usr.sbin/makefs/ffs: Remove m_buf::b_is_hammer2
[dragonfly.git] / sys / kern / kern_exec.c
blob00618212bcc9998a0f0b352bf42c41eb43678b08
1 /*
2 * Copyright (c) 1993, David Greenman
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
26 * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmsg.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
56 #include <cpu/lwbuf.h>
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
70 #include <sys/reg.h>
72 #include <sys/objcache.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <vm/vm_page2.h>
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
80 enum exec_path_segflg {
81 PATH_SYSSPACE,
82 PATH_USERSPACE,
85 static register_t *exec_copyout_strings(struct image_params *);
86 static int exec_copyin_args(struct image_args *, char *,
87 enum exec_path_segflg, char **, char **);
88 static void exec_free_args(struct image_args *);
89 static void print_execve_args(struct image_args *args);
91 /* XXX This should be vm_size_t. */
92 __read_mostly static u_long ps_strings = PS_STRINGS;
93 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
95 /* XXX This should be vm_size_t. */
96 __read_mostly static u_long usrstack = USRSTACK;
97 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
99 __read_mostly u_long ps_arg_cache_limit = PAGE_SIZE / 16;
100 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
101 &ps_arg_cache_limit, 0, "");
103 __read_mostly int ps_argsopen = 1;
104 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
106 __read_mostly static int ktrace_suid = 0;
107 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
109 __read_mostly static int debug_execve_args = 0;
110 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
111 0, "");
114 * Exec arguments object cache
116 __read_mostly static struct objcache *exec_objcache;
118 static
119 void
120 exec_objcache_init(void *arg __unused)
122 int cluster_limit;
123 size_t limsize;
126 * Maximum number of concurrent execs. This can be limiting on
127 * systems with a lot of cpu cores but it also eats a significant
128 * amount of memory.
130 cluster_limit = (ncpus < 16) ? 16 : ncpus;
131 limsize = kmem_lim_size();
132 if (limsize > 7 * 1024)
133 cluster_limit *= 2;
134 if (limsize > 15 * 1024)
135 cluster_limit *= 2;
137 exec_objcache = objcache_create_mbacked(
138 M_EXECARGS, PATH_MAX + ARG_MAX,
139 cluster_limit, 8,
140 NULL, NULL, NULL);
142 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
145 * stackgap_random specifies if the stackgap should have a random size added
146 * to it. It must be a power of 2. If non-zero, the stack gap will be
147 * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
149 __read_mostly static int stackgap_random = 1024;
151 static int
152 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
154 int error, new_val;
155 new_val = stackgap_random;
156 error = sysctl_handle_int(oidp, &new_val, 0, req);
157 if (error != 0 || req->newptr == NULL)
158 return (error);
159 if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
160 return (EINVAL);
161 stackgap_random = new_val;
163 return(0);
166 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
167 0, 0, sysctl_kern_stackgap, "I",
168 "Max random stack gap (power of 2), static gap if negative");
170 static void
171 print_execve_args(struct image_args *args)
173 char *cp;
174 int ndx;
176 cp = args->begin_argv;
177 for (ndx = 0; ndx < args->argc; ndx++) {
178 kprintf("\targv[%d]: %s\n", ndx, cp);
179 while (*cp++ != '\0');
181 for (ndx = 0; ndx < args->envc; ndx++) {
182 kprintf("\tenvv[%d]: %s\n", ndx, cp);
183 while (*cp++ != '\0');
188 * Each of the items is a pointer to a `const struct execsw', hence the
189 * double pointer here.
191 __read_mostly static const struct execsw **execsw;
194 * Replace current vmspace with a new binary.
195 * Returns 0 on success, > 0 on recoverable error (use as errno).
196 * Returns -1 on lethal error which demands killing of the current
197 * process!
200 kern_execve(struct nlookupdata *nd, struct file *fp, char fileflags,
201 struct image_args *args)
203 static const char *proctitle = "(execve)";
204 register_t *stack_base;
205 struct thread *td = curthread;
206 struct lwp *lp = td->td_lwp;
207 struct proc *p = td->td_proc;
208 struct vnode *ovp;
209 struct pargs *pa;
210 struct sigacts *ops;
211 struct sigacts *nps;
212 struct image_params image_params, *imgp;
213 struct filedesc *fds;
214 struct nchandle *nch;
215 struct nlookupdata nd_interpreter;
216 struct vattr_lite lva;
217 int error, len, i;
218 int (*img_first) (struct image_params *);
220 if (debug_execve_args) {
221 kprintf("%s()\n", __func__);
222 print_execve_args(args);
225 KKASSERT(p);
226 lwkt_gettoken(&p->p_token);
227 imgp = &image_params;
230 * NOTE: P_INEXEC is handled by exec_new_vmspace() now. We make
231 * no modifications to the process at all until we get there.
