usr.sbin/makefs/ffs: Remove m_buf::b_is_hammer2
[dragonfly.git] / sys / kern / vfs_subr.c
blob8a5af7e703a12affd80308dc796892153b026558
1 /*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
35 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
39 * External virtual filesystem routines
41 #include "opt_ddb.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/uio.h>
48 #include <sys/buf.h>
49 #include <sys/conf.h>
50 #include <sys/dirent.h>
51 #include <sys/endian.h>
52 #include <sys/eventhandler.h>
53 #include <sys/fcntl.h>
54 #include <sys/file.h>
55 #include <sys/kernel.h>
56 #include <sys/kthread.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/mount.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/reboot.h>
63 #include <sys/socket.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/syslog.h>
67 #include <sys/unistd.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
71 #include <machine/limits.h>
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
84 #include <sys/buf2.h>
85 #include <vm/vm_page2.h>
87 #include <netinet/in.h>
89 static MALLOC_DEFINE(M_NETCRED, "Export Host", "Export host address structure");
91 __read_mostly int numvnodes;
92 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
93 "Number of vnodes allocated");
94 __read_mostly int verbose_reclaims;
95 SYSCTL_INT(_debug, OID_AUTO, verbose_reclaims, CTLFLAG_RD, &verbose_reclaims, 0,
96 "Output filename of reclaimed vnode(s)");
98 __read_mostly enum vtype iftovt_tab[16] = {
99 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
100 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
102 __read_mostly int vttoif_tab[9] = {
103 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
104 S_IFSOCK, S_IFIFO, S_IFMT,
107 static int reassignbufcalls;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls,
109 0, "Number of times buffers have been reassigned to the proper list");
111 __read_mostly static int check_buf_overlap = 2; /* invasive check */
112 SYSCTL_INT(_vfs, OID_AUTO, check_buf_overlap, CTLFLAG_RW, &check_buf_overlap,
113 0, "Enable overlapping buffer checks");
115 int nfs_mount_type = -1;
116 static struct lwkt_token spechash_token;
117 struct nfs_public nfs_pub; /* publicly exported FS */
119 __read_mostly int maxvnodes;
120 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
121 &maxvnodes, 0, "Maximum number of vnodes");
123 static struct radix_node_head *vfs_create_addrlist_af(int af,
124 struct netexport *nep);
125 static void vfs_free_addrlist (struct netexport *nep);
126 static int vfs_free_netcred (struct radix_node *rn, void *w);
127 static void vfs_free_addrlist_af (struct radix_node_head **prnh);
128 static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 const struct export_args *argp);
130 static void vclean_vxlocked(struct vnode *vp, int flags);
132 __read_mostly int prtactive = 0; /* 1 => print out reclaim of active vnodes */
135 * Red black tree functions
137 static int rb_buf_compare(struct buf *b1, struct buf *b2);
138 RB_GENERATE2(buf_rb_tree, buf, b_rbnode, rb_buf_compare, off_t, b_loffset);
139 RB_GENERATE2(buf_rb_hash, buf, b_rbhash, rb_buf_compare, off_t, b_loffset);
141 static int
142 rb_buf_compare(struct buf *b1, struct buf *b2)
144 if (b1->b_loffset < b2->b_loffset)
145 return(-1);
146 if (b1->b_loffset > b2->b_loffset)
147 return(1);
148 return(0);
152 * Initialize the vnode management data structures.
154 * Called from vfsinit()
156 #define VNBREAKMEM1 (1L * 1024 * 1024 * 1024)
157 #define VNBREAKMEM2 (7L * 1024 * 1024 * 1024)
158 #define MINVNODES 2000
159 #define MAXVNODES 4000000
161 void
162 vfs_subr_init(void)
164 int factor1; /* Limit based on ram (x 2 above 1GB) */
165 size_t freemem;
168 * Size maxvnodes non-linearly to available memory. Don't bloat
169 * the count on low-memory systems. Scale up for systems with
170 * more than 1G and more than 8G of ram, but do so non-linearly
171 * because the value of a large maxvnodes count diminishes
172 * significantly beyond a certain point.
174 * The general minimum is maxproc * 8 (we want someone pushing
175 * up maxproc a lot to also get more vnodes). Usually maxproc
176 * does not affect this calculation. The KvaSize limitation also
177 * typically does not affect this calculation (it is just in case
178 * the kernel VM space is made much smaller than main memory, which
179 * should no longer happen on 64-bit systems).
181 * There isn't much of a point allowing maxvnodes to exceed a
182 * few million as modern filesystems cache pages in the
183 * underlying block device and not so much hanging off of VM
184 * objects.
186 * Also, VM objects, vnodes, and filesystem inode and other related
187 * structures have gotten a lot larger in recent years and the kernel
188 * memory use tends to scale with maxvnodes, so we don't want to bloat
189 * it too much. But neither do we want the max set too low because
190 * systems with large amounts of memory and cores are capable of
191 * doing a hell of a lot.
193 factor1 = 80 * (sizeof(struct vm_object) + sizeof(struct vnode));
195 freemem = (int64_t)vmstats.v_page_count * PAGE_SIZE;
197 maxvnodes = freemem / factor1;
198 if (freemem > VNBREAKMEM1) {
199 freemem -= VNBREAKMEM1;
200 if (freemem < VNBREAKMEM2) {
201 maxvnodes += freemem / factor1 / 2;
202 } else {
203 maxvnodes += VNBREAKMEM2 / factor1 / 2;
204 freemem -= VNBREAKMEM2;
205 maxvnodes += freemem / factor1 / 4;
208 maxvnodes = imax(maxvnodes, maxproc * 8);
209 maxvnodes = imin(maxvnodes, KvaSize / factor1);
210 maxvnodes = imin(maxvnodes, MAXVNODES);
211 maxvnodes = imax(maxvnodes, MINVNODES);
213 lwkt_token_init(&spechash_token, "spechash");
217 * Knob to control the precision of file timestamps:
219 * 0 = seconds only; nanoseconds zeroed.
220 * 1 = microseconds accurate to tick precision
221 * 2 = microseconds accurate to tick precision (default, hz >= 100)
222 * 3 = nanoseconds accurate to tick precision
223 * 4 = microseconds, maximum precision (default, hz < 100)
224 * 5 = nanoseconds, maximum precision
226 * Note that utimes() precision is microseconds because it takes a timeval
227 * structure, so its probably best to default to USEC or USEC_PRECISE, and
228 * not NSEC.
230 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC,
231 TSP_USEC_PRECISE, TSP_NSEC_PRECISE };
233 __read_mostly static int timestamp_precision = -1;
234 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
235 &timestamp_precision, 0, "Precision of file timestamps");
238 * Get a current timestamp.
240 * MPSAFE
242 void
243 vfs_timestamp(struct timespec *tsp)
245 switch (timestamp_precision) {
246 case TSP_SEC: /* seconds precision */
247 getnanotime(tsp);
248 tsp->tv_nsec = 0;
249 break;
250 case TSP_HZ: /* ticks precision (limit to microseconds) */
251 getnanotime(tsp);
252 tsp->tv_nsec -= tsp->tv_nsec % 1000;
253 break;
254 default:
255 case TSP_USEC: /* microseconds (ticks precision) */
256 getnanotime(tsp);
257 tsp->tv_nsec -= tsp->tv_nsec % 1000;
258 break;
259 case TSP_NSEC: /* nanoseconds (ticks precision) */
260 getnanotime(tsp);
261 break;
262 case TSP_USEC_PRECISE: /* microseconds (high preceision) */
263 nanotime(tsp);
264 tsp->tv_nsec -= tsp->tv_nsec % 1000;
265 break;
266 case TSP_NSEC_PRECISE: /* nanoseconds (high precision) */
267 nanotime(tsp);
268 break;
273 * Set vnode attributes to VNOVAL
275 void
276 vattr_null(struct vattr *vap)
278 vap->va_type = VNON;
279 vap->va_size = VNOVAL;
280 vap->va_bytes = VNOVAL;
281 vap->va_mode = VNOVAL;
282 vap->va_nlink = VNOVAL;
283 vap->va_uid = VNOVAL;
284 vap->va_gid = VNOVAL;
285 vap->va_fsid = VNOVAL;
286 vap->va_fileid = VNOVAL;
287 vap->va_blocksize = VNOVAL;
288 vap->va_rmajor = VNOVAL;
289 vap->va_rminor = VNOVAL;
290 vap->va_atime.tv_sec = VNOVAL;
291 vap->va_atime.tv_nsec = VNOVAL;
292 vap->va_mtime.tv_sec = VNOVAL;
293 vap->va_mtime.tv_nsec = VNOVAL;
294 vap->va_ctime.tv_sec = VNOVAL;
295 vap->va_ctime.tv_nsec = VNOVAL;
296 vap->va_flags = VNOVAL;
297 vap->va_gen = VNOVAL;
298 vap->va_vaflags = 0;
299 /* va_*_uuid fields are only valid if related flags are set */
303 * Flush out and invalidate all buffers associated with a vnode.
305 * vp must be locked.
307 static int vinvalbuf_bp(struct buf *bp, void *data);
309 struct vinvalbuf_bp_info {
310 struct vnode *vp;
311 int slptimeo;
312 int lkflags;
313 int flags;
314 int clean;
318 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
320 struct vinvalbuf_bp_info info;
321 vm_object_t object;
322 int error;
324 lwkt_gettoken(&vp->v_token);
327 * If we are being asked to save, call fsync to ensure that the inode
328 * is updated.
330 if (flags & V_SAVE) {
331 error = bio_track_wait(&vp->v_track_write, slpflag, slptimeo);
332 if (error)
333 goto done;
334 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
335 if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)) != 0)
336 goto done;
337 #if 0
339 * Dirty bufs may be left or generated via races
340 * in circumstances where vinvalbuf() is called on
341 * a vnode not undergoing reclamation. Only
342 * panic if we are trying to reclaim the vnode.
