usr.sbin/makefs/ffs: Remove m_buf::b_is_hammer2
[dragonfly.git] / sys / kern / kern_synch.c
blob8b3d9c99df680d4fc1b0d620bb7b52f91995d282
1 /*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
35 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/priv.h>
50 #include <sys/kcollect.h>
51 #include <sys/malloc.h>
52 #ifdef KTRACE
53 #include <sys/ktrace.h>
54 #endif
55 #include <sys/ktr.h>
56 #include <sys/serialize.h>
58 #include <sys/signal2.h>
59 #include <sys/thread2.h>
60 #include <sys/spinlock2.h>
61 #include <sys/mutex2.h>
63 #include <machine/cpu.h>
64 #include <machine/smp.h>
66 #include <vm/vm_extern.h>
68 struct tslpque {
69 TAILQ_HEAD(, thread) queue;
70 const volatile void *ident0;
71 const volatile void *ident1;
72 const volatile void *ident2;
73 const volatile void *ident3;
76 static void sched_setup (void *dummy);
77 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
78 static void sched_dyninit (void *dummy);
79 SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
81 int lbolt;
82 void *lbolt_syncer;
83 __read_mostly int tsleep_crypto_dump = 0;
84 __read_mostly int ncpus;
85 __read_mostly int ncpus_fit, ncpus_fit_mask; /* note: mask not cpumask_t */
86 __read_mostly int safepri;
87 __read_mostly int tsleep_now_works;
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
91 #define __DEALL(ident) __DEQUALIFY(void *, ident)
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail, 4, "interlock failed %p", const volatile void *ident);
103 #define logtsleep1(name) KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val) KTR_LOG(tsleep_ ## name, val)
106 __exclusive_cache_line
107 struct loadavg averunnable =
108 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */
110 * Constants for averages over 1, 5, and 15 minutes
111 * when sampling at 5 second intervals.
113 __read_mostly
114 static fixpt_t cexp[3] = {
115 0.9200444146293232 * FSCALE, /* exp(-1/12) */
116 0.9834714538216174 * FSCALE, /* exp(-1/60) */
117 0.9944598480048967 * FSCALE, /* exp(-1/180) */
120 static void endtsleep (void *);
121 static void loadav (void *arg);
122 static void schedcpu (void *arg);
124 __read_mostly static int pctcpu_decay = 10;
125 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW,
126 &pctcpu_decay, 0, "");
129 * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
131 __read_mostly int fscale __unused = FSCALE; /* exported to systat */
132 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
135 * Issue a wakeup() from userland (debugging)
137 static int
138 sysctl_wakeup(SYSCTL_HANDLER_ARGS)
140 uint64_t ident = 1;
141 int error = 0;
143 if (req->newptr != NULL) {
144 if (priv_check(curthread, PRIV_ROOT))
145 return (EPERM);
146 error = SYSCTL_IN(req, &ident, sizeof(ident));
147 if (error)
148 return error;
149 kprintf("issue wakeup %016jx\n", ident);
150 wakeup((void *)(intptr_t)ident);
152 if (req->oldptr != NULL) {
153 error = SYSCTL_OUT(req, &ident, sizeof(ident));
155 return error;
158 static int
159 sysctl_wakeup_umtx(SYSCTL_HANDLER_ARGS)
161 uint64_t ident = 1;
162 int error = 0;
164 if (req->newptr != NULL) {
165 if (priv_check(curthread, PRIV_ROOT))
166 return (EPERM);
167 error = SYSCTL_IN(req, &ident, sizeof(ident));
168 if (error)
169 return error;
170 kprintf("issue wakeup %016jx, PDOMAIN_UMTX\n", ident);
171 wakeup_domain((void *)(intptr_t)ident, PDOMAIN_UMTX);
173 if (req->oldptr != NULL) {
174 error = SYSCTL_OUT(req, &ident, sizeof(ident));
176 return error;
179 SYSCTL_PROC(_debug, OID_AUTO, wakeup, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
180 sysctl_wakeup, "Q", "issue wakeup(addr)");
181 SYSCTL_PROC(_debug, OID_AUTO, wakeup_umtx, CTLTYPE_UQUAD|CTLFLAG_RW, 0, 0,
182 sysctl_wakeup_umtx, "Q", "issue wakeup(addr, PDOMAIN_UMTX)");
185 * Recompute process priorities, once a second.
187 * Since the userland schedulers are typically event oriented, if the
188 * estcpu calculation at wakeup() time is not sufficient to make a
189 * process runnable relative to other processes in the system we have
190 * a 1-second recalc to help out.
192 * This code also allows us to store sysclock_t data in the process structure
193 * without fear of an overrun, since sysclock_t are guarenteed to hold
194 * several seconds worth of count.
196 * WARNING! callouts can preempt normal threads. However, they will not
197 * preempt a thread holding a spinlock so we *can* safely use spinlocks.
199 static int schedcpu_stats(struct proc *p, void *data __unused);
200 static int schedcpu_resource(struct proc *p, void *data __unused);
202 static void
203 schedcpu(void *arg)
205 allproc_scan(schedcpu_stats, NULL, 1);
206 allproc_scan(schedcpu_resource, NULL, 1);
207 if (mycpu->gd_cpuid == 0) {
208 wakeup((caddr_t)&lbolt);
209 wakeup(lbolt_syncer);
211 callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
215 * General process statistics once a second
217 static int
218 schedcpu_stats(struct proc *p, void *data __unused)
220 struct lwp *lp;
223 * Threads may not be completely set up if process in SIDL state.
