1 // script-sections.cc -- linker script SECTIONS for gold
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "parameters.h"
39 #include "script-sections.h"
41 // Support for the SECTIONS clause in linker scripts.
46 // A region of memory.
50 Memory_region(const char* name
, size_t namelen
, unsigned int attributes
,
51 Expression
* start
, Expression
* length
)
52 : name_(name
, namelen
),
53 attributes_(attributes
),
62 // Return the name of this region.
65 { return this->name_
; }
67 // Return the start address of this region.
70 { return this->start_
; }
72 // Return the length of this region.
75 { return this->length_
; }
77 // Print the region (when debugging).
81 // Return true if <name,namelen> matches this region.
83 name_match(const char* name
, size_t namelen
)
85 return (this->name_
.length() == namelen
86 && strncmp(this->name_
.c_str(), name
, namelen
) == 0);
90 get_current_address() const
93 script_exp_binary_add(this->start_
,
94 script_exp_integer(this->current_offset_
));
98 set_address(uint64_t addr
, const Symbol_table
* symtab
, const Layout
* layout
)
100 uint64_t start
= this->start_
->eval(symtab
, layout
, false);
101 uint64_t len
= this->length_
->eval(symtab
, layout
, false);
102 if (addr
< start
|| addr
>= start
+ len
)
103 gold_error(_("address 0x%llx is not within region %s"),
104 static_cast<unsigned long long>(addr
),
105 this->name_
.c_str());
106 else if (addr
< start
+ this->current_offset_
)
107 gold_error(_("address 0x%llx moves dot backwards in region %s"),
108 static_cast<unsigned long long>(addr
),
109 this->name_
.c_str());
110 this->current_offset_
= addr
- start
;
114 increment_offset(std::string section_name
, uint64_t amount
,
115 const Symbol_table
* symtab
, const Layout
* layout
)
117 this->current_offset_
+= amount
;
119 if (this->current_offset_
120 > this->length_
->eval(symtab
, layout
, false))
121 gold_error(_("section %s overflows end of region %s"),
122 section_name
.c_str(), this->name_
.c_str());
125 // Returns true iff there is room left in this region
126 // for AMOUNT more bytes of data.
128 has_room_for(const Symbol_table
* symtab
, const Layout
* layout
,
129 uint64_t amount
) const
131 return (this->current_offset_
+ amount
132 < this->length_
->eval(symtab
, layout
, false));
135 // Return true if the provided section flags
136 // are compatible with this region's attributes.
138 attributes_compatible(elfcpp::Elf_Xword flags
, elfcpp::Elf_Xword type
) const;
141 add_section(Output_section_definition
* sec
, bool vma
)
144 this->vma_sections_
.push_back(sec
);
146 this->lma_sections_
.push_back(sec
);
149 typedef std::vector
<Output_section_definition
*> Section_list
;
151 // Return the start of the list of sections
152 // whose VMAs are taken from this region.
153 Section_list::const_iterator
154 get_vma_section_list_start() const
155 { return this->vma_sections_
.begin(); }
157 // Return the start of the list of sections
158 // whose LMAs are taken from this region.
159 Section_list::const_iterator
160 get_lma_section_list_start() const
161 { return this->lma_sections_
.begin(); }
163 // Return the end of the list of sections
164 // whose VMAs are taken from this region.
165 Section_list::const_iterator
166 get_vma_section_list_end() const
167 { return this->vma_sections_
.end(); }
169 // Return the end of the list of sections
170 // whose LMAs are taken from this region.
171 Section_list::const_iterator
172 get_lma_section_list_end() const
173 { return this->lma_sections_
.end(); }
175 Output_section_definition
*
176 get_last_section() const
177 { return this->last_section_
; }
180 set_last_section(Output_section_definition
* sec
)
181 { this->last_section_
= sec
; }
186 unsigned int attributes_
;
189 // The offset to the next free byte in the region.
190 // Note - for compatibility with GNU LD we only maintain one offset
191 // regardless of whether the region is being used for VMA values,
192 // LMA values, or both.
193 uint64_t current_offset_
;
194 // A list of sections whose VMAs are set inside this region.
195 Section_list vma_sections_
;
196 // A list of sections whose LMAs are set inside this region.
197 Section_list lma_sections_
;
198 // The latest section to make use of this region.
199 Output_section_definition
* last_section_
;
202 // Return true if the provided section flags
203 // are compatible with this region's attributes.
206 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags
,
207 elfcpp::Elf_Xword type
) const
209 unsigned int attrs
= this->attributes_
;
211 // No attributes means that this region is not compatible with anything.
218 switch (attrs
& - attrs
)
221 if ((flags
& elfcpp::SHF_EXECINSTR
) == 0)
226 if ((flags
& elfcpp::SHF_WRITE
) == 0)
231 // All sections are presumed readable.
234 case MEM_ALLOCATABLE
:
235 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
239 case MEM_INITIALIZED
:
240 if ((type
& elfcpp::SHT_NOBITS
) != 0)
244 attrs
&= ~ (attrs
& - attrs
);
251 // Print a memory region.
254 Memory_region::print(FILE* f
) const
256 fprintf(f
, " %s", this->name_
.c_str());
258 unsigned int attrs
= this->attributes_
;
264 switch (attrs
& - attrs
)
266 case MEM_EXECUTABLE
: fputc('x', f
); break;
267 case MEM_WRITEABLE
: fputc('w', f
); break;
268 case MEM_READABLE
: fputc('r', f
); break;
269 case MEM_ALLOCATABLE
: fputc('a', f
); break;
270 case MEM_INITIALIZED
: fputc('i', f
); break;
274 attrs
&= ~ (attrs
& - attrs
);
280 fprintf(f
, " : origin = ");
281 this->start_
->print(f
);
282 fprintf(f
, ", length = ");
283 this->length_
->print(f
);
287 // Manage orphan sections. This is intended to be largely compatible
288 // with the GNU linker. The Linux kernel implicitly relies on
289 // something similar to the GNU linker's orphan placement. We
290 // originally used a simpler scheme here, but it caused the kernel
291 // build to fail, and was also rather inefficient.
293 class Orphan_section_placement
296 typedef Script_sections::Elements_iterator Elements_iterator
;
299 Orphan_section_placement();
301 // Handle an output section during initialization of this mapping.
303 output_section_init(const std::string
& name
, Output_section
*,
304 Elements_iterator location
);
306 // Initialize the last location.
308 last_init(Elements_iterator location
);
310 // Set *PWHERE to the address of an iterator pointing to the
311 // location to use for an orphan section. Return true if the
312 // iterator has a value, false otherwise.
314 find_place(Output_section
*, Elements_iterator
** pwhere
);
316 // Return the iterator being used for sections at the very end of
317 // the linker script.
322 // The places that we specifically recognize. This list is copied
323 // from the GNU linker.
339 // The information we keep for a specific place.
342 // The name of sections for this place.
344 // Whether we have a location for this place.
346 // The iterator for this place.
347 Elements_iterator location
;
350 // Initialize one place element.
352 initialize_place(Place_index
, const char*);
355 Place places_
[PLACE_MAX
];
356 // True if this is the first call to output_section_init.
360 // Initialize Orphan_section_placement.
362 Orphan_section_placement::Orphan_section_placement()
365 this->initialize_place(PLACE_TEXT
, ".text");
366 this->initialize_place(PLACE_RODATA
, ".rodata");
367 this->initialize_place(PLACE_DATA
, ".data");
368 this->initialize_place(PLACE_TLS
, NULL
);
369 this->initialize_place(PLACE_TLS_BSS
, NULL
);
370 this->initialize_place(PLACE_BSS
, ".bss");
371 this->initialize_place(PLACE_REL
, NULL
);
372 this->initialize_place(PLACE_INTERP
, ".interp");
373 this->initialize_place(PLACE_NONALLOC
, NULL
);
374 this->initialize_place(PLACE_LAST
, NULL
);
377 // Initialize one place element.
380 Orphan_section_placement::initialize_place(Place_index index
, const char* name
)
382 this->places_
[index
].name
= name
;
383 this->places_
[index
].have_location
= false;
386 // While initializing the Orphan_section_placement information, this
387 // is called once for each output section named in the linker script.
388 // If we found an output section during the link, it will be passed in
392 Orphan_section_placement::output_section_init(const std::string
& name
,
394 Elements_iterator location
)
396 bool first_init
= this->first_init_
;
397 this->first_init_
= false;
399 for (int i
= 0; i
< PLACE_MAX
; ++i
)
401 if (this->places_
[i
].name
!= NULL
&& this->places_
[i
].name
== name
)
403 if (this->places_
[i
].have_location
)
405 // We have already seen a section with this name.
409 this->places_
[i
].location
= location
;
410 this->places_
[i
].have_location
= true;
412 // If we just found the .bss section, restart the search for
413 // an unallocated section. This follows the GNU linker's
416 this->places_
[PLACE_NONALLOC
].have_location
= false;
422 // Relocation sections.
423 if (!this->places_
[PLACE_REL
].have_location
425 && (os
->type() == elfcpp::SHT_REL
|| os
->type() == elfcpp::SHT_RELA
)
426 && (os
->flags() & elfcpp::SHF_ALLOC
) != 0)
428 this->places_
[PLACE_REL
].location
= location
;
429 this->places_
[PLACE_REL
].have_location
= true;
432 // We find the location for unallocated sections by finding the
433 // first debugging or comment section after the BSS section (if
435 if (!this->places_
[PLACE_NONALLOC
].have_location
436 && (name
== ".comment" || Layout::is_debug_info_section(name
.c_str())))
438 // We add orphan sections after the location in PLACES_. We
439 // want to store unallocated sections before LOCATION. If this
440 // is the very first section, we can't use it.
444 this->places_
[PLACE_NONALLOC
].location
= location
;
445 this->places_
[PLACE_NONALLOC
].have_location
= true;
450 // Initialize the last location.
453 Orphan_section_placement::last_init(Elements_iterator location
)
455 this->places_
[PLACE_LAST
].location
= location
;
456 this->places_
[PLACE_LAST
].have_location
= true;
459 // Set *PWHERE to the address of an iterator pointing to the location
460 // to use for an orphan section. Return true if the iterator has a
461 // value, false otherwise.
464 Orphan_section_placement::find_place(Output_section
* os
,
465 Elements_iterator
** pwhere
)
467 // Figure out where OS should go. This is based on the GNU linker
468 // code. FIXME: The GNU linker handles small data sections
469 // specially, but we don't.
470 elfcpp::Elf_Word type
= os
->type();
471 elfcpp::Elf_Xword flags
= os
->flags();
473 if ((flags
& elfcpp::SHF_ALLOC
) == 0
474 && !Layout::is_debug_info_section(os
->name()))
475 index
= PLACE_NONALLOC
;
476 else if ((flags
& elfcpp::SHF_ALLOC
) == 0)
478 else if (type
== elfcpp::SHT_NOTE
)
479 index
= PLACE_INTERP
;
480 else if ((flags
& elfcpp::SHF_TLS
) != 0)
482 if (type
== elfcpp::SHT_NOBITS
)
483 index
= PLACE_TLS_BSS
;
487 else if (type
== elfcpp::SHT_NOBITS
)
489 else if ((flags
& elfcpp::SHF_WRITE
) != 0)
491 else if (type
== elfcpp::SHT_REL
|| type
== elfcpp::SHT_RELA
)
493 else if ((flags
& elfcpp::SHF_EXECINSTR
) == 0)
494 index
= PLACE_RODATA
;
498 // If we don't have a location yet, try to find one based on a
499 // plausible ordering of sections.
500 if (!this->places_
[index
].have_location
)
525 if (!this->places_
[PLACE_TLS
].have_location
)
529 if (follow
!= PLACE_MAX
&& this->places_
[follow
].have_location
)
531 // Set the location of INDEX to the location of FOLLOW. The
532 // location of INDEX will then be incremented by the caller,
533 // so anything in INDEX will continue to be after anything
535 this->places_
[index
].location
= this->places_
[follow
].location
;
536 this->places_
[index
].have_location
= true;
540 *pwhere
= &this->places_
[index
].location
;
541 bool ret
= this->places_
[index
].have_location
;
543 // The caller will set the location.
544 this->places_
[index
].have_location
= true;
549 // Return the iterator being used for sections at the very end of the
552 Orphan_section_placement::Elements_iterator
553 Orphan_section_placement::last_place() const
555 gold_assert(this->places_
[PLACE_LAST
].have_location
);
556 return this->places_
[PLACE_LAST
].location
;
559 // An element in a SECTIONS clause.
561 class Sections_element
567 virtual ~Sections_element()
570 // Return whether an output section is relro.
575 // Record that an output section is relro.
580 // Create any required output sections. The only real
581 // implementation is in Output_section_definition.
583 create_sections(Layout
*)
586 // Add any symbol being defined to the symbol table.
588 add_symbols_to_table(Symbol_table
*)
591 // Finalize symbols and check assertions.
593 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t*)
596 // Return the output section name to use for an input file name and
597 // section name. This only real implementation is in
598 // Output_section_definition.
600 output_section_name(const char*, const char*, Output_section
***,
601 Script_sections::Section_type
*, bool*)
604 // Initialize OSP with an output section.
606 orphan_section_init(Orphan_section_placement
*,
607 Script_sections::Elements_iterator
)
610 // Set section addresses. This includes applying assignments if the
611 // expression is an absolute value.
613 set_section_addresses(Symbol_table
*, Layout
*, uint64_t*, uint64_t*,
617 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
618 // this section is constrained, and the input sections do not match,
619 // return the constraint, and set *POSD.
620 virtual Section_constraint
621 check_constraint(Output_section_definition
**)
622 { return CONSTRAINT_NONE
; }
624 // See if this is the alternate output section for a constrained
625 // output section. If it is, transfer the Output_section and return
626 // true. Otherwise return false.
628 alternate_constraint(Output_section_definition
*, Section_constraint
)
631 // Get the list of segments to use for an allocated section when
632 // using a PHDRS clause. If this is an allocated section, return
633 // the Output_section, and set *PHDRS_LIST (the first parameter) to
634 // the list of PHDRS to which it should be attached. If the PHDRS
635 // were not specified, don't change *PHDRS_LIST. When not returning
636 // NULL, set *ORPHAN (the second parameter) according to whether
637 // this is an orphan section--one that is not mentioned in the
639 virtual Output_section
*
640 allocate_to_segment(String_list
**, bool*)
643 // Look for an output section by name and return the address, the
644 // load address, the alignment, and the size. This is used when an
645 // expression refers to an output section which was not actually
646 // created. This returns true if the section was found, false
647 // otherwise. The only real definition is for
648 // Output_section_definition.
650 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
654 // Return the associated Output_section if there is one.