233 * Note that multiple threads may be trying to exec at the same
234 * time. exec_new_vmspace() handles that too.
238 * Initialize part of the common data
240 imgp->proc = p;
241 imgp->args = args;
242 imgp->lvap = &lva;
243 imgp->entry_addr = 0;
244 imgp->resident = 0;
245 imgp->vmspace_destroyed = 0;
246 imgp->interpreted = 0;
247 imgp->interpreter_name[0] = 0;
248 imgp->auxargs = NULL;
249 imgp->vp = NULL;
250 imgp->firstpage = NULL;
251 imgp->ps_strings = 0;
252 imgp->execpath = imgp->freepath = NULL;
253 imgp->execpathp = 0;
254 imgp->image_header = NULL;
256 interpret:
258 if (nd) {
260 * Translate the file name to a vnode. Unlock the cache
261 * entry to improve parallelism for programs exec'd in
262 * parallel.
264 nch = &nd->nl_nch;
265 nd->nl_flags |= NLC_SHAREDLOCK;
266 if ((error = nlookup(nd)) != 0)
267 goto failed;
269 error = cache_vget(nch, nd->nl_cred, LK_SHARED, &imgp->vp);
270 KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
271 nd->nl_flags &= ~NLC_NCPISLOCKED;
272 cache_unlock(nch);
273 } else {
274 nch = &fp->f_nchandle;
275 imgp->vp = fp->f_data;
276 error = vget(imgp->vp, LK_SHARED);
278 if (error) {
279 imgp->vp = NULL;
280 goto failed;
284 * Check file permissions (also 'opens' file).
285 * Include also the top level mount in the check.
287 error = exec_check_permissions(imgp, nch->mount);
288 if (error) {
289 vn_unlock(imgp->vp);
290 goto failed;
293 error = exec_map_first_page(imgp);
294 vn_unlock(imgp->vp);
295 if (error)
296 goto failed;
298 imgp->proc->p_osrel = 0;
300 if (debug_execve_args && imgp->interpreted) {
301 kprintf(" target is interpreted -- recursive pass\n");
302 kprintf(" interpreter: %s\n", imgp->interpreter_name);
303 print_execve_args(args);
307 * If the current process has a special image activator it
308 * wants to try first, call it. For example, emulating shell
309 * scripts differently.
311 error = -1;
312 if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
313 error = img_first(imgp);
316 * If the vnode has a registered vmspace, exec the vmspace
318 if (error == -1 && imgp->vp->v_resident)
319 error = exec_resident_imgact(imgp);
322 * Loop through the list of image activators, calling each one.
323 * An activator returns -1 if there is no match, 0 on success,
324 * and an error otherwise.
326 for (i = 0; error == -1 && execsw[i]; ++i) {
327 if (execsw[i]->ex_imgact == NULL ||
328 execsw[i]->ex_imgact == img_first) {
329 continue;
331 error = (*execsw[i]->ex_imgact)(imgp);
334 if (error) {
335 if (error == -1)
336 error = ENOEXEC;
337 goto failed;
341 * Special interpreter operation, cleanup and loop up to try to
342 * activate the interpreter.
344 if (imgp->interpreted) {
345 exec_unmap_first_page(imgp);
346 vrele(imgp->vp);
347 imgp->vp = NULL;
349 nd = &nd_interpreter;
350 error = nlookup_init(nd, imgp->interpreter_name,
351 UIO_SYSSPACE, NLC_FOLLOW);
352 if (error)
353 goto failed;
355 if (fp && (fileflags & UF_EXCLOSE)) {
357 * Fexecve'ing an interpreted file opened with
358 * O_CLOEXEC flag, return ENOENT.
360 error = ENOENT;
361 goto failed;
364 goto interpret;
368 * Do the best to calculate the full path to the image file
370 if (imgp->auxargs != NULL &&
371 ((args->fname != NULL && args->fname[0] == '/') ||
372 vn_fullpath(imgp->proc, imgp->vp, &imgp->execpath,
373 &imgp->freepath, 0) != 0))
375 imgp->execpath = args->fname;
379 * Copy out strings (args and env) and initialize stack base
381 stack_base = exec_copyout_strings(imgp);
382 p->p_vmspace->vm_minsaddr = (char *)stack_base;
385 * If custom stack fixup routine present for this process
386 * let it do the stack setup. If we are running a resident
387 * image there is no auxinfo or other image activator context
388 * so don't try to add fixups to the stack.
