drm/i915: Revert DisplayPort fast link training feature
[dragonfly.git] / contrib / gcc-5.0 / gcc / ifcvt.c
blobe26b2c832cda4f62bd7549a6435ef4cb37cf5cdb
1 /* If-conversion support.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hashtab.h"
28 #include "hash-set.h"
29 #include "vec.h"
30 #include "machmode.h"
31 #include "hard-reg-set.h"
32 #include "input.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "except.h"
38 #include "predict.h"
39 #include "dominance.h"
40 #include "cfg.h"
41 #include "cfgrtl.h"
42 #include "cfganal.h"
43 #include "cfgcleanup.h"
44 #include "basic-block.h"
45 #include "symtab.h"
46 #include "statistics.h"
47 #include "double-int.h"
48 #include "real.h"
49 #include "fixed-value.h"
50 #include "alias.h"
51 #include "wide-int.h"
52 #include "inchash.h"
53 #include "tree.h"
54 #include "expmed.h"
55 #include "dojump.h"
56 #include "explow.h"
57 #include "calls.h"
58 #include "emit-rtl.h"
59 #include "varasm.h"
60 #include "stmt.h"
61 #include "expr.h"
62 #include "output.h"
63 #include "insn-codes.h"
64 #include "optabs.h"
65 #include "diagnostic-core.h"
66 #include "tm_p.h"
67 #include "cfgloop.h"
68 #include "target.h"
69 #include "tree-pass.h"
70 #include "df.h"
71 #include "dbgcnt.h"
72 #include "shrink-wrap.h"
73 #include "ifcvt.h"
75 #ifndef HAVE_conditional_move
76 #define HAVE_conditional_move 0
77 #endif
78 #ifndef HAVE_incscc
79 #define HAVE_incscc 0
80 #endif
81 #ifndef HAVE_decscc
82 #define HAVE_decscc 0
83 #endif
84 #ifndef HAVE_trap
85 #define HAVE_trap 0
86 #endif
88 #ifndef MAX_CONDITIONAL_EXECUTE
89 #define MAX_CONDITIONAL_EXECUTE \
90 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
91 + 1)
92 #endif
94 #ifndef HAVE_cbranchcc4
95 #define HAVE_cbranchcc4 0
96 #endif
98 #define IFCVT_MULTIPLE_DUMPS 1
100 #define NULL_BLOCK ((basic_block) NULL)
102 /* True if after combine pass. */
103 static bool ifcvt_after_combine;
105 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
106 static int num_possible_if_blocks;
108 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
109 execution. */
110 static int num_updated_if_blocks;
112 /* # of changes made. */
113 static int num_true_changes;
115 /* Whether conditional execution changes were made. */
116 static int cond_exec_changed_p;
118 /* Forward references. */
119 static int count_bb_insns (const_basic_block);
120 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
121 static rtx_insn *first_active_insn (basic_block);
122 static rtx_insn *last_active_insn (basic_block, int);
123 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
124 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
125 static basic_block block_fallthru (basic_block);
126 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
127 int);
128 static rtx cond_exec_get_condition (rtx_insn *);
129 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
130 static int noce_operand_ok (const_rtx);
131 static void merge_if_block (ce_if_block *);
132 static int find_cond_trap (basic_block, edge, edge);
133 static basic_block find_if_header (basic_block, int);
134 static int block_jumps_and_fallthru_p (basic_block, basic_block);
135 static int noce_find_if_block (basic_block, edge, edge, int);
136 static int cond_exec_find_if_block (ce_if_block *);
137 static int find_if_case_1 (basic_block, edge, edge);
138 static int find_if_case_2 (basic_block, edge, edge);
139 static int dead_or_predicable (basic_block, basic_block, basic_block,
140 edge, int);
141 static void noce_emit_move_insn (rtx, rtx);
142 static rtx_insn *block_has_only_trap (basic_block);
144 /* Count the number of non-jump active insns in BB. */
146 static int
147 count_bb_insns (const_basic_block bb)
149 int count = 0;
150 rtx_insn *insn = BB_HEAD (bb);
152 while (1)
154 if (active_insn_p (insn) && !JUMP_P (insn))
155 count++;
157 if (insn == BB_END (bb))
158 break;
159 insn = NEXT_INSN (insn);
162 return count;
165 /* Determine whether the total insn_rtx_cost on non-jump insns in
166 basic block BB is less than MAX_COST. This function returns
167 false if the cost of any instruction could not be estimated.
169 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
170 as those insns are being speculated. MAX_COST is scaled with SCALE
171 plus a small fudge factor. */
173 static bool
174 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
176 int count = 0;
177 rtx_insn *insn = BB_HEAD (bb);
178 bool speed = optimize_bb_for_speed_p (bb);
180 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
181 applied to insn_rtx_cost when optimizing for size. Only do
182 this after combine because if-conversion might interfere with
183 passes before combine.
185 Use optimize_function_for_speed_p instead of the pre-defined
186 variable speed to make sure it is set to same value for all
187 basic blocks in one if-conversion transformation. */
188 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
189 scale = REG_BR_PROB_BASE;
190 /* Our branch probability/scaling factors are just estimates and don't
191 account for cases where we can get speculation for free and other
192 secondary benefits. So we fudge the scale factor to make speculating
193 appear a little more profitable when optimizing for performance. */
194 else
195 scale += REG_BR_PROB_BASE / 8;
198 max_cost *= scale;
200 while (1)
202 if (NONJUMP_INSN_P (insn))
204 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
205 if (cost == 0)
206 return false;
208 /* If this instruction is the load or set of a "stack" register,
209 such as a floating point register on x87, then the cost of
210 speculatively executing this insn may need to include
211 the additional cost of popping its result off of the
212 register stack. Unfortunately, correctly recognizing and
213 accounting for this additional overhead is tricky, so for
214 now we simply prohibit such speculative execution. */
215 #ifdef STACK_REGS
217 rtx set = single_set (insn);
218 if (set && STACK_REG_P (SET_DEST (set)))
219 return false;
221 #endif
223 count += cost;
224 if (count >= max_cost)
225 return false;
227 else if (CALL_P (insn))
228 return false;
230 if (insn == BB_END (bb))
231 break;
232 insn = NEXT_INSN (insn);
235 return true;
238 /* Return the first non-jump active insn in the basic block. */
240 static rtx_insn *
241 first_active_insn (basic_block bb)
243 rtx_insn *insn = BB_HEAD (bb);
245 if (LABEL_P (insn))
247 if (insn == BB_END (bb))
248 return NULL;
249 insn = NEXT_INSN (insn);
252 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
254 if (insn == BB_END (bb))
255 return NULL;
256 insn = NEXT_INSN (insn);
259 if (JUMP_P (insn))
260 return NULL;
262 return insn;
265 /* Return the last non-jump active (non-jump) insn in the basic block. */
267 static rtx_insn *
268 last_active_insn (basic_block bb, int skip_use_p)
270 rtx_insn *insn = BB_END (bb);
271 rtx_insn *head = BB_HEAD (bb);
273 while (NOTE_P (insn)
274 || JUMP_P (insn)
275 || DEBUG_INSN_P (insn)
276 || (skip_use_p
277 && NONJUMP_INSN_P (insn)
278 && GET_CODE (PATTERN (insn)) == USE))
280 if (insn == head)
281 return NULL;
282 insn = PREV_INSN (insn);
285 if (LABEL_P (insn))
286 return NULL;
288 return insn;
291 /* Return the active insn before INSN inside basic block CURR_BB. */
293 static rtx_insn *
294 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
296 if (!insn || insn == BB_HEAD (curr_bb))
297 return NULL;
299 while ((insn = PREV_INSN (insn)) != NULL_RTX)
301 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
302 break;
304 /* No other active insn all the way to the start of the basic block. */
305 if (insn == BB_HEAD (curr_bb))
306 return NULL;
309 return insn;
312 /* Return the active insn after INSN inside basic block CURR_BB. */
314 static rtx_insn *
315 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
317 if (!insn || insn == BB_END (curr_bb))
318 return NULL;
320 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
322 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
323 break;
325 /* No other active insn all the way to the end of the basic block. */
326 if (insn == BB_END (curr_bb))
327 return NULL;
330 return insn;
333 /* Return the basic block reached by falling though the basic block BB. */
335 static basic_block
336 block_fallthru (basic_block bb)
338 edge e = find_fallthru_edge (bb->succs);
340 return (e) ? e->dest : NULL_BLOCK;
343 /* Return true if RTXs A and B can be safely interchanged. */
345 static bool
346 rtx_interchangeable_p (const_rtx a, const_rtx b)
348 if (!rtx_equal_p (a, b))
349 return false;
351 if (GET_CODE (a) != MEM)
352 return true;
354 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
355 reference is not. Interchanging a dead type-unsafe memory reference with
356 a live type-safe one creates a live type-unsafe memory reference, in other
357 words, it makes the program illegal.
358 We check here conservatively whether the two memory references have equal
359 memory attributes. */
361 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
365 /* Go through a bunch of insns, converting them to conditional
366 execution format if possible. Return TRUE if all of the non-note
367 insns were processed. */
369 static int
370 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
371 /* if block information */rtx_insn *start,
372 /* first insn to look at */rtx end,
373 /* last insn to look at */rtx test,
374 /* conditional execution test */int prob_val,
375 /* probability of branch taken. */int mod_ok)
377 int must_be_last = FALSE;
378 rtx_insn *insn;
379 rtx xtest;
380 rtx pattern;
382 if (!start || !end)
383 return FALSE;
385 for (insn = start; ; insn = NEXT_INSN (insn))
387 /* dwarf2out can't cope with conditional prologues. */
388 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
389 return FALSE;
391 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
392 goto insn_done;
394 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
396 /* dwarf2out can't cope with conditional unwind info. */
397 if (RTX_FRAME_RELATED_P (insn))
398 return FALSE;
400 /* Remove USE insns that get in the way. */
401 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
403 /* ??? Ug. Actually unlinking the thing is problematic,
404 given what we'd have to coordinate with our callers. */
405 SET_INSN_DELETED (insn);
406 goto insn_done;
409 /* Last insn wasn't last? */
410 if (must_be_last)
411 return FALSE;
413 if (modified_in_p (test, insn))
415 if (!mod_ok)
416 return FALSE;
417 must_be_last = TRUE;
420 /* Now build the conditional form of the instruction. */
421 pattern = PATTERN (insn);
422 xtest = copy_rtx (test);
424 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
425 two conditions. */
426 if (GET_CODE (pattern) == COND_EXEC)
428 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
429 return FALSE;
431 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
432 COND_EXEC_TEST (pattern));
433 pattern = COND_EXEC_CODE (pattern);
436 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
438 /* If the machine needs to modify the insn being conditionally executed,
439 say for example to force a constant integer operand into a temp
440 register, do so here. */
441 #ifdef IFCVT_MODIFY_INSN
442 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
443 if (! pattern)
444 return FALSE;
445 #endif
447 validate_change (insn, &PATTERN (insn), pattern, 1);
449 if (CALL_P (insn) && prob_val >= 0)
450 validate_change (insn, &REG_NOTES (insn),
451 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
452 prob_val, REG_NOTES (insn)), 1);
454 insn_done:
455 if (insn == end)
456 break;
459 return TRUE;
462 /* Return the condition for a jump. Do not do any special processing. */
464 static rtx
465 cond_exec_get_condition (rtx_insn *jump)
467 rtx test_if, cond;
469 if (any_condjump_p (jump))
470 test_if = SET_SRC (pc_set (jump));
471 else
472 return NULL_RTX;
473 cond = XEXP (test_if, 0);
475 /* If this branches to JUMP_LABEL when the condition is false,
476 reverse the condition. */
477 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
478 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
480 enum rtx_code rev = reversed_comparison_code (cond, jump);
481 if (rev == UNKNOWN)
482 return NULL_RTX;
484 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
485 XEXP (cond, 1));
488 return cond;
491 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
492 to conditional execution. Return TRUE if we were successful at
493 converting the block. */
495 static int
496 cond_exec_process_if_block (ce_if_block * ce_info,
497 /* if block information */int do_multiple_p)
499 basic_block test_bb = ce_info->test_bb; /* last test block */
500 basic_block then_bb = ce_info->then_bb; /* THEN */
501 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
502 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
503 rtx_insn *then_start; /* first insn in THEN block */
504 rtx_insn *then_end; /* last insn + 1 in THEN block */
505 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
506 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
507 int max; /* max # of insns to convert. */
508 int then_mod_ok; /* whether conditional mods are ok in THEN */
509 rtx true_expr; /* test for else block insns */
510 rtx false_expr; /* test for then block insns */
511 int true_prob_val; /* probability of else block */
512 int false_prob_val; /* probability of then block */
513 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
514 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
515 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
516 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
517 int then_n_insns, else_n_insns, n_insns;
518 enum rtx_code false_code;
519 rtx note;
521 /* If test is comprised of && or || elements, and we've failed at handling
522 all of them together, just use the last test if it is the special case of
523 && elements without an ELSE block. */
524 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
526 if (else_bb || ! ce_info->and_and_p)
527 return FALSE;
529 ce_info->test_bb = test_bb = ce_info->last_test_bb;
530 ce_info->num_multiple_test_blocks = 0;
531 ce_info->num_and_and_blocks = 0;
532 ce_info->num_or_or_blocks = 0;
535 /* Find the conditional jump to the ELSE or JOIN part, and isolate
536 the test. */
537 test_expr = cond_exec_get_condition (BB_END (test_bb));
538 if (! test_expr)
539 return FALSE;
541 /* If the conditional jump is more than just a conditional jump,
542 then we can not do conditional execution conversion on this block. */
543 if (! onlyjump_p (BB_END (test_bb)))
544 return FALSE;
546 /* Collect the bounds of where we're to search, skipping any labels, jumps
547 and notes at the beginning and end of the block. Then count the total
548 number of insns and see if it is small enough to convert. */
549 then_start = first_active_insn (then_bb);
550 then_end = last_active_insn (then_bb, TRUE);
551 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
552 n_insns = then_n_insns;
553 max = MAX_CONDITIONAL_EXECUTE;
555 if (else_bb)
557 int n_matching;
559 max *= 2;
560 else_start = first_active_insn (else_bb);
561 else_end = last_active_insn (else_bb, TRUE);
562 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
563 n_insns += else_n_insns;
565 /* Look for matching sequences at the head and tail of the two blocks,
566 and limit the range of insns to be converted if possible. */
567 n_matching = flow_find_cross_jump (then_bb, else_bb,
568 &then_first_tail, &else_first_tail,
569 NULL);
570 if (then_first_tail == BB_HEAD (then_bb))
571 then_start = then_end = NULL;
572 if (else_first_tail == BB_HEAD (else_bb))
573 else_start = else_end = NULL;
575 if (n_matching > 0)
577 if (then_end)
578 then_end = find_active_insn_before (then_bb, then_first_tail);
579 if (else_end)
580 else_end = find_active_insn_before (else_bb, else_first_tail);
581 n_insns -= 2 * n_matching;
584 if (then_start
585 && else_start
586 && then_n_insns > n_matching
587 && else_n_insns > n_matching)
589 int longest_match = MIN (then_n_insns - n_matching,
590 else_n_insns - n_matching);
591 n_matching
592 = flow_find_head_matching_sequence (then_bb, else_bb,
593 &then_last_head,
594 &else_last_head,
595 longest_match);
597 if (n_matching > 0)
599 rtx_insn *insn;
601 /* We won't pass the insns in the head sequence to
602 cond_exec_process_insns, so we need to test them here
603 to make sure that they don't clobber the condition. */
604 for (insn = BB_HEAD (then_bb);
605 insn != NEXT_INSN (then_last_head);
606 insn = NEXT_INSN (insn))
607 if (!LABEL_P (insn) && !NOTE_P (insn)
608 && !DEBUG_INSN_P (insn)
609 && modified_in_p (test_expr, insn))
610 return FALSE;
613 if (then_last_head == then_end)
614 then_start = then_end = NULL;
615 if (else_last_head == else_end)
616 else_start = else_end = NULL;
618 if (n_matching > 0)
620 if (then_start)
621 then_start = find_active_insn_after (then_bb, then_last_head);
622 if (else_start)
623 else_start = find_active_insn_after (else_bb, else_last_head);
624 n_insns -= 2 * n_matching;
629 if (n_insns > max)
630 return FALSE;
632 /* Map test_expr/test_jump into the appropriate MD tests to use on
633 the conditionally executed code. */
635 true_expr = test_expr;
637 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
638 if (false_code != UNKNOWN)
639 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
640 XEXP (true_expr, 0), XEXP (true_expr, 1));
641 else
642 false_expr = NULL_RTX;
644 #ifdef IFCVT_MODIFY_TESTS
645 /* If the machine description needs to modify the tests, such as setting a
646 conditional execution register from a comparison, it can do so here. */
647 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
649 /* See if the conversion failed. */
650 if (!true_expr || !false_expr)
651 goto fail;
652 #endif
654 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
655 if (note)
657 true_prob_val = XINT (note, 0);
658 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
660 else
662 true_prob_val = -1;
663 false_prob_val = -1;
666 /* If we have && or || tests, do them here. These tests are in the adjacent
667 blocks after the first block containing the test. */
668 if (ce_info->num_multiple_test_blocks > 0)
670 basic_block bb = test_bb;
671 basic_block last_test_bb = ce_info->last_test_bb;
673 if (! false_expr)
674 goto fail;
678 rtx_insn *start, *end;
679 rtx t, f;
680 enum rtx_code f_code;
682 bb = block_fallthru (bb);
683 start = first_active_insn (bb);
684 end = last_active_insn (bb, TRUE);
685 if (start
686 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
687 false_prob_val, FALSE))
688 goto fail;
690 /* If the conditional jump is more than just a conditional jump, then
691 we can not do conditional execution conversion on this block. */
692 if (! onlyjump_p (BB_END (bb)))
693 goto fail;
695 /* Find the conditional jump and isolate the test. */
696 t = cond_exec_get_condition (BB_END (bb));
697 if (! t)
698 goto fail;
700 f_code = reversed_comparison_code (t, BB_END (bb));
701 if (f_code == UNKNOWN)
702 goto fail;
704 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
705 if (ce_info->and_and_p)
707 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
708 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
710 else
712 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
713 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
716 /* If the machine description needs to modify the tests, such as
717 setting a conditional execution register from a comparison, it can
718 do so here. */
719 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
720 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
722 /* See if the conversion failed. */
723 if (!t || !f)
724 goto fail;
725 #endif
727 true_expr = t;
728 false_expr = f;
730 while (bb != last_test_bb);
733 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
734 on then THEN block. */
735 then_mod_ok = (else_bb == NULL_BLOCK);
737 /* Go through the THEN and ELSE blocks converting the insns if possible
738 to conditional execution. */
740 if (then_end
741 && (! false_expr
742 || ! cond_exec_process_insns (ce_info, then_start, then_end,
743 false_expr, false_prob_val,
744 then_mod_ok)))
745 goto fail;
747 if (else_bb && else_end
748 && ! cond_exec_process_insns (ce_info, else_start, else_end,
749 true_expr, true_prob_val, TRUE))
750 goto fail;
752 /* If we cannot apply the changes, fail. Do not go through the normal fail
753 processing, since apply_change_group will call cancel_changes. */
754 if (! apply_change_group ())
756 #ifdef IFCVT_MODIFY_CANCEL
757 /* Cancel any machine dependent changes. */
758 IFCVT_MODIFY_CANCEL (ce_info);
759 #endif
760 return FALSE;
763 #ifdef IFCVT_MODIFY_FINAL
764 /* Do any machine dependent final modifications. */
765 IFCVT_MODIFY_FINAL (ce_info);
766 #endif
768 /* Conversion succeeded. */
769 if (dump_file)
770 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
771 n_insns, (n_insns == 1) ? " was" : "s were");
773 /* Merge the blocks! If we had matching sequences, make sure to delete one
774 copy at the appropriate location first: delete the copy in the THEN branch
775 for a tail sequence so that the remaining one is executed last for both
776 branches, and delete the copy in the ELSE branch for a head sequence so
777 that the remaining one is executed first for both branches. */
778 if (then_first_tail)
780 rtx_insn *from = then_first_tail;
781 if (!INSN_P (from))
782 from = find_active_insn_after (then_bb, from);
783 delete_insn_chain (from, BB_END (then_bb), false);
785 if (else_last_head)
786 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
788 merge_if_block (ce_info);
789 cond_exec_changed_p = TRUE;
790 return TRUE;
792 fail:
793 #ifdef IFCVT_MODIFY_CANCEL
794 /* Cancel any machine dependent changes. */
795 IFCVT_MODIFY_CANCEL (ce_info);
796 #endif
798 cancel_changes (0);
799 return FALSE;
802 /* Used by noce_process_if_block to communicate with its subroutines.
