reg_delete_and_set (set, dst, !copied_p,
9349 status, srcv);
9350 else if (MEM_P (dst))
9352 gcc_assert (MEM_P (dstv));
9353 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9354 var_mem_delete_and_set (set, dstv, !copied_p,
9355 status, srcv);
9359 else if (REG_P (uloc))
9360 var_regno_delete (set, REGNO (uloc));
9361 else if (MEM_P (uloc))
9363 gcc_checking_assert (GET_CODE (vloc) == MEM);
9364 gcc_checking_assert (vloc == dstv);
9365 if (vloc != dstv)
9366 clobber_overlapping_mems (set, vloc);
9369 val_store (set, val, dstv, insn, true);
9371 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9372 set->vars);
9374 break;
9376 case MO_SET:
9378 rtx loc = mo->u.loc;
9379 rtx set_src = NULL;
9381 if (GET_CODE (loc) == SET)
9383 set_src = SET_SRC (loc);
9384 loc = SET_DEST (loc);
9387 if (REG_P (loc))
9388 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9389 set_src);
9390 else
9391 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9392 set_src);
9394 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9395 set->vars);
9397 break;
9399 case MO_COPY:
9401 rtx loc = mo->u.loc;
9402 enum var_init_status src_status;
9403 rtx set_src = NULL;
9405 if (GET_CODE (loc) == SET)
9407 set_src = SET_SRC (loc);
9408 loc = SET_DEST (loc);
9411 src_status = find_src_status (set, set_src);
9412 set_src = find_src_set_src (set, set_src);
9414 if (REG_P (loc))
9415 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9416 else
9417 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9419 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9420 set->vars);
9422 break;
9424 case MO_USE_NO_VAR:
9426 rtx loc = mo->u.loc;
9428 if (REG_P (loc))
9429 var_reg_delete (set, loc, false);
9430 else
9431 var_mem_delete (set, loc, false);
9433 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9435 break;
9437 case MO_CLOBBER:
9439 rtx loc = mo->u.loc;
9441 if (REG_P (loc))
9442 var_reg_delete (set, loc, true);
9443 else
9444 var_mem_delete (set, loc, true);
9446 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9447 set->vars);
9449 break;
9451 case MO_ADJUST:
9452 set->stack_adjust += mo->u.adjust;
9453 break;
9458 /* Emit notes for the whole function. */
9460 static void
9461 vt_emit_notes (void)
9463 basic_block bb;
9464 dataflow_set cur;
9466 gcc_assert (!changed_variables->elements ());
9468 /* Free memory occupied by the out hash tables, as they aren't used
9469 anymore. */
9470 FOR_EACH_BB_FN (bb, cfun)
9471 dataflow_set_clear (&VTI (bb)->out);
9473 /* Enable emitting notes by functions (mainly by set_variable_part and
9474 delete_variable_part). */
9475 emit_notes = true;
9477 if (MAY_HAVE_DEBUG_INSNS)
9479 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9480 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9481 sizeof (loc_exp_dep), 64);
9484 dataflow_set_init (&cur);
9486 FOR_EACH_BB_FN (bb, cfun)
9488 /* Emit the notes for changes of variable locations between two
9489 subsequent basic blocks. */
9490 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9492 if (MAY_HAVE_DEBUG_INSNS)
9493 local_get_addr_cache = new hash_map<rtx, rtx>;
9495 /* Emit the notes for the changes in the basic block itself. */
9496 emit_notes_in_bb (bb, &cur);
9498 if (MAY_HAVE_DEBUG_INSNS)
9499 delete local_get_addr_cache;
9500 local_get_addr_cache = NULL;
9502 /* Free memory occupied by the in hash table, we won't need it
9503 again. */
9504 dataflow_set_clear (&VTI (bb)->in);
9506 #ifdef ENABLE_CHECKING
9507 shared_hash_htab (cur.vars)
9508 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9509 (shared_hash_htab (empty_shared_hash));
9510 #endif
9511 dataflow_set_destroy (&cur);
9513 if (MAY_HAVE_DEBUG_INSNS)
9514 delete dropped_values;
9515 dropped_values = NULL;
9517 emit_notes = false;
9520 /* If there is a declaration and offset associated with register/memory RTL
9521 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9523 static bool
9524 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9526 if (REG_P (rtl))
9528 if (REG_ATTRS (rtl))
9530 *declp = REG_EXPR (rtl);
9531 *offsetp = REG_OFFSET (rtl);
9532 return true;
9535 else if (GET_CODE (rtl) == PARALLEL)
9537 tree decl = NULL_TREE;