655 virtual Output_section
*
656 get_output_section() const
659 // Set the section's memory regions.
661 set_memory_region(Memory_region
*, bool)
662 { gold_error(_("Attempt to set a memory region for a non-output section")); }
664 // Print the element for debugging purposes.
666 print(FILE* f
) const = 0;
669 // An assignment in a SECTIONS clause outside of an output section.
671 class Sections_element_assignment
: public Sections_element
674 Sections_element_assignment(const char* name
, size_t namelen
,
675 Expression
* val
, bool provide
, bool hidden
)
676 : assignment_(name
, namelen
, false, val
, provide
, hidden
)
679 // Add the symbol to the symbol table.
681 add_symbols_to_table(Symbol_table
* symtab
)
682 { this->assignment_
.add_to_table(symtab
); }
684 // Finalize the symbol.
686 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
,
689 this->assignment_
.finalize_with_dot(symtab
, layout
, *dot_value
, NULL
);
692 // Set the section address. There is no section here, but if the
693 // value is absolute, we set the symbol. This permits us to use
694 // absolute symbols when setting dot.
696 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
,
697 uint64_t* dot_value
, uint64_t*, uint64_t*)
699 this->assignment_
.set_if_absolute(symtab
, layout
, true, *dot_value
, NULL
);
702 // Print for debugging.
707 this->assignment_
.print(f
);
711 Symbol_assignment assignment_
;
714 // An assignment to the dot symbol in a SECTIONS clause outside of an
717 class Sections_element_dot_assignment
: public Sections_element
720 Sections_element_dot_assignment(Expression
* val
)
724 // Finalize the symbol.
726 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
,
729 // We ignore the section of the result because outside of an
730 // output section definition the dot symbol is always considered
732 *dot_value
= this->val_
->eval_with_dot(symtab
, layout
, true, *dot_value
,
733 NULL
, NULL
, NULL
, false);
736 // Update the dot symbol while setting section addresses.
738 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
,
739 uint64_t* dot_value
, uint64_t* dot_alignment
,
740 uint64_t* load_address
)
742 *dot_value
= this->val_
->eval_with_dot(symtab
, layout
, false, *dot_value
,
743 NULL
, NULL
, dot_alignment
, false);
744 *load_address
= *dot_value
;
747 // Print for debugging.
752 this->val_
->print(f
);
760 // An assertion in a SECTIONS clause outside of an output section.
762 class Sections_element_assertion
: public Sections_element
765 Sections_element_assertion(Expression
* check
, const char* message
,
767 : assertion_(check
, message
, messagelen
)
770 // Check the assertion.
772 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
, uint64_t*)
773 { this->assertion_
.check(symtab
, layout
); }
775 // Print for debugging.
780 this->assertion_
.print(f
);
784 Script_assertion assertion_
;
787 // An element in an output section in a SECTIONS clause.
789 class Output_section_element
792 // A list of input sections.
793 typedef std::list
<Output_section::Input_section
> Input_section_list
;
795 Output_section_element()
798 virtual ~Output_section_element()
801 // Return whether this element requires an output section to exist.
803 needs_output_section() const
806 // Add any symbol being defined to the symbol table.
808 add_symbols_to_table(Symbol_table
*)
811 // Finalize symbols and check assertions.
813 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t*, Output_section
**)
816 // Return whether this element matches FILE_NAME and SECTION_NAME.
817 // The only real implementation is in Output_section_element_input.
819 match_name(const char*, const char*, bool *) const
822 // Set section addresses. This includes applying assignments if the
823 // expression is an absolute value.
825 set_section_addresses(Symbol_table
*, Layout
*, Output_section
*, uint64_t,
826 uint64_t*, uint64_t*, Output_section
**, std::string
*,
830 // Print the element for debugging purposes.
832 print(FILE* f
) const = 0;
835 // Return a fill string that is LENGTH bytes long, filling it with
838 get_fill_string(const std::string
* fill
, section_size_type length
) const;
842 Output_section_element::get_fill_string(const std::string
* fill
,
843 section_size_type length
) const
845 std::string this_fill
;
846 this_fill
.reserve(length
);
847 while (this_fill
.length() + fill
->length() <= length
)
849 if (this_fill
.length() < length
)
850 this_fill
.append(*fill
, 0, length
- this_fill
.length());
854 // A symbol assignment in an output section.
856 class Output_section_element_assignment
: public Output_section_element
859 Output_section_element_assignment(const char* name
, size_t namelen
,
860 Expression
* val
, bool provide
,
862 : assignment_(name
, namelen
, false, val
, provide
, hidden
)
865 // Add the symbol to the symbol table.
867 add_symbols_to_table(Symbol_table
* symtab
)
868 { this->assignment_
.add_to_table(symtab
); }
870 // Finalize the symbol.
872 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
,
873 uint64_t* dot_value
, Output_section
** dot_section
)
875 this->assignment_
.finalize_with_dot(symtab
, layout
, *dot_value
,
879 // Set the section address. There is no section here, but if the
880 // value is absolute, we set the symbol. This permits us to use
881 // absolute symbols when setting dot.
883 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
, Output_section
*,
884 uint64_t, uint64_t* dot_value
, uint64_t*,
885 Output_section
** dot_section
, std::string
*,
888 this->assignment_
.set_if_absolute(symtab
, layout
, true, *dot_value
,
892 // Print for debugging.
897 this->assignment_
.print(f
);
901 Symbol_assignment assignment_
;
904 // An assignment to the dot symbol in an output section.
906 class Output_section_element_dot_assignment
: public Output_section_element
909 Output_section_element_dot_assignment(Expression
* val
)
913 // An assignment to dot within an output section is enough to force
914 // the output section to exist.
916 needs_output_section() const
919 // Finalize the symbol.
921 finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
,
922 uint64_t* dot_value
, Output_section
** dot_section
)
924 *dot_value
= this->val_
->eval_with_dot(symtab
, layout
, true, *dot_value
,
925 *dot_section
, dot_section
, NULL
,
929 // Update the dot symbol while setting section addresses.
931 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
, Output_section
*,
932 uint64_t, uint64_t* dot_value
, uint64_t*,
933 Output_section
** dot_section
, std::string
*,
934 Input_section_list
*);
936 // Print for debugging.
941 this->val_
->print(f
);
949 // Update the dot symbol while setting section addresses.
952 Output_section_element_dot_assignment::set_section_addresses(
953 Symbol_table
* symtab
,
955 Output_section
* output_section
,
958 uint64_t* dot_alignment
,
959 Output_section
** dot_section
,
963 uint64_t next_dot
= this->val_
->eval_with_dot(symtab
, layout
, false,
964 *dot_value
, *dot_section
,
965 dot_section
, dot_alignment
,
967 if (next_dot
< *dot_value
)
968 gold_error(_("dot may not move backward"));
969 if (next_dot
> *dot_value
&& output_section
!= NULL
)
971 section_size_type length
= convert_to_section_size_type(next_dot
973 Output_section_data
* posd
;
975 posd
= new Output_data_zero_fill(length
, 0);
978 std::string this_fill
= this->get_fill_string(fill
, length
);
979 posd
= new Output_data_const(this_fill
, 0);
981 output_section
->add_output_section_data(posd
);
982 layout
->new_output_section_data_from_script(posd
);
984 *dot_value
= next_dot
;
987 // An assertion in an output section.
989 class Output_section_element_assertion
: public Output_section_element
992 Output_section_element_assertion(Expression
* check
, const char* message
,
994 : assertion_(check
, message
, messagelen
)
1001 this->assertion_
.print(f
);
1005 Script_assertion assertion_
;
1008 // We use a special instance of Output_section_data to handle BYTE,
1009 // SHORT, etc. This permits forward references to symbols in the
1012 class Output_data_expression
: public Output_section_data
1015 Output_data_expression(int size
, bool is_signed
, Expression
* val
,
1016 const Symbol_table
* symtab
, const Layout
* layout
,
1017 uint64_t dot_value
, Output_section
* dot_section
)
1018 : Output_section_data(size
, 0, true),
1019 is_signed_(is_signed
), val_(val
), symtab_(symtab
),
1020 layout_(layout
), dot_value_(dot_value
), dot_section_(dot_section
)
1024 // Write the data to the output file.
1026 do_write(Output_file
*);
1028 // Write the data to a buffer.
1030 do_write_to_buffer(unsigned char*);
1032 // Write to a map file.
1034 do_print_to_mapfile(Mapfile
* mapfile
) const
1035 { mapfile
->print_output_data(this, _("** expression")); }
1038 template<bool big_endian
>
1040 endian_write_to_buffer(uint64_t, unsigned char*);
1044 const Symbol_table
* symtab_
;
1045 const Layout
* layout_
;
1046 uint64_t dot_value_
;
1047 Output_section
* dot_section_
;
1050 // Write the data element to the output file.
1053 Output_data_expression::do_write(Output_file
* of
)
1055 unsigned char* view
= of
->get_output_view(this->offset(), this->data_size());
1056 this->write_to_buffer(view
);
1057 of
->write_output_view(this->offset(), this->data_size(), view
);
1060 // Write the data element to a buffer.
1063 Output_data_expression::do_write_to_buffer(unsigned char* buf
)
1065 uint64_t val
= this->val_
->eval_with_dot(this->symtab_
, this->layout_
,
1066 true, this->dot_value_
,
1067 this->dot_section_
, NULL
, NULL
,
1070 if (parameters
->target().is_big_endian())
1071 this->endian_write_to_buffer
<true>(val
, buf
);
1073 this->endian_write_to_buffer
<false>(val
, buf
);
1076 template<bool big_endian
>
1078 Output_data_expression::endian_write_to_buffer(uint64_t val
,
1081 switch (this->data_size())
1084 elfcpp::Swap_unaligned
<8, big_endian
>::writeval(buf
, val
);
1087 elfcpp::Swap_unaligned
<16, big_endian
>::writeval(buf
, val
);
1090 elfcpp::Swap_unaligned
<32, big_endian
>::writeval(buf
, val
);
1093 if (parameters
->target().get_size() == 32)
1096 if (this->is_signed_
&& (val
& 0x80000000) != 0)
1097 val
|= 0xffffffff00000000LL
;
1099 elfcpp::Swap_unaligned
<64, big_endian
>::writeval(buf
, val
);
1106 // A data item in an output section.
1108 class Output_section_element_data
: public Output_section_element
1111 Output_section_element_data(int size
, bool is_signed
, Expression
* val
)
1112 : size_(size
), is_signed_(is_signed
), val_(val
)
1115 // If there is a data item, then we must create an output section.
1117 needs_output_section() const
1120 // Finalize symbols--we just need to update dot.
1122 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t* dot_value
,
1124 { *dot_value
+= this->size_
; }
1126 // Store the value in the section.
1128 set_section_addresses(Symbol_table
*, Layout
*, Output_section
*, uint64_t,
1129 uint64_t* dot_value
, uint64_t*, Output_section
**,
1130 std::string
*, Input_section_list
*);
1132 // Print for debugging.
1137 // The size in bytes.
1139 // Whether the value is signed.
1145 // Store the value in the section.
1148 Output_section_element_data::set_section_addresses(
1149 Symbol_table
* symtab
,
1153 uint64_t* dot_value
,
1155 Output_section
** dot_section
,
1157 Input_section_list
*)
1159 gold_assert(os
!= NULL
);
1160 Output_data_expression
* expression
=
1161 new Output_data_expression(this->size_
, this->is_signed_
, this->val_
,
1162 symtab
, layout
, *dot_value
, *dot_section
);
1163 os
->add_output_section_data(expression
);
1164 layout
->new_output_section_data_from_script(expression
);
1165 *dot_value
+= this->size_
;
1168 // Print for debugging.
1171 Output_section_element_data::print(FILE* f
) const
1174 switch (this->size_
)
1186 if (this->is_signed_
)
1194 fprintf(f
, " %s(", s
);
1195 this->val_
->print(f
);
1199 // A fill value setting in an output section.
1201 class Output_section_element_fill
: public Output_section_element
1204 Output_section_element_fill(Expression
* val
)
1208 // Update the fill value while setting section addresses.
1210 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
, Output_section
*,
1211 uint64_t, uint64_t* dot_value
, uint64_t*,
1212 Output_section
** dot_section
,
1213 std::string
* fill
, Input_section_list
*)
1215 Output_section
* fill_section
;
1216 uint64_t fill_val
= this->val_
->eval_with_dot(symtab
, layout
, false,
1217 *dot_value
, *dot_section
,
1218 &fill_section
, NULL
, false);
1219 if (fill_section
!= NULL
)
1220 gold_warning(_("fill value is not absolute"));
1221 // FIXME: The GNU linker supports fill values of arbitrary length.
1222 unsigned char fill_buff
[4];
1223 elfcpp::Swap_unaligned
<32, true>::writeval(fill_buff
, fill_val
);
1224 fill
->assign(reinterpret_cast<char*>(fill_buff
), 4);
1227 // Print for debugging.
1229 print(FILE* f
) const
1231 fprintf(f
, " FILL(");
1232 this->val_
->print(f
);
1237 // The new fill value.
1241 // An input section specification in an output section
1243 class Output_section_element_input
: public Output_section_element
1246 Output_section_element_input(const Input_section_spec
* spec
, bool keep
);
1248 // Finalize symbols--just update the value of the dot symbol.
1250 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t* dot_value
,
1251 Output_section
** dot_section
)
1253 *dot_value
= this->final_dot_value_
;
1254 *dot_section
= this->final_dot_section_
;
1257 // See whether we match FILE_NAME and SECTION_NAME as an input section.
1258 // If we do then also indicate whether the section should be KEPT.
1260 match_name(const char* file_name
, const char* section_name
, bool* keep
) const;
1262 // Set the section address.
1264 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
, Output_section
*,
1265 uint64_t subalign
, uint64_t* dot_value
, uint64_t*,
1266 Output_section
**, std::string
* fill
,
1267 Input_section_list
*);
1269 // Print for debugging.
1271 print(FILE* f
) const;
1274 // An input section pattern.
1275 struct Input_section_pattern
1277 std::string pattern
;
1278 bool pattern_is_wildcard
;
1281 Input_section_pattern(const char* patterna
, size_t patternlena
,
1282 Sort_wildcard sorta
)
1283 : pattern(patterna
, patternlena
),
1284 pattern_is_wildcard(is_wildcard_string(this->pattern
.c_str())),
1289 typedef std::vector
<Input_section_pattern
> Input_section_patterns
;
1291 // Filename_exclusions is a pair of filename pattern and a bool
1292 // indicating whether the filename is a wildcard.
1293 typedef std::vector
<std::pair
<std::string
, bool> > Filename_exclusions
;
1295 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1296 // indicates whether this is a wildcard pattern.