225 if (p->p_stat == SIDL)
226 return(0);
228 PHOLD(p);
229 if (lwkt_trytoken(&p->p_token) == FALSE) {
230 PRELE(p);
231 return(0);
234 p->p_swtime++;
235 FOREACH_LWP_IN_PROC(lp, p) {
236 if (lp->lwp_stat == LSSLEEP) {
237 ++lp->lwp_slptime;
238 if (lp->lwp_slptime == 1)
239 p->p_usched->uload_update(lp);
243 * Only recalculate processes that are active or have slept
244 * less then 2 seconds. The schedulers understand this.
245 * Otherwise decay by 50% per second.
247 * NOTE: uload_update is called separately from kern_synch.c
248 * when slptime == 1, removing the thread's
249 * uload/ucount.
251 if (lp->lwp_slptime <= 1) {
252 p->p_usched->recalculate(lp);
253 } else {
254 int decay;
256 decay = pctcpu_decay;
257 cpu_ccfence();
258 if (decay <= 1)
259 decay = 1;
260 if (decay > 100)
261 decay = 100;
262 lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
265 lwkt_reltoken(&p->p_token);
266 lwkt_yield();
267 PRELE(p);
268 return(0);
272 * Resource checks. XXX break out since ksignal/killproc can block,
273 * limiting us to one process killed per second. There is probably
274 * a better way.
276 static int
277 schedcpu_resource(struct proc *p, void *data __unused)
279 u_int64_t ttime;
280 struct lwp *lp;
282 if (p->p_stat == SIDL)
283 return(0);
285 PHOLD(p);
286 if (lwkt_trytoken(&p->p_token) == FALSE) {
287 PRELE(p);
288 return(0);
291 if (p->p_stat == SZOMB || p->p_limit == NULL) {
292 lwkt_reltoken(&p->p_token);
293 PRELE(p);
294 return(0);
297 ttime = 0;
298 FOREACH_LWP_IN_PROC(lp, p) {
300 * We may have caught an lp in the middle of being
301 * created, lwp_thread can be NULL.
303 if (lp->lwp_thread) {
304 ttime += lp->lwp_thread->td_sticks;
305 ttime += lp->lwp_thread->td_uticks;
309 switch(plimit_testcpulimit(p, ttime)) {
310 case PLIMIT_TESTCPU_KILL:
311 killproc(p, "exceeded maximum CPU limit");
312 break;
313 case PLIMIT_TESTCPU_XCPU:
314 if ((p->p_flags & P_XCPU) == 0) {
315 p->p_flags |= P_XCPU;
316 ksignal(p, SIGXCPU);
318 break;
319 default:
320 break;
322 lwkt_reltoken(&p->p_token);
323 lwkt_yield();
324 PRELE(p);
325 return(0);
329 * This is only used by ps. Generate a cpu percentage use over
330 * a period of one second.
332 void
333 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
335 fixpt_t acc;
336 int remticks;
338 acc = (cpticks << FSHIFT) / ttlticks;
339 if (ttlticks >= ESTCPUFREQ) {
340 lp->lwp_pctcpu = acc;
341 } else {
342 remticks = ESTCPUFREQ - ttlticks;
343 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
344 ESTCPUFREQ;
349 * Handy macros to calculate hash indices. LOOKUP() calculates the
350 * global cpumask hash index, TCHASHSHIFT() converts that into the
351 * pcpu hash index.
353 * By making the pcpu hash arrays smaller we save a significant amount
354 * of memory at very low cost. The real cost is in IPIs, which are handled
355 * by the much larger global cpumask hash table.
357 #define LOOKUP_PRIME 66555444443333333ULL
358 #define LOOKUP(x) ((((uintptr_t)(x) + ((uintptr_t)(x) >> 18)) ^ \
359 LOOKUP_PRIME) % slpque_tablesize)
360 #define TCHASHSHIFT(x) ((x) >> 4)
362 __read_mostly static uint32_t slpque_tablesize;
363 __read_mostly static cpumask_t *slpque_cpumasks;
365 SYSCTL_UINT(_kern, OID_AUTO, slpque_tablesize, CTLFLAG_RD, &slpque_tablesize,
366 0, "");
369 * This is a dandy function that allows us to interlock tsleep/wakeup
370 * operations with unspecified upper level locks, such as lockmgr locks,
371 * simply by holding a critical section. The sequence is:
373 * (acquire upper level lock)
374 * tsleep_interlock(blah)
375 * (release upper level lock)
376 * tsleep(blah, ...)
378 * Basically this functions queues us on the tsleep queue without actually
379 * descheduling us. When tsleep() is later called with PINTERLOCK it
380 * assumes the thread was already queued, otherwise it queues it there.
382 * Thus it is possible to receive the wakeup prior to going to sleep and
383 * the race conditions are covered.
