sed(1): Move regex.h to be the last included
[dragonfly.git] / sys / kern / kern_descrip.c
blob90d9a880bef56515f3791bba23ce45d2512835ab
1 /*
2 * Copyright (c) 2005 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Jeffrey Hsu.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1989, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
67 * @(#)kern_descrip.c 8.6 (Berkeley) 4/19/94
68 * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
71 #include "opt_compat.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/sysproto.h>
76 #include <sys/conf.h>
77 #include <sys/device.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/vnode.h>
83 #include <sys/proc.h>
84 #include <sys/nlookup.h>
85 #include <sys/stat.h>
86 #include <sys/filio.h>
87 #include <sys/fcntl.h>
88 #include <sys/unistd.h>
89 #include <sys/resourcevar.h>
90 #include <sys/event.h>
91 #include <sys/kern_syscall.h>
92 #include <sys/kcore.h>
93 #include <sys/kinfo.h>
94 #include <sys/un.h>
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
99 #include <sys/thread2.h>
100 #include <sys/file2.h>
101 #include <sys/spinlock2.h>
103 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
104 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
105 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
106 static void ffree(struct file *fp);
108 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
109 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
110 "file desc to leader structures");
111 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
112 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
114 static struct krate krate_uidinfo = { .freq = 1 };
116 static d_open_t fdopen;
117 #define NUMFDESC 64
119 #define CDEV_MAJOR 22
120 static struct dev_ops fildesc_ops = {
121 { "FD", 0, 0 },
122 .d_open = fdopen,
126 * Descriptor management.
128 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
129 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin, "filehead_spin");
130 static int nfiles; /* actual number of open files */
131 extern int cmask;
134 * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
136 * must be called with fdp->fd_spin exclusively held
138 static __inline
139 void
140 fdfixup_locked(struct filedesc *fdp, int fd)
142 if (fd < fdp->fd_freefile) {
143 fdp->fd_freefile = fd;
145 while (fdp->fd_lastfile >= 0 &&
146 fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
147 fdp->fd_files[fdp->fd_lastfile].reserved == 0
149 --fdp->fd_lastfile;
154 * System calls on descriptors.
157 sys_getdtablesize(struct getdtablesize_args *uap)
159 struct proc *p = curproc;
160 struct plimit *limit = p->p_limit;
161 int dtsize;
163 spin_lock(&limit->p_spin);
164 if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
165 dtsize = INT_MAX;
166 else
167 dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
168 spin_unlock(&limit->p_spin);
170 if (dtsize > maxfilesperproc)
171 dtsize = maxfilesperproc;
172 if (dtsize < minfilesperproc)
173 dtsize = minfilesperproc;
174 if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
175 dtsize = maxfilesperuser;
176 uap->sysmsg_result = dtsize;
177 return (0);
181 * Duplicate a file descriptor to a particular value.
183 * note: keep in mind that a potential race condition exists when closing
184 * descriptors from a shared descriptor table (via rfork).
187 sys_dup2(struct dup2_args *uap)
189 int error;
190 int fd = 0;
192 error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
193 uap->sysmsg_fds[0] = fd;
195 return (error);
199 * Duplicate a file descriptor.
202 sys_dup(struct dup_args *uap)
204 int error;
205 int fd = 0;
207 error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
208 uap->sysmsg_fds[0] = fd;
210 return (error);
214 * MPALMOSTSAFE - acquires mplock for fp operations
217 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
219 struct thread *td = curthread;
220 struct proc *p = td->td_proc;
221 struct file *fp;
222 struct vnode *vp;
223 u_int newmin;
224 u_int oflags;
225 u_int nflags;
226 int tmp, error, flg = F_POSIX;
228 KKASSERT(p);
231 * Operations on file descriptors that do not require a file pointer.
233 switch (cmd) {
234 case F_GETFD:
235 error = fgetfdflags(p->p_fd, fd, &tmp);
236 if (error == 0)
237 dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
238 return (error);
240 case F_SETFD:
241 if (dat->fc_cloexec & FD_CLOEXEC)
242 error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
243 else
244 error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
245 return (error);
246 case F_DUPFD:
247 newmin = dat->fc_fd;
248 error = kern_dup(DUP_VARIABLE | DUP_FCNTL, fd, newmin,
249 &dat->fc_fd);
250 return (error);
251 case F_DUPFD_CLOEXEC:
252 newmin = dat->fc_fd;
253 error = kern_dup(DUP_VARIABLE | DUP_CLOEXEC | DUP_FCNTL,
254 fd, newmin, &dat->fc_fd);
255 return (error);
256 case F_DUP2FD:
257 newmin = dat->fc_fd;
258 error = kern_dup(DUP_FIXED, fd, newmin, &dat->fc_fd);
259 return (error);
260 case F_DUP2FD_CLOEXEC:
261 newmin = dat->fc_fd;
262 error = kern_dup(DUP_FIXED | DUP_CLOEXEC, fd, newmin,
263 &dat->fc_fd);
264 return (error);
265 default:
266 break;
270 * Operations on file pointers
272 if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
273 return (EBADF);
275 switch (cmd) {
276 case F_GETFL:
277 dat->fc_flags = OFLAGS(fp->f_flag);
278 error = 0;
279 break;
281 case F_SETFL:
282 oflags = fp->f_flag;
283 nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
284 nflags |= oflags & ~FCNTLFLAGS;
286 error = 0;
287 if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
288 error = EINVAL;
289 if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
290 tmp = nflags & FASYNC;
291 error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
292 cred, NULL);
296 * If no error, must be atomically set.
298 while (error == 0) {
299 oflags = fp->f_flag;
300 cpu_ccfence();
301 nflags = (oflags & ~FCNTLFLAGS) | (nflags & FCNTLFLAGS);
302 if (atomic_cmpset_int(&fp->f_flag, oflags, nflags))
303 break;
304 cpu_pause();
306 break;
308 case F_GETOWN:
309 error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
310 cred, NULL);
311 break;
313 case F_SETOWN:
314 error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
315 cred, NULL);
316 break;
318 case F_SETLKW:
319 flg |= F_WAIT;
320 /* Fall into F_SETLK */
322 case F_SETLK:
323 if (fp->f_type != DTYPE_VNODE) {
324 error = EBADF;
325 break;
327 vp = (struct vnode *)fp->f_data;
330 * copyin/lockop may block
332 if (dat->fc_flock.l_whence == SEEK_CUR)
333 dat->fc_flock.l_start += fp->f_offset;
335 switch (dat->fc_flock.l_type) {
336 case F_RDLCK:
337 if ((fp->f_flag & FREAD) == 0) {
338 error = EBADF;
339 break;
341 if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
342 lwkt_gettoken(&p->p_leader->p_token);
343 p->p_leader->p_flags |= P_ADVLOCK;
344 lwkt_reltoken(&p->p_leader->p_token);
346 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
347 &dat->fc_flock, flg);
348 break;
349 case F_WRLCK:
350 if ((fp->f_flag & FWRITE) == 0) {
351 error = EBADF;
352 break;
354 if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
355 lwkt_gettoken(&p->p_leader->p_token);
356 p->p_leader->p_flags |= P_ADVLOCK;
357 lwkt_reltoken(&p->p_leader->p_token);
359 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
360 &dat->fc_flock, flg);
361 break;
362 case F_UNLCK:
363 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
364 &dat->fc_flock, F_POSIX);
365 break;
366 default:
367 error = EINVAL;
368 break;
372 * It is possible to race a close() on the descriptor while
373 * we were blocked getting the lock. If this occurs the
374 * close might not have caught the lock.
376 if (checkfdclosed(p->p_fd, fd, fp)) {
377 dat->fc_flock.l_whence = SEEK_SET;
378 dat->fc_flock.l_start = 0;
379 dat->fc_flock.l_len = 0;
380 dat->fc_flock.l_type = F_UNLCK;
381 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
382 F_UNLCK, &dat->fc_flock, F_POSIX);
384 break;
386 case F_GETLK:
387 if (fp->f_type != DTYPE_VNODE) {
388 error = EBADF;
389 break;
391 vp = (struct vnode *)fp->f_data;
393 * copyin/lockop may block
395 if (dat->fc_flock.l_type != F_RDLCK &&
396 dat->fc_flock.l_type != F_WRLCK &&
397 dat->fc_flock.l_type != F_UNLCK) {
398 error = EINVAL;
399 break;
401 if (dat->fc_flock.l_whence == SEEK_CUR)
402 dat->fc_flock.l_start += fp->f_offset;
403 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
404 &dat->fc_flock, F_POSIX);
405 break;
406 default:
407 error = EINVAL;
408 break;
411 fdrop(fp);
412 return (error);
416 * The file control system call.
419 sys_fcntl(struct fcntl_args *uap)
421 union fcntl_dat dat;
422 int error;
424 switch (uap->cmd) {
425 case F_DUPFD:
426 case F_DUP2FD:
427 case F_DUPFD_CLOEXEC:
428 case F_DUP2FD_CLOEXEC:
429 dat.fc_fd = uap->arg;
430 break;
431 case F_SETFD:
432 dat.fc_cloexec = uap->arg;
433 break;
434 case F_SETFL:
435 dat.fc_flags = uap->arg;
436 break;
437 case F_SETOWN:
438 dat.fc_owner = uap->arg;
439 break;
440 case F_SETLKW:
441 case F_SETLK:
442 case F_GETLK:
443 error = copyin((caddr_t)uap->arg, &dat.fc_flock,
444 sizeof(struct flock));
445 if (error)
446 return (error);
447 break;
450 error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
452 if (error == 0) {
453 switch (uap->cmd) {
454 case F_DUPFD:
455 case F_DUP2FD:
456 case F_DUPFD_CLOEXEC:
457 case F_DUP2FD_CLOEXEC:
458 uap->sysmsg_result = dat.fc_fd;
459 break;
460 case F_GETFD:
461 uap->sysmsg_result = dat.fc_cloexec;
462 break;
463 case F_GETFL:
464 uap->sysmsg_result = dat.fc_flags;
465 break;
466 case F_GETOWN:
467 uap->sysmsg_result = dat.fc_owner;
468 break;
469 case F_GETLK:
470 error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
471 sizeof(struct flock));
472 break;
476 return (error);
480 * Common code for dup, dup2, and fcntl(F_DUPFD).
