usr.sbin/makefs/ffs: Remove m_buf::b_is_hammer2
[dragonfly.git] / sys / kern / vfs_sync.c
blob13884316720ce838e9c909e455377ab9a1149f0c
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/conf.h>
46 #include <sys/dirent.h>
47 #include <sys/domain.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mount.h>
55 #include <sys/proc.h>
56 #include <sys/reboot.h>
57 #include <sys/socket.h>
58 #include <sys/stat.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/vmmeter.h>
62 #include <sys/vnode.h>
64 #include <machine/limits.h>
66 #include <vm/vm.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_extern.h>
69 #include <vm/vm_kern.h>
70 #include <vm/pmap.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_page.h>
73 #include <vm/vm_pager.h>
74 #include <vm/vnode_pager.h>
76 #include <sys/buf2.h>
79 * The workitem queue.
81 #define SYNCER_MAXDELAY 32
82 static int sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS);
83 time_t syncdelay = 30; /* max time to delay syncing data */
84 SYSCTL_PROC(_kern, OID_AUTO, syncdelay, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
85 sysctl_kern_syncdelay, "I", "VFS data synchronization delay");
86 time_t filedelay = 30; /* time to delay syncing files */
87 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW,
88 &filedelay, 0, "File synchronization delay");
89 time_t dirdelay = 29; /* time to delay syncing directories */
90 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW,
91 &dirdelay, 0, "Directory synchronization delay");
92 time_t metadelay = 28; /* time to delay syncing metadata */
93 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW,
94 &metadelay, 0, "VFS metadata synchronization delay");
95 time_t retrydelay = 1; /* retry delay after failure */
96 SYSCTL_INT(_kern, OID_AUTO, retrydelay, CTLFLAG_RW,
97 &retrydelay, 0, "VFS retry synchronization delay");
98 static int rushjob; /* number of slots to run ASAP */
99 static int stat_rush_requests; /* number of times I/O speeded up */
100 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW,
101 &stat_rush_requests, 0, "");
103 LIST_HEAD(synclist, vnode);
105 #define SC_FLAG_EXIT (0x1) /* request syncer exit */
106 #define SC_FLAG_DONE (0x2) /* syncer confirm exit */
108 struct syncer_ctx {
109 struct mount *sc_mp;
110 struct lwkt_token sc_token;
111 struct thread *sc_thread;
112 int sc_flags;
113 struct synclist *syncer_workitem_pending;
114 long syncer_mask;
115 int syncer_delayno;
116 int syncer_forced;
117 int syncer_rushjob; /* sequence vnodes faster */
118 int syncer_trigger; /* trigger full sync */
119 long syncer_count;
122 static void syncer_thread(void *);
124 static int
125 sysctl_kern_syncdelay(SYSCTL_HANDLER_ARGS)
127 int error;
128 int v = syncdelay;
130 error = sysctl_handle_int(oidp, &v, 0, req);
131 if (error || !req->newptr)
132 return (error);
133 if (v < 1)
134 v = 1;
135 if (v > SYNCER_MAXDELAY)
136 v = SYNCER_MAXDELAY;
137 syncdelay = v;
139 return(0);
143 * The workitem queue.
145 * It is useful to delay writes of file data and filesystem metadata
146 * for tens of seconds so that quickly created and deleted files need
147 * not waste disk bandwidth being created and removed. To realize this,
148 * we append vnodes to a "workitem" queue. When running with a soft
149 * updates implementation, most pending metadata dependencies should
150 * not wait for more than a few seconds. Thus, mounted on block devices
151 * are delayed only about a half the time that file data is delayed.
152 * Similarly, directory updates are more critical, so are only delayed
153 * about a third the time that file data is delayed. Thus, there are
154 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
155 * one each second (driven off the filesystem syncer process). The
156 * syncer_delayno variable indicates the next queue that is to be processed.
157 * Items that need to be processed soon are placed in this queue:
159 * syncer_workitem_pending[syncer_delayno]
161 * A delay of fifteen seconds is done by placing the request fifteen
162 * entries later in the queue:
164 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
169 * Return the number of vnodes on the syncer's timed list. This will
170 * include the syncer vnode (mp->mnt_syncer) so if used, a minimum
171 * value of 1 will be returned.