9538 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9539 int len = XVECLEN (rtl, 0), i;
9541 for (i = 0; i < len; i++)
9543 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9544 if (!REG_P (reg) || !REG_ATTRS (reg))
9545 break;
9546 if (!decl)
9547 decl = REG_EXPR (reg);
9548 if (REG_EXPR (reg) != decl)
9549 break;
9550 if (REG_OFFSET (reg) < offset)
9551 offset = REG_OFFSET (reg);
9554 if (i == len)
9556 *declp = decl;
9557 *offsetp = offset;
9558 return true;
9561 else if (MEM_P (rtl))
9563 if (MEM_ATTRS (rtl))
9565 *declp = MEM_EXPR (rtl);
9566 *offsetp = INT_MEM_OFFSET (rtl);
9567 return true;
9570 return false;
9573 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9574 of VAL. */
9576 static void
9577 record_entry_value (cselib_val *val, rtx rtl)
9579 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9581 ENTRY_VALUE_EXP (ev) = rtl;
9583 cselib_add_permanent_equiv (val, ev, get_insns ());
9586 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9588 static void
9589 vt_add_function_parameter (tree parm)
9591 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9592 rtx incoming = DECL_INCOMING_RTL (parm);
9593 tree decl;
9594 machine_mode mode;
9595 HOST_WIDE_INT offset;
9596 dataflow_set *out;
9597 decl_or_value dv;
9599 if (TREE_CODE (parm) != PARM_DECL)
9600 return;
9602 if (!decl_rtl || !incoming)
9603 return;
9605 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9606 return;
9608 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9609 rewrite the incoming location of parameters passed on the stack
9610 into MEMs based on the argument pointer, so that incoming doesn't
9611 depend on a pseudo. */
9612 if (MEM_P (incoming)
9613 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9614 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9615 && XEXP (XEXP (incoming, 0), 0)
9616 == crtl->args.internal_arg_pointer
9617 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9619 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9620 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9621 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9622 incoming
9623 = replace_equiv_address_nv (incoming,
9624 plus_constant (Pmode,
9625 arg_pointer_rtx, off));
9628 #ifdef HAVE_window_save
9629 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9630 If the target machine has an explicit window save instruction, the
9631 actual entry value is the corresponding OUTGOING_REGNO instead. */
9632 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9634 if (REG_P (incoming)
9635 && HARD_REGISTER_P (incoming)
9636 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9638 parm_reg_t p;
9639 p.incoming = incoming;
9640 incoming
9641 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9642 OUTGOING_REGNO (REGNO (incoming)), 0);
9643 p.outgoing = incoming;
9644 vec_safe_push (windowed_parm_regs, p);
9646 else if (GET_CODE (incoming) == PARALLEL)
9648 rtx outgoing
9649 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9650 int i;
9652 for (i = 0; i < XVECLEN (incoming, 0); i++)
9654 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9655 parm_reg_t p;
9656 p.incoming = reg;
9657 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9658 OUTGOING_REGNO (REGNO (reg)), 0);
9659 p.outgoing = reg;
9660 XVECEXP (outgoing, 0, i)
9661 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9662 XEXP (XVECEXP (incoming, 0, i), 1));
9663 vec_safe_push (windowed_parm_regs, p);
9666 incoming = outgoing;
9668 else if (MEM_P (incoming)
9669 && REG_P (XEXP (incoming, 0))
9670 && HARD_REGISTER_P (XEXP (incoming, 0)))
9672 rtx reg = XEXP (incoming, 0);
9673 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9675 parm_reg_t p;
9676 p.incoming = reg;
9677 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9678 p.outgoing = reg;
9679 vec_safe_push (windowed_parm_regs, p);
9680 incoming = replace_equiv_address_nv (incoming, reg);
9684 #endif
9686 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9688 if (MEM_P (incoming))
9690 /* This means argument is passed by invisible reference. */
9691 offset = 0;
9692 decl = parm;
9694 else
9696 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9697 return;
9698 offset += byte_lowpart_offset (GET_MODE (incoming),