482 * There are four type flags: DUP_FCNTL, DUP_FIXED, DUP_VARIABLE, and
483 * DUP_CLOEXEC.
485 * DUP_FCNTL is for handling EINVAL vs. EBADF differences between
486 * fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC and dup2() (per POSIX).
487 * The next two flags are mutually exclusive, and the fourth is optional.
488 * DUP_FIXED tells kern_dup() to destructively dup over an existing file
489 * descriptor if "new" is already open. DUP_VARIABLE tells kern_dup()
490 * to find the lowest unused file descriptor that is greater than or
491 * equal to "new". DUP_CLOEXEC, which works with either of the first
492 * two flags, sets the close-on-exec flag on the "new" file descriptor.
495 kern_dup(int flags, int old, int new, int *res)
497 struct thread *td = curthread;
498 struct proc *p = td->td_proc;
499 struct filedesc *fdp = p->p_fd;
500 struct file *fp;
501 struct file *delfp;
502 int oldflags;
503 int holdleaders;
504 int dtsize;
505 int error, newfd;
508 * Verify that we have a valid descriptor to dup from and
509 * possibly to dup to. When the new descriptor is out of
510 * bounds, fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC must
511 * return EINVAL, while dup2() returns EBADF in
512 * this case.
514 * NOTE: maxfilesperuser is not applicable to dup()
516 retry:
517 if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
518 dtsize = INT_MAX;
519 else
520 dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
521 if (dtsize > maxfilesperproc)
522 dtsize = maxfilesperproc;
523 if (dtsize < minfilesperproc)
524 dtsize = minfilesperproc;
526 if (new < 0 || new > dtsize)
527 return (flags & DUP_FCNTL ? EINVAL : EBADF);
529 spin_lock(&fdp->fd_spin);
530 if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
531 spin_unlock(&fdp->fd_spin);
532 return (EBADF);
534 if ((flags & DUP_FIXED) && old == new) {
535 *res = new;
536 if (flags & DUP_CLOEXEC)
537 fdp->fd_files[new].fileflags |= UF_EXCLOSE;
538 spin_unlock(&fdp->fd_spin);
539 return (0);
541 fp = fdp->fd_files[old].fp;
542 oldflags = fdp->fd_files[old].fileflags;
543 fhold(fp);
546 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
547 * if the requested descriptor is beyond the current table size.
549 * This can block. Retry if the source descriptor no longer matches
550 * or if our expectation in the expansion case races.
552 * If we are not expanding or allocating a new decriptor, then reset
553 * the target descriptor to a reserved state so we have a uniform
554 * setup for the next code block.
556 if ((flags & DUP_VARIABLE) || new >= fdp->fd_nfiles) {
557 spin_unlock(&fdp->fd_spin);
558 error = fdalloc(p, new, &newfd);
559 spin_lock(&fdp->fd_spin);
560 if (error) {
561 spin_unlock(&fdp->fd_spin);
562 fdrop(fp);
563 return (error);
566 * Check for ripout
568 if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
569 fsetfd_locked(fdp, NULL, newfd);
570 spin_unlock(&fdp->fd_spin);
571 fdrop(fp);
572 goto retry;
575 * Check for expansion race
577 if ((flags & DUP_VARIABLE) == 0 && new != newfd) {
578 fsetfd_locked(fdp, NULL, newfd);
579 spin_unlock(&fdp->fd_spin);
580 fdrop(fp);
581 goto retry;
584 * Check for ripout, newfd reused old (this case probably
585 * can't occur).
587 if (old == newfd) {
588 fsetfd_locked(fdp, NULL, newfd);
589 spin_unlock(&fdp->fd_spin);
590 fdrop(fp);
591 goto retry;
593 new = newfd;
594 delfp = NULL;
595 } else {
596 if (fdp->fd_files[new].reserved) {
597 spin_unlock(&fdp->fd_spin);
598 fdrop(fp);
599 kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
600 tsleep(fdp, 0, "fdres", hz);
601 goto retry;
605 * If the target descriptor was never allocated we have
606 * to allocate it. If it was we have to clean out the
607 * old descriptor. delfp inherits the ref from the
608 * descriptor table.
610 delfp = fdp->fd_files[new].fp;
611 fdp->fd_files[new].fp = NULL;
612 fdp->fd_files[new].reserved = 1;
613 if (delfp == NULL) {
614 fdreserve_locked(fdp, new, 1);
615 if (new > fdp->fd_lastfile)
616 fdp->fd_lastfile = new;
622 * NOTE: still holding an exclusive spinlock
626 * If a descriptor is being overwritten we may hve to tell
627 * fdfree() to sleep to ensure that all relevant process
628 * leaders can be traversed in closef().
630 if (delfp != NULL && p->p_fdtol != NULL) {
631 fdp->fd_holdleaderscount++;
632 holdleaders = 1;
633 } else {
634 holdleaders = 0;
636 KASSERT(delfp == NULL || (flags & DUP_FIXED),
637 ("dup() picked an open file"));
640 * Duplicate the source descriptor, update lastfile. If the new
641 * descriptor was not allocated and we aren't replacing an existing
642 * descriptor we have to mark the descriptor as being in use.
644 * The fd_files[] array inherits fp's hold reference.
646 fsetfd_locked(fdp, fp, new);
647 if ((flags & DUP_CLOEXEC) != 0)
648 fdp->fd_files[new].fileflags = oldflags | UF_EXCLOSE;
649 else
650 fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
651 spin_unlock(&fdp->fd_spin);
652 fdrop(fp);
653 *res = new;
656 * If we dup'd over a valid file, we now own the reference to it
657 * and must dispose of it using closef() semantics (as if a
658 * close() were performed on it).
660 if (delfp) {
661 if (SLIST_FIRST(&delfp->f_klist))
662 knote_fdclose(delfp, fdp, new);
663 closef(delfp, p);
664 if (holdleaders) {
665 spin_lock(&fdp->fd_spin);
666 fdp->fd_holdleaderscount--;
667 if (fdp->fd_holdleaderscount == 0 &&
668 fdp->fd_holdleaderswakeup != 0) {
669 fdp->fd_holdleaderswakeup = 0;
670 spin_unlock(&fdp->fd_spin);
671 wakeup(&fdp->fd_holdleaderscount);
672 } else {
673 spin_unlock(&fdp->fd_spin);
677 return (0);
681 * If sigio is on the list associated with a process or process group,
682 * disable signalling from the device, remove sigio from the list and
683 * free sigio.
685 void
686 funsetown(struct sigio **sigiop)
688 struct pgrp *pgrp;
689 struct proc *p;
690 struct sigio *sigio;
692 if ((sigio = *sigiop) != NULL) {
693 lwkt_gettoken(&sigio_token); /* protect sigio */
694 KKASSERT(sigiop == sigio->sio_myref);
695 sigio = *sigiop;
696 *sigiop = NULL;
697 lwkt_reltoken(&sigio_token);
699 if (sigio == NULL)
700 return;
702 if (sigio->sio_pgid < 0) {
703 pgrp = sigio->sio_pgrp;
704 sigio->sio_pgrp = NULL;
705 lwkt_gettoken(&pgrp->pg_token);
706 SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
707 lwkt_reltoken(&pgrp->pg_token);
708 pgrel(pgrp);
709 } else /* if ((*sigiop)->sio_pgid > 0) */ {
710 p = sigio->sio_proc;
711 sigio->sio_proc = NULL;
712 PHOLD(p);
713 lwkt_gettoken(&p->p_token);
714 SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
715 lwkt_reltoken(&p->p_token);
716 PRELE(p);
718 crfree(sigio->sio_ucred);
719 sigio->sio_ucred = NULL;
720 kfree(sigio, M_SIGIO);
724 * Free a list of sigio structures. Caller is responsible for ensuring
725 * that the list is MPSAFE.
727 void
728 funsetownlst(struct sigiolst *sigiolst)
730 struct sigio *sigio;
732 while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
733 funsetown(sigio->sio_myref);
737 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
739 * After permission checking, add a sigio structure to the sigio list for
740 * the process or process group.
743 fsetown(pid_t pgid, struct sigio **sigiop)
745 struct proc *proc = NULL;
746 struct pgrp *pgrp = NULL;
747 struct sigio *sigio;
748 int error;
750 if (pgid == 0) {
751 funsetown(sigiop);
752 return (0);
755 if (pgid > 0) {
756 proc = pfind(pgid);
757 if (proc == NULL) {
758 error = ESRCH;
759 goto done;
763 * Policy - Don't allow a process to FSETOWN a process
764 * in another session.
766 * Remove this test to allow maximum flexibility or
767 * restrict FSETOWN to the current process or process
768 * group for maximum safety.
