usr.sbin/makefs/ffs: Remove m_buf::b_is_hammer2
[dragonfly.git] / sys / kern / kern_time.c
blobd0f9e64d8d0459a77997c3fcec12081b820be64c
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
30 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/sysmsg.h>
37 #include <sys/resourcevar.h>
38 #include <sys/signalvar.h>
39 #include <sys/kernel.h>
40 #include <sys/sysent.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/time.h>
44 #include <sys/vnode.h>
45 #include <sys/sysctl.h>
46 #include <sys/kern_syscall.h>
47 #include <sys/upmap.h>
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
51 #include <sys/msgport2.h>
52 #include <sys/spinlock2.h>
53 #include <sys/thread2.h>
55 extern struct spinlock ntp_spin;
57 #define CPUCLOCK_BIT 0x80000000
58 #define CPUCLOCK_ID_MASK ~CPUCLOCK_BIT
59 #define CPUCLOCK2LWPID(clock_id) (((clockid_t)(clock_id) >> 32) & CPUCLOCK_ID_MASK)
60 #define CPUCLOCK2PID(clock_id) ((clock_id) & CPUCLOCK_ID_MASK)
61 #define MAKE_CPUCLOCK(pid, lwp_id) ((clockid_t)(lwp_id) << 32 | (pid) | CPUCLOCK_BIT)
63 struct timezone tz;
66 * Time of day and interval timer support.
68 * These routines provide the kernel entry points to get and set
69 * the time-of-day and per-process interval timers. Subroutines
70 * here provide support for adding and subtracting timeval structures
71 * and decrementing interval timers, optionally reloading the interval
72 * timers when they expire.
75 static int settime(struct timeval *);
76 static void timevalfix(struct timeval *);
77 static void realitexpire(void *arg);
79 static int sysctl_gettimeofday_quick(SYSCTL_HANDLER_ARGS);
83 * Nanosleep tries very hard to sleep for a precisely requested time
84 * interval, down to 1uS. The administrator can impose a minimum delay
85 * and a delay below which we hard-loop instead of initiate a timer
86 * interrupt and sleep.
88 * For machines under high loads it might be beneficial to increase min_us
89 * to e.g. 1000uS (1ms) so spining processes sleep meaningfully.
91 static int nanosleep_min_us = 10;
92 static int nanosleep_hard_us = 100;
93 static int gettimeofday_quick = 0;
94 SYSCTL_INT(_kern, OID_AUTO, nanosleep_min_us, CTLFLAG_RW,
95 &nanosleep_min_us, 0, "");
96 SYSCTL_INT(_kern, OID_AUTO, nanosleep_hard_us, CTLFLAG_RW,
97 &nanosleep_hard_us, 0, "");
98 SYSCTL_PROC(_kern, OID_AUTO, gettimeofday_quick, CTLTYPE_INT | CTLFLAG_RW,
99 0, 0, sysctl_gettimeofday_quick, "I", "Quick mode gettimeofday");
101 static struct lock masterclock_lock = LOCK_INITIALIZER("mstrclk", 0, 0);
103 static int
104 settime(struct timeval *tv)
106 struct timeval delta, tv1, tv2;
107 static struct timeval maxtime, laststep;
108 struct timespec ts;
109 int origcpu;
111 if ((origcpu = mycpu->gd_cpuid) != 0)
112 lwkt_setcpu_self(globaldata_find(0));
114 crit_enter();
115 microtime(&tv1);
116 delta = *tv;
117 timevalsub(&delta, &tv1);
120 * If the system is secure, we do not allow the time to be
121 * set to a value earlier than 1 second less than the highest
122 * time we have yet seen. The worst a miscreant can do in
123 * this circumstance is "freeze" time. He couldn't go
124 * back to the past.
126 * We similarly do not allow the clock to be stepped more
127 * than one second, nor more than once per second. This allows
128 * a miscreant to make the clock march double-time, but no worse.
130 if (securelevel > 1) {
131 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
133 * Update maxtime to latest time we've seen.