9699 GET_MODE (decl_rtl));
9703 if (!decl)
9704 return;
9706 if (parm != decl)
9708 /* If that DECL_RTL wasn't a pseudo that got spilled to
9709 memory, bail out. Otherwise, the spill slot sharing code
9710 will force the memory to reference spill_slot_decl (%sfp),
9711 so we don't match above. That's ok, the pseudo must have
9712 referenced the entire parameter, so just reset OFFSET. */
9713 if (decl != get_spill_slot_decl (false))
9714 return;
9715 offset = 0;
9718 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9719 return;
9721 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9723 dv = dv_from_decl (parm);
9725 if (target_for_debug_bind (parm)
9726 /* We can't deal with these right now, because this kind of
9727 variable is single-part. ??? We could handle parallels
9728 that describe multiple locations for the same single
9729 value, but ATM we don't. */
9730 && GET_CODE (incoming) != PARALLEL)
9732 cselib_val *val;
9733 rtx lowpart;
9735 /* ??? We shouldn't ever hit this, but it may happen because
9736 arguments passed by invisible reference aren't dealt with
9737 above: incoming-rtl will have Pmode rather than the
9738 expected mode for the type. */
9739 if (offset)
9740 return;
9742 lowpart = var_lowpart (mode, incoming);
9743 if (!lowpart)
9744 return;
9746 val = cselib_lookup_from_insn (lowpart, mode, true,
9747 VOIDmode, get_insns ());
9749 /* ??? Float-typed values in memory are not handled by
9750 cselib. */
9751 if (val)
9753 preserve_value (val);
9754 set_variable_part (out, val->val_rtx, dv, offset,
9755 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9756 dv = dv_from_value (val->val_rtx);
9759 if (MEM_P (incoming))
9761 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9762 VOIDmode, get_insns ());
9763 if (val)
9765 preserve_value (val);
9766 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9771 if (REG_P (incoming))
9773 incoming = var_lowpart (mode, incoming);
9774 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9775 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9776 incoming);
9777 set_variable_part (out, incoming, dv, offset,
9778 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9779 if (dv_is_value_p (dv))
9781 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9782 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9783 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9785 machine_mode indmode
9786 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9787 rtx mem = gen_rtx_MEM (indmode, incoming);
9788 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9789 VOIDmode,
9790 get_insns ());
9791 if (val)
9793 preserve_value (val);
9794 record_entry_value (val, mem);
9795 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9796 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9801 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9803 int i;
9805 for (i = 0; i < XVECLEN (incoming, 0); i++)
9807 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9808 offset = REG_OFFSET (reg);
9809 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9810 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9811 set_variable_part (out, reg, dv, offset,
9812 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9815 else if (MEM_P (incoming))
9817 incoming = var_lowpart (mode, incoming);
9818 set_variable_part (out, incoming, dv, offset,
9819 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9823 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9825 static void
9826 vt_add_function_parameters (void)
9828 tree parm;
9830 for (parm = DECL_ARGUMENTS (current_function_decl);
9831 parm; parm = DECL_CHAIN (parm))
9832 if (!POINTER_BOUNDS_P (parm))
9833 vt_add_function_parameter (parm);
9835 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9837 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9839 if (TREE_CODE (vexpr) == INDIRECT_REF)
9840 vexpr = TREE_OPERAND (vexpr, 0);
9842 if (TREE_CODE (vexpr) == PARM_DECL
9843 && DECL_ARTIFICIAL (vexpr)
9844 && !DECL_IGNORED_P (vexpr)
9845 && DECL_NAMELESS (vexpr))
9846 vt_add_function_parameter (vexpr);
9850 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9851 ensure it isn't flushed during cselib_reset_table.