770 if (proc->p_session != curproc->p_session) {
771 error = EPERM;
772 goto done;
774 } else /* if (pgid < 0) */ {
775 pgrp = pgfind(-pgid);
776 if (pgrp == NULL) {
777 error = ESRCH;
778 goto done;
782 * Policy - Don't allow a process to FSETOWN a process
783 * in another session.
785 * Remove this test to allow maximum flexibility or
786 * restrict FSETOWN to the current process or process
787 * group for maximum safety.
789 if (pgrp->pg_session != curproc->p_session) {
790 error = EPERM;
791 goto done;
794 sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
795 if (pgid > 0) {
796 KKASSERT(pgrp == NULL);
797 lwkt_gettoken(&proc->p_token);
798 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
799 sigio->sio_proc = proc;
800 lwkt_reltoken(&proc->p_token);
801 } else {
802 KKASSERT(proc == NULL);
803 lwkt_gettoken(&pgrp->pg_token);
804 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
805 sigio->sio_pgrp = pgrp;
806 lwkt_reltoken(&pgrp->pg_token);
807 pgrp = NULL;
809 sigio->sio_pgid = pgid;
810 sigio->sio_ucred = crhold(curthread->td_ucred);
811 /* It would be convenient if p_ruid was in ucred. */
812 sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
813 sigio->sio_myref = sigiop;
815 lwkt_gettoken(&sigio_token);
816 while (*sigiop)
817 funsetown(sigiop);
818 *sigiop = sigio;
819 lwkt_reltoken(&sigio_token);
820 error = 0;
821 done:
822 if (pgrp)
823 pgrel(pgrp);
824 if (proc)
825 PRELE(proc);
826 return (error);
830 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
832 pid_t
833 fgetown(struct sigio **sigiop)
835 struct sigio *sigio;
836 pid_t own;
838 lwkt_gettoken_shared(&sigio_token);
839 sigio = *sigiop;
840 own = (sigio != NULL ? sigio->sio_pgid : 0);
841 lwkt_reltoken(&sigio_token);
843 return (own);
847 * Close many file descriptors.
850 sys_closefrom(struct closefrom_args *uap)
852 return(kern_closefrom(uap->fd));
856 * Close all file descriptors greater then or equal to fd
859 kern_closefrom(int fd)
861 struct thread *td = curthread;
862 struct proc *p = td->td_proc;
863 struct filedesc *fdp;
865 KKASSERT(p);
866 fdp = p->p_fd;
868 if (fd < 0)
869 return (EINVAL);
872 * NOTE: This function will skip unassociated descriptors and
873 * reserved descriptors that have not yet been assigned.
874 * fd_lastfile can change as a side effect of kern_close().
876 spin_lock(&fdp->fd_spin);
877 while (fd <= fdp->fd_lastfile) {
878 if (fdp->fd_files[fd].fp != NULL) {
879 spin_unlock(&fdp->fd_spin);
880 /* ok if this races another close */
881 if (kern_close(fd) == EINTR)
882 return (EINTR);
883 spin_lock(&fdp->fd_spin);
885 ++fd;
887 spin_unlock(&fdp->fd_spin);
888 return (0);
892 * Close a file descriptor.
895 sys_close(struct close_args *uap)
897 return(kern_close(uap->fd));
901 * close() helper
904 kern_close(int fd)
906 struct thread *td = curthread;
907 struct proc *p = td->td_proc;
908 struct filedesc *fdp;
909 struct file *fp;
910 int error;
911 int holdleaders;
913 KKASSERT(p);
914 fdp = p->p_fd;
916 spin_lock(&fdp->fd_spin);
917 if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
918 spin_unlock(&fdp->fd_spin);
919 return (EBADF);
921 holdleaders = 0;
922 if (p->p_fdtol != NULL) {
924 * Ask fdfree() to sleep to ensure that all relevant
925 * process leaders can be traversed in closef().
927 fdp->fd_holdleaderscount++;
928 holdleaders = 1;
932 * we now hold the fp reference that used to be owned by the descriptor
933 * array.
935 spin_unlock(&fdp->fd_spin);
936 if (SLIST_FIRST(&fp->f_klist))
937 knote_fdclose(fp, fdp, fd);
938 error = closef(fp, p);
939 if (holdleaders) {
940 spin_lock(&fdp->fd_spin);
941 fdp->fd_holdleaderscount--;
942 if (fdp->fd_holdleaderscount == 0 &&
943 fdp->fd_holdleaderswakeup != 0) {
944 fdp->fd_holdleaderswakeup = 0;
945 spin_unlock(&fdp->fd_spin);
946 wakeup(&fdp->fd_holdleaderscount);
947 } else {
948 spin_unlock(&fdp->fd_spin);
951 return (error);
955 * shutdown_args(int fd, int how)
958 kern_shutdown(int fd, int how)
960 struct thread *td = curthread;
961 struct proc *p = td->td_proc;
962 struct file *fp;
963 int error;
965 KKASSERT(p);
967 if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
968 return (EBADF);
969 error = fo_shutdown(fp, how);
970 fdrop(fp);
972 return (error);
976 * MPALMOSTSAFE
979 sys_shutdown(struct shutdown_args *uap)
981 int error;
983 error = kern_shutdown(uap->s, uap->how);
985 return (error);
989 * fstat() helper
992 kern_fstat(int fd, struct stat *ub)
994 struct thread *td = curthread;
995 struct proc *p = td->td_proc;
996 struct file *fp;
997 int error;
999 KKASSERT(p);
1001 if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
1002 return (EBADF);
1003 error = fo_stat(fp, ub, td->td_ucred);
1004 fdrop(fp);
1006 return (error);
1010 * Return status information about a file descriptor.
1013 sys_fstat(struct fstat_args *uap)
1015 struct stat st;
1016 int error;
1018 error = kern_fstat(uap->fd, &st);
1020 if (error == 0)
1021 error = copyout(&st, uap->sb, sizeof(st));
1022 return (error);
1026 * Return pathconf information about a file descriptor.
1028 * MPALMOSTSAFE
1031 sys_fpathconf(struct fpathconf_args *uap)
1033 struct thread *td = curthread;
1034 struct proc *p = td->td_proc;
1035 struct file *fp;
1036 struct vnode *vp;
1037 int error = 0;
1039 if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
1040 return (EBADF);
1042 switch (fp->f_type) {
1043 case DTYPE_PIPE:
1044 case DTYPE_SOCKET:
1045 if (uap->name != _PC_PIPE_BUF) {
1046 error = EINVAL;
1047 } else {
1048 uap->sysmsg_result = PIPE_BUF;
1049 error = 0;
1051 break;
1052 case DTYPE_FIFO:
1053 case DTYPE_VNODE:
1054 vp = (struct vnode *)fp->f_data;
1055 error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1056 break;
1057 default:
1058 error = EOPNOTSUPP;
1059 break;
1061 fdrop(fp);
1062 return(error);
1065 static int fdexpand;
1066 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
1067 "Number of times a file table has been expanded");
1070 * Grow the file table so it can hold through descriptor (want).
1072 * The fdp's spinlock must be held exclusively on entry and may be held
1073 * exclusively on return. The spinlock may be cycled by the routine.
1075 static void
1076 fdgrow_locked(struct filedesc *fdp, int want)
1078 struct fdnode *newfiles;
1079 struct fdnode *oldfiles;
1080 int nf, extra;
1082 nf = fdp->fd_nfiles;
1083 do {
1084 /* nf has to be of the form 2^n - 1 */
1085 nf = 2 * nf + 1;
1086 } while (nf <= want);
1088 spin_unlock(&fdp->fd_spin);
1089 newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1090 spin_lock(&fdp->fd_spin);
1093 * We could have raced another extend while we were not holding
1094 * the spinlock.
1096 if (fdp->fd_nfiles >= nf) {
1097 spin_unlock(&fdp->fd_spin);
1098 kfree(newfiles, M_FILEDESC);
1099 spin_lock(&fdp->fd_spin);
1100 return;
1103 * Copy the existing ofile and ofileflags arrays
1104 * and zero the new portion of each array.
1106 extra = nf - fdp->fd_nfiles;
1107 bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1108 bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1110 oldfiles = fdp->fd_files;
1111 fdp->fd_files = newfiles;
1112 fdp->fd_nfiles = nf;
1114 if (oldfiles != fdp->fd_builtin_files) {
1115 spin_unlock(&fdp->fd_spin);
1116 kfree(oldfiles, M_FILEDESC);
1117 spin_lock(&fdp->fd_spin);
1119 fdexpand++;
1123 * Number of nodes in right subtree, including the root.
1125 static __inline int
1126 right_subtree_size(int n)
1128 return (n ^ (n | (n + 1)));
1132 * Bigger ancestor.
1134 static __inline int
1135 right_ancestor(int n)
1137 return (n | (n + 1));
1141 * Smaller ancestor.
1143 static __inline int
1144 left_ancestor(int n)
1146 return ((n & (n + 1)) - 1);
1150 * Traverse the in-place binary tree buttom-up adjusting the allocation
1151 * count so scans can determine where free descriptors are located.
1153 * caller must be holding an exclusive spinlock on fdp
1155 static
1156 void
1157 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1159 while (fd >= 0) {
1160 fdp->fd_files[fd].allocated += incr;
1161 KKASSERT(fdp->fd_files[fd].allocated >= 0);
1162 fd = left_ancestor(fd);
1167 * Reserve a file descriptor for the process. If no error occurs, the
1168 * caller MUST at some point call fsetfd() or assign a file pointer
1169 * or dispose of the reservation.