1298 match(const char* string
, const char* pattern
, bool is_wildcard_pattern
)
1300 return (is_wildcard_pattern
1301 ? fnmatch(pattern
, string
, 0) == 0
1302 : strcmp(string
, pattern
) == 0);
1305 // See if we match a file name.
1307 match_file_name(const char* file_name
) const;
1309 // The file name pattern. If this is the empty string, we match all
1311 std::string filename_pattern_
;
1312 // Whether the file name pattern is a wildcard.
1313 bool filename_is_wildcard_
;
1314 // How the file names should be sorted. This may only be
1315 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1316 Sort_wildcard filename_sort_
;
1317 // The list of file names to exclude.
1318 Filename_exclusions filename_exclusions_
;
1319 // The list of input section patterns.
1320 Input_section_patterns input_section_patterns_
;
1321 // Whether to keep this section when garbage collecting.
1323 // The value of dot after including all matching sections.
1324 uint64_t final_dot_value_
;
1325 // The section where dot is defined after including all matching
1327 Output_section
* final_dot_section_
;
1330 // Construct Output_section_element_input. The parser records strings
1331 // as pointers into a copy of the script file, which will go away when
1332 // parsing is complete. We make sure they are in std::string objects.
1334 Output_section_element_input::Output_section_element_input(
1335 const Input_section_spec
* spec
,
1337 : filename_pattern_(),
1338 filename_is_wildcard_(false),
1339 filename_sort_(spec
->file
.sort
),
1340 filename_exclusions_(),
1341 input_section_patterns_(),
1343 final_dot_value_(0),
1344 final_dot_section_(NULL
)
1346 // The filename pattern "*" is common, and matches all files. Turn
1347 // it into the empty string.
1348 if (spec
->file
.name
.length
!= 1 || spec
->file
.name
.value
[0] != '*')
1349 this->filename_pattern_
.assign(spec
->file
.name
.value
,
1350 spec
->file
.name
.length
);
1351 this->filename_is_wildcard_
= is_wildcard_string(this->filename_pattern_
.c_str());
1353 if (spec
->input_sections
.exclude
!= NULL
)
1355 for (String_list::const_iterator p
=
1356 spec
->input_sections
.exclude
->begin();
1357 p
!= spec
->input_sections
.exclude
->end();
1360 bool is_wildcard
= is_wildcard_string((*p
).c_str());
1361 this->filename_exclusions_
.push_back(std::make_pair(*p
,
1366 if (spec
->input_sections
.sections
!= NULL
)
1368 Input_section_patterns
& isp(this->input_section_patterns_
);
1369 for (String_sort_list::const_iterator p
=
1370 spec
->input_sections
.sections
->begin();
1371 p
!= spec
->input_sections
.sections
->end();
1373 isp
.push_back(Input_section_pattern(p
->name
.value
, p
->name
.length
,
1378 // See whether we match FILE_NAME.
1381 Output_section_element_input::match_file_name(const char* file_name
) const
1383 if (!this->filename_pattern_
.empty())
1385 // If we were called with no filename, we refuse to match a
1386 // pattern which requires a file name.
1387 if (file_name
== NULL
)
1390 if (!match(file_name
, this->filename_pattern_
.c_str(),
1391 this->filename_is_wildcard_
))
1395 if (file_name
!= NULL
)
1397 // Now we have to see whether FILE_NAME matches one of the
1398 // exclusion patterns, if any.
1399 for (Filename_exclusions::const_iterator p
=
1400 this->filename_exclusions_
.begin();
1401 p
!= this->filename_exclusions_
.end();
1404 if (match(file_name
, p
->first
.c_str(), p
->second
))
1412 // See whether we match FILE_NAME and SECTION_NAME. If we do then
1413 // KEEP indicates whether the section should survive garbage collection.
1416 Output_section_element_input::match_name(const char* file_name
,
1417 const char* section_name
,
1420 if (!this->match_file_name(file_name
))
1423 *keep
= this->keep_
;
1425 // If there are no section name patterns, then we match.
1426 if (this->input_section_patterns_
.empty())
1429 // See whether we match the section name patterns.
1430 for (Input_section_patterns::const_iterator p
=
1431 this->input_section_patterns_
.begin();
1432 p
!= this->input_section_patterns_
.end();
1435 if (match(section_name
, p
->pattern
.c_str(), p
->pattern_is_wildcard
))
1439 // We didn't match any section names, so we didn't match.
1443 // Information we use to sort the input sections.
1445 class Input_section_info
1448 Input_section_info(const Output_section::Input_section
& input_section
)
1449 : input_section_(input_section
), section_name_(),
1450 size_(0), addralign_(1)
1453 // Return the simple input section.
1454 const Output_section::Input_section
&
1455 input_section() const
1456 { return this->input_section_
; }
1458 // Return the object.
1461 { return this->input_section_
.relobj(); }
1463 // Return the section index.
1466 { return this->input_section_
.shndx(); }
1468 // Return the section name.
1470 section_name() const
1471 { return this->section_name_
; }
1473 // Set the section name.
1475 set_section_name(const std::string name
)
1477 if (is_compressed_debug_section(name
.c_str()))
1478 this->section_name_
= corresponding_uncompressed_section_name(name
);
1480 this->section_name_
= name
;
1483 // Return the section size.
1486 { return this->size_
; }
1488 // Set the section size.
1490 set_size(uint64_t size
)
1491 { this->size_
= size
; }
1493 // Return the address alignment.
1496 { return this->addralign_
; }
1498 // Set the address alignment.
1500 set_addralign(uint64_t addralign
)
1501 { this->addralign_
= addralign
; }
1504 // Input section, can be a relaxed section.
1505 Output_section::Input_section input_section_
;
1506 // Name of the section.
1507 std::string section_name_
;
1510 // Address alignment.
1511 uint64_t addralign_
;
1514 // A class to sort the input sections.
1516 class Input_section_sorter
1519 Input_section_sorter(Sort_wildcard filename_sort
, Sort_wildcard section_sort
)
1520 : filename_sort_(filename_sort
), section_sort_(section_sort
)
1524 operator()(const Input_section_info
&, const Input_section_info
&) const;
1527 static unsigned long
1528 get_init_priority(const char*);
1530 Sort_wildcard filename_sort_
;
1531 Sort_wildcard section_sort_
;
1534 // Return a relative priority of the section with the specified NAME
1535 // (a lower value meand a higher priority), or 0 if it should be compared
1536 // with others as strings.
1537 // The implementation of this function is copied from ld/ldlang.c.
1540 Input_section_sorter::get_init_priority(const char* name
)
1543 unsigned long init_priority
;
1545 // GCC uses the following section names for the init_priority
1546 // attribute with numerical values 101 and 65535 inclusive. A
1547 // lower value means a higher priority.
1549 // 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
1550 // decimal numerical value of the init_priority attribute.
1551 // The order of execution in .init_array is forward and
1552 // .fini_array is backward.
1553 // 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
1554 // decimal numerical value of the init_priority attribute.
1555 // The order of execution in .ctors is backward and .dtors
1558 if (strncmp(name
, ".init_array.", 12) == 0
1559 || strncmp(name
, ".fini_array.", 12) == 0)
1561 init_priority
= strtoul(name
+ 12, &end
, 10);
1562 return *end
? 0 : init_priority
;
1564 else if (strncmp(name
, ".ctors.", 7) == 0
1565 || strncmp(name
, ".dtors.", 7) == 0)
1567 init_priority
= strtoul(name
+ 7, &end
, 10);
1568 return *end
? 0 : 65535 - init_priority
;
1575 Input_section_sorter::operator()(const Input_section_info
& isi1
,
1576 const Input_section_info
& isi2
) const
1578 if (this->section_sort_
== SORT_WILDCARD_BY_INIT_PRIORITY
)
1580 unsigned long ip1
= get_init_priority(isi1
.section_name().c_str());
1581 unsigned long ip2
= get_init_priority(isi2
.section_name().c_str());
1582 if (ip1
!= 0 && ip2
!= 0 && ip1
!= ip2
)
1585 if (this->section_sort_
== SORT_WILDCARD_BY_NAME
1586 || this->section_sort_
== SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1587 || (this->section_sort_
== SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1588 && isi1
.addralign() == isi2
.addralign())
1589 || this->section_sort_
== SORT_WILDCARD_BY_INIT_PRIORITY
)
1591 if (isi1
.section_name() != isi2
.section_name())
1592 return isi1
.section_name() < isi2
.section_name();
1594 if (this->section_sort_
== SORT_WILDCARD_BY_ALIGNMENT
1595 || this->section_sort_
== SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1596 || this->section_sort_
== SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
)
1598 if (isi1
.addralign() != isi2
.addralign())
1599 return isi1
.addralign() < isi2
.addralign();
1601 if (this->filename_sort_
== SORT_WILDCARD_BY_NAME
)
1603 if (isi1
.relobj()->name() != isi2
.relobj()->name())
1604 return (isi1
.relobj()->name() < isi2
.relobj()->name());
1607 // Otherwise we leave them in the same order.
1611 // Set the section address. Look in INPUT_SECTIONS for sections which
1612 // match this spec, sort them as specified, and add them to the output
1616 Output_section_element_input::set_section_addresses(
1619 Output_section
* output_section
,
1621 uint64_t* dot_value
,
1623 Output_section
** dot_section
,
1625 Input_section_list
* input_sections
)
1627 // We build a list of sections which match each
1628 // Input_section_pattern.
1630 // If none of the patterns specify a sort option, we throw all
1631 // matching input sections into a single bin, in the order we
1632 // find them. Otherwise, we put matching input sections into
1633 // a separate bin for each pattern, and sort each one as
1634 // specified. Thus, an input section spec like this:
1636 // will group all .foo and .bar sections in the order seen,
1639 // will group all .foo sections followed by all .bar sections.
1640 // This matches Gnu ld behavior.
1642 // Things get really weird, though, when you add a sort spec
1643 // on some, but not all, of the patterns, like this:
1644 // *(SORT_BY_NAME(.foo) .bar)
1645 // We do not attempt to match Gnu ld behavior in this case.
1647 typedef std::vector
<std::vector
<Input_section_info
> > Matching_sections
;
1648 size_t input_pattern_count
= this->input_section_patterns_
.size();
1649 size_t bin_count
= 1;
1650 bool any_patterns_with_sort
= false;
1651 for (size_t i
= 0; i
< input_pattern_count
; ++i
)
1653 const Input_section_pattern
& isp(this->input_section_patterns_
[i
]);
1654 if (isp
.sort
!= SORT_WILDCARD_NONE
)
1655 any_patterns_with_sort
= true;
1657 if (any_patterns_with_sort
)
1658 bin_count
= input_pattern_count
;
1659 Matching_sections
matching_sections(bin_count
);
1661 // Look through the list of sections for this output section. Add
1662 // each one which matches to one of the elements of
1663 // MATCHING_SECTIONS.
1665 Input_section_list::iterator p
= input_sections
->begin();
1666 while (p
!= input_sections
->end())
1668 Relobj
* relobj
= p
->relobj();
1669 unsigned int shndx
= p
->shndx();
1670 Input_section_info
isi(*p
);
1672 // Calling section_name and section_addralign is not very
1675 // Lock the object so that we can get information about the
1676 // section. This is OK since we know we are single-threaded
1679 const Task
* task
= reinterpret_cast<const Task
*>(-1);
1680 Task_lock_obj
<Object
> tl(task
, relobj
);
1682 isi
.set_section_name(relobj
->section_name(shndx
));
1683 if (p
->is_relaxed_input_section())
1685 // We use current data size because relaxed section sizes may not
1686 // have finalized yet.
1687 isi
.set_size(p
->relaxed_input_section()->current_data_size());
1688 isi
.set_addralign(p
->relaxed_input_section()->addralign());
1692 isi
.set_size(relobj
->section_size(shndx
));
1693 isi
.set_addralign(relobj
->section_addralign(shndx
));
1697 if (!this->match_file_name(relobj
->name().c_str()))
1699 else if (this->input_section_patterns_
.empty())
1701 matching_sections
[0].push_back(isi
);
1702 p
= input_sections
->erase(p
);
1707 for (i
= 0; i
< input_pattern_count
; ++i
)
1709 const Input_section_pattern
&
1710 isp(this->input_section_patterns_
[i
]);
1711 if (match(isi
.section_name().c_str(), isp
.pattern
.c_str(),
1712 isp
.pattern_is_wildcard
))
1716 if (i
>= input_pattern_count
)
1722 matching_sections
[i
].push_back(isi
);
1723 p
= input_sections
->erase(p
);
1728 // Look through MATCHING_SECTIONS. Sort each one as specified,
1729 // using a stable sort so that we get the default order when
1730 // sections are otherwise equal. Add each input section to the
1733 uint64_t dot
= *dot_value
;
1734 for (size_t i
= 0; i
< bin_count
; ++i
)
1736 if (matching_sections
[i
].empty())
1739 gold_assert(output_section
!= NULL
);
1741 const Input_section_pattern
& isp(this->input_section_patterns_
[i
]);
1742 if (isp
.sort
!= SORT_WILDCARD_NONE
1743 || this->filename_sort_
!= SORT_WILDCARD_NONE
)
1744 std::stable_sort(matching_sections
[i
].begin(),
1745 matching_sections
[i
].end(),
1746 Input_section_sorter(this->filename_sort_
,
1749 for (std::vector
<Input_section_info
>::const_iterator p
=
1750 matching_sections
[i
].begin();
1751 p
!= matching_sections
[i
].end();
1754 // Override the original address alignment if SUBALIGN is specified
1755 // and is greater than the original alignment. We need to make a
1756 // copy of the input section to modify the alignment.
1757 Output_section::Input_section
sis(p
->input_section());
1759 uint64_t this_subalign
= sis
.addralign();
1760 if (!sis
.is_input_section())
1761 sis
.output_section_data()->finalize_data_size();
1762 uint64_t data_size
= sis
.data_size();
1763 if (this_subalign
< subalign
)
1765 this_subalign
= subalign
;
1766 sis
.set_addralign(subalign
);
1769 uint64_t address
= align_address(dot
, this_subalign
);
1771 if (address
> dot
&& !fill
->empty())
1773 section_size_type length
=
1774 convert_to_section_size_type(address
- dot
);
1775 std::string this_fill
= this->get_fill_string(fill
, length
);
1776 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
1777 output_section
->add_output_section_data(posd
);
1778 layout
->new_output_section_data_from_script(posd
);
1781 output_section
->add_script_input_section(sis
);
1782 dot
= address
+ data_size
;
1786 // An SHF_TLS/SHT_NOBITS section does not take up any
1788 if (output_section
== NULL
1789 || (output_section
->flags() & elfcpp::SHF_TLS
) == 0
1790 || output_section
->type() != elfcpp::SHT_NOBITS
)
1793 this->final_dot_value_
= *dot_value
;
1794 this->final_dot_section_
= *dot_section
;
1797 // Print for debugging.