344 if ((vp->v_flag & VRECLAIMED) &&
345 (bio_track_active(&vp->v_track_write) ||
346 !RB_EMPTY(&vp->v_rbdirty_tree))) {
347 panic("vinvalbuf: dirty bufs");
349 #endif
352 info.slptimeo = slptimeo;
353 info.lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
354 if (slpflag & PCATCH)
355 info.lkflags |= LK_PCATCH;
356 info.flags = flags;
357 info.vp = vp;
360 * Flush the buffer cache until nothing is left, wait for all I/O
361 * to complete. At least one pass is required. We might block
362 * in the pip code so we have to re-check. Order is important.
364 do {
366 * Flush buffer cache
368 if (!RB_EMPTY(&vp->v_rbclean_tree)) {
369 info.clean = 1;
370 error = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
371 NULL, vinvalbuf_bp, &info);
373 if (!RB_EMPTY(&vp->v_rbdirty_tree)) {
374 info.clean = 0;
375 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
376 NULL, vinvalbuf_bp, &info);
380 * Wait for I/O completion.
382 bio_track_wait(&vp->v_track_write, 0, 0);
383 if ((object = vp->v_object) != NULL)
384 refcount_wait(&object->paging_in_progress, "vnvlbx");
385 } while (bio_track_active(&vp->v_track_write) ||
386 !RB_EMPTY(&vp->v_rbclean_tree) ||
387 !RB_EMPTY(&vp->v_rbdirty_tree));
390 * Destroy the copy in the VM cache, too.
392 if ((object = vp->v_object) != NULL) {
393 vm_object_page_remove(object, 0, 0,
394 (flags & V_SAVE) ? TRUE : FALSE);
397 if (!RB_EMPTY(&vp->v_rbdirty_tree) || !RB_EMPTY(&vp->v_rbclean_tree))
398 panic("vinvalbuf: flush failed");
399 if (!RB_EMPTY(&vp->v_rbhash_tree))
400 panic("vinvalbuf: flush failed, buffers still present");
401 error = 0;
402 done:
403 lwkt_reltoken(&vp->v_token);
404 return (error);
407 static int
408 vinvalbuf_bp(struct buf *bp, void *data)
410 struct vinvalbuf_bp_info *info = data;
411 int error;
413 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
414 atomic_add_int(&bp->b_refs, 1);
415 error = BUF_TIMELOCK(bp, info->lkflags,
416 "vinvalbuf", info->slptimeo);
417 atomic_subtract_int(&bp->b_refs, 1);
418 if (error == 0) {
419 BUF_UNLOCK(bp);
420 error = ENOLCK;
422 if (error == ENOLCK)
423 return(0);
424 return (-error);
426 KKASSERT(bp->b_vp == info->vp);
429 * Must check clean/dirty status after successfully locking as
430 * it may race.
432 if ((info->clean && (bp->b_flags & B_DELWRI)) ||
433 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0)) {
434 BUF_UNLOCK(bp);
435 return(0);
439 * NOTE: NO B_LOCKED CHECK. Also no buf_checkwrite()
440 * check. This code will write out the buffer, period.
442 bremfree(bp);
443 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
444 (info->flags & V_SAVE)) {
445 cluster_awrite(bp);
446 } else if (info->flags & V_SAVE) {
448 * Cannot set B_NOCACHE on a clean buffer as this will
449 * destroy the VM backing store which might actually
450 * be dirty (and unsynchronized).
452 bp->b_flags |= (B_INVAL | B_RELBUF);
453 brelse(bp);
454 } else {
455 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
456 brelse(bp);
458 return(0);
462 * Truncate a file's buffer and pages to a specified length. This
463 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
464 * sync activity.
466 * The vnode must be locked.
468 static int vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data);
469 static int vtruncbuf_bp_trunc(struct buf *bp, void *data);
470 static int vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data);
471 static int vtruncbuf_bp_metasync(struct buf *bp, void *data);
473 struct vtruncbuf_info {
474 struct vnode *vp;
475 off_t truncloffset;
476 int clean;
480 vtruncbuf(struct vnode *vp, off_t length, int blksize)
482 struct vtruncbuf_info info;
483 const char *filename;
484 int count;
487 * Round up to the *next* block, then destroy the buffers in question.
488 * Since we are only removing some of the buffers we must rely on the
489 * scan count to determine whether a loop is necessary.
491 if ((count = (int)(length % blksize)) != 0)
492 info.truncloffset = length + (blksize - count);
493 else
494 info.truncloffset = length;
495 info.vp = vp;
497 lwkt_gettoken(&vp->v_token);
498 do {
499 info.clean = 1;
500 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
501 vtruncbuf_bp_trunc_cmp,
502 vtruncbuf_bp_trunc, &info);
503 info.clean = 0;
504 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
505 vtruncbuf_bp_trunc_cmp,
506 vtruncbuf_bp_trunc, &info);
507 } while(count);
510 * For safety, fsync any remaining metadata if the file is not being
511 * truncated to 0. Since the metadata does not represent the entire
512 * dirty list we have to rely on the hit count to ensure that we get
513 * all of it.
515 if (length > 0) {
516 do {
517 count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
518 vtruncbuf_bp_metasync_cmp,
519 vtruncbuf_bp_metasync, &info);
520 } while (count);
524 * Clean out any left over VM backing store.
526 * It is possible to have in-progress I/O from buffers that were
527 * not part of the truncation. This should not happen if we
528 * are truncating to 0-length.
530 vnode_pager_setsize(vp, length);
531 bio_track_wait(&vp->v_track_write, 0, 0);
534 * Debugging only
536 spin_lock(&vp->v_spin);
537 filename = TAILQ_FIRST(&vp->v_namecache) ?
538 TAILQ_FIRST(&vp->v_namecache)->nc_name : "?";
539 spin_unlock(&vp->v_spin);
542 * Make sure no buffers were instantiated while we were trying
543 * to clean out the remaining VM pages. This could occur due
544 * to busy dirty VM pages being flushed out to disk.
546 do {
547 info.clean = 1;
548 count = RB_SCAN(buf_rb_tree, &vp->v_rbclean_tree,
549 vtruncbuf_bp_trunc_cmp,
550 vtruncbuf_bp_trunc, &info);
551 info.clean = 0;
552 count += RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
553 vtruncbuf_bp_trunc_cmp,
554 vtruncbuf_bp_trunc, &info);
555 if (count) {
556 kprintf("Warning: vtruncbuf(): Had to re-clean %d "
557 "left over buffers in %s\n", count, filename);
559 } while(count);
561 lwkt_reltoken(&vp->v_token);
563 return (0);
567 * The callback buffer is beyond the new file EOF and must be destroyed.
568 * Note that the compare function must conform to the RB_SCAN's requirements.
570 static
572 vtruncbuf_bp_trunc_cmp(struct buf *bp, void *data)
574 struct vtruncbuf_info *info = data;
576 if (bp->b_loffset >= info->truncloffset)
577 return(0);
578 return(-1);
581 static
582 int
583 vtruncbuf_bp_trunc(struct buf *bp, void *data)
585 struct vtruncbuf_info *info = data;
588 * Do not try to use a buffer we cannot immediately lock, but sleep
589 * anyway to prevent a livelock. The code will loop until all buffers
590 * can be acted upon.
592 * We must always revalidate the buffer after locking it to deal
593 * with MP races.
595 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
596 atomic_add_int(&bp->b_refs, 1);
597 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
598 BUF_UNLOCK(bp);
599 atomic_subtract_int(&bp->b_refs, 1);
600 } else if ((info->clean && (bp->b_flags & B_DELWRI)) ||
601 (info->clean == 0 && (bp->b_flags & B_DELWRI) == 0) ||
602 bp->b_vp != info->vp ||
603 vtruncbuf_bp_trunc_cmp(bp, data)) {
604 BUF_UNLOCK(bp);
605 } else {
606 bremfree(bp);
607 bp->b_flags |= (B_INVAL | B_RELBUF | B_NOCACHE);
608 brelse(bp);
610 return(1);
614 * Fsync all meta-data after truncating a file to be non-zero. Only metadata
615 * blocks (with a negative loffset) are scanned.
616 * Note that the compare function must conform to the RB_SCAN's requirements.
618 static int
619 vtruncbuf_bp_metasync_cmp(struct buf *bp, void *data __unused)
621 if (bp->b_loffset < 0)
622 return(0);
623 return(1);
626 static int
627 vtruncbuf_bp_metasync(struct buf *bp, void *data)
629 struct vtruncbuf_info *info = data;
631 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
632 atomic_add_int(&bp->b_refs, 1);
633 if (BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL) == 0)
634 BUF_UNLOCK(bp);
635 atomic_subtract_int(&bp->b_refs, 1);
636 } else if ((bp->b_flags & B_DELWRI) == 0 ||
637 bp->b_vp != info->vp ||
638 vtruncbuf_bp_metasync_cmp(bp, data)) {
639 BUF_UNLOCK(bp);
640 } else {
641 bremfree(bp);
642 if (bp->b_vp == info->vp)
643 bawrite(bp);
644 else
645 bwrite(bp);
647 return(1);
651 * vfsync - implements a multipass fsync on a file which understands
652 * dependancies and meta-data. The passed vnode must be locked. The
653 * waitfor argument may be MNT_WAIT or MNT_NOWAIT, or MNT_LAZY.
655 * When fsyncing data asynchronously just do one consolidated pass starting
656 * with the most negative block number. This may not get all the data due
657 * to dependancies.
659 * When fsyncing data synchronously do a data pass, then a metadata pass,
660 * then do additional data+metadata passes to try to get all the data out.
662 * Caller must ref the vnode but does not have to lock it.
