Parallelize ifnet.if_addrhead accessing by duplicating the list itself
[dragonfly.git] / sys / net / ipfw / ip_fw2.c
blob7f5f83be3c804444cdc2c32d30c8e077a49648dd
1 /*
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
25 * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.12 2003/04/08 10:42:32 maxim Exp $
26 * $DragonFly: src/sys/net/ipfw/ip_fw2.c,v 1.41 2008/03/07 11:34:20 sephe Exp $
29 #define DEB(x)
30 #define DDB(x) x
33 * Implement IP packet firewall (new version)
36 #ifndef KLD_MODULE
37 #include "opt_ipfw.h"
38 #include "opt_ipdn.h"
39 #include "opt_ipdivert.h"
40 #include "opt_inet.h"
41 #ifndef INET
42 #error IPFIREWALL requires INET.
43 #endif /* INET */
44 #endif
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <sys/thread2.h>
57 #include <sys/ucred.h>
58 #include <sys/in_cksum.h>
59 #include <net/if.h>
60 #include <net/route.h>
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/ip.h>
66 #include <netinet/ip_var.h>
67 #include <netinet/ip_icmp.h>
68 #include "ip_fw.h"
69 #include <net/dummynet/ip_dummynet.h>
70 #include <netinet/tcp.h>
71 #include <netinet/tcp_timer.h>
72 #include <netinet/tcp_var.h>
73 #include <netinet/tcpip.h>
74 #include <netinet/udp.h>
75 #include <netinet/udp_var.h>
77 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
80 * set_disable contains one bit per set value (0..31).
81 * If the bit is set, all rules with the corresponding set
82 * are disabled. Set 31 is reserved for the default rule
83 * and CANNOT be disabled.
85 static uint32_t set_disable;
87 static int fw_verbose;
88 static int verbose_limit;
90 #ifdef KLD_MODULE
91 static int ipfw_refcnt;
92 #endif
94 static struct callout ipfw_timeout_h;
95 #define IPFW_DEFAULT_RULE 65535
98 * list of rules for layer 3
100 static struct ip_fw *layer3_chain;
102 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
104 static int fw_debug = 1;
105 static int autoinc_step = 100; /* bounded to 1..1000 in ipfw_add_rule() */
107 #ifdef SYSCTL_NODE
108 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
109 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable, CTLFLAG_RW,
110 &fw_enable, 0, "Enable ipfw");
111 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
112 &autoinc_step, 0, "Rule number autincrement step");
113 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO,one_pass,CTLFLAG_RW,
114 &fw_one_pass, 0,
115 "Only do a single pass through ipfw when using dummynet(4)");
116 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
117 &fw_debug, 0, "Enable printing of debug ip_fw statements");
118 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_RW,
119 &fw_verbose, 0, "Log matches to ipfw rules");
120 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
121 &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
124 * Description of dynamic rules.
126 * Dynamic rules are stored in lists accessed through a hash table
127 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
128 * be modified through the sysctl variable dyn_buckets which is
129 * updated when the table becomes empty.
131 * XXX currently there is only one list, ipfw_dyn.
133 * When a packet is received, its address fields are first masked
134 * with the mask defined for the rule, then hashed, then matched
135 * against the entries in the corresponding list.
136 * Dynamic rules can be used for different purposes:
137 * + stateful rules;
138 * + enforcing limits on the number of sessions;
139 * + in-kernel NAT (not implemented yet)
141 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
142 * measured in seconds and depending on the flags.
144 * The total number of dynamic rules is stored in dyn_count.
145 * The max number of dynamic rules is dyn_max. When we reach
146 * the maximum number of rules we do not create anymore. This is
147 * done to avoid consuming too much memory, but also too much
148 * time when searching on each packet (ideally, we should try instead
149 * to put a limit on the length of the list on each bucket...).
151 * Each dynamic rule holds a pointer to the parent ipfw rule so
152 * we know what action to perform. Dynamic rules are removed when
153 * the parent rule is deleted. XXX we should make them survive.
155 * There are some limitations with dynamic rules -- we do not
156 * obey the 'randomized match', and we do not do multiple
157 * passes through the firewall. XXX check the latter!!!
159 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
160 static uint32_t dyn_buckets = 256; /* must be power of 2 */
161 static uint32_t curr_dyn_buckets = 256; /* must be power of 2 */
164 * Timeouts for various events in handing dynamic rules.
166 static uint32_t dyn_ack_lifetime = 300;
167 static uint32_t dyn_syn_lifetime = 20;
168 static uint32_t dyn_fin_lifetime = 1;
169 static uint32_t dyn_rst_lifetime = 1;
170 static uint32_t dyn_udp_lifetime = 10;
171 static uint32_t dyn_short_lifetime = 5;
174 * Keepalives are sent if dyn_keepalive is set. They are sent every
175 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
176 * seconds of lifetime of a rule.
177 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
178 * than dyn_keepalive_period.
181 static uint32_t dyn_keepalive_interval = 20;
182 static uint32_t dyn_keepalive_period = 5;
183 static uint32_t dyn_keepalive = 1; /* do send keepalives */
185 static uint32_t static_count; /* # of static rules */
186 static uint32_t static_ioc_len; /* bytes of static rules */
187 static uint32_t dyn_count; /* # of dynamic rules */
188 static uint32_t dyn_max = 4096; /* max # of dynamic rules */
190 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
191 &dyn_buckets, 0, "Number of dyn. buckets");
192 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
193 &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
194 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
195 &dyn_count, 0, "Number of dyn. rules");
196 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
197 &dyn_max, 0, "Max number of dyn. rules");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
199 &static_count, 0, "Number of static rules");
200 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
201 &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
202 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
203 &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
205 &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
206 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
207 &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
208 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
209 &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
210 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
211 &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
212 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
213 &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
215 #endif /* SYSCTL_NODE */
218 * dummynet needs a reference to the default rule, because rules can be
219 * deleted while packets hold a reference to them. When this happens,
220 * dummynet changes the reference to the default rule (it could well be a
221 * NULL pointer, but this way we do not need to check for the special
222 * case, plus here he have info on the default behaviour).
224 struct ip_fw *ip_fw_default_rule;
226 static ip_fw_chk_t ipfw_chk;
228 static __inline int
229 ipfw_free_rule(struct ip_fw *rule)
231 KASSERT(rule->refcnt > 0, ("invalid refcnt %u\n", rule->refcnt));
232 atomic_subtract_int(&rule->refcnt, 1);
233 if (atomic_cmpset_int(&rule->refcnt, 0, 1)) {
234 kfree(rule, M_IPFW);
235 return 1;
237 return 0;
240 static void
241 ipfw_unref_rule(void *priv)
243 ipfw_free_rule(priv);
244 #ifdef KLD_MODULE
245 atomic_subtract_int(&ipfw_refcnt, 1);
246 #endif
249 static __inline void
250 ipfw_ref_rule(struct ip_fw *rule)
252 #ifdef KLD_MODULE
253 atomic_add_int(&ipfw_refcnt, 1);
254 #endif
255 atomic_add_int(&rule->refcnt, 1);
259 * This macro maps an ip pointer into a layer3 header pointer of type T
261 #define L3HDR(T, ip) ((T *)((uint32_t *)(ip) + (ip)->ip_hl))
263 static __inline int
264 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
266 int type = L3HDR(struct icmp,ip)->icmp_type;
268 return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
271 #define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
272 (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
274 static int
275 is_icmp_query(struct ip *ip)
277 int type = L3HDR(struct icmp, ip)->icmp_type;
278 return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
280 #undef TT
283 * The following checks use two arrays of 8 or 16 bits to store the
284 * bits that we want set or clear, respectively. They are in the
285 * low and high half of cmd->arg1 or cmd->d[0].
287 * We scan options and store the bits we find set. We succeed if
289 * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
291 * The code is sometimes optimized not to store additional variables.