1172 fdalloc(struct proc *p, int want, int *result)
1174 struct filedesc *fdp = p->p_fd;
1175 struct uidinfo *uip;
1176 int fd, rsize, rsum, node, lim;
1179 * Check dtable size limit
1181 spin_lock(&p->p_limit->p_spin);
1182 if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1183 lim = INT_MAX;
1184 else
1185 lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1186 spin_unlock(&p->p_limit->p_spin);
1188 if (lim > maxfilesperproc)
1189 lim = maxfilesperproc;
1190 if (lim < minfilesperproc)
1191 lim = minfilesperproc;
1192 if (want >= lim)
1193 return (EMFILE);
1196 * Check that the user has not run out of descriptors (non-root only).
1197 * As a safety measure the dtable is allowed to have at least
1198 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1200 if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1201 uip = p->p_ucred->cr_uidinfo;
1202 if (uip->ui_openfiles > maxfilesperuser) {
1203 krateprintf(&krate_uidinfo,
1204 "Warning: user %d pid %d (%s) ran out of "
1205 "file descriptors (%d/%d)\n",
1206 p->p_ucred->cr_uid, (int)p->p_pid,
1207 p->p_comm,
1208 uip->ui_openfiles, maxfilesperuser);
1209 return(ENFILE);
1214 * Grow the dtable if necessary
1216 spin_lock(&fdp->fd_spin);
1217 if (want >= fdp->fd_nfiles)
1218 fdgrow_locked(fdp, want);
1221 * Search for a free descriptor starting at the higher
1222 * of want or fd_freefile. If that fails, consider
1223 * expanding the ofile array.
1225 * NOTE! the 'allocated' field is a cumulative recursive allocation
1226 * count. If we happen to see a value of 0 then we can shortcut
1227 * our search. Otherwise we run through through the tree going
1228 * down branches we know have free descriptor(s) until we hit a
1229 * leaf node. The leaf node will be free but will not necessarily
1230 * have an allocated field of 0.
1232 retry:
1233 /* move up the tree looking for a subtree with a free node */
1234 for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1235 fd = right_ancestor(fd)) {
1236 if (fdp->fd_files[fd].allocated == 0)
1237 goto found;
1239 rsize = right_subtree_size(fd);
1240 if (fdp->fd_files[fd].allocated == rsize)
1241 continue; /* right subtree full */
1244 * Free fd is in the right subtree of the tree rooted at fd.
1245 * Call that subtree R. Look for the smallest (leftmost)
1246 * subtree of R with an unallocated fd: continue moving
1247 * down the left branch until encountering a full left
1248 * subtree, then move to the right.
1250 for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1251 node = fd + rsize;
1252 rsum += fdp->fd_files[node].allocated;
1253 if (fdp->fd_files[fd].allocated == rsum + rsize) {
1254 fd = node; /* move to the right */
1255 if (fdp->fd_files[node].allocated == 0)
1256 goto found;
1257 rsum = 0;
1260 goto found;
1264 * No space in current array. Expand?
1266 if (fdp->fd_nfiles >= lim) {
1267 spin_unlock(&fdp->fd_spin);
1268 return (EMFILE);
1270 fdgrow_locked(fdp, want);
1271 goto retry;
1273 found:
1274 KKASSERT(fd < fdp->fd_nfiles);
1275 if (fd > fdp->fd_lastfile)
1276 fdp->fd_lastfile = fd;
1277 if (want <= fdp->fd_freefile)
1278 fdp->fd_freefile = fd;
1279 *result = fd;
1280 KKASSERT(fdp->fd_files[fd].fp == NULL);
1281 KKASSERT(fdp->fd_files[fd].reserved == 0);
1282 fdp->fd_files[fd].fileflags = 0;
1283 fdp->fd_files[fd].reserved = 1;
1284 fdreserve_locked(fdp, fd, 1);
1285 spin_unlock(&fdp->fd_spin);
1286 return (0);
1290 * Check to see whether n user file descriptors
1291 * are available to the process p.
1294 fdavail(struct proc *p, int n)
1296 struct filedesc *fdp = p->p_fd;
1297 struct fdnode *fdnode;
1298 int i, lim, last;
1300 spin_lock(&p->p_limit->p_spin);
1301 if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1302 lim = INT_MAX;
1303 else
1304 lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1305 spin_unlock(&p->p_limit->p_spin);
1307 if (lim > maxfilesperproc)
1308 lim = maxfilesperproc;
1309 if (lim < minfilesperproc)
1310 lim = minfilesperproc;
1312 spin_lock(&fdp->fd_spin);
1313 if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1314 spin_unlock(&fdp->fd_spin);
1315 return (1);
1317 last = min(fdp->fd_nfiles, lim);
1318 fdnode = &fdp->fd_files[fdp->fd_freefile];
1319 for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1320 if (fdnode->fp == NULL && --n <= 0) {
1321 spin_unlock(&fdp->fd_spin);
1322 return (1);
1325 spin_unlock(&fdp->fd_spin);
1326 return (0);
1330 * Revoke open descriptors referencing (f_data, f_type)
1332 * Any revoke executed within a prison is only able to
1333 * revoke descriptors for processes within that prison.
1335 * Returns 0 on success or an error code.
1337 struct fdrevoke_info {
1338 void *data;
1339 short type;
1340 short unused;
1341 int count;
1342 int intransit;
1343 struct ucred *cred;
1344 struct file *nfp;
1347 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1348 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1351 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1353 struct fdrevoke_info info;
1354 int error;
1356 bzero(&info, sizeof(info));
1357 info.data = f_data;
1358 info.type = f_type;
1359 info.cred = cred;
1360 error = falloc(NULL, &info.nfp, NULL);
1361 if (error)
1362 return (error);
1365 * Scan the file pointer table once. dups do not dup file pointers,
1366 * only descriptors, so there is no leak. Set FREVOKED on the fps
1367 * being revoked.
1369 allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1372 * If any fps were marked track down the related descriptors
1373 * and close them. Any dup()s at this point will notice
1374 * the FREVOKED already set in the fp and do the right thing.
1376 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1377 * socket) bumped the intransit counter and will require a
1378 * scan. Races against fps leaving the socket are closed by
1379 * the socket code checking for FREVOKED.
1381 if (info.count)
1382 allproc_scan(fdrevoke_proc_callback, &info);
1383 if (info.intransit)
1384 unp_revoke_gc(info.nfp);
1385 fdrop(info.nfp);
1386 return(0);
1390 * Locate matching file pointers directly.
1392 * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1394 static int
1395 fdrevoke_check_callback(struct file *fp, void *vinfo)
1397 struct fdrevoke_info *info = vinfo;
1400 * File pointers already flagged for revokation are skipped.
1402 if (fp->f_flag & FREVOKED)
1403 return(0);
1406 * If revoking from a prison file pointers created outside of
1407 * that prison, or file pointers without creds, cannot be revoked.
1409 if (info->cred->cr_prison &&
1410 (fp->f_cred == NULL ||
1411 info->cred->cr_prison != fp->f_cred->cr_prison)) {
1412 return(0);
1416 * If the file pointer matches then mark it for revocation. The
1417 * flag is currently only used by unp_revoke_gc().
1419 * info->count is a heuristic and can race in a SMP environment.
1421 if (info->data == fp->f_data && info->type == fp->f_type) {
1422 atomic_set_int(&fp->f_flag, FREVOKED);
1423 info->count += fp->f_count;
1424 if (fp->f_msgcount)
1425 ++info->intransit;
1427 return(0);
1431 * Locate matching file pointers via process descriptor tables.
1433 static int
1434 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1436 struct fdrevoke_info *info = vinfo;
1437 struct filedesc *fdp;
1438 struct file *fp;
1439 int n;
1441 if (p->p_stat == SIDL || p->p_stat == SZOMB)
1442 return(0);
1443 if (info->cred->cr_prison &&
1444 info->cred->cr_prison != p->p_ucred->cr_prison) {
1445 return(0);
1449 * If the controlling terminal of the process matches the
1450 * vnode being revoked we clear the controlling terminal.
1452 * The normal spec_close() may not catch this because it
1453 * uses curproc instead of p.
1455 if (p->p_session && info->type == DTYPE_VNODE &&
1456 info->data == p->p_session->s_ttyvp) {
1457 p->p_session->s_ttyvp = NULL;
1458 vrele(info->data);
1462 * Softref the fdp to prevent it from being destroyed
1464 spin_lock(&p->p_spin);
1465 if ((fdp = p->p_fd) == NULL) {
1466 spin_unlock(&p->p_spin);
1467 return(0);
1469 atomic_add_int(&fdp->fd_softrefs, 1);
1470 spin_unlock(&p->p_spin);
1473 * Locate and close any matching file descriptors.
1475 spin_lock(&fdp->fd_spin);
1476 for (n = 0; n < fdp->fd_nfiles; ++n) {
1477 if ((fp = fdp->fd_files[n].fp) == NULL)
1478 continue;
1479 if (fp->f_flag & FREVOKED) {
1480 fhold(info->nfp);
1481 fdp->fd_files[n].fp = info->nfp;
1482 spin_unlock(&fdp->fd_spin);
1483 knote_fdclose(fp, fdp, n); /* XXX */
1484 closef(fp, p);
1485 spin_lock(&fdp->fd_spin);
1486 --info->count;
1489 spin_unlock(&fdp->fd_spin);
1490 atomic_subtract_int(&fdp->fd_softrefs, 1);
1491 return(0);
1495 * falloc:
1496 * Create a new open file structure and reserve a file decriptor
1497 * for the process that refers to it.