1800 Output_section_element_input::print(FILE* f
) const
1805 fprintf(f
, "KEEP(");
1807 if (!this->filename_pattern_
.empty())
1809 bool need_close_paren
= false;
1810 switch (this->filename_sort_
)
1812 case SORT_WILDCARD_NONE
:
1814 case SORT_WILDCARD_BY_NAME
:
1815 fprintf(f
, "SORT_BY_NAME(");
1816 need_close_paren
= true;
1822 fprintf(f
, "%s", this->filename_pattern_
.c_str());
1824 if (need_close_paren
)
1828 if (!this->input_section_patterns_
.empty()
1829 || !this->filename_exclusions_
.empty())
1833 bool need_space
= false;
1834 if (!this->filename_exclusions_
.empty())
1836 fprintf(f
, "EXCLUDE_FILE(");
1837 bool need_comma
= false;
1838 for (Filename_exclusions::const_iterator p
=
1839 this->filename_exclusions_
.begin();
1840 p
!= this->filename_exclusions_
.end();
1845 fprintf(f
, "%s", p
->first
.c_str());
1852 for (Input_section_patterns::const_iterator p
=
1853 this->input_section_patterns_
.begin();
1854 p
!= this->input_section_patterns_
.end();
1860 int close_parens
= 0;
1863 case SORT_WILDCARD_NONE
:
1865 case SORT_WILDCARD_BY_NAME
:
1866 fprintf(f
, "SORT_BY_NAME(");
1869 case SORT_WILDCARD_BY_ALIGNMENT
:
1870 fprintf(f
, "SORT_BY_ALIGNMENT(");
1873 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
:
1874 fprintf(f
, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1877 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
:
1878 fprintf(f
, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1881 case SORT_WILDCARD_BY_INIT_PRIORITY
:
1882 fprintf(f
, "SORT_BY_INIT_PRIORITY(");
1889 fprintf(f
, "%s", p
->pattern
.c_str());
1891 for (int i
= 0; i
< close_parens
; ++i
)
1906 // An output section.
1908 class Output_section_definition
: public Sections_element
1911 typedef Output_section_element::Input_section_list Input_section_list
;
1913 Output_section_definition(const char* name
, size_t namelen
,
1914 const Parser_output_section_header
* header
);
1916 // Finish the output section with the information in the trailer.
1918 finish(const Parser_output_section_trailer
* trailer
);
1920 // Add a symbol to be defined.
1922 add_symbol_assignment(const char* name
, size_t length
, Expression
* value
,
1923 bool provide
, bool hidden
);
1925 // Add an assignment to the special dot symbol.
1927 add_dot_assignment(Expression
* value
);
1929 // Add an assertion.
1931 add_assertion(Expression
* check
, const char* message
, size_t messagelen
);
1933 // Add a data item to the current output section.
1935 add_data(int size
, bool is_signed
, Expression
* val
);
1937 // Add a setting for the fill value.
1939 add_fill(Expression
* val
);
1941 // Add an input section specification.
1943 add_input_section(const Input_section_spec
* spec
, bool keep
);
1945 // Return whether the output section is relro.
1948 { return this->is_relro_
; }
1950 // Record that the output section is relro.
1953 { this->is_relro_
= true; }
1955 // Create any required output sections.
1957 create_sections(Layout
*);
1959 // Add any symbols being defined to the symbol table.
1961 add_symbols_to_table(Symbol_table
* symtab
);
1963 // Finalize symbols and check assertions.
1965 finalize_symbols(Symbol_table
*, const Layout
*, uint64_t*);
1967 // Return the output section name to use for an input file name and
1970 output_section_name(const char* file_name
, const char* section_name
,
1971 Output_section
***, Script_sections::Section_type
*,
1974 // Initialize OSP with an output section.
1976 orphan_section_init(Orphan_section_placement
* osp
,
1977 Script_sections::Elements_iterator p
)
1978 { osp
->output_section_init(this->name_
, this->output_section_
, p
); }
1980 // Set the section address.
1982 set_section_addresses(Symbol_table
* symtab
, Layout
* layout
,
1983 uint64_t* dot_value
, uint64_t*,
1984 uint64_t* load_address
);
1986 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1987 // this section is constrained, and the input sections do not match,
1988 // return the constraint, and set *POSD.
1990 check_constraint(Output_section_definition
** posd
);
1992 // See if this is the alternate output section for a constrained
1993 // output section. If it is, transfer the Output_section and return
1994 // true. Otherwise return false.
1996 alternate_constraint(Output_section_definition
*, Section_constraint
);
1998 // Get the list of segments to use for an allocated section when
1999 // using a PHDRS clause.
2001 allocate_to_segment(String_list
** phdrs_list
, bool* orphan
);
2003 // Look for an output section by name and return the address, the
2004 // load address, the alignment, and the size. This is used when an
2005 // expression refers to an output section which was not actually
2006 // created. This returns true if the section was found, false
2009 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
2012 // Return the associated Output_section if there is one.
2014 get_output_section() const
2015 { return this->output_section_
; }
2017 // Print the contents to the FILE. This is for debugging.
2021 // Return the output section type if specified or Script_sections::ST_NONE.
2022 Script_sections::Section_type
2023 section_type() const;
2025 // Store the memory region to use.
2027 set_memory_region(Memory_region
*, bool set_vma
);
2030 set_section_vma(Expression
* address
)
2031 { this->address_
= address
; }
2034 set_section_lma(Expression
* address
)
2035 { this->load_address_
= address
; }
2038 get_section_name() const
2039 { return this->name_
; }
2043 script_section_type_name(Script_section_type
);
2045 typedef std::vector
<Output_section_element
*> Output_section_elements
;
2047 // The output section name.
2049 // The address. This may be NULL.
2050 Expression
* address_
;
2051 // The load address. This may be NULL.
2052 Expression
* load_address_
;
2053 // The alignment. This may be NULL.
2055 // The input section alignment. This may be NULL.
2056 Expression
* subalign_
;
2057 // The constraint, if any.
2058 Section_constraint constraint_
;
2059 // The fill value. This may be NULL.
2061 // The list of segments this section should go into. This may be
2063 String_list
* phdrs_
;
2064 // The list of elements defining the section.
2065 Output_section_elements elements_
;
2066 // The Output_section created for this definition. This will be
2067 // NULL if none was created.
2068 Output_section
* output_section_
;
2069 // The address after it has been evaluated.
2070 uint64_t evaluated_address_
;
2071 // The load address after it has been evaluated.
2072 uint64_t evaluated_load_address_
;
2073 // The alignment after it has been evaluated.
2074 uint64_t evaluated_addralign_
;
2075 // The output section is relro.
2077 // The output section type if specified.
2078 enum Script_section_type script_section_type_
;
2083 Output_section_definition::Output_section_definition(
2086 const Parser_output_section_header
* header
)
2087 : name_(name
, namelen
),
2088 address_(header
->address
),
2089 load_address_(header
->load_address
),
2090 align_(header
->align
),
2091 subalign_(header
->subalign
),
2092 constraint_(header
->constraint
),
2096 output_section_(NULL
),
2097 evaluated_address_(0),
2098 evaluated_load_address_(0),
2099 evaluated_addralign_(0),
2101 script_section_type_(header
->section_type
)
2105 // Finish an output section.
2108 Output_section_definition::finish(const Parser_output_section_trailer
* trailer
)
2110 this->fill_
= trailer
->fill
;
2111 this->phdrs_
= trailer
->phdrs
;
2114 // Add a symbol to be defined.
2117 Output_section_definition::add_symbol_assignment(const char* name
,
2123 Output_section_element
* p
= new Output_section_element_assignment(name
,
2128 this->elements_
.push_back(p
);
2131 // Add an assignment to the special dot symbol.
2134 Output_section_definition::add_dot_assignment(Expression
* value
)
2136 Output_section_element
* p
= new Output_section_element_dot_assignment(value
);
2137 this->elements_
.push_back(p
);
2140 // Add an assertion.
2143 Output_section_definition::add_assertion(Expression
* check
,
2144 const char* message
,
2147 Output_section_element
* p
= new Output_section_element_assertion(check
,
2150 this->elements_
.push_back(p
);
2153 // Add a data item to the current output section.
2156 Output_section_definition::add_data(int size
, bool is_signed
, Expression
* val
)
2158 Output_section_element
* p
= new Output_section_element_data(size
, is_signed
,
2160 this->elements_
.push_back(p
);
2163 // Add a setting for the fill value.
2166 Output_section_definition::add_fill(Expression
* val
)
2168 Output_section_element
* p
= new Output_section_element_fill(val
);
2169 this->elements_
.push_back(p
);
2172 // Add an input section specification.
2175 Output_section_definition::add_input_section(const Input_section_spec
* spec
,
2178 Output_section_element
* p
= new Output_section_element_input(spec
, keep
);
2179 this->elements_
.push_back(p
);
2182 // Create any required output sections. We need an output section if
2183 // there is a data statement here.
2186 Output_section_definition::create_sections(Layout
* layout
)
2188 if (this->output_section_
!= NULL
)
2190 for (Output_section_elements::const_iterator p
= this->elements_
.begin();
2191 p
!= this->elements_
.end();
2194 if ((*p
)->needs_output_section())
2196 const char* name
= this->name_
.c_str();
2197 this->output_section_
=
2198 layout
->make_output_section_for_script(name
, this->section_type());
2204 // Add any symbols being defined to the symbol table.
2207 Output_section_definition::add_symbols_to_table(Symbol_table
* symtab
)
2209 for (Output_section_elements::iterator p
= this->elements_
.begin();
2210 p
!= this->elements_
.end();
2212 (*p
)->add_symbols_to_table(symtab
);
2215 // Finalize symbols and check assertions.
2218 Output_section_definition::finalize_symbols(Symbol_table
* symtab
,
2219 const Layout
* layout
,
2220 uint64_t* dot_value
)
2222 if (this->output_section_
!= NULL
)
2223 *dot_value
= this->output_section_
->address();
2226 uint64_t address
= *dot_value
;
2227 if (this->address_
!= NULL
)
2229 address
= this->address_
->eval_with_dot(symtab
, layout
, true,
2233 if (this->align_
!= NULL
)
2235 uint64_t align
= this->align_
->eval_with_dot(symtab
, layout
, true,
2238 address
= align_address(address
, align
);
2240 *dot_value
= address
;
2243 Output_section
* dot_section
= this->output_section_
;
2244 for (Output_section_elements::iterator p
= this->elements_
.begin();
2245 p
!= this->elements_
.end();
2247 (*p
)->finalize_symbols(symtab
, layout
, dot_value
, &dot_section
);
2250 // Return the output section name to use for an input section name.
2253 Output_section_definition::output_section_name(
2254 const char* file_name
,
2255 const char* section_name
,
2256 Output_section
*** slot
,
2257 Script_sections::Section_type
* psection_type
,
2260 // Ask each element whether it matches NAME.
2261 for (Output_section_elements::const_iterator p
= this->elements_
.begin();
2262 p
!= this->elements_
.end();
2265 if ((*p
)->match_name(file_name
, section_name
, keep
))
2267 // We found a match for NAME, which means that it should go
2268 // into this output section.
2269 *slot
= &this->output_section_
;
2270 *psection_type
= this->section_type();
2271 return this->name_
.c_str();
2275 // We don't know about this section name.
2279 // Return true if memory from START to START + LENGTH is contained
2280 // within a memory region.
2283 Script_sections::block_in_region(Symbol_table
* symtab
, Layout
* layout
,
2284 uint64_t start
, uint64_t length
) const
2286 if (this->memory_regions_
== NULL
)
2289 for (Memory_regions::const_iterator mr
= this->memory_regions_
->begin();
2290 mr
!= this->memory_regions_
->end();
2293 uint64_t s
= (*mr
)->start_address()->eval(symtab
, layout
, false);
2294 uint64_t l
= (*mr
)->length()->eval(symtab
, layout
, false);
2297 && (s
+ l
) >= (start
+ length
))
2304 // Find a memory region that should be used by a given output SECTION.
2305 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2306 // that used the return memory region.
2309 Script_sections::find_memory_region(
2310 Output_section_definition
* section
,
2311 bool find_vma_region
,
2313 Output_section_definition
** previous_section_return
)
2315 if (previous_section_return
!= NULL
)
2316 * previous_section_return
= NULL
;
2318 // Walk the memory regions specified in this script, if any.
2319 if (this->memory_regions_
== NULL
)
2322 // The /DISCARD/ section never gets assigned to any region.
2323 if (section
->get_section_name() == "/DISCARD/")
2326 Memory_region
* first_match
= NULL
;
2328 // First check to see if a region has been assigned to this section.
2329 for (Memory_regions::const_iterator mr
= this->memory_regions_
->begin();
2330 mr
!= this->memory_regions_
->end();
2333 if (find_vma_region
)
2335 for (Memory_region::Section_list::const_iterator s
=
2336 (*mr
)->get_vma_section_list_start();
2337 s
!= (*mr
)->get_vma_section_list_end();
2339 if ((*s
) == section
)
2341 (*mr
)->set_last_section(section
);
2347 for (Memory_region::Section_list::const_iterator s
=
2348 (*mr
)->get_lma_section_list_start();
2349 s
!= (*mr
)->get_lma_section_list_end();
2351 if ((*s
) == section
)
2353 (*mr
)->set_last_section(section
);
2360 // Make a note of the first memory region whose attributes
2361 // are compatible with the section. If we do not find an
2362 // explicit region assignment, then we will return this region.
2363 Output_section
* out_sec
= section
->get_output_section();
2364 if (first_match
== NULL
2366 && (*mr
)->attributes_compatible(out_sec
->flags(),
2372 // With LMA computations, if an explicit region has not been specified then
2373 // we will want to set the difference between the VMA and the LMA of the
2374 // section were searching for to be the same as the difference between the
2375 // VMA and LMA of the last section to be added to first matched region.
2376 // Hence, if it was asked for, we return a pointer to the last section
2377 // known to be used by the first matched region.
2378 if (first_match
!= NULL
2379 && previous_section_return
!= NULL
)
2380 *previous_section_return
= first_match
->get_last_section();
2385 // Set the section address. Note that the OUTPUT_SECTION_ field will
2386 // be NULL if no input sections were mapped to this output section.
2387 // We still have to adjust dot and process symbol assignments.