9852 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9853 has been eliminated. */
9855 static void
9856 vt_init_cfa_base (void)
9858 cselib_val *val;
9860 #ifdef FRAME_POINTER_CFA_OFFSET
9861 cfa_base_rtx = frame_pointer_rtx;
9862 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9863 #else
9864 cfa_base_rtx = arg_pointer_rtx;
9865 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9866 #endif
9867 if (cfa_base_rtx == hard_frame_pointer_rtx
9868 || !fixed_regs[REGNO (cfa_base_rtx)])
9870 cfa_base_rtx = NULL_RTX;
9871 return;
9873 if (!MAY_HAVE_DEBUG_INSNS)
9874 return;
9876 /* Tell alias analysis that cfa_base_rtx should share
9877 find_base_term value with stack pointer or hard frame pointer. */
9878 if (!frame_pointer_needed)
9879 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9880 else if (!crtl->stack_realign_tried)
9881 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9883 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9884 VOIDmode, get_insns ());
9885 preserve_value (val);
9886 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9889 /* Allocate and initialize the data structures for variable tracking
9890 and parse the RTL to get the micro operations. */
9892 static bool
9893 vt_initialize (void)
9895 basic_block bb;
9896 HOST_WIDE_INT fp_cfa_offset = -1;
9898 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9900 attrs_pool = create_alloc_pool ("attrs_def pool",
9901 sizeof (struct attrs_def), 1024);
9902 var_pool = create_alloc_pool ("variable_def pool",
9903 sizeof (struct variable_def)
9904 + (MAX_VAR_PARTS - 1)
9905 * sizeof (((variable)NULL)->var_part[0]), 64);
9906 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9907 sizeof (struct location_chain_def),
9908 1024);
9909 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9910 sizeof (struct shared_hash_def), 256);
9911 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9912 empty_shared_hash->refcount = 1;
9913 empty_shared_hash->htab = new variable_table_type (1);
9914 changed_variables = new variable_table_type (10);
9916 /* Init the IN and OUT sets. */
9917 FOR_ALL_BB_FN (bb, cfun)
9919 VTI (bb)->visited = false;
9920 VTI (bb)->flooded = false;
9921 dataflow_set_init (&VTI (bb)->in);
9922 dataflow_set_init (&VTI (bb)->out);
9923 VTI (bb)->permp = NULL;
9926 if (MAY_HAVE_DEBUG_INSNS)
9928 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9929 scratch_regs = BITMAP_ALLOC (NULL);
9930 valvar_pool = create_alloc_pool ("small variable_def pool",
9931 sizeof (struct variable_def), 256);
9932 preserved_values.create (256);
9933 global_get_addr_cache = new hash_map<rtx, rtx>;
9935 else
9937 scratch_regs = NULL;
9938 valvar_pool = NULL;
9939 global_get_addr_cache = NULL;
9942 if (MAY_HAVE_DEBUG_INSNS)
9944 rtx reg, expr;
9945 int ofst;
9946 cselib_val *val;
9948 #ifdef FRAME_POINTER_CFA_OFFSET
9949 reg = frame_pointer_rtx;
9950 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9951 #else
9952 reg = arg_pointer_rtx;
9953 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9954 #endif
9956 ofst -= INCOMING_FRAME_SP_OFFSET;
9958 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9959 VOIDmode, get_insns ());
9960 preserve_value (val);
9961 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9962 cselib_preserve_cfa_base_value (val, REGNO (reg));
9963 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9964 stack_pointer_rtx, -ofst);
9965 cselib_add_permanent_equiv (val, expr, get_insns ());
9967 if (ofst)
9969 val = cselib_lookup_from_insn (stack_pointer_rtx,
9970 GET_MODE (stack_pointer_rtx), 1,
9971 VOIDmode, get_insns ());
9972 preserve_value (val);
9973 expr = plus_constant (GET_MODE (reg), reg, ofst);
9974 cselib_add_permanent_equiv (val, expr, get_insns ());
9978 /* In order to factor out the adjustments made to the stack pointer or to
9979 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9980 instead of individual location lists, we're going to rewrite MEMs based
9981 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9982 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9983 resp. arg_pointer_rtx. We can do this either when there is no frame
9984 pointer in the function and stack adjustments are consistent for all
9985 basic blocks or when there is a frame pointer and no stack realignment.