390 * Else stuff argument count as first item on stack
392 if (p->p_sysent->sv_fixup && imgp->resident == 0)
393 (*p->p_sysent->sv_fixup)(&stack_base, imgp);
394 else
395 suword64(--stack_base, imgp->args->argc);
398 * For security and other reasons, the file descriptor table cannot
399 * be shared after an exec.
401 if (p->p_fd->fd_refcnt > 1) {
402 if ((error = fdcopy(p, &fds)) != 0)
403 goto failed;
405 fdfree(p, fds);
409 * For security and other reasons, signal handlers cannot
410 * be shared after an exec. The new proces gets a copy of the old
411 * handlers. In execsigs(), the new process will have its signals
412 * reset.
414 ops = p->p_sigacts;
415 if (ops->ps_refcnt > 1) {
416 nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
417 bcopy(ops, nps, sizeof(*nps));
418 refcount_init(&nps->ps_refcnt, 1);
419 p->p_sigacts = nps;
420 if (refcount_release(&ops->ps_refcnt)) {
421 kfree(ops, M_SUBPROC);
422 ops = NULL;
427 * Clean up shared pages, the new program will allocate fresh
428 * copies as needed. This is also for security purposes and
429 * to ensure (for example) that things like sys_lpmap->blockallsigs
430 * state is properly reset on exec.
432 lwp_userunmap(lp);
433 proc_userunmap(p);
436 * For security and other reasons virtual kernels cannot be
437 * inherited by an exec. This also allows a virtual kernel
438 * to fork/exec unrelated applications.
440 if (p->p_vkernel)
441 vkernel_exit(p);
443 /* Stop profiling */
444 stopprofclock(p);
446 /* close files on exec */
447 fdcloseexec(p);
449 /* reset caught signals */
450 execsigs(p);
452 /* name this process */
453 if (nch->ncp) {
454 len = min(nch->ncp->nc_nlen, MAXCOMLEN);
455 bcopy(nch->ncp->nc_name, p->p_comm, len);
456 } else {
457 len = sizeof(proctitle) - 1;
458 bcopy(proctitle, p->p_comm, len);
460 p->p_comm[len] = 0;
461 bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
464 * mark as execed, wakeup the process that vforked (if any) and tell
465 * it that it now has its own resources back
467 * We are using the P_PPWAIT as an interlock so an atomic op is
468 * necessary to synchronize with the parent's cpu.
470 p->p_flags |= P_EXEC;
471 if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
472 if (p->p_pptr->p_upmap)
473 atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
474 atomic_clear_int(&p->p_flags, P_PPWAIT);
475 wakeup(p->p_pptr);
479 * Implement image setuid/setgid.
481 * Don't honor setuid/setgid if the filesystem prohibits it or if
482 * the process is being traced.
484 if ((((lva.va_mode & VSUID) && p->p_ucred->cr_uid != lva.va_uid) ||
485 ((lva.va_mode & VSGID) && p->p_ucred->cr_gid != lva.va_gid)) &&
486 (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
487 (p->p_flags & P_TRACED) == 0) {
489 * Turn off syscall tracing for set-id programs, except for
490 * root. Record any set-id flags first to make sure that
491 * we do not regain any tracing during a possible block.
493 setsugid();
494 if (p->p_tracenode && ktrace_suid == 0 &&
495 priv_check(td, PRIV_ROOT) != 0) {
496 ktrdestroy(&p->p_tracenode);
497 p->p_traceflag = 0;
500 /* Clear any PROC_PDEATHSIG_CTL setting */
501 p->p_deathsig = 0;
503 /* Close any file descriptors 0..2 that reference procfs */
504 setugidsafety(p);
505 /* Make sure file descriptors 0..2 are in use. */
506 error = fdcheckstd(lp);
507 if (error != 0)
508 goto failed;
511 * Set the new credentials.
513 cratom_proc(p);
514 if (lva.va_mode & VSUID)
515 change_euid(lva.va_uid);
516 if (lva.va_mode & VSGID)
517 p->p_ucred->cr_gid = lva.va_gid;
519 /* Clear local varsym variables */
520 varsymset_clean(&p->p_varsymset);
521 } else {
522 if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
523 p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
524 p->p_flags &= ~P_SUGID;
528 * Implement correct POSIX saved-id behavior.