294 static int
295 flags_match(ipfw_insn *cmd, uint8_t bits)
297 u_char want_clear;
298 bits = ~bits;
300 if ( ((cmd->arg1 & 0xff) & bits) != 0)
301 return 0; /* some bits we want set were clear */
302 want_clear = (cmd->arg1 >> 8) & 0xff;
303 if ( (want_clear & bits) != want_clear)
304 return 0; /* some bits we want clear were set */
305 return 1;
308 static int
309 ipopts_match(struct ip *ip, ipfw_insn *cmd)
311 int optlen, bits = 0;
312 u_char *cp = (u_char *)(ip + 1);
313 int x = (ip->ip_hl << 2) - sizeof (struct ip);
315 for (; x > 0; x -= optlen, cp += optlen) {
316 int opt = cp[IPOPT_OPTVAL];
318 if (opt == IPOPT_EOL)
319 break;
320 if (opt == IPOPT_NOP)
321 optlen = 1;
322 else {
323 optlen = cp[IPOPT_OLEN];
324 if (optlen <= 0 || optlen > x)
325 return 0; /* invalid or truncated */
327 switch (opt) {
329 default:
330 break;
332 case IPOPT_LSRR:
333 bits |= IP_FW_IPOPT_LSRR;
334 break;
336 case IPOPT_SSRR:
337 bits |= IP_FW_IPOPT_SSRR;
338 break;
340 case IPOPT_RR:
341 bits |= IP_FW_IPOPT_RR;
342 break;
344 case IPOPT_TS:
345 bits |= IP_FW_IPOPT_TS;
346 break;
349 return (flags_match(cmd, bits));
352 static int
353 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
355 int optlen, bits = 0;
356 struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
357 u_char *cp = (u_char *)(tcp + 1);
358 int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
360 for (; x > 0; x -= optlen, cp += optlen) {
361 int opt = cp[0];
362 if (opt == TCPOPT_EOL)
363 break;
364 if (opt == TCPOPT_NOP)
365 optlen = 1;
366 else {
367 optlen = cp[1];
368 if (optlen <= 0)
369 break;
372 switch (opt) {
374 default:
375 break;
377 case TCPOPT_MAXSEG:
378 bits |= IP_FW_TCPOPT_MSS;
379 break;
381 case TCPOPT_WINDOW:
382 bits |= IP_FW_TCPOPT_WINDOW;
383 break;
385 case TCPOPT_SACK_PERMITTED:
386 case TCPOPT_SACK:
387 bits |= IP_FW_TCPOPT_SACK;
388 break;
390 case TCPOPT_TIMESTAMP:
391 bits |= IP_FW_TCPOPT_TS;
392 break;
394 case TCPOPT_CC:
395 case TCPOPT_CCNEW:
396 case TCPOPT_CCECHO:
397 bits |= IP_FW_TCPOPT_CC;
398 break;
401 return (flags_match(cmd, bits));
404 static int
405 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
407 if (ifp == NULL) /* no iface with this packet, match fails */
408 return 0;
409 /* Check by name or by IP address */
410 if (cmd->name[0] != '\0') { /* match by name */
411 /* Check name */
412 if (cmd->p.glob) {
413 if (kfnmatch(cmd->name, ifp->if_xname, 0) == 0)
414 return(1);
415 } else {
416 if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
417 return(1);
419 } else {
420 struct ifaddr_container *ifac;
422 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
423 struct ifaddr *ia = ifac->ifa;
425 if (ia->ifa_addr == NULL)
426 continue;
427 if (ia->ifa_addr->sa_family != AF_INET)
428 continue;
429 if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
430 (ia->ifa_addr))->sin_addr.s_addr)
431 return(1); /* match */
434 return(0); /* no match, fail ... */
437 static uint64_t norule_counter; /* counter for ipfw_log(NULL...) */
439 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
440 #define SNP(buf) buf, sizeof(buf)
443 * We enter here when we have a rule with O_LOG.
444 * XXX this function alone takes about 2Kbytes of code!
446 static void
447 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
448 struct mbuf *m, struct ifnet *oif)
450 char *action;
451 int limit_reached = 0;
452 char action2[40], proto[48], fragment[28];
454 fragment[0] = '\0';
455 proto[0] = '\0';
457 if (f == NULL) { /* bogus pkt */
458 if (verbose_limit != 0 && norule_counter >= verbose_limit)
459 return;
460 norule_counter++;
461 if (norule_counter == verbose_limit)
462 limit_reached = verbose_limit;
463 action = "Refuse";
464 } else { /* O_LOG is the first action, find the real one */
465 ipfw_insn *cmd = ACTION_PTR(f);
466 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
468 if (l->max_log != 0 && l->log_left == 0)
469 return;
470 l->log_left--;
471 if (l->log_left == 0)
472 limit_reached = l->max_log;
473 cmd += F_LEN(cmd); /* point to first action */
474 if (cmd->opcode == O_PROB)
475 cmd += F_LEN(cmd);
477 action = action2;
478 switch (cmd->opcode) {
479 case O_DENY:
480 action = "Deny";
481 break;
483 case O_REJECT:
484 if (cmd->arg1==ICMP_REJECT_RST)
485 action = "Reset";
486 else if (cmd->arg1==ICMP_UNREACH_HOST)
487 action = "Reject";
488 else
489 ksnprintf(SNPARGS(action2, 0), "Unreach %d",
490 cmd->arg1);
491 break;
493 case O_ACCEPT:
494 action = "Accept";
495 break;
496 case O_COUNT:
497 action = "Count";
498 break;
499 case O_DIVERT:
500 ksnprintf(SNPARGS(action2, 0), "Divert %d",
501 cmd->arg1);
502 break;
503 case O_TEE:
504 ksnprintf(SNPARGS(action2, 0), "Tee %d",
505 cmd->arg1);
506 break;
507 case O_SKIPTO:
508 ksnprintf(SNPARGS(action2, 0), "SkipTo %d",
509 cmd->arg1);
510 break;
511 case O_PIPE:
512 ksnprintf(SNPARGS(action2, 0), "Pipe %d",
513 cmd->arg1);
514 break;
515 case O_QUEUE:
516 ksnprintf(SNPARGS(action2, 0), "Queue %d",
517 cmd->arg1);
518 break;
519 case O_FORWARD_IP: {
520 ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
521 int len;
523 len = ksnprintf(SNPARGS(action2, 0), "Forward to %s",
524 inet_ntoa(sa->sa.sin_addr));
525 if (sa->sa.sin_port)
526 ksnprintf(SNPARGS(action2, len), ":%d",
527 sa->sa.sin_port);
529 break;
530 default:
531 action = "UNKNOWN";
532 break;
536 if (hlen == 0) { /* non-ip */
537 ksnprintf(SNPARGS(proto, 0), "MAC");
538 } else {
539 struct ip *ip = mtod(m, struct ip *);
540 /* these three are all aliases to the same thing */
541 struct icmp *const icmp = L3HDR(struct icmp, ip);
542 struct tcphdr *const tcp = (struct tcphdr *)icmp;
543 struct udphdr *const udp = (struct udphdr *)icmp;
545 int ip_off, offset, ip_len;
547 int len;
549 if (eh != NULL) { /* layer 2 packets are as on the wire */
550 ip_off = ntohs(ip->ip_off);
551 ip_len = ntohs(ip->ip_len);
552 } else {
553 ip_off = ip->ip_off;
554 ip_len = ip->ip_len;
556 offset = ip_off & IP_OFFMASK;
557 switch (ip->ip_p) {
558 case IPPROTO_TCP:
559 len = ksnprintf(SNPARGS(proto, 0), "TCP %s",
560 inet_ntoa(ip->ip_src));
561 if (offset == 0)
562 ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
563 ntohs(tcp->th_sport),
564 inet_ntoa(ip->ip_dst),
565 ntohs(tcp->th_dport));
566 else
567 ksnprintf(SNPARGS(proto, len), " %s",
568 inet_ntoa(ip->ip_dst));
569 break;
571 case IPPROTO_UDP:
572 len = ksnprintf(SNPARGS(proto, 0), "UDP %s",
573 inet_ntoa(ip->ip_src));
574 if (offset == 0)
575 ksnprintf(SNPARGS(proto, len), ":%d %s:%d",
576 ntohs(udp->uh_sport),
577 inet_ntoa(ip->ip_dst),
578 ntohs(udp->uh_dport));
579 else
580 ksnprintf(SNPARGS(proto, len), " %s",
581 inet_ntoa(ip->ip_dst));
582 break;
584 case IPPROTO_ICMP:
585 if (offset == 0)
586 len = ksnprintf(SNPARGS(proto, 0),
587 "ICMP:%u.%u ",
588 icmp->icmp_type, icmp->icmp_code);
589 else
590 len = ksnprintf(SNPARGS(proto, 0), "ICMP ");
591 len += ksnprintf(SNPARGS(proto, len), "%s",
592 inet_ntoa(ip->ip_src));
593 ksnprintf(SNPARGS(proto, len), " %s",
594 inet_ntoa(ip->ip_dst));
595 break;
597 default:
598 len = ksnprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
599 inet_ntoa(ip->ip_src));
600 ksnprintf(SNPARGS(proto, len), " %s",
601 inet_ntoa(ip->ip_dst));
602 break;
605 if (ip_off & (IP_MF | IP_OFFMASK))
606 ksnprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
607 ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
608 offset << 3,
609 (ip_off & IP_MF) ? "+" : "");
611 if (oif || m->m_pkthdr.rcvif)
612 log(LOG_SECURITY | LOG_INFO,
613 "ipfw: %d %s %s %s via %s%s\n",
614 f ? f->rulenum : -1,
615 action, proto, oif ? "out" : "in",
616 oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
617 fragment);
618 else
619 log(LOG_SECURITY | LOG_INFO,
620 "ipfw: %d %s %s [no if info]%s\n",
621 f ? f->rulenum : -1,
622 action, proto, fragment);
623 if (limit_reached)
624 log(LOG_SECURITY | LOG_NOTICE,
625 "ipfw: limit %d reached on entry %d\n",
626 limit_reached, f ? f->rulenum : -1);
630 * IMPORTANT: the hash function for dynamic rules must be commutative
631 * in source and destination (ip,port), because rules are bidirectional
632 * and we want to find both in the same bucket.