385 static __inline void
386 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
388 thread_t td = gd->gd_curthread;
389 struct tslpque *qp;
390 uint32_t cid;
391 uint32_t gid;
393 if (ident == NULL) {
394 kprintf("tsleep_interlock: NULL ident %s\n", td->td_comm);
395 print_backtrace(5);
398 crit_enter_quick(td);
399 if (td->td_flags & TDF_TSLEEPQ) {
401 * Shortcut if unchanged
403 if (td->td_wchan == ident &&
404 td->td_wdomain == (flags & PDOMAIN_MASK)) {
405 crit_exit_quick(td);
406 return;
410 * Remove current sleepq
412 cid = LOOKUP(td->td_wchan);
413 gid = TCHASHSHIFT(cid);
414 qp = &gd->gd_tsleep_hash[gid];
415 TAILQ_REMOVE(&qp->queue, td, td_sleepq);
416 if (TAILQ_FIRST(&qp->queue) == NULL) {
417 qp->ident0 = NULL;
418 qp->ident1 = NULL;
419 qp->ident2 = NULL;
420 qp->ident3 = NULL;
421 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
422 gd->gd_cpuid);
424 } else {
425 td->td_flags |= TDF_TSLEEPQ;
427 cid = LOOKUP(ident);
428 gid = TCHASHSHIFT(cid);
429 qp = &gd->gd_tsleep_hash[gid];
430 TAILQ_INSERT_TAIL(&qp->queue, td, td_sleepq);
431 if (qp->ident0 != ident && qp->ident1 != ident &&
432 qp->ident2 != ident && qp->ident3 != ident) {
433 if (qp->ident0 == NULL)
434 qp->ident0 = ident;
435 else if (qp->ident1 == NULL)
436 qp->ident1 = ident;
437 else if (qp->ident2 == NULL)
438 qp->ident2 = ident;
439 else if (qp->ident3 == NULL)
440 qp->ident3 = ident;
441 else
442 qp->ident0 = (void *)(intptr_t)-1;
444 ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
445 td->td_wchan = ident;
446 td->td_wdomain = flags & PDOMAIN_MASK;
447 crit_exit_quick(td);
450 void
451 tsleep_interlock(const volatile void *ident, int flags)
453 _tsleep_interlock(mycpu, ident, flags);
457 * Remove thread from sleepq. Must be called with a critical section held.
458 * The thread must not be migrating.
460 static __inline void
461 _tsleep_remove(thread_t td)
463 globaldata_t gd = mycpu;
464 struct tslpque *qp;
465 uint32_t cid;
466 uint32_t gid;
468 KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
469 KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
470 if (td->td_flags & TDF_TSLEEPQ) {
471 td->td_flags &= ~TDF_TSLEEPQ;
472 cid = LOOKUP(td->td_wchan);
473 gid = TCHASHSHIFT(cid);
474 qp = &gd->gd_tsleep_hash[gid];
475 TAILQ_REMOVE(&qp->queue, td, td_sleepq);
476 if (TAILQ_FIRST(&qp->queue) == NULL) {
477 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
478 gd->gd_cpuid);
480 td->td_wchan = NULL;
481 td->td_wdomain = 0;
485 void
486 tsleep_remove(thread_t td)
488 _tsleep_remove(td);
492 * General sleep call. Suspends the current process until a wakeup is
493 * performed on the specified identifier. The process will then be made
494 * runnable with the specified priority. Sleeps at most timo/hz seconds
495 * (0 means no timeout). If flags includes PCATCH flag, signals are checked
496 * before and after sleeping, else signals are not checked. Returns 0 if
497 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
498 * signal needs to be delivered, ERESTART is returned if the current system
499 * call should be restarted if possible, and EINTR is returned if the system
500 * call should be interrupted by the signal (return EINTR).
502 * Note that if we are a process, we release_curproc() before messing with
503 * the LWKT scheduler.
505 * During autoconfiguration or after a panic, a sleep will simply
506 * lower the priority briefly to allow interrupts, then return.
508 * WARNING! This code can't block (short of switching away), or bad things
509 * will happen. No getting tokens, no blocking locks, etc.
512 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
514 struct thread *td = curthread;
515 struct lwp *lp = td->td_lwp;
516 struct proc *p = td->td_proc; /* may be NULL */
517 globaldata_t gd;
518 int sig;
519 int catch;
520 int error;
521 int oldpri;
522 struct callout thandle1;
523 struct _callout thandle2;
526 * Currently a severe hack. Make sure any delayed wakeups
527 * are flushed before we sleep or we might deadlock on whatever
528 * event we are sleeping on.
530 if (td->td_flags & TDF_DELAYED_WAKEUP)
531 wakeup_end_delayed();
534 * NOTE: removed KTRPOINT, it could cause races due to blocking
535 * even in stable. Just scrap it for now.
537 if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
539 * After a panic, or before we actually have an operational
540 * softclock, just give interrupts a chance, then just return;
542 * don't run any other procs or panic below,
543 * in case this is the idle process and already asleep.
545 splz();
546 oldpri = td->td_pri;
547 lwkt_setpri_self(safepri);
548 lwkt_switch();
549 lwkt_setpri_self(oldpri);
550 return (0);
552 logtsleep2(tsleep_beg, ident);
553 gd = td->td_gd;
554 KKASSERT(td != &gd->gd_idlethread); /* you must be kidding! */
557 * NOTE: all of this occurs on the current cpu, including any
558 * callout-based wakeups, so a critical section is a sufficient
559 * interlock.
561 * The entire sequence through to where we actually sleep must
562 * run without breaking the critical section.
564 catch = flags & PCATCH;
565 error = 0;
566 sig = 0;
568 crit_enter_quick(td);
570 KASSERT(ident != NULL, ("tsleep: no ident"));
571 KASSERT(lp == NULL ||
572 lp->lwp_stat == LSRUN || /* Obvious */
573 lp->lwp_stat == LSSTOP, /* Set in tstop */
574 ("tsleep %p %s %d",
575 ident, wmesg, lp->lwp_stat));
578 * We interlock the sleep queue if the caller has not already done
579 * it for us. This must be done before we potentially acquire any
580 * tokens or we can loose the wakeup.
582 if ((flags & PINTERLOCKED) == 0) {
583 _tsleep_interlock(gd, ident, flags);
587 * Setup for the current process (if this is a process). We must
588 * interlock with lwp_token to avoid remote wakeup races via
589 * setrunnable()
591 if (lp) {
592 lwkt_gettoken(&lp->lwp_token);
595 * If the umbrella process is in the SCORE state then
596 * make sure that the thread is flagged going into a
597 * normal sleep to allow the core dump to proceed, otherwise
598 * the coredump can end up waiting forever. If the normal
599 * sleep is woken up, the thread will enter a stopped state
600 * upon return to userland.