530 if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
531 p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
532 cratom_proc(p);
533 p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
534 p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
538 * Store the vp for use in procfs. Be sure to keep p_textvp
539 * consistent if we block during the switch-over.
541 ovp = p->p_textvp;
542 vref(imgp->vp); /* ref new vp */
543 p->p_textvp = imgp->vp;
544 if (ovp) /* release old vp */
545 vrele(ovp);
547 /* Release old namecache handle to text file */
548 if (p->p_textnch.ncp)
549 cache_drop(&p->p_textnch);
550 if (nch->mount)
551 cache_copy(nch, &p->p_textnch);
554 * Notify others that we exec'd, and clear the P_INEXEC flag
555 * as we're now a bona fide freshly-execed process.
557 KNOTE(&p->p_klist, NOTE_EXEC);
558 p->p_flags &= ~P_INEXEC;
559 if (p->p_stops)
560 wakeup(&p->p_stype);
563 * If tracing the process, trap to debugger so breakpoints
564 * can be set before the program executes.
566 STOPEVENT(p, S_EXEC, 0);
568 if (p->p_flags & P_TRACED)
569 ksignal(p, SIGTRAP);
571 /* clear "fork but no exec" flag, as we _are_ execing */
572 p->p_acflag &= ~AFORK;
574 /* Set values passed into the program in registers. */
575 exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
576 imgp->ps_strings);
578 /* Set the access time on the vnode */
579 vn_mark_atime(imgp->vp, td);
582 * Free any previous argument cache
584 pa = p->p_args;
585 p->p_args = NULL;
586 if (pa && refcount_release(&pa->ar_ref)) {
587 kfree(pa, M_PARGS);
588 pa = NULL;
592 * Cache arguments if they fit inside our allowance
594 i = imgp->args->begin_envv - imgp->args->begin_argv;
595 if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
596 pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
597 refcount_init(&pa->ar_ref, 1);
598 pa->ar_length = i;
599 bcopy(imgp->args->begin_argv, pa->ar_args, i);
600 KKASSERT(p->p_args == NULL);
601 p->p_args = pa;
604 failed:
607 * free various allocated resources
609 if (imgp->firstpage)
610 exec_unmap_first_page(imgp);
611 if (imgp->vp)
612 vrele(imgp->vp);
613 if (imgp->freepath)
614 kfree(imgp->freepath, M_TEMP);
615 if (nd == &nd_interpreter)
616 nlookup_done(nd);
618 if (error == 0) {
619 ++mycpu->gd_cnt.v_exec;
620 lwkt_reltoken(&p->p_token);
621 return (0);
625 * we're done here, clear P_INEXEC if we were the ones that
626 * set it. Otherwise if vmspace_destroyed is still set we
627 * raced another thread and that thread is responsible for
628 * clearing it.
630 if (imgp->vmspace_destroyed & 2) {
631 p->p_flags &= ~P_INEXEC;
632 if (p->p_stops)
633 wakeup(&p->p_stype);
635 lwkt_reltoken(&p->p_token);
636 if (imgp->vmspace_destroyed) {
638 * Sorry, no more process anymore. exit gracefully.
639 * However we can't die right here, because our
640 * caller might have to clean up, so indicate a
641 * lethal error by returning -1.
643 return (-1);
644 } else {
645 return (error);
650 * execve() system call.
653 sys_execve(struct sysmsg *sysmsg, const struct execve_args *uap)
655 struct nlookupdata nd;
656 struct image_args args;
657 int error;
659 bzero(&args, sizeof(args));
661 error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
662 if (error == 0) {
663 error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
664 uap->argv, uap->envv);
666 if (error == 0)
667 error = kern_execve(&nd, NULL, 0, &args);
668 nlookup_done(&nd);
669 exec_free_args(&args);
671 if (error < 0) {
672 /* We hit a lethal error condition. Let's die now. */
673 exit1(W_EXITCODE(0, SIGABRT));
674 /* NOTREACHED */
678 * The syscall result is returned in registers to the new program.
679 * Linux will register %edx as an atexit function and we must be
680 * sure to set it to 0. XXX
682 if (error == 0)
683 sysmsg->sysmsg_result64 = 0;
685 return (error);
689 * fexecve() system call.
692 sys_fexecve(struct sysmsg *sysmsg, const struct fexecve_args *uap)
694 struct image_args args;
695 struct thread *td = curthread;
696 struct file *fp;
697 char fileflags;
698 char fname[32]; /* "/dev/fd/xxx" */
699 int error;
701 if ((error = holdvnode2(td, uap->fd, &fp, &fileflags)) != 0)
702 return (error);
705 * Require a descriptor opened only with O_RDONLY or O_EXEC.