664 static int vfsync_wait_output(struct vnode *vp,
665 int (*waitoutput)(struct vnode *, struct thread *));
666 static int vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused);
667 static int vfsync_data_only_cmp(struct buf *bp, void *data);
668 static int vfsync_meta_only_cmp(struct buf *bp, void *data);
669 static int vfsync_lazy_range_cmp(struct buf *bp, void *data);
670 static int vfsync_bp(struct buf *bp, void *data);
672 struct vfsync_info {
673 struct vnode *vp;
674 int fastpass;
675 int synchronous;
676 int syncdeps;
677 int lazycount;
678 int lazylimit;
679 int skippedbufs;
680 int (*checkdef)(struct buf *);
681 int (*cmpfunc)(struct buf *, void *);
685 vfsync(struct vnode *vp, int waitfor, int passes,
686 int (*checkdef)(struct buf *),
687 int (*waitoutput)(struct vnode *, struct thread *))
689 struct vfsync_info info;
690 int error;
692 bzero(&info, sizeof(info));
693 info.vp = vp;
694 if ((info.checkdef = checkdef) == NULL)
695 info.syncdeps = 1;
697 lwkt_gettoken(&vp->v_token);
699 switch(waitfor) {
700 case MNT_LAZY | MNT_NOWAIT:
701 case MNT_LAZY:
703 * Lazy (filesystem syncer typ) Asynchronous plus limit the
704 * number of data (not meta) pages we try to flush to 1MB.
705 * A non-zero return means that lazy limit was reached.
707 info.lazylimit = 1024 * 1024;
708 info.syncdeps = 1;
709 info.cmpfunc = vfsync_lazy_range_cmp;
710 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
711 vfsync_lazy_range_cmp, vfsync_bp, &info);
712 info.cmpfunc = vfsync_meta_only_cmp;
713 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree,
714 vfsync_meta_only_cmp, vfsync_bp, &info);
715 if (error == 0)
716 vp->v_lazyw = 0;
717 else if (!RB_EMPTY(&vp->v_rbdirty_tree))
718 vn_syncer_add(vp, 1);
719 error = 0;
720 break;
721 case MNT_NOWAIT:
723 * Asynchronous. Do a data-only pass and a meta-only pass.
725 info.syncdeps = 1;
726 info.cmpfunc = vfsync_data_only_cmp;
727 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
728 vfsync_bp, &info);
729 info.cmpfunc = vfsync_meta_only_cmp;
730 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_meta_only_cmp,
731 vfsync_bp, &info);
732 error = 0;
733 break;
734 default:
736 * Synchronous. Do a data-only pass, then a meta-data+data
737 * pass, then additional integrated passes to try to get
738 * all the dependancies flushed.
740 info.cmpfunc = vfsync_data_only_cmp;
741 info.fastpass = 1;
742 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, vfsync_data_only_cmp,
743 vfsync_bp, &info);
744 info.fastpass = 0;
745 error = vfsync_wait_output(vp, waitoutput);
746 if (error == 0) {
747 info.skippedbufs = 0;
748 info.cmpfunc = vfsync_dummy_cmp;
749 RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
750 vfsync_bp, &info);
751 error = vfsync_wait_output(vp, waitoutput);
752 if (info.skippedbufs) {
753 kprintf("Warning: vfsync skipped %d dirty "
754 "buf%s in pass2!\n",
755 info.skippedbufs,
756 ((info.skippedbufs > 1) ? "s" : ""));
759 while (error == 0 && passes > 0 &&
760 !RB_EMPTY(&vp->v_rbdirty_tree)
762 info.skippedbufs = 0;
763 if (--passes == 0) {
764 info.synchronous = 1;
765 info.syncdeps = 1;
767 info.cmpfunc = vfsync_dummy_cmp;
768 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
769 vfsync_bp, &info);
770 if (error < 0)
771 error = -error;
772 info.syncdeps = 1;
773 if (error == 0)
774 error = vfsync_wait_output(vp, waitoutput);
775 if (info.skippedbufs && passes == 0) {
776 kprintf("Warning: vfsync skipped %d dirty "
777 "buf%s in final pass!\n",
778 info.skippedbufs,
779 ((info.skippedbufs > 1) ? "s" : ""));
782 #if 0
784 * This case can occur normally because vnode lock might
785 * not be held.
787 if (!RB_EMPTY(&vp->v_rbdirty_tree))
788 kprintf("dirty bufs left after final pass\n");
789 #endif
790 break;
792 lwkt_reltoken(&vp->v_token);
794 return(error);
797 static int
798 vfsync_wait_output(struct vnode *vp,
799 int (*waitoutput)(struct vnode *, struct thread *))
801 int error;
803 error = bio_track_wait(&vp->v_track_write, 0, 0);
804 if (waitoutput)
805 error = waitoutput(vp, curthread);
806 return(error);
809 static int
810 vfsync_dummy_cmp(struct buf *bp __unused, void *data __unused)
812 return(0);
815 static int
816 vfsync_data_only_cmp(struct buf *bp, void *data)
818 if (bp->b_loffset < 0)
819 return(-1);
820 return(0);
823 static int
824 vfsync_meta_only_cmp(struct buf *bp, void *data)
826 if (bp->b_loffset < 0)
827 return(0);
828 return(1);
831 static int
832 vfsync_lazy_range_cmp(struct buf *bp, void *data)
834 struct vfsync_info *info = data;
836 if (bp->b_loffset < info->vp->v_lazyw)
837 return(-1);
838 return(0);
841 static int
842 vfsync_bp(struct buf *bp, void *data)
844 struct vfsync_info *info = data;
845 struct vnode *vp = info->vp;
846 int error;
848 if (info->fastpass) {
850 * Ignore buffers that we cannot immediately lock.
852 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
854 * Removed BUF_TIMELOCK(..., 1), even a 1-tick
855 * delay can mess up performance
857 * Another reason is that during a dirty-buffer
858 * scan a clustered write can start I/O on buffers
859 * ahead of the scan, causing the scan to not
860 * get a lock here. Usually this means the write
861 * is already in progress so, in fact, we *want*
862 * to skip the buffer.
864 ++info->skippedbufs;
865 return(0);
867 } else if (info->synchronous == 0) {
869 * Normal pass, give the buffer a little time to become
870 * available to us.
872 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst2", hz / 10)) {
873 ++info->skippedbufs;
874 return(0);
876 } else {
878 * Synchronous pass, give the buffer a lot of time before
879 * giving up.
881 if (BUF_TIMELOCK(bp, LK_EXCLUSIVE, "bflst3", hz * 10)) {
882 ++info->skippedbufs;
883 return(0);
888 * We must revalidate the buffer after locking.
890 if ((bp->b_flags & B_DELWRI) == 0 ||
891 bp->b_vp != info->vp ||
892 info->cmpfunc(bp, data)) {
893 BUF_UNLOCK(bp);
894 return(0);
898 * If syncdeps is not set we do not try to write buffers which have
899 * dependancies.
901 if (!info->synchronous && info->syncdeps == 0 && info->checkdef(bp)) {
902 BUF_UNLOCK(bp);
903 return(0);
907 * B_NEEDCOMMIT (primarily used by NFS) is a state where the buffer
908 * has been written but an additional handshake with the device
909 * is required before we can dispose of the buffer. We have no idea
910 * how to do this so we have to skip these buffers.
912 if (bp->b_flags & B_NEEDCOMMIT) {
913 BUF_UNLOCK(bp);
914 return(0);
918 * Ask bioops if it is ok to sync. If not the VFS may have
919 * set B_LOCKED so we have to cycle the buffer.
921 if (LIST_FIRST(&bp->b_dep) != NULL && buf_checkwrite(bp)) {
922 bremfree(bp);
923 brelse(bp);
924 return(0);
927 if (info->synchronous) {
929 * Synchronous flush. An error may be returned and will
930 * stop the scan.
932 bremfree(bp);
933 error = bwrite(bp);
934 } else {
936 * Asynchronous flush. We use the error return to support
937 * MNT_LAZY flushes.
939 * In low-memory situations we revert to synchronous
940 * operation. This should theoretically prevent the I/O
941 * path from exhausting memory in a non-recoverable way.
943 vp->v_lazyw = bp->b_loffset;
944 bremfree(bp);
945 if (vm_paging_min()) {
946 /* low memory */
947 info->lazycount += bp->b_bufsize;
948 bwrite(bp);
949 } else {
950 /* normal */
951 info->lazycount += cluster_awrite(bp);
952 waitrunningbufspace();
953 /*vm_wait_nominal();*/
955 if (info->lazylimit && info->lazycount >= info->lazylimit)
956 error = 1;
957 else
958 error = 0;
960 return(-error);
964 * Associate a buffer with a vnode.
966 * MPSAFE
969 bgetvp(struct vnode *vp, struct buf *bp, int testsize)
971 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
972 KKASSERT((bp->b_flags & (B_HASHED|B_DELWRI|B_VNCLEAN|B_VNDIRTY)) == 0);
975 * Insert onto list for new vnode.
977 lwkt_gettoken(&vp->v_token);
979 if (buf_rb_hash_RB_INSERT(&vp->v_rbhash_tree, bp)) {
980 lwkt_reltoken(&vp->v_token);
981 return (EEXIST);
985 * Diagnostics (mainly for HAMMER debugging). Check for
986 * overlapping buffers.
988 if (check_buf_overlap) {
989 struct buf *bx;
990 bx = buf_rb_hash_RB_PREV(bp);
991 if (bx) {
992 if (bx->b_loffset + bx->b_bufsize > bp->b_loffset) {
993 kprintf("bgetvp: overlapl %016jx/%d %016jx "
994 "bx %p bp %p\n",
995 (intmax_t)bx->b_loffset,
996 bx->b_bufsize,
997 (intmax_t)bp->b_loffset,
998 bx, bp);
999 if (check_buf_overlap > 1)
1000 panic("bgetvp - overlapping buffer");
1003 bx = buf_rb_hash_RB_NEXT(bp);
1004 if (bx) {
1005 if (bp->b_loffset + testsize > bx->b_loffset) {
1006 kprintf("bgetvp: overlapr %016jx/%d %016jx "
1007 "bp %p bx %p\n",
1008 (intmax_t)bp->b_loffset,
1009 testsize,
1010 (intmax_t)bx->b_loffset,
1011 bp, bx);
1012 if (check_buf_overlap > 1)
1013 panic("bgetvp - overlapping buffer");
1017 bp->b_vp = vp;
1018 bp->b_flags |= B_HASHED;
1019 bp->b_flags |= B_VNCLEAN;
1020 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp))
1021 panic("reassignbuf: dup lblk/clean vp %p bp %p", vp, bp);
1022 /*vhold(vp);*/
1023 lwkt_reltoken(&vp->v_token);
1024 return(0);
1028 * Disassociate a buffer from a vnode.