173 long
174 vn_syncer_count(struct mount *mp)
176 struct syncer_ctx *ctx;
178 ctx = mp->mnt_syncer_ctx;
179 if (ctx)
180 return (ctx->syncer_count);
181 return 0;
185 * Add an item to the syncer work queue.
187 * WARNING: Cannot get vp->v_token here if not already held, we must
188 * depend on the syncer_token (which might already be held by
189 * the caller) to protect v_synclist and VONWORKLST.
191 * WARNING: The syncer depends on this function not blocking if the caller
192 * already holds the syncer token.
194 void
195 vn_syncer_add(struct vnode *vp, int delay)
197 struct syncer_ctx *ctx;
198 int slot;
200 ctx = vp->v_mount->mnt_syncer_ctx;
201 lwkt_gettoken(&ctx->sc_token);
203 if (vp->v_flag & VONWORKLST) {
204 LIST_REMOVE(vp, v_synclist);
205 --ctx->syncer_count;
207 if (delay <= 0) {
208 slot = -delay & ctx->syncer_mask;
209 } else {
210 if (delay > SYNCER_MAXDELAY - 2)
211 delay = SYNCER_MAXDELAY - 2;
212 slot = (ctx->syncer_delayno + delay) & ctx->syncer_mask;
215 LIST_INSERT_HEAD(&ctx->syncer_workitem_pending[slot], vp, v_synclist);
216 vsetflags(vp, VONWORKLST);
217 ++ctx->syncer_count;
219 lwkt_reltoken(&ctx->sc_token);
223 * Removes the vnode from the syncer list. Since we might block while
224 * acquiring the syncer_token we have to [re]check conditions to determine
225 * that it is ok to remove the vnode.
227 * Force removal if force != 0. This can only occur during a forced unmount.
229 * vp->v_token held on call
231 void
232 vn_syncer_remove(struct vnode *vp, int force)
234 struct syncer_ctx *ctx;
236 ctx = vp->v_mount->mnt_syncer_ctx;
237 lwkt_gettoken(&ctx->sc_token);
239 if ((vp->v_flag & (VISDIRTY | VONWORKLST | VOBJDIRTY)) == VONWORKLST &&
240 RB_EMPTY(&vp->v_rbdirty_tree)) {
241 vclrflags(vp, VONWORKLST);
242 LIST_REMOVE(vp, v_synclist);
243 --ctx->syncer_count;
244 } else if (force && (vp->v_flag & VONWORKLST)) {
245 vclrflags(vp, VONWORKLST);
246 LIST_REMOVE(vp, v_synclist);
247 --ctx->syncer_count;
250 lwkt_reltoken(&ctx->sc_token);
254 * vnode must be locked
256 void
257 vclrisdirty(struct vnode *vp)
259 vclrflags(vp, VISDIRTY);
260 if (vp->v_flag & VONWORKLST)
261 vn_syncer_remove(vp, 0);
264 void
265 vclrobjdirty(struct vnode *vp)
267 vclrflags(vp, VOBJDIRTY);
268 if (vp->v_flag & VONWORKLST)
269 vn_syncer_remove(vp, 0);
273 * vnode must be stable
275 void
276 vsetisdirty(struct vnode *vp)
278 struct syncer_ctx *ctx;
280 if ((vp->v_flag & VISDIRTY) == 0) {
281 ctx = vp->v_mount->mnt_syncer_ctx;
282 vsetflags(vp, VISDIRTY);
283 lwkt_gettoken(&ctx->sc_token);
284 if ((vp->v_flag & VONWORKLST) == 0)
285 vn_syncer_add(vp, syncdelay);
286 lwkt_reltoken(&ctx->sc_token);
290 void
291 vsetobjdirty(struct vnode *vp)
293 struct syncer_ctx *ctx;
295 if ((vp->v_flag & VOBJDIRTY) == 0) {
296 ctx = vp->v_mount->mnt_syncer_ctx;
297 vsetflags(vp, VOBJDIRTY);
298 lwkt_gettoken(&ctx->sc_token);
299 if ((vp->v_flag & VONWORKLST) == 0)
300 vn_syncer_add(vp, syncdelay);
301 lwkt_reltoken(&ctx->sc_token);
306 * Create per-filesystem syncer process