9986 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9987 has been eliminated. */
9988 if (!frame_pointer_needed)
9990 rtx reg, elim;
9992 if (!vt_stack_adjustments ())
9993 return false;
9995 #ifdef FRAME_POINTER_CFA_OFFSET
9996 reg = frame_pointer_rtx;
9997 #else
9998 reg = arg_pointer_rtx;
9999 #endif
10000 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10001 if (elim != reg)
10003 if (GET_CODE (elim) == PLUS)
10004 elim = XEXP (elim, 0);
10005 if (elim == stack_pointer_rtx)
10006 vt_init_cfa_base ();
10009 else if (!crtl->stack_realign_tried)
10011 rtx reg, elim;
10013 #ifdef FRAME_POINTER_CFA_OFFSET
10014 reg = frame_pointer_rtx;
10015 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10016 #else
10017 reg = arg_pointer_rtx;
10018 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10019 #endif
10020 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10021 if (elim != reg)
10023 if (GET_CODE (elim) == PLUS)
10025 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10026 elim = XEXP (elim, 0);
10028 if (elim != hard_frame_pointer_rtx)
10029 fp_cfa_offset = -1;
10031 else
10032 fp_cfa_offset = -1;
10035 /* If the stack is realigned and a DRAP register is used, we're going to
10036 rewrite MEMs based on it representing incoming locations of parameters
10037 passed on the stack into MEMs based on the argument pointer. Although
10038 we aren't going to rewrite other MEMs, we still need to initialize the
10039 virtual CFA pointer in order to ensure that the argument pointer will
10040 be seen as a constant throughout the function.
10042 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10043 else if (stack_realign_drap)
10045 rtx reg, elim;
10047 #ifdef FRAME_POINTER_CFA_OFFSET
10048 reg = frame_pointer_rtx;
10049 #else
10050 reg = arg_pointer_rtx;
10051 #endif
10052 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10053 if (elim != reg)
10055 if (GET_CODE (elim) == PLUS)
10056 elim = XEXP (elim, 0);
10057 if (elim == hard_frame_pointer_rtx)
10058 vt_init_cfa_base ();
10062 hard_frame_pointer_adjustment = -1;
10064 vt_add_function_parameters ();
10066 FOR_EACH_BB_FN (bb, cfun)
10068 rtx_insn *insn;
10069 HOST_WIDE_INT pre, post = 0;
10070 basic_block first_bb, last_bb;
10072 if (MAY_HAVE_DEBUG_INSNS)
10074 cselib_record_sets_hook = add_with_sets;
10075 if (dump_file && (dump_flags & TDF_DETAILS))
10076 fprintf (dump_file, "first value: %i\n",
10077 cselib_get_next_uid ());
10080 first_bb = bb;
10081 for (;;)
10083 edge e;
10084 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10085 || ! single_pred_p (bb->next_bb))
10086 break;
10087 e = find_edge (bb, bb->next_bb);
10088 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10089 break;
10090 bb = bb->next_bb;
10092 last_bb = bb;
10094 /* Add the micro-operations to the vector. */
10095 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10097 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10098 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10099 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10100 insn = NEXT_INSN (insn))
10102 if (INSN_P (insn))
10104 if (!frame_pointer_needed)
10106 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10107 if (pre)
10109 micro_operation mo;
10110 mo.type = MO_ADJUST;
10111 mo.u.adjust = pre;
10112 mo.insn = insn;
10113 if (dump_file && (dump_flags & TDF_DETAILS))
10114 log_op_type (PATTERN (insn), bb, insn,
10115 MO_ADJUST, dump_file);
10116 VTI (bb)->mos.safe_push (mo);
10117 VTI (bb)->out.stack_adjust += pre;