804 The subroutines know that A and B may be evaluated freely. They
805 know that X is a register. They should insert new instructions
806 before cond_earliest. */
808 struct noce_if_info
810 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
811 basic_block test_bb, then_bb, else_bb, join_bb;
813 /* The jump that ends TEST_BB. */
814 rtx_insn *jump;
816 /* The jump condition. */
817 rtx cond;
819 /* New insns should be inserted before this one. */
820 rtx_insn *cond_earliest;
822 /* Insns in the THEN and ELSE block. There is always just this
823 one insns in those blocks. The insns are single_set insns.
824 If there was no ELSE block, INSN_B is the last insn before
825 COND_EARLIEST, or NULL_RTX. In the former case, the insn
826 operands are still valid, as if INSN_B was moved down below
827 the jump. */
828 rtx_insn *insn_a, *insn_b;
830 /* The SET_SRC of INSN_A and INSN_B. */
831 rtx a, b;
833 /* The SET_DEST of INSN_A. */
834 rtx x;
836 /* True if this if block is not canonical. In the canonical form of
837 if blocks, the THEN_BB is the block reached via the fallthru edge
838 from TEST_BB. For the noce transformations, we allow the symmetric
839 form as well. */
840 bool then_else_reversed;
842 /* Estimated cost of the particular branch instruction. */
843 int branch_cost;
846 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
847 static int noce_try_move (struct noce_if_info *);
848 static int noce_try_store_flag (struct noce_if_info *);
849 static int noce_try_addcc (struct noce_if_info *);
850 static int noce_try_store_flag_constants (struct noce_if_info *);
851 static int noce_try_store_flag_mask (struct noce_if_info *);
852 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
853 rtx, rtx, rtx);
854 static int noce_try_cmove (struct noce_if_info *);
855 static int noce_try_cmove_arith (struct noce_if_info *);
856 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
857 static int noce_try_minmax (struct noce_if_info *);
858 static int noce_try_abs (struct noce_if_info *);
859 static int noce_try_sign_mask (struct noce_if_info *);
861 /* Helper function for noce_try_store_flag*. */
863 static rtx
864 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
865 int normalize)
867 rtx cond = if_info->cond;
868 int cond_complex;
869 enum rtx_code code;
871 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
872 || ! general_operand (XEXP (cond, 1), VOIDmode));
874 /* If earliest == jump, or when the condition is complex, try to
875 build the store_flag insn directly. */
877 if (cond_complex)
879 rtx set = pc_set (if_info->jump);
880 cond = XEXP (SET_SRC (set), 0);
881 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
882 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
883 reversep = !reversep;
884 if (if_info->then_else_reversed)
885 reversep = !reversep;
888 if (reversep)
889 code = reversed_comparison_code (cond, if_info->jump);
890 else
891 code = GET_CODE (cond);
893 if ((if_info->cond_earliest == if_info->jump || cond_complex)
894 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
896 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
897 XEXP (cond, 1));
898 rtx set = gen_rtx_SET (VOIDmode, x, src);
900 start_sequence ();
901 rtx_insn *insn = emit_insn (set);
903 if (recog_memoized (insn) >= 0)
905 rtx_insn *seq = get_insns ();
906 end_sequence ();
907 emit_insn (seq);
909 if_info->cond_earliest = if_info->jump;
911 return x;
914 end_sequence ();
917 /* Don't even try if the comparison operands or the mode of X are weird. */
918 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
919 return NULL_RTX;
921 return emit_store_flag (x, code, XEXP (cond, 0),
922 XEXP (cond, 1), VOIDmode,
923 (code == LTU || code == LEU
924 || code == GEU || code == GTU), normalize);
927 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
928 X is the destination/target and Y is the value to copy. */
930 static void
931 noce_emit_move_insn (rtx x, rtx y)
933 machine_mode outmode;
934 rtx outer, inner;
935 int bitpos;
937 if (GET_CODE (x) != STRICT_LOW_PART)
939 rtx_insn *seq, *insn;
940 rtx target;
941 optab ot;
943 start_sequence ();
944 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
945 otherwise construct a suitable SET pattern ourselves. */
946 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
947 ? emit_move_insn (x, y)
948 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
949 seq = get_insns ();
950 end_sequence ();
952 if (recog_memoized (insn) <= 0)
954 if (GET_CODE (x) == ZERO_EXTRACT)
956 rtx op = XEXP (x, 0);
957 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
958 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
960 /* store_bit_field expects START to be relative to
961 BYTES_BIG_ENDIAN and adjusts this value for machines with
962 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
963 invoke store_bit_field again it is necessary to have the START
964 value from the first call. */
965 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
967 if (MEM_P (op))
968 start = BITS_PER_UNIT - start - size;
969 else
971 gcc_assert (REG_P (op));
972 start = BITS_PER_WORD - start - size;
976 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
977 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
978 return;
981 switch (GET_RTX_CLASS (GET_CODE (y)))
983 case RTX_UNARY:
984 ot = code_to_optab (GET_CODE (y));
985 if (ot)
987 start_sequence ();
988 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
989 if (target != NULL_RTX)
991 if (target != x)
992 emit_move_insn (x, target);
993 seq = get_insns ();
995 end_sequence ();
997 break;
999 case RTX_BIN_ARITH:
1000 case RTX_COMM_ARITH:
1001 ot = code_to_optab (GET_CODE (y));
1002 if (ot)
1004 start_sequence ();
1005 target = expand_binop (GET_MODE (y), ot,
1006 XEXP (y, 0), XEXP (y, 1),
1007 x, 0, OPTAB_DIRECT);
1008 if (target != NULL_RTX)
1010 if (target != x)
1011 emit_move_insn (x, target);
1012 seq = get_insns ();
1014 end_sequence ();
1016 break;
1018 default:
1019 break;
1023 emit_insn (seq);
1024 return;
1027 outer = XEXP (x, 0);
1028 inner = XEXP (outer, 0);
1029 outmode = GET_MODE (outer);
1030 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1031 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1032 0, 0, outmode, y);
1035 /* Return the CC reg if it is used in COND. */
1037 static rtx
1038 cc_in_cond (rtx cond)
1040 if (HAVE_cbranchcc4 && cond
1041 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1042 return XEXP (cond, 0);
1044 return NULL_RTX;
1047 /* Return sequence of instructions generated by if conversion. This
1048 function calls end_sequence() to end the current stream, ensures
1049 that are instructions are unshared, recognizable non-jump insns.
1050 On failure, this function returns a NULL_RTX. */
1052 static rtx_insn *
1053 end_ifcvt_sequence (struct noce_if_info *if_info)
1055 rtx_insn *insn;
1056 rtx_insn *seq = get_insns ();
1057 rtx cc = cc_in_cond (if_info->cond);
1059 set_used_flags (if_info->x);
1060 set_used_flags (if_info->cond);
1061 set_used_flags (if_info->a);
1062 set_used_flags (if_info->b);
1063 unshare_all_rtl_in_chain (seq);
1064 end_sequence ();
1066 /* Make sure that all of the instructions emitted are recognizable,
1067 and that we haven't introduced a new jump instruction.
1068 As an exercise for the reader, build a general mechanism that
1069 allows proper placement of required clobbers. */
1070 for (insn = seq; insn; insn = NEXT_INSN (insn))
1071 if (JUMP_P (insn)
1072 || recog_memoized (insn) == -1
1073 /* Make sure new generated code does not clobber CC. */
1074 || (cc && set_of (cc, insn)))
1075 return NULL;
1077 return seq;
1080 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1081 "if (a == b) x = a; else x = b" into "x = b". */
1083 static int
1084 noce_try_move (struct noce_if_info *if_info)
1086 rtx cond = if_info->cond;
1087 enum rtx_code code = GET_CODE (cond);
1088 rtx y;
1089 rtx_insn *seq;
1091 if (code != NE && code != EQ)
1092 return FALSE;
1094 /* This optimization isn't valid if either A or B could be a NaN
1095 or a signed zero. */
1096 if (HONOR_NANS (if_info->x)
1097 || HONOR_SIGNED_ZEROS (if_info->x))
1098 return FALSE;
1100 /* Check whether the operands of the comparison are A and in
1101 either order. */
1102 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1103 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1104 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1105 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1107 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1108 return FALSE;
1110 y = (code == EQ) ? if_info->a : if_info->b;
1112 /* Avoid generating the move if the source is the destination. */
1113 if (! rtx_equal_p (if_info->x, y))
1115 start_sequence ();
1116 noce_emit_move_insn (if_info->x, y);
1117 seq = end_ifcvt_sequence (if_info);
1118 if (!seq)
1119 return FALSE;
1121 emit_insn_before_setloc (seq, if_info->jump,
1122 INSN_LOCATION (if_info->insn_a));
1124 return TRUE;
1126 return FALSE;
1129 /* Convert "if (test) x = 1; else x = 0".