634 static __inline int
635 hash_packet(struct ipfw_flow_id *id)
637 uint32_t i;
639 i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
640 i &= (curr_dyn_buckets - 1);
641 return i;
645 * unlink a dynamic rule from a chain. prev is a pointer to
646 * the previous one, q is a pointer to the rule to delete,
647 * head is a pointer to the head of the queue.
648 * Modifies q and potentially also head.
650 #define UNLINK_DYN_RULE(prev, head, q) { \
651 ipfw_dyn_rule *old_q = q; \
653 /* remove a refcount to the parent */ \
654 if (q->dyn_type == O_LIMIT) \
655 q->parent->count--; \
656 DEB(kprintf("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n", \
657 (q->id.src_ip), (q->id.src_port), \
658 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); ) \
659 if (prev != NULL) \
660 prev->next = q = q->next; \
661 else \
662 head = q = q->next; \
663 KASSERT(dyn_count > 0, ("invalid dyn count %u\n", dyn_count)); \
664 dyn_count--; \
665 kfree(old_q, M_IPFW); }
667 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
670 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
672 * If keep_me == NULL, rules are deleted even if not expired,
673 * otherwise only expired rules are removed.
675 * The value of the second parameter is also used to point to identify
676 * a rule we absolutely do not want to remove (e.g. because we are
677 * holding a reference to it -- this is the case with O_LIMIT_PARENT
678 * rules). The pointer is only used for comparison, so any non-null
679 * value will do.
681 static void
682 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
684 static uint32_t last_remove = 0;
686 #define FORCE (keep_me == NULL)
688 ipfw_dyn_rule *prev, *q;
689 int i, pass = 0, max_pass = 0;
691 if (ipfw_dyn_v == NULL || dyn_count == 0)
692 return;
693 /* do not expire more than once per second, it is useless */
694 if (!FORCE && last_remove == time_second)
695 return;
696 last_remove = time_second;
699 * because O_LIMIT refer to parent rules, during the first pass only
700 * remove child and mark any pending LIMIT_PARENT, and remove
701 * them in a second pass.
703 next_pass:
704 for (i = 0 ; i < curr_dyn_buckets ; i++) {
705 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
707 * Logic can become complex here, so we split tests.
709 if (q == keep_me)
710 goto next;
711 if (rule != NULL && rule != q->rule)
712 goto next; /* not the one we are looking for */
713 if (q->dyn_type == O_LIMIT_PARENT) {
715 * handle parent in the second pass,
716 * record we need one.
718 max_pass = 1;
719 if (pass == 0)
720 goto next;
721 if (FORCE && q->count != 0 ) {
722 /* XXX should not happen! */
723 kprintf( "OUCH! cannot remove rule,"
724 " count %d\n", q->count);
726 } else {
727 if (!FORCE &&
728 !TIME_LEQ( q->expire, time_second ))
729 goto next;
731 UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
732 continue;
733 next:
734 prev=q;
735 q=q->next;
738 if (pass++ < max_pass)
739 goto next_pass;
744 * lookup a dynamic rule.
746 static ipfw_dyn_rule *
747 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
748 struct tcphdr *tcp)
751 * stateful ipfw extensions.
752 * Lookup into dynamic session queue
754 #define MATCH_REVERSE 0
755 #define MATCH_FORWARD 1
756 #define MATCH_NONE 2
757 #define MATCH_UNKNOWN 3
758 int i, dir = MATCH_NONE;
759 ipfw_dyn_rule *prev, *q=NULL;
761 if (ipfw_dyn_v == NULL)
762 goto done; /* not found */
763 i = hash_packet( pkt );
764 for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
765 if (q->dyn_type == O_LIMIT_PARENT)
766 goto next;
767 if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
768 UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
769 continue;
771 if ( pkt->proto == q->id.proto) {
772 if (pkt->src_ip == q->id.src_ip &&
773 pkt->dst_ip == q->id.dst_ip &&
774 pkt->src_port == q->id.src_port &&
775 pkt->dst_port == q->id.dst_port ) {
776 dir = MATCH_FORWARD;
777 break;
779 if (pkt->src_ip == q->id.dst_ip &&
780 pkt->dst_ip == q->id.src_ip &&
781 pkt->src_port == q->id.dst_port &&
782 pkt->dst_port == q->id.src_port ) {
783 dir = MATCH_REVERSE;
784 break;
787 next:
788 prev = q;
789 q = q->next;
791 if (q == NULL)
792 goto done; /* q = NULL, not found */
794 if ( prev != NULL) { /* found and not in front */
795 prev->next = q->next;
796 q->next = ipfw_dyn_v[i];
797 ipfw_dyn_v[i] = q;
799 if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
800 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
802 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
803 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
804 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
805 switch (q->state) {
806 case TH_SYN: /* opening */
807 q->expire = time_second + dyn_syn_lifetime;
808 break;
810 case BOTH_SYN: /* move to established */
811 case BOTH_SYN | TH_FIN : /* one side tries to close */
812 case BOTH_SYN | (TH_FIN << 8) :
813 if (tcp) {
814 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
815 uint32_t ack = ntohl(tcp->th_ack);
816 if (dir == MATCH_FORWARD) {
817 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
818 q->ack_fwd = ack;
819 else { /* ignore out-of-sequence */
820 break;
822 } else {
823 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
824 q->ack_rev = ack;
825 else { /* ignore out-of-sequence */
826 break;
830 q->expire = time_second + dyn_ack_lifetime;
831 break;
833 case BOTH_SYN | BOTH_FIN: /* both sides closed */
834 if (dyn_fin_lifetime >= dyn_keepalive_period)
835 dyn_fin_lifetime = dyn_keepalive_period - 1;
836 q->expire = time_second + dyn_fin_lifetime;
837 break;
839 default:
840 #if 0
842 * reset or some invalid combination, but can also
843 * occur if we use keep-state the wrong way.
845 if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
846 kprintf("invalid state: 0x%x\n", q->state);
847 #endif
848 if (dyn_rst_lifetime >= dyn_keepalive_period)
849 dyn_rst_lifetime = dyn_keepalive_period - 1;
850 q->expire = time_second + dyn_rst_lifetime;
851 break;
853 } else if (pkt->proto == IPPROTO_UDP) {
854 q->expire = time_second + dyn_udp_lifetime;
855 } else {
856 /* other protocols */
857 q->expire = time_second + dyn_short_lifetime;
859 done:
860 if (match_direction)
861 *match_direction = dir;
862 return q;
865 static void
866 realloc_dynamic_table(void)
869 * Try reallocation, make sure we have a power of 2 and do
870 * not allow more than 64k entries. In case of overflow,
871 * default to 1024.
874 if (dyn_buckets > 65536)
875 dyn_buckets = 1024;
876 if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
877 dyn_buckets = curr_dyn_buckets; /* reset */
878 return;
880 curr_dyn_buckets = dyn_buckets;
881 if (ipfw_dyn_v != NULL)
882 kfree(ipfw_dyn_v, M_IPFW);
883 for (;;) {
884 ipfw_dyn_v = kmalloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
885 M_IPFW, M_INTWAIT | M_NULLOK | M_ZERO);
886 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
887 break;
888 curr_dyn_buckets /= 2;
893 * Install state of type 'type' for a dynamic session.
894 * The hash table contains two type of rules:
895 * - regular rules (O_KEEP_STATE)
896 * - rules for sessions with limited number of sess per user
897 * (O_LIMIT). When they are created, the parent is
898 * increased by 1, and decreased on delete. In this case,
899 * the third parameter is the parent rule and not the chain.
900 * - "parent" rules for the above (O_LIMIT_PARENT).
902 static ipfw_dyn_rule *
903 add_dyn_rule(struct ipfw_flow_id *id, uint8_t dyn_type, struct ip_fw *rule)
905 ipfw_dyn_rule *r;
906 int i;
908 if (ipfw_dyn_v == NULL ||
909 (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
910 realloc_dynamic_table();
911 if (ipfw_dyn_v == NULL)
912 return NULL; /* failed ! */
914 i = hash_packet(id);
916 r = kmalloc(sizeof *r, M_IPFW, M_INTWAIT | M_NULLOK | M_ZERO);
917 if (r == NULL) {
918 kprintf ("sorry cannot allocate state\n");
919 return NULL;
922 /* increase refcount on parent, and set pointer */
923 if (dyn_type == O_LIMIT) {
924 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
925 if ( parent->dyn_type != O_LIMIT_PARENT)
926 panic("invalid parent");
927 parent->count++;
928 r->parent = parent;
929 rule = parent->rule;
932 r->id = *id;
933 r->expire = time_second + dyn_syn_lifetime;
934 r->rule = rule;
935 r->dyn_type = dyn_type;
936 r->pcnt = r->bcnt = 0;
937 r->count = 0;
939 r->bucket = i;
940 r->next = ipfw_dyn_v[i];
941 ipfw_dyn_v[i] = r;
942 dyn_count++;
943 DEB(kprintf("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
944 dyn_type,
945 (r->id.src_ip), (r->id.src_port),
946 (r->id.dst_ip), (r->id.dst_port),
947 dyn_count ); )
948 return r;
952 * lookup dynamic parent rule using pkt and rule as search keys.