1030 * MPSAFE
1032 void
1033 brelvp(struct buf *bp)
1035 struct vnode *vp;
1037 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1040 * Delete from old vnode list, if on one.
1042 vp = bp->b_vp;
1043 lwkt_gettoken(&vp->v_token);
1044 if (bp->b_flags & (B_VNDIRTY | B_VNCLEAN)) {
1045 if (bp->b_flags & B_VNDIRTY)
1046 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1047 else
1048 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1049 bp->b_flags &= ~(B_VNDIRTY | B_VNCLEAN);
1051 if (bp->b_flags & B_HASHED) {
1052 buf_rb_hash_RB_REMOVE(&vp->v_rbhash_tree, bp);
1053 bp->b_flags &= ~B_HASHED;
1057 * Only remove from synclist when no dirty buffers are left AND
1058 * the VFS has not flagged the vnode's inode as being dirty.
1060 if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) == VONWORKLST &&
1061 RB_EMPTY(&vp->v_rbdirty_tree)) {
1062 vn_syncer_remove(vp, 0);
1064 bp->b_vp = NULL;
1066 lwkt_reltoken(&vp->v_token);
1068 /*vdrop(vp);*/
1072 * Reassign the buffer to the proper clean/dirty list based on B_DELWRI.
1073 * This routine is called when the state of the B_DELWRI bit is changed.
1075 * Must be called with vp->v_token held.
1076 * MPSAFE
1078 void
1079 reassignbuf(struct buf *bp)
1081 struct vnode *vp = bp->b_vp;
1082 int delay;
1084 ASSERT_LWKT_TOKEN_HELD(&vp->v_token);
1085 ++reassignbufcalls;
1088 * B_PAGING flagged buffers cannot be reassigned because their vp
1089 * is not fully linked in.
1091 if (bp->b_flags & B_PAGING)
1092 panic("cannot reassign paging buffer");
1094 if (bp->b_flags & B_DELWRI) {
1096 * Move to the dirty list, add the vnode to the worklist
1098 if (bp->b_flags & B_VNCLEAN) {
1099 buf_rb_tree_RB_REMOVE(&vp->v_rbclean_tree, bp);
1100 bp->b_flags &= ~B_VNCLEAN;
1102 if ((bp->b_flags & B_VNDIRTY) == 0) {
1103 if (buf_rb_tree_RB_INSERT(&vp->v_rbdirty_tree, bp)) {
1104 panic("reassignbuf: dup lblk vp %p bp %p",
1105 vp, bp);
1107 bp->b_flags |= B_VNDIRTY;
1109 if ((vp->v_flag & VONWORKLST) == 0) {
1110 switch (vp->v_type) {
1111 case VDIR:
1112 delay = dirdelay;
1113 break;
1114 case VCHR:
1115 case VBLK:
1116 if (vp->v_rdev &&
1117 vp->v_rdev->si_mountpoint != NULL) {
1118 delay = metadelay;
1119 break;
1121 /* fall through */
1122 default:
1123 delay = filedelay;
1125 vn_syncer_add(vp, delay);
1127 } else {
1129 * Move to the clean list, remove the vnode from the worklist
1130 * if no dirty blocks remain.
1132 if (bp->b_flags & B_VNDIRTY) {
1133 buf_rb_tree_RB_REMOVE(&vp->v_rbdirty_tree, bp);
1134 bp->b_flags &= ~B_VNDIRTY;
1136 if ((bp->b_flags & B_VNCLEAN) == 0) {
1137 if (buf_rb_tree_RB_INSERT(&vp->v_rbclean_tree, bp)) {
1138 panic("reassignbuf: dup lblk vp %p bp %p",
1139 vp, bp);
1141 bp->b_flags |= B_VNCLEAN;
1145 * Only remove from synclist when no dirty buffers are left
1146 * AND the VFS has not flagged the vnode's inode as being
1147 * dirty.
1149 if ((vp->v_flag & (VONWORKLST | VISDIRTY | VOBJDIRTY)) ==
1150 VONWORKLST &&
1151 RB_EMPTY(&vp->v_rbdirty_tree)) {
1152 vn_syncer_remove(vp, 0);
1158 * Create a vnode for a block device. Used for mounting the root file
1159 * system.
1161 * A vref()'d vnode is returned.
1163 extern struct vop_ops *devfs_vnode_dev_vops_p;
1165 bdevvp(cdev_t dev, struct vnode **vpp)
1167 struct vnode *vp;
1168 struct vnode *nvp;
1169 int error;
1171 if (dev == NULL) {
1172 *vpp = NULLVP;
1173 return (ENXIO);
1175 error = getspecialvnode(VT_NON, NULL, &devfs_vnode_dev_vops_p,
1176 &nvp, 0, 0);
1177 if (error) {
1178 *vpp = NULLVP;
1179 return (error);
1181 vp = nvp;
1182 vp->v_type = VCHR;
1183 #if 0
1184 vp->v_rdev = dev;
1185 #endif
1186 v_associate_rdev(vp, dev);
1187 vp->v_umajor = dev->si_umajor;
1188 vp->v_uminor = dev->si_uminor;
1189 vx_unlock(vp);
1190 *vpp = vp;
1191 return (0);
1195 v_associate_rdev(struct vnode *vp, cdev_t dev)
1197 if (dev == NULL)
1198 return(ENXIO);
1199 if (dev_is_good(dev) == 0)
1200 return(ENXIO);
1201 KKASSERT(vp->v_rdev == NULL);
1202 vp->v_rdev = reference_dev(dev);
1203 lwkt_gettoken(&spechash_token);
1204 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_cdevnext);
1205 lwkt_reltoken(&spechash_token);
1206 return(0);
1209 void
1210 v_release_rdev(struct vnode *vp)
1212 cdev_t dev;
1214 if ((dev = vp->v_rdev) != NULL) {
1215 lwkt_gettoken(&spechash_token);
1216 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_cdevnext);
1217 vp->v_rdev = NULL;
1218 release_dev(dev);
1219 lwkt_reltoken(&spechash_token);
1224 * Add a vnode to the alias list hung off the cdev_t. We only associate
1225 * the device number with the vnode. The actual device is not associated
1226 * until the vnode is opened (usually in spec_open()), and will be
1227 * disassociated on last close.
1229 void
1230 addaliasu(struct vnode *nvp, int x, int y)
1232 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1233 panic("addaliasu on non-special vnode");
1234 nvp->v_umajor = x;
1235 nvp->v_uminor = y;
1239 * Simple call that a filesystem can make to try to get rid of a
1240 * vnode. It will fail if anyone is referencing the vnode (including
1241 * the caller).
1243 * The filesystem can check whether its in-memory inode structure still
1244 * references the vp on return.
1246 * May only be called if the vnode is in a known state (i.e. being prevented
1247 * from being deallocated by some other condition such as a vfs inode hold).
1249 * This call might not succeed.
1251 void
1252 vclean_unlocked(struct vnode *vp)
1254 vx_get(vp);
1255 if (VREFCNT(vp) <= 1)
1256 vgone_vxlocked(vp);
1257 vx_put(vp);
1261 * Disassociate a vnode from its underlying filesystem.
1263 * The vnode must be VX locked and referenced. In all normal situations
1264 * there are no active references. If vclean_vxlocked() is called while
1265 * there are active references, the vnode is being ripped out and we have
1266 * to call VOP_CLOSE() as appropriate before we can reclaim it.
1268 static void
1269 vclean_vxlocked(struct vnode *vp, int flags)
1271 int active;
1272 int n;
1273 vm_object_t object;
1274 struct namecache *ncp;
1277 * If the vnode has already been reclaimed we have nothing to do.
1279 if (vp->v_flag & VRECLAIMED)
1280 return;
1283 * Set flag to interlock operation, flag finalization to ensure
1284 * that the vnode winds up on the inactive list, and set v_act to 0.
1286 vsetflags(vp, VRECLAIMED);
1287 atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
1288 vp->v_act = 0;
1290 if (verbose_reclaims) {
1291 if ((ncp = TAILQ_FIRST(&vp->v_namecache)) != NULL)
1292 kprintf("Debug: reclaim %p %s\n", vp, ncp->nc_name);
1296 * Scrap the vfs cache
1298 while (cache_inval_vp(vp, 0) != 0) {
1299 kprintf("Warning: vnode %p clean/cache_resolution "
1300 "race detected\n", vp);
1301 tsleep(vp, 0, "vclninv", 2);
1305 * Check to see if the vnode is in use. If so we have to reference it
1306 * before we clean it out so that its count cannot fall to zero and
1307 * generate a race against ourselves to recycle it.
1309 active = (VREFCNT(vp) > 0);
1312 * Clean out any buffers associated with the vnode and destroy its
1313 * object, if it has one.
1315 vinvalbuf(vp, V_SAVE, 0, 0);
1318 * If purging an active vnode (typically during a forced unmount
1319 * or reboot), it must be closed and deactivated before being
1320 * reclaimed. This isn't really all that safe, but what can
1321 * we do? XXX.
1323 * Note that neither of these routines unlocks the vnode.
1325 if (active && (flags & DOCLOSE)) {
1326 while ((n = vp->v_opencount) != 0) {
1327 if (vp->v_writecount)
1328 VOP_CLOSE(vp, FWRITE|FNONBLOCK, NULL);
1329 else
1330 VOP_CLOSE(vp, FNONBLOCK, NULL);
1331 if (vp->v_opencount == n) {
1332 kprintf("Warning: unable to force-close"
1333 " vnode %p\n", vp);
1334 break;
1340 * If the vnode has not been deactivated, deactivated it. Deactivation
1341 * can create new buffers and VM pages so we have to call vinvalbuf()
1342 * again to make sure they all get flushed.