135 if (tv1.tv_sec > maxtime.tv_sec)
136 maxtime = tv1;
137 tv2 = *tv;
138 timevalsub(&tv2, &maxtime);
139 if (tv2.tv_sec < -1) {
140 tv->tv_sec = maxtime.tv_sec - 1;
141 kprintf("Time adjustment clamped to -1 second\n");
143 } else {
144 if (tv1.tv_sec == laststep.tv_sec) {
145 crit_exit();
146 return (EPERM);
148 if (delta.tv_sec > 1) {
149 tv->tv_sec = tv1.tv_sec + 1;
150 kprintf("Time adjustment clamped to +1 second\n");
152 laststep = *tv;
156 ts.tv_sec = tv->tv_sec;
157 ts.tv_nsec = tv->tv_usec * 1000;
158 set_timeofday(&ts);
159 crit_exit();
161 if (origcpu != 0)
162 lwkt_setcpu_self(globaldata_find(origcpu));
164 resettodr();
165 return (0);
168 static void
169 get_process_cputime(struct proc *p, struct timespec *ats)
171 struct rusage ru;
173 lwkt_gettoken(&p->p_token);
174 calcru_proc(p, &ru);
175 lwkt_reltoken(&p->p_token);
176 timevaladd(&ru.ru_utime, &ru.ru_stime);
177 TIMEVAL_TO_TIMESPEC(&ru.ru_utime, ats);
180 static void
181 get_process_usertime(struct proc *p, struct timespec *ats)
183 struct rusage ru;
185 lwkt_gettoken(&p->p_token);
186 calcru_proc(p, &ru);
187 lwkt_reltoken(&p->p_token);
188 TIMEVAL_TO_TIMESPEC(&ru.ru_utime, ats);
191 static void
192 get_thread_cputime(struct thread *td, struct timespec *ats)
194 struct timeval sys, user;
196 calcru(td->td_lwp, &user, &sys);
197 timevaladd(&user, &sys);
198 TIMEVAL_TO_TIMESPEC(&user, ats);
202 * MPSAFE
205 kern_clock_gettime(clockid_t clock_id, struct timespec *ats)
207 struct proc *p;
208 struct lwp *lp;
209 lwpid_t lwp_id;
211 p = curproc;
212 switch(clock_id) {
213 case CLOCK_REALTIME:
214 case CLOCK_REALTIME_PRECISE:
215 nanotime(ats);
216 break;
217 case CLOCK_REALTIME_FAST:
218 getnanotime(ats);
219 break;
220 case CLOCK_MONOTONIC:
221 case CLOCK_MONOTONIC_PRECISE:
222 case CLOCK_UPTIME:
223 case CLOCK_UPTIME_PRECISE:
224 nanouptime(ats);
225 break;
226 case CLOCK_MONOTONIC_FAST:
227 case CLOCK_UPTIME_FAST:
228 getnanouptime(ats);
229 break;
230 case CLOCK_VIRTUAL:
231 get_process_usertime(p, ats);
232 break;
233 case CLOCK_PROF:
234 case CLOCK_PROCESS_CPUTIME_ID:
235 get_process_cputime(p, ats);
236 break;
237 case CLOCK_SECOND:
238 ats->tv_sec = time_second;
239 ats->tv_nsec = 0;
240 break;
241 case CLOCK_THREAD_CPUTIME_ID:
242 get_thread_cputime(curthread, ats);
243 break;
244 default:
245 if ((clock_id & CPUCLOCK_BIT) == 0)
246 return (EINVAL);
247 if ((p = pfind(CPUCLOCK2PID(clock_id))) == NULL)
248 return (EINVAL);
249 lwp_id = CPUCLOCK2LWPID(clock_id);
250 if (lwp_id == 0) {
251 get_process_cputime(p, ats);
252 } else {
253 lwkt_gettoken(&p->p_token);
254 lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, lwp_id);
255 if (lp == NULL) {
256 lwkt_reltoken(&p->p_token);
257 PRELE(p);
258 return (EINVAL);
260 get_thread_cputime(lp->lwp_thread, ats);
261 lwkt_reltoken(&p->p_token);
263 PRELE(p);
265 return (0);
269 * MPSAFE
272 sys_clock_gettime(struct sysmsg *sysmsg, const struct clock_gettime_args *uap)
274 struct timespec ats;
275 int error;
277 error = kern_clock_gettime(uap->clock_id, &ats);
278 if (error == 0)
279 error = copyout(&ats, uap->tp, sizeof(ats));
281 return (error);
285 kern_clock_settime(clockid_t clock_id, struct timespec *ats)
287 struct thread *td = curthread;
288 struct timeval atv;
289 int error;
291 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
292 return (error);
293 if (clock_id != CLOCK_REALTIME)
294 return (EINVAL);
295 if (ats->tv_sec < 0 || ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
296 return (EINVAL);
298 lockmgr(&masterclock_lock, LK_EXCLUSIVE);
299 TIMESPEC_TO_TIMEVAL(&atv, ats);
300 error = settime(&atv);
301 lockmgr(&masterclock_lock, LK_RELEASE);
303 return (error);
307 * MPALMOSTSAFE
310 sys_clock_settime(struct sysmsg *sysmsg, const struct clock_settime_args *uap)
312 struct timespec ats;
313 int error;
315 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
316 return (error);
318 error = kern_clock_settime(uap->clock_id, &ats);
320 return (error);
324 * MPSAFE
327 kern_clock_getres(clockid_t clock_id, struct timespec *ts)
329 ts->tv_sec = 0;
331 switch (clock_id) {
332 case CLOCK_REALTIME:
333 case CLOCK_REALTIME_FAST:
334 case CLOCK_REALTIME_PRECISE:
335 case CLOCK_MONOTONIC:
336 case CLOCK_MONOTONIC_FAST:
337 case CLOCK_MONOTONIC_PRECISE:
338 case CLOCK_UPTIME:
339 case CLOCK_UPTIME_FAST:
340 case CLOCK_UPTIME_PRECISE:
342 * Minimum reportable resolution is 1ns. Rounding is
343 * otherwise unimportant.