1131 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1132 tried in noce_try_store_flag_constants after noce_try_cmove has had
1133 a go at the conversion. */
1135 static int
1136 noce_try_store_flag (struct noce_if_info *if_info)
1138 int reversep;
1139 rtx target;
1140 rtx_insn *seq;
1142 if (CONST_INT_P (if_info->b)
1143 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1144 && if_info->a == const0_rtx)
1145 reversep = 0;
1146 else if (if_info->b == const0_rtx
1147 && CONST_INT_P (if_info->a)
1148 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1149 && (reversed_comparison_code (if_info->cond, if_info->jump)
1150 != UNKNOWN))
1151 reversep = 1;
1152 else
1153 return FALSE;
1155 start_sequence ();
1157 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1158 if (target)
1160 if (target != if_info->x)
1161 noce_emit_move_insn (if_info->x, target);
1163 seq = end_ifcvt_sequence (if_info);
1164 if (! seq)
1165 return FALSE;
1167 emit_insn_before_setloc (seq, if_info->jump,
1168 INSN_LOCATION (if_info->insn_a));
1169 return TRUE;
1171 else
1173 end_sequence ();
1174 return FALSE;
1178 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1180 static int
1181 noce_try_store_flag_constants (struct noce_if_info *if_info)
1183 rtx target;
1184 rtx_insn *seq;
1185 int reversep;
1186 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1187 int normalize, can_reverse;
1188 machine_mode mode;
1190 if (CONST_INT_P (if_info->a)
1191 && CONST_INT_P (if_info->b))
1193 mode = GET_MODE (if_info->x);
1194 ifalse = INTVAL (if_info->a);
1195 itrue = INTVAL (if_info->b);
1197 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1198 /* Make sure we can represent the difference between the two values. */
1199 if ((diff > 0)
1200 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1201 return FALSE;
1203 diff = trunc_int_for_mode (diff, mode);
1205 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1206 != UNKNOWN);
1208 reversep = 0;
1209 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1210 normalize = 0;
1211 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1212 && (STORE_FLAG_VALUE == 1
1213 || if_info->branch_cost >= 2))
1214 normalize = 1;
1215 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1216 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1217 normalize = 1, reversep = 1;
1218 else if (itrue == -1
1219 && (STORE_FLAG_VALUE == -1
1220 || if_info->branch_cost >= 2))
1221 normalize = -1;
1222 else if (ifalse == -1 && can_reverse
1223 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1224 normalize = -1, reversep = 1;
1225 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1226 || if_info->branch_cost >= 3)
1227 normalize = -1;
1228 else
1229 return FALSE;
1231 if (reversep)
1233 tmp = itrue; itrue = ifalse; ifalse = tmp;
1234 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1237 start_sequence ();
1238 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1239 if (! target)
1241 end_sequence ();
1242 return FALSE;
1245 /* if (test) x = 3; else x = 4;
1246 => x = 3 + (test == 0); */
1247 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1249 target = expand_simple_binop (mode,
1250 (diff == STORE_FLAG_VALUE
1251 ? PLUS : MINUS),
1252 gen_int_mode (ifalse, mode), target,
1253 if_info->x, 0, OPTAB_WIDEN);
1256 /* if (test) x = 8; else x = 0;
1257 => x = (test != 0) << 3; */
1258 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1260 target = expand_simple_binop (mode, ASHIFT,
1261 target, GEN_INT (tmp), if_info->x, 0,
1262 OPTAB_WIDEN);
1265 /* if (test) x = -1; else x = b;
1266 => x = -(test != 0) | b; */
1267 else if (itrue == -1)
1269 target = expand_simple_binop (mode, IOR,
1270 target, gen_int_mode (ifalse, mode),
1271 if_info->x, 0, OPTAB_WIDEN);
1274 /* if (test) x = a; else x = b;
1275 => x = (-(test != 0) & (b - a)) + a; */
1276 else
1278 target = expand_simple_binop (mode, AND,
1279 target, gen_int_mode (diff, mode),
1280 if_info->x, 0, OPTAB_WIDEN);
1281 if (target)
1282 target = expand_simple_binop (mode, PLUS,
1283 target, gen_int_mode (ifalse, mode),
1284 if_info->x, 0, OPTAB_WIDEN);
1287 if (! target)
1289 end_sequence ();
1290 return FALSE;
1293 if (target != if_info->x)
1294 noce_emit_move_insn (if_info->x, target);
1296 seq = end_ifcvt_sequence (if_info);
1297 if (!seq)
1298 return FALSE;
1300 emit_insn_before_setloc (seq, if_info->jump,
1301 INSN_LOCATION (if_info->insn_a));
1302 return TRUE;
1305 return FALSE;
1308 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1309 similarly for "foo--". */
1311 static int
1312 noce_try_addcc (struct noce_if_info *if_info)
1314 rtx target;
1315 rtx_insn *seq;
1316 int subtract, normalize;
1318 if (GET_CODE (if_info->a) == PLUS
1319 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1320 && (reversed_comparison_code (if_info->cond, if_info->jump)
1321 != UNKNOWN))
1323 rtx cond = if_info->cond;
1324 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1326 /* First try to use addcc pattern. */
1327 if (general_operand (XEXP (cond, 0), VOIDmode)
1328 && general_operand (XEXP (cond, 1), VOIDmode))
1330 start_sequence ();
1331 target = emit_conditional_add (if_info->x, code,
1332 XEXP (cond, 0),
1333 XEXP (cond, 1),
1334 VOIDmode,
1335 if_info->b,
1336 XEXP (if_info->a, 1),
1337 GET_MODE (if_info->x),
1338 (code == LTU || code == GEU
1339 || code == LEU || code == GTU));
1340 if (target)
1342 if (target != if_info->x)
1343 noce_emit_move_insn (if_info->x, target);
1345 seq = end_ifcvt_sequence (if_info);
1346 if (!seq)
1347 return FALSE;
1349 emit_insn_before_setloc (seq, if_info->jump,
1350 INSN_LOCATION (if_info->insn_a));
1351 return TRUE;
1353 end_sequence ();
1356 /* If that fails, construct conditional increment or decrement using
1357 setcc. */
1358 if (if_info->branch_cost >= 2
1359 && (XEXP (if_info->a, 1) == const1_rtx
1360 || XEXP (if_info->a, 1) == constm1_rtx))
1362 start_sequence ();
1363 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1364 subtract = 0, normalize = 0;
1365 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1366 subtract = 1, normalize = 0;
1367 else
1368 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1371 target = noce_emit_store_flag (if_info,
1372 gen_reg_rtx (GET_MODE (if_info->x)),
1373 1, normalize);
1375 if (target)
1376 target = expand_simple_binop (GET_MODE (if_info->x),
1377 subtract ? MINUS : PLUS,
1378 if_info->b, target, if_info->x,
1379 0, OPTAB_WIDEN);
1380 if (target)
1382 if (target != if_info->x)
1383 noce_emit_move_insn (if_info->x, target);
1385 seq = end_ifcvt_sequence (if_info);
1386 if (!seq)
1387 return FALSE;
1389 emit_insn_before_setloc (seq, if_info->jump,
1390 INSN_LOCATION (if_info->insn_a));
1391 return TRUE;
1393 end_sequence ();
1397 return FALSE;
1400 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1402 static int
1403 noce_try_store_flag_mask (struct noce_if_info *if_info)
1405 rtx target;
1406 rtx_insn *seq;
1407 int reversep;
1409 reversep = 0;
1410 if ((if_info->branch_cost >= 2
1411 || STORE_FLAG_VALUE == -1)
1412 && ((if_info->a == const0_rtx
1413 && rtx_equal_p (if_info->b, if_info->x))
1414 || ((reversep = (reversed_comparison_code (if_info->cond,
1415 if_info->jump)
1416 != UNKNOWN))
1417 && if_info->b == const0_rtx
1418 && rtx_equal_p (if_info->a, if_info->x))))
1420 start_sequence ();
1421 target = noce_emit_store_flag (if_info,
1422 gen_reg_rtx (GET_MODE (if_info->x)),
1423 reversep, -1);
1424 if (target)
1425 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1426 if_info->x,
1427 target, if_info->x, 0,
1428 OPTAB_WIDEN);
1430 if (target)
1432 int old_cost, new_cost, insn_cost;
1433 int speed_p;
1435 if (target != if_info->x)
1436 noce_emit_move_insn (if_info->x, target);
1438 seq = end_ifcvt_sequence (if_info);
1439 if (!seq)
1440 return FALSE;
1442 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1443 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1444 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1445 new_cost = seq_cost (seq, speed_p);
1447 if (new_cost > old_cost)
1448 return FALSE;
1450 emit_insn_before_setloc (seq, if_info->jump,
1451 INSN_LOCATION (if_info->insn_a));
1452 return TRUE;
1455 end_sequence ();
1458 return FALSE;
1461 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1463 static rtx
1464 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1465 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1467 rtx target ATTRIBUTE_UNUSED;
1468 int unsignedp ATTRIBUTE_UNUSED;
1470 /* If earliest == jump, try to build the cmove insn directly.
1471 This is helpful when combine has created some complex condition
1472 (like for alpha's cmovlbs) that we can't hope to regenerate
1473 through the normal interface. */
1475 if (if_info->cond_earliest == if_info->jump)
1477 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1478 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1479 cond, vtrue, vfalse);
1480 rtx set = gen_rtx_SET (VOIDmode, x, if_then_else);
1482 start_sequence ();
1483 rtx_insn *insn = emit_insn (set);
1485 if (recog_memoized (insn) >= 0)
1487 rtx_insn *seq = get_insns ();
1488 end_sequence ();
1489 emit_insn (seq);
1491 return x;
1494 end_sequence ();
1497 /* Don't even try if the comparison operands are weird
1498 except that the target supports cbranchcc4. */
1499 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1500 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1502 if (!(HAVE_cbranchcc4)
1503 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1504 || cmp_b != const0_rtx)
1505 return NULL_RTX;
1508 #if HAVE_conditional_move
1509 unsignedp = (code == LTU || code == GEU
1510 || code == LEU || code == GTU);
1512 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1513 vtrue, vfalse, GET_MODE (x),
1514 unsignedp);
1515 if (target)
1516 return target;
1518 /* We might be faced with a situation like:
1520 x = (reg:M TARGET)
1521 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1522 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1524 We can't do a conditional move in mode M, but it's possible that we
1525 could do a conditional move in mode N instead and take a subreg of
1526 the result.
1528 If we can't create new pseudos, though, don't bother. */
1529 if (reload_completed)
1530 return NULL_RTX;
1532 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1534 rtx reg_vtrue = SUBREG_REG (vtrue);
1535 rtx reg_vfalse = SUBREG_REG (vfalse);
1536 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1537 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1538 rtx promoted_target;
1540 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1541 || byte_vtrue != byte_vfalse
1542 || (SUBREG_PROMOTED_VAR_P (vtrue)
1543 != SUBREG_PROMOTED_VAR_P (vfalse))
1544 || (SUBREG_PROMOTED_GET (vtrue)
1545 != SUBREG_PROMOTED_GET (vfalse)))
1546 return NULL_RTX;
1548 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1550 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1551 VOIDmode, reg_vtrue, reg_vfalse,
1552 GET_MODE (reg_vtrue), unsignedp);
1553 /* Nope, couldn't do it in that mode either. */
1554 if (!target)
1555 return NULL_RTX;
1557 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1558 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1559 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1560 emit_move_insn (x, target);
1561 return x;
1563 else
1564 return NULL_RTX;
1565 #else
1566 /* We'll never get here, as noce_process_if_block doesn't call the
1567 functions involved. Ifdef code, however, should be discouraged
1568 because it leads to typos in the code not selected. However,
1569 emit_conditional_move won't exist either. */
1570 return NULL_RTX;
1571 #endif
1574 /* Try only simple constants and registers here. More complex cases
1575 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1576 has had a go at it. */
1578 static int
1579 noce_try_cmove (struct noce_if_info *if_info)
1581 enum rtx_code code;
1582 rtx target;
1583 rtx_insn *seq;
1585 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1586 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1588 start_sequence ();
1590 code = GET_CODE (if_info->cond);
1591 target = noce_emit_cmove (if_info, if_info->x, code,
1592 XEXP (if_info->cond, 0),
1593 XEXP (if_info->cond, 1),
1594 if_info->a, if_info->b);
1596 if (target)
1598 if (target != if_info->x)
1599 noce_emit_move_insn (if_info->x, target);
1601 seq = end_ifcvt_sequence (if_info);
1602 if (!seq)
1603 return FALSE;
1605 emit_insn_before_setloc (seq, if_info->jump,
1606 INSN_LOCATION (if_info->insn_a));
1607 return TRUE;
1609 else
1611 end_sequence ();
1612 return FALSE;
1616 return FALSE;
1619 /* Try more complex cases involving conditional_move. */
1621 static int
1622 noce_try_cmove_arith (struct noce_if_info *if_info)
1624 rtx a = if_info->a;
1625 rtx b = if_info->b;
1626 rtx x = if_info->x;
1627 rtx orig_a, orig_b;
1628 rtx_insn *insn_a, *insn_b;
1629 rtx target;
1630 int is_mem = 0;
1631 int insn_cost;
1632 enum rtx_code code;
1633 rtx_insn *ifcvt_seq;
1635 /* A conditional move from two memory sources is equivalent to a
1636 conditional on their addresses followed by a load. Don't do this
1637 early because it'll screw alias analysis. Note that we've
1638 already checked for no side effects. */
1639 /* ??? FIXME: Magic number 5. */
1640 if (cse_not_expected
1641 && MEM_P (a) && MEM_P (b)
1642 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1643 && if_info->branch_cost >= 5)
1645 machine_mode address_mode = get_address_mode (a);
1647 a = XEXP (a, 0);
1648 b = XEXP (b, 0);
1649 x = gen_reg_rtx (address_mode);
1650 is_mem = 1;
1653 /* ??? We could handle this if we knew that a load from A or B could
1654 not trap or fault. This is also true if we've already loaded
1655 from the address along the path from ENTRY. */
1656 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1657 return FALSE;
1659 /* if (test) x = a + b; else x = c - d;
1660 => y = a + b;
1661 x = c - d;
1662 if (test)
1663 x = y;
1666 code = GET_CODE (if_info->cond);
1667 insn_a = if_info->insn_a;
1668 insn_b = if_info->insn_b;
1670 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1671 if insn_rtx_cost can't be estimated. */
1672 if (insn_a)
1674 insn_cost
1675 = insn_rtx_cost (PATTERN (insn_a),
1676 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1677 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1678 return FALSE;
1680 else
1681 insn_cost = 0;
1683 if (insn_b)
1685 insn_cost
1686 += insn_rtx_cost (PATTERN (insn_b),
1687 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1688 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1689 return FALSE;
1692 /* Possibly rearrange operands to make things come out more natural. */
1693 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1695 int reversep = 0;
1696 if (rtx_equal_p (b, x))
1697 reversep = 1;
1698 else if (general_operand (b, GET_MODE (b)))
1699 reversep = 1;
1701 if (reversep)
1703 rtx tmp;
1704 rtx_insn *tmp_insn;
1705 code = reversed_comparison_code (if_info->cond, if_info->jump);
1706 tmp = a, a = b, b = tmp;
1707 tmp_insn = insn_a, insn_a = insn_b, insn_b = tmp_insn;
1711 start_sequence ();
1713 orig_a = a;
1714 orig_b = b;
1716 /* If either operand is complex, load it into a register first.
1717 The best way to do this is to copy the original insn. In this
1718 way we preserve any clobbers etc that the insn may have had.
1719 This is of course not possible in the IS_MEM case. */
1720 if (! general_operand (a, GET_MODE (a)))
1722 rtx_insn *insn;
1724 if (is_mem)
1726 rtx reg = gen_reg_rtx (GET_MODE (a));
1727 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, a));
1729 else if (! insn_a)
1730 goto end_seq_and_fail;
1731 else
1733 a = gen_reg_rtx (GET_MODE (a));
1734 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
1735 rtx set = single_set (copy_of_a);
1736 SET_DEST (set) = a;
1737 insn = emit_insn (PATTERN (copy_of_a));
1739 if (recog_memoized (insn) < 0)
1740 goto end_seq_and_fail;
1742 if (! general_operand (b, GET_MODE (b)))
1744 rtx pat;
1745 rtx_insn *last;
1746 rtx_insn *new_insn;
1748 if (is_mem)
1750 rtx reg = gen_reg_rtx (GET_MODE (b));
1751 pat = gen_rtx_SET (VOIDmode, reg, b);
1753 else if (! insn_b)
1754 goto end_seq_and_fail;
1755 else
1757 b = gen_reg_rtx (GET_MODE (b));
1758 rtx_insn *copy_of_insn_b = as_a <rtx_insn *> (copy_rtx (insn_b));
1759 rtx set = single_set (copy_of_insn_b);
1760 SET_DEST (set) = b;
1761 pat = PATTERN (copy_of_insn_b);
1764 /* If insn to set up A clobbers any registers B depends on, try to
1765 swap insn that sets up A with the one that sets up B. If even
1766 that doesn't help, punt. */
1767 last = get_last_insn ();
1768 if (last && modified_in_p (orig_b, last))
1770 new_insn = emit_insn_before (pat, get_insns ());
1771 if (modified_in_p (orig_a, new_insn))
1772 goto end_seq_and_fail;
1774 else
1775 new_insn = emit_insn (pat);
1777 if (recog_memoized (new_insn) < 0)
1778 goto end_seq_and_fail;
1781 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1782 XEXP (if_info->cond, 1), a, b);
1784 if (! target)
1785 goto end_seq_and_fail;
1787 /* If we're handling a memory for above, emit the load now. */
1788 if (is_mem)
1790 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
1792 /* Copy over flags as appropriate. */
1793 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1794 MEM_VOLATILE_P (mem) = 1;
1795 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1796 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
1797 set_mem_align (mem,
1798 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1800 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1801 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
1803 noce_emit_move_insn (if_info->x, mem);
1805 else if (target != x)
1806 noce_emit_move_insn (x, target);
1808 ifcvt_seq = end_ifcvt_sequence (if_info);
1809 if (!ifcvt_seq)
1810 return FALSE;
1812 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
1813 INSN_LOCATION (if_info->insn_a));
1814 return TRUE;
1816 end_seq_and_fail:
1817 end_sequence ();
1818 return FALSE;
1821 /* For most cases, the simplified condition we found is the best
1822 choice, but this is not the case for the min/max/abs transforms.
1823 For these we wish to know that it is A or B in the condition. */
1825 static rtx
1826 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1827 rtx_insn **earliest)
1829 rtx cond, set;
1830 rtx_insn *insn;
1831 int reverse;
1833 /* If target is already mentioned in the known condition, return it. */
1834 if (reg_mentioned_p (target, if_info->cond))
1836 *earliest = if_info->cond_earliest;
1837 return if_info->cond;
1840 set = pc_set (if_info->jump);
1841 cond = XEXP (SET_SRC (set), 0);
1842 reverse
1843 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1844 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
1845 if (if_info->then_else_reversed)
1846 reverse = !reverse;
1848 /* If we're looking for a constant, try to make the conditional
1849 have that constant in it. There are two reasons why it may
1850 not have the constant we want:
1852 1. GCC may have needed to put the constant in a register, because
1853 the target can't compare directly against that constant. For
1854 this case, we look for a SET immediately before the comparison
1855 that puts a constant in that register.