2390 Output_section_definition::set_section_addresses(Symbol_table
* symtab
,
2392 uint64_t* dot_value
,
2393 uint64_t* dot_alignment
,
2394 uint64_t* load_address
)
2396 Memory_region
* vma_region
= NULL
;
2397 Memory_region
* lma_region
= NULL
;
2398 Script_sections
* script_sections
=
2399 layout
->script_options()->script_sections();
2401 uint64_t old_dot_value
= *dot_value
;
2402 uint64_t old_load_address
= *load_address
;
2404 // If input section sorting is requested via --section-ordering-file or
2405 // linker plugins, then do it here. This is important because we want
2406 // any sorting specified in the linker scripts, which will be done after
2407 // this, to take precedence. The final order of input sections is then
2408 // guaranteed to be according to the linker script specification.
2409 if (this->output_section_
!= NULL
2410 && this->output_section_
->input_section_order_specified())
2411 this->output_section_
->sort_attached_input_sections();
2413 // Decide the start address for the section. The algorithm is:
2414 // 1) If an address has been specified in a linker script, use that.
2415 // 2) Otherwise if a memory region has been specified for the section,
2416 // use the next free address in the region.
2417 // 3) Otherwise if memory regions have been specified find the first
2418 // region whose attributes are compatible with this section and
2419 // install it into that region.
2420 // 4) Otherwise use the current location counter.
2422 if (this->output_section_
!= NULL
2423 // Check for --section-start.
2424 && parameters
->options().section_start(this->output_section_
->name(),
2427 else if (this->address_
== NULL
)
2429 vma_region
= script_sections
->find_memory_region(this, true, false, NULL
);
2430 if (vma_region
!= NULL
)
2431 address
= vma_region
->get_current_address()->eval(symtab
, layout
,
2434 address
= *dot_value
;
2438 vma_region
= script_sections
->find_memory_region(this, true, true, NULL
);
2439 address
= this->address_
->eval_with_dot(symtab
, layout
, true,
2440 *dot_value
, NULL
, NULL
,
2441 dot_alignment
, false);
2442 if (vma_region
!= NULL
)
2443 vma_region
->set_address(address
, symtab
, layout
);
2447 if (this->align_
== NULL
)
2449 if (this->output_section_
== NULL
)
2452 align
= this->output_section_
->addralign();
2456 Output_section
* align_section
;
2457 align
= this->align_
->eval_with_dot(symtab
, layout
, true, *dot_value
,
2458 NULL
, &align_section
, NULL
, false);
2459 if (align_section
!= NULL
)
2460 gold_warning(_("alignment of section %s is not absolute"),
2461 this->name_
.c_str());
2462 if (this->output_section_
!= NULL
)
2463 this->output_section_
->set_addralign(align
);
2466 address
= align_address(address
, align
);
2468 uint64_t start_address
= address
;
2470 *dot_value
= address
;
2472 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2473 // forced to zero, regardless of what the linker script wants.
2474 if (this->output_section_
!= NULL
2475 && ((this->output_section_
->flags() & elfcpp::SHF_ALLOC
) != 0
2476 || this->output_section_
->is_noload()))
2477 this->output_section_
->set_address(address
);
2479 this->evaluated_address_
= address
;
2480 this->evaluated_addralign_
= align
;
2484 if (this->load_address_
== NULL
)
2486 Output_section_definition
* previous_section
;
2488 // Determine if an LMA region has been set for this section.
2489 lma_region
= script_sections
->find_memory_region(this, false, false,
2492 if (lma_region
!= NULL
)
2494 if (previous_section
== NULL
)
2495 // The LMA address was explicitly set to the given region.
2496 laddr
= lma_region
->get_current_address()->eval(symtab
, layout
,
2500 // We are not going to use the discovered lma_region, so
2501 // make sure that we do not update it in the code below.
2504 if (this->address_
!= NULL
|| previous_section
== this)
2506 // Either an explicit VMA address has been set, or an
2507 // explicit VMA region has been set, so set the LMA equal to
2513 // The LMA address was not explicitly or implicitly set.
2515 // We have been given the first memory region that is
2516 // compatible with the current section and a pointer to the
2517 // last section to use this region. Set the LMA of this
2518 // section so that the difference between its' VMA and LMA
2519 // is the same as the difference between the VMA and LMA of
2520 // the last section in the given region.
2521 laddr
= address
+ (previous_section
->evaluated_load_address_
2522 - previous_section
->evaluated_address_
);
2526 if (this->output_section_
!= NULL
)
2527 this->output_section_
->set_load_address(laddr
);
2531 // Do not set the load address of the output section, if one exists.
2532 // This allows future sections to determine what the load address
2533 // should be. If none is ever set, it will default to being the
2534 // same as the vma address.
2540 laddr
= this->load_address_
->eval_with_dot(symtab
, layout
, true,
2542 this->output_section_
,
2544 if (this->output_section_
!= NULL
)
2545 this->output_section_
->set_load_address(laddr
);
2548 this->evaluated_load_address_
= laddr
;
2551 if (this->subalign_
== NULL
)
2555 Output_section
* subalign_section
;
2556 subalign
= this->subalign_
->eval_with_dot(symtab
, layout
, true,
2558 &subalign_section
, NULL
,
2560 if (subalign_section
!= NULL
)
2561 gold_warning(_("subalign of section %s is not absolute"),
2562 this->name_
.c_str());
2566 if (this->fill_
!= NULL
)
2568 // FIXME: The GNU linker supports fill values of arbitrary
2570 Output_section
* fill_section
;
2571 uint64_t fill_val
= this->fill_
->eval_with_dot(symtab
, layout
, true,
2573 NULL
, &fill_section
,
2575 if (fill_section
!= NULL
)
2576 gold_warning(_("fill of section %s is not absolute"),
2577 this->name_
.c_str());
2578 unsigned char fill_buff
[4];
2579 elfcpp::Swap_unaligned
<32, true>::writeval(fill_buff
, fill_val
);
2580 fill
.assign(reinterpret_cast<char*>(fill_buff
), 4);
2583 Input_section_list input_sections
;
2584 if (this->output_section_
!= NULL
)
2586 // Get the list of input sections attached to this output
2587 // section. This will leave the output section with only
2588 // Output_section_data entries.
2589 address
+= this->output_section_
->get_input_sections(address
,
2592 *dot_value
= address
;
2595 Output_section
* dot_section
= this->output_section_
;
2596 for (Output_section_elements::iterator p
= this->elements_
.begin();
2597 p
!= this->elements_
.end();
2599 (*p
)->set_section_addresses(symtab
, layout
, this->output_section_
,
2600 subalign
, dot_value
, dot_alignment
,
2601 &dot_section
, &fill
, &input_sections
);
2603 gold_assert(input_sections
.empty());
2605 if (vma_region
!= NULL
)
2607 // Update the VMA region being used by the section now that we know how
2608 // big it is. Use the current address in the region, rather than
2609 // start_address because that might have been aligned upwards and we
2610 // need to allow for the padding.
2611 Expression
* addr
= vma_region
->get_current_address();
2612 uint64_t size
= *dot_value
- addr
->eval(symtab
, layout
, false);
2614 vma_region
->increment_offset(this->get_section_name(), size
,
2618 // If the LMA region is different from the VMA region, then increment the
2619 // offset there as well. Note that we use the same "dot_value -
2620 // start_address" formula that is used in the load_address assignment below.
2621 if (lma_region
!= NULL
&& lma_region
!= vma_region
)
2622 lma_region
->increment_offset(this->get_section_name(),
2623 *dot_value
- start_address
,
2626 // Compute the load address for the following section.
2627 if (this->output_section_
== NULL
)
2628 *load_address
= *dot_value
;
2629 else if (this->load_address_
== NULL
)
2631 if (lma_region
== NULL
)
2632 *load_address
= *dot_value
;
2635 lma_region
->get_current_address()->eval(symtab
, layout
, false);
2638 *load_address
= (this->output_section_
->load_address()
2639 + (*dot_value
- start_address
));
2641 if (this->output_section_
!= NULL
)
2643 if (this->is_relro_
)
2644 this->output_section_
->set_is_relro();
2646 this->output_section_
->clear_is_relro();
2648 // If this is a NOLOAD section, keep dot and load address unchanged.
2649 if (this->output_section_
->is_noload())
2651 *dot_value
= old_dot_value
;
2652 *load_address
= old_load_address
;
2657 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2658 // this section is constrained, and the input sections do not match,
2659 // return the constraint, and set *POSD.
2662 Output_section_definition::check_constraint(Output_section_definition
** posd
)
2664 switch (this->constraint_
)
2666 case CONSTRAINT_NONE
:
2667 return CONSTRAINT_NONE
;
2669 case CONSTRAINT_ONLY_IF_RO
:
2670 if (this->output_section_
!= NULL
2671 && (this->output_section_
->flags() & elfcpp::SHF_WRITE
) != 0)
2674 return CONSTRAINT_ONLY_IF_RO
;
2676 return CONSTRAINT_NONE
;
2678 case CONSTRAINT_ONLY_IF_RW
:
2679 if (this->output_section_
!= NULL
2680 && (this->output_section_
->flags() & elfcpp::SHF_WRITE
) == 0)
2683 return CONSTRAINT_ONLY_IF_RW
;
2685 return CONSTRAINT_NONE
;
2687 case CONSTRAINT_SPECIAL
:
2688 if (this->output_section_
!= NULL
)
2689 gold_error(_("SPECIAL constraints are not implemented"));
2690 return CONSTRAINT_NONE
;
2697 // See if this is the alternate output section for a constrained
2698 // output section. If it is, transfer the Output_section and return
2699 // true. Otherwise return false.
2702 Output_section_definition::alternate_constraint(
2703 Output_section_definition
* posd
,
2704 Section_constraint constraint
)
2706 if (this->name_
!= posd
->name_
)
2711 case CONSTRAINT_ONLY_IF_RO
:
2712 if (this->constraint_
!= CONSTRAINT_ONLY_IF_RW
)
2716 case CONSTRAINT_ONLY_IF_RW
:
2717 if (this->constraint_
!= CONSTRAINT_ONLY_IF_RO
)
2725 // We have found the alternate constraint. We just need to move
2726 // over the Output_section. When constraints are used properly,
2727 // THIS should not have an output_section pointer, as all the input
2728 // sections should have matched the other definition.
2730 if (this->output_section_
!= NULL
)
2731 gold_error(_("mismatched definition for constrained sections"));
2733 this->output_section_
= posd
->output_section_
;
2734 posd
->output_section_
= NULL
;
2736 if (this->is_relro_
)
2737 this->output_section_
->set_is_relro();
2739 this->output_section_
->clear_is_relro();
2744 // Get the list of segments to use for an allocated section when using
2748 Output_section_definition::allocate_to_segment(String_list
** phdrs_list
,
2751 // Update phdrs_list even if we don't have an output section. It
2752 // might be used by the following sections.
2753 if (this->phdrs_
!= NULL
)
2754 *phdrs_list
= this->phdrs_
;
2756 if (this->output_section_
== NULL
)
2758 if ((this->output_section_
->flags() & elfcpp::SHF_ALLOC
) == 0)
2761 return this->output_section_
;
2764 // Look for an output section by name and return the address, the load
2765 // address, the alignment, and the size. This is used when an
2766 // expression refers to an output section which was not actually
2767 // created. This returns true if the section was found, false
2771 Output_section_definition::get_output_section_info(const char* name
,
2773 uint64_t* load_address
,
2774 uint64_t* addralign
,
2775 uint64_t* size
) const
2777 if (this->name_
!= name
)
2780 if (this->output_section_
!= NULL
)
2782 *address
= this->output_section_
->address();
2783 if (this->output_section_
->has_load_address())
2784 *load_address
= this->output_section_
->load_address();
2786 *load_address
= *address
;
2787 *addralign
= this->output_section_
->addralign();
2788 *size
= this->output_section_
->current_data_size();
2792 *address
= this->evaluated_address_
;
2793 *load_address
= this->evaluated_load_address_
;
2794 *addralign
= this->evaluated_addralign_
;
2801 // Print for debugging.
2804 Output_section_definition::print(FILE* f
) const
2806 fprintf(f
, " %s ", this->name_
.c_str());
2808 if (this->address_
!= NULL
)
2810 this->address_
->print(f
);
2814 if (this->script_section_type_
!= SCRIPT_SECTION_TYPE_NONE
)
2816 this->script_section_type_name(this->script_section_type_
));
2820 if (this->load_address_
!= NULL
)
2823 this->load_address_
->print(f
);
2827 if (this->align_
!= NULL
)
2829 fprintf(f
, "ALIGN(");
2830 this->align_
->print(f
);
2834 if (this->subalign_
!= NULL
)
2836 fprintf(f
, "SUBALIGN(");
2837 this->subalign_
->print(f
);
2843 for (Output_section_elements::const_iterator p
= this->elements_
.begin();
2844 p
!= this->elements_
.end();
2850 if (this->fill_
!= NULL
)
2853 this->fill_
->print(f
);
2856 if (this->phdrs_
!= NULL
)
2858 for (String_list::const_iterator p
= this->phdrs_
->begin();
2859 p
!= this->phdrs_
->end();
2861 fprintf(f
, " :%s", p
->c_str());
2867 Script_sections::Section_type
2868 Output_section_definition::section_type() const
2870 switch (this->script_section_type_
)
2872 case SCRIPT_SECTION_TYPE_NONE
:
2873 return Script_sections::ST_NONE
;
2874 case SCRIPT_SECTION_TYPE_NOLOAD
:
2875 return Script_sections::ST_NOLOAD
;
2876 case SCRIPT_SECTION_TYPE_COPY
:
2877 case SCRIPT_SECTION_TYPE_DSECT
:
2878 case SCRIPT_SECTION_TYPE_INFO
:
2879 case SCRIPT_SECTION_TYPE_OVERLAY
:
2880 // There are not really support so we treat them as ST_NONE. The
2881 // parse should have issued errors for them already.
2882 return Script_sections::ST_NONE
;
2888 // Return the name of a script section type.
2891 Output_section_definition::script_section_type_name(
2892 Script_section_type script_section_type
)
2894 switch (script_section_type
)
2896 case SCRIPT_SECTION_TYPE_NONE
:
2898 case SCRIPT_SECTION_TYPE_NOLOAD
:
2900 case SCRIPT_SECTION_TYPE_DSECT
:
2902 case SCRIPT_SECTION_TYPE_COPY
:
2904 case SCRIPT_SECTION_TYPE_INFO
:
2906 case SCRIPT_SECTION_TYPE_OVERLAY
:
2914 Output_section_definition::set_memory_region(Memory_region
* mr
, bool set_vma
)
2916 gold_assert(mr
!= NULL
);
2917 // Add the current section to the specified region's list.