953 * If the lookup fails, then install one.
955 static ipfw_dyn_rule *
956 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
958 ipfw_dyn_rule *q;
959 int i;
961 if (ipfw_dyn_v) {
962 i = hash_packet( pkt );
963 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
964 if (q->dyn_type == O_LIMIT_PARENT &&
965 rule== q->rule &&
966 pkt->proto == q->id.proto &&
967 pkt->src_ip == q->id.src_ip &&
968 pkt->dst_ip == q->id.dst_ip &&
969 pkt->src_port == q->id.src_port &&
970 pkt->dst_port == q->id.dst_port) {
971 q->expire = time_second + dyn_short_lifetime;
972 DEB(kprintf("lookup_dyn_parent found 0x%p\n",q);)
973 return q;
976 return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
980 * Install dynamic state for rule type cmd->o.opcode
982 * Returns 1 (failure) if state is not installed because of errors or because
983 * session limitations are enforced.
985 static int
986 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
987 struct ip_fw_args *args)
989 static int last_log;
991 ipfw_dyn_rule *q;
993 DEB(kprintf("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
994 cmd->o.opcode,
995 (args->f_id.src_ip), (args->f_id.src_port),
996 (args->f_id.dst_ip), (args->f_id.dst_port) );)
998 q = lookup_dyn_rule(&args->f_id, NULL, NULL);
1000 if (q != NULL) { /* should never occur */
1001 if (last_log != time_second) {
1002 last_log = time_second;
1003 kprintf(" install_state: entry already present, done\n");
1005 return 0;
1008 if (dyn_count >= dyn_max)
1010 * Run out of slots, try to remove any expired rule.
1012 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1014 if (dyn_count >= dyn_max) {
1015 if (last_log != time_second) {
1016 last_log = time_second;
1017 kprintf("install_state: Too many dynamic rules\n");
1019 return 1; /* cannot install, notify caller */
1022 switch (cmd->o.opcode) {
1023 case O_KEEP_STATE: /* bidir rule */
1024 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1025 break;
1027 case O_LIMIT: /* limit number of sessions */
1029 uint16_t limit_mask = cmd->limit_mask;
1030 struct ipfw_flow_id id;
1031 ipfw_dyn_rule *parent;
1033 DEB(kprintf("installing dyn-limit rule %d\n", cmd->conn_limit);)
1035 id.dst_ip = id.src_ip = 0;
1036 id.dst_port = id.src_port = 0;
1037 id.proto = args->f_id.proto;
1039 if (limit_mask & DYN_SRC_ADDR)
1040 id.src_ip = args->f_id.src_ip;
1041 if (limit_mask & DYN_DST_ADDR)
1042 id.dst_ip = args->f_id.dst_ip;
1043 if (limit_mask & DYN_SRC_PORT)
1044 id.src_port = args->f_id.src_port;
1045 if (limit_mask & DYN_DST_PORT)
1046 id.dst_port = args->f_id.dst_port;
1047 parent = lookup_dyn_parent(&id, rule);
1048 if (parent == NULL) {
1049 kprintf("add parent failed\n");
1050 return 1;
1052 if (parent->count >= cmd->conn_limit) {
1054 * See if we can remove some expired rule.
1056 remove_dyn_rule(rule, parent);
1057 if (parent->count >= cmd->conn_limit) {
1058 if (fw_verbose && last_log != time_second) {
1059 last_log = time_second;
1060 log(LOG_SECURITY | LOG_DEBUG,
1061 "drop session, too many entries\n");
1063 return 1;
1066 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1068 break;
1069 default:
1070 kprintf("unknown dynamic rule type %u\n", cmd->o.opcode);
1071 return 1;
1073 lookup_dyn_rule(&args->f_id, NULL, NULL); /* XXX just set lifetime */
1074 return 0;
1078 * Transmit a TCP packet, containing either a RST or a keepalive.
1079 * When flags & TH_RST, we are sending a RST packet, because of a
1080 * "reset" action matched the packet.
1081 * Otherwise we are sending a keepalive, and flags & TH_
1083 static void
1084 send_pkt(struct ipfw_flow_id *id, uint32_t seq, uint32_t ack, int flags)
1086 struct mbuf *m;
1087 struct ip *ip;
1088 struct tcphdr *tcp;
1089 struct route sro; /* fake route */
1091 MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1092 if (m == 0)
1093 return;
1094 m->m_pkthdr.rcvif = (struct ifnet *)0;
1095 m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1096 m->m_data += max_linkhdr;
1098 ip = mtod(m, struct ip *);
1099 bzero(ip, m->m_len);
1100 tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1101 ip->ip_p = IPPROTO_TCP;
1102 tcp->th_off = 5;
1104 * Assume we are sending a RST (or a keepalive in the reverse
1105 * direction), swap src and destination addresses and ports.
1107 ip->ip_src.s_addr = htonl(id->dst_ip);
1108 ip->ip_dst.s_addr = htonl(id->src_ip);
1109 tcp->th_sport = htons(id->dst_port);
1110 tcp->th_dport = htons(id->src_port);
1111 if (flags & TH_RST) { /* we are sending a RST */
1112 if (flags & TH_ACK) {
1113 tcp->th_seq = htonl(ack);
1114 tcp->th_ack = htonl(0);
1115 tcp->th_flags = TH_RST;
1116 } else {
1117 if (flags & TH_SYN)
1118 seq++;
1119 tcp->th_seq = htonl(0);
1120 tcp->th_ack = htonl(seq);
1121 tcp->th_flags = TH_RST | TH_ACK;
1123 } else {
1125 * We are sending a keepalive. flags & TH_SYN determines
1126 * the direction, forward if set, reverse if clear.
1127 * NOTE: seq and ack are always assumed to be correct
1128 * as set by the caller. This may be confusing...
1130 if (flags & TH_SYN) {
1132 * we have to rewrite the correct addresses!
1134 ip->ip_dst.s_addr = htonl(id->dst_ip);
1135 ip->ip_src.s_addr = htonl(id->src_ip);
1136 tcp->th_dport = htons(id->dst_port);
1137 tcp->th_sport = htons(id->src_port);
1139 tcp->th_seq = htonl(seq);
1140 tcp->th_ack = htonl(ack);
1141 tcp->th_flags = TH_ACK;
1144 * set ip_len to the payload size so we can compute
1145 * the tcp checksum on the pseudoheader
1146 * XXX check this, could save a couple of words ?
1148 ip->ip_len = htons(sizeof(struct tcphdr));
1149 tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1151 * now fill fields left out earlier
1153 ip->ip_ttl = ip_defttl;
1154 ip->ip_len = m->m_pkthdr.len;
1155 bzero (&sro, sizeof (sro));
1156 ip_rtaddr(ip->ip_dst, &sro);
1157 m->m_pkthdr.fw_flags |= IPFW_MBUF_GENERATED;
1158 ip_output(m, NULL, &sro, 0, NULL, NULL);
1159 if (sro.ro_rt)
1160 RTFREE(sro.ro_rt);
1164 * sends a reject message, consuming the mbuf passed as an argument.
1166 static void
1167 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
1170 if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1171 /* We need the IP header in host order for icmp_error(). */
1172 if (args->eh != NULL) {
1173 struct ip *ip = mtod(args->m, struct ip *);
1174 ip->ip_len = ntohs(ip->ip_len);
1175 ip->ip_off = ntohs(ip->ip_off);
1177 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1178 } else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
1179 struct tcphdr *const tcp =
1180 L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1181 if ( (tcp->th_flags & TH_RST) == 0)
1182 send_pkt(&(args->f_id), ntohl(tcp->th_seq),
1183 ntohl(tcp->th_ack),
1184 tcp->th_flags | TH_RST);
1185 m_freem(args->m);
1186 } else
1187 m_freem(args->m);
1188 args->m = NULL;
1193 * Given an ip_fw *, lookup_next_rule will return a pointer
1194 * to the next rule, which can be either the jump
1195 * target (for skipto instructions) or the next one in the list (in
1196 * all other cases including a missing jump target).
1197 * The result is also written in the "next_rule" field of the rule.
1198 * Backward jumps are not allowed, so start looking from the next
1199 * rule...