1857 2. GCC may have canonicalized the conditional, for example
1858 replacing "if x < 4" with "if x <= 3". We can undo that (or
1859 make equivalent types of changes) to get the constants we need
1860 if they're off by one in the right direction. */
1862 if (CONST_INT_P (target))
1864 enum rtx_code code = GET_CODE (if_info->cond);
1865 rtx op_a = XEXP (if_info->cond, 0);
1866 rtx op_b = XEXP (if_info->cond, 1);
1867 rtx prev_insn;
1869 /* First, look to see if we put a constant in a register. */
1870 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1871 if (prev_insn
1872 && BLOCK_FOR_INSN (prev_insn)
1873 == BLOCK_FOR_INSN (if_info->cond_earliest)
1874 && INSN_P (prev_insn)
1875 && GET_CODE (PATTERN (prev_insn)) == SET)
1877 rtx src = find_reg_equal_equiv_note (prev_insn);
1878 if (!src)
1879 src = SET_SRC (PATTERN (prev_insn));
1880 if (CONST_INT_P (src))
1882 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1883 op_a = src;
1884 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1885 op_b = src;
1887 if (CONST_INT_P (op_a))
1889 rtx tmp = op_a;
1890 op_a = op_b;
1891 op_b = tmp;
1892 code = swap_condition (code);
1897 /* Now, look to see if we can get the right constant by
1898 adjusting the conditional. */
1899 if (CONST_INT_P (op_b))
1901 HOST_WIDE_INT desired_val = INTVAL (target);
1902 HOST_WIDE_INT actual_val = INTVAL (op_b);
1904 switch (code)
1906 case LT:
1907 if (actual_val == desired_val + 1)
1909 code = LE;
1910 op_b = GEN_INT (desired_val);
1912 break;
1913 case LE:
1914 if (actual_val == desired_val - 1)
1916 code = LT;
1917 op_b = GEN_INT (desired_val);
1919 break;
1920 case GT:
1921 if (actual_val == desired_val - 1)
1923 code = GE;
1924 op_b = GEN_INT (desired_val);
1926 break;
1927 case GE:
1928 if (actual_val == desired_val + 1)
1930 code = GT;
1931 op_b = GEN_INT (desired_val);
1933 break;
1934 default:
1935 break;
1939 /* If we made any changes, generate a new conditional that is
1940 equivalent to what we started with, but has the right
1941 constants in it. */
1942 if (code != GET_CODE (if_info->cond)
1943 || op_a != XEXP (if_info->cond, 0)
1944 || op_b != XEXP (if_info->cond, 1))
1946 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1947 *earliest = if_info->cond_earliest;
1948 return cond;
1952 cond = canonicalize_condition (if_info->jump, cond, reverse,
1953 earliest, target, HAVE_cbranchcc4, true);
1954 if (! cond || ! reg_mentioned_p (target, cond))
1955 return NULL;
1957 /* We almost certainly searched back to a different place.
1958 Need to re-verify correct lifetimes. */
1960 /* X may not be mentioned in the range (cond_earliest, jump]. */
1961 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1962 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1963 return NULL;
1965 /* A and B may not be modified in the range [cond_earliest, jump). */
1966 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1967 if (INSN_P (insn)
1968 && (modified_in_p (if_info->a, insn)
1969 || modified_in_p (if_info->b, insn)))
1970 return NULL;
1972 return cond;
1975 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1977 static int
1978 noce_try_minmax (struct noce_if_info *if_info)
1980 rtx cond, target;
1981 rtx_insn *earliest, *seq;
1982 enum rtx_code code, op;
1983 int unsignedp;
1985 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1986 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1987 to get the target to tell us... */
1988 if (HONOR_SIGNED_ZEROS (if_info->x)
1989 || HONOR_NANS (if_info->x))
1990 return FALSE;
1992 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1993 if (!cond)
1994 return FALSE;
1996 /* Verify the condition is of the form we expect, and canonicalize
1997 the comparison code. */
1998 code = GET_CODE (cond);
1999 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2001 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2002 return FALSE;
2004 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2006 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2007 return FALSE;
2008 code = swap_condition (code);
2010 else
2011 return FALSE;
2013 /* Determine what sort of operation this is. Note that the code is for
2014 a taken branch, so the code->operation mapping appears backwards. */
2015 switch (code)
2017 case LT:
2018 case LE:
2019 case UNLT:
2020 case UNLE:
2021 op = SMAX;
2022 unsignedp = 0;
2023 break;
2024 case GT:
2025 case GE:
2026 case UNGT:
2027 case UNGE:
2028 op = SMIN;
2029 unsignedp = 0;
2030 break;
2031 case LTU:
2032 case LEU:
2033 op = UMAX;
2034 unsignedp = 1;
2035 break;
2036 case GTU:
2037 case GEU:
2038 op = UMIN;
2039 unsignedp = 1;
2040 break;
2041 default:
2042 return FALSE;
2045 start_sequence ();
2047 target = expand_simple_binop (GET_MODE (if_info->x), op,
2048 if_info->a, if_info->b,
2049 if_info->x, unsignedp, OPTAB_WIDEN);
2050 if (! target)
2052 end_sequence ();
2053 return FALSE;
2055 if (target != if_info->x)
2056 noce_emit_move_insn (if_info->x, target);
2058 seq = end_ifcvt_sequence (if_info);
2059 if (!seq)
2060 return FALSE;
2062 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2063 if_info->cond = cond;
2064 if_info->cond_earliest = earliest;
2066 return TRUE;
2069 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2070 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2071 etc. */
2073 static int
2074 noce_try_abs (struct noce_if_info *if_info)
2076 rtx cond, target, a, b, c;
2077 rtx_insn *earliest, *seq;
2078 int negate;
2079 bool one_cmpl = false;
2081 /* Reject modes with signed zeros. */
2082 if (HONOR_SIGNED_ZEROS (if_info->x))
2083 return FALSE;
2085 /* Recognize A and B as constituting an ABS or NABS. The canonical
2086 form is a branch around the negation, taken when the object is the
2087 first operand of a comparison against 0 that evaluates to true. */
2088 a = if_info->a;
2089 b = if_info->b;
2090 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2091 negate = 0;
2092 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2094 c = a; a = b; b = c;
2095 negate = 1;
2097 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2099 negate = 0;
2100 one_cmpl = true;
2102 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2104 c = a; a = b; b = c;
2105 negate = 1;
2106 one_cmpl = true;
2108 else
2109 return FALSE;
2111 cond = noce_get_alt_condition (if_info, b, &earliest);
2112 if (!cond)
2113 return FALSE;
2115 /* Verify the condition is of the form we expect. */
2116 if (rtx_equal_p (XEXP (cond, 0), b))
2117 c = XEXP (cond, 1);
2118 else if (rtx_equal_p (XEXP (cond, 1), b))
2120 c = XEXP (cond, 0);
2121 negate = !negate;
2123 else
2124 return FALSE;
2126 /* Verify that C is zero. Search one step backward for a
2127 REG_EQUAL note or a simple source if necessary. */
2128 if (REG_P (c))
2130 rtx set;
2131 rtx_insn *insn = prev_nonnote_insn (earliest);
2132 if (insn
2133 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2134 && (set = single_set (insn))
2135 && rtx_equal_p (SET_DEST (set), c))
2137 rtx note = find_reg_equal_equiv_note (insn);
2138 if (note)
2139 c = XEXP (note, 0);
2140 else
2141 c = SET_SRC (set);
2143 else
2144 return FALSE;
2146 if (MEM_P (c)
2147 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2148 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2149 c = get_pool_constant (XEXP (c, 0));
2151 /* Work around funny ideas get_condition has wrt canonicalization.
2152 Note that these rtx constants are known to be CONST_INT, and
2153 therefore imply integer comparisons.
2154 The one_cmpl case is more complicated, as we want to handle
2155 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2156 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2157 but not other cases (x > -1 is equivalent of x >= 0). */
2158 if (c == constm1_rtx && GET_CODE (cond) == GT)
2160 else if (c == const1_rtx && GET_CODE (cond) == LT)
2162 if (one_cmpl)
2163 return FALSE;
2165 else if (c == CONST0_RTX (GET_MODE (b)))
2167 if (one_cmpl
2168 && GET_CODE (cond) != GE
2169 && GET_CODE (cond) != LT)
2170 return FALSE;
2172 else
2173 return FALSE;
2175 /* Determine what sort of operation this is. */
2176 switch (GET_CODE (cond))
2178 case LT:
2179 case LE:
2180 case UNLT:
2181 case UNLE:
2182 negate = !negate;
2183 break;
2184 case GT:
2185 case GE:
2186 case UNGT:
2187 case UNGE:
2188 break;
2189 default:
2190 return FALSE;
2193 start_sequence ();
2194 if (one_cmpl)
2195 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2196 if_info->x);
2197 else
2198 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2200 /* ??? It's a quandary whether cmove would be better here, especially
2201 for integers. Perhaps combine will clean things up. */
2202 if (target && negate)
2204 if (one_cmpl)
2205 target = expand_simple_unop (GET_MODE (target), NOT, target,
2206 if_info->x, 0);
2207 else
2208 target = expand_simple_unop (GET_MODE (target), NEG, target,
2209 if_info->x, 0);
2212 if (! target)
2214 end_sequence ();
2215 return FALSE;
2218 if (target != if_info->x)
2219 noce_emit_move_insn (if_info->x, target);
2221 seq = end_ifcvt_sequence (if_info);
2222 if (!seq)
2223 return FALSE;
2225 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2226 if_info->cond = cond;
2227 if_info->cond_earliest = earliest;
2229 return TRUE;
2232 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2234 static int
2235 noce_try_sign_mask (struct noce_if_info *if_info)
2237 rtx cond, t, m, c;
2238 rtx_insn *seq;
2239 machine_mode mode;
2240 enum rtx_code code;
2241 bool t_unconditional;
2243 cond = if_info->cond;
2244 code = GET_CODE (cond);
2245 m = XEXP (cond, 0);
2246 c = XEXP (cond, 1);
2248 t = NULL_RTX;
2249 if (if_info->a == const0_rtx)
2251 if ((code == LT && c == const0_rtx)
2252 || (code == LE && c == constm1_rtx))
2253 t = if_info->b;
2255 else if (if_info->b == const0_rtx)
2257 if ((code == GE && c == const0_rtx)
2258 || (code == GT && c == constm1_rtx))
2259 t = if_info->a;
2262 if (! t || side_effects_p (t))
2263 return FALSE;
2265 /* We currently don't handle different modes. */
2266 mode = GET_MODE (t);
2267 if (GET_MODE (m) != mode)
2268 return FALSE;
2270 /* This is only profitable if T is unconditionally executed/evaluated in the
2271 original insn sequence or T is cheap. The former happens if B is the
2272 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2273 INSN_B which can happen for e.g. conditional stores to memory. For the
2274 cost computation use the block TEST_BB where the evaluation will end up
2275 after the transformation. */
2276 t_unconditional =
2277 (t == if_info->b
2278 && (if_info->insn_b == NULL_RTX
2279 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2280 if (!(t_unconditional
2281 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2282 < COSTS_N_INSNS (2))))
2283 return FALSE;
2285 start_sequence ();
2286 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2287 "(signed) m >> 31" directly. This benefits targets with specialized
2288 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2289 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2290 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2291 : NULL_RTX;
2293 if (!t)
2295 end_sequence ();
2296 return FALSE;
2299 noce_emit_move_insn (if_info->x, t);
2301 seq = end_ifcvt_sequence (if_info);
2302 if (!seq)
2303 return FALSE;
2305 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2306 return TRUE;
2310 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2311 transformations. */
2313 static int
2314 noce_try_bitop (struct noce_if_info *if_info)
2316 rtx cond, x, a, result;
2317 rtx_insn *seq;
2318 machine_mode mode;
2319 enum rtx_code code;
2320 int bitnum;
2322 x = if_info->x;
2323 cond = if_info->cond;
2324 code = GET_CODE (cond);
2326 /* Check for no else condition. */
2327 if (! rtx_equal_p (x, if_info->b))
2328 return FALSE;
2330 /* Check for a suitable condition. */
2331 if (code != NE && code != EQ)
2332 return FALSE;
2333 if (XEXP (cond, 1) != const0_rtx)
2334 return FALSE;
2335 cond = XEXP (cond, 0);
2337 /* ??? We could also handle AND here. */
2338 if (GET_CODE (cond) == ZERO_EXTRACT)
2340 if (XEXP (cond, 1) != const1_rtx
2341 || !CONST_INT_P (XEXP (cond, 2))
2342 || ! rtx_equal_p (x, XEXP (cond, 0)))
2343 return FALSE;
2344 bitnum = INTVAL (XEXP (cond, 2));
2345 mode = GET_MODE (x);
2346 if (BITS_BIG_ENDIAN)
2347 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2348 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2349 return FALSE;
2351 else
2352 return FALSE;
2354 a = if_info->a;
2355 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2357 /* Check for "if (X & C) x = x op C". */
2358 if (! rtx_equal_p (x, XEXP (a, 0))
2359 || !CONST_INT_P (XEXP (a, 1))
2360 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2361 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2362 return FALSE;
2364 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2365 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2366 if (GET_CODE (a) == IOR)
2367 result = (code == NE) ? a : NULL_RTX;
2368 else if (code == NE)
2370 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2371 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2372 result = simplify_gen_binary (IOR, mode, x, result);
2374 else
2376 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2377 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2378 result = simplify_gen_binary (AND, mode, x, result);
2381 else if (GET_CODE (a) == AND)
2383 /* Check for "if (X & C) x &= ~C". */
2384 if (! rtx_equal_p (x, XEXP (a, 0))
2385 || !CONST_INT_P (XEXP (a, 1))
2386 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2387 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2388 return FALSE;
2390 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2391 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2392 result = (code == EQ) ? a : NULL_RTX;
2394 else
2395 return FALSE;
2397 if (result)
2399 start_sequence ();
2400 noce_emit_move_insn (x, result);
2401 seq = end_ifcvt_sequence (if_info);
2402 if (!seq)
2403 return FALSE;
2405 emit_insn_before_setloc (seq, if_info->jump,
2406 INSN_LOCATION (if_info->insn_a));
2408 return TRUE;
2412 /* Similar to get_condition, only the resulting condition must be
2413 valid at JUMP, instead of at EARLIEST.