345 ts->tv_nsec = 999999999 / sys_cputimer->freq + 1;
346 break;
347 case CLOCK_VIRTUAL:
348 case CLOCK_PROF:
349 /* Accurately round up here because we can do so cheaply. */
350 ts->tv_nsec = howmany(1000000000, hz);
351 break;
352 case CLOCK_SECOND:
353 ts->tv_sec = 1;
354 ts->tv_nsec = 0;
355 break;
356 case CLOCK_THREAD_CPUTIME_ID:
357 case CLOCK_PROCESS_CPUTIME_ID:
358 ts->tv_nsec = 1000;
359 break;
360 default:
361 if ((clock_id & CPUCLOCK_BIT) == CPUCLOCK_BIT) {
362 pid_t pid = CPUCLOCK2PID(clock_id);
363 if (pid < 2 || pid > PID_MAX)
364 return (EINVAL);
365 ts->tv_nsec = 1000;
366 } else {
367 return (EINVAL);
371 return (0);
375 * MPSAFE
378 sys_clock_getres(struct sysmsg *sysmsg, const struct clock_getres_args *uap)
380 int error;
381 struct timespec ts;
383 error = kern_clock_getres(uap->clock_id, &ts);
384 if (error == 0)
385 error = copyout(&ts, uap->tp, sizeof(ts));
387 return (error);
390 static int
391 kern_getcpuclockid(pid_t pid, lwpid_t lwp_id, clockid_t *clock_id)
393 struct proc *p;
394 int error = 0;
396 if (pid == 0) {
397 p = curproc;
398 pid = p->p_pid;
399 PHOLD(p);
400 } else {
401 p = pfind(pid);
402 if (p == NULL)
403 return (ESRCH);
405 /* lwp_id can be 0 when called by clock_getcpuclockid() */
406 if (lwp_id < 0) {
407 error = EINVAL;
408 goto out;
410 lwkt_gettoken(&p->p_token);
411 if (lwp_id > 0 &&
412 lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, lwp_id) == NULL) {
413 lwkt_reltoken(&p->p_token);
414 error = ESRCH;
415 goto out;
417 *clock_id = MAKE_CPUCLOCK(pid, lwp_id);
418 lwkt_reltoken(&p->p_token);
419 out:
420 PRELE(p);
421 return (error);
425 sys_getcpuclockid(struct sysmsg *sysmsg, const struct getcpuclockid_args *uap)
427 clockid_t clk_id;
428 int error;
430 error = kern_getcpuclockid(uap->pid, uap->lwp_id, &clk_id);
431 if (error == 0)
432 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
434 return (error);
438 * clock_nanosleep1()
440 * This is a general helper function for clock_nanosleep() and
441 * nanosleep() (aka sleep(), aka usleep()).
443 * If there is less than one tick's worth of time left and
444 * we haven't done a yield, or the remaining microseconds is
445 * ridiculously low, do a yield. This avoids having
446 * to deal with systimer overheads when the system is under
447 * heavy loads. If we have done a yield already then use
448 * a systimer and an uninterruptable thread wait.
450 * If there is more than a tick's worth of time left,
451 * calculate the baseline ticks and use an interruptable
452 * tsleep, then handle the fine-grained delay on the next
453 * loop. This usually results in two sleeps occuring, a long one
454 * and a short one.