1201 * This never returns NULL -- in case we do not have an exact match,
1202 * the next rule is returned. When the ruleset is changed,
1203 * pointers are flushed so we are always correct.
1206 static struct ip_fw *
1207 lookup_next_rule(struct ip_fw *me)
1209 struct ip_fw *rule = NULL;
1210 ipfw_insn *cmd;
1212 /* look for action, in case it is a skipto */
1213 cmd = ACTION_PTR(me);
1214 if (cmd->opcode == O_LOG)
1215 cmd += F_LEN(cmd);
1216 if ( cmd->opcode == O_SKIPTO )
1217 for (rule = me->next; rule ; rule = rule->next)
1218 if (rule->rulenum >= cmd->arg1)
1219 break;
1220 if (rule == NULL) /* failure or not a skipto */
1221 rule = me->next;
1222 me->next_rule = rule;
1223 return rule;
1227 * The main check routine for the firewall.
1229 * All arguments are in args so we can modify them and return them
1230 * back to the caller.
1232 * Parameters:
1234 * args->m (in/out) The packet; we set to NULL when/if we nuke it.
1235 * Starts with the IP header.
1236 * args->eh (in) Mac header if present, or NULL for layer3 packet.
1237 * args->oif Outgoing interface, or NULL if packet is incoming.
1238 * The incoming interface is in the mbuf. (in)
1240 * args->rule Pointer to the last matching rule (in/out)
1241 * args->next_hop Socket we are forwarding to (out).
1242 * args->f_id Addresses grabbed from the packet (out)
1244 * Return value:
1246 * IP_FW_PORT_DENY_FLAG the packet must be dropped.
1247 * 0 The packet is to be accepted and routed normally OR
1248 * the packet was denied/rejected and has been dropped;
1249 * in the latter case, *m is equal to NULL upon return.
1250 * port Divert the packet to port, with these caveats:
1252 * - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1253 * of diverting it (ie, 'ipfw tee').
1255 * - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1256 * 16 bits as a dummynet pipe number instead of diverting
1259 static int
1260 ipfw_chk(struct ip_fw_args *args)
1263 * Local variables hold state during the processing of a packet.
1265 * IMPORTANT NOTE: to speed up the processing of rules, there
1266 * are some assumption on the values of the variables, which
1267 * are documented here. Should you change them, please check
1268 * the implementation of the various instructions to make sure
1269 * that they still work.
1271 * args->eh The MAC header. It is non-null for a layer2
1272 * packet, it is NULL for a layer-3 packet.
1274 * m | args->m Pointer to the mbuf, as received from the caller.
1275 * It may change if ipfw_chk() does an m_pullup, or if it
1276 * consumes the packet because it calls send_reject().
1277 * XXX This has to change, so that ipfw_chk() never modifies
1278 * or consumes the buffer.
1279 * ip is simply an alias of the value of m, and it is kept
1280 * in sync with it (the packet is supposed to start with
1281 * the ip header).
1283 struct mbuf *m = args->m;
1284 struct ip *ip = mtod(m, struct ip *);
1287 * oif | args->oif If NULL, ipfw_chk has been called on the
1288 * inbound path (ether_input, ip_input).
1289 * If non-NULL, ipfw_chk has been called on the outbound path
1290 * (ether_output, ip_output).
1292 struct ifnet *oif = args->oif;
1294 struct ip_fw *f = NULL; /* matching rule */
1295 int retval = 0;
1296 struct m_tag *mtag;
1299 * hlen The length of the IPv4 header.
1300 * hlen >0 means we have an IPv4 packet.
1302 u_int hlen = 0; /* hlen >0 means we have an IP pkt */
1305 * offset The offset of a fragment. offset != 0 means that
1306 * we have a fragment at this offset of an IPv4 packet.
1307 * offset == 0 means that (if this is an IPv4 packet)
1308 * this is the first or only fragment.
1310 u_short offset = 0;
1313 * Local copies of addresses. They are only valid if we have
1314 * an IP packet.
1316 * proto The protocol. Set to 0 for non-ip packets,
1317 * or to the protocol read from the packet otherwise.
1318 * proto != 0 means that we have an IPv4 packet.
1320 * src_port, dst_port port numbers, in HOST format. Only
1321 * valid for TCP and UDP packets.
1323 * src_ip, dst_ip ip addresses, in NETWORK format.
1324 * Only valid for IPv4 packets.
1326 uint8_t proto;
1327 uint16_t src_port = 0, dst_port = 0; /* NOTE: host format */
1328 struct in_addr src_ip, dst_ip; /* NOTE: network format */
1329 uint16_t ip_len=0;
1330 int dyn_dir = MATCH_UNKNOWN;
1331 ipfw_dyn_rule *q = NULL;
1333 if (m->m_pkthdr.fw_flags & IPFW_MBUF_GENERATED)
1334 return 0; /* accept */
1336 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1337 * MATCH_NONE when checked and not matched (q = NULL),
1338 * MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
1341 if (args->eh == NULL || /* layer 3 packet */
1342 ( m->m_pkthdr.len >= sizeof(struct ip) &&
1343 ntohs(args->eh->ether_type) == ETHERTYPE_IP))
1344 hlen = ip->ip_hl << 2;
1347 * Collect parameters into local variables for faster matching.
1349 if (hlen == 0) { /* do not grab addresses for non-ip pkts */
1350 proto = args->f_id.proto = 0; /* mark f_id invalid */
1351 goto after_ip_checks;
1354 proto = args->f_id.proto = ip->ip_p;
1355 src_ip = ip->ip_src;
1356 dst_ip = ip->ip_dst;
1357 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
1358 offset = ntohs(ip->ip_off) & IP_OFFMASK;
1359 ip_len = ntohs(ip->ip_len);
1360 } else {
1361 offset = ip->ip_off & IP_OFFMASK;
1362 ip_len = ip->ip_len;
1365 #define PULLUP_TO(len) \
1366 do { \
1367 if ((m)->m_len < (len)) { \
1368 args->m = m = m_pullup(m, (len)); \
1369 if (m == 0) \
1370 goto pullup_failed; \
1371 ip = mtod(m, struct ip *); \
1373 } while (0)
1375 if (offset == 0) {
1376 switch (proto) {
1377 case IPPROTO_TCP:
1379 struct tcphdr *tcp;
1381 PULLUP_TO(hlen + sizeof(struct tcphdr));
1382 tcp = L3HDR(struct tcphdr, ip);
1383 dst_port = tcp->th_dport;
1384 src_port = tcp->th_sport;
1385 args->f_id.flags = tcp->th_flags;
1387 break;
1389 case IPPROTO_UDP:
1391 struct udphdr *udp;
1393 PULLUP_TO(hlen + sizeof(struct udphdr));
1394 udp = L3HDR(struct udphdr, ip);
1395 dst_port = udp->uh_dport;
1396 src_port = udp->uh_sport;
1398 break;
1400 case IPPROTO_ICMP:
1401 PULLUP_TO(hlen + 4); /* type, code and checksum. */
1402 args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
1403 break;
1405 default:
1406 break;
1408 #undef PULLUP_TO
1411 args->f_id.src_ip = ntohl(src_ip.s_addr);
1412 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1413 args->f_id.src_port = src_port = ntohs(src_port);
1414 args->f_id.dst_port = dst_port = ntohs(dst_port);
1416 after_ip_checks:
1417 if (args->rule) {
1419 * Packet has already been tagged. Look for the next rule
1420 * to restart processing.
1422 * If fw_one_pass != 0 then just accept it.
1423 * XXX should not happen here, but optimized out in
1424 * the caller.
1426 if (fw_one_pass)
1427 return 0;
1429 /* This rule was deleted */
1430 if (args->rule->rule_flags & IPFW_RULE_F_INVALID)
1431 return IP_FW_PORT_DENY_FLAG;
1433 f = args->rule->next_rule;
1434 if (f == NULL)
1435 f = lookup_next_rule(args->rule);
1436 } else {
1438 * Find the starting rule. It can be either the first
1439 * one, or the one after divert_rule if asked so.
1441 int skipto;
1443 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1444 if (mtag != NULL)
1445 skipto = *(uint16_t *)m_tag_data(mtag);
1446 else
1447 skipto = 0;
1449 f = layer3_chain;
1450 if (args->eh == NULL && skipto != 0) {
1451 if (skipto >= IPFW_DEFAULT_RULE)
1452 return(IP_FW_PORT_DENY_FLAG); /* invalid */
1453 while (f && f->rulenum <= skipto)
1454 f = f->next;
1455 if (f == NULL) /* drop packet */
1456 return(IP_FW_PORT_DENY_FLAG);
1459 if ((mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
1460 m_tag_delete(m, mtag);
1463 * Now scan the rules, and parse microinstructions for each rule.