2415 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2416 THEN block of the caller, and we have to reverse the condition. */
2418 static rtx
2419 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2421 rtx cond, set, tmp;
2422 bool reverse;
2424 if (! any_condjump_p (jump))
2425 return NULL_RTX;
2427 set = pc_set (jump);
2429 /* If this branches to JUMP_LABEL when the condition is false,
2430 reverse the condition. */
2431 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2432 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2434 /* We may have to reverse because the caller's if block is not canonical,
2435 i.e. the THEN block isn't the fallthrough block for the TEST block
2436 (see find_if_header). */
2437 if (then_else_reversed)
2438 reverse = !reverse;
2440 /* If the condition variable is a register and is MODE_INT, accept it. */
2442 cond = XEXP (SET_SRC (set), 0);
2443 tmp = XEXP (cond, 0);
2444 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2445 && (GET_MODE (tmp) != BImode
2446 || !targetm.small_register_classes_for_mode_p (BImode)))
2448 *earliest = jump;
2450 if (reverse)
2451 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2452 GET_MODE (cond), tmp, XEXP (cond, 1));
2453 return cond;
2456 /* Otherwise, fall back on canonicalize_condition to do the dirty
2457 work of manipulating MODE_CC values and COMPARE rtx codes. */
2458 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2459 NULL_RTX, HAVE_cbranchcc4, true);
2461 /* We don't handle side-effects in the condition, like handling
2462 REG_INC notes and making sure no duplicate conditions are emitted. */
2463 if (tmp != NULL_RTX && side_effects_p (tmp))
2464 return NULL_RTX;
2466 return tmp;
2469 /* Return true if OP is ok for if-then-else processing. */
2471 static int
2472 noce_operand_ok (const_rtx op)
2474 if (side_effects_p (op))
2475 return FALSE;
2477 /* We special-case memories, so handle any of them with
2478 no address side effects. */
2479 if (MEM_P (op))
2480 return ! side_effects_p (XEXP (op, 0));
2482 return ! may_trap_p (op);
2485 /* Return true if a write into MEM may trap or fault. */
2487 static bool
2488 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2490 rtx addr;
2492 if (MEM_READONLY_P (mem))
2493 return true;
2495 if (may_trap_or_fault_p (mem))
2496 return true;
2498 addr = XEXP (mem, 0);
2500 /* Call target hook to avoid the effects of -fpic etc.... */
2501 addr = targetm.delegitimize_address (addr);
2503 while (addr)
2504 switch (GET_CODE (addr))
2506 case CONST:
2507 case PRE_DEC:
2508 case PRE_INC:
2509 case POST_DEC:
2510 case POST_INC:
2511 case POST_MODIFY:
2512 addr = XEXP (addr, 0);
2513 break;
2514 case LO_SUM:
2515 case PRE_MODIFY:
2516 addr = XEXP (addr, 1);
2517 break;
2518 case PLUS:
2519 if (CONST_INT_P (XEXP (addr, 1)))
2520 addr = XEXP (addr, 0);
2521 else
2522 return false;
2523 break;
2524 case LABEL_REF:
2525 return true;
2526 case SYMBOL_REF:
2527 if (SYMBOL_REF_DECL (addr)
2528 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2529 return true;
2530 return false;
2531 default:
2532 return false;
2535 return false;
2538 /* Return whether we can use store speculation for MEM. TOP_BB is the
2539 basic block above the conditional block where we are considering
2540 doing the speculative store. We look for whether MEM is set
2541 unconditionally later in the function. */
2543 static bool
2544 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2546 basic_block dominator;
2548 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2549 dominator != NULL;
2550 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2552 rtx_insn *insn;
2554 FOR_BB_INSNS (dominator, insn)
2556 /* If we see something that might be a memory barrier, we
2557 have to stop looking. Even if the MEM is set later in
2558 the function, we still don't want to set it
2559 unconditionally before the barrier. */
2560 if (INSN_P (insn)
2561 && (volatile_insn_p (PATTERN (insn))
2562 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2563 return false;
2565 if (memory_must_be_modified_in_insn_p (mem, insn))
2566 return true;
2567 if (modified_in_p (XEXP (mem, 0), insn))
2568 return false;
2573 return false;
2576 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2577 it without using conditional execution. Return TRUE if we were successful
2578 at converting the block. */
2580 static int
2581 noce_process_if_block (struct noce_if_info *if_info)
2583 basic_block test_bb = if_info->test_bb; /* test block */
2584 basic_block then_bb = if_info->then_bb; /* THEN */
2585 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2586 basic_block join_bb = if_info->join_bb; /* JOIN */
2587 rtx_insn *jump = if_info->jump;
2588 rtx cond = if_info->cond;
2589 rtx_insn *insn_a, *insn_b;
2590 rtx set_a, set_b;
2591 rtx orig_x, x, a, b;
2592 rtx cc;
2594 /* We're looking for patterns of the form
2596 (1) if (...) x = a; else x = b;
2597 (2) x = b; if (...) x = a;
2598 (3) if (...) x = a; // as if with an initial x = x.
2600 The later patterns require jumps to be more expensive.
2602 ??? For future expansion, look for multiple X in such patterns. */
2604 /* Look for one of the potential sets. */
2605 insn_a = first_active_insn (then_bb);
2606 if (! insn_a
2607 || insn_a != last_active_insn (then_bb, FALSE)
2608 || (set_a = single_set (insn_a)) == NULL_RTX)
2609 return FALSE;
2611 x = SET_DEST (set_a);
2612 a = SET_SRC (set_a);
2614 /* Look for the other potential set. Make sure we've got equivalent
2615 destinations. */
2616 /* ??? This is overconservative. Storing to two different mems is
2617 as easy as conditionally computing the address. Storing to a
2618 single mem merely requires a scratch memory to use as one of the
2619 destination addresses; often the memory immediately below the
2620 stack pointer is available for this. */
2621 set_b = NULL_RTX;
2622 if (else_bb)
2624 insn_b = first_active_insn (else_bb);
2625 if (! insn_b
2626 || insn_b != last_active_insn (else_bb, FALSE)
2627 || (set_b = single_set (insn_b)) == NULL_RTX
2628 || ! rtx_interchangeable_p (x, SET_DEST (set_b)))
2629 return FALSE;
2631 else
2633 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2634 /* We're going to be moving the evaluation of B down from above
2635 COND_EARLIEST to JUMP. Make sure the relevant data is still
2636 intact. */
2637 if (! insn_b
2638 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2639 || !NONJUMP_INSN_P (insn_b)
2640 || (set_b = single_set (insn_b)) == NULL_RTX
2641 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
2642 || ! noce_operand_ok (SET_SRC (set_b))
2643 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2644 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2645 /* Avoid extending the lifetime of hard registers on small
2646 register class machines. */
2647 || (REG_P (SET_SRC (set_b))
2648 && HARD_REGISTER_P (SET_SRC (set_b))
2649 && targetm.small_register_classes_for_mode_p
2650 (GET_MODE (SET_SRC (set_b))))
2651 /* Likewise with X. In particular this can happen when
2652 noce_get_condition looks farther back in the instruction
2653 stream than one might expect. */
2654 || reg_overlap_mentioned_p (x, cond)
2655 || reg_overlap_mentioned_p (x, a)
2656 || modified_between_p (x, insn_b, jump))
2658 insn_b = NULL;
2659 set_b = NULL_RTX;
2663 /* If x has side effects then only the if-then-else form is safe to
2664 convert. But even in that case we would need to restore any notes
2665 (such as REG_INC) at then end. That can be tricky if
2666 noce_emit_move_insn expands to more than one insn, so disable the
2667 optimization entirely for now if there are side effects. */
2668 if (side_effects_p (x))
2669 return FALSE;
2671 b = (set_b ? SET_SRC (set_b) : x);
2673 /* Only operate on register destinations, and even then avoid extending
2674 the lifetime of hard registers on small register class machines. */
2675 orig_x = x;
2676 if (!REG_P (x)
2677 || (HARD_REGISTER_P (x)
2678 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2680 if (GET_MODE (x) == BLKmode)
2681 return FALSE;
2683 if (GET_CODE (x) == ZERO_EXTRACT
2684 && (!CONST_INT_P (XEXP (x, 1))
2685 || !CONST_INT_P (XEXP (x, 2))))
2686 return FALSE;
2688 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2689 ? XEXP (x, 0) : x));
2692 /* Don't operate on sources that may trap or are volatile. */
2693 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2694 return FALSE;
2696 retry:
2697 /* Set up the info block for our subroutines. */
2698 if_info->insn_a = insn_a;
2699 if_info->insn_b = insn_b;
2700 if_info->x = x;
2701 if_info->a = a;
2702 if_info->b = b;
2704 /* Skip it if the instruction to be moved might clobber CC. */
2705 cc = cc_in_cond (cond);
2706 if (cc
2707 && (set_of (cc, insn_a)
2708 || (insn_b && set_of (cc, insn_b))))
2709 return FALSE;
2711 /* Try optimizations in some approximation of a useful order. */
2712 /* ??? Should first look to see if X is live incoming at all. If it
2713 isn't, we don't need anything but an unconditional set. */
2715 /* Look and see if A and B are really the same. Avoid creating silly
2716 cmove constructs that no one will fix up later. */
2717 if (rtx_interchangeable_p (a, b))
2719 /* If we have an INSN_B, we don't have to create any new rtl. Just
2720 move the instruction that we already have. If we don't have an
2721 INSN_B, that means that A == X, and we've got a noop move. In
2722 that case don't do anything and let the code below delete INSN_A. */
2723 if (insn_b && else_bb)
2725 rtx note;
2727 if (else_bb && insn_b == BB_END (else_bb))
2728 BB_END (else_bb) = PREV_INSN (insn_b);
2729 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2731 /* If there was a REG_EQUAL note, delete it since it may have been
2732 true due to this insn being after a jump. */
2733 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2734 remove_note (insn_b, note);
2736 insn_b = NULL;
2738 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2739 x must be executed twice. */
2740 else if (insn_b && side_effects_p (orig_x))
2741 return FALSE;
2743 x = orig_x;
2744 goto success;
2747 if (!set_b && MEM_P (orig_x))
2749 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2750 for optimizations if writing to x may trap or fault,
2751 i.e. it's a memory other than a static var or a stack slot,
2752 is misaligned on strict aligned machines or is read-only. If
2753 x is a read-only memory, then the program is valid only if we
2754 avoid the store into it. If there are stores on both the
2755 THEN and ELSE arms, then we can go ahead with the conversion;
2756 either the program is broken, or the condition is always
2757 false such that the other memory is selected. */
2758 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2759 return FALSE;
2761 /* Avoid store speculation: given "if (...) x = a" where x is a
2762 MEM, we only want to do the store if x is always set
2763 somewhere in the function. This avoids cases like
2764 if (pthread_mutex_trylock(mutex))
2765 ++global_variable;
2766 where we only want global_variable to be changed if the mutex
2767 is held. FIXME: This should ideally be expressed directly in
2768 RTL somehow. */
2769 if (!noce_can_store_speculate_p (test_bb, orig_x))
2770 return FALSE;
2773 if (noce_try_move (if_info))
2774 goto success;
2775 if (noce_try_store_flag (if_info))
2776 goto success;
2777 if (noce_try_bitop (if_info))
2778 goto success;
2779 if (noce_try_minmax (if_info))
2780 goto success;
2781 if (noce_try_abs (if_info))
2782 goto success;
2783 if (HAVE_conditional_move
2784 && noce_try_cmove (if_info))
2785 goto success;
2786 if (! targetm.have_conditional_execution ())
2788 if (noce_try_store_flag_constants (if_info))
2789 goto success;
2790 if (noce_try_addcc (if_info))
2791 goto success;
2792 if (noce_try_store_flag_mask (if_info))
2793 goto success;
2794 if (HAVE_conditional_move
2795 && noce_try_cmove_arith (if_info))
2796 goto success;
2797 if (noce_try_sign_mask (if_info))
2798 goto success;
2801 if (!else_bb && set_b)
2803 insn_b = NULL;
2804 set_b = NULL_RTX;
2805 b = orig_x;
2806 goto retry;
2809 return FALSE;
2811 success:
2813 /* If we used a temporary, fix it up now. */
2814 if (orig_x != x)
2816 rtx_insn *seq;
2818 start_sequence ();
2819 noce_emit_move_insn (orig_x, x);
2820 seq = get_insns ();
2821 set_used_flags (orig_x);
2822 unshare_all_rtl_in_chain (seq);
2823 end_sequence ();
2825 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2828 /* The original THEN and ELSE blocks may now be removed. The test block
2829 must now jump to the join block. If the test block and the join block
2830 can be merged, do so. */
2831 if (else_bb)
2833 delete_basic_block (else_bb);
2834 num_true_changes++;
2836 else
2837 remove_edge (find_edge (test_bb, join_bb));
2839 remove_edge (find_edge (then_bb, join_bb));
2840 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2841 delete_basic_block (then_bb);
2842 num_true_changes++;
2844 if (can_merge_blocks_p (test_bb, join_bb))
2846 merge_blocks (test_bb, join_bb);
2847 num_true_changes++;
2850 num_updated_if_blocks++;
2851 return TRUE;
2854 /* Check whether a block is suitable for conditional move conversion.
2855 Every insn must be a simple set of a register to a constant or a
2856 register. For each assignment, store the value in the pointer map
2857 VALS, keyed indexed by register pointer, then store the register
2858 pointer in REGS. COND is the condition we will test. */
2860 static int
2861 check_cond_move_block (basic_block bb,
2862 hash_map<rtx, rtx> *vals,
2863 vec<rtx> *regs,
2864 rtx cond)
2866 rtx_insn *insn;
2867 rtx cc = cc_in_cond (cond);
2869 /* We can only handle simple jumps at the end of the basic block.
2870 It is almost impossible to update the CFG otherwise. */
2871 insn = BB_END (bb);
2872 if (JUMP_P (insn) && !onlyjump_p (insn))
2873 return FALSE;
2875 FOR_BB_INSNS (bb, insn)
2877 rtx set, dest, src;
2879 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2880 continue;
2881 set = single_set (insn);
2882 if (!set)
2883 return FALSE;
2885 dest = SET_DEST (set);
2886 src = SET_SRC (set);
2887 if (!REG_P (dest)
2888 || (HARD_REGISTER_P (dest)
2889 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2890 return FALSE;
2892 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2893 return FALSE;
2895 if (side_effects_p (src) || side_effects_p (dest))
2896 return FALSE;
2898 if (may_trap_p (src) || may_trap_p (dest))
2899 return FALSE;
2901 /* Don't try to handle this if the source register was
2902 modified earlier in the block. */
2903 if ((REG_P (src)
2904 && vals->get (src))
2905 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2906 && vals->get (SUBREG_REG (src))))
2907 return FALSE;
2909 /* Don't try to handle this if the destination register was
2910 modified earlier in the block. */
2911 if (vals->get (dest))
2912 return FALSE;
2914 /* Don't try to handle this if the condition uses the
2915 destination register. */
2916 if (reg_overlap_mentioned_p (dest, cond))
2917 return FALSE;
2919 /* Don't try to handle this if the source register is modified
2920 later in the block. */
2921 if (!CONSTANT_P (src)
2922 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2923 return FALSE;
2925 /* Skip it if the instruction to be moved might clobber CC. */
2926 if (cc && set_of (cc, insn))
2927 return FALSE;
2929 vals->put (dest, src);
2931 regs->safe_push (dest);
2934 return TRUE;
2937 /* Given a basic block BB suitable for conditional move conversion,
2938 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2939 the register values depending on COND, emit the insns in the block as
2940 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2941 processed. The caller has started a sequence for the conversion.
2942 Return true if successful, false if something goes wrong. */
2944 static bool
2945 cond_move_convert_if_block (struct noce_if_info *if_infop,
2946 basic_block bb, rtx cond,
2947 hash_map<rtx, rtx> *then_vals,
2948 hash_map<rtx, rtx> *else_vals,
2949 bool else_block_p)
2951 enum rtx_code code;
2952 rtx_insn *insn;
2953 rtx cond_arg0, cond_arg1;
2955 code = GET_CODE (cond);
2956 cond_arg0 = XEXP (cond, 0);
2957 cond_arg1 = XEXP (cond, 1);
2959 FOR_BB_INSNS (bb, insn)
2961 rtx set, target, dest, t, e;
2963 /* ??? Maybe emit conditional debug insn? */
2964 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2965 continue;
2966 set = single_set (insn);
2967 gcc_assert (set && REG_P (SET_DEST (set)));
2969 dest = SET_DEST (set);
2971 rtx *then_slot = then_vals->get (dest);
2972 rtx *else_slot = else_vals->get (dest);
2973 t = then_slot ? *then_slot : NULL_RTX;
2974 e = else_slot ? *else_slot : NULL_RTX;
2976 if (else_block_p)
2978 /* If this register was set in the then block, we already
2979 handled this case there. */
2980 if (t)
2981 continue;
2982 t = dest;
2983 gcc_assert (e);
2985 else
2987 gcc_assert (t);
2988 if (!e)
2989 e = dest;
2992 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2993 t, e);
2994 if (!target)
2995 return false;
2997 if (target != dest)
2998 noce_emit_move_insn (dest, target);
3001 return true;
3004 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3005 it using only conditional moves. Return TRUE if we were successful at
3006 converting the block. */
3008 static int
3009 cond_move_process_if_block (struct noce_if_info *if_info)
3011 basic_block test_bb = if_info->test_bb;
3012 basic_block then_bb = if_info->then_bb;
3013 basic_block else_bb = if_info->else_bb;
3014 basic_block join_bb = if_info->join_bb;
3015 rtx_insn *jump = if_info->jump;
3016 rtx cond = if_info->cond;
3017 rtx_insn *seq, *loc_insn;
3018 rtx reg;
3019 int c;
3020 vec<rtx> then_regs = vNULL;
3021 vec<rtx> else_regs = vNULL;
3022 unsigned int i;
3023 int success_p = FALSE;
3025 /* Build a mapping for each block to the value used for each
3026 register. */
3027 hash_map<rtx, rtx> then_vals;
3028 hash_map<rtx, rtx> else_vals;
3030 /* Make sure the blocks are suitable. */
3031 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
3032 || (else_bb
3033 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
3034 goto done;
3036 /* Make sure the blocks can be used together. If the same register
3037 is set in both blocks, and is not set to a constant in both
3038 cases, then both blocks must set it to the same register. We
3039 have already verified that if it is set to a register, that the
3040 source register does not change after the assignment. Also count
3041 the number of registers set in only one of the blocks. */
3042 c = 0;
3043 FOR_EACH_VEC_ELT (then_regs, i, reg)
3045 rtx *then_slot = then_vals.get (reg);
3046 rtx *else_slot = else_vals.get (reg);
3048 gcc_checking_assert (then_slot);
3049 if (!else_slot)
3050 ++c;
3051 else
3053 rtx then_val = *then_slot;
3054 rtx else_val = *else_slot;
3055 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3056 && !rtx_equal_p (then_val, else_val))
3057 goto done;
3061 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3062 FOR_EACH_VEC_ELT (else_regs, i, reg)
3064 gcc_checking_assert (else_vals.get (reg));
3065 if (!then_vals.get (reg))
3066 ++c;
3069 /* Make sure it is reasonable to convert this block. What matters
3070 is the number of assignments currently made in only one of the
3071 branches, since if we convert we are going to always execute
3072 them. */
3073 if (c > MAX_CONDITIONAL_EXECUTE)
3074 goto done;
3076 /* Try to emit the conditional moves. First do the then block,
3077 then do anything left in the else blocks. */
3078 start_sequence ();
3079 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3080 &then_vals, &else_vals, false)
3081 || (else_bb
3082 && !cond_move_convert_if_block (if_info, else_bb, cond,
3083 &then_vals, &else_vals, true)))
3085 end_sequence ();
3086 goto done;
3088 seq = end_ifcvt_sequence (if_info);
3089 if (!seq)
3090 goto done;
3092 loc_insn = first_active_insn (then_bb);
3093 if (!loc_insn)
3095 loc_insn = first_active_insn (else_bb);
3096 gcc_assert (loc_insn);
3098 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3100 if (else_bb)
3102 delete_basic_block (else_bb);
3103 num_true_changes++;
3105 else
3106 remove_edge (find_edge (test_bb, join_bb));
3108 remove_edge (find_edge (then_bb, join_bb));
3109 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3110 delete_basic_block (then_bb);
3111 num_true_changes++;
3113 if (can_merge_blocks_p (test_bb, join_bb))
3115 merge_blocks (test_bb, join_bb);
3116 num_true_changes++;
3119 num_updated_if_blocks++;
3121 success_p = TRUE;
3123 done:
3124 then_regs.release ();
3125 else_regs.release ();
3126 return success_p;
3130 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3131 IF-THEN-ELSE-JOIN block.