2918 mr
->add_section(this, set_vma
);
2921 // An output section created to hold orphaned input sections. These
2922 // do not actually appear in linker scripts. However, for convenience
2923 // when setting the output section addresses, we put a marker to these
2924 // sections in the appropriate place in the list of SECTIONS elements.
2926 class Orphan_output_section
: public Sections_element
2929 Orphan_output_section(Output_section
* os
)
2933 // Return whether the orphan output section is relro. We can just
2934 // check the output section because we always set the flag, if
2935 // needed, just after we create the Orphan_output_section.
2938 { return this->os_
->is_relro(); }
2940 // Initialize OSP with an output section. This should have been
2943 orphan_section_init(Orphan_section_placement
*,
2944 Script_sections::Elements_iterator
)
2945 { gold_unreachable(); }
2947 // Set section addresses.
2949 set_section_addresses(Symbol_table
*, Layout
*, uint64_t*, uint64_t*,
2952 // Get the list of segments to use for an allocated section when
2953 // using a PHDRS clause.
2955 allocate_to_segment(String_list
**, bool*);
2957 // Return the associated Output_section.
2959 get_output_section() const
2960 { return this->os_
; }
2962 // Print for debugging.
2964 print(FILE* f
) const
2966 fprintf(f
, " marker for orphaned output section %s\n",
2971 Output_section
* os_
;
2974 // Set section addresses.
2977 Orphan_output_section::set_section_addresses(Symbol_table
*, Layout
*,
2978 uint64_t* dot_value
,
2980 uint64_t* load_address
)
2982 typedef std::list
<Output_section::Input_section
> Input_section_list
;
2984 bool have_load_address
= *load_address
!= *dot_value
;
2986 uint64_t address
= *dot_value
;
2987 address
= align_address(address
, this->os_
->addralign());
2989 // If input section sorting is requested via --section-ordering-file or
2990 // linker plugins, then do it here. This is important because we want
2991 // any sorting specified in the linker scripts, which will be done after
2992 // this, to take precedence. The final order of input sections is then
2993 // guaranteed to be according to the linker script specification.
2994 if (this->os_
!= NULL
2995 && this->os_
->input_section_order_specified())
2996 this->os_
->sort_attached_input_sections();
2998 // For a relocatable link, all orphan sections are put at
2999 // address 0. In general we expect all sections to be at
3000 // address 0 for a relocatable link, but we permit the linker
3001 // script to override that for specific output sections.
3002 if (parameters
->options().relocatable())
3006 have_load_address
= false;
3009 if ((this->os_
->flags() & elfcpp::SHF_ALLOC
) != 0)
3011 this->os_
->set_address(address
);
3012 if (have_load_address
)
3013 this->os_
->set_load_address(align_address(*load_address
,
3014 this->os_
->addralign()));
3017 Input_section_list input_sections
;
3018 address
+= this->os_
->get_input_sections(address
, "", &input_sections
);
3020 for (Input_section_list::iterator p
= input_sections
.begin();
3021 p
!= input_sections
.end();
3024 uint64_t addralign
= p
->addralign();
3025 if (!p
->is_input_section())
3026 p
->output_section_data()->finalize_data_size();
3027 uint64_t size
= p
->data_size();
3028 address
= align_address(address
, addralign
);
3029 this->os_
->add_script_input_section(*p
);
3033 if (parameters
->options().relocatable())
3035 // For a relocatable link, reset DOT_VALUE to 0.
3039 else if (this->os_
== NULL
3040 || (this->os_
->flags() & elfcpp::SHF_TLS
) == 0
3041 || this->os_
->type() != elfcpp::SHT_NOBITS
)
3043 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
3044 if (!have_load_address
)
3045 *load_address
= address
;
3047 *load_address
+= address
- *dot_value
;
3049 *dot_value
= address
;
3053 // Get the list of segments to use for an allocated section when using
3054 // a PHDRS clause. If this is an allocated section, return the
3055 // Output_section. We don't change the list of segments.
3058 Orphan_output_section::allocate_to_segment(String_list
**, bool* orphan
)
3060 if ((this->os_
->flags() & elfcpp::SHF_ALLOC
) == 0)
3066 // Class Phdrs_element. A program header from a PHDRS clause.
3071 Phdrs_element(const char* name
, size_t namelen
, unsigned int type
,
3072 bool includes_filehdr
, bool includes_phdrs
,
3073 bool is_flags_valid
, unsigned int flags
,
3074 Expression
* load_address
)
3075 : name_(name
, namelen
), type_(type
), includes_filehdr_(includes_filehdr
),
3076 includes_phdrs_(includes_phdrs
), is_flags_valid_(is_flags_valid
),
3077 flags_(flags
), load_address_(load_address
), load_address_value_(0),
3081 // Return the name of this segment.
3084 { return this->name_
; }
3086 // Return the type of the segment.
3089 { return this->type_
; }
3091 // Whether to include the file header.
3093 includes_filehdr() const
3094 { return this->includes_filehdr_
; }
3096 // Whether to include the program headers.
3098 includes_phdrs() const
3099 { return this->includes_phdrs_
; }
3101 // Return whether there is a load address.
3103 has_load_address() const
3104 { return this->load_address_
!= NULL
; }
3106 // Evaluate the load address expression if there is one.
3108 eval_load_address(Symbol_table
* symtab
, Layout
* layout
)
3110 if (this->load_address_
!= NULL
)
3111 this->load_address_value_
= this->load_address_
->eval(symtab
, layout
,
3115 // Return the load address.
3117 load_address() const
3119 gold_assert(this->load_address_
!= NULL
);
3120 return this->load_address_value_
;
3123 // Create the segment.
3125 create_segment(Layout
* layout
)
3127 this->segment_
= layout
->make_output_segment(this->type_
, this->flags_
);
3128 return this->segment_
;
3131 // Return the segment.
3134 { return this->segment_
; }
3136 // Release the segment.
3139 { this->segment_
= NULL
; }
3141 // Set the segment flags if appropriate.
3143 set_flags_if_valid()
3145 if (this->is_flags_valid_
)
3146 this->segment_
->set_flags(this->flags_
);
3149 // Print for debugging.
3154 // The name used in the script.
3156 // The type of the segment (PT_LOAD, etc.).
3158 // Whether this segment includes the file header.
3159 bool includes_filehdr_
;
3160 // Whether this segment includes the section headers.
3161 bool includes_phdrs_
;
3162 // Whether the flags were explicitly specified.
3163 bool is_flags_valid_
;
3164 // The flags for this segment (PF_R, etc.) if specified.
3165 unsigned int flags_
;
3166 // The expression for the load address for this segment. This may
3168 Expression
* load_address_
;
3169 // The actual load address from evaluating the expression.
3170 uint64_t load_address_value_
;
3171 // The segment itself.
3172 Output_segment
* segment_
;
3175 // Print for debugging.
3178 Phdrs_element::print(FILE* f
) const
3180 fprintf(f
, " %s 0x%x", this->name_
.c_str(), this->type_
);
3181 if (this->includes_filehdr_
)
3182 fprintf(f
, " FILEHDR");
3183 if (this->includes_phdrs_
)
3184 fprintf(f
, " PHDRS");
3185 if (this->is_flags_valid_
)
3186 fprintf(f
, " FLAGS(%u)", this->flags_
);
3187 if (this->load_address_
!= NULL
)
3190 this->load_address_
->print(f
);
3196 // Add a memory region.
3199 Script_sections::add_memory_region(const char* name
, size_t namelen
,
3200 unsigned int attributes
,
3201 Expression
* start
, Expression
* length
)
3203 if (this->memory_regions_
== NULL
)
3204 this->memory_regions_
= new Memory_regions();
3205 else if (this->find_memory_region(name
, namelen
))
3207 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen
),
3209 // FIXME: Add a GOLD extension to allow multiple regions with the same
3210 // name. This would amount to a single region covering disjoint blocks
3211 // of memory, which is useful for embedded devices.
3214 // FIXME: Check the length and start values. Currently we allow
3215 // non-constant expressions for these values, whereas LD does not.
3217 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3218 // describe a region that packs from the end address going down, rather
3219 // than the start address going up. This would be useful for embedded
3222 this->memory_regions_
->push_back(new Memory_region(name
, namelen
, attributes
,
3226 // Find a memory region.
3229 Script_sections::find_memory_region(const char* name
, size_t namelen
)
3231 if (this->memory_regions_
== NULL
)
3234 for (Memory_regions::const_iterator m
= this->memory_regions_
->begin();
3235 m
!= this->memory_regions_
->end();
3237 if ((*m
)->name_match(name
, namelen
))
3243 // Find a memory region's origin.
3246 Script_sections::find_memory_region_origin(const char* name
, size_t namelen
)
3248 Memory_region
* mr
= find_memory_region(name
, namelen
);
3252 return mr
->start_address();
3255 // Find a memory region's length.
3258 Script_sections::find_memory_region_length(const char* name
, size_t namelen
)
3260 Memory_region
* mr
= find_memory_region(name
, namelen
);
3264 return mr
->length();
3267 // Set the memory region to use for the current section.
3270 Script_sections::set_memory_region(Memory_region
* mr
, bool set_vma
)
3272 gold_assert(!this->sections_elements_
->empty());
3273 this->sections_elements_
->back()->set_memory_region(mr
, set_vma
);
3276 // Class Script_sections.
3278 Script_sections::Script_sections()
3279 : saw_sections_clause_(false),
3280 in_sections_clause_(false),
3281 sections_elements_(NULL
),
3282 output_section_(NULL
),
3283 memory_regions_(NULL
),
3284 phdrs_elements_(NULL
),
3285 orphan_section_placement_(NULL
),
3286 data_segment_align_start_(),
3287 saw_data_segment_align_(false),
3288 saw_relro_end_(false),
3289 saw_segment_start_expression_(false),
3290 segments_created_(false)
3294 // Start a SECTIONS clause.
3297 Script_sections::start_sections()
3299 gold_assert(!this->in_sections_clause_
&& this->output_section_
== NULL
);
3300 this->saw_sections_clause_
= true;
3301 this->in_sections_clause_
= true;
3302 if (this->sections_elements_
== NULL
)
3303 this->sections_elements_
= new Sections_elements
;
3306 // Finish a SECTIONS clause.
3309 Script_sections::finish_sections()
3311 gold_assert(this->in_sections_clause_
&& this->output_section_
== NULL
);
3312 this->in_sections_clause_
= false;
3315 // Add a symbol to be defined.
3318 Script_sections::add_symbol_assignment(const char* name
, size_t length
,
3319 Expression
* val
, bool provide
,
3322 if (this->output_section_
!= NULL
)
3323 this->output_section_
->add_symbol_assignment(name
, length
, val
,
3327 Sections_element
* p
= new Sections_element_assignment(name
, length
,
3330 this->sections_elements_
->push_back(p
);
3334 // Add an assignment to the special dot symbol.
3337 Script_sections::add_dot_assignment(Expression
* val
)
3339 if (this->output_section_
!= NULL
)
3340 this->output_section_
->add_dot_assignment(val
);
3343 // The GNU linker permits assignments to . to appears outside of
3344 // a SECTIONS clause, and treats it as appearing inside, so
3345 // sections_elements_ may be NULL here.
3346 if (this->sections_elements_
== NULL
)
3348 this->sections_elements_
= new Sections_elements
;
3349 this->saw_sections_clause_
= true;
3352 Sections_element
* p
= new Sections_element_dot_assignment(val
);
3353 this->sections_elements_
->push_back(p
);
3357 // Add an assertion.
3360 Script_sections::add_assertion(Expression
* check
, const char* message
,
3363 if (this->output_section_
!= NULL
)
3364 this->output_section_
->add_assertion(check
, message
, messagelen
);
3367 Sections_element
* p
= new Sections_element_assertion(check
, message
,
3369 this->sections_elements_
->push_back(p
);
3373 // Start processing entries for an output section.
3376 Script_sections::start_output_section(
3379 const Parser_output_section_header
* header
)
3381 Output_section_definition
* posd
= new Output_section_definition(name
,
3384 this->sections_elements_
->push_back(posd
);
3385 gold_assert(this->output_section_
== NULL
);
3386 this->output_section_
= posd
;
3389 // Stop processing entries for an output section.
3392 Script_sections::finish_output_section(
3393 const Parser_output_section_trailer
* trailer
)
3395 gold_assert(this->output_section_
!= NULL
);
3396 this->output_section_
->finish(trailer
);
3397 this->output_section_
= NULL
;
3400 // Add a data item to the current output section.
3403 Script_sections::add_data(int size
, bool is_signed
, Expression
* val
)
3405 gold_assert(this->output_section_
!= NULL
);
3406 this->output_section_
->add_data(size
, is_signed
, val
);
3409 // Add a fill value setting to the current output section.
3412 Script_sections::add_fill(Expression
* val
)
3414 gold_assert(this->output_section_
!= NULL
);
3415 this->output_section_
->add_fill(val
);
3418 // Add an input section specification to the current output section.
3421 Script_sections::add_input_section(const Input_section_spec
* spec
, bool keep
)
3423 gold_assert(this->output_section_
!= NULL
);
3424 this->output_section_
->add_input_section(spec
, keep
);
3427 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3428 // subsequent output sections may be relro.
3431 Script_sections::data_segment_align()
3433 if (this->saw_data_segment_align_
)
3434 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3435 gold_assert(!this->sections_elements_
->empty());
3436 Sections_elements::iterator p
= this->sections_elements_
->end();
3438 this->data_segment_align_start_
= p
;
3439 this->saw_data_segment_align_
= true;
3442 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3443 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3446 Script_sections::data_segment_relro_end()
3448 if (this->saw_relro_end_
)
3449 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3450 "in a linker script"));
3451 this->saw_relro_end_
= true;
3453 if (!this->saw_data_segment_align_
)
3454 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3457 Sections_elements::iterator p
= this->data_segment_align_start_
;
3458 for (++p
; p
!= this->sections_elements_
->end(); ++p
)
3459 (*p
)->set_is_relro();
3463 // Create any required sections.
3466 Script_sections::create_sections(Layout
* layout
)
3468 if (!this->saw_sections_clause_
)
3470 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3471 p
!= this->sections_elements_
->end();
3473 (*p
)->create_sections(layout
);
3476 // Add any symbols we are defining to the symbol table.
3479 Script_sections::add_symbols_to_table(Symbol_table
* symtab
)
3481 if (!this->saw_sections_clause_
)
3483 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3484 p
!= this->sections_elements_
->end();
3486 (*p
)->add_symbols_to_table(symtab
);
3489 // Finalize symbols and check assertions.
3492 Script_sections::finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
)
3494 if (!this->saw_sections_clause_
)
3496 uint64_t dot_value
= 0;
3497 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3498 p
!= this->sections_elements_
->end();
3500 (*p
)->finalize_symbols(symtab
, layout
, &dot_value
);
3503 // Return the name of the output section to use for an input file name
3504 // and section name.