1344 * This can occur if a file with a link count of 0 needs to be
1345 * truncated.
1347 * If the vnode is already dead don't try to deactivate it.
1349 if ((vp->v_flag & VINACTIVE) == 0) {
1350 vsetflags(vp, VINACTIVE);
1351 if (vp->v_mount)
1352 VOP_INACTIVE(vp);
1353 vinvalbuf(vp, V_SAVE, 0, 0);
1357 * If the vnode has an object, destroy it.
1359 while ((object = vp->v_object) != NULL) {
1360 vm_object_hold(object);
1361 if (object == vp->v_object)
1362 break;
1363 vm_object_drop(object);
1366 if (object != NULL) {
1367 if (object->ref_count == 0) {
1368 if ((object->flags & OBJ_DEAD) == 0)
1369 vm_object_terminate(object);
1370 vm_object_drop(object);
1371 vclrflags(vp, VOBJBUF);
1372 } else {
1373 vm_pager_deallocate(object);
1374 vclrflags(vp, VOBJBUF);
1375 vm_object_drop(object);
1378 KKASSERT((vp->v_flag & VOBJBUF) == 0);
1380 if (vp->v_flag & VOBJDIRTY)
1381 vclrobjdirty(vp);
1384 * Reclaim the vnode if not already dead.
1386 if (vp->v_mount && VOP_RECLAIM(vp))
1387 panic("vclean: cannot reclaim");
1390 * Done with purge, notify sleepers of the grim news.
1392 vp->v_ops = &dead_vnode_vops_p;
1393 vn_gone(vp);
1394 vp->v_tag = VT_NON;
1397 * If we are destroying an active vnode, reactivate it now that
1398 * we have reassociated it with deadfs. This prevents the system
1399 * from crashing on the vnode due to it being unexpectedly marked
1400 * as inactive or reclaimed.
1402 if (active && (flags & DOCLOSE)) {
1403 vclrflags(vp, VINACTIVE | VRECLAIMED);
1408 * Eliminate all activity associated with the requested vnode
1409 * and with all vnodes aliased to the requested vnode.
1411 * The vnode must be referenced but should not be locked.
1414 vrevoke(struct vnode *vp, struct ucred *cred)
1416 struct vnode *vq;
1417 struct vnode *vqn;
1418 cdev_t dev;
1419 int error;
1422 * If the vnode has a device association, scrap all vnodes associated
1423 * with the device. Don't let the device disappear on us while we
1424 * are scrapping the vnodes.
1426 * The passed vp will probably show up in the list, do not VX lock
1427 * it twice!
1429 * Releasing the vnode's rdev here can mess up specfs's call to
1430 * device close, so don't do it. The vnode has been disassociated
1431 * and the device will be closed after the last ref on the related
1432 * fp goes away (if not still open by e.g. the kernel).
1434 if (vp->v_type != VCHR) {
1435 error = fdrevoke(vp, DTYPE_VNODE, cred);
1436 return (error);
1438 if ((dev = vp->v_rdev) == NULL) {
1439 return(0);
1441 reference_dev(dev);
1442 lwkt_gettoken(&spechash_token);
1444 restart:
1445 vqn = SLIST_FIRST(&dev->si_hlist);
1446 if (vqn)
1447 vhold(vqn);
1448 while ((vq = vqn) != NULL) {
1449 if (VREFCNT(vq) > 0) {
1450 vref(vq);
1451 fdrevoke(vq, DTYPE_VNODE, cred);
1452 /*v_release_rdev(vq);*/
1453 vrele(vq);
1454 if (vq->v_rdev != dev) {
1455 vdrop(vq);
1456 goto restart;
1459 vqn = SLIST_NEXT(vq, v_cdevnext);
1460 if (vqn)
1461 vhold(vqn);
1462 vdrop(vq);
1464 lwkt_reltoken(&spechash_token);
1465 dev_drevoke(dev);
1466 release_dev(dev);
1467 return (0);
1471 * This is called when the object underlying a vnode is being destroyed,
1472 * such as in a remove(). Try to recycle the vnode immediately if the
1473 * only active reference is our reference.
1475 * Directory vnodes in the namecache with children cannot be immediately
1476 * recycled because numerous VOP_N*() ops require them to be stable.
1478 * To avoid recursive recycling from VOP_INACTIVE implemenetations this
1479 * function is a NOP if VRECLAIMED is already set.
1482 vrecycle(struct vnode *vp)
1484 if (VREFCNT(vp) <= 1 && (vp->v_flag & VRECLAIMED) == 0) {
1485 if (cache_inval_vp_nonblock(vp))
1486 return(0);
1487 vgone_vxlocked(vp);
1488 return (1);
1490 return (0);
1494 * Return the maximum I/O size allowed for strategy calls on VP.
1496 * If vp is VCHR or VBLK we dive the device, otherwise we use
1497 * the vp's mount info.
1499 * The returned value is clamped at MAXPHYS as most callers cannot use
1500 * buffers larger than that size.
1503 vmaxiosize(struct vnode *vp)
1505 int maxiosize;
1507 if (vp->v_type == VBLK || vp->v_type == VCHR)
1508 maxiosize = vp->v_rdev->si_iosize_max;
1509 else
1510 maxiosize = vp->v_mount->mnt_iosize_max;
1512 if (maxiosize > MAXPHYS)
1513 maxiosize = MAXPHYS;
1514 return (maxiosize);
1518 * Eliminate all activity associated with a vnode in preparation for
1519 * destruction.
1521 * The vnode must be VX locked and refd and will remain VX locked and refd
1522 * on return. This routine may be called with the vnode in any state, as
1523 * long as it is VX locked. The vnode will be cleaned out and marked
1524 * VRECLAIMED but will not actually be reused until all existing refs and
1525 * holds go away.
1527 * NOTE: This routine may be called on a vnode which has not yet been
1528 * already been deactivated (VOP_INACTIVE), or on a vnode which has
1529 * already been reclaimed.
1531 * This routine is not responsible for placing us back on the freelist.
1532 * Instead, it happens automatically when the caller releases the VX lock
1533 * (assuming there aren't any other references).
1535 void
1536 vgone_vxlocked(struct vnode *vp)
1539 * assert that the VX lock is held. This is an absolute requirement
1540 * now for vgone_vxlocked() to be called.
1542 KKASSERT(lockinuse(&vp->v_lock));
1545 * Clean out the filesystem specific data and set the VRECLAIMED
1546 * bit. Also deactivate the vnode if necessary.
1548 * The vnode should have automatically been removed from the syncer
1549 * list as syncer/dirty flags cleared during the cleaning.
1551 vclean_vxlocked(vp, DOCLOSE);
1554 * Normally panic if the vnode is still dirty, unless we are doing
1555 * a forced unmount (tmpfs typically).
1557 if (vp->v_flag & VONWORKLST) {
1558 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1559 /* force removal */
1560 vn_syncer_remove(vp, 1);
1561 } else {
1562 panic("vp %p still dirty in vgone after flush", vp);
1567 * Delete from old mount point vnode list, if on one.
1569 if (vp->v_mount != NULL) {
1570 KKASSERT(vp->v_data == NULL);
1571 insmntque(vp, NULL);
1575 * If special device, remove it from special device alias list
1576 * if it is on one. This should normally only occur if a vnode is
1577 * being revoked as the device should otherwise have been released
1578 * naturally.
1580 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1581 v_release_rdev(vp);
1585 * Set us to VBAD
1587 vp->v_type = VBAD;
1591 * Calculate the total number of references to a special device. This
1592 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1593 * an overloaded field. Since dev_from_devid() can now return NULL, we
1594 * have to check for a NULL v_rdev.
1597 count_dev(cdev_t dev)
1599 struct vnode *vp;
1600 int count = 0;
1602 if (SLIST_FIRST(&dev->si_hlist)) {
1603 lwkt_gettoken(&spechash_token);
1604 SLIST_FOREACH(vp, &dev->si_hlist, v_cdevnext) {
1605 count += vp->v_opencount;
1607 lwkt_reltoken(&spechash_token);
1609 return(count);
1613 vcount(struct vnode *vp)
1615 if (vp->v_rdev == NULL)
1616 return(0);
1617 return(count_dev(vp->v_rdev));
1621 * Initialize VMIO for a vnode. This routine MUST be called before a
1622 * VFS can issue buffer cache ops on a vnode. It is typically called
1623 * when a vnode is initialized from its inode.
1626 vinitvmio(struct vnode *vp, off_t filesize, int blksize, int boff)
1628 vm_object_t object;
1629 int error = 0;
1631 object = vp->v_object;
1632 if (object) {
1633 vm_object_hold(object);
1634 KKASSERT(vp->v_object == object);
1637 if (object == NULL) {
1638 object = vnode_pager_alloc(vp, filesize, 0, 0, blksize, boff);
1641 * Dereference the reference we just created. This assumes
1642 * that the object is associated with the vp. Allow it to
1643 * have zero refs. It cannot be destroyed as long as it
1644 * is associated with the vnode.
1646 vm_object_hold(object);
1647 atomic_add_int(&object->ref_count, -1);
1648 vrele(vp);
1649 } else {
1650 KKASSERT((object->flags & OBJ_DEAD) == 0);
1652 KASSERT(vp->v_object != NULL, ("vinitvmio: NULL object"));
1653 vsetflags(vp, VOBJBUF);
1654 vm_object_drop(object);
1656 return (error);
1661 * Print out a description of a vnode.