456 * MPSAFE
458 static void
459 ns1_systimer(systimer_t info, int in_ipi __unused,
460 struct intrframe *frame __unused)
462 lwkt_schedule(info->data);
466 clock_nanosleep1(clockid_t clock_id, int flags,
467 struct timespec *rqt, struct timespec *rmt)
469 static int nanowait;
470 struct timespec ts_cur, ts_tgt, ts_int;
471 struct timeval tv;
472 bool is_abs;
473 int error, error2;
475 if ((flags & ~(TIMER_RELTIME | TIMER_ABSTIME)) != 0)
476 return (EINVAL);
477 if (rqt->tv_sec < 0 || rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
478 return (EINVAL);
479 if (rqt->tv_sec == 0 && rqt->tv_nsec == 0)
480 return (0);
482 switch (clock_id) {
483 case CLOCK_REALTIME:
484 case CLOCK_REALTIME_FAST:
485 case CLOCK_REALTIME_PRECISE:
486 case CLOCK_SECOND:
487 case CLOCK_MONOTONIC:
488 case CLOCK_MONOTONIC_FAST:
489 case CLOCK_MONOTONIC_PRECISE:
490 case CLOCK_UPTIME:
491 case CLOCK_UPTIME_FAST:
492 case CLOCK_UPTIME_PRECISE:
493 is_abs = (flags & TIMER_ABSTIME) != 0;
494 break;
495 case CLOCK_VIRTUAL:
496 case CLOCK_PROF:
497 case CLOCK_PROCESS_CPUTIME_ID:
498 return (ENOTSUP);
499 case CLOCK_THREAD_CPUTIME_ID:
500 default:
501 return (EINVAL);
504 error = kern_clock_gettime(clock_id, &ts_cur);
505 if (error)
506 return (error);
508 if (is_abs) {
509 if (timespeccmp(&ts_cur, rqt, >=))
510 return (0);
512 ts_tgt = *rqt; /* target timestamp */
513 timespecsub(&ts_tgt, &ts_cur, &ts_int); /* sleep interval */
514 } else {
515 ts_int = *rqt; /* sleep interval */
516 timespecadd(&ts_cur, &ts_int, &ts_tgt); /* target timestamp */
519 for (;;) {
520 int ticks;
521 struct systimer info;
522 thread_t td;
524 timespecsub(&ts_tgt, &ts_cur, &ts_int);
525 TIMESPEC_TO_TIMEVAL(&tv, &ts_int);
526 ticks = tv.tv_usec / ustick; /* approximate */
528 if (tv.tv_sec == 0 && ticks == 0) {
529 td = curthread;
530 if (tv.tv_usec > 0 && tv.tv_usec < nanosleep_min_us)
531 tv.tv_usec = nanosleep_min_us;
532 if (tv.tv_usec < nanosleep_hard_us) {
533 lwkt_user_yield();
534 cpu_pause();
535 } else {
536 crit_enter_quick(td);
537 systimer_init_oneshot(&info, ns1_systimer,
538 td, tv.tv_usec);
539 lwkt_deschedule_self(td);
540 crit_exit_quick(td);
541 lwkt_switch();
542 systimer_del(&info); /* make sure it's gone */
544 error = iscaught(td->td_lwp);
545 } else if (tv.tv_sec == 0) {
546 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
547 } else {
548 ticks = tvtohz_low(&tv); /* also handles overflow */
549 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
552 error2 = kern_clock_gettime(clock_id, &ts_cur);
553 if (error2)
554 return (error2);
556 if (error && error != EWOULDBLOCK) {
557 if (error == ERESTART)
558 error = EINTR;
559 if (rmt != NULL && !is_abs) {
560 timespecsub(&ts_tgt, &ts_cur, &ts_int);
561 if (ts_int.tv_sec < 0)
562 timespecclear(&ts_int);
563 *rmt = ts_int;
565 return (error);
567 if (timespeccmp(&ts_cur, &ts_tgt, >=))
568 return (0);
573 nanosleep1(struct timespec *rqt, struct timespec *rmt)
575 return clock_nanosleep1(CLOCK_REALTIME, TIMER_RELTIME, rqt, rmt);
579 * MPSAFE
582 sys_clock_nanosleep(struct sysmsg *sysmsg,
583 const struct clock_nanosleep_args *uap)
585 int error;
586 bool is_abs;
587 struct timespec rqt;
588 struct timespec rmt;
590 is_abs = (uap->flags & TIMER_ABSTIME) != 0;
592 error = copyin(uap->rqtp, &rqt, sizeof(rqt));
593 if (error) {
594 sysmsg->sysmsg_result = error;
595 return (0);
598 bzero(&rmt, sizeof(rmt));
599 error = clock_nanosleep1(uap->clock_id, uap->flags, &rqt, &rmt);
602 * copyout the residual if nanosleep was interrupted.