602 * We do not want to interrupt or cause a thread exist at
603 * this juncture because that will mess-up the state the
604 * coredump is trying to save.
606 if (p->p_stat == SCORE) {
607 lwkt_gettoken(&p->p_token);
608 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
609 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
610 ++p->p_nstopped;
612 lwkt_reltoken(&p->p_token);
616 * PCATCH requested.
618 if (catch) {
620 * Early termination if PCATCH was set and a
621 * signal is pending, interlocked with the
622 * critical section.
624 * Early termination only occurs when tsleep() is
625 * entered while in a normal LSRUN state.
627 if ((sig = CURSIG(lp)) != 0)
628 goto resume;
631 * Causes ksignal to wake us up if a signal is
632 * received (interlocked with lp->lwp_token).
634 lp->lwp_flags |= LWP_SINTR;
636 } else {
637 KKASSERT(p == NULL);
641 * Make sure the current process has been untangled from
642 * the userland scheduler and initialize slptime to start
643 * counting.
645 * NOTE: td->td_wakefromcpu is pre-set by the release function
646 * for the dfly scheduler, and then adjusted by _wakeup()
648 if (lp) {
649 p->p_usched->release_curproc(lp);
650 lp->lwp_slptime = 0;
654 * For PINTERLOCKED operation, TDF_TSLEEPQ might not be set if
655 * a wakeup() was processed before the thread could go to sleep.
657 * If TDF_TSLEEPQ is set, make sure the ident matches the recorded
658 * ident. If it does not then the thread slept inbetween the
659 * caller's initial tsleep_interlock() call and the caller's tsleep()
660 * call.
662 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
663 * to process incoming IPIs, thus draining incoming wakeups.
665 if ((td->td_flags & TDF_TSLEEPQ) == 0) {
666 logtsleep2(ilockfail, ident);
667 goto resume;
668 } else if (td->td_wchan != ident ||
669 td->td_wdomain != (flags & PDOMAIN_MASK)) {
670 logtsleep2(ilockfail, ident);
671 goto resume;
675 * scheduling is blocked while in a critical section. Coincide
676 * the descheduled-by-tsleep flag with the descheduling of the
677 * lwkt.
679 * The timer callout is localized on our cpu and interlocked by
680 * our critical section.
682 lwkt_deschedule_self(td);
683 td->td_flags |= TDF_TSLEEP_DESCHEDULED;
684 td->td_wmesg = wmesg;
687 * Setup the timeout, if any. The timeout is only operable while
688 * the thread is flagged descheduled.
690 KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
691 if (timo) {
692 _callout_setup_quick(&thandle1, &thandle2, timo, endtsleep, td);
696 * Beddy bye bye.
698 if (lp) {
700 * Ok, we are sleeping. Place us in the SSLEEP state.
702 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
705 * tstop() sets LSSTOP, so don't fiddle with that.
707 if (lp->lwp_stat != LSSTOP)
708 lp->lwp_stat = LSSLEEP;
709 lp->lwp_ru.ru_nvcsw++;
710 p->p_usched->uload_update(lp);
711 lwkt_switch();
714 * And when we are woken up, put us back in LSRUN. If we
715 * slept for over a second, recalculate our estcpu.
717 lp->lwp_stat = LSRUN;
718 if (lp->lwp_slptime) {
719 p->p_usched->uload_update(lp);
720 p->p_usched->recalculate(lp);
722 lp->lwp_slptime = 0;
723 } else {
724 lwkt_switch();
728 * Make sure we haven't switched cpus while we were asleep. It's
729 * not supposed to happen. Cleanup our temporary flags.
731 KKASSERT(gd == td->td_gd);
734 * Cleanup the timeout. If the timeout has already occured thandle
735 * has already been stopped, otherwise stop thandle.
737 * If the timeout is still running the callout thread must be blocked
738 * trying to get lwp_token, or this is a VM where cpu-cpu races are
739 * common, then wait for us to get scheduled.
741 if (timo) {
742 while (td->td_flags & TDF_TIMEOUT_RUNNING) {
743 /* else we won't get rescheduled! */
744 if (lp->lwp_stat != LSSTOP)
745 lp->lwp_stat = LSSLEEP;
746 lwkt_deschedule_self(td);
747 td->td_wmesg = "tsrace";
748 lwkt_switch();
750 if (td->td_flags & TDF_TIMEOUT) {
751 td->td_flags &= ~TDF_TIMEOUT;
752 error = EWOULDBLOCK;
753 } else {
755 * We are on the same cpu so use the quick version
756 * which is guaranteed not to block or race.
758 _callout_cancel_quick(&thandle2);
761 td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
764 * Make sure we have been removed from the sleepq. In most
765 * cases this will have been done for us already but it is
766 * possible for a scheduling IPI to be in-flight from a
767 * previous tsleep/tsleep_interlock() or due to a straight-out
768 * call to lwkt_schedule() (in the case of an interrupt thread),
769 * causing a spurious wakeup.
771 _tsleep_remove(td);
772 td->td_wmesg = NULL;
775 * Figure out the correct error return. If interrupted by a
776 * signal we want to return EINTR or ERESTART.
778 resume:
779 if (lp) {
780 if (catch && error == 0) {
781 if (sig != 0 || (sig = CURSIG(lp))) {
782 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
783 error = EINTR;
784 else
785 error = ERESTART;
789 lp->lwp_flags &= ~LWP_SINTR;
792 * Unconditionally set us to LSRUN on resume. lwp_stat could
793 * be in a weird state due to the goto resume, particularly
794 * when tsleep() is called from tstop().