1663 static char *typename[] =
1664 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1666 void
1667 vprint(char *label, struct vnode *vp)
1669 char buf[96];
1671 if (label != NULL)
1672 kprintf("%s: %p: ", label, (void *)vp);
1673 else
1674 kprintf("%p: ", (void *)vp);
1675 kprintf("type %s, refcnt %08x, writecount %d, holdcnt %d,",
1676 typename[vp->v_type],
1677 vp->v_refcnt, vp->v_writecount, vp->v_auxrefs);
1678 buf[0] = '\0';
1679 if (vp->v_flag & VROOT)
1680 strcat(buf, "|VROOT");
1681 if (vp->v_flag & VPFSROOT)
1682 strcat(buf, "|VPFSROOT");
1683 if (vp->v_flag & VTEXT)
1684 strcat(buf, "|VTEXT");
1685 if (vp->v_flag & VSYSTEM)
1686 strcat(buf, "|VSYSTEM");
1687 if (vp->v_flag & VOBJBUF)
1688 strcat(buf, "|VOBJBUF");
1689 if (buf[0] != '\0')
1690 kprintf(" flags (%s)", &buf[1]);
1691 if (vp->v_data == NULL) {
1692 kprintf("\n");
1693 } else {
1694 kprintf("\n\t");
1695 VOP_PRINT(vp);
1700 * Do the usual access checking.
1701 * file_mode, uid and gid are from the vnode in question,
1702 * while acc_mode and cred are from the VOP_ACCESS parameter list
1705 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
1706 mode_t acc_mode, struct ucred *cred)
1708 mode_t mask;
1709 int ismember;
1712 * Super-user always gets read/write access, but execute access depends
1713 * on at least one execute bit being set.
1715 if (priv_check_cred(cred, PRIV_ROOT, 0) == 0) {
1716 if ((acc_mode & VEXEC) && type != VDIR &&
1717 (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
1718 return (EACCES);
1719 return (0);
1722 mask = 0;
1724 /* Otherwise, check the owner. */
1725 if (cred->cr_uid == uid) {
1726 if (acc_mode & VEXEC)
1727 mask |= S_IXUSR;
1728 if (acc_mode & VREAD)
1729 mask |= S_IRUSR;
1730 if (acc_mode & VWRITE)
1731 mask |= S_IWUSR;
1732 return ((file_mode & mask) == mask ? 0 : EACCES);
1735 /* Otherwise, check the groups. */
1736 ismember = groupmember(gid, cred);
1737 if (cred->cr_svgid == gid || ismember) {
1738 if (acc_mode & VEXEC)
1739 mask |= S_IXGRP;
1740 if (acc_mode & VREAD)
1741 mask |= S_IRGRP;
1742 if (acc_mode & VWRITE)
1743 mask |= S_IWGRP;
1744 return ((file_mode & mask) == mask ? 0 : EACCES);
1747 /* Otherwise, check everyone else. */
1748 if (acc_mode & VEXEC)
1749 mask |= S_IXOTH;
1750 if (acc_mode & VREAD)
1751 mask |= S_IROTH;
1752 if (acc_mode & VWRITE)
1753 mask |= S_IWOTH;
1754 return ((file_mode & mask) == mask ? 0 : EACCES);
1757 #ifdef DDB
1758 #include <ddb/ddb.h>
1760 static int db_show_locked_vnodes(struct mount *mp, void *data);
1763 * List all of the locked vnodes in the system.
1764 * Called when debugging the kernel.
1766 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1768 kprintf("Locked vnodes\n");
1769 mountlist_scan(db_show_locked_vnodes, NULL,
1770 MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
1773 static int
1774 db_show_locked_vnodes(struct mount *mp, void *data __unused)
1776 struct vnode *vp;
1778 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1779 if (vn_islocked(vp))
1780 vprint(NULL, vp);
1782 return(0);
1784 #endif
1787 * Top level filesystem related information gathering.
1789 static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1791 static int
1792 vfs_sysctl(SYSCTL_HANDLER_ARGS)
1794 int *name = (int *)arg1 - 1; /* XXX */
1795 u_int namelen = arg2 + 1; /* XXX */
1796 struct vfsconf *vfsp;
1797 int maxtypenum;
1799 #if 1 || defined(COMPAT_PRELITE2)
1800 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1801 if (namelen == 1)
1802 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1803 #endif
1805 #ifdef notyet
1806 /* all sysctl names at this level are at least name and field */
1807 if (namelen < 2)
1808 return (ENOTDIR); /* overloaded */
1809 if (name[0] != VFS_GENERIC) {
1810 vfsp = vfsconf_find_by_typenum(name[0]);
1811 if (vfsp == NULL)
1812 return (EOPNOTSUPP);
1813 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1814 oldp, oldlenp, newp, newlen, p));
1816 #endif
1817 switch (name[1]) {
1818 case VFS_MAXTYPENUM:
1819 if (namelen != 2)
1820 return (ENOTDIR);
1821 maxtypenum = vfsconf_get_maxtypenum();
1822 return (SYSCTL_OUT(req, &maxtypenum, sizeof(maxtypenum)));
1823 case VFS_CONF:
1824 if (namelen != 3)
1825 return (ENOTDIR); /* overloaded */
1826 vfsp = vfsconf_find_by_typenum(name[2]);
1827 if (vfsp == NULL)
1828 return (EOPNOTSUPP);
1829 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1831 return (EOPNOTSUPP);
1834 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1835 "Generic filesystem");
1837 #if 1 || defined(COMPAT_PRELITE2)
1839 static int
1840 sysctl_ovfs_conf_iter(struct vfsconf *vfsp, void *data)
1842 int error;
1843 struct ovfsconf ovfs;
1844 struct sysctl_req *req = (struct sysctl_req*) data;
1846 bzero(&ovfs, sizeof(ovfs));
1847 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1848 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1849 ovfs.vfc_index = vfsp->vfc_typenum;
1850 ovfs.vfc_refcount = vfsp->vfc_refcount;
1851 ovfs.vfc_flags = vfsp->vfc_flags;
1852 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1853 if (error)
1854 return error; /* abort iteration with error code */
1855 else
1856 return 0; /* continue iterating with next element */
1859 static int
1860 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1862 return vfsconf_each(sysctl_ovfs_conf_iter, (void*)req);
1865 #endif /* 1 || COMPAT_PRELITE2 */
1868 * Check to see if a filesystem is mounted on a block device.
1871 vfs_mountedon(struct vnode *vp)
1873 cdev_t dev;
1875 dev = vp->v_rdev;
1876 if (dev != NULL && dev->si_mountpoint)
1877 return (EBUSY);
1878 return (0);
1882 * Unmount all filesystems. The list is traversed in reverse order
1883 * of mounting to avoid dependencies.
1885 * We want the umountall to be able to break out of its loop if a
1886 * failure occurs, after scanning all possible mounts, so the callback
1887 * returns 0 on error.
1889 * NOTE: Do not call mountlist_remove(mp) on error any more, this will
1890 * confuse mountlist_scan()'s unbusy check.
1892 static int vfs_umountall_callback(struct mount *mp, void *data);
1894 void
1895 vfs_unmountall(int halting)
1897 int count;
1899 do {
1900 count = mountlist_scan(vfs_umountall_callback, &halting,
1901 MNTSCAN_REVERSE|MNTSCAN_NOBUSY);
1902 } while (count);
1905 static
1907 vfs_umountall_callback(struct mount *mp, void *data)
1909 int error;
1910 int halting = *(int *)data;
1913 * NOTE: When halting, dounmount will disconnect but leave
1914 * certain mount points intact. e.g. devfs.
1916 error = dounmount(mp, MNT_FORCE, halting);
1917 if (error) {
1918 kprintf("unmount of filesystem mounted from %s failed (",
1919 mp->mnt_stat.f_mntfromname);
1920 if (error == EBUSY)
1921 kprintf("BUSY)\n");
1922 else
1923 kprintf("%d)\n", error);
1924 return 0;
1925 } else {
1926 return 1;
1931 * Checks the mount flags for parameter mp and put the names comma-separated
1932 * into a string buffer buf with a size limit specified by len.
1934 * It returns the number of bytes written into buf, and (*errorp) will be
1935 * set to 0, EINVAL (if passed length is 0), or ENOSPC (supplied buffer was
1936 * not large enough). The buffer will be 0-terminated if len was not 0.
1938 size_t
1939 vfs_flagstostr(int flags, const struct mountctl_opt *optp,
1940 char *buf, size_t len, int *errorp)
1942 static const struct mountctl_opt optnames[] = {
1943 { MNT_RDONLY, "read-only" },
1944 { MNT_SYNCHRONOUS, "synchronous" },
1945 { MNT_NOEXEC, "noexec" },
1946 { MNT_NOSUID, "nosuid" },
1947 { MNT_NODEV, "nodev" },
1948 { MNT_AUTOMOUNTED, "automounted" },
1949 { MNT_ASYNC, "asynchronous" },
1950 { MNT_SUIDDIR, "suiddir" },
1951 { MNT_SOFTDEP, "soft-updates" },
1952 { MNT_NOSYMFOLLOW, "nosymfollow" },
1953 { MNT_TRIM, "trim" },
1954 { MNT_NOATIME, "noatime" },
1955 { MNT_NOCLUSTERR, "noclusterr" },
1956 { MNT_NOCLUSTERW, "noclusterw" },
1957 { MNT_EXRDONLY, "NFS read-only" },
1958 { MNT_EXPORTED, "NFS exported" },
1959 /* Remaining NFS flags could come here */
1960 { MNT_LOCAL, "local" },
1961 { MNT_QUOTA, "with-quotas" },
1962 /* { MNT_ROOTFS, "rootfs" }, */
1963 /* { MNT_IGNORE, "ignore" }, */
1964 { 0, NULL}
1966 int bwritten;
1967 int bleft;
1968 int optlen;
1969 int actsize;
1971 *errorp = 0;
1972 bwritten = 0;
1973 bleft = len - 1; /* leave room for trailing \0 */
1976 * Checks the size of the string. If it contains
1977 * any data, then we will append the new flags to
1978 * it.