10121 cselib_hook_called = false;
10122 adjust_insn (bb, insn);
10123 if (MAY_HAVE_DEBUG_INSNS)
10125 if (CALL_P (insn))
10126 prepare_call_arguments (bb, insn);
10127 cselib_process_insn (insn);
10128 if (dump_file && (dump_flags & TDF_DETAILS))
10130 print_rtl_single (dump_file, insn);
10131 dump_cselib_table (dump_file);
10134 if (!cselib_hook_called)
10135 add_with_sets (insn, 0, 0);
10136 cancel_changes (0);
10138 if (!frame_pointer_needed && post)
10140 micro_operation mo;
10141 mo.type = MO_ADJUST;
10142 mo.u.adjust = post;
10143 mo.insn = insn;
10144 if (dump_file && (dump_flags & TDF_DETAILS))
10145 log_op_type (PATTERN (insn), bb, insn,
10146 MO_ADJUST, dump_file);
10147 VTI (bb)->mos.safe_push (mo);
10148 VTI (bb)->out.stack_adjust += post;
10151 if (fp_cfa_offset != -1
10152 && hard_frame_pointer_adjustment == -1
10153 && fp_setter_insn (insn))
10155 vt_init_cfa_base ();
10156 hard_frame_pointer_adjustment = fp_cfa_offset;
10157 /* Disassociate sp from fp now. */
10158 if (MAY_HAVE_DEBUG_INSNS)
10160 cselib_val *v;
10161 cselib_invalidate_rtx (stack_pointer_rtx);
10162 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10163 VOIDmode);
10164 if (v && !cselib_preserved_value_p (v))
10166 cselib_set_value_sp_based (v);
10167 preserve_value (v);
10173 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10176 bb = last_bb;
10178 if (MAY_HAVE_DEBUG_INSNS)
10180 cselib_preserve_only_values ();
10181 cselib_reset_table (cselib_get_next_uid ());
10182 cselib_record_sets_hook = NULL;
10186 hard_frame_pointer_adjustment = -1;
10187 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10188 cfa_base_rtx = NULL_RTX;
10189 return true;
10192 /* This is *not* reset after each function. It gives each
10193 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10194 a unique label number. */
10196 static int debug_label_num = 1;
10198 /* Get rid of all debug insns from the insn stream. */
10200 static void
10201 delete_debug_insns (void)
10203 basic_block bb;
10204 rtx_insn *insn, *next;
10206 if (!MAY_HAVE_DEBUG_INSNS)
10207 return;
10209 FOR_EACH_BB_FN (bb, cfun)
10211 FOR_BB_INSNS_SAFE (bb, insn, next)
10212 if (DEBUG_INSN_P (insn))
10214 tree decl = INSN_VAR_LOCATION_DECL (insn);
10215 if (TREE_CODE (decl) == LABEL_DECL
10216 && DECL_NAME (decl)
10217 && !DECL_RTL_SET_P (decl))
10219 PUT_CODE (insn, NOTE);
10220 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10221 NOTE_DELETED_LABEL_NAME (insn)
10222 = IDENTIFIER_POINTER (DECL_NAME (decl));
10223 SET_DECL_RTL (decl, insn);
10224 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10226 else
10227 delete_insn (insn);
10232 /* Run a fast, BB-local only version of var tracking, to take care of
10233 information that we don't do global analysis on, such that not all
10234 information is lost. If SKIPPED holds, we're skipping the global
10235 pass entirely, so we should try to use information it would have
10236 handled as well.. */
10238 static void
10239 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10241 /* ??? Just skip it all for now. */
10242 delete_debug_insns ();
10245 /* Free the data structures needed for variable tracking. */
10247 static void
10248 vt_finalize (void)
10250 basic_block bb;
10252 FOR_EACH_BB_FN (bb, cfun)
10254 VTI (bb)->mos.release ();
10257 FOR_ALL_BB_FN (bb, cfun)
10259 dataflow_set_destroy (&VTI (bb)->in);
10260 dataflow_set_destroy (&VTI (bb)->out);
10261 if (VTI (bb)->permp)
10263 dataflow_set_destroy (VTI (bb)->permp);
10264 XDELETE (VTI (bb)->permp);