796 lp->lwp_stat = LSRUN;
797 lwkt_reltoken(&lp->lwp_token);
799 logtsleep1(tsleep_end);
800 crit_exit_quick(td);
802 return (error);
806 * Interlocked spinlock sleep. An exclusively held spinlock must
807 * be passed to ssleep(). The function will atomically release the
808 * spinlock and tsleep on the ident, then reacquire the spinlock and
809 * return.
811 * This routine is fairly important along the critical path, so optimize it
812 * heavily.
815 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
816 const char *wmesg, int timo)
818 globaldata_t gd = mycpu;
819 int error;
821 _tsleep_interlock(gd, ident, flags);
822 spin_unlock_quick(gd, spin);
823 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
824 KKASSERT(gd == mycpu);
825 _spin_lock_quick(gd, spin, wmesg);
827 return (error);
831 lksleep(const volatile void *ident, struct lock *lock, int flags,
832 const char *wmesg, int timo)
834 globaldata_t gd = mycpu;
835 int error;
837 _tsleep_interlock(gd, ident, flags);
838 lockmgr(lock, LK_RELEASE);
839 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
840 lockmgr(lock, LK_EXCLUSIVE);
842 return (error);
846 * Interlocked mutex sleep. An exclusively held mutex must be passed
847 * to mtxsleep(). The function will atomically release the mutex
848 * and tsleep on the ident, then reacquire the mutex and return.
851 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
852 const char *wmesg, int timo)
854 globaldata_t gd = mycpu;
855 int error;
857 _tsleep_interlock(gd, ident, flags);
858 mtx_unlock(mtx);
859 error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
860 mtx_lock_ex_quick(mtx);
862 return (error);
866 * Interlocked serializer sleep. An exclusively held serializer must
867 * be passed to zsleep(). The function will atomically release
868 * the serializer and tsleep on the ident, then reacquire the serializer
869 * and return.
872 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
873 const char *wmesg, int timo)
875 globaldata_t gd = mycpu;
876 int ret;
878 ASSERT_SERIALIZED(slz);
880 _tsleep_interlock(gd, ident, flags);
881 lwkt_serialize_exit(slz);
882 ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
883 lwkt_serialize_enter(slz);
885 return ret;
889 * Directly block on the LWKT thread by descheduling it. This
890 * is much faster then tsleep(), but the only legal way to wake
891 * us up is to directly schedule the thread.
893 * Setting TDF_SINTR will cause new signals to directly schedule us.
895 * This routine must be called while in a critical section.
898 lwkt_sleep(const char *wmesg, int flags)
900 thread_t td = curthread;
901 int sig;
903 if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
904 td->td_flags |= TDF_BLOCKED;
905 td->td_wmesg = wmesg;
906 lwkt_deschedule_self(td);
907 lwkt_switch();
908 td->td_wmesg = NULL;
909 td->td_flags &= ~TDF_BLOCKED;
910 return(0);
912 if ((sig = CURSIG(td->td_lwp)) != 0) {
913 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
914 return(EINTR);
915 else
916 return(ERESTART);
919 td->td_flags |= TDF_BLOCKED | TDF_SINTR;
920 td->td_wmesg = wmesg;
921 lwkt_deschedule_self(td);
922 lwkt_switch();
923 td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
924 td->td_wmesg = NULL;
925 return(0);
929 * Implement the timeout for tsleep.
931 * This type of callout timeout is scheduled on the same cpu the process
932 * is sleeping on. Also, at the moment, the MP lock is held.
934 static void
935 endtsleep(void *arg)
937 thread_t td = arg;
938 struct lwp *lp;
941 * We are going to have to get the lwp_token, which means we might
942 * block. This can race a tsleep getting woken up by other means
943 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
944 * processing to complete (sorry tsleep!).
946 * We can safely set td_flags because td MUST be on the same cpu
947 * as we are.
949 KKASSERT(td->td_gd == mycpu);
950 crit_enter();
951 td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
954 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
955 * from exiting the tsleep on us. The flag is interlocked by virtue
956 * of lp being on the same cpu as we are.
958 if ((lp = td->td_lwp) != NULL)
959 lwkt_gettoken(&lp->lwp_token);
961 KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
963 if (lp) {
965 * callout timer should normally never be set in tstop()
966 * because it passes a timeout of 0. However, there is a
967 * case during thread exit (which SSTOP's all the threads)
968 * for which tstop() must break out and can (properly) leave
969 * the thread in LSSTOP.
971 KKASSERT(lp->lwp_stat != LSSTOP ||
972 (lp->lwp_mpflags & LWP_MP_WEXIT));
973 setrunnable(lp);
974 lwkt_reltoken(&lp->lwp_token);
975 } else {
976 _tsleep_remove(td);
977 lwkt_schedule(td);
979 KKASSERT(td->td_gd == mycpu);
980 td->td_flags &= ~TDF_TIMEOUT_RUNNING;
981 crit_exit();
985 * Make all processes sleeping on the specified identifier runnable.
986 * count may be zero or one only.
988 * The domain encodes the sleep/wakeup domain, flags, plus the originating
989 * cpu.
991 * This call may run without the MP lock held. We can only manipulate thread
992 * state on the cpu owning the thread. We CANNOT manipulate process state
993 * at all.
995 * _wakeup() can be passed to an IPI so we can't use (const volatile
996 * void *ident).