1499 * Root creds are checked using lp, or assumed if lp is NULL. If
1500 * resultfd is non-NULL then lp must also be non-NULL. No file
1501 * descriptor is reserved (and no process context is needed) if
1502 * resultfd is NULL.
1504 * A file pointer with a refcount of 1 is returned. Note that the
1505 * file pointer is NOT associated with the descriptor. If falloc
1506 * returns success, fsetfd() MUST be called to either associate the
1507 * file pointer or clear the reservation.
1510 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1512 static struct timeval lastfail;
1513 static int curfail;
1514 struct file *fp;
1515 struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1516 int error;
1518 fp = NULL;
1521 * Handle filetable full issues and root overfill.
1523 if (nfiles >= maxfiles - maxfilesrootres &&
1524 (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1525 if (ppsratecheck(&lastfail, &curfail, 1)) {
1526 kprintf("kern.maxfiles limit exceeded by uid %d, "
1527 "please see tuning(7).\n",
1528 cred->cr_ruid);
1530 error = ENFILE;
1531 goto done;
1535 * Allocate a new file descriptor.
1537 fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1538 spin_init(&fp->f_spin, "falloc");
1539 SLIST_INIT(&fp->f_klist);
1540 fp->f_count = 1;
1541 fp->f_ops = &badfileops;
1542 fp->f_seqcount = 1;
1543 fsetcred(fp, cred);
1544 spin_lock(&filehead_spin);
1545 nfiles++;
1546 LIST_INSERT_HEAD(&filehead, fp, f_list);
1547 spin_unlock(&filehead_spin);
1548 if (resultfd) {
1549 if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1550 fdrop(fp);
1551 fp = NULL;
1553 } else {
1554 error = 0;
1556 done:
1557 *resultfp = fp;
1558 return (error);
1562 * Check for races against a file descriptor by determining that the
1563 * file pointer is still associated with the specified file descriptor,
1564 * and a close is not currently in progress.
1567 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1569 int error;
1571 spin_lock_shared(&fdp->fd_spin);
1572 if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1573 error = EBADF;
1574 else
1575 error = 0;
1576 spin_unlock_shared(&fdp->fd_spin);
1577 return (error);
1581 * Associate a file pointer with a previously reserved file descriptor.
1582 * This function always succeeds.
1584 * If fp is NULL, the file descriptor is returned to the pool.
1588 * (exclusive spinlock must be held on call)
1590 static void
1591 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1593 KKASSERT((unsigned)fd < fdp->fd_nfiles);
1594 KKASSERT(fdp->fd_files[fd].reserved != 0);
1595 if (fp) {
1596 fhold(fp);
1597 fdp->fd_files[fd].fp = fp;
1598 fdp->fd_files[fd].reserved = 0;
1599 } else {
1600 fdp->fd_files[fd].reserved = 0;
1601 fdreserve_locked(fdp, fd, -1);
1602 fdfixup_locked(fdp, fd);
1606 void
1607 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1609 spin_lock(&fdp->fd_spin);
1610 fsetfd_locked(fdp, fp, fd);
1611 spin_unlock(&fdp->fd_spin);
1615 * (exclusive spinlock must be held on call)
1617 static
1618 struct file *
1619 funsetfd_locked(struct filedesc *fdp, int fd)
1621 struct file *fp;
1623 if ((unsigned)fd >= fdp->fd_nfiles)
1624 return (NULL);
1625 if ((fp = fdp->fd_files[fd].fp) == NULL)
1626 return (NULL);
1627 fdp->fd_files[fd].fp = NULL;
1628 fdp->fd_files[fd].fileflags = 0;
1630 fdreserve_locked(fdp, fd, -1);
1631 fdfixup_locked(fdp, fd);
1632 return(fp);
1636 * WARNING: May not be called before initial fsetfd().
1639 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1641 int error;
1643 spin_lock(&fdp->fd_spin);
1644 if (((u_int)fd) >= fdp->fd_nfiles) {
1645 error = EBADF;
1646 } else if (fdp->fd_files[fd].fp == NULL) {
1647 error = EBADF;
1648 } else {
1649 *flagsp = fdp->fd_files[fd].fileflags;
1650 error = 0;
1652 spin_unlock(&fdp->fd_spin);
1653 return (error);
1657 * WARNING: May not be called before initial fsetfd().
1660 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1662 int error;
1664 spin_lock(&fdp->fd_spin);
1665 if (((u_int)fd) >= fdp->fd_nfiles) {
1666 error = EBADF;
1667 } else if (fdp->fd_files[fd].fp == NULL) {
1668 error = EBADF;
1669 } else {
1670 fdp->fd_files[fd].fileflags |= add_flags;
1671 error = 0;
1673 spin_unlock(&fdp->fd_spin);
1674 return (error);
1678 * WARNING: May not be called before initial fsetfd().
1681 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1683 int error;
1685 spin_lock(&fdp->fd_spin);
1686 if (((u_int)fd) >= fdp->fd_nfiles) {
1687 error = EBADF;
1688 } else if (fdp->fd_files[fd].fp == NULL) {
1689 error = EBADF;
1690 } else {
1691 fdp->fd_files[fd].fileflags &= ~rem_flags;
1692 error = 0;
1694 spin_unlock(&fdp->fd_spin);
1695 return (error);
1699 * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1701 void
1702 fsetcred(struct file *fp, struct ucred *ncr)
1704 struct ucred *ocr;
1705 struct uidinfo *uip;
1707 ocr = fp->f_cred;
1708 if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1709 if (ocr) {
1710 uip = ocr->cr_uidinfo;
1711 atomic_add_int(&uip->ui_openfiles, -1);
1713 if (ncr) {
1714 uip = ncr->cr_uidinfo;
1715 atomic_add_int(&uip->ui_openfiles, 1);
1718 if (ncr)
1719 crhold(ncr);
1720 fp->f_cred = ncr;
1721 if (ocr)
1722 crfree(ocr);
1726 * Free a file descriptor.
1728 static
1729 void
1730 ffree(struct file *fp)
1732 KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1733 spin_lock(&filehead_spin);
1734 LIST_REMOVE(fp, f_list);
1735 nfiles--;
1736 spin_unlock(&filehead_spin);
1737 fsetcred(fp, NULL);
1738 if (fp->f_nchandle.ncp)
1739 cache_drop(&fp->f_nchandle);
1740 kfree(fp, M_FILE);
1744 * called from init_main, initialize filedesc0 for proc0.
1746 void
1747 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1749 p0->p_fd = fdp0;
1750 p0->p_fdtol = NULL;
1751 fdp0->fd_refcnt = 1;
1752 fdp0->fd_cmask = cmask;
1753 fdp0->fd_files = fdp0->fd_builtin_files;
1754 fdp0->fd_nfiles = NDFILE;
1755 fdp0->fd_lastfile = -1;
1756 spin_init(&fdp0->fd_spin, "fdinitbootstrap");
1760 * Build a new filedesc structure.
1762 struct filedesc *
1763 fdinit(struct proc *p)
1765 struct filedesc *newfdp;
1766 struct filedesc *fdp = p->p_fd;
1768 newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1769 spin_lock(&fdp->fd_spin);
1770 if (fdp->fd_cdir) {
1771 newfdp->fd_cdir = fdp->fd_cdir;
1772 vref(newfdp->fd_cdir);
1773 cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1777 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1778 * proc0, but should unconditionally exist in other processes.
1780 if (fdp->fd_rdir) {
1781 newfdp->fd_rdir = fdp->fd_rdir;
1782 vref(newfdp->fd_rdir);
1783 cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1785 if (fdp->fd_jdir) {
1786 newfdp->fd_jdir = fdp->fd_jdir;
1787 vref(newfdp->fd_jdir);
1788 cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1790 spin_unlock(&fdp->fd_spin);
1792 /* Create the file descriptor table. */
1793 newfdp->fd_refcnt = 1;
1794 newfdp->fd_cmask = cmask;
1795 newfdp->fd_files = newfdp->fd_builtin_files;
1796 newfdp->fd_nfiles = NDFILE;
1797 newfdp->fd_lastfile = -1;
1798 spin_init(&newfdp->fd_spin, "fdinit");
1800 return (newfdp);
1804 * Share a filedesc structure.
1806 struct filedesc *
1807 fdshare(struct proc *p)
1809 struct filedesc *fdp;
1811 fdp = p->p_fd;
1812 spin_lock(&fdp->fd_spin);
1813 fdp->fd_refcnt++;
1814 spin_unlock(&fdp->fd_spin);
1815 return (fdp);
1819 * Copy a filedesc structure.
1822 fdcopy(struct proc *p, struct filedesc **fpp)
1824 struct filedesc *fdp = p->p_fd;
1825 struct filedesc *newfdp;
1826 struct fdnode *fdnode;
1827 int i;
1828 int ni;
1831 * Certain daemons might not have file descriptors.
1833 if (fdp == NULL)
1834 return (0);
1837 * Allocate the new filedesc and fd_files[] array. This can race
1838 * with operations by other threads on the fdp so we have to be
1839 * careful.
1841 newfdp = kmalloc(sizeof(struct filedesc),
1842 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
1843 if (newfdp == NULL) {
1844 *fpp = NULL;
1845 return (-1);
1847 again:
1848 spin_lock(&fdp->fd_spin);
1849 if (fdp->fd_lastfile < NDFILE) {
1850 newfdp->fd_files = newfdp->fd_builtin_files;
1851 i = NDFILE;
1852 } else {
1854 * We have to allocate (N^2-1) entries for our in-place
1855 * binary tree. Allow the table to shrink.