604 if (error == EINTR && uap->rmtp != NULL && !is_abs) {
605 int error2;
607 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
608 if (error2)
609 error = error2;
612 sysmsg->sysmsg_result = error;
613 return (0);
617 * MPSAFE
620 sys_nanosleep(struct sysmsg *sysmsg, const struct nanosleep_args *uap)
622 int error;
623 struct timespec rqt;
624 struct timespec rmt;
626 error = copyin(uap->rqtp, &rqt, sizeof(rqt));
627 if (error)
628 return (error);
630 bzero(&rmt, sizeof(rmt));
631 error = nanosleep1(&rqt, &rmt);
634 * copyout the residual if nanosleep was interrupted.
636 if (error == EINTR && uap->rmtp != NULL) {
637 int error2;
639 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
640 if (error2)
641 error = error2;
643 return (error);
647 * The gettimeofday() system call is supposed to return a fine-grained
648 * realtime stamp. However, acquiring a fine-grained stamp can create a
649 * bottleneck when multiple cpu cores are trying to accessing e.g. the
650 * HPET hardware timer all at the same time, so we have a sysctl that
651 * allows its behavior to be changed to a more coarse-grained timestamp
652 * which does not have to access a hardware timer.
655 sys_gettimeofday(struct sysmsg *sysmsg, const struct gettimeofday_args *uap)
657 struct timeval atv;
658 int error = 0;
660 if (uap->tp) {
661 if (gettimeofday_quick)
662 getmicrotime(&atv);
663 else
664 microtime(&atv);
665 if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
666 sizeof (atv))))
667 return (error);
669 if (uap->tzp)
670 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
671 sizeof (tz));
672 return (error);
676 * MPALMOSTSAFE
679 sys_settimeofday(struct sysmsg *sysmsg, const struct settimeofday_args *uap)
681 struct thread *td = curthread;
682 struct timeval atv;
683 struct timezone atz;
684 int error;
686 if ((error = priv_check(td, PRIV_SETTIMEOFDAY)))
687 return (error);
689 * Verify all parameters before changing time.
691 * XXX: We do not allow the time to be set to 0.0, which also by
692 * happy coincidence works around a pkgsrc bulk build bug.
694 if (uap->tv) {
695 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
696 sizeof(atv))))
697 return (error);
698 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
699 return (EINVAL);
700 if (atv.tv_sec == 0 && atv.tv_usec == 0)
701 return (EINVAL);
703 if (uap->tzp &&
704 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
705 return (error);
707 lockmgr(&masterclock_lock, LK_EXCLUSIVE);
708 if (uap->tv && (error = settime(&atv))) {
709 lockmgr(&masterclock_lock, LK_RELEASE);
710 return (error);
712 lockmgr(&masterclock_lock, LK_RELEASE);
714 if (uap->tzp)
715 tz = atz;
716 return (0);
720 * WARNING! Run with ntp_spin held
722 static void
723 kern_adjtime_common(void)
725 if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
726 (ntp_delta < 0 && ntp_delta > -ntp_default_tick_delta))
727 ntp_tick_delta = ntp_delta;
728 else if (ntp_delta > ntp_big_delta)
729 ntp_tick_delta = 10 * ntp_default_tick_delta;
730 else if (ntp_delta < -ntp_big_delta)
731 ntp_tick_delta = -10 * ntp_default_tick_delta;
732 else if (ntp_delta > 0)
733 ntp_tick_delta = ntp_default_tick_delta;
734 else
735 ntp_tick_delta = -ntp_default_tick_delta;
738 void
739 kern_adjtime(int64_t delta, int64_t *odelta)
741 spin_lock(&ntp_spin);
742 *odelta = ntp_delta;
743 ntp_delta = delta;
744 kern_adjtime_common();
745 spin_unlock(&ntp_spin);
748 static void
749 kern_get_ntp_delta(int64_t *delta)
751 *delta = ntp_delta;
754 void
755 kern_reladjtime(int64_t delta)
757 spin_lock(&ntp_spin);
758 ntp_delta += delta;
759 kern_adjtime_common();
760 spin_unlock(&ntp_spin);
763 static void
764 kern_adjfreq(int64_t rate)
766 spin_lock(&ntp_spin);
767 ntp_tick_permanent = rate;
768 spin_unlock(&ntp_spin);
772 * MPALMOSTSAFE
775 sys_adjtime(struct sysmsg *sysmsg, const struct adjtime_args *uap)
777 struct thread *td = curthread;
778 struct timeval atv;
779 int64_t ndelta, odelta;
780 int error;
782 if ((error = priv_check(td, PRIV_ADJTIME)))
783 return (error);
784 error = copyin(uap->delta, &atv, sizeof(struct timeval));
785 if (error)
786 return (error);
789 * Compute the total correction and the rate at which to apply it.