998 static void
999 _wakeup(void *ident, int domain)
1001 struct tslpque *qp;
1002 struct thread *td;
1003 struct thread *ntd;
1004 globaldata_t gd;
1005 cpumask_t mask;
1006 uint32_t cid;
1007 uint32_t gid;
1008 int wids = 0;
1010 crit_enter();
1011 logtsleep2(wakeup_beg, ident);
1012 gd = mycpu;
1013 cid = LOOKUP(ident);
1014 gid = TCHASHSHIFT(cid);
1015 qp = &gd->gd_tsleep_hash[gid];
1016 restart:
1017 for (td = TAILQ_FIRST(&qp->queue); td != NULL; td = ntd) {
1018 ntd = TAILQ_NEXT(td, td_sleepq);
1019 if (td->td_wchan == ident &&
1020 td->td_wdomain == (domain & PDOMAIN_MASK)
1022 KKASSERT(td->td_gd == gd);
1023 _tsleep_remove(td);
1024 td->td_wakefromcpu = PWAKEUP_DECODE(domain);
1025 if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
1026 lwkt_schedule(td);
1027 if (domain & PWAKEUP_ONE)
1028 goto done;
1030 goto restart;
1032 if (td->td_wchan == qp->ident0)
1033 wids |= 1;
1034 else if (td->td_wchan == qp->ident1)
1035 wids |= 2;
1036 else if (td->td_wchan == qp->ident2)
1037 wids |= 4;
1038 else if (td->td_wchan == qp->ident3)
1039 wids |= 8;
1040 else
1041 wids |= 16; /* force ident0 to be retained (-1) */
1045 * Because a bunch of cpumask array entries cover the same queue, it
1046 * is possible for our bit to remain set in some of them and cause
1047 * spurious wakeup IPIs later on. Make sure that the bit is cleared
1048 * when a spurious IPI occurs to prevent further spurious IPIs.
1050 if (TAILQ_FIRST(&qp->queue) == NULL) {
1051 ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
1052 qp->ident0 = NULL;
1053 qp->ident1 = NULL;
1054 qp->ident2 = NULL;
1055 qp->ident3 = NULL;
1056 } else {
1057 if ((wids & 1) == 0) {
1058 if ((wids & 16) == 0) {
1059 qp->ident0 = NULL;
1060 } else {
1061 KKASSERT(qp->ident0 == (void *)(intptr_t)-1);
1064 if ((wids & 2) == 0)
1065 qp->ident1 = NULL;
1066 if ((wids & 4) == 0)
1067 qp->ident2 = NULL;
1068 if ((wids & 8) == 0)
1069 qp->ident3 = NULL;
1073 * We finished checking the current cpu but there still may be
1074 * more work to do. Either wakeup_one was requested and no matching
1075 * thread was found, or a normal wakeup was requested and we have
1076 * to continue checking cpus.
1078 * It should be noted that this scheme is actually less expensive then
1079 * the old scheme when waking up multiple threads, since we send
1080 * only one IPI message per target candidate which may then schedule
1081 * multiple threads. Before we could have wound up sending an IPI
1082 * message for each thread on the target cpu (!= current cpu) that
1083 * needed to be woken up.
1085 * NOTE: Wakeups occuring on remote cpus are asynchronous. This
1086 * should be ok since we are passing idents in the IPI rather
1087 * then thread pointers.
1089 * NOTE: We MUST mfence (or use an atomic op) prior to reading
1090 * the cpumask, as another cpu may have written to it in
1091 * a fashion interlocked with whatever the caller did before
1092 * calling wakeup(). Otherwise we might miss the interaction
1093 * (kern_mutex.c can cause this problem).
1095 * lfence is insufficient as it may allow a written state to
1096 * reorder around the cpumask load.
1098 if ((domain & PWAKEUP_MYCPU) == 0) {
1099 globaldata_t tgd;
1100 const volatile void *id0;
1101 int n;
1103 cpu_mfence();
1104 /* cpu_lfence(); */
1105 mask = slpque_cpumasks[cid];
1106 CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
1107 while (CPUMASK_TESTNZERO(mask)) {
1108 n = BSRCPUMASK(mask);
1109 CPUMASK_NANDBIT(mask, n);
1110 tgd = globaldata_find(n);
1113 * Both ident0 compares must from a single load
1114 * to avoid ident0 update races crossing the two
1115 * compares.
1117 qp = &tgd->gd_tsleep_hash[gid];
1118 id0 = qp->ident0;
1119 cpu_ccfence();
1120 if (id0 == (void *)(intptr_t)-1) {
1121 lwkt_send_ipiq2(tgd, _wakeup, ident,
1122 domain | PWAKEUP_MYCPU);
1123 ++tgd->gd_cnt.v_wakeup_colls;
1124 } else if (id0 == ident ||
1125 qp->ident1 == ident ||
1126 qp->ident2 == ident ||
1127 qp->ident3 == ident) {
1128 lwkt_send_ipiq2(tgd, _wakeup, ident,
1129 domain | PWAKEUP_MYCPU);
1132 #if 0
1133 if (CPUMASK_TESTNZERO(mask)) {
1134 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
1135 domain | PWAKEUP_MYCPU);
1137 #endif
1139 done:
1140 logtsleep1(wakeup_end);
1141 crit_exit();
1145 * Wakeup all threads tsleep()ing on the specified ident, on all cpus
1147 void
1148 wakeup(const volatile void *ident)
1150 globaldata_t gd = mycpu;
1151 thread_t td = gd->gd_curthread;
1153 if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
1155 * If we are in a delayed wakeup section, record up to two wakeups in
1156 * a per-CPU queue and issue them when we block or exit the delayed
1157 * wakeup section.
1159 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
1160 return;
1161 if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
1162 return;
1164 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
1165 __DEALL(ident));
1166 ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
1167 __DEALL(ident));
1170 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
1174 * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1176 void
1177 wakeup_one(const volatile void *ident)
1179 /* XXX potentially round-robin the first responding cpu */
1180 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1181 PWAKEUP_ONE);
1185 * Wakeup threads tsleep()ing on the specified ident on the current cpu
1186 * only.