706 * XXX: missing O_EXEC support
708 if ((fp->f_flag & FWRITE) != 0 || (fp->f_flag & FREAD) == 0) {
709 error = EBADF;
710 goto done;
714 * The 'fname' argument is required when executing an
715 * interpreted program because the interpreter must know
716 * the script path. Supply it with '/dev/fd/xxx'.
718 ksnprintf(fname, sizeof(fname), "/dev/fd/%d", uap->fd);
719 bzero(&args, sizeof(args));
720 error = exec_copyin_args(&args, fname, PATH_SYSSPACE,
721 uap->argv, uap->envv);
722 if (error == 0)
723 error = kern_execve(NULL, fp, fileflags, &args);
724 exec_free_args(&args);
726 if (error < 0) {
727 /* We hit a lethal error condition. Let's die now. */
728 exit1(W_EXITCODE(0, SIGABRT));
729 /* NOTREACHED */
733 * The syscall result is returned in registers to the new program.
734 * Linux will register %edx as an atexit function and we must be
735 * sure to set it to 0. XXX
737 if (error == 0)
738 sysmsg->sysmsg_result64 = 0;
740 done:
741 fdrop(fp);
742 return (error);
746 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
747 struct lwbuf **plwb, const char **pdata)
749 int rv;
750 vm_page_t ma;
751 vm_page_t m;
752 vm_object_t object;
755 * The file has to be mappable.
757 if ((object = imgp->vp->v_object) == NULL)
758 return (EIO);
760 if (pageno >= object->size)
761 return (EIO);
764 * Shortcut using shared locks, improve concurrent execs.
766 vm_object_hold_shared(object);
767 m = vm_page_lookup(object, pageno);
768 if (m) {
769 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
770 vm_page_hold(m);
771 vm_page_sleep_busy(m, FALSE, "execpg");
772 if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
773 m->object == object && m->pindex == pageno) {
774 vm_object_drop(object);
775 goto done;
777 vm_page_unhold(m);
780 vm_object_drop(object);
783 * Do it the hard way
785 vm_object_hold(object);
786 m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
787 while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
788 ma = m;
791 * get_pages unbusies all the requested pages except the
792 * primary page (at index 0 in this case). The primary
793 * page may have been wired during the pagein (e.g. by
794 * the buffer cache) so vnode_pager_freepage() must be
795 * used to properly release it.
797 rv = vm_pager_get_page(object, pageno, &ma, 1);
798 m = vm_page_lookup(object, pageno);
800 if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
801 if (m) {
802 vm_page_protect(m, VM_PROT_NONE);
803 vnode_pager_freepage(m);
805 vm_object_drop(object);
806 return EIO;
809 vm_page_hold(m);
810 vm_page_wakeup(m); /* unbusy the page */
811 vm_object_drop(object);
813 done:
814 *plwb = lwbuf_alloc(m, *plwb);
815 *pdata = (void *)lwbuf_kva(*plwb);
817 return (0);
821 * Map the first page of an executable image.
823 * NOTE: If the mapping fails we have to NULL-out firstpage which may
824 * still be pointing to our supplied lwp structure.
827 exec_map_first_page(struct image_params *imgp)
829 int err;
831 if (imgp->firstpage)
832 exec_unmap_first_page(imgp);
834 imgp->firstpage = &imgp->firstpage_cache;
835 err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
837 if (err) {
838 imgp->firstpage = NULL;
839 return err;
842 return 0;
845 void
846 exec_unmap_page(struct lwbuf *lwb)
848 vm_page_t m;
850 crit_enter();
851 if (lwb != NULL) {
852 m = lwbuf_page(lwb);
853 lwbuf_free(lwb);
854 vm_page_unhold(m);
856 crit_exit();
859 void
860 exec_unmap_first_page(struct image_params *imgp)
862 exec_unmap_page(imgp->firstpage);
863 imgp->firstpage = NULL;
864 imgp->image_header = NULL;
868 * Destroy old address space, and allocate a new stack
869 * The new stack is only SGROWSIZ large because it is grown
870 * automatically in trap.c.
872 * This is the point of no return.
875 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
877 struct vmspace *vmspace = imgp->proc->p_vmspace;
878 vm_offset_t stack_addr = USRSTACK - maxssiz;
879 struct lwp *lp;
880 struct proc *p;
881 vm_map_t map;
882 int error;
885 * Indicate that we cannot gracefully error out any more, kill
886 * any other threads present, and set P_INEXEC to indicate that
887 * we are now messing with the process structure proper.