1857 i = fdp->fd_nfiles;
1858 ni = (i - 1) / 2;
1859 while (ni > fdp->fd_lastfile && ni > NDFILE) {
1860 i = ni;
1861 ni = (i - 1) / 2;
1863 spin_unlock(&fdp->fd_spin);
1864 newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1865 M_FILEDESC, M_WAITOK | M_ZERO);
1868 * Check for race, retry
1870 spin_lock(&fdp->fd_spin);
1871 if (i <= fdp->fd_lastfile) {
1872 spin_unlock(&fdp->fd_spin);
1873 kfree(newfdp->fd_files, M_FILEDESC);
1874 goto again;
1879 * Dup the remaining fields. vref() and cache_hold() can be
1880 * safely called while holding the read spinlock on fdp.
1882 * The read spinlock on fdp is still being held.
1884 * NOTE: vref and cache_hold calls for the case where the vnode
1885 * or cache entry already has at least one ref may be called
1886 * while holding spin locks.
1888 if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1889 vref(newfdp->fd_cdir);
1890 cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1893 * We must check for fd_rdir here, at least for now because
1894 * the init process is created before we have access to the
1895 * rootvode to take a reference to it.
1897 if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1898 vref(newfdp->fd_rdir);
1899 cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1901 if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1902 vref(newfdp->fd_jdir);
1903 cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1905 newfdp->fd_refcnt = 1;
1906 newfdp->fd_nfiles = i;
1907 newfdp->fd_lastfile = fdp->fd_lastfile;
1908 newfdp->fd_freefile = fdp->fd_freefile;
1909 newfdp->fd_cmask = fdp->fd_cmask;
1910 spin_init(&newfdp->fd_spin, "fdcopy");
1913 * Copy the descriptor table through (i). This also copies the
1914 * allocation state. Then go through and ref the file pointers
1915 * and clean up any KQ descriptors.
1917 * kq descriptors cannot be copied. Since we haven't ref'd the
1918 * copied files yet we can ignore the return value from funsetfd().
1920 * The read spinlock on fdp is still being held.
1922 bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1923 for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1924 fdnode = &newfdp->fd_files[i];
1925 if (fdnode->reserved) {
1926 fdreserve_locked(newfdp, i, -1);
1927 fdnode->reserved = 0;
1928 fdfixup_locked(newfdp, i);
1929 } else if (fdnode->fp) {
1930 if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1931 (void)funsetfd_locked(newfdp, i);
1932 } else {
1933 fhold(fdnode->fp);
1937 spin_unlock(&fdp->fd_spin);
1938 *fpp = newfdp;
1939 return (0);
1943 * Release a filedesc structure.
1945 * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1947 void
1948 fdfree(struct proc *p, struct filedesc *repl)
1950 struct filedesc *fdp;
1951 struct fdnode *fdnode;
1952 int i;
1953 struct filedesc_to_leader *fdtol;
1954 struct file *fp;
1955 struct vnode *vp;
1956 struct flock lf;
1959 * Certain daemons might not have file descriptors.
1961 fdp = p->p_fd;
1962 if (fdp == NULL) {
1963 p->p_fd = repl;
1964 return;
1968 * Severe messing around to follow.
1970 spin_lock(&fdp->fd_spin);
1972 /* Check for special need to clear POSIX style locks */
1973 fdtol = p->p_fdtol;
1974 if (fdtol != NULL) {
1975 KASSERT(fdtol->fdl_refcount > 0,
1976 ("filedesc_to_refcount botch: fdl_refcount=%d",
1977 fdtol->fdl_refcount));
1978 if (fdtol->fdl_refcount == 1 &&
1979 (p->p_leader->p_flags & P_ADVLOCK) != 0) {
1980 for (i = 0; i <= fdp->fd_lastfile; ++i) {
1981 fdnode = &fdp->fd_files[i];
1982 if (fdnode->fp == NULL ||
1983 fdnode->fp->f_type != DTYPE_VNODE) {
1984 continue;
1986 fp = fdnode->fp;
1987 fhold(fp);
1988 spin_unlock(&fdp->fd_spin);
1990 lf.l_whence = SEEK_SET;
1991 lf.l_start = 0;
1992 lf.l_len = 0;
1993 lf.l_type = F_UNLCK;
1994 vp = (struct vnode *)fp->f_data;
1995 (void) VOP_ADVLOCK(vp,
1996 (caddr_t)p->p_leader,
1997 F_UNLCK,
1998 &lf,
1999 F_POSIX);
2000 fdrop(fp);
2001 spin_lock(&fdp->fd_spin);
2004 retry:
2005 if (fdtol->fdl_refcount == 1) {
2006 if (fdp->fd_holdleaderscount > 0 &&
2007 (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2009 * close() or do_dup() has cleared a reference
2010 * in a shared file descriptor table.
2012 fdp->fd_holdleaderswakeup = 1;
2013 ssleep(&fdp->fd_holdleaderscount,
2014 &fdp->fd_spin, 0, "fdlhold", 0);
2015 goto retry;
2017 if (fdtol->fdl_holdcount > 0) {
2019 * Ensure that fdtol->fdl_leader
2020 * remains valid in closef().
2022 fdtol->fdl_wakeup = 1;
2023 ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2024 goto retry;
2027 fdtol->fdl_refcount--;
2028 if (fdtol->fdl_refcount == 0 &&
2029 fdtol->fdl_holdcount == 0) {
2030 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2031 fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2032 } else {
2033 fdtol = NULL;
2035 p->p_fdtol = NULL;
2036 if (fdtol != NULL) {
2037 spin_unlock(&fdp->fd_spin);
2038 kfree(fdtol, M_FILEDESC_TO_LEADER);
2039 spin_lock(&fdp->fd_spin);
2042 if (--fdp->fd_refcnt > 0) {
2043 spin_unlock(&fdp->fd_spin);
2044 spin_lock(&p->p_spin);
2045 p->p_fd = repl;
2046 spin_unlock(&p->p_spin);
2047 return;
2051 * Even though we are the last reference to the structure allproc
2052 * scans may still reference the structure. Maintain proper
2053 * locks until we can replace p->p_fd.
2055 * Also note that kqueue's closef still needs to reference the
2056 * fdp via p->p_fd, so we have to close the descriptors before
2057 * we replace p->p_fd.
2059 for (i = 0; i <= fdp->fd_lastfile; ++i) {
2060 if (fdp->fd_files[i].fp) {
2061 fp = funsetfd_locked(fdp, i);
2062 if (fp) {
2063 spin_unlock(&fdp->fd_spin);
2064 if (SLIST_FIRST(&fp->f_klist))
2065 knote_fdclose(fp, fdp, i);
2066 closef(fp, p);
2067 spin_lock(&fdp->fd_spin);
2071 spin_unlock(&fdp->fd_spin);
2074 * Interlock against an allproc scan operations (typically frevoke).
2076 spin_lock(&p->p_spin);
2077 p->p_fd = repl;
2078 spin_unlock(&p->p_spin);
2081 * Wait for any softrefs to go away. This race rarely occurs so
2082 * we can use a non-critical-path style poll/sleep loop. The
2083 * race only occurs against allproc scans.
2085 * No new softrefs can occur with the fdp disconnected from the
2086 * process.
2088 if (fdp->fd_softrefs) {
2089 kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2090 while (fdp->fd_softrefs)
2091 tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2094 if (fdp->fd_files != fdp->fd_builtin_files)
2095 kfree(fdp->fd_files, M_FILEDESC);
2096 if (fdp->fd_cdir) {
2097 cache_drop(&fdp->fd_ncdir);
2098 vrele(fdp->fd_cdir);
2100 if (fdp->fd_rdir) {
2101 cache_drop(&fdp->fd_nrdir);
2102 vrele(fdp->fd_rdir);
2104 if (fdp->fd_jdir) {
2105 cache_drop(&fdp->fd_njdir);
2106 vrele(fdp->fd_jdir);
2108 kfree(fdp, M_FILEDESC);
2112 * Retrieve and reference the file pointer associated with a descriptor.
2114 struct file *
2115 holdfp(struct filedesc *fdp, int fd, int flag)
2117 struct file* fp;
2119 spin_lock_shared(&fdp->fd_spin);
2120 if (((u_int)fd) >= fdp->fd_nfiles) {
2121 fp = NULL;
2122 goto done;
2124 if ((fp = fdp->fd_files[fd].fp) == NULL)
2125 goto done;
2126 if ((fp->f_flag & flag) == 0 && flag != -1) {
2127 fp = NULL;
2128 goto done;
2130 fhold(fp);
2131 done:
2132 spin_unlock_shared(&fdp->fd_spin);
2133 return (fp);
2137 * holdsock() - load the struct file pointer associated
2138 * with a socket into *fpp. If an error occurs, non-zero
2139 * will be returned and *fpp will be set to NULL.
2142 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2144 struct file *fp;
2145 int error;
2147 spin_lock_shared(&fdp->fd_spin);
2148 if ((unsigned)fd >= fdp->fd_nfiles) {
2149 error = EBADF;
2150 fp = NULL;
2151 goto done;
2153 if ((fp = fdp->fd_files[fd].fp) == NULL) {
2154 error = EBADF;
2155 goto done;
2157 if (fp->f_type != DTYPE_SOCKET) {
2158 error = ENOTSOCK;
2159 goto done;
2161 fhold(fp);
2162 error = 0;
2163 done:
2164 spin_unlock_shared(&fdp->fd_spin);
2165 *fpp = fp;
2166 return (error);
2170 * Convert a user file descriptor to a held file pointer.