1465 for (; f; f = f->next) {
1466 int l, cmdlen;
1467 ipfw_insn *cmd;
1468 int skip_or; /* skip rest of OR block */
1470 again:
1471 if (set_disable & (1 << f->set) )
1472 continue;
1474 skip_or = 0;
1475 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1476 l -= cmdlen, cmd += cmdlen) {
1477 int match;
1480 * check_body is a jump target used when we find a
1481 * CHECK_STATE, and need to jump to the body of
1482 * the target rule.
1485 check_body:
1486 cmdlen = F_LEN(cmd);
1488 * An OR block (insn_1 || .. || insn_n) has the
1489 * F_OR bit set in all but the last instruction.
1490 * The first match will set "skip_or", and cause
1491 * the following instructions to be skipped until
1492 * past the one with the F_OR bit clear.
1494 if (skip_or) { /* skip this instruction */
1495 if ((cmd->len & F_OR) == 0)
1496 skip_or = 0; /* next one is good */
1497 continue;
1499 match = 0; /* set to 1 if we succeed */
1501 switch (cmd->opcode) {
1503 * The first set of opcodes compares the packet's
1504 * fields with some pattern, setting 'match' if a
1505 * match is found. At the end of the loop there is
1506 * logic to deal with F_NOT and F_OR flags associated
1507 * with the opcode.
1509 case O_NOP:
1510 match = 1;
1511 break;
1513 case O_FORWARD_MAC:
1514 kprintf("ipfw: opcode %d unimplemented\n",
1515 cmd->opcode);
1516 break;
1518 case O_GID:
1519 case O_UID:
1521 * We only check offset == 0 && proto != 0,
1522 * as this ensures that we have an IPv4
1523 * packet with the ports info.
1525 if (offset!=0)
1526 break;
1528 struct inpcbinfo *pi;
1529 int wildcard;
1530 struct inpcb *pcb;
1532 if (proto == IPPROTO_TCP) {
1533 wildcard = 0;
1534 pi = &tcbinfo[mycpu->gd_cpuid];
1535 } else if (proto == IPPROTO_UDP) {
1536 wildcard = 1;
1537 pi = &udbinfo;
1538 } else
1539 break;
1541 pcb = (oif) ?
1542 in_pcblookup_hash(pi,
1543 dst_ip, htons(dst_port),
1544 src_ip, htons(src_port),
1545 wildcard, oif) :
1546 in_pcblookup_hash(pi,
1547 src_ip, htons(src_port),
1548 dst_ip, htons(dst_port),
1549 wildcard, NULL);
1551 if (pcb == NULL || pcb->inp_socket == NULL)
1552 break;
1553 #if defined(__DragonFly__) || (defined(__FreeBSD__) && __FreeBSD_version < 500034)
1554 #define socheckuid(a,b) ((a)->so_cred->cr_uid != (b))
1555 #endif
1556 if (cmd->opcode == O_UID) {
1557 match =
1558 !socheckuid(pcb->inp_socket,
1559 (uid_t)((ipfw_insn_u32 *)cmd)->d[0]);
1560 } else {
1561 match = groupmember(
1562 (uid_t)((ipfw_insn_u32 *)cmd)->d[0],
1563 pcb->inp_socket->so_cred);
1566 break;
1568 case O_RECV:
1569 match = iface_match(m->m_pkthdr.rcvif,
1570 (ipfw_insn_if *)cmd);
1571 break;
1573 case O_XMIT:
1574 match = iface_match(oif, (ipfw_insn_if *)cmd);
1575 break;
1577 case O_VIA:
1578 match = iface_match(oif ? oif :
1579 m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1580 break;
1582 case O_MACADDR2:
1583 if (args->eh != NULL) { /* have MAC header */
1584 uint32_t *want = (uint32_t *)
1585 ((ipfw_insn_mac *)cmd)->addr;
1586 uint32_t *mask = (uint32_t *)
1587 ((ipfw_insn_mac *)cmd)->mask;
1588 uint32_t *hdr = (uint32_t *)args->eh;
1590 match =
1591 ( want[0] == (hdr[0] & mask[0]) &&
1592 want[1] == (hdr[1] & mask[1]) &&
1593 want[2] == (hdr[2] & mask[2]) );
1595 break;
1597 case O_MAC_TYPE:
1598 if (args->eh != NULL) {
1599 uint16_t t =
1600 ntohs(args->eh->ether_type);
1601 uint16_t *p =
1602 ((ipfw_insn_u16 *)cmd)->ports;
1603 int i;
1605 for (i = cmdlen - 1; !match && i>0;
1606 i--, p += 2)
1607 match = (t>=p[0] && t<=p[1]);
1609 break;
1611 case O_FRAG:
1612 match = (hlen > 0 && offset != 0);
1613 break;
1615 case O_IN: /* "out" is "not in" */
1616 match = (oif == NULL);
1617 break;
1619 case O_LAYER2:
1620 match = (args->eh != NULL);
1621 break;
1623 case O_PROTO:
1625 * We do not allow an arg of 0 so the
1626 * check of "proto" only suffices.
1628 match = (proto == cmd->arg1);
1629 break;
1631 case O_IP_SRC:
1632 match = (hlen > 0 &&
1633 ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1634 src_ip.s_addr);
1635 break;
1637 case O_IP_SRC_MASK:
1638 match = (hlen > 0 &&
1639 ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1640 (src_ip.s_addr &
1641 ((ipfw_insn_ip *)cmd)->mask.s_addr));
1642 break;
1644 case O_IP_SRC_ME:
1645 if (hlen > 0) {
1646 struct ifnet *tif;
1648 INADDR_TO_IFP(src_ip, tif);
1649 match = (tif != NULL);
1651 break;
1653 case O_IP_DST_SET:
1654 case O_IP_SRC_SET:
1655 if (hlen > 0) {
1656 uint32_t *d = (uint32_t *)(cmd+1);
1657 uint32_t addr =
1658 cmd->opcode == O_IP_DST_SET ?
1659 args->f_id.dst_ip :
1660 args->f_id.src_ip;
1662 if (addr < d[0])
1663 break;
1664 addr -= d[0]; /* subtract base */
1665 match = (addr < cmd->arg1) &&
1666 ( d[ 1 + (addr>>5)] &
1667 (1<<(addr & 0x1f)) );
1669 break;
1671 case O_IP_DST:
1672 match = (hlen > 0 &&
1673 ((ipfw_insn_ip *)cmd)->addr.s_addr ==
1674 dst_ip.s_addr);
1675 break;
1677 case O_IP_DST_MASK:
1678 match = (hlen > 0) &&
1679 (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1680 (dst_ip.s_addr &
1681 ((ipfw_insn_ip *)cmd)->mask.s_addr));
1682 break;
1684 case O_IP_DST_ME:
1685 if (hlen > 0) {
1686 struct ifnet *tif;
1688 INADDR_TO_IFP(dst_ip, tif);
1689 match = (tif != NULL);
1691 break;
1693 case O_IP_SRCPORT:
1694 case O_IP_DSTPORT:
1696 * offset == 0 && proto != 0 is enough
1697 * to guarantee that we have an IPv4
1698 * packet with port info.
1700 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1701 && offset == 0) {
1702 uint16_t x =
1703 (cmd->opcode == O_IP_SRCPORT) ?
1704 src_port : dst_port ;
1705 uint16_t *p =
1706 ((ipfw_insn_u16 *)cmd)->ports;
1707 int i;
1709 for (i = cmdlen - 1; !match && i>0;
1710 i--, p += 2)
1711 match = (x>=p[0] && x<=p[1]);
1713 break;
1715 case O_ICMPTYPE:
1716 match = (offset == 0 && proto==IPPROTO_ICMP &&
1717 icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
1718 break;
1720 case O_IPOPT:
1721 match = (hlen > 0 && ipopts_match(ip, cmd) );
1722 break;
1724 case O_IPVER:
1725 match = (hlen > 0 && cmd->arg1 == ip->ip_v);
1726 break;
1728 case O_IPTTL:
1729 match = (hlen > 0 && cmd->arg1 == ip->ip_ttl);
1730 break;
1732 case O_IPID:
1733 match = (hlen > 0 &&
1734 cmd->arg1 == ntohs(ip->ip_id));
1735 break;
1737 case O_IPLEN:
1738 match = (hlen > 0 && cmd->arg1 == ip_len);
1739 break;
1741 case O_IPPRECEDENCE:
1742 match = (hlen > 0 &&
1743 (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1744 break;
1746 case O_IPTOS:
1747 match = (hlen > 0 &&
1748 flags_match(cmd, ip->ip_tos));
1749 break;
1751 case O_TCPFLAGS:
1752 match = (proto == IPPROTO_TCP && offset == 0 &&
1753 flags_match(cmd,
1754 L3HDR(struct tcphdr,ip)->th_flags));
1755 break;
1757 case O_TCPOPTS:
1758 match = (proto == IPPROTO_TCP && offset == 0 &&
1759 tcpopts_match(ip, cmd));
1760 break;
1762 case O_TCPSEQ:
1763 match = (proto == IPPROTO_TCP && offset == 0 &&
1764 ((ipfw_insn_u32 *)cmd)->d[0] ==
1765 L3HDR(struct tcphdr,ip)->th_seq);
1766 break;
1768 case O_TCPACK:
1769 match = (proto == IPPROTO_TCP && offset == 0 &&
1770 ((ipfw_insn_u32 *)cmd)->d[0] ==
1771 L3HDR(struct tcphdr,ip)->th_ack);
1772 break;
1774 case O_TCPWIN:
1775 match = (proto == IPPROTO_TCP && offset == 0 &&
1776 cmd->arg1 ==
1777 L3HDR(struct tcphdr,ip)->th_win);
1778 break;
1780 case O_ESTAB:
1781 /* reject packets which have SYN only */
1782 /* XXX should i also check for TH_ACK ? */
1783 match = (proto == IPPROTO_TCP && offset == 0 &&
1784 (L3HDR(struct tcphdr,ip)->th_flags &
1785 (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1786 break;
1788 case O_LOG:
1789 if (fw_verbose)
1790 ipfw_log(f, hlen, args->eh, m, oif);
1791 match = 1;
1792 break;
1794 case O_PROB:
1795 match = (krandom() <
1796 ((ipfw_insn_u32 *)cmd)->d[0]);
1797 break;
1800 * The second set of opcodes represents 'actions',
1801 * i.e. the terminal part of a rule once the packet
1802 * matches all previous patterns.