3133 If so, we'll try to convert the insns to not require the branch,
3134 using only transformations that do not require conditional execution.
3136 Return TRUE if we were successful at converting the block. */
3138 static int
3139 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3140 int pass)
3142 basic_block then_bb, else_bb, join_bb;
3143 bool then_else_reversed = false;
3144 rtx_insn *jump;
3145 rtx cond;
3146 rtx_insn *cond_earliest;
3147 struct noce_if_info if_info;
3149 /* We only ever should get here before reload. */
3150 gcc_assert (!reload_completed);
3152 /* Recognize an IF-THEN-ELSE-JOIN block. */
3153 if (single_pred_p (then_edge->dest)
3154 && single_succ_p (then_edge->dest)
3155 && single_pred_p (else_edge->dest)
3156 && single_succ_p (else_edge->dest)
3157 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3159 then_bb = then_edge->dest;
3160 else_bb = else_edge->dest;
3161 join_bb = single_succ (then_bb);
3163 /* Recognize an IF-THEN-JOIN block. */
3164 else if (single_pred_p (then_edge->dest)
3165 && single_succ_p (then_edge->dest)
3166 && single_succ (then_edge->dest) == else_edge->dest)
3168 then_bb = then_edge->dest;
3169 else_bb = NULL_BLOCK;
3170 join_bb = else_edge->dest;
3172 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3173 of basic blocks in cfglayout mode does not matter, so the fallthrough
3174 edge can go to any basic block (and not just to bb->next_bb, like in
3175 cfgrtl mode). */
3176 else if (single_pred_p (else_edge->dest)
3177 && single_succ_p (else_edge->dest)
3178 && single_succ (else_edge->dest) == then_edge->dest)
3180 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3181 To make this work, we have to invert the THEN and ELSE blocks
3182 and reverse the jump condition. */
3183 then_bb = else_edge->dest;
3184 else_bb = NULL_BLOCK;
3185 join_bb = single_succ (then_bb);
3186 then_else_reversed = true;
3188 else
3189 /* Not a form we can handle. */
3190 return FALSE;
3192 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3193 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3194 return FALSE;
3195 if (else_bb
3196 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3197 return FALSE;
3199 num_possible_if_blocks++;
3201 if (dump_file)
3203 fprintf (dump_file,
3204 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3205 (else_bb) ? "-ELSE" : "",
3206 pass, test_bb->index, then_bb->index);
3208 if (else_bb)
3209 fprintf (dump_file, ", else %d", else_bb->index);
3211 fprintf (dump_file, ", join %d\n", join_bb->index);
3214 /* If the conditional jump is more than just a conditional
3215 jump, then we can not do if-conversion on this block. */
3216 jump = BB_END (test_bb);
3217 if (! onlyjump_p (jump))
3218 return FALSE;
3220 /* If this is not a standard conditional jump, we can't parse it. */
3221 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3222 if (!cond)
3223 return FALSE;
3225 /* We must be comparing objects whose modes imply the size. */
3226 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3227 return FALSE;
3229 /* Initialize an IF_INFO struct to pass around. */
3230 memset (&if_info, 0, sizeof if_info);
3231 if_info.test_bb = test_bb;
3232 if_info.then_bb = then_bb;
3233 if_info.else_bb = else_bb;
3234 if_info.join_bb = join_bb;
3235 if_info.cond = cond;
3236 if_info.cond_earliest = cond_earliest;
3237 if_info.jump = jump;
3238 if_info.then_else_reversed = then_else_reversed;
3239 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3240 predictable_edge_p (then_edge));
3242 /* Do the real work. */
3244 if (noce_process_if_block (&if_info))
3245 return TRUE;
3247 if (HAVE_conditional_move
3248 && cond_move_process_if_block (&if_info))
3249 return TRUE;
3251 return FALSE;
3255 /* Merge the blocks and mark for local life update. */
3257 static void
3258 merge_if_block (struct ce_if_block * ce_info)
3260 basic_block test_bb = ce_info->test_bb; /* last test block */
3261 basic_block then_bb = ce_info->then_bb; /* THEN */
3262 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3263 basic_block join_bb = ce_info->join_bb; /* join block */
3264 basic_block combo_bb;
3266 /* All block merging is done into the lower block numbers. */
3268 combo_bb = test_bb;
3269 df_set_bb_dirty (test_bb);
3271 /* Merge any basic blocks to handle && and || subtests. Each of
3272 the blocks are on the fallthru path from the predecessor block. */
3273 if (ce_info->num_multiple_test_blocks > 0)
3275 basic_block bb = test_bb;
3276 basic_block last_test_bb = ce_info->last_test_bb;
3277 basic_block fallthru = block_fallthru (bb);
3281 bb = fallthru;
3282 fallthru = block_fallthru (bb);
3283 merge_blocks (combo_bb, bb);
3284 num_true_changes++;
3286 while (bb != last_test_bb);
3289 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3290 label, but it might if there were || tests. That label's count should be
3291 zero, and it normally should be removed. */
3293 if (then_bb)
3295 /* If THEN_BB has no successors, then there's a BARRIER after it.
3296 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3297 is no longer needed, and in fact it is incorrect to leave it in
3298 the insn stream. */
3299 if (EDGE_COUNT (then_bb->succs) == 0
3300 && EDGE_COUNT (combo_bb->succs) > 1)
3302 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
3303 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3304 end = NEXT_INSN (end);
3306 if (end && BARRIER_P (end))
3307 delete_insn (end);
3309 merge_blocks (combo_bb, then_bb);
3310 num_true_changes++;
3313 /* The ELSE block, if it existed, had a label. That label count
3314 will almost always be zero, but odd things can happen when labels
3315 get their addresses taken. */
3316 if (else_bb)
3318 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3319 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3320 is no longer needed, and in fact it is incorrect to leave it in
3321 the insn stream. */
3322 if (EDGE_COUNT (else_bb->succs) == 0
3323 && EDGE_COUNT (combo_bb->succs) > 1)
3325 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
3326 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3327 end = NEXT_INSN (end);
3329 if (end && BARRIER_P (end))
3330 delete_insn (end);
3332 merge_blocks (combo_bb, else_bb);
3333 num_true_changes++;
3336 /* If there was no join block reported, that means it was not adjacent
3337 to the others, and so we cannot merge them. */
3339 if (! join_bb)
3341 rtx_insn *last = BB_END (combo_bb);
3343 /* The outgoing edge for the current COMBO block should already
3344 be correct. Verify this. */
3345 if (EDGE_COUNT (combo_bb->succs) == 0)
3346 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3347 || (NONJUMP_INSN_P (last)
3348 && GET_CODE (PATTERN (last)) == TRAP_IF
3349 && (TRAP_CONDITION (PATTERN (last))
3350 == const_true_rtx)));
3352 else
3353 /* There should still be something at the end of the THEN or ELSE
3354 blocks taking us to our final destination. */
3355 gcc_assert (JUMP_P (last)
3356 || (EDGE_SUCC (combo_bb, 0)->dest
3357 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3358 && CALL_P (last)
3359 && SIBLING_CALL_P (last))
3360 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3361 && can_throw_internal (last)));
3364 /* The JOIN block may have had quite a number of other predecessors too.
3365 Since we've already merged the TEST, THEN and ELSE blocks, we should
3366 have only one remaining edge from our if-then-else diamond. If there
3367 is more than one remaining edge, it must come from elsewhere. There
3368 may be zero incoming edges if the THEN block didn't actually join
3369 back up (as with a call to a non-return function). */
3370 else if (EDGE_COUNT (join_bb->preds) < 2
3371 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3373 /* We can merge the JOIN cleanly and update the dataflow try
3374 again on this pass.*/
3375 merge_blocks (combo_bb, join_bb);
3376 num_true_changes++;
3378 else
3380 /* We cannot merge the JOIN. */
3382 /* The outgoing edge for the current COMBO block should already
3383 be correct. Verify this. */
3384 gcc_assert (single_succ_p (combo_bb)
3385 && single_succ (combo_bb) == join_bb);
3387 /* Remove the jump and cruft from the end of the COMBO block. */
3388 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3389 tidy_fallthru_edge (single_succ_edge (combo_bb));
3392 num_updated_if_blocks++;
3395 /* Find a block ending in a simple IF condition and try to transform it
3396 in some way. When converting a multi-block condition, put the new code
3397 in the first such block and delete the rest. Return a pointer to this
3398 first block if some transformation was done. Return NULL otherwise. */
3400 static basic_block
3401 find_if_header (basic_block test_bb, int pass)
3403 ce_if_block ce_info;
3404 edge then_edge;
3405 edge else_edge;
3407 /* The kind of block we're looking for has exactly two successors. */
3408 if (EDGE_COUNT (test_bb->succs) != 2)
3409 return NULL;
3411 then_edge = EDGE_SUCC (test_bb, 0);
3412 else_edge = EDGE_SUCC (test_bb, 1);
3414 if (df_get_bb_dirty (then_edge->dest))
3415 return NULL;
3416 if (df_get_bb_dirty (else_edge->dest))
3417 return NULL;
3419 /* Neither edge should be abnormal. */
3420 if ((then_edge->flags & EDGE_COMPLEX)
3421 || (else_edge->flags & EDGE_COMPLEX))
3422 return NULL;
3424 /* Nor exit the loop. */
3425 if ((then_edge->flags & EDGE_LOOP_EXIT)
3426 || (else_edge->flags & EDGE_LOOP_EXIT))
3427 return NULL;
3429 /* The THEN edge is canonically the one that falls through. */
3430 if (then_edge->flags & EDGE_FALLTHRU)
3432 else if (else_edge->flags & EDGE_FALLTHRU)
3434 edge e = else_edge;
3435 else_edge = then_edge;
3436 then_edge = e;
3438 else
3439 /* Otherwise this must be a multiway branch of some sort. */
3440 return NULL;
3442 memset (&ce_info, 0, sizeof (ce_info));
3443 ce_info.test_bb = test_bb;
3444 ce_info.then_bb = then_edge->dest;
3445 ce_info.else_bb = else_edge->dest;
3446 ce_info.pass = pass;
3448 #ifdef IFCVT_MACHDEP_INIT
3449 IFCVT_MACHDEP_INIT (&ce_info);
3450 #endif
3452 if (!reload_completed
3453 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3454 goto success;
3456 if (reload_completed
3457 && targetm.have_conditional_execution ()
3458 && cond_exec_find_if_block (&ce_info))
3459 goto success;
3461 if (HAVE_trap
3462 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3463 && find_cond_trap (test_bb, then_edge, else_edge))
3464 goto success;
3466 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3467 && (reload_completed || !targetm.have_conditional_execution ()))
3469 if (find_if_case_1 (test_bb, then_edge, else_edge))
3470 goto success;
3471 if (find_if_case_2 (test_bb, then_edge, else_edge))
3472 goto success;
3475 return NULL;
3477 success:
3478 if (dump_file)
3479 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3480 /* Set this so we continue looking. */
3481 cond_exec_changed_p = TRUE;
3482 return ce_info.test_bb;
3485 /* Return true if a block has two edges, one of which falls through to the next
3486 block, and the other jumps to a specific block, so that we can tell if the
3487 block is part of an && test or an || test. Returns either -1 or the number
3488 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3490 static int
3491 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3493 edge cur_edge;
3494 int fallthru_p = FALSE;
3495 int jump_p = FALSE;
3496 rtx_insn *insn;
3497 rtx_insn *end;
3498 int n_insns = 0;
3499 edge_iterator ei;
3501 if (!cur_bb || !target_bb)
3502 return -1;
3504 /* If no edges, obviously it doesn't jump or fallthru. */
3505 if (EDGE_COUNT (cur_bb->succs) == 0)
3506 return FALSE;
3508 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3510 if (cur_edge->flags & EDGE_COMPLEX)
3511 /* Anything complex isn't what we want. */
3512 return -1;
3514 else if (cur_edge->flags & EDGE_FALLTHRU)
3515 fallthru_p = TRUE;
3517 else if (cur_edge->dest == target_bb)
3518 jump_p = TRUE;
3520 else
3521 return -1;
3524 if ((jump_p & fallthru_p) == 0)
3525 return -1;
3527 /* Don't allow calls in the block, since this is used to group && and ||
3528 together for conditional execution support. ??? we should support
3529 conditional execution support across calls for IA-64 some day, but
3530 for now it makes the code simpler. */
3531 end = BB_END (cur_bb);
3532 insn = BB_HEAD (cur_bb);
3534 while (insn != NULL_RTX)
3536 if (CALL_P (insn))
3537 return -1;
3539 if (INSN_P (insn)
3540 && !JUMP_P (insn)
3541 && !DEBUG_INSN_P (insn)
3542 && GET_CODE (PATTERN (insn)) != USE
3543 && GET_CODE (PATTERN (insn)) != CLOBBER)
3544 n_insns++;
3546 if (insn == end)
3547 break;
3549 insn = NEXT_INSN (insn);
3552 return n_insns;
3555 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3556 block. If so, we'll try to convert the insns to not require the branch.