308 void
309 vn_syncer_thr_create(struct mount *mp)
311 struct syncer_ctx *ctx;
312 static int syncalloc = 0;
314 ctx = kmalloc(sizeof(struct syncer_ctx), M_TEMP, M_WAITOK | M_ZERO);
315 ctx->sc_mp = mp;
316 ctx->sc_flags = 0;
317 ctx->syncer_workitem_pending = hashinit(SYNCER_MAXDELAY, M_DEVBUF,
318 &ctx->syncer_mask);
319 ctx->syncer_delayno = 0;
320 lwkt_token_init(&ctx->sc_token, "syncer");
321 mp->mnt_syncer_ctx = ctx;
322 kthread_create(syncer_thread, ctx, &ctx->sc_thread,
323 "syncer%d", ++syncalloc & 0x7FFFFFFF);
327 * Stop per-filesystem syncer process
329 void
330 vn_syncer_thr_stop(struct mount *mp)
332 struct syncer_ctx *ctx;
334 ctx = mp->mnt_syncer_ctx;
335 if (ctx == NULL)
336 return;
338 lwkt_gettoken(&ctx->sc_token);
340 /* Signal the syncer process to exit */
341 ctx->sc_flags |= SC_FLAG_EXIT;
342 wakeup(ctx);
344 /* Wait till syncer process exits */
345 while ((ctx->sc_flags & SC_FLAG_DONE) == 0) {
346 tsleep_interlock(&ctx->sc_flags, 0);
347 lwkt_reltoken(&ctx->sc_token);
348 tsleep(&ctx->sc_flags, PINTERLOCKED, "syncexit", hz);
349 lwkt_gettoken(&ctx->sc_token);
352 mp->mnt_syncer_ctx = NULL;
353 lwkt_reltoken(&ctx->sc_token);
355 hashdestroy(ctx->syncer_workitem_pending, M_DEVBUF, ctx->syncer_mask);
356 kfree(ctx, M_TEMP);
359 struct thread *updatethread;
362 * System filesystem synchronizer daemon.
364 static void
365 syncer_thread(void *_ctx)
367 struct syncer_ctx *ctx = _ctx;
368 struct synclist *slp;
369 struct vnode *vp;
370 long starttime;
371 int *sc_flagsp;
372 int sc_flags;
373 int vnodes_synced = 0;
374 int delta;
375 int dummy = 0;
377 for (;;) {
378 kproc_suspend_loop();
380 starttime = time_uptime;
381 lwkt_gettoken(&ctx->sc_token);
384 * Push files whose dirty time has expired. Be careful
385 * of interrupt race on slp queue.
387 * Note that vsyncscan() and vn_syncer_one() can pull items
388 * off the same list, so we shift vp's position in the
389 * list immediately.
391 slp = &ctx->syncer_workitem_pending[ctx->syncer_delayno];
394 * If syncer_trigger is set (from trigger_syncer(mp)),
395 * Immediately do a full filesystem sync and set up the
396 * following full filesystem sync to occur in 1 second.
398 if (ctx->syncer_trigger) {
399 ctx->syncer_trigger = 0;
400 if (ctx->sc_mp && ctx->sc_mp->mnt_syncer) {
401 vp = ctx->sc_mp->mnt_syncer;
402 if (vp->v_flag & VONWORKLST) {
403 vn_syncer_add(vp, retrydelay);
404 if (vget(vp, LK_EXCLUSIVE) == 0) {
405 VOP_FSYNC(vp, MNT_LAZY, 0);
406 vput(vp);
407 vnodes_synced++;
414 * FSYNC items in this bucket
416 while ((vp = LIST_FIRST(slp)) != NULL) {
417 vn_syncer_add(vp, retrydelay);
418 if (ctx->syncer_forced) {
419 if (vget(vp, LK_EXCLUSIVE) == 0) {
420 VOP_FSYNC(vp, MNT_NOWAIT, 0);
421 vput(vp);
422 vnodes_synced++;
424 } else {
425 if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
426 VOP_FSYNC(vp, MNT_LAZY, 0);
427 vput(vp);
428 vnodes_synced++;
434 * Increment the slot upon completion. This is typically
435 * one-second but may be faster if the syncer is triggered.