1803 * Typically there is only one action for each rule,
1804 * and the opcode is stored at the end of the rule
1805 * (but there are exceptions -- see below).
1807 * In general, here we set retval and terminate the
1808 * outer loop (would be a 'break 3' in some language,
1809 * but we need to do a 'goto done').
1811 * Exceptions:
1812 * O_COUNT and O_SKIPTO actions:
1813 * instead of terminating, we jump to the next rule
1814 * ('goto next_rule', equivalent to a 'break 2'),
1815 * or to the SKIPTO target ('goto again' after
1816 * having set f, cmd and l), respectively.
1818 * O_LIMIT and O_KEEP_STATE: these opcodes are
1819 * not real 'actions', and are stored right
1820 * before the 'action' part of the rule.
1821 * These opcodes try to install an entry in the
1822 * state tables; if successful, we continue with
1823 * the next opcode (match=1; break;), otherwise
1824 * the packet * must be dropped
1825 * ('goto done' after setting retval);
1827 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1828 * cause a lookup of the state table, and a jump
1829 * to the 'action' part of the parent rule
1830 * ('goto check_body') if an entry is found, or
1831 * (CHECK_STATE only) a jump to the next rule if
1832 * the entry is not found ('goto next_rule').
1833 * The result of the lookup is cached to make
1834 * further instances of these opcodes are
1835 * effectively NOPs.
1837 case O_LIMIT:
1838 case O_KEEP_STATE:
1839 if (install_state(f,
1840 (ipfw_insn_limit *)cmd, args)) {
1841 retval = IP_FW_PORT_DENY_FLAG;
1842 goto done; /* error/limit violation */
1844 match = 1;
1845 break;
1847 case O_PROBE_STATE:
1848 case O_CHECK_STATE:
1850 * dynamic rules are checked at the first
1851 * keep-state or check-state occurrence,
1852 * with the result being stored in dyn_dir.
1853 * The compiler introduces a PROBE_STATE
1854 * instruction for us when we have a
1855 * KEEP_STATE (because PROBE_STATE needs
1856 * to be run first).
1858 if (dyn_dir == MATCH_UNKNOWN &&
1859 (q = lookup_dyn_rule(&args->f_id,
1860 &dyn_dir, proto == IPPROTO_TCP ?
1861 L3HDR(struct tcphdr, ip) : NULL))
1862 != NULL) {
1864 * Found dynamic entry, update stats
1865 * and jump to the 'action' part of
1866 * the parent rule.
1868 q->pcnt++;
1869 q->bcnt += ip_len;
1870 f = q->rule;
1871 cmd = ACTION_PTR(f);
1872 l = f->cmd_len - f->act_ofs;
1873 goto check_body;
1876 * Dynamic entry not found. If CHECK_STATE,
1877 * skip to next rule, if PROBE_STATE just
1878 * ignore and continue with next opcode.
1880 if (cmd->opcode == O_CHECK_STATE)
1881 goto next_rule;
1882 match = 1;
1883 break;
1885 case O_ACCEPT:
1886 retval = 0; /* accept */
1887 goto done;
1889 case O_PIPE:
1890 case O_QUEUE:
1891 args->rule = f; /* report matching rule */
1892 retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
1893 goto done;
1895 case O_DIVERT:
1896 case O_TEE:
1897 if (args->eh) /* not on layer 2 */
1898 break;
1900 mtag = m_tag_get(PACKET_TAG_IPFW_DIVERT,
1901 sizeof(uint16_t), MB_DONTWAIT);
1902 if (mtag == NULL) {
1903 retval = IP_FW_PORT_DENY_FLAG;
1904 goto done;
1906 *(uint16_t *)m_tag_data(mtag) = f->rulenum;
1907 m_tag_prepend(m, mtag);
1908 retval = (cmd->opcode == O_DIVERT) ?
1909 cmd->arg1 :
1910 cmd->arg1 | IP_FW_PORT_TEE_FLAG;
1911 goto done;
1913 case O_COUNT:
1914 case O_SKIPTO:
1915 f->pcnt++; /* update stats */
1916 f->bcnt += ip_len;
1917 f->timestamp = time_second;
1918 if (cmd->opcode == O_COUNT)
1919 goto next_rule;
1920 /* handle skipto */
1921 if (f->next_rule == NULL)
1922 lookup_next_rule(f);
1923 f = f->next_rule;
1924 goto again;
1926 case O_REJECT:
1928 * Drop the packet and send a reject notice
1929 * if the packet is not ICMP (or is an ICMP
1930 * query), and it is not multicast/broadcast.
1932 if (hlen > 0 &&
1933 (proto != IPPROTO_ICMP ||
1934 is_icmp_query(ip)) &&
1935 !(m->m_flags & (M_BCAST|M_MCAST)) &&
1936 !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
1937 send_reject(args, cmd->arg1,
1938 offset,ip_len);
1939 m = args->m;
1941 /* FALLTHROUGH */
1942 case O_DENY:
1943 retval = IP_FW_PORT_DENY_FLAG;
1944 goto done;
1946 case O_FORWARD_IP:
1947 if (args->eh) /* not valid on layer2 pkts */
1948 break;
1949 if (!q || dyn_dir == MATCH_FORWARD)
1950 args->next_hop =
1951 &((ipfw_insn_sa *)cmd)->sa;
1952 retval = 0;
1953 goto done;
1955 default:
1956 panic("-- unknown opcode %d\n", cmd->opcode);
1957 } /* end of switch() on opcodes */
1959 if (cmd->len & F_NOT)
1960 match = !match;
1962 if (match) {
1963 if (cmd->len & F_OR)
1964 skip_or = 1;
1965 } else {
1966 if (!(cmd->len & F_OR)) /* not an OR block, */
1967 break; /* try next rule */
1970 } /* end of inner for, scan opcodes */
1972 next_rule:; /* try next rule */
1974 } /* end of outer for, scan rules */
1975 kprintf("+++ ipfw: ouch!, skip past end of rules, denying packet\n");
1976 return(IP_FW_PORT_DENY_FLAG);
1978 done:
1979 /* Update statistics */
1980 f->pcnt++;
1981 f->bcnt += ip_len;
1982 f->timestamp = time_second;
1983 return retval;
1985 pullup_failed:
1986 if (fw_verbose)
1987 kprintf("pullup failed\n");
1988 return(IP_FW_PORT_DENY_FLAG);
1991 static void
1992 ipfw_dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
1994 struct m_tag *mtag;
1995 struct dn_pkt *pkt;
1996 ipfw_insn *cmd;
1997 const struct ipfw_flow_id *id;
1998 struct dn_flow_id *fid;
2000 M_ASSERTPKTHDR(m);
2002 mtag = m_tag_get(PACKET_TAG_DUMMYNET, sizeof(*pkt), MB_DONTWAIT);
2003 if (mtag == NULL) {
2004 m_freem(m);
2005 return;
2007 m_tag_prepend(m, mtag);
2009 pkt = m_tag_data(mtag);
2010 bzero(pkt, sizeof(*pkt));
2012 cmd = fwa->rule->cmd + fwa->rule->act_ofs;
2013 if (cmd->opcode == O_LOG)
2014 cmd += F_LEN(cmd);
2015 KASSERT(cmd->opcode == O_PIPE || cmd->opcode == O_QUEUE,
2016 ("Rule is not PIPE or QUEUE, opcode %d\n", cmd->opcode));
2018 pkt->dn_m = m;
2019 pkt->dn_flags = (dir & DN_FLAGS_DIR_MASK);
2020 pkt->ifp = fwa->oif;
2021 pkt->cpuid = mycpu->gd_cpuid;
2022 pkt->pipe_nr = pipe_nr;
2024 id = &fwa->f_id;
2025 fid = &pkt->id;
2026 fid->fid_dst_ip = id->dst_ip;
2027 fid->fid_src_ip = id->src_ip;
2028 fid->fid_dst_port = id->dst_port;
2029 fid->fid_src_port = id->src_port;
2030 fid->fid_proto = id->proto;
2031 fid->fid_flags = id->flags;
2033 ipfw_ref_rule(fwa->rule);
2034 pkt->dn_priv = fwa->rule;
2035 pkt->dn_unref_priv = ipfw_unref_rule;
2037 if (cmd->opcode == O_PIPE)
2038 pkt->dn_flags |= DN_FLAGS_IS_PIPE;
2040 if (dir == DN_TO_IP_OUT) {
2042 * We need to copy *ro because for ICMP pkts (and maybe
2043 * others) the caller passed a pointer into the stack;
2044 * dst might also be a pointer into *ro so it needs to
2045 * be updated.