1980 actsize = strlen(buf);
1981 if (actsize > 0)
1982 buf += actsize;
1984 /* Default flags if no flags passed */
1985 if (optp == NULL)
1986 optp = optnames;
1988 if (bleft < 0) { /* degenerate case, 0-length buffer */
1989 *errorp = EINVAL;
1990 return(0);
1993 for (; flags && optp->o_opt; ++optp) {
1994 if ((flags & optp->o_opt) == 0)
1995 continue;
1996 optlen = strlen(optp->o_name);
1997 if (bwritten || actsize > 0) {
1998 if (bleft < 2) {
1999 *errorp = ENOSPC;
2000 break;
2002 buf[bwritten++] = ',';
2003 buf[bwritten++] = ' ';
2004 bleft -= 2;
2006 if (bleft < optlen) {
2007 *errorp = ENOSPC;
2008 break;
2010 bcopy(optp->o_name, buf + bwritten, optlen);
2011 bwritten += optlen;
2012 bleft -= optlen;
2013 flags &= ~optp->o_opt;
2017 * Space already reserved for trailing \0
2019 buf[bwritten] = 0;
2020 return (bwritten);
2024 * Build hash lists of net addresses and hang them off the mount point.
2025 * Called by ufs_mount() to set up the lists of export addresses.
2027 static int
2028 vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
2029 const struct export_args *argp)
2031 struct netcred *np;
2032 struct radix_node_head *rnh;
2033 int i;
2034 struct radix_node *rn;
2035 struct sockaddr *saddr, *smask = NULL;
2036 int error;
2038 if (argp->ex_addrlen == 0) {
2039 if (mp->mnt_flag & MNT_DEFEXPORTED)
2040 return (EPERM);
2041 np = &nep->ne_defexported;
2042 np->netc_exflags = argp->ex_flags;
2043 np->netc_anon = argp->ex_anon;
2044 np->netc_anon.cr_ref = 1;
2045 mp->mnt_flag |= MNT_DEFEXPORTED;
2046 return (0);
2049 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2050 return (EINVAL);
2051 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2052 return (EINVAL);
2054 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2055 np = (struct netcred *)kmalloc(i, M_NETCRED, M_WAITOK | M_ZERO);
2056 saddr = (struct sockaddr *) (np + 1);
2057 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2058 goto out;
2059 if (saddr->sa_len > argp->ex_addrlen)
2060 saddr->sa_len = argp->ex_addrlen;
2061 if (argp->ex_masklen) {
2062 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
2063 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
2064 if (error)
2065 goto out;
2066 if (smask->sa_len > argp->ex_masklen)
2067 smask->sa_len = argp->ex_masklen;
2069 NE_LOCK(nep);
2070 if (nep->ne_maskhead == NULL) {
2071 if (!rn_inithead((void **)&nep->ne_maskhead, NULL, 0)) {
2072 error = ENOBUFS;
2073 goto out;
2076 if ((rnh = vfs_create_addrlist_af(saddr->sa_family, nep)) == NULL) {
2077 error = ENOBUFS;
2078 goto out;
2080 rn = (*rnh->rnh_addaddr)((char *)saddr, (char *)smask, rnh,
2081 np->netc_rnodes);
2082 NE_UNLOCK(nep);
2083 if (rn == NULL || np != (struct netcred *)rn) { /* already exists */
2084 error = EPERM;
2085 goto out;
2087 np->netc_exflags = argp->ex_flags;
2088 np->netc_anon = argp->ex_anon;
2089 np->netc_anon.cr_ref = 1;
2090 return (0);
2092 out:
2093 kfree(np, M_NETCRED);
2094 return (error);
2098 * Free netcred structures installed in the netexport
2100 static int
2101 vfs_free_netcred(struct radix_node *rn, void *w)
2103 struct radix_node_head *rnh = (struct radix_node_head *)w;
2105 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2106 kfree(rn, M_NETCRED);
2108 return (0);
2112 * callback to free an element of the mask table installed in the
2113 * netexport. These may be created indirectly and are not netcred
2114 * structures.
2116 static int
2117 vfs_free_netcred_mask(struct radix_node *rn, void *w)
2119 struct radix_node_head *rnh = (struct radix_node_head *)w;
2121 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2122 kfree(rn, M_RTABLE);
2124 return (0);
2127 static struct radix_node_head *
2128 vfs_create_addrlist_af(int af, struct netexport *nep)
2130 struct radix_node_head *rnh = NULL;
2131 #if defined(INET) || defined(INET6)
2132 struct radix_node_head *maskhead = nep->ne_maskhead;
2133 int off;
2134 #endif
2136 NE_ASSERT_LOCKED(nep);
2137 #if defined(INET) || defined(INET6)
2138 KKASSERT(maskhead != NULL);
2139 #endif
2140 switch (af) {
2141 #ifdef INET
2142 case AF_INET:
2143 if ((rnh = nep->ne_inethead) == NULL) {
2144 off = offsetof(struct sockaddr_in, sin_addr) << 3;
2145 if (!rn_inithead((void **)&rnh, maskhead, off))
2146 return (NULL);
2147 nep->ne_inethead = rnh;
2149 break;
2150 #endif
2151 #ifdef INET6
2152 case AF_INET6:
2153 if ((rnh = nep->ne_inet6head) == NULL) {
2154 off = offsetof(struct sockaddr_in6, sin6_addr) << 3;
2155 if (!rn_inithead((void **)&rnh, maskhead, off))
2156 return (NULL);
2157 nep->ne_inet6head = rnh;
2159 break;
2160 #endif
2162 return (rnh);
2166 * helper function for freeing netcred elements
2168 static void
2169 vfs_free_addrlist_af(struct radix_node_head **prnh)
2171 struct radix_node_head *rnh = *prnh;
2173 (*rnh->rnh_walktree) (rnh, vfs_free_netcred, rnh);
2174 kfree(rnh, M_RTABLE);
2175 *prnh = NULL;
2179 * helper function for freeing mask elements
2181 static void
2182 vfs_free_addrlist_masks(struct radix_node_head **prnh)
2184 struct radix_node_head *rnh = *prnh;
2186 (*rnh->rnh_walktree) (rnh, vfs_free_netcred_mask, rnh);
2187 kfree(rnh, M_RTABLE);
2188 *prnh = NULL;
2192 * Free the net address hash lists that are hanging off the mount points.
2194 static void
2195 vfs_free_addrlist(struct netexport *nep)
2197 NE_LOCK(nep);
2198 if (nep->ne_inethead != NULL)
2199 vfs_free_addrlist_af(&nep->ne_inethead);
2200 if (nep->ne_inet6head != NULL)
2201 vfs_free_addrlist_af(&nep->ne_inet6head);
2202 if (nep->ne_maskhead)
2203 vfs_free_addrlist_masks(&nep->ne_maskhead);
2204 NE_UNLOCK(nep);
2208 vfs_export(struct mount *mp, struct netexport *nep,
2209 const struct export_args *argp)
2211 int error;
2213 if (argp->ex_flags & MNT_DELEXPORT) {
2214 if (mp->mnt_flag & MNT_EXPUBLIC) {
2215 vfs_setpublicfs(NULL, NULL, NULL);
2216 mp->mnt_flag &= ~MNT_EXPUBLIC;
2218 vfs_free_addrlist(nep);
2219 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2221 if (argp->ex_flags & MNT_EXPORTED) {
2222 if (argp->ex_flags & MNT_EXPUBLIC) {
2223 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2224 return (error);
2225 mp->mnt_flag |= MNT_EXPUBLIC;
2227 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2228 return (error);
2229 mp->mnt_flag |= MNT_EXPORTED;
2231 return (0);
2236 * Set the publicly exported filesystem (WebNFS). Currently, only
2237 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2240 vfs_setpublicfs(struct mount *mp, struct netexport *nep,
2241 const struct export_args *argp)
2243 int error;
2244 struct vnode *rvp;
2245 char *cp;
2248 * mp == NULL -> invalidate the current info, the FS is
2249 * no longer exported. May be called from either vfs_export
2250 * or unmount, so check if it hasn't already been done.
2252 if (mp == NULL) {
2253 if (nfs_pub.np_valid) {
2254 nfs_pub.np_valid = 0;
2255 if (nfs_pub.np_index != NULL) {
2256 kfree(nfs_pub.np_index, M_TEMP);
2257 nfs_pub.np_index = NULL;
2260 return (0);
2264 * Only one allowed at a time.
2266 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2267 return (EBUSY);
2270 * Get real filehandle for root of exported FS.
2272 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2273 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2275 if ((error = VFS_ROOT(mp, &rvp)))
2276 return (error);
2278 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2279 return (error);
2281 vput(rvp);
2284 * If an indexfile was specified, pull it in.
2286 if (argp->ex_indexfile != NULL) {
2287 int namelen;
2289 error = vn_get_namelen(rvp, &namelen);
2290 if (error)
2291 return (error);
2292 nfs_pub.np_index = kmalloc(namelen, M_TEMP, M_WAITOK);
2293 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2294 namelen, NULL);
2295 if (!error) {
2297 * Check for illegal filenames.
2299 for (cp = nfs_pub.np_index; *cp; cp++) {
2300 if (*cp == '/') {
2301 error = EINVAL;
2302 break;
2306 if (error) {
2307 kfree(nfs_pub.np_index, M_TEMP);
2308 return (error);
2312 nfs_pub.np_mount = mp;
2313 nfs_pub.np_valid = 1;
2314 return (0);
2317 struct netcred *
2318 vfs_export_lookup(struct mount *mp, struct netexport *nep,
2319 struct sockaddr *nam)
2321 struct netcred *np;
2322 struct radix_node_head *rnh;
2323 struct sockaddr *saddr;
2325 np = NULL;
2326 if (mp->mnt_flag & MNT_EXPORTED) {
2328 * Lookup in the export list first.
2330 NE_LOCK(nep);
2331 if (nam != NULL) {
2332 saddr = nam;
2333 switch (saddr->sa_family) {
2334 #ifdef INET
2335 case AF_INET:
2336 rnh = nep->ne_inethead;
2337 break;
2338 #endif
2339 #ifdef INET6
2340 case AF_INET6:
2341 rnh = nep->ne_inet6head;
2342 break;
2343 #endif
2344 default:
2345 rnh = NULL;
2347 if (rnh != NULL) {
2348 np = (struct netcred *)
2349 (*rnh->rnh_matchaddr)((char *)saddr,
2350 rnh);
2351 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2352 np = NULL;
2355 NE_UNLOCK(nep);
2357 * If no address match, use the default if it exists.