3507 Script_sections::output_section_name(
3508 const char* file_name
,
3509 const char* section_name
,
3510 Output_section
*** output_section_slot
,
3511 Script_sections::Section_type
* psection_type
,
3514 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
3515 p
!= this->sections_elements_
->end();
3518 const char* ret
= (*p
)->output_section_name(file_name
, section_name
,
3519 output_section_slot
,
3520 psection_type
, keep
);
3524 // The special name /DISCARD/ means that the input section
3525 // should be discarded.
3526 if (strcmp(ret
, "/DISCARD/") == 0)
3528 *output_section_slot
= NULL
;
3529 *psection_type
= Script_sections::ST_NONE
;
3536 // If we couldn't find a mapping for the name, the output section
3537 // gets the name of the input section.
3539 *output_section_slot
= NULL
;
3540 *psection_type
= Script_sections::ST_NONE
;
3542 return section_name
;
3545 // Place a marker for an orphan output section into the SECTIONS
3549 Script_sections::place_orphan(Output_section
* os
)
3551 Orphan_section_placement
* osp
= this->orphan_section_placement_
;
3554 // Initialize the Orphan_section_placement structure.
3555 osp
= new Orphan_section_placement();
3556 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3557 p
!= this->sections_elements_
->end();
3559 (*p
)->orphan_section_init(osp
, p
);
3560 gold_assert(!this->sections_elements_
->empty());
3561 Sections_elements::iterator last
= this->sections_elements_
->end();
3563 osp
->last_init(last
);
3564 this->orphan_section_placement_
= osp
;
3567 Orphan_output_section
* orphan
= new Orphan_output_section(os
);
3569 // Look for where to put ORPHAN.
3570 Sections_elements::iterator
* where
;
3571 if (osp
->find_place(os
, &where
))
3573 if ((**where
)->is_relro())
3576 os
->clear_is_relro();
3578 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3579 // so that the next one goes after this one.
3580 Sections_elements::iterator p
= *where
;
3581 gold_assert(p
!= this->sections_elements_
->end());
3583 *where
= this->sections_elements_
->insert(p
, orphan
);
3587 os
->clear_is_relro();
3588 // We don't have a place to put this orphan section. Put it,
3589 // and all other sections like it, at the end, but before the
3590 // sections which always come at the end.
3591 Sections_elements::iterator last
= osp
->last_place();
3592 *where
= this->sections_elements_
->insert(last
, orphan
);
3596 // Set the addresses of all the output sections. Walk through all the
3597 // elements, tracking the dot symbol. Apply assignments which set
3598 // absolute symbol values, in case they are used when setting dot.
3599 // Fill in data statement values. As we find output sections, set the
3600 // address, set the address of all associated input sections, and
3601 // update dot. Return the segment which should hold the file header
3602 // and segment headers, if any.
3605 Script_sections::set_section_addresses(Symbol_table
* symtab
, Layout
* layout
)
3607 gold_assert(this->saw_sections_clause_
);
3609 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3610 // for our representation.
3611 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3612 p
!= this->sections_elements_
->end();
3615 Output_section_definition
* posd
;
3616 Section_constraint failed_constraint
= (*p
)->check_constraint(&posd
);
3617 if (failed_constraint
!= CONSTRAINT_NONE
)
3619 Sections_elements::iterator q
;
3620 for (q
= this->sections_elements_
->begin();
3621 q
!= this->sections_elements_
->end();
3626 if ((*q
)->alternate_constraint(posd
, failed_constraint
))
3631 if (q
== this->sections_elements_
->end())
3632 gold_error(_("no matching section constraint"));
3636 // Force the alignment of the first TLS section to be the maximum
3637 // alignment of all TLS sections.
3638 Output_section
* first_tls
= NULL
;
3639 uint64_t tls_align
= 0;
3640 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
3641 p
!= this->sections_elements_
->end();
3644 Output_section
* os
= (*p
)->get_output_section();
3645 if (os
!= NULL
&& (os
->flags() & elfcpp::SHF_TLS
) != 0)
3647 if (first_tls
== NULL
)
3649 if (os
->addralign() > tls_align
)
3650 tls_align
= os
->addralign();
3653 if (first_tls
!= NULL
)
3654 first_tls
->set_addralign(tls_align
);
3656 // For a relocatable link, we implicitly set dot to zero.
3657 uint64_t dot_value
= 0;
3658 uint64_t dot_alignment
= 0;
3659 uint64_t load_address
= 0;
3661 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3662 // to set section addresses. If the script has any SEGMENT_START
3663 // expression, we do not set the section addresses.
3664 bool use_tsection_options
=
3665 (!this->saw_segment_start_expression_
3666 && (parameters
->options().user_set_Ttext()
3667 || parameters
->options().user_set_Tdata()
3668 || parameters
->options().user_set_Tbss()));
3670 for (Sections_elements::iterator p
= this->sections_elements_
->begin();
3671 p
!= this->sections_elements_
->end();
3674 Output_section
* os
= (*p
)->get_output_section();
3676 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3677 // the special sections by names and doing dot assignments.
3678 if (use_tsection_options
3680 && (os
->flags() & elfcpp::SHF_ALLOC
) != 0)
3682 uint64_t new_dot_value
= dot_value
;
3684 if (parameters
->options().user_set_Ttext()
3685 && strcmp(os
->name(), ".text") == 0)
3686 new_dot_value
= parameters
->options().Ttext();
3687 else if (parameters
->options().user_set_Tdata()
3688 && strcmp(os
->name(), ".data") == 0)
3689 new_dot_value
= parameters
->options().Tdata();
3690 else if (parameters
->options().user_set_Tbss()
3691 && strcmp(os
->name(), ".bss") == 0)
3692 new_dot_value
= parameters
->options().Tbss();
3694 // Update dot and load address if necessary.
3695 if (new_dot_value
< dot_value
)
3696 gold_error(_("dot may not move backward"));
3697 else if (new_dot_value
!= dot_value
)
3699 dot_value
= new_dot_value
;
3700 load_address
= new_dot_value
;
3704 (*p
)->set_section_addresses(symtab
, layout
, &dot_value
, &dot_alignment
,
3708 if (this->phdrs_elements_
!= NULL
)
3710 for (Phdrs_elements::iterator p
= this->phdrs_elements_
->begin();
3711 p
!= this->phdrs_elements_
->end();
3713 (*p
)->eval_load_address(symtab
, layout
);
3716 return this->create_segments(layout
, dot_alignment
);
3719 // Sort the sections in order to put them into segments.
3721 class Sort_output_sections
3724 Sort_output_sections(const Script_sections::Sections_elements
* elements
)
3725 : elements_(elements
)
3729 operator()(const Output_section
* os1
, const Output_section
* os2
) const;
3733 script_compare(const Output_section
* os1
, const Output_section
* os2
) const;
3736 const Script_sections::Sections_elements
* elements_
;
3740 Sort_output_sections::operator()(const Output_section
* os1
,
3741 const Output_section
* os2
) const
3743 // Sort first by the load address.
3744 uint64_t lma1
= (os1
->has_load_address()
3745 ? os1
->load_address()
3747 uint64_t lma2
= (os2
->has_load_address()
3748 ? os2
->load_address()
3753 // Then sort by the virtual address.
3754 if (os1
->address() != os2
->address())
3755 return os1
->address() < os2
->address();
3757 // If the linker script says which of these sections is first, go
3758 // with what it says.
3759 int i
= this->script_compare(os1
, os2
);
3763 // Sort PROGBITS before NOBITS.
3764 bool nobits1
= os1
->type() == elfcpp::SHT_NOBITS
;
3765 bool nobits2
= os2
->type() == elfcpp::SHT_NOBITS
;
3766 if (nobits1
!= nobits2
)
3769 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3771 bool tls1
= (os1
->flags() & elfcpp::SHF_TLS
) != 0;
3772 bool tls2
= (os2
->flags() & elfcpp::SHF_TLS
) != 0;
3774 return nobits1
? tls1
: tls2
;
3776 // Sort non-NOLOAD before NOLOAD.
3777 if (os1
->is_noload() && !os2
->is_noload())
3779 if (!os1
->is_noload() && os2
->is_noload())
3782 // The sections seem practically identical. Sort by name to get a
3784 return os1
->name() < os2
->name();
3787 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3788 // if either OS1 or OS2 is not mentioned. This ensures that we keep
3789 // empty sections in the order in which they appear in a linker
3793 Sort_output_sections::script_compare(const Output_section
* os1
,
3794 const Output_section
* os2
) const
3796 if (this->elements_
== NULL
)
3799 bool found_os1
= false;
3800 bool found_os2
= false;
3801 for (Script_sections::Sections_elements::const_iterator
3802 p
= this->elements_
->begin();
3803 p
!= this->elements_
->end();
3806 if (os2
== (*p
)->get_output_section())
3812 else if (os1
== (*p
)->get_output_section())
3823 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3824 // We treat a section with the SHF_TLS flag set as taking up space
3825 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3826 // space for them in the file.
3829 Script_sections::is_bss_section(const Output_section
* os
)
3831 return (os
->type() == elfcpp::SHT_NOBITS
3832 && (os
->flags() & elfcpp::SHF_TLS
) == 0);
3835 // Return the size taken by the file header and the program headers.
3838 Script_sections::total_header_size(Layout
* layout
) const
3840 size_t segment_count
= layout
->segment_count();
3841 size_t file_header_size
;
3842 size_t segment_headers_size
;
3843 if (parameters
->target().get_size() == 32)
3845 file_header_size
= elfcpp::Elf_sizes
<32>::ehdr_size
;
3846 segment_headers_size
= segment_count
* elfcpp::Elf_sizes
<32>::phdr_size
;
3848 else if (parameters
->target().get_size() == 64)
3850 file_header_size
= elfcpp::Elf_sizes
<64>::ehdr_size
;
3851 segment_headers_size
= segment_count
* elfcpp::Elf_sizes
<64>::phdr_size
;
3856 return file_header_size
+ segment_headers_size
;
3859 // Return the amount we have to subtract from the LMA to accommodate
3860 // headers of the given size. The complication is that the file
3861 // header have to be at the start of a page, as otherwise it will not
3862 // be at the start of the file.
3865 Script_sections::header_size_adjustment(uint64_t lma
,
3866 size_t sizeof_headers
) const
3868 const uint64_t abi_pagesize
= parameters
->target().abi_pagesize();
3869 uint64_t hdr_lma
= lma
- sizeof_headers
;
3870 hdr_lma
&= ~(abi_pagesize
- 1);
3871 return lma
- hdr_lma
;
3874 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3875 // the segment which should hold the file header and segment headers,
3879 Script_sections::create_segments(Layout
* layout
, uint64_t dot_alignment
)
3881 gold_assert(this->saw_sections_clause_
);
3883 if (parameters
->options().relocatable())
3886 if (this->saw_phdrs_clause())
3887 return create_segments_from_phdrs_clause(layout
, dot_alignment
);
3889 Layout::Section_list sections
;
3890 layout
->get_allocated_sections(§ions
);
3892 // Sort the sections by address.
3893 std::stable_sort(sections
.begin(), sections
.end(),
3894 Sort_output_sections(this->sections_elements_
));
3896 this->create_note_and_tls_segments(layout
, §ions
);
3898 // Walk through the sections adding them to PT_LOAD segments.
3899 const uint64_t abi_pagesize
= parameters
->target().abi_pagesize();
3900 Output_segment
* first_seg
= NULL
;
3901 Output_segment
* current_seg
= NULL
;
3902 bool is_current_seg_readonly
= true;
3903 Layout::Section_list::iterator plast
= sections
.end();
3904 uint64_t last_vma
= 0;
3905 uint64_t last_lma
= 0;
3906 uint64_t last_size
= 0;
3907 for (Layout::Section_list::iterator p
= sections
.begin();
3908 p
!= sections
.end();
3911 const uint64_t vma
= (*p
)->address();
3912 const uint64_t lma
= ((*p
)->has_load_address()
3913 ? (*p
)->load_address()
3915 const uint64_t size
= (*p
)->current_data_size();
3917 bool need_new_segment
;
3918 if (current_seg
== NULL
)
3919 need_new_segment
= true;
3920 else if (lma
- vma
!= last_lma
- last_vma
)
3922 // This section has a different LMA relationship than the
3923 // last one; we need a new segment.
3924 need_new_segment
= true;
3926 else if (align_address(last_lma
+ last_size
, abi_pagesize
)
3927 < align_address(lma
, abi_pagesize
))
3929 // Putting this section in the segment would require
3931 need_new_segment
= true;
3933 else if (is_bss_section(*plast
) && !is_bss_section(*p
))
3935 // A non-BSS section can not follow a BSS section in the
3937 need_new_segment
= true;
3939 else if (is_current_seg_readonly
3940 && ((*p
)->flags() & elfcpp::SHF_WRITE
) != 0
3941 && !parameters
->options().omagic())
3943 // Don't put a writable section in the same segment as a
3944 // non-writable section.
3945 need_new_segment
= true;
3949 // Otherwise, reuse the existing segment.
3950 need_new_segment
= false;
3953 elfcpp::Elf_Word seg_flags
=
3954 Layout::section_flags_to_segment((*p
)->flags());
3956 if (need_new_segment
)
3958 current_seg
= layout
->make_output_segment(elfcpp::PT_LOAD
,
3960 current_seg
->set_addresses(vma
, lma
);
3961 current_seg
->set_minimum_p_align(dot_alignment
);
3962 if (first_seg
== NULL
)
3963 first_seg
= current_seg
;
3964 is_current_seg_readonly
= true;
3967 current_seg
->add_output_section_to_load(layout
, *p
, seg_flags
);
3969 if (((*p
)->flags() & elfcpp::SHF_WRITE
) != 0)
3970 is_current_seg_readonly
= false;
3978 // An ELF program should work even if the program headers are not in
3979 // a PT_LOAD segment. However, it appears that the Linux kernel
3980 // does not set the AT_PHDR auxiliary entry in that case. It sets
3981 // the load address to p_vaddr - p_offset of the first PT_LOAD
3982 // segment. It then sets AT_PHDR to the load address plus the
3983 // offset to the program headers, e_phoff in the file header. This
3984 // fails when the program headers appear in the file before the
3985 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3986 // segment to hold the file header and the program headers. This is
3987 // effectively what the GNU linker does, and it is slightly more
3988 // efficient in any case. We try to use the first PT_LOAD segment
3989 // if we can, otherwise we make a new one.
3991 if (first_seg
== NULL
)
3994 // -n or -N mean that the program is not demand paged and there is
3995 // no need to put the program headers in a PT_LOAD segment.