1188 void
1189 wakeup_mycpu(const volatile void *ident)
1191 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1192 PWAKEUP_MYCPU);
1196 * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1197 * only.
1199 void
1200 wakeup_mycpu_one(const volatile void *ident)
1202 /* XXX potentially round-robin the first responding cpu */
1203 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1204 PWAKEUP_MYCPU | PWAKEUP_ONE);
1208 * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1209 * only.
1211 void
1212 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1214 globaldata_t mygd = mycpu;
1215 if (gd == mycpu) {
1216 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1217 PWAKEUP_MYCPU);
1218 } else {
1219 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1220 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1221 PWAKEUP_MYCPU);
1226 * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1227 * only.
1229 void
1230 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1232 globaldata_t mygd = mycpu;
1233 if (gd == mygd) {
1234 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1235 PWAKEUP_MYCPU | PWAKEUP_ONE);
1236 } else {
1237 lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1238 PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1239 PWAKEUP_MYCPU | PWAKEUP_ONE);
1244 * Wakeup all threads waiting on the specified ident that slept using
1245 * the specified domain, on all cpus.
1247 void
1248 wakeup_domain(const volatile void *ident, int domain)
1250 _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1254 * Wakeup one thread waiting on the specified ident that slept using
1255 * the specified domain, on any cpu.
1257 void
1258 wakeup_domain_one(const volatile void *ident, int domain)
1260 /* XXX potentially round-robin the first responding cpu */
1261 _wakeup(__DEALL(ident),
1262 PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1265 void
1266 wakeup_start_delayed(void)
1268 globaldata_t gd = mycpu;
1270 crit_enter();
1271 gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1272 crit_exit();
1275 void
1276 wakeup_end_delayed(void)
1278 globaldata_t gd = mycpu;
1280 if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1281 crit_enter();
1282 gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1283 if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1284 if (gd->gd_delayed_wakeup[0]) {
1285 wakeup(gd->gd_delayed_wakeup[0]);
1286 gd->gd_delayed_wakeup[0] = NULL;
1288 if (gd->gd_delayed_wakeup[1]) {
1289 wakeup(gd->gd_delayed_wakeup[1]);
1290 gd->gd_delayed_wakeup[1] = NULL;
1293 crit_exit();
1298 * setrunnable()
1300 * Make a process runnable. lp->lwp_token must be held on call and this
1301 * function must be called from the cpu owning lp.
1303 * This only has an effect if we are in LSSTOP or LSSLEEP.
1305 void
1306 setrunnable(struct lwp *lp)
1308 thread_t td = lp->lwp_thread;
1310 ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1311 KKASSERT(td->td_gd == mycpu);
1312 crit_enter();
1313 if (lp->lwp_stat == LSSTOP)
1314 lp->lwp_stat = LSSLEEP;
1315 if (lp->lwp_stat == LSSLEEP) {
1316 _tsleep_remove(td);
1317 lwkt_schedule(td);
1318 } else if (td->td_flags & TDF_SINTR) {
1319 lwkt_schedule(td);
1321 crit_exit();
1325 * The process is stopped due to some condition, usually because p_stat is
1326 * set to SSTOP, but also possibly due to being traced.
1328 * Caller must hold p->p_token
1330 * NOTE! If the caller sets SSTOP, the caller must also clear P_WAITED
1331 * because the parent may check the child's status before the child actually
1332 * gets to this routine.
1334 * This routine is called with the current lwp only, typically just
1335 * before returning to userland if the process state is detected as
1336 * possibly being in a stopped state.
1338 void
1339 tstop(void)
1341 struct lwp *lp = curthread->td_lwp;
1342 struct proc *p = lp->lwp_proc;
1343 struct proc *q;
1345 lwkt_gettoken(&lp->lwp_token);
1346 crit_enter();
1349 * If LWP_MP_WSTOP is set, we were sleeping
1350 * while our process was stopped. At this point
1351 * we were already counted as stopped.
1353 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1355 * If we're the last thread to stop, signal
1356 * our parent.
1358 p->p_nstopped++;
1359 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1360 wakeup(&p->p_nstopped);
1361 if (p->p_nstopped == p->p_nthreads) {
1363 * Token required to interlock kern_wait()
1365 q = p->p_pptr;
1366 PHOLD(q);
1367 lwkt_gettoken(&q->p_token);
1368 p->p_flags &= ~P_WAITED;
1369 wakeup(p->p_pptr);
1370 if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1371 ksignal(q, SIGCHLD);
1372 lwkt_reltoken(&q->p_token);
1373 PRELE(q);
1378 * Wait here while in a stopped state, interlocked with lwp_token.
1379 * We must break-out if the whole process is trying to exit.
1381 while (STOPLWP(p, lp)) {
1382 lp->lwp_stat = LSSTOP;
1383 tsleep(p, 0, "stop", 0);
1385 p->p_nstopped--;
1386 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1387 crit_exit();
1388 lwkt_reltoken(&lp->lwp_token);
1392 * Compute a tenex style load average of a quantity on
1393 * 1, 5 and 15 minute intervals. This is a pcpu callout.
1395 * We segment the lwp scan on a pcpu basis. This does NOT
1396 * mean the associated lwps are on this cpu, it is done
1397 * just to break the work up.
1399 * The callout on cpu0 rolls up the stats from the other
1400 * cpus.