790 * Round the adjustment down to a whole multiple of the per-tick
791 * delta, so that after some number of incremental changes in
792 * hardclock(), tickdelta will become zero, lest the correction
793 * overshoot and start taking us away from the desired final time.
795 ndelta = (int64_t)atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
796 kern_adjtime(ndelta, &odelta);
798 if (uap->olddelta) {
799 atv.tv_sec = odelta / 1000000000;
800 atv.tv_usec = odelta % 1000000000 / 1000;
801 copyout(&atv, uap->olddelta, sizeof(struct timeval));
803 return (0);
806 static int
807 sysctl_adjtime(SYSCTL_HANDLER_ARGS)
809 int64_t delta;
810 int error;
812 if (req->newptr != NULL) {
813 if (priv_check(curthread, PRIV_ROOT))
814 return (EPERM);
815 error = SYSCTL_IN(req, &delta, sizeof(delta));
816 if (error)
817 return (error);
818 kern_reladjtime(delta);
821 if (req->oldptr)
822 kern_get_ntp_delta(&delta);
823 error = SYSCTL_OUT(req, &delta, sizeof(delta));
824 return (error);
828 * delta is in nanoseconds.
830 static int
831 sysctl_delta(SYSCTL_HANDLER_ARGS)
833 int64_t delta, old_delta;
834 int error;
836 if (req->newptr != NULL) {
837 if (priv_check(curthread, PRIV_ROOT))
838 return (EPERM);
839 error = SYSCTL_IN(req, &delta, sizeof(delta));
840 if (error)
841 return (error);
842 kern_adjtime(delta, &old_delta);
845 if (req->oldptr != NULL)
846 kern_get_ntp_delta(&old_delta);
847 error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
848 return (error);
852 * frequency is in nanoseconds per second shifted left 32.
853 * kern_adjfreq() needs it in nanoseconds per tick shifted left 32.
855 static int
856 sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
858 int64_t freqdelta;
859 int error;
861 if (req->newptr != NULL) {
862 if (priv_check(curthread, PRIV_ROOT))
863 return (EPERM);
864 error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
865 if (error)
866 return (error);
868 freqdelta /= hz;
869 kern_adjfreq(freqdelta);
872 if (req->oldptr != NULL)
873 freqdelta = ntp_tick_permanent * hz;
874 error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
875 if (error)
876 return (error);
878 return (0);
881 SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
882 SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
883 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
884 sysctl_adjfreq, "Q", "permanent correction per second");
885 SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
886 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
887 sysctl_delta, "Q", "one-time delta");
888 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
889 &ntp_big_delta, sizeof(ntp_big_delta), "Q",
890 "threshold for fast adjustment");
891 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
892 &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
893 "per-tick adjustment");
894 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
895 &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
896 "default per-tick adjustment");
897 SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
898 &ntp_leap_second, sizeof(ntp_leap_second), "LU",
899 "next leap second");
900 SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
901 &ntp_leap_insert, 0, "insert or remove leap second");
902 SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
903 CTLTYPE_QUAD|CTLFLAG_RW, 0, 0,
904 sysctl_adjtime, "Q", "relative adjust for delta");
907 * Get value of an interval timer. The process virtual and
908 * profiling virtual time timers are kept in the p_stats area, since
909 * they can be swapped out. These are kept internally in the
910 * way they are specified externally: in time until they expire.
912 * The real time interval timer is kept in the process table slot
913 * for the process, and its value (it_value) is kept as an
914 * absolute time rather than as a delta, so that it is easy to keep
915 * periodic real-time signals from drifting.
917 * Virtual time timers are processed in the hardclock() routine of
918 * kern_clock.c. The real time timer is processed by a timeout
919 * routine, called from the softclock() routine. Since a callout
920 * may be delayed in real time due to interrupt processing in the system,
921 * it is possible for the real time timeout routine (realitexpire, given below),
922 * to be delayed in real time past when it is supposed to occur. It
923 * does not suffice, therefore, to reload the real timer .it_value from the
924 * real time timers .it_interval. Rather, we compute the next time in
925 * absolute time the timer should go off.