2173 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2175 struct file *fp;
2176 int error;
2178 spin_lock_shared(&fdp->fd_spin);
2179 if ((unsigned)fd >= fdp->fd_nfiles) {
2180 error = EBADF;
2181 fp = NULL;
2182 goto done;
2184 if ((fp = fdp->fd_files[fd].fp) == NULL) {
2185 error = EBADF;
2186 goto done;
2188 if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2189 fp = NULL;
2190 error = EINVAL;
2191 goto done;
2193 fhold(fp);
2194 error = 0;
2195 done:
2196 spin_unlock_shared(&fdp->fd_spin);
2197 *fpp = fp;
2198 return (error);
2202 * For setugid programs, we don't want to people to use that setugidness
2203 * to generate error messages which write to a file which otherwise would
2204 * otherwise be off-limits to the process.
2206 * This is a gross hack to plug the hole. A better solution would involve
2207 * a special vop or other form of generalized access control mechanism. We
2208 * go ahead and just reject all procfs file systems accesses as dangerous.
2210 * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2211 * sufficient. We also don't for check setugidness since we know we are.
2213 static int
2214 is_unsafe(struct file *fp)
2216 if (fp->f_type == DTYPE_VNODE &&
2217 ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2218 return (1);
2219 return (0);
2223 * Make this setguid thing safe, if at all possible.
2225 * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2227 void
2228 setugidsafety(struct proc *p)
2230 struct filedesc *fdp = p->p_fd;
2231 int i;
2233 /* Certain daemons might not have file descriptors. */
2234 if (fdp == NULL)
2235 return;
2238 * note: fdp->fd_files may be reallocated out from under us while
2239 * we are blocked in a close. Be careful!
2241 for (i = 0; i <= fdp->fd_lastfile; i++) {
2242 if (i > 2)
2243 break;
2244 if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2245 struct file *fp;
2248 * NULL-out descriptor prior to close to avoid
2249 * a race while close blocks.
2251 if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2252 knote_fdclose(fp, fdp, i);
2253 closef(fp, p);
2260 * Close any files on exec?
2262 * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2264 void
2265 fdcloseexec(struct proc *p)
2267 struct filedesc *fdp = p->p_fd;
2268 int i;
2270 /* Certain daemons might not have file descriptors. */
2271 if (fdp == NULL)
2272 return;
2275 * We cannot cache fd_files since operations may block and rip
2276 * them out from under us.
2278 for (i = 0; i <= fdp->fd_lastfile; i++) {
2279 if (fdp->fd_files[i].fp != NULL &&
2280 (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2281 struct file *fp;
2284 * NULL-out descriptor prior to close to avoid
2285 * a race while close blocks.
2287 if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2288 knote_fdclose(fp, fdp, i);
2289 closef(fp, p);
2296 * It is unsafe for set[ug]id processes to be started with file
2297 * descriptors 0..2 closed, as these descriptors are given implicit
2298 * significance in the Standard C library. fdcheckstd() will create a
2299 * descriptor referencing /dev/null for each of stdin, stdout, and
2300 * stderr that is not already open.
2302 * NOT MPSAFE - calls falloc, vn_open, etc
2305 fdcheckstd(struct lwp *lp)
2307 struct nlookupdata nd;
2308 struct filedesc *fdp;
2309 struct file *fp;
2310 int retval;
2311 int i, error, flags, devnull;
2313 fdp = lp->lwp_proc->p_fd;
2314 if (fdp == NULL)
2315 return (0);
2316 devnull = -1;
2317 error = 0;
2318 for (i = 0; i < 3; i++) {
2319 if (fdp->fd_files[i].fp != NULL)
2320 continue;
2321 if (devnull < 0) {
2322 if ((error = falloc(lp, &fp, &devnull)) != 0)
2323 break;
2325 error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2326 NLC_FOLLOW|NLC_LOCKVP);
2327 flags = FREAD | FWRITE;
2328 if (error == 0)
2329 error = vn_open(&nd, fp, flags, 0);
2330 if (error == 0)
2331 fsetfd(fdp, fp, devnull);
2332 else
2333 fsetfd(fdp, NULL, devnull);
2334 fdrop(fp);
2335 nlookup_done(&nd);
2336 if (error)
2337 break;
2338 KKASSERT(i == devnull);
2339 } else {
2340 error = kern_dup(DUP_FIXED, devnull, i, &retval);
2341 if (error != 0)
2342 break;
2345 return (error);
2349 * Internal form of close.
2350 * Decrement reference count on file structure.
2351 * Note: td and/or p may be NULL when closing a file
2352 * that was being passed in a message.
2354 * MPALMOSTSAFE - acquires mplock for VOP operations
2357 closef(struct file *fp, struct proc *p)
2359 struct vnode *vp;
2360 struct flock lf;
2361 struct filedesc_to_leader *fdtol;
2363 if (fp == NULL)
2364 return (0);
2367 * POSIX record locking dictates that any close releases ALL
2368 * locks owned by this process. This is handled by setting
2369 * a flag in the unlock to free ONLY locks obeying POSIX
2370 * semantics, and not to free BSD-style file locks.
2371 * If the descriptor was in a message, POSIX-style locks
2372 * aren't passed with the descriptor.
2374 if (p != NULL && fp->f_type == DTYPE_VNODE &&
2375 (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2377 if ((p->p_leader->p_flags & P_ADVLOCK) != 0) {
2378 lf.l_whence = SEEK_SET;
2379 lf.l_start = 0;
2380 lf.l_len = 0;
2381 lf.l_type = F_UNLCK;
2382 vp = (struct vnode *)fp->f_data;
2383 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2384 &lf, F_POSIX);
2386 fdtol = p->p_fdtol;
2387 if (fdtol != NULL) {
2388 lwkt_gettoken(&p->p_token);
2390 * Handle special case where file descriptor table
2391 * is shared between multiple process leaders.
2393 for (fdtol = fdtol->fdl_next;
2394 fdtol != p->p_fdtol;
2395 fdtol = fdtol->fdl_next) {
2396 if ((fdtol->fdl_leader->p_flags &
2397 P_ADVLOCK) == 0)
2398 continue;
2399 fdtol->fdl_holdcount++;
2400 lf.l_whence = SEEK_SET;
2401 lf.l_start = 0;
2402 lf.l_len = 0;
2403 lf.l_type = F_UNLCK;
2404 vp = (struct vnode *)fp->f_data;
2405 (void) VOP_ADVLOCK(vp,
2406 (caddr_t)fdtol->fdl_leader,
2407 F_UNLCK, &lf, F_POSIX);
2408 fdtol->fdl_holdcount--;
2409 if (fdtol->fdl_holdcount == 0 &&
2410 fdtol->fdl_wakeup != 0) {
2411 fdtol->fdl_wakeup = 0;
2412 wakeup(fdtol);
2415 lwkt_reltoken(&p->p_token);
2418 return (fdrop(fp));
2422 * fhold() can only be called if f_count is already at least 1 (i.e. the
2423 * caller of fhold() already has a reference to the file pointer in some
2424 * manner or other).
2426 * f_count is not spin-locked. Instead, atomic ops are used for
2427 * incrementing, decrementing, and handling the 1->0 transition.
2429 void
2430 fhold(struct file *fp)
2432 atomic_add_int(&fp->f_count, 1);
2436 * fdrop() - drop a reference to a descriptor
2438 * MPALMOSTSAFE - acquires mplock for final close sequence
2441 fdrop(struct file *fp)
2443 struct flock lf;
2444 struct vnode *vp;
2445 int error;
2448 * A combined fetch and subtract is needed to properly detect
2449 * 1->0 transitions, otherwise two cpus dropping from a ref
2450 * count of 2 might both try to run the 1->0 code.
2452 if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2453 return (0);
2455 KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2458 * The last reference has gone away, we own the fp structure free
2459 * and clear.
2461 if (fp->f_count < 0)
2462 panic("fdrop: count < 0");
2463 if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2464 (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2466 lf.l_whence = SEEK_SET;
2467 lf.l_start = 0;
2468 lf.l_len = 0;
2469 lf.l_type = F_UNLCK;
2470 vp = (struct vnode *)fp->f_data;
2471 (void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2473 if (fp->f_ops != &badfileops)
2474 error = fo_close(fp);
2475 else
2476 error = 0;
2477 ffree(fp);
2478 return (error);
2482 * Apply an advisory lock on a file descriptor.
2484 * Just attempt to get a record lock of the requested type on
2485 * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2487 * MPALMOSTSAFE
2490 sys_flock(struct flock_args *uap)
2492 struct proc *p = curproc;
2493 struct file *fp;
2494 struct vnode *vp;
2495 struct flock lf;
2496 int error;
2498 if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2499 return (EBADF);
2500 if (fp->f_type != DTYPE_VNODE) {
2501 error = EOPNOTSUPP;
2502 goto done;
2504 vp = (struct vnode *)fp->f_data;
2505 lf.l_whence = SEEK_SET;
2506 lf.l_start = 0;
2507 lf.l_len = 0;
2508 if (uap->how & LOCK_UN) {
2509 lf.l_type = F_UNLCK;
2510 atomic_clear_int(&fp->f_flag, FHASLOCK); /* race ok */
2511 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2512 goto done;
2514 if (uap->how & LOCK_EX)
2515 lf.l_type = F_WRLCK;
2516 else if (uap->how & LOCK_SH)
2517 lf.l_type = F_RDLCK;
2518 else {
2519 error = EBADF;
2520 goto done;
2522 if (uap->how & LOCK_NB)
2523 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2524 else
2525 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2526 atomic_set_int(&fp->f_flag, FHASLOCK); /* race ok */
2527 done:
2528 fdrop(fp);
2529 return (error);
2533 * File Descriptor pseudo-device driver (/dev/fd/).