3557 Return TRUE if we were successful at converting the block. */
3559 static int
3560 cond_exec_find_if_block (struct ce_if_block * ce_info)
3562 basic_block test_bb = ce_info->test_bb;
3563 basic_block then_bb = ce_info->then_bb;
3564 basic_block else_bb = ce_info->else_bb;
3565 basic_block join_bb = NULL_BLOCK;
3566 edge cur_edge;
3567 basic_block next;
3568 edge_iterator ei;
3570 ce_info->last_test_bb = test_bb;
3572 /* We only ever should get here after reload,
3573 and if we have conditional execution. */
3574 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3576 /* Discover if any fall through predecessors of the current test basic block
3577 were && tests (which jump to the else block) or || tests (which jump to
3578 the then block). */
3579 if (single_pred_p (test_bb)
3580 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3582 basic_block bb = single_pred (test_bb);
3583 basic_block target_bb;
3584 int max_insns = MAX_CONDITIONAL_EXECUTE;
3585 int n_insns;
3587 /* Determine if the preceding block is an && or || block. */
3588 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3590 ce_info->and_and_p = TRUE;
3591 target_bb = else_bb;
3593 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3595 ce_info->and_and_p = FALSE;
3596 target_bb = then_bb;
3598 else
3599 target_bb = NULL_BLOCK;
3601 if (target_bb && n_insns <= max_insns)
3603 int total_insns = 0;
3604 int blocks = 0;
3606 ce_info->last_test_bb = test_bb;
3608 /* Found at least one && or || block, look for more. */
3611 ce_info->test_bb = test_bb = bb;
3612 total_insns += n_insns;
3613 blocks++;
3615 if (!single_pred_p (bb))
3616 break;
3618 bb = single_pred (bb);
3619 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3621 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3623 ce_info->num_multiple_test_blocks = blocks;
3624 ce_info->num_multiple_test_insns = total_insns;
3626 if (ce_info->and_and_p)
3627 ce_info->num_and_and_blocks = blocks;
3628 else
3629 ce_info->num_or_or_blocks = blocks;
3633 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3634 other than any || blocks which jump to the THEN block. */
3635 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3636 return FALSE;
3638 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3639 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3641 if (cur_edge->flags & EDGE_COMPLEX)
3642 return FALSE;
3645 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3647 if (cur_edge->flags & EDGE_COMPLEX)
3648 return FALSE;
3651 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3652 if (EDGE_COUNT (then_bb->succs) > 0
3653 && (!single_succ_p (then_bb)
3654 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3655 || (epilogue_completed
3656 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3657 return FALSE;
3659 /* If the THEN block has no successors, conditional execution can still
3660 make a conditional call. Don't do this unless the ELSE block has
3661 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3662 Check for the last insn of the THEN block being an indirect jump, which
3663 is listed as not having any successors, but confuses the rest of the CE
3664 code processing. ??? we should fix this in the future. */
3665 if (EDGE_COUNT (then_bb->succs) == 0)
3667 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3669 rtx_insn *last_insn = BB_END (then_bb);
3671 while (last_insn
3672 && NOTE_P (last_insn)
3673 && last_insn != BB_HEAD (then_bb))
3674 last_insn = PREV_INSN (last_insn);
3676 if (last_insn
3677 && JUMP_P (last_insn)
3678 && ! simplejump_p (last_insn))
3679 return FALSE;
3681 join_bb = else_bb;
3682 else_bb = NULL_BLOCK;
3684 else
3685 return FALSE;
3688 /* If the THEN block's successor is the other edge out of the TEST block,
3689 then we have an IF-THEN combo without an ELSE. */
3690 else if (single_succ (then_bb) == else_bb)
3692 join_bb = else_bb;
3693 else_bb = NULL_BLOCK;
3696 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3697 has exactly one predecessor and one successor, and the outgoing edge
3698 is not complex, then we have an IF-THEN-ELSE combo. */
3699 else if (single_succ_p (else_bb)
3700 && single_succ (then_bb) == single_succ (else_bb)
3701 && single_pred_p (else_bb)
3702 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3703 && !(epilogue_completed
3704 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3705 join_bb = single_succ (else_bb);
3707 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3708 else
3709 return FALSE;
3711 num_possible_if_blocks++;
3713 if (dump_file)
3715 fprintf (dump_file,
3716 "\nIF-THEN%s block found, pass %d, start block %d "
3717 "[insn %d], then %d [%d]",
3718 (else_bb) ? "-ELSE" : "",
3719 ce_info->pass,
3720 test_bb->index,
3721 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3722 then_bb->index,
3723 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3725 if (else_bb)
3726 fprintf (dump_file, ", else %d [%d]",
3727 else_bb->index,
3728 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3730 fprintf (dump_file, ", join %d [%d]",
3731 join_bb->index,
3732 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3734 if (ce_info->num_multiple_test_blocks > 0)
3735 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3736 ce_info->num_multiple_test_blocks,
3737 (ce_info->and_and_p) ? "&&" : "||",
3738 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3739 ce_info->last_test_bb->index,
3740 ((BB_HEAD (ce_info->last_test_bb))
3741 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3742 : -1));
3744 fputc ('\n', dump_file);
3747 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3748 first condition for free, since we've already asserted that there's a
3749 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3750 we checked the FALLTHRU flag, those are already adjacent to the last IF
3751 block. */
3752 /* ??? As an enhancement, move the ELSE block. Have to deal with
3753 BLOCK notes, if by no other means than backing out the merge if they
3754 exist. Sticky enough I don't want to think about it now. */
3755 next = then_bb;
3756 if (else_bb && (next = next->next_bb) != else_bb)
3757 return FALSE;
3758 if ((next = next->next_bb) != join_bb
3759 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3761 if (else_bb)
3762 join_bb = NULL;
3763 else
3764 return FALSE;
3767 /* Do the real work. */
3769 ce_info->else_bb = else_bb;
3770 ce_info->join_bb = join_bb;
3772 /* If we have && and || tests, try to first handle combining the && and ||
3773 tests into the conditional code, and if that fails, go back and handle
3774 it without the && and ||, which at present handles the && case if there
3775 was no ELSE block. */
3776 if (cond_exec_process_if_block (ce_info, TRUE))
3777 return TRUE;
3779 if (ce_info->num_multiple_test_blocks)
3781 cancel_changes (0);
3783 if (cond_exec_process_if_block (ce_info, FALSE))
3784 return TRUE;
3787 return FALSE;
3790 /* Convert a branch over a trap, or a branch
3791 to a trap, into a conditional trap. */
3793 static int
3794 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3796 basic_block then_bb = then_edge->dest;
3797 basic_block else_bb = else_edge->dest;
3798 basic_block other_bb, trap_bb;
3799 rtx_insn *trap, *jump;
3800 rtx cond, seq;
3801 rtx_insn *cond_earliest;
3802 enum rtx_code code;
3804 /* Locate the block with the trap instruction. */
3805 /* ??? While we look for no successors, we really ought to allow
3806 EH successors. Need to fix merge_if_block for that to work. */
3807 if ((trap = block_has_only_trap (then_bb)) != NULL)
3808 trap_bb = then_bb, other_bb = else_bb;
3809 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3810 trap_bb = else_bb, other_bb = then_bb;
3811 else
3812 return FALSE;
3814 if (dump_file)
3816 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3817 test_bb->index, trap_bb->index);
3820 /* If this is not a standard conditional jump, we can't parse it. */
3821 jump = BB_END (test_bb);
3822 cond = noce_get_condition (jump, &cond_earliest, false);
3823 if (! cond)
3824 return FALSE;
3826 /* If the conditional jump is more than just a conditional jump, then
3827 we can not do if-conversion on this block. Give up for returnjump_p,
3828 changing a conditional return followed by unconditional trap for
3829 conditional trap followed by unconditional return is likely not
3830 beneficial and harder to handle. */
3831 if (! onlyjump_p (jump) || returnjump_p (jump))
3832 return FALSE;
3834 /* We must be comparing objects whose modes imply the size. */
3835 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3836 return FALSE;
3838 /* Reverse the comparison code, if necessary. */
3839 code = GET_CODE (cond);
3840 if (then_bb == trap_bb)
3842 code = reversed_comparison_code (cond, jump);
3843 if (code == UNKNOWN)
3844 return FALSE;
3847 /* Attempt to generate the conditional trap. */
3848 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3849 copy_rtx (XEXP (cond, 1)),
3850 TRAP_CODE (PATTERN (trap)));
3851 if (seq == NULL)
3852 return FALSE;
3854 /* Emit the new insns before cond_earliest. */
3855 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3857 /* Delete the trap block if possible. */
3858 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3859 df_set_bb_dirty (test_bb);
3860 df_set_bb_dirty (then_bb);
3861 df_set_bb_dirty (else_bb);
3863 if (EDGE_COUNT (trap_bb->preds) == 0)
3865 delete_basic_block (trap_bb);
3866 num_true_changes++;
3869 /* Wire together the blocks again. */
3870 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3871 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3872 else if (trap_bb == then_bb)
3874 rtx lab;
3875 rtx_insn *newjump;
3877 lab = JUMP_LABEL (jump);
3878 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3879 LABEL_NUSES (lab) += 1;
3880 JUMP_LABEL (newjump) = lab;
3881 emit_barrier_after (newjump);
3883 delete_insn (jump);
3885 if (can_merge_blocks_p (test_bb, other_bb))
3887 merge_blocks (test_bb, other_bb);
3888 num_true_changes++;
3891 num_updated_if_blocks++;
3892 return TRUE;
3895 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3896 return it. */
3898 static rtx_insn *
3899 block_has_only_trap (basic_block bb)
3901 rtx_insn *trap;
3903 /* We're not the exit block. */
3904 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3905 return NULL;
3907 /* The block must have no successors. */
3908 if (EDGE_COUNT (bb->succs) > 0)
3909 return NULL;
3911 /* The only instruction in the THEN block must be the trap. */
3912 trap = first_active_insn (bb);
3913 if (! (trap == BB_END (bb)
3914 && GET_CODE (PATTERN (trap)) == TRAP_IF
3915 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3916 return NULL;
3918 return trap;
3921 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3922 transformable, but not necessarily the other. There need be no
3923 JOIN block.
3925 Return TRUE if we were successful at converting the block.
3927 Cases we'd like to look at:
3930 if (test) goto over; // x not live
3931 x = a;
3932 goto label;
3933 over:
3935 becomes
3937 x = a;
3938 if (! test) goto label;
3941 if (test) goto E; // x not live
3942 x = big();
3943 goto L;
3945 x = b;
3946 goto M;
3948 becomes
3950 x = b;
3951 if (test) goto M;
3952 x = big();
3953 goto L;
3955 (3) // This one's really only interesting for targets that can do
3956 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3957 // it results in multiple branches on a cache line, which often
3958 // does not sit well with predictors.
3960 if (test1) goto E; // predicted not taken
3961 x = a;
3962 if (test2) goto F;
3965 x = b;
3968 becomes
3970 x = a;
3971 if (test1) goto E;
3972 if (test2) goto F;
3974 Notes:
3976 (A) Don't do (2) if the branch is predicted against the block we're
3977 eliminating. Do it anyway if we can eliminate a branch; this requires
3978 that the sole successor of the eliminated block postdominate the other
3979 side of the if.
3981 (B) With CE, on (3) we can steal from both sides of the if, creating
3983 if (test1) x = a;
3984 if (!test1) x = b;
3985 if (test1) goto J;
3986 if (test2) goto F;
3990 Again, this is most useful if J postdominates.
3992 (C) CE substitutes for helpful life information.
3994 (D) These heuristics need a lot of work. */
3996 /* Tests for case 1 above. */
3998 static int
3999 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
4001 basic_block then_bb = then_edge->dest;
4002 basic_block else_bb = else_edge->dest;
4003 basic_block new_bb;
4004 int then_bb_index, then_prob;
4005 rtx else_target = NULL_RTX;
4007 /* If we are partitioning hot/cold basic blocks, we don't want to
4008 mess up unconditional or indirect jumps that cross between hot
4009 and cold sections.
4011 Basic block partitioning may result in some jumps that appear to
4012 be optimizable (or blocks that appear to be mergeable), but which really
4013 must be left untouched (they are required to make it safely across
4014 partition boundaries). See the comments at the top of
4015 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4017 if ((BB_END (then_bb)
4018 && JUMP_P (BB_END (then_bb))
4019 && CROSSING_JUMP_P (BB_END (then_bb)))
4020 || (BB_END (test_bb)
4021 && JUMP_P (BB_END (test_bb))
4022 && CROSSING_JUMP_P (BB_END (test_bb)))
4023 || (BB_END (else_bb)
4024 && JUMP_P (BB_END (else_bb))
4025 && CROSSING_JUMP_P (BB_END (else_bb))))
4026 return FALSE;
4028 /* THEN has one successor. */
4029 if (!single_succ_p (then_bb))
4030 return FALSE;
4032 /* THEN does not fall through, but is not strange either. */
4033 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
4034 return FALSE;
4036 /* THEN has one predecessor. */
4037 if (!single_pred_p (then_bb))
4038 return FALSE;
4040 /* THEN must do something. */
4041 if (forwarder_block_p (then_bb))
4042 return FALSE;
4044 num_possible_if_blocks++;
4045 if (dump_file)
4046 fprintf (dump_file,
4047 "\nIF-CASE-1 found, start %d, then %d\n",
4048 test_bb->index, then_bb->index);
4050 if (then_edge->probability)
4051 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4052 else
4053 then_prob = REG_BR_PROB_BASE / 2;
4055 /* We're speculating from the THEN path, we want to make sure the cost
4056 of speculation is within reason. */
4057 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4058 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4059 predictable_edge_p (then_edge)))))
4060 return FALSE;
4062 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4064 rtx_insn *jump = BB_END (else_edge->src);
4065 gcc_assert (JUMP_P (jump));
4066 else_target = JUMP_LABEL (jump);
4069 /* Registers set are dead, or are predicable. */
4070 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4071 single_succ_edge (then_bb), 1))
4072 return FALSE;
4074 /* Conversion went ok, including moving the insns and fixing up the
4075 jump. Adjust the CFG to match. */
4077 /* We can avoid creating a new basic block if then_bb is immediately
4078 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4079 through to else_bb. */
4081 if (then_bb->next_bb == else_bb
4082 && then_bb->prev_bb == test_bb
4083 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4085 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4086 new_bb = 0;
4088 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4089 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4090 else_bb, else_target);
4091 else
4092 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4093 else_bb);
4095 df_set_bb_dirty (test_bb);
4096 df_set_bb_dirty (else_bb);
4098 then_bb_index = then_bb->index;
4099 delete_basic_block (then_bb);
4101 /* Make rest of code believe that the newly created block is the THEN_BB
4102 block we removed. */
4103 if (new_bb)
4105 df_bb_replace (then_bb_index, new_bb);
4106 /* This should have been done above via force_nonfallthru_and_redirect
4107 (possibly called from redirect_edge_and_branch_force). */
4108 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4111 num_true_changes++;
4112 num_updated_if_blocks++;
4114 return TRUE;
4117 /* Test for case 2 above. */
4119 static int
4120 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4122 basic_block then_bb = then_edge->dest;
4123 basic_block else_bb = else_edge->dest;
4124 edge else_succ;
4125 int then_prob, else_prob;
4127 /* We do not want to speculate (empty) loop latches. */
4128 if (current_loops
4129 && else_bb->loop_father->latch == else_bb)
4130 return FALSE;
4132 /* If we are partitioning hot/cold basic blocks, we don't want to
4133 mess up unconditional or indirect jumps that cross between hot
4134 and cold sections.
4136 Basic block partitioning may result in some jumps that appear to
4137 be optimizable (or blocks that appear to be mergeable), but which really
4138 must be left untouched (they are required to make it safely across
4139 partition boundaries). See the comments at the top of
4140 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4142 if ((BB_END (then_bb)
4143 && JUMP_P (BB_END (then_bb))
4144 && CROSSING_JUMP_P (BB_END (then_bb)))
4145 || (BB_END (test_bb)
4146 && JUMP_P (BB_END (test_bb))
4147 && CROSSING_JUMP_P (BB_END (test_bb)))
4148 || (BB_END (else_bb)
4149 && JUMP_P (BB_END (else_bb))
4150 && CROSSING_JUMP_P (BB_END (else_bb))))
4151 return FALSE;
4153 /* ELSE has one successor. */
4154 if (!single_succ_p (else_bb))
4155 return FALSE;
4156 else
4157 else_succ = single_succ_edge (else_bb);
4159 /* ELSE outgoing edge is not complex. */
4160 if (else_succ->flags & EDGE_COMPLEX)
4161 return FALSE;
4163 /* ELSE has one predecessor. */
4164 if (!single_pred_p (else_bb))
4165 return FALSE;
4167 /* THEN is not EXIT. */
4168 if (then_bb->index < NUM_FIXED_BLOCKS)
4169 return FALSE;
4171 if (else_edge->probability)
4173 else_prob = else_edge->probability;
4174 then_prob = REG_BR_PROB_BASE - else_prob;
4176 else
4178 else_prob = REG_BR_PROB_BASE / 2;
4179 then_prob = REG_BR_PROB_BASE / 2;
4182 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4183 if (else_prob > then_prob)
4185 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4186 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4187 else_succ->dest))
4189 else
4190 return FALSE;
4192 num_possible_if_blocks++;
4193 if (dump_file)
4194 fprintf (dump_file,
4195 "\nIF-CASE-2 found, start %d, else %d\n",
4196 test_bb->index, else_bb->index);
4198 /* We're speculating from the ELSE path, we want to make sure the cost
4199 of speculation is within reason. */
4200 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4201 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4202 predictable_edge_p (else_edge)))))
4203 return FALSE;
4205 /* Registers set are dead, or are predicable. */
4206 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4207 return FALSE;
4209 /* Conversion went ok, including moving the insns and fixing up the
4210 jump. Adjust the CFG to match. */
4212 df_set_bb_dirty (test_bb);
4213 df_set_bb_dirty (then_bb);
4214 delete_basic_block (else_bb);
4216 num_true_changes++;
4217 num_updated_if_blocks++;
4219 /* ??? We may now fallthru from one of THEN's successors into a join
4220 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4222 return TRUE;
4225 /* Used by the code above to perform the actual rtl transformations.