927 * MPALMOSTSAFE
930 sys_getitimer(struct sysmsg *sysmsg, const struct getitimer_args *uap)
932 struct proc *p = curproc;
933 struct timeval ctv;
934 struct itimerval aitv;
936 if (uap->which > ITIMER_PROF)
937 return (EINVAL);
938 lwkt_gettoken(&p->p_token);
939 if (uap->which == ITIMER_REAL) {
941 * Convert from absolute to relative time in .it_value
942 * part of real time timer. If time for real time timer
943 * has passed return 0, else return difference between
944 * current time and time for the timer to go off.
946 aitv = p->p_realtimer;
947 if (timevalisset(&aitv.it_value)) {
948 getmicrouptime(&ctv);
949 if (timevalcmp(&aitv.it_value, &ctv, <))
950 timevalclear(&aitv.it_value);
951 else
952 timevalsub(&aitv.it_value, &ctv);
954 } else {
955 aitv = p->p_timer[uap->which];
957 lwkt_reltoken(&p->p_token);
958 return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
962 * MPALMOSTSAFE
965 sys_setitimer(struct sysmsg *sysmsg, const struct setitimer_args *uap)
967 struct itimerval aitv;
968 struct timeval ctv;
969 struct itimerval *itvp;
970 struct proc *p = curproc;
971 struct getitimer_args gitargs;
972 int error;
974 if (uap->which > ITIMER_PROF)
975 return (EINVAL);
976 itvp = uap->itv;
977 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
978 sizeof(struct itimerval))))
979 return (error);
981 if (uap->oitv) {
982 gitargs.which = uap->which;
983 gitargs.itv = uap->oitv;
984 error = sys_getitimer(sysmsg, &gitargs);
985 if (error)
986 return error;
988 if (itvp == NULL)
989 return (0);
990 if (itimerfix(&aitv.it_value))
991 return (EINVAL);
992 if (!timevalisset(&aitv.it_value))
993 timevalclear(&aitv.it_interval);
994 else if (itimerfix(&aitv.it_interval))
995 return (EINVAL);
996 lwkt_gettoken(&p->p_token);
997 if (uap->which == ITIMER_REAL) {
998 if (timevalisset(&p->p_realtimer.it_value))
999 callout_cancel(&p->p_ithandle);
1000 if (timevalisset(&aitv.it_value))
1001 callout_reset(&p->p_ithandle,
1002 tvtohz_high(&aitv.it_value), realitexpire, p);
1003 getmicrouptime(&ctv);
1004 timevaladd(&aitv.it_value, &ctv);
1005 p->p_realtimer = aitv;
1006 } else {
1007 p->p_timer[uap->which] = aitv;
1008 switch(uap->which) {
1009 case ITIMER_VIRTUAL:
1010 p->p_flags &= ~P_SIGVTALRM;
1011 break;
1012 case ITIMER_PROF:
1013 p->p_flags &= ~P_SIGPROF;
1014 break;
1017 lwkt_reltoken(&p->p_token);
1018 return (0);
1022 * Real interval timer expired:
1023 * send process whose timer expired an alarm signal.
1024 * If time is not set up to reload, then just return.
1025 * Else compute next time timer should go off which is > current time.
1026 * This is where delay in processing this timeout causes multiple
1027 * SIGALRM calls to be compressed into one.
1028 * tvtohz_high() always adds 1 to allow for the time until the next clock
1029 * interrupt being strictly less than 1 clock tick, but we don't want
1030 * that here since we want to appear to be in sync with the clock
1031 * interrupt even when we're delayed.
1033 static
1034 void
1035 realitexpire(void *arg)
1037 struct proc *p;
1038 struct timeval ctv, ntv;
1040 p = (struct proc *)arg;
1041 PHOLD(p);
1042 lwkt_gettoken(&p->p_token);
1043 ksignal(p, SIGALRM);
1044 if (!timevalisset(&p->p_realtimer.it_interval)) {
1045 timevalclear(&p->p_realtimer.it_value);
1046 goto done;
1048 for (;;) {
1049 timevaladd(&p->p_realtimer.it_value,
1050 &p->p_realtimer.it_interval);
1051 getmicrouptime(&ctv);
1052 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
1053 ntv = p->p_realtimer.it_value;
1054 timevalsub(&ntv, &ctv);
1055 callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
1056 realitexpire, p);
1057 goto done;
1060 done:
1061 lwkt_reltoken(&p->p_token);
1062 PRELE(p);
1066 * Used to validate itimer timeouts and utimes*() timespecs.
1069 itimerfix(struct timeval *tv)
1071 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1072 return (EINVAL);
1073 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < ustick)
1074 tv->tv_usec = ustick;
1075 return (0);
1079 * Used to validate timeouts and utimes*() timespecs.