2535 * Opening minor device N dup()s the file (if any) connected to file
2536 * descriptor N belonging to the calling process. Note that this driver
2537 * consists of only the ``open()'' routine, because all subsequent
2538 * references to this file will be direct to the other driver.
2540 static int
2541 fdopen(struct dev_open_args *ap)
2543 thread_t td = curthread;
2545 KKASSERT(td->td_lwp != NULL);
2548 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2549 * the file descriptor being sought for duplication. The error
2550 * return ensures that the vnode for this device will be released
2551 * by vn_open. Open will detect this special error and take the
2552 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2553 * will simply report the error.
2555 td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2556 return (ENODEV);
2560 * The caller has reserved the file descriptor dfd for us. On success we
2561 * must fsetfd() it. On failure the caller will clean it up.
2564 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2566 struct file *wfp;
2567 struct file *xfp;
2568 int werror;
2570 if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2571 return (EBADF);
2574 * Close a revoke/dup race. Duping a descriptor marked as revoked
2575 * will dup a dummy descriptor instead of the real one.
2577 if (wfp->f_flag & FREVOKED) {
2578 kprintf("Warning: attempt to dup() a revoked descriptor\n");
2579 fdrop(wfp);
2580 wfp = NULL;
2581 werror = falloc(NULL, &wfp, NULL);
2582 if (werror)
2583 return (werror);
2587 * There are two cases of interest here.
2589 * For ENODEV simply dup sfd to file descriptor dfd and return.
2591 * For ENXIO steal away the file structure from sfd and store it
2592 * dfd. sfd is effectively closed by this operation.
2594 * Any other error code is just returned.
2596 switch (error) {
2597 case ENODEV:
2599 * Check that the mode the file is being opened for is a
2600 * subset of the mode of the existing descriptor.
2602 if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2603 error = EACCES;
2604 break;
2606 spin_lock(&fdp->fd_spin);
2607 fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2608 fsetfd_locked(fdp, wfp, dfd);
2609 spin_unlock(&fdp->fd_spin);
2610 error = 0;
2611 break;
2612 case ENXIO:
2614 * Steal away the file pointer from dfd, and stuff it into indx.
2616 spin_lock(&fdp->fd_spin);
2617 fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2618 fsetfd(fdp, wfp, dfd);
2619 if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2620 spin_unlock(&fdp->fd_spin);
2621 fdrop(xfp);
2622 } else {
2623 spin_unlock(&fdp->fd_spin);
2625 error = 0;
2626 break;
2627 default:
2628 break;
2630 fdrop(wfp);
2631 return (error);
2635 * NOT MPSAFE - I think these refer to a common file descriptor table
2636 * and we need to spinlock that to link fdtol in.
2638 struct filedesc_to_leader *
2639 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2640 struct proc *leader)
2642 struct filedesc_to_leader *fdtol;
2644 fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2645 M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
2646 fdtol->fdl_refcount = 1;
2647 fdtol->fdl_holdcount = 0;
2648 fdtol->fdl_wakeup = 0;
2649 fdtol->fdl_leader = leader;
2650 if (old != NULL) {
2651 fdtol->fdl_next = old->fdl_next;
2652 fdtol->fdl_prev = old;
2653 old->fdl_next = fdtol;
2654 fdtol->fdl_next->fdl_prev = fdtol;
2655 } else {
2656 fdtol->fdl_next = fdtol;
2657 fdtol->fdl_prev = fdtol;
2659 return fdtol;
2663 * Scan all file pointers in the system. The callback is made with
2664 * the master list spinlock held exclusively.
2666 void
2667 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2669 struct file *fp;
2670 int res;
2672 spin_lock(&filehead_spin);
2673 LIST_FOREACH(fp, &filehead, f_list) {
2674 res = callback(fp, data);
2675 if (res < 0)
2676 break;
2678 spin_unlock(&filehead_spin);
2682 * Get file structures.
2684 * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2687 struct sysctl_kern_file_info {
2688 int count;
2689 int error;
2690 struct sysctl_req *req;
2693 static int sysctl_kern_file_callback(struct proc *p, void *data);
2695 static int
2696 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2698 struct sysctl_kern_file_info info;
2701 * Note: because the number of file descriptors is calculated
2702 * in different ways for sizing vs returning the data,
2703 * there is information leakage from the first loop. However,
2704 * it is of a similar order of magnitude to the leakage from
2705 * global system statistics such as kern.openfiles.
2707 * When just doing a count, note that we cannot just count
2708 * the elements and add f_count via the filehead list because
2709 * threaded processes share their descriptor table and f_count might
2710 * still be '1' in that case.
2712 * Since the SYSCTL op can block, we must hold the process to
2713 * prevent it being ripped out from under us either in the
2714 * file descriptor loop or in the greater LIST_FOREACH. The
2715 * process may be in varying states of disrepair. If the process
2716 * is in SZOMB we may have caught it just as it is being removed
2717 * from the allproc list, we must skip it in that case to maintain
2718 * an unbroken chain through the allproc list.
2720 info.count = 0;
2721 info.error = 0;
2722 info.req = req;
2723 allproc_scan(sysctl_kern_file_callback, &info);
2726 * When just calculating the size, overestimate a bit to try to
2727 * prevent system activity from causing the buffer-fill call
2728 * to fail later on.
2730 if (req->oldptr == NULL) {
2731 info.count = (info.count + 16) + (info.count / 10);
2732 info.error = SYSCTL_OUT(req, NULL,
2733 info.count * sizeof(struct kinfo_file));
2735 return (info.error);
2738 static int
2739 sysctl_kern_file_callback(struct proc *p, void *data)
2741 struct sysctl_kern_file_info *info = data;
2742 struct kinfo_file kf;
2743 struct filedesc *fdp;
2744 struct file *fp;
2745 uid_t uid;
2746 int n;
2748 if (p->p_stat == SIDL || p->p_stat == SZOMB)
2749 return(0);
2750 if (!(PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0))
2751 return(0);
2754 * Softref the fdp to prevent it from being destroyed
2756 spin_lock(&p->p_spin);
2757 if ((fdp = p->p_fd) == NULL) {
2758 spin_unlock(&p->p_spin);
2759 return(0);
2761 atomic_add_int(&fdp->fd_softrefs, 1);
2762 spin_unlock(&p->p_spin);
2765 * The fdp's own spinlock prevents the contents from being
2766 * modified.
2768 spin_lock_shared(&fdp->fd_spin);
2769 for (n = 0; n < fdp->fd_nfiles; ++n) {
2770 if ((fp = fdp->fd_files[n].fp) == NULL)
2771 continue;
2772 if (info->req->oldptr == NULL) {
2773 ++info->count;
2774 } else {
2775 uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2776 kcore_make_file(&kf, fp, p->p_pid, uid, n);
2777 spin_unlock_shared(&fdp->fd_spin);
2778 info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2779 spin_lock_shared(&fdp->fd_spin);
2780 if (info->error)
2781 break;
2784 spin_unlock_shared(&fdp->fd_spin);
2785 atomic_subtract_int(&fdp->fd_softrefs, 1);
2786 if (info->error)
2787 return(-1);
2788 return(0);
2791 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2792 0, 0, sysctl_kern_file, "S,file", "Entire file table");
2794 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2795 &minfilesperproc, 0, "Minimum files allowed open per process");
2796 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2797 &maxfilesperproc, 0, "Maximum files allowed open per process");
2798 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2799 &maxfilesperuser, 0, "Maximum files allowed open per user");
2801 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2802 &maxfiles, 0, "Maximum number of files");
2804 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2805 &maxfilesrootres, 0, "Descriptors reserved for root use");
2807 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2808 &nfiles, 0, "System-wide number of open files");
2810 static void
2811 fildesc_drvinit(void *unused)
2813 int fd;
2815 for (fd = 0; fd < NUMFDESC; fd++) {
2816 make_dev(&fildesc_ops, fd,
2817 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2820 make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2821 make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2822 make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2825 struct fileops badfileops = {
2826 .fo_read = badfo_readwrite,
2827 .fo_write = badfo_readwrite,
2828 .fo_ioctl = badfo_ioctl,
2829 .fo_kqfilter = badfo_kqfilter,
2830 .fo_stat = badfo_stat,
2831 .fo_close = badfo_close,
2832 .fo_shutdown = badfo_shutdown
2836 badfo_readwrite(
2837 struct file *fp,
2838 struct uio *uio,
2839 struct ucred *cred,
2840 int flags
2842 return (EBADF);
2846 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2847 struct ucred *cred, struct sysmsg *msgv)
2849 return (EBADF);
2853 * Must return an error to prevent registration, typically
2854 * due to a revoked descriptor (file_filtops assigned).
2857 badfo_kqfilter(struct file *fp, struct knote *kn)
2859 return (EOPNOTSUPP);
2863 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2865 return (EBADF);
2869 badfo_close(struct file *fp)
2871 return (EBADF);
2875 badfo_shutdown(struct file *fp, int how)
2877 return (EBADF);
2881 nofo_shutdown(struct file *fp, int how)
2883 return (EOPNOTSUPP);
2886 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR,
2887 fildesc_drvinit,NULL);