1402 static int loadav_count_runnable(struct lwp *p, void *data);
1404 static void
1405 loadav(void *arg)
1407 globaldata_t gd = mycpu;
1408 struct loadavg *avg;
1409 int i, nrun;
1411 nrun = 0;
1412 alllwp_scan(loadav_count_runnable, &nrun, 1);
1413 gd->gd_loadav_nrunnable = nrun;
1414 if (gd->gd_cpuid == 0) {
1415 avg = &averunnable;
1416 nrun = 0;
1417 for (i = 0; i < ncpus; ++i)
1418 nrun += globaldata_find(i)->gd_loadav_nrunnable;
1419 for (i = 0; i < 3; i++) {
1420 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1421 (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1426 * Schedule the next update to occur after 5 seconds, but add a
1427 * random variation to avoid synchronisation with processes that
1428 * run at regular intervals.
1430 callout_reset(&gd->gd_loadav_callout,
1431 hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1432 loadav, NULL);
1435 static int
1436 loadav_count_runnable(struct lwp *lp, void *data)
1438 int *nrunp = data;
1439 thread_t td;
1441 switch (lp->lwp_stat) {
1442 case LSRUN:
1443 if ((td = lp->lwp_thread) == NULL)
1444 break;
1445 if (td->td_flags & TDF_BLOCKED)
1446 break;
1447 ++*nrunp;
1448 break;
1449 default:
1450 break;
1452 lwkt_yield();
1453 return(0);
1457 * Regular data collection
1459 static uint64_t
1460 collect_load_callback(int n)
1462 int fscale = averunnable.fscale;
1464 return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1467 static void
1468 sched_setup(void *dummy __unused)
1470 globaldata_t save_gd = mycpu;
1471 globaldata_t gd;
1472 int n;
1474 kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1475 KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1478 * Kick off timeout driven events by calling first time. We
1479 * split the work across available cpus to help scale it,
1480 * it can eat a lot of cpu when there are a lot of processes
1481 * on the system.
1483 for (n = 0; n < ncpus; ++n) {
1484 gd = globaldata_find(n);
1485 lwkt_setcpu_self(gd);
1486 callout_init_mp(&gd->gd_loadav_callout);
1487 callout_init_mp(&gd->gd_schedcpu_callout);
1488 schedcpu(NULL);
1489 loadav(NULL);
1491 lwkt_setcpu_self(save_gd);
1495 * Extremely early initialization, dummy-up the tables so we don't have
1496 * to conditionalize for NULL in _wakeup() and tsleep_interlock(). Even
1497 * though the system isn't blocking this early, these functions still
1498 * try to access the hash table.
1500 * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1501 * is called.
1503 void
1504 sleep_early_gdinit(globaldata_t gd)
1506 static struct tslpque dummy_slpque;
1507 static cpumask_t dummy_cpumasks;
1509 slpque_tablesize = 1;
1510 gd->gd_tsleep_hash = &dummy_slpque;
1511 slpque_cpumasks = &dummy_cpumasks;
1512 TAILQ_INIT(&dummy_slpque.queue);
1516 * PCPU initialization. Called after KMALLOC is operational, by
1517 * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1519 * WARNING! The pcpu hash table is smaller than the global cpumask
1520 * hash table, which can save us a lot of memory when maxproc
1521 * is set high.
1523 void
1524 sleep_gdinit(globaldata_t gd)
1526 struct thread *td;
1527 size_t hash_size;
1528 uint32_t n;
1529 uint32_t i;
1532 * This shouldn't happen, that is there shouldn't be any threads
1533 * waiting on the dummy tsleep queue this early in the boot.
1535 if (gd->gd_cpuid == 0) {
1536 struct tslpque *qp = &gd->gd_tsleep_hash[0];
1537 TAILQ_FOREACH(td, &qp->queue, td_sleepq) {
1538 kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1543 * Note that we have to allocate one extra slot because we are
1544 * shifting a modulo value. TCHASHSHIFT(slpque_tablesize - 1) can
1545 * return the same value as TCHASHSHIFT(slpque_tablesize).
1547 n = TCHASHSHIFT(slpque_tablesize) + 1;
1549 hash_size = sizeof(struct tslpque) * n;
1550 gd->gd_tsleep_hash = (void *)kmem_alloc3(kernel_map, hash_size,
1551 VM_SUBSYS_GD,
1552 KM_CPU(gd->gd_cpuid));
1553 memset(gd->gd_tsleep_hash, 0, hash_size);
1554 for (i = 0; i < n; ++i)
1555 TAILQ_INIT(&gd->gd_tsleep_hash[i].queue);
1559 * Dynamic initialization after the memory system is operational.
1561 static void
1562 sched_dyninit(void *dummy __unused)
1564 int tblsize;
1565 int tblsize2;
1566 int n;
1569 * Calculate table size for slpque hash. We want a prime number
1570 * large enough to avoid overloading slpque_cpumasks when the
1571 * system has a large number of sleeping processes, which will
1572 * spam IPIs on wakeup().
1574 * While it is true this is really a per-lwp factor, generally
1575 * speaking the maxproc limit is a good metric to go by.
1577 for (tblsize = maxproc | 1; ; tblsize += 2) {
1578 if (tblsize % 3 == 0)
1579 continue;
1580 if (tblsize % 5 == 0)
1581 continue;
1582 tblsize2 = (tblsize / 2) | 1;
1583 for (n = 7; n < tblsize2; n += 2) {
1584 if (tblsize % n == 0)
1585 break;
1587 if (n == tblsize2)
1588 break;
1592 * PIDs are currently limited to 6 digits. Cap the table size
1593 * at double this.
1595 if (tblsize > 2000003)
1596 tblsize = 2000003;
1598 slpque_tablesize = tblsize;
1599 slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1600 M_TSLEEP, M_WAITOK | M_ZERO);
1601 sleep_gdinit(mycpu);