889 * If killalllwps() races return an error which coupled with
890 * vmspace_destroyed will cause us to exit. This is what we
891 * want since another thread is patiently waiting for us to exit
892 * in that case.
894 lp = curthread->td_lwp;
895 p = lp->lwp_proc;
896 imgp->vmspace_destroyed = 1;
898 if (curthread->td_proc->p_nthreads > 1) {
899 error = killalllwps(1);
900 if (error)
901 return (error);
903 imgp->vmspace_destroyed |= 2; /* we are responsible for P_INEXEC */
904 p->p_flags |= P_INEXEC;
907 * Tell procfs to release its hold on the process. It
908 * will return EAGAIN.
910 if (p->p_stops)
911 wakeup(&p->p_stype);
914 * After setting P_INEXEC wait for any remaining references to
915 * the process (p) to go away.
917 * In particular, a vfork/exec sequence will replace p->p_vmspace
918 * and we must interlock anyone trying to access the space (aka
919 * procfs or sys_process.c calling procfs_domem()).
921 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
923 PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
926 * Blow away entire process VM, if address space not shared,
927 * otherwise, create a new VM space so that other threads are
928 * not disrupted. If we are execing a resident vmspace we
929 * create a duplicate of it and remap the stack.
931 map = &vmspace->vm_map;
932 if (vmcopy) {
933 vmspace_exec(imgp->proc, vmcopy);
934 vmspace = imgp->proc->p_vmspace;
935 pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
936 map = &vmspace->vm_map;
937 } else if (vmspace_getrefs(vmspace) == 1) {
938 shmexit(vmspace);
939 pmap_remove_pages(vmspace_pmap(vmspace),
940 0, VM_MAX_USER_ADDRESS);
941 vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
942 } else {
943 vmspace_exec(imgp->proc, NULL);
944 vmspace = imgp->proc->p_vmspace;
945 map = &vmspace->vm_map;
949 * Really make sure lwp-specific and process-specific mappings
950 * are gone.
952 * Once we've done that, and because we are the only LWP left, with
953 * no TID-dependent mappings, we can reset the TID to 1 (the RB tree
954 * will remain consistent since it has only one entry). This way
955 * the exec'd program gets a nice deterministic tid of 1.
957 lwp_userunmap(lp);
958 proc_userunmap(p);
959 lp->lwp_tid = 1;
960 p->p_lasttid = 1;
963 * Allocate a new stack, generally make the stack non-executable
964 * but allow the program to adjust that (the program may desire to
965 * use areas of the stack for executable code).
967 error = vm_map_stack(&vmspace->vm_map, &stack_addr, (vm_size_t)maxssiz,
969 VM_PROT_READ|VM_PROT_WRITE,
970 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
972 if (error)
973 return (error);
976 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
977 * VM_STACK case, but they are still used to monitor the size of the
978 * process stack so we can check the stack rlimit.
980 vmspace->vm_ssize = sgrowsiz; /* in bytes */
981 vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
983 return(0);
987 * Copy out argument and environment strings from the old process
988 * address space into the temporary string buffer.
990 static int
991 exec_copyin_args(struct image_args *args, char *fname,
992 enum exec_path_segflg segflg, char **argv, char **envv)
994 char *argp, *envp;
995 int error = 0;
996 size_t length;
998 args->buf = objcache_get(exec_objcache, M_WAITOK);
999 if (args->buf == NULL)
1000 return (ENOMEM);
1002 args->begin_argv = args->buf;
1003 args->endp = args->begin_argv;
1004 args->space = ARG_MAX;
1006 args->fname = args->buf + ARG_MAX;
1009 * Copy the file name.
1011 if (segflg == PATH_SYSSPACE)
1012 error = copystr(fname, args->fname, PATH_MAX, &length);
1013 else
1014 error = copyinstr(fname, args->fname, PATH_MAX, &length);
1015 if (error)
1016 return (error);
1019 * Extract argument strings. argv may not be NULL. The argv
1020 * array is terminated by a NULL entry. We special-case the
1021 * situation where argv[0] is NULL by passing { filename, NULL }
1022 * to the new program to guarentee that the interpreter knows what
1023 * file to open in case we exec an interpreted file. Note that
1024 * a NULL argv[0] terminates the argv[] array.
1026 * XXX the special-casing of argv[0] is historical and needs to be
1027 * revisited.