1082 itimespecfix(struct timespec *ts)
1084 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000ULL)
1085 return (EINVAL);
1086 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < nstick)
1087 ts->tv_nsec = nstick;
1088 return (0);
1092 * Decrement an interval timer by a specified number
1093 * of microseconds, which must be less than a second,
1094 * i.e. < 1000000. If the timer expires, then reload
1095 * it. In this case, carry over (usec - old value) to
1096 * reduce the value reloaded into the timer so that
1097 * the timer does not drift. This routine assumes
1098 * that it is called in a context where the timers
1099 * on which it is operating cannot change in value.
1102 itimerdecr(struct itimerval *itp, int usec)
1105 if (itp->it_value.tv_usec < usec) {
1106 if (itp->it_value.tv_sec == 0) {
1107 /* expired, and already in next interval */
1108 usec -= itp->it_value.tv_usec;
1109 goto expire;
1111 itp->it_value.tv_usec += 1000000;
1112 itp->it_value.tv_sec--;
1114 itp->it_value.tv_usec -= usec;
1115 usec = 0;
1116 if (timevalisset(&itp->it_value))
1117 return (1);
1118 /* expired, exactly at end of interval */
1119 expire:
1120 if (timevalisset(&itp->it_interval)) {
1121 itp->it_value = itp->it_interval;
1122 itp->it_value.tv_usec -= usec;
1123 if (itp->it_value.tv_usec < 0) {
1124 itp->it_value.tv_usec += 1000000;
1125 itp->it_value.tv_sec--;
1127 } else
1128 itp->it_value.tv_usec = 0; /* sec is already 0 */
1129 return (0);
1133 * Add and subtract routines for timevals.
1134 * N.B.: subtract routine doesn't deal with
1135 * results which are before the beginning,
1136 * it just gets very confused in this case.
1137 * Caveat emptor.
1139 void
1140 timevaladd(struct timeval *t1, const struct timeval *t2)
1143 t1->tv_sec += t2->tv_sec;
1144 t1->tv_usec += t2->tv_usec;
1145 timevalfix(t1);
1148 void
1149 timevalsub(struct timeval *t1, const struct timeval *t2)
1152 t1->tv_sec -= t2->tv_sec;
1153 t1->tv_usec -= t2->tv_usec;
1154 timevalfix(t1);
1157 static void
1158 timevalfix(struct timeval *t1)
1161 if (t1->tv_usec < 0) {
1162 t1->tv_sec--;
1163 t1->tv_usec += 1000000;
1165 if (t1->tv_usec >= 1000000) {
1166 t1->tv_sec++;
1167 t1->tv_usec -= 1000000;
1172 * ratecheck(): simple time-based rate-limit checking.
1175 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1177 struct timeval tv, delta;
1178 int rv = 0;
1180 getmicrouptime(&tv); /* NB: 10ms precision */
1181 delta = tv;
1182 timevalsub(&delta, lasttime);
1185 * check for 0,0 is so that the message will be seen at least once,
1186 * even if interval is huge.
1188 if (timevalcmp(&delta, mininterval, >=) ||
1189 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1190 *lasttime = tv;
1191 rv = 1;
1194 return (rv);
1198 * ppsratecheck(): packets (or events) per second limitation.
1200 * Return 0 if the limit is to be enforced (e.g. the caller
1201 * should drop a packet because of the rate limitation).
1203 * maxpps of 0 always causes zero to be returned. maxpps of -1
1204 * always causes 1 to be returned; this effectively defeats rate
1205 * limiting.
1207 * Note that we maintain the struct timeval for compatibility
1208 * with other bsd systems. We reuse the storage and just monitor
1209 * clock ticks for minimal overhead.
1212 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1214 int now;
1217 * Reset the last time and counter if this is the first call
1218 * or more than a second has passed since the last update of
1219 * lasttime.
1221 now = ticks;
1222 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1223 lasttime->tv_sec = now;
1224 *curpps = 1;
1225 return (maxpps != 0);
1226 } else {
1227 (*curpps)++; /* NB: ignore potential overflow */
1228 return (maxpps < 0 || *curpps < maxpps);
1232 static int
1233 sysctl_gettimeofday_quick(SYSCTL_HANDLER_ARGS)
1235 int error;
1236 int gtod;
1238 gtod = gettimeofday_quick;
1239 error = sysctl_handle_int(oidp, &gtod, 0, req);
1240 if (error || req->newptr == NULL)
1241 return error;
1242 gettimeofday_quick = gtod;
1243 if (kpmap)
1244 kpmap->fast_gtod = gtod;
1245 return 0;