2359 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2360 np = &nep->ne_defexported;
2362 return (np);
2366 * perform msync on all vnodes under a mount point. The mount point must
2367 * be locked. This code is also responsible for lazy-freeing unreferenced
2368 * vnodes whos VM objects no longer contain pages.
2370 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
2372 * NOTE: XXX VOP_PUTPAGES and friends requires that the vnode be locked,
2373 * but vnode_pager_putpages() doesn't lock the vnode. We have to do it
2374 * way up in this high level function.
2376 static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
2377 static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
2379 void
2380 vfs_msync(struct mount *mp, int flags)
2382 int vmsc_flags;
2385 * tmpfs sets this flag to prevent msync(), sync, and the
2386 * filesystem periodic syncer from trying to flush VM pages
2387 * to swap. Only pure memory pressure flushes tmpfs VM pages
2388 * to swap.
2390 if (mp->mnt_kern_flag & MNTK_NOMSYNC)
2391 return;
2394 * Ok, scan the vnodes for work. If the filesystem is using the
2395 * syncer thread feature we can use vsyncscan() instead of
2396 * vmntvnodescan(), which is much faster.
2398 vmsc_flags = VMSC_GETVP;
2399 if (flags != MNT_WAIT)
2400 vmsc_flags |= VMSC_NOWAIT;
2402 if (mp->mnt_kern_flag & MNTK_THR_SYNC) {
2403 vsyncscan(mp, vmsc_flags, vfs_msync_scan2,
2404 (void *)(intptr_t)flags);
2405 } else {
2406 vmntvnodescan(mp, vmsc_flags,
2407 vfs_msync_scan1, vfs_msync_scan2,
2408 (void *)(intptr_t)flags);
2413 * scan1 is a fast pre-check. There could be hundreds of thousands of
2414 * vnodes, we cannot afford to do anything heavy weight until we have a
2415 * fairly good indication that there is work to do.
2417 * The new namecache holds the vnode for each v_namecache association
2418 * so allow these refs.
2420 static
2422 vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
2424 int flags = (int)(intptr_t)data;
2426 if ((vp->v_flag & VRECLAIMED) == 0) {
2427 if (vp->v_auxrefs == vp->v_namecache_count &&
2428 VREFCNT(vp) <= 0 && vp->v_object) {
2429 return(0); /* call scan2 */
2431 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
2432 (vp->v_flag & VOBJDIRTY) &&
2433 (flags == MNT_WAIT || vn_islocked(vp) == 0)) {
2434 return(0); /* call scan2 */
2439 * do not call scan2, continue the loop
2441 return(-1);
2445 * This callback is handed a locked vnode.
2447 static
2449 vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
2451 vm_object_t obj;
2452 int flags = (int)(intptr_t)data;
2453 int opcflags;
2455 if (vp->v_flag & VRECLAIMED)
2456 return(0);
2458 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (vp->v_flag & VOBJDIRTY)) {
2459 if ((obj = vp->v_object) != NULL) {
2460 if (flags == MNT_WAIT) {
2462 * VFS_MSYNC is called with MNT_WAIT when
2463 * unmounting.
2465 opcflags = OBJPC_SYNC;
2466 } else if (vp->v_writecount || obj->ref_count) {
2468 * VFS_MSYNC is otherwise called via the
2469 * periodic filesystem sync or the 'sync'
2470 * command. Honor MADV_NOSYNC / MAP_NOSYNC
2471 * if the file is open for writing or memory
2472 * mapped. Pages flagged PG_NOSYNC will not
2473 * be automatically flushed at this time.
2475 * The obj->ref_count test is not perfect
2476 * since temporary refs may be present, but
2477 * the periodic filesystem sync will ultimately
2478 * catch it if the file is not open and not
2479 * mapped.
2481 opcflags = OBJPC_NOSYNC;
2482 } else {
2484 * If the file is no longer open for writing
2485 * and also no longer mapped, do not honor
2486 * MAP_NOSYNC. That is, fully synchronize
2487 * the file.
2489 * This still occurs on the periodic fs sync,
2490 * so frontend programs which turn the file
2491 * over quickly enough can still avoid the
2492 * sync, but ultimately we do want to flush
2493 * even MADV_NOSYNC pages once it is no longer
2494 * mapped or open for writing.
2496 opcflags = 0;
2498 vm_object_page_clean(obj, 0, 0, opcflags);
2501 return(0);
2505 * Wake up anyone interested in vp because it is being revoked.
2507 void
2508 vn_gone(struct vnode *vp)
2510 lwkt_gettoken(&vp->v_token);
2511 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, NOTE_REVOKE);
2512 lwkt_reltoken(&vp->v_token);
2516 * extract the cdev_t from a VBLK or VCHR. The vnode must have been opened
2517 * (or v_rdev might be NULL).
2519 cdev_t
2520 vn_todev(struct vnode *vp)
2522 if (vp->v_type != VBLK && vp->v_type != VCHR)
2523 return (NULL);
2524 KKASSERT(vp->v_rdev != NULL);
2525 return (vp->v_rdev);
2529 * Check if vnode represents a disk device. The vnode does not need to be
2530 * opened.
2532 * MPALMOSTSAFE
2535 vn_isdisk(struct vnode *vp, int *errp)
2537 cdev_t dev;
2539 if (vp->v_type != VCHR) {
2540 if (errp != NULL)
2541 *errp = ENOTBLK;
2542 return (0);
2545 dev = vp->v_rdev;
2547 if (dev == NULL) {
2548 if (errp != NULL)
2549 *errp = ENXIO;
2550 return (0);
2552 if (dev_is_good(dev) == 0) {
2553 if (errp != NULL)
2554 *errp = ENXIO;
2555 return (0);
2557 if ((dev_dflags(dev) & D_DISK) == 0) {
2558 if (errp != NULL)
2559 *errp = ENOTBLK;
2560 return (0);
2562 if (errp != NULL)
2563 *errp = 0;
2564 return (1);
2568 vn_get_namelen(struct vnode *vp, int *namelen)
2570 int error;
2571 register_t retval[2];
2573 error = VOP_PATHCONF(vp, _PC_NAME_MAX, retval);
2574 if (error)
2575 return (error);
2576 *namelen = (int)retval[0];
2577 return (0);
2581 vop_write_dirent(int *error, struct uio *uio, ino_t d_ino, uint8_t d_type,
2582 uint16_t d_namlen, const char *d_name)
2584 struct dirent *dp;
2585 size_t len;
2587 len = _DIRENT_RECLEN(d_namlen);
2588 if (len > uio->uio_resid)
2589 return(1);
2591 dp = kmalloc(len, M_TEMP, M_WAITOK | M_ZERO);
2593 dp->d_ino = d_ino;
2594 dp->d_namlen = d_namlen;
2595 dp->d_type = d_type;
2596 bcopy(d_name, dp->d_name, d_namlen);
2598 *error = uiomove((caddr_t)dp, len, uio);
2600 kfree(dp, M_TEMP);
2602 return(0);
2605 void
2606 vn_mark_atime(struct vnode *vp, struct thread *td)
2608 struct proc *p = td->td_proc;
2609 struct ucred *cred = p ? p->p_ucred : proc0.p_ucred;
2611 if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
2612 VOP_MARKATIME(vp, cred);
2617 * Calculate the number of entries in an inode-related chained hash table.
2618 * With today's memory sizes, maxvnodes can wind up being a very large
2619 * number. There is no reason to waste memory, so tolerate some stacking.
2622 vfs_inodehashsize(void)
2624 int hsize;
2626 hsize = 32;
2627 while (hsize < maxvnodes)
2628 hsize <<= 1;
2629 while (hsize > maxvnodes * 2)
2630 hsize >>= 1; /* nominal 2x stacking */
2632 if (maxvnodes > 1024 * 1024)
2633 hsize >>= 1; /* nominal 8x stacking */
2635 if (maxvnodes > 128 * 1024)
2636 hsize >>= 1; /* nominal 4x stacking */
2638 if (hsize < 16)
2639 hsize = 16;
2641 return hsize;
2644 union _qcvt {
2645 quad_t qcvt;
2646 int32_t val[2];
2649 #define SETHIGH(q, h) { \
2650 union _qcvt tmp; \
2651 tmp.qcvt = (q); \
2652 tmp.val[_QUAD_HIGHWORD] = (h); \
2653 (q) = tmp.qcvt; \
2655 #define SETLOW(q, l) { \
2656 union _qcvt tmp; \
2657 tmp.qcvt = (q); \
2658 tmp.val[_QUAD_LOWWORD] = (l); \
2659 (q) = tmp.qcvt; \
2662 u_quad_t
2663 init_va_filerev(void)
2665 struct timeval tv;
2666 u_quad_t ret = 0;
2668 getmicrouptime(&tv);
2669 SETHIGH(ret, tv.tv_sec);
2670 SETLOW(ret, tv.tv_usec * 4294);
2672 return ret;
2676 * Set default timestamp_precision. If hz is reasonably high we go for
2677 * performance and limit vfs timestamps to microseconds with tick resolution.
2678 * If hz is too low, however, we lose a bit of performance to get a more
2679 * precise timestamp, because the mtime/ctime granularity might just be too
2680 * rough otherwise (for make and Makefile's, for example).
2682 static void
2683 vfs_ts_prec_init(void *dummy)
2685 if (timestamp_precision < 0) {
2686 if (hz >= 100)
2687 timestamp_precision = TSP_USEC;
2688 else
2689 timestamp_precision = TSP_USEC_PRECISE;
2692 SYSINIT(vfs_ts_prec_init, SI_SUB_VFS, SI_ORDER_ANY, vfs_ts_prec_init, NULL);