1029 if (argv == NULL)
1030 error = EFAULT;
1031 if (error == 0) {
1032 while ((argp = (caddr_t)(intptr_t)
1033 fuword64((uintptr_t *)argv++)) != NULL) {
1034 if (argp == (caddr_t)-1) {
1035 error = EFAULT;
1036 break;
1038 error = copyinstr(argp, args->endp,
1039 args->space, &length);
1040 if (error) {
1041 if (error == ENAMETOOLONG)
1042 error = E2BIG;
1043 break;
1045 args->space -= length;
1046 args->endp += length;
1047 args->argc++;
1049 if (args->argc == 0 && error == 0) {
1050 length = strlen(args->fname) + 1;
1051 if (length > args->space) {
1052 error = E2BIG;
1053 } else {
1054 bcopy(args->fname, args->endp, length);
1055 args->space -= length;
1056 args->endp += length;
1057 args->argc++;
1062 args->begin_envv = args->endp;
1065 * extract environment strings. envv may be NULL.
1067 if (envv && error == 0) {
1068 while ((envp = (caddr_t)(intptr_t)
1069 fuword64((uintptr_t *)envv++))) {
1070 if (envp == (caddr_t) -1) {
1071 error = EFAULT;
1072 break;
1074 error = copyinstr(envp, args->endp,
1075 args->space, &length);
1076 if (error) {
1077 if (error == ENAMETOOLONG)
1078 error = E2BIG;
1079 break;
1081 args->space -= length;
1082 args->endp += length;
1083 args->envc++;
1087 return (error);
1090 static void
1091 exec_free_args(struct image_args *args)
1093 if (args->buf) {
1094 objcache_put(exec_objcache, args->buf);
1095 args->buf = NULL;
1100 * Copy strings out to the new process address space, constructing
1101 * new arg and env vector tables. Return a pointer to the base
1102 * so that it can be used as the initial stack pointer.
1104 * The format is, roughly:
1106 * [argv[]] <-- vectp
1107 * [envp[]]
1108 * [ELF_Auxargs]
1110 * [args & env] <-- destp
1111 * [sgap]
1112 * [SPARE_USRSPACE]
1113 * [execpath]
1114 * [szsigcode] RO|NX
1115 * [ps_strings] RO|NX Top of user stack
1118 static register_t *
1119 exec_copyout_strings(struct image_params *imgp)
1121 int argc, envc, sgap;
1122 int gap;
1123 int argsenvspace;
1124 char **vectp;
1125 char *stringp, *destp, *szsigbase;
1126 register_t *stack_base;
1127 struct ps_strings *arginfo;
1128 size_t execpath_len;
1129 int szsigcode;
1132 * Calculate string base and vector table pointers.
1133 * Also deal with signal trampoline code for this exec type.
1135 if (imgp->execpath != NULL && imgp->auxargs != NULL)
1136 execpath_len = strlen(imgp->execpath) + 1;
1137 else
1138 execpath_len = 0;
1139 arginfo = (struct ps_strings *)PS_STRINGS;
1140 szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
1142 argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
1143 gap = stackgap_random;
1144 cpu_ccfence();
1145 if (gap != 0) {
1146 if (gap < 0)
1147 sgap = ALIGN(-gap);
1148 else
1149 sgap = ALIGN(karc4random() & (gap - 1));
1150 } else {
1151 sgap = 0;
1155 * Calculate destp, which points to [args & env] and above.
1157 szsigbase = (char *)(intptr_t)
1158 trunc_page64((intptr_t)arginfo - szsigcode);
1159 szsigbase -= SZSIGCODE_EXTRA_BYTES;
1160 destp = szsigbase -
1161 roundup(execpath_len, sizeof(char *)) -
1162 SPARE_USRSPACE -
1163 sgap -
1164 argsenvspace;
1167 * install sigcode
1169 if (szsigcode)
1170 copyout(imgp->proc->p_sysent->sv_sigcode, szsigbase, szsigcode);
1173 * Copy the image path for the rtld
1175 if (execpath_len) {
1176 imgp->execpathp = (uintptr_t)szsigbase -
1177 roundup(execpath_len, sizeof(char *));
1178 copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1182 * Calculate base for argv[], envp[], and ELF_Auxargs.
1184 vectp = (char **)destp - (AT_COUNT * 2);
1185 vectp -= imgp->args->argc + imgp->args->envc + 2;
1187 stack_base = (register_t *)vectp;
1189 stringp = imgp->args->begin_argv;
1190 argc = imgp->args->argc;
1191 envc = imgp->args->envc;
1194 * Copy out strings - arguments and environment (at destp)
1196 copyout(stringp, destp, ARG_MAX - imgp->args->space);
1199 * Fill in "ps_strings" struct for ps, w, etc.