4226 Return TRUE if successful.
4228 TEST_BB is the block containing the conditional branch. MERGE_BB
4229 is the block containing the code to manipulate. DEST_EDGE is an
4230 edge representing a jump to the join block; after the conversion,
4231 TEST_BB should be branching to its destination.
4232 REVERSEP is true if the sense of the branch should be reversed. */
4234 static int
4235 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4236 basic_block other_bb, edge dest_edge, int reversep)
4238 basic_block new_dest = dest_edge->dest;
4239 rtx_insn *head, *end, *jump;
4240 rtx_insn *earliest = NULL;
4241 rtx old_dest;
4242 bitmap merge_set = NULL;
4243 /* Number of pending changes. */
4244 int n_validated_changes = 0;
4245 rtx new_dest_label = NULL_RTX;
4247 jump = BB_END (test_bb);
4249 /* Find the extent of the real code in the merge block. */
4250 head = BB_HEAD (merge_bb);
4251 end = BB_END (merge_bb);
4253 while (DEBUG_INSN_P (end) && end != head)
4254 end = PREV_INSN (end);
4256 /* If merge_bb ends with a tablejump, predicating/moving insn's
4257 into test_bb and then deleting merge_bb will result in the jumptable
4258 that follows merge_bb being removed along with merge_bb and then we
4259 get an unresolved reference to the jumptable. */
4260 if (tablejump_p (end, NULL, NULL))
4261 return FALSE;
4263 if (LABEL_P (head))
4264 head = NEXT_INSN (head);
4265 while (DEBUG_INSN_P (head) && head != end)
4266 head = NEXT_INSN (head);
4267 if (NOTE_P (head))
4269 if (head == end)
4271 head = end = NULL;
4272 goto no_body;
4274 head = NEXT_INSN (head);
4275 while (DEBUG_INSN_P (head) && head != end)
4276 head = NEXT_INSN (head);
4279 if (JUMP_P (end))
4281 if (!onlyjump_p (end))
4282 return FALSE;
4283 if (head == end)
4285 head = end = NULL;
4286 goto no_body;
4288 end = PREV_INSN (end);
4289 while (DEBUG_INSN_P (end) && end != head)
4290 end = PREV_INSN (end);
4293 /* Don't move frame-related insn across the conditional branch. This
4294 can lead to one of the paths of the branch having wrong unwind info. */
4295 if (epilogue_completed)
4297 rtx_insn *insn = head;
4298 while (1)
4300 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4301 return FALSE;
4302 if (insn == end)
4303 break;
4304 insn = NEXT_INSN (insn);
4308 /* Disable handling dead code by conditional execution if the machine needs
4309 to do anything funny with the tests, etc. */
4310 #ifndef IFCVT_MODIFY_TESTS
4311 if (targetm.have_conditional_execution ())
4313 /* In the conditional execution case, we have things easy. We know
4314 the condition is reversible. We don't have to check life info
4315 because we're going to conditionally execute the code anyway.
4316 All that's left is making sure the insns involved can actually
4317 be predicated. */
4319 rtx cond;
4321 cond = cond_exec_get_condition (jump);
4322 if (! cond)
4323 return FALSE;
4325 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4326 int prob_val = (note ? XINT (note, 0) : -1);
4328 if (reversep)
4330 enum rtx_code rev = reversed_comparison_code (cond, jump);
4331 if (rev == UNKNOWN)
4332 return FALSE;
4333 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4334 XEXP (cond, 1));
4335 if (prob_val >= 0)
4336 prob_val = REG_BR_PROB_BASE - prob_val;
4339 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4340 && verify_changes (0))
4341 n_validated_changes = num_validated_changes ();
4342 else
4343 cancel_changes (0);
4345 earliest = jump;
4347 #endif
4349 /* If we allocated new pseudos (e.g. in the conditional move
4350 expander called from noce_emit_cmove), we must resize the
4351 array first. */
4352 if (max_regno < max_reg_num ())
4353 max_regno = max_reg_num ();
4355 /* Try the NCE path if the CE path did not result in any changes. */
4356 if (n_validated_changes == 0)
4358 rtx cond;
4359 rtx_insn *insn;
4360 regset live;
4361 bool success;
4363 /* In the non-conditional execution case, we have to verify that there
4364 are no trapping operations, no calls, no references to memory, and
4365 that any registers modified are dead at the branch site. */
4367 if (!any_condjump_p (jump))
4368 return FALSE;
4370 /* Find the extent of the conditional. */
4371 cond = noce_get_condition (jump, &earliest, false);
4372 if (!cond)
4373 return FALSE;
4375 live = BITMAP_ALLOC (&reg_obstack);
4376 simulate_backwards_to_point (merge_bb, live, end);
4377 success = can_move_insns_across (head, end, earliest, jump,
4378 merge_bb, live,
4379 df_get_live_in (other_bb), NULL);
4380 BITMAP_FREE (live);
4381 if (!success)
4382 return FALSE;
4384 /* Collect the set of registers set in MERGE_BB. */
4385 merge_set = BITMAP_ALLOC (&reg_obstack);
4387 FOR_BB_INSNS (merge_bb, insn)
4388 if (NONDEBUG_INSN_P (insn))
4389 df_simulate_find_defs (insn, merge_set);
4391 /* If shrink-wrapping, disable this optimization when test_bb is
4392 the first basic block and merge_bb exits. The idea is to not
4393 move code setting up a return register as that may clobber a
4394 register used to pass function parameters, which then must be
4395 saved in caller-saved regs. A caller-saved reg requires the
4396 prologue, killing a shrink-wrap opportunity. */
4397 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
4398 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4399 && single_succ_p (new_dest)
4400 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4401 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4403 regset return_regs;
4404 unsigned int i;
4406 return_regs = BITMAP_ALLOC (&reg_obstack);
4408 /* Start off with the intersection of regs used to pass
4409 params and regs used to return values. */
4410 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4411 if (FUNCTION_ARG_REGNO_P (i)
4412 && targetm.calls.function_value_regno_p (i))
4413 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4415 bitmap_and_into (return_regs,
4416 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4417 bitmap_and_into (return_regs,
4418 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4419 if (!bitmap_empty_p (return_regs))
4421 FOR_BB_INSNS_REVERSE (new_dest, insn)
4422 if (NONDEBUG_INSN_P (insn))
4424 df_ref def;
4426 /* If this insn sets any reg in return_regs, add all
4427 reg uses to the set of regs we're interested in. */
4428 FOR_EACH_INSN_DEF (def, insn)
4429 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4431 df_simulate_uses (insn, return_regs);
4432 break;
4435 if (bitmap_intersect_p (merge_set, return_regs))
4437 BITMAP_FREE (return_regs);
4438 BITMAP_FREE (merge_set);
4439 return FALSE;
4442 BITMAP_FREE (return_regs);
4446 no_body:
4447 /* We don't want to use normal invert_jump or redirect_jump because
4448 we don't want to delete_insn called. Also, we want to do our own
4449 change group management. */
4451 old_dest = JUMP_LABEL (jump);
4452 if (other_bb != new_dest)
4454 if (!any_condjump_p (jump))
4455 goto cancel;
4457 if (JUMP_P (BB_END (dest_edge->src)))
4458 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4459 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4460 new_dest_label = ret_rtx;
4461 else
4462 new_dest_label = block_label (new_dest);
4464 if (reversep
4465 ? ! invert_jump_1 (jump, new_dest_label)
4466 : ! redirect_jump_1 (jump, new_dest_label))
4467 goto cancel;
4470 if (verify_changes (n_validated_changes))
4471 confirm_change_group ();
4472 else
4473 goto cancel;
4475 if (other_bb != new_dest)
4477 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4479 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4480 if (reversep)
4482 gcov_type count, probability;
4483 count = BRANCH_EDGE (test_bb)->count;
4484 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4485 FALLTHRU_EDGE (test_bb)->count = count;
4486 probability = BRANCH_EDGE (test_bb)->probability;
4487 BRANCH_EDGE (test_bb)->probability
4488 = FALLTHRU_EDGE (test_bb)->probability;
4489 FALLTHRU_EDGE (test_bb)->probability = probability;
4490 update_br_prob_note (test_bb);
4494 /* Move the insns out of MERGE_BB to before the branch. */
4495 if (head != NULL)
4497 rtx_insn *insn;
4499 if (end == BB_END (merge_bb))
4500 BB_END (merge_bb) = PREV_INSN (head);
4502 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4503 notes being moved might become invalid. */
4504 insn = head;
4507 rtx note;
4509 if (! INSN_P (insn))
4510 continue;
4511 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4512 if (! note)
4513 continue;
4514 remove_note (insn, note);
4515 } while (insn != end && (insn = NEXT_INSN (insn)));
4517 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4518 notes referring to the registers being set might become invalid. */
4519 if (merge_set)
4521 unsigned i;
4522 bitmap_iterator bi;
4524 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4525 remove_reg_equal_equiv_notes_for_regno (i);
4527 BITMAP_FREE (merge_set);
4530 reorder_insns (head, end, PREV_INSN (earliest));
4533 /* Remove the jump and edge if we can. */
4534 if (other_bb == new_dest)
4536 delete_insn (jump);
4537 remove_edge (BRANCH_EDGE (test_bb));
4538 /* ??? Can't merge blocks here, as then_bb is still in use.
4539 At minimum, the merge will get done just before bb-reorder. */
4542 return TRUE;
4544 cancel:
4545 cancel_changes (0);
4547 if (merge_set)
4548 BITMAP_FREE (merge_set);
4550 return FALSE;
4553 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4554 we are after combine pass. */
4556 static void
4557 if_convert (bool after_combine)
4559 basic_block bb;
4560 int pass;
4562 if (optimize == 1)
4564 df_live_add_problem ();
4565 df_live_set_all_dirty ();
4568 /* Record whether we are after combine pass. */
4569 ifcvt_after_combine = after_combine;
4570 num_possible_if_blocks = 0;
4571 num_updated_if_blocks = 0;
4572 num_true_changes = 0;
4574 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4575 mark_loop_exit_edges ();
4576 loop_optimizer_finalize ();
4577 free_dominance_info (CDI_DOMINATORS);
4579 /* Compute postdominators. */
4580 calculate_dominance_info (CDI_POST_DOMINATORS);
4582 df_set_flags (DF_LR_RUN_DCE);
4584 /* Go through each of the basic blocks looking for things to convert. If we
4585 have conditional execution, we make multiple passes to allow us to handle
4586 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4587 pass = 0;
4590 df_analyze ();
4591 /* Only need to do dce on the first pass. */
4592 df_clear_flags (DF_LR_RUN_DCE);
4593 cond_exec_changed_p = FALSE;
4594 pass++;
4596 #ifdef IFCVT_MULTIPLE_DUMPS
4597 if (dump_file && pass > 1)
4598 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4599 #endif
4601 FOR_EACH_BB_FN (bb, cfun)
4603 basic_block new_bb;
4604 while (!df_get_bb_dirty (bb)
4605 && (new_bb = find_if_header (bb, pass)) != NULL)
4606 bb = new_bb;
4609 #ifdef IFCVT_MULTIPLE_DUMPS
4610 if (dump_file && cond_exec_changed_p)
4611 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4612 #endif
4614 while (cond_exec_changed_p);
4616 #ifdef IFCVT_MULTIPLE_DUMPS
4617 if (dump_file)
4618 fprintf (dump_file, "\n\n========== no more changes\n");
4619 #endif
4621 free_dominance_info (CDI_POST_DOMINATORS);
4623 if (dump_file)
4624 fflush (dump_file);
4626 clear_aux_for_blocks ();
4628 /* If we allocated new pseudos, we must resize the array for sched1. */
4629 if (max_regno < max_reg_num ())
4630 max_regno = max_reg_num ();
4632 /* Write the final stats. */
4633 if (dump_file && num_possible_if_blocks > 0)
4635 fprintf (dump_file,
4636 "\n%d possible IF blocks searched.\n",
4637 num_possible_if_blocks);
4638 fprintf (dump_file,
4639 "%d IF blocks converted.\n",
4640 num_updated_if_blocks);
4641 fprintf (dump_file,
4642 "%d true changes made.\n\n\n",
4643 num_true_changes);
4646 if (optimize == 1)
4647 df_remove_problem (df_live);
4649 #ifdef ENABLE_CHECKING
4650 verify_flow_info ();
4651 #endif
4654 /* If-conversion and CFG cleanup. */
4655 static unsigned int
4656 rest_of_handle_if_conversion (void)
4658 if (flag_if_conversion)
4660 if (dump_file)
4662 dump_reg_info (dump_file);
4663 dump_flow_info (dump_file, dump_flags);
4665 cleanup_cfg (CLEANUP_EXPENSIVE);
4666 if_convert (false);
4669 cleanup_cfg (0);
4670 return 0;
4673 namespace {
4675 const pass_data pass_data_rtl_ifcvt =
4677 RTL_PASS, /* type */
4678 "ce1", /* name */
4679 OPTGROUP_NONE, /* optinfo_flags */
4680 TV_IFCVT, /* tv_id */
4681 0, /* properties_required */
4682 0, /* properties_provided */
4683 0, /* properties_destroyed */
4684 0, /* todo_flags_start */
4685 TODO_df_finish, /* todo_flags_finish */
4688 class pass_rtl_ifcvt : public rtl_opt_pass
4690 public:
4691 pass_rtl_ifcvt (gcc::context *ctxt)
4692 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4695 /* opt_pass methods: */
4696 virtual bool gate (function *)
4698 return (optimize > 0) && dbg_cnt (if_conversion);
4701 virtual unsigned int execute (function *)
4703 return rest_of_handle_if_conversion ();
4706 }; // class pass_rtl_ifcvt
4708 } // anon namespace
4710 rtl_opt_pass *
4711 make_pass_rtl_ifcvt (gcc::context *ctxt)
4713 return new pass_rtl_ifcvt (ctxt);
4717 /* Rerun if-conversion, as combine may have simplified things enough
4718 to now meet sequence length restrictions. */
4720 namespace {
4722 const pass_data pass_data_if_after_combine =
4724 RTL_PASS, /* type */
4725 "ce2", /* name */
4726 OPTGROUP_NONE, /* optinfo_flags */
4727 TV_IFCVT, /* tv_id */
4728 0, /* properties_required */
4729 0, /* properties_provided */
4730 0, /* properties_destroyed */
4731 0, /* todo_flags_start */
4732 TODO_df_finish, /* todo_flags_finish */
4735 class pass_if_after_combine : public rtl_opt_pass
4737 public:
4738 pass_if_after_combine (gcc::context *ctxt)
4739 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4742 /* opt_pass methods: */
4743 virtual bool gate (function *)
4745 return optimize > 0 && flag_if_conversion
4746 && dbg_cnt (if_after_combine);
4749 virtual unsigned int execute (function *)
4751 if_convert (true);
4752 return 0;
4755 }; // class pass_if_after_combine
4757 } // anon namespace
4759 rtl_opt_pass *
4760 make_pass_if_after_combine (gcc::context *ctxt)
4762 return new pass_if_after_combine (ctxt);
4766 namespace {
4768 const pass_data pass_data_if_after_reload =
4770 RTL_PASS, /* type */
4771 "ce3", /* name */
4772 OPTGROUP_NONE, /* optinfo_flags */
4773 TV_IFCVT2, /* tv_id */
4774 0, /* properties_required */
4775 0, /* properties_provided */
4776 0, /* properties_destroyed */
4777 0, /* todo_flags_start */
4778 TODO_df_finish, /* todo_flags_finish */
4781 class pass_if_after_reload : public rtl_opt_pass
4783 public:
4784 pass_if_after_reload (gcc::context *ctxt)
4785 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4788 /* opt_pass methods: */
4789 virtual bool gate (function *)
4791 return optimize > 0 && flag_if_conversion2
4792 && dbg_cnt (if_after_reload);
4795 virtual unsigned int execute (function *)
4797 if_convert (true);
4798 return 0;
4801 }; // class pass_if_after_reload
4803 } // anon namespace
4805 rtl_opt_pass *
4806 make_pass_if_after_reload (gcc::context *ctxt)
4808 return new pass_if_after_reload (ctxt);