3996 if (parameters
->options().nmagic() || parameters
->options().omagic())
3999 size_t sizeof_headers
= this->total_header_size(layout
);
4001 uint64_t vma
= first_seg
->vaddr();
4002 uint64_t lma
= first_seg
->paddr();
4004 uint64_t subtract
= this->header_size_adjustment(lma
, sizeof_headers
);
4006 if ((lma
& (abi_pagesize
- 1)) >= sizeof_headers
)
4008 first_seg
->set_addresses(vma
- subtract
, lma
- subtract
);
4012 // If there is no room to squeeze in the headers, then punt. The
4013 // resulting executable probably won't run on GNU/Linux, but we
4014 // trust that the user knows what they are doing.
4015 if (lma
< subtract
|| vma
< subtract
)
4018 // If memory regions have been specified and the address range
4019 // we are about to use is not contained within any region then
4020 // issue a warning message about the segment we are going to
4021 // create. It will be outside of any region and so possibly
4022 // using non-existent or protected memory. We test LMA rather
4023 // than VMA since we assume that the headers will never be
4025 if (this->memory_regions_
!= NULL
4026 && !this->block_in_region (NULL
, layout
, lma
- subtract
, subtract
))
4027 gold_warning(_("creating a segment to contain the file and program"
4028 " headers outside of any MEMORY region"));
4030 Output_segment
* load_seg
= layout
->make_output_segment(elfcpp::PT_LOAD
,
4032 load_seg
->set_addresses(vma
- subtract
, lma
- subtract
);
4037 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
4038 // segment if there are any SHT_TLS sections.
4041 Script_sections::create_note_and_tls_segments(
4043 const Layout::Section_list
* sections
)
4045 gold_assert(!this->saw_phdrs_clause());
4047 bool saw_tls
= false;
4048 for (Layout::Section_list::const_iterator p
= sections
->begin();
4049 p
!= sections
->end();
4052 if ((*p
)->type() == elfcpp::SHT_NOTE
)
4054 elfcpp::Elf_Word seg_flags
=
4055 Layout::section_flags_to_segment((*p
)->flags());
4056 Output_segment
* oseg
= layout
->make_output_segment(elfcpp::PT_NOTE
,
4058 oseg
->add_output_section_to_nonload(*p
, seg_flags
);
4060 // Incorporate any subsequent SHT_NOTE sections, in the
4061 // hopes that the script is sensible.
4062 Layout::Section_list::const_iterator pnext
= p
+ 1;
4063 while (pnext
!= sections
->end()
4064 && (*pnext
)->type() == elfcpp::SHT_NOTE
)
4066 seg_flags
= Layout::section_flags_to_segment((*pnext
)->flags());
4067 oseg
->add_output_section_to_nonload(*pnext
, seg_flags
);
4073 if (((*p
)->flags() & elfcpp::SHF_TLS
) != 0)
4076 gold_error(_("TLS sections are not adjacent"));
4078 elfcpp::Elf_Word seg_flags
=
4079 Layout::section_flags_to_segment((*p
)->flags());
4080 Output_segment
* oseg
= layout
->make_output_segment(elfcpp::PT_TLS
,
4082 oseg
->add_output_section_to_nonload(*p
, seg_flags
);
4084 Layout::Section_list::const_iterator pnext
= p
+ 1;
4085 while (pnext
!= sections
->end()
4086 && ((*pnext
)->flags() & elfcpp::SHF_TLS
) != 0)
4088 seg_flags
= Layout::section_flags_to_segment((*pnext
)->flags());
4089 oseg
->add_output_section_to_nonload(*pnext
, seg_flags
);
4097 // If we see a section named .interp then put the .interp section
4098 // in a PT_INTERP segment.
4099 // This is for GNU ld compatibility.
4100 if (strcmp((*p
)->name(), ".interp") == 0)
4102 elfcpp::Elf_Word seg_flags
=
4103 Layout::section_flags_to_segment((*p
)->flags());
4104 Output_segment
* oseg
= layout
->make_output_segment(elfcpp::PT_INTERP
,
4106 oseg
->add_output_section_to_nonload(*p
, seg_flags
);
4110 this->segments_created_
= true;
4113 // Add a program header. The PHDRS clause is syntactically distinct
4114 // from the SECTIONS clause, but we implement it with the SECTIONS
4115 // support because PHDRS is useless if there is no SECTIONS clause.
4118 Script_sections::add_phdr(const char* name
, size_t namelen
, unsigned int type
,
4119 bool includes_filehdr
, bool includes_phdrs
,
4120 bool is_flags_valid
, unsigned int flags
,
4121 Expression
* load_address
)
4123 if (this->phdrs_elements_
== NULL
)
4124 this->phdrs_elements_
= new Phdrs_elements();
4125 this->phdrs_elements_
->push_back(new Phdrs_element(name
, namelen
, type
,
4128 is_flags_valid
, flags
,
4132 // Return the number of segments we expect to create based on the
4133 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
4136 Script_sections::expected_segment_count(const Layout
* layout
) const
4138 // If we've already created the segments, we won't be adding any more.
4139 if (this->segments_created_
)
4142 if (this->saw_phdrs_clause())
4143 return this->phdrs_elements_
->size();
4145 Layout::Section_list sections
;
4146 layout
->get_allocated_sections(§ions
);
4148 // We assume that we will need two PT_LOAD segments.
4151 bool saw_note
= false;
4152 bool saw_tls
= false;
4153 bool saw_interp
= false;
4154 for (Layout::Section_list::const_iterator p
= sections
.begin();
4155 p
!= sections
.end();
4158 if ((*p
)->type() == elfcpp::SHT_NOTE
)
4160 // Assume that all note sections will fit into a single
4168 else if (((*p
)->flags() & elfcpp::SHF_TLS
) != 0)
4170 // There can only be one PT_TLS segment.
4177 else if (strcmp((*p
)->name(), ".interp") == 0)
4179 // There can only be one PT_INTERP segment.
4191 // Create the segments from a PHDRS clause. Return the segment which
4192 // should hold the file header and program headers, if any.
4195 Script_sections::create_segments_from_phdrs_clause(Layout
* layout
,
4196 uint64_t dot_alignment
)
4198 this->attach_sections_using_phdrs_clause(layout
);
4199 return this->set_phdrs_clause_addresses(layout
, dot_alignment
);
4202 // Create the segments from the PHDRS clause, and put the output
4203 // sections in them.
4206 Script_sections::attach_sections_using_phdrs_clause(Layout
* layout
)
4208 typedef std::map
<std::string
, Output_segment
*> Name_to_segment
;
4209 Name_to_segment name_to_segment
;
4210 for (Phdrs_elements::const_iterator p
= this->phdrs_elements_
->begin();
4211 p
!= this->phdrs_elements_
->end();
4213 name_to_segment
[(*p
)->name()] = (*p
)->create_segment(layout
);
4214 this->segments_created_
= true;
4216 // Walk through the output sections and attach them to segments.
4217 // Output sections in the script which do not list segments are
4218 // attached to the same set of segments as the immediately preceding
4221 String_list
* phdr_names
= NULL
;
4222 bool load_segments_only
= false;
4223 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
4224 p
!= this->sections_elements_
->end();
4228 String_list
* old_phdr_names
= phdr_names
;
4229 Output_section
* os
= (*p
)->allocate_to_segment(&phdr_names
, &is_orphan
);
4233 elfcpp::Elf_Word seg_flags
=
4234 Layout::section_flags_to_segment(os
->flags());
4236 if (phdr_names
== NULL
)
4238 // Don't worry about empty orphan sections.
4239 if (is_orphan
&& os
->current_data_size() > 0)
4240 gold_error(_("allocated section %s not in any segment"),
4243 // To avoid later crashes drop this section into the first
4245 for (Phdrs_elements::const_iterator ppe
=
4246 this->phdrs_elements_
->begin();
4247 ppe
!= this->phdrs_elements_
->end();
4250 Output_segment
* oseg
= (*ppe
)->segment();
4251 if (oseg
->type() == elfcpp::PT_LOAD
)
4253 oseg
->add_output_section_to_load(layout
, os
, seg_flags
);
4261 // We see a list of segments names. Disable PT_LOAD segment only
4263 if (old_phdr_names
!= phdr_names
)
4264 load_segments_only
= false;
4266 // If this is an orphan section--one that was not explicitly
4267 // mentioned in the linker script--then it should not inherit
4268 // any segment type other than PT_LOAD. Otherwise, e.g., the
4269 // PT_INTERP segment will pick up following orphan sections,
4270 // which does not make sense. If this is not an orphan section,
4271 // we trust the linker script.
4274 // Enable PT_LOAD segments only filtering until we see another
4275 // list of segment names.
4276 load_segments_only
= true;
4279 bool in_load_segment
= false;
4280 for (String_list::const_iterator q
= phdr_names
->begin();
4281 q
!= phdr_names
->end();
4284 Name_to_segment::const_iterator r
= name_to_segment
.find(*q
);
4285 if (r
== name_to_segment
.end())
4286 gold_error(_("no segment %s"), q
->c_str());
4289 if (load_segments_only
4290 && r
->second
->type() != elfcpp::PT_LOAD
)
4293 if (r
->second
->type() != elfcpp::PT_LOAD
)
4294 r
->second
->add_output_section_to_nonload(os
, seg_flags
);
4297 r
->second
->add_output_section_to_load(layout
, os
, seg_flags
);
4298 if (in_load_segment
)
4299 gold_error(_("section in two PT_LOAD segments"));
4300 in_load_segment
= true;
4305 if (!in_load_segment
)
4306 gold_error(_("allocated section not in any PT_LOAD segment"));
4310 // Set the addresses for segments created from a PHDRS clause. Return
4311 // the segment which should hold the file header and program headers,
4315 Script_sections::set_phdrs_clause_addresses(Layout
* layout
,
4316 uint64_t dot_alignment
)
4318 Output_segment
* load_seg
= NULL
;
4319 for (Phdrs_elements::const_iterator p
= this->phdrs_elements_
->begin();
4320 p
!= this->phdrs_elements_
->end();
4323 // Note that we have to set the flags after adding the output
4324 // sections to the segment, as adding an output segment can
4325 // change the flags.
4326 (*p
)->set_flags_if_valid();
4328 Output_segment
* oseg
= (*p
)->segment();
4330 if (oseg
->type() != elfcpp::PT_LOAD
)
4332 // The addresses of non-PT_LOAD segments are set from the
4333 // PT_LOAD segments.
4334 if ((*p
)->has_load_address())
4335 gold_error(_("may only specify load address for PT_LOAD segment"));
4339 oseg
->set_minimum_p_align(dot_alignment
);
4341 // The output sections should have addresses from the SECTIONS
4342 // clause. The addresses don't have to be in order, so find the
4343 // one with the lowest load address. Use that to set the
4344 // address of the segment.
4346 Output_section
* osec
= oseg
->section_with_lowest_load_address();
4349 oseg
->set_addresses(0, 0);
4353 uint64_t vma
= osec
->address();
4354 uint64_t lma
= osec
->has_load_address() ? osec
->load_address() : vma
;
4356 // Override the load address of the section with the load
4357 // address specified for the segment.
4358 if ((*p
)->has_load_address())
4360 if (osec
->has_load_address())
4361 gold_warning(_("PHDRS load address overrides "
4362 "section %s load address"),
4365 lma
= (*p
)->load_address();
4368 bool headers
= (*p
)->includes_filehdr() && (*p
)->includes_phdrs();
4369 if (!headers
&& ((*p
)->includes_filehdr() || (*p
)->includes_phdrs()))
4371 // We could support this if we wanted to.
4372 gold_error(_("using only one of FILEHDR and PHDRS is "
4373 "not currently supported"));
4377 size_t sizeof_headers
= this->total_header_size(layout
);
4378 uint64_t subtract
= this->header_size_adjustment(lma
,
4380 if (lma
>= subtract
&& vma
>= subtract
)
4387 gold_error(_("sections loaded on first page without room "
4388 "for file and program headers "
4389 "are not supported"));
4392 if (load_seg
!= NULL
)
4393 gold_error(_("using FILEHDR and PHDRS on more than one "
4394 "PT_LOAD segment is not currently supported"));
4398 oseg
->set_addresses(vma
, lma
);
4404 // Add the file header and segment headers to non-load segments
4405 // specified in the PHDRS clause.
4408 Script_sections::put_headers_in_phdrs(Output_data
* file_header
,
4409 Output_data
* segment_headers
)
4411 gold_assert(this->saw_phdrs_clause());
4412 for (Phdrs_elements::iterator p
= this->phdrs_elements_
->begin();
4413 p
!= this->phdrs_elements_
->end();
4416 if ((*p
)->type() != elfcpp::PT_LOAD
)
4418 if ((*p
)->includes_phdrs())
4419 (*p
)->segment()->add_initial_output_data(segment_headers
);
4420 if ((*p
)->includes_filehdr())
4421 (*p
)->segment()->add_initial_output_data(file_header
);
4426 // Look for an output section by name and return the address, the load
4427 // address, the alignment, and the size. This is used when an
4428 // expression refers to an output section which was not actually
4429 // created. This returns true if the section was found, false
4433 Script_sections::get_output_section_info(const char* name
, uint64_t* address
,
4434 uint64_t* load_address
,
4435 uint64_t* addralign
,
4436 uint64_t* size
) const
4438 if (!this->saw_sections_clause_
)
4440 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
4441 p
!= this->sections_elements_
->end();
4443 if ((*p
)->get_output_section_info(name
, address
, load_address
, addralign
,
4449 // Release all Output_segments. This remove all pointers to all
4453 Script_sections::release_segments()
4455 if (this->saw_phdrs_clause())
4457 for (Phdrs_elements::const_iterator p
= this->phdrs_elements_
->begin();
4458 p
!= this->phdrs_elements_
->end();
4460 (*p
)->release_segment();
4464 // Print the SECTIONS clause to F for debugging.
4467 Script_sections::print(FILE* f
) const
4469 if (this->phdrs_elements_
!= NULL
)
4471 fprintf(f
, "PHDRS {\n");
4472 for (Phdrs_elements::const_iterator p
= this->phdrs_elements_
->begin();
4473 p
!= this->phdrs_elements_
->end();
4479 if (this->memory_regions_
!= NULL
)
4481 fprintf(f
, "MEMORY {\n");
4482 for (Memory_regions::const_iterator m
= this->memory_regions_
->begin();
4483 m
!= this->memory_regions_
->end();
4489 if (!this->saw_sections_clause_
)
4492 fprintf(f
, "SECTIONS {\n");
4494 for (Sections_elements::const_iterator p
= this->sections_elements_
->begin();
4495 p
!= this->sections_elements_
->end();
4502 } // End namespace gold.