1201 suword64((void *)&arginfo->ps_argvstr, (uint64_t)(intptr_t)vectp);
1202 suword32((void *)&arginfo->ps_nargvstr, argc);
1205 * Fill in argument portion of vector table.
1207 for (; argc > 0; --argc) {
1208 suword64((void *)vectp++, (uintptr_t)destp);
1209 while (*stringp++ != 0)
1210 destp++;
1211 destp++;
1214 /* a null vector table pointer separates the argp's from the envp's */
1215 suword64((void *)vectp++, 0);
1217 suword64((void *)&arginfo->ps_envstr, (uintptr_t)vectp);
1218 suword32((void *)&arginfo->ps_nenvstr, envc);
1221 * Fill in environment portion of vector table.
1223 for (; envc > 0; --envc) {
1224 suword64((void *)vectp++, (uintptr_t)destp);
1225 while (*stringp++ != 0)
1226 destp++;
1227 destp++;
1230 /* end of vector table is a null pointer */
1231 suword64((void *)vectp, 0);
1234 * Make the signal trampoline executable and read-only.
1236 vm_map_protect(&imgp->proc->p_vmspace->vm_map,
1237 (vm_offset_t)szsigbase,
1238 (vm_offset_t)szsigbase + PAGE_SIZE,
1239 VM_PROT_READ|VM_PROT_EXECUTE, FALSE);
1241 return (stack_base);
1245 * Check permissions of file to execute.
1246 * Return 0 for success or error code on failure.
1249 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1251 struct proc *p = imgp->proc;
1252 struct vnode *vp = imgp->vp;
1253 struct vattr_lite *lvap = imgp->lvap;
1254 int error;
1256 /* Get file attributes */
1257 error = VOP_GETATTR_LITE(vp, lvap);
1258 if (error)
1259 return (error);
1262 * 1) Check if file execution is disabled for the filesystem that this
1263 * file resides on.
1264 * 2) Insure that at least one execute bit is on - otherwise root
1265 * will always succeed, and we don't want to happen unless the
1266 * file really is executable.
1267 * 3) Insure that the file is a regular file.
1269 if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1270 ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1271 ((lvap->va_mode & 0111) == 0) ||
1272 (lvap->va_type != VREG)) {
1273 return (EACCES);
1277 * Zero length files can't be exec'd
1279 if (lvap->va_size == 0)
1280 return (ENOEXEC);
1283 * Check for execute permission to file based on current credentials.
1285 error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1286 if (error)
1287 return (error);
1290 * Check number of open-for-writes on the file and deny execution
1291 * if there are any.
1293 if (vp->v_writecount)
1294 return (ETXTBSY);
1297 * Call filesystem specific open routine, which allows us to read,
1298 * write, and mmap the file. Without the VOP_OPEN we can only
1299 * stat the file.
1301 error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1302 if (error)
1303 return (error);
1305 return (0);
1309 * Exec handler registration
1312 exec_register(const struct execsw *execsw_arg)
1314 const struct execsw **es, **xs, **newexecsw;
1315 int count = 2; /* New slot and trailing NULL */
1317 if (execsw)
1318 for (es = execsw; *es; es++)
1319 count++;
1320 newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1321 xs = newexecsw;
1322 if (execsw)
1323 for (es = execsw; *es; es++)
1324 *xs++ = *es;
1325 *xs++ = execsw_arg;
1326 *xs = NULL;
1327 if (execsw)
1328 kfree(execsw, M_TEMP);
1329 execsw = newexecsw;
1330 return 0;
1334 exec_unregister(const struct execsw *execsw_arg)
1336 const struct execsw **es, **xs, **newexecsw;
1337 int count = 1;
1339 if (execsw == NULL)
1340 panic("unregister with no handlers left?");
1342 for (es = execsw; *es; es++) {
1343 if (*es == execsw_arg)
1344 break;
1346 if (*es == NULL)
1347 return ENOENT;
1348 for (es = execsw; *es; es++)
1349 if (*es != execsw_arg)
1350 count++;
1351 newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1352 xs = newexecsw;
1353 for (es = execsw; *es; es++)
1354 if (*es != execsw_arg)
1355 *xs++ = *es;
1356 *xs = NULL;
1357 if (execsw)
1358 kfree(execsw, M_TEMP);
1359 execsw = newexecsw;
1360 return 0;