10267 free_aux_for_blocks ();
10268 delete empty_shared_hash->htab;
10269 empty_shared_hash->htab = NULL;
10270 delete changed_variables;
10271 changed_variables = NULL;
10272 free_alloc_pool (attrs_pool);
10273 free_alloc_pool (var_pool);
10274 free_alloc_pool (loc_chain_pool);
10275 free_alloc_pool (shared_hash_pool);
10277 if (MAY_HAVE_DEBUG_INSNS)
10279 if (global_get_addr_cache)
10280 delete global_get_addr_cache;
10281 global_get_addr_cache = NULL;
10282 if (loc_exp_dep_pool)
10283 free_alloc_pool (loc_exp_dep_pool);
10284 loc_exp_dep_pool = NULL;
10285 free_alloc_pool (valvar_pool);
10286 preserved_values.release ();
10287 cselib_finish ();
10288 BITMAP_FREE (scratch_regs);
10289 scratch_regs = NULL;
10292 #ifdef HAVE_window_save
10293 vec_free (windowed_parm_regs);
10294 #endif
10296 if (vui_vec)
10297 XDELETEVEC (vui_vec);
10298 vui_vec = NULL;
10299 vui_allocated = 0;
10302 /* The entry point to variable tracking pass. */
10304 static inline unsigned int
10305 variable_tracking_main_1 (void)
10307 bool success;
10309 if (flag_var_tracking_assignments < 0
10310 /* Var-tracking right now assumes the IR doesn't contain
10311 any pseudos at this point. */
10312 || targetm.no_register_allocation)
10314 delete_debug_insns ();
10315 return 0;
10318 if (n_basic_blocks_for_fn (cfun) > 500 &&
10319 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10321 vt_debug_insns_local (true);
10322 return 0;
10325 mark_dfs_back_edges ();
10326 if (!vt_initialize ())
10328 vt_finalize ();
10329 vt_debug_insns_local (true);
10330 return 0;
10333 success = vt_find_locations ();
10335 if (!success && flag_var_tracking_assignments > 0)
10337 vt_finalize ();
10339 delete_debug_insns ();
10341 /* This is later restored by our caller. */
10342 flag_var_tracking_assignments = 0;
10344 success = vt_initialize ();
10345 gcc_assert (success);
10347 success = vt_find_locations ();
10350 if (!success)
10352 vt_finalize ();
10353 vt_debug_insns_local (false);
10354 return 0;
10357 if (dump_file && (dump_flags & TDF_DETAILS))
10359 dump_dataflow_sets ();
10360 dump_reg_info (dump_file);
10361 dump_flow_info (dump_file, dump_flags);
10364 timevar_push (TV_VAR_TRACKING_EMIT);
10365 vt_emit_notes ();
10366 timevar_pop (TV_VAR_TRACKING_EMIT);
10368 vt_finalize ();
10369 vt_debug_insns_local (false);
10370 return 0;
10373 unsigned int
10374 variable_tracking_main (void)
10376 unsigned int ret;
10377 int save = flag_var_tracking_assignments;
10379 ret = variable_tracking_main_1 ();
10381 flag_var_tracking_assignments = save;
10383 return ret;
10386 namespace {
10388 const pass_data pass_data_variable_tracking =
10390 RTL_PASS, /* type */
10391 "vartrack", /* name */
10392 OPTGROUP_NONE, /* optinfo_flags */
10393 TV_VAR_TRACKING, /* tv_id */
10394 0, /* properties_required */
10395 0, /* properties_provided */
10396 0, /* properties_destroyed */
10397 0, /* todo_flags_start */
10398 0, /* todo_flags_finish */
10401 class pass_variable_tracking : public rtl_opt_pass
10403 public:
10404 pass_variable_tracking (gcc::context *ctxt)
10405 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10408 /* opt_pass methods: */
10409 virtual bool gate (function *)
10411 return (flag_var_tracking && !targetm.delay_vartrack);
10414 virtual unsigned int execute (function *)
10416 return variable_tracking_main ();
10419 }; // class pass_variable_tracking
10421 } // anon namespace
10423 rtl_opt_pass *
10424 make_pass_variable_tracking (gcc::context *ctxt)
10426 return new pass_variable_tracking (ctxt);