437 ctx->syncer_delayno = (ctx->syncer_delayno + 1) &
438 ctx->syncer_mask;
440 sc_flags = ctx->sc_flags;
442 /* Exit on unmount */
443 if (sc_flags & SC_FLAG_EXIT)
444 break;
446 lwkt_reltoken(&ctx->sc_token);
449 * Do sync processing for each mount.
451 if (ctx->sc_mp)
452 bio_ops_sync(ctx->sc_mp);
455 * The variable rushjob allows the kernel to speed up the
456 * processing of the filesystem syncer process. A rushjob
457 * value of N tells the filesystem syncer to process the next
458 * N seconds worth of work on its queue ASAP. Currently rushjob
459 * is used by the soft update code to speed up the filesystem
460 * syncer process when the incore state is getting so far
461 * ahead of the disk that the kernel memory pool is being
462 * threatened with exhaustion.
464 delta = rushjob - ctx->syncer_rushjob;
465 if ((u_int)delta > syncdelay / 2) {
466 ctx->syncer_rushjob = rushjob - syncdelay / 2;
467 tsleep(&dummy, 0, "rush", 1);
468 continue;
470 if (delta) {
471 ++ctx->syncer_rushjob;
472 tsleep(&dummy, 0, "rush", 1);
473 continue;
477 * Normal syncer operation iterates once a second, unless
478 * specifically triggered.
480 if (time_uptime == starttime &&
481 ctx->syncer_trigger == 0) {
482 tsleep_interlock(ctx, 0);
483 if (time_uptime == starttime &&
484 ctx->syncer_trigger == 0 &&
485 (ctx->sc_flags & SC_FLAG_EXIT) == 0) {
486 tsleep(ctx, PINTERLOCKED, "syncer", hz);
492 * Unmount/exit path for per-filesystem syncers; sc_token held
494 ctx->sc_flags |= SC_FLAG_DONE;
495 sc_flagsp = &ctx->sc_flags;
496 lwkt_reltoken(&ctx->sc_token);
497 wakeup(sc_flagsp);
499 kthread_exit();
503 * This allows a filesystem to pro-actively request that a dirty
504 * vnode be fsync()d. This routine does not guarantee that one
505 * will actually be fsynced.
507 void
508 vn_syncer_one(struct mount *mp)
510 struct syncer_ctx *ctx;
511 struct synclist *slp;
512 struct vnode *vp;
513 int i;
514 int n = syncdelay;
516 ctx = mp->mnt_syncer_ctx;
517 i = ctx->syncer_delayno & ctx->syncer_mask;
518 cpu_ccfence();
520 if (lwkt_trytoken(&ctx->sc_token) == 0)
521 return;
524 * Look ahead on our syncer time array.
526 do {
527 slp = &ctx->syncer_workitem_pending[i];
528 vp = LIST_FIRST(slp);
529 if (vp && vp->v_type == VNON)
530 vp = LIST_NEXT(vp, v_synclist);
531 if (vp)
532 break;
533 i = (i + 1) & ctx->syncer_mask;
534 /* i will be wrong if we stop here but vp is NULL so ok */
535 } while(--n);
538 * Process one vnode, skip the syncer vnode but also stop
539 * if the syncer vnode is the only thing on this list.
541 if (vp) {
542 vn_syncer_add(vp, retrydelay);
543 if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
544 VOP_FSYNC(vp, MNT_LAZY, 0);
545 vput(vp);
548 lwkt_reltoken(&ctx->sc_token);
552 * Request that the syncer daemon for a specific mount speed up its work.
553 * If mp is NULL the caller generally wants to speed up all syncers.
555 void
556 speedup_syncer(struct mount *mp)
559 * Don't bother protecting the test. unsleep_and_wakeup_thread()
560 * will only do something real if the thread is in the right state.
562 atomic_add_int(&rushjob, 1);
563 ++stat_rush_requests;
564 if (mp && mp->mnt_syncer_ctx)
565 wakeup(mp->mnt_syncer_ctx);
569 * trigger a full sync
571 void
572 trigger_syncer(struct mount *mp)
574 struct syncer_ctx *ctx;
576 if (mp && (ctx = mp->mnt_syncer_ctx) != NULL) {
577 if (ctx->syncer_trigger == 0) {
578 ctx->syncer_trigger = 1;
579 wakeup(ctx);
585 * Routine to create and manage a filesystem syncer vnode.
587 static int sync_close(struct vop_close_args *);
588 static int sync_fsync(struct vop_fsync_args *);
589 static int sync_inactive(struct vop_inactive_args *);
590 static int sync_reclaim (struct vop_reclaim_args *);
591 static int sync_print(struct vop_print_args *);
593 static struct vop_ops sync_vnode_vops = {
594 .vop_default = vop_eopnotsupp,
595 .vop_close = sync_close,
596 .vop_fsync = sync_fsync,
597 .vop_inactive = sync_inactive,
598 .vop_reclaim = sync_reclaim,
599 .vop_print = sync_print,
602 static struct vop_ops *sync_vnode_vops_p = &sync_vnode_vops;
604 VNODEOP_SET(sync_vnode_vops);
607 * Create a new filesystem syncer vnode for the specified mount point.
608 * This vnode is placed on the worklist and is responsible for sync'ing
609 * the filesystem.
611 * NOTE: read-only mounts are also placed on the worklist. The filesystem
612 * sync code is also responsible for cleaning up vnodes.
615 vfs_allocate_syncvnode(struct mount *mp)
617 struct vnode *vp;
618 static long start, incr, next;
619 int error;
621 /* Allocate a new vnode */
622 error = getspecialvnode(VT_VFS, mp, &sync_vnode_vops_p, &vp, 0, 0);
623 if (error) {
624 mp->mnt_syncer = NULL;
625 return (error);
627 vp->v_type = VNON;
629 * Place the vnode onto the syncer worklist. We attempt to
630 * scatter them about on the list so that they will go off
631 * at evenly distributed times even if all the filesystems
632 * are mounted at once.
634 next += incr;
635 if (next == 0 || next > SYNCER_MAXDELAY) {
636 start /= 2;
637 incr /= 2;
638 if (start == 0) {
639 start = SYNCER_MAXDELAY / 2;
640 incr = SYNCER_MAXDELAY;
642 next = start;
646 * Only put the syncer vnode onto the syncer list if we have a
647 * syncer thread. Some VFS's (aka NULLFS) don't need a syncer
648 * thread.
650 if (mp->mnt_syncer_ctx)
651 vn_syncer_add(vp, syncdelay > 0 ? next % syncdelay : 0);
654 * The mnt_syncer field inherits the vnode reference, which is
655 * held until later decomissioning.
657 mp->mnt_syncer = vp;
658 vx_unlock(vp);
659 return (0);
662 static int
663 sync_close(struct vop_close_args *ap)
665 return (0);
669 * Do a lazy sync of the filesystem.
671 * sync_fsync { struct vnode *a_vp, int a_waitfor }
673 static int
674 sync_fsync(struct vop_fsync_args *ap)
676 struct vnode *syncvp = ap->a_vp;
677 struct mount *mp = syncvp->v_mount;
678 int asyncflag;
681 * We only need to do something if this is a lazy evaluation.
683 if ((ap->a_waitfor & MNT_LAZY) == 0)
684 return (0);
687 * Move ourselves to the back of the sync list.
689 vn_syncer_add(syncvp, syncdelay);
692 * Walk the list of vnodes pushing all that are dirty and
693 * not already on the sync list, and freeing vnodes which have
694 * no refs and whos VM objects are empty. vfs_msync() handles
695 * the VM issues and must be called whether the mount is readonly
696 * or not.
698 if (vfs_busy(mp, LK_NOWAIT) != 0)
699 return (0);
700 if (mp->mnt_flag & MNT_RDONLY) {
701 vfs_msync(mp, MNT_NOWAIT);
702 } else {
703 asyncflag = mp->mnt_flag & MNT_ASYNC;
704 mp->mnt_flag &= ~MNT_ASYNC; /* ZZZ hack */
705 vfs_msync(mp, MNT_NOWAIT);
706 VFS_SYNC(mp, MNT_NOWAIT | MNT_LAZY);
707 if (asyncflag)
708 mp->mnt_flag |= MNT_ASYNC;
710 vfs_unbusy(mp);
711 return (0);
715 * The syncer vnode is no longer referenced.
717 * sync_inactive { struct vnode *a_vp, struct proc *a_p }
719 static int
720 sync_inactive(struct vop_inactive_args *ap)
722 vgone_vxlocked(ap->a_vp);
723 return (0);
727 * The syncer vnode is no longer needed and is being decommissioned.
728 * This can only occur when the last reference has been released on
729 * mp->mnt_syncer, so mp->mnt_syncer had better be NULL.
731 * Modifications to the worklist must be protected with a critical
732 * section.
734 * sync_reclaim { struct vnode *a_vp }
736 static int
737 sync_reclaim(struct vop_reclaim_args *ap)
739 struct vnode *vp = ap->a_vp;
740 struct syncer_ctx *ctx;
742 ctx = vp->v_mount->mnt_syncer_ctx;
743 if (ctx) {
744 lwkt_gettoken(&ctx->sc_token);
745 KKASSERT(vp->v_mount->mnt_syncer != vp);
746 if (vp->v_flag & VONWORKLST) {
747 LIST_REMOVE(vp, v_synclist);
748 vclrflags(vp, VONWORKLST);
749 --ctx->syncer_count;
751 lwkt_reltoken(&ctx->sc_token);
752 } else {
753 KKASSERT((vp->v_flag & VONWORKLST) == 0);
756 return (0);
760 * This is very similar to vmntvnodescan() but it only scans the
761 * vnodes on the syncer list. VFS's which support faster VFS_SYNC
762 * operations use the VISDIRTY flag on the vnode to ensure that vnodes
763 * with dirty inodes are added to the syncer in addition to vnodes
764 * with dirty buffers, and can use this function instead of nmntvnodescan().
766 * This scan does not issue VOP_FSYNC()s. The supplied callback is intended
767 * to synchronize the file in the manner intended by the VFS using it.
769 * This is important when a system has millions of vnodes.
772 vsyncscan(
773 struct mount *mp,
774 int vmsc_flags,
775 int (*slowfunc)(struct mount *mp, struct vnode *vp, void *data),
776 void *data
778 struct syncer_ctx *ctx;
779 struct synclist *slp;
780 struct vnode *vp;
781 int i;
782 int count;
783 int lkflags;
785 if (vmsc_flags & VMSC_NOWAIT)
786 lkflags = LK_NOWAIT;
787 else
788 lkflags = 0;
791 * Syncer list context. This API requires a dedicated syncer thread.
792 * (MNTK_THR_SYNC).
794 KKASSERT(mp->mnt_kern_flag & MNTK_THR_SYNC);
795 ctx = mp->mnt_syncer_ctx;
796 lwkt_gettoken(&ctx->sc_token);
799 * Setup for loop. Allow races against the syncer thread but
800 * require that the syncer thread no be lazy if we were told
801 * not to be lazy.
803 i = ctx->syncer_delayno & ctx->syncer_mask;
804 if ((vmsc_flags & VMSC_NOWAIT) == 0)
805 ++ctx->syncer_forced;
806 for (count = 0; count <= ctx->syncer_mask; ++count) {
807 slp = &ctx->syncer_workitem_pending[i];
809 while ((vp = LIST_FIRST(slp)) != NULL) {
810 KKASSERT(vp->v_mount == mp);
811 if (vmsc_flags & VMSC_GETVP) {
812 if (vget(vp, LK_EXCLUSIVE | lkflags) == 0) {
813 slowfunc(mp, vp, data);
814 vput(vp);
816 } else if (vmsc_flags & VMSC_GETVX) {
817 vx_get(vp);
818 slowfunc(mp, vp, data);
819 vx_put(vp);
820 } else {
821 vhold(vp);
822 slowfunc(mp, vp, data);
823 vdrop(vp);
827 * vp could be invalid. However, if vp is still at
828 * the head of the list it is clearly valid and we
829 * can safely move it.
831 if (LIST_FIRST(slp) == vp)
832 vn_syncer_add(vp, -(i + syncdelay));
834 i = (i + 1) & ctx->syncer_mask;
837 if ((vmsc_flags & VMSC_NOWAIT) == 0)
838 --ctx->syncer_forced;
839 lwkt_reltoken(&ctx->sc_token);
840 return(0);
844 * Print out a syncer vnode.
846 * sync_print { struct vnode *a_vp }
848 static int
849 sync_print(struct vop_print_args *ap)
851 struct vnode *vp = ap->a_vp;
853 kprintf("syncer vnode");
854 lockmgr_printinfo(&vp->v_lock);
855 kprintf("\n");
856 return (0);