2047 pkt->ro = *(fwa->ro);
2048 if (fwa->ro->ro_rt)
2049 fwa->ro->ro_rt->rt_refcnt++;
2050 if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) {
2051 /* 'dst' points into 'ro' */
2052 fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst);
2054 pkt->dn_dst = fwa->dst;
2055 pkt->flags = fwa->flags;
2058 m->m_pkthdr.fw_flags |= DUMMYNET_MBUF_TAGGED;
2059 ip_dn_queue(m);
2063 * When a rule is added/deleted, clear the next_rule pointers in all rules.
2064 * These will be reconstructed on the fly as packets are matched.
2065 * Must be called at splimp().
2067 static void
2068 flush_rule_ptrs(void)
2070 struct ip_fw *rule;
2072 for (rule = layer3_chain; rule; rule = rule->next)
2073 rule->next_rule = NULL;
2076 static __inline void
2077 ipfw_inc_static_count(struct ip_fw *rule)
2079 static_count++;
2080 static_ioc_len += IOC_RULESIZE(rule);
2083 static __inline void
2084 ipfw_dec_static_count(struct ip_fw *rule)
2086 int l = IOC_RULESIZE(rule);
2088 KASSERT(static_count > 0, ("invalid static count %u\n", static_count));
2089 static_count--;
2091 KASSERT(static_ioc_len >= l,
2092 ("invalid static len %u\n", static_ioc_len));
2093 static_ioc_len -= l;
2096 static struct ip_fw *
2097 ipfw_create_rule(const struct ipfw_ioc_rule *ioc_rule)
2099 struct ip_fw *rule;
2101 rule = kmalloc(RULESIZE(ioc_rule), M_IPFW, M_WAITOK | M_ZERO);
2103 rule->act_ofs = ioc_rule->act_ofs;
2104 rule->cmd_len = ioc_rule->cmd_len;
2105 rule->rulenum = ioc_rule->rulenum;
2106 rule->set = ioc_rule->set;
2107 rule->usr_flags = ioc_rule->usr_flags;
2109 bcopy(ioc_rule->cmd, rule->cmd, rule->cmd_len * 4 /* XXX */);
2111 rule->refcnt = 1;
2113 return rule;
2117 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2118 * possibly create a rule number and add the rule to the list.
2119 * Update the rule_number in the input struct so the caller knows it as well.
2121 static int
2122 ipfw_add_rule(struct ip_fw **head, struct ipfw_ioc_rule *ioc_rule)
2124 struct ip_fw *rule, *f, *prev;
2126 KKASSERT(*head != NULL);
2128 rule = ipfw_create_rule(ioc_rule);
2130 crit_enter();
2133 * If rulenum is 0, find highest numbered rule before the
2134 * default rule, and add autoinc_step
2136 if (autoinc_step < 1)
2137 autoinc_step = 1;
2138 else if (autoinc_step > 1000)
2139 autoinc_step = 1000;
2140 if (rule->rulenum == 0) {
2142 * locate the highest numbered rule before default
2144 for (f = *head; f; f = f->next) {
2145 if (f->rulenum == IPFW_DEFAULT_RULE)
2146 break;
2147 rule->rulenum = f->rulenum;
2149 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
2150 rule->rulenum += autoinc_step;
2151 ioc_rule->rulenum = rule->rulenum;
2155 * Now insert the new rule in the right place in the sorted list.
2157 for (prev = NULL, f = *head; f; prev = f, f = f->next) {
2158 if (f->rulenum > rule->rulenum) { /* found the location */
2159 if (prev) {
2160 rule->next = f;
2161 prev->next = rule;
2162 } else { /* head insert */
2163 rule->next = *head;
2164 *head = rule;
2166 break;
2170 flush_rule_ptrs();
2171 ipfw_inc_static_count(rule);
2173 crit_exit();
2175 DEB(kprintf("++ installed rule %d, static count now %d\n",
2176 rule->rulenum, static_count);)
2177 return (0);
2181 * Free storage associated with a static rule (including derived
2182 * dynamic rules).
2183 * The caller is in charge of clearing rule pointers to avoid
2184 * dangling pointers.
2185 * @return a pointer to the next entry.
2186 * Arguments are not checked, so they better be correct.
2187 * Must be called at splimp().
2189 static struct ip_fw *
2190 delete_rule(struct ip_fw **head, struct ip_fw *prev, struct ip_fw *rule)
2192 struct ip_fw *n;
2194 n = rule->next;
2195 remove_dyn_rule(rule, NULL /* force removal */);
2196 if (prev == NULL)
2197 *head = n;
2198 else
2199 prev->next = n;
2200 ipfw_dec_static_count(rule);
2202 /* Mark the rule as invalid */
2203 rule->rule_flags |= IPFW_RULE_F_INVALID;
2204 rule->next_rule = NULL;
2206 /* Try to free this rule */
2207 ipfw_free_rule(rule);
2209 return n;
2213 * Deletes all rules from a chain (including the default rule
2214 * if the second argument is set).
2215 * Must be called at splimp().
2217 static void
2218 free_chain(struct ip_fw **chain, int kill_default)
2220 struct ip_fw *rule;
2222 flush_rule_ptrs(); /* more efficient to do outside the loop */
2224 while ( (rule = *chain) != NULL &&
2225 (kill_default || rule->rulenum != IPFW_DEFAULT_RULE) )
2226 delete_rule(chain, NULL, rule);
2228 KASSERT(dyn_count == 0, ("%u dyn rule remains\n", dyn_count));
2230 if (kill_default) {
2231 ip_fw_default_rule = NULL; /* Reset default rule */
2233 if (ipfw_dyn_v != NULL) {
2235 * Free dynamic rules(state) hash table
2237 kfree(ipfw_dyn_v, M_IPFW);
2238 ipfw_dyn_v = NULL;
2241 KASSERT(static_count == 0,
2242 ("%u static rules remains\n", static_count));
2243 KASSERT(static_ioc_len == 0,
2244 ("%u bytes of static rules remains\n", static_ioc_len));
2245 } else {
2246 KASSERT(static_count == 1,
2247 ("%u static rules remains\n", static_count));
2248 KASSERT(static_ioc_len == IOC_RULESIZE(ip_fw_default_rule),
2249 ("%u bytes of static rules remains, should be %u\n",
2250 static_ioc_len, IOC_RULESIZE(ip_fw_default_rule)));
2255 * Remove all rules with given number, and also do set manipulation.
2257 * The argument is an uint32_t. The low 16 bit are the rule or set number,
2258 * the next 8 bits are the new set, the top 8 bits are the command:
2260 * 0 delete rules with given number
2261 * 1 delete rules with given set number
2262 * 2 move rules with given number to new set
2263 * 3 move rules with given set number to new set
2264 * 4 swap sets with given numbers
2266 static int
2267 del_entry(struct ip_fw **chain, uint32_t arg)
2269 struct ip_fw *prev, *rule;
2270 uint16_t rulenum;
2271 uint8_t cmd, new_set;
2273 rulenum = arg & 0xffff;
2274 cmd = (arg >> 24) & 0xff;
2275 new_set = (arg >> 16) & 0xff;
2277 if (cmd > 4)
2278 return EINVAL;
2279 if (new_set > 30)
2280 return EINVAL;
2281 if (cmd == 0 || cmd == 2) {
2282 if (rulenum == IPFW_DEFAULT_RULE)
2283 return EINVAL;
2284 } else {
2285 if (rulenum > 30)
2286 return EINVAL;
2289 switch (cmd) {
2290 case 0: /* delete rules with given number */
2292 * locate first rule to delete
2294 for (prev = NULL, rule = *chain;
2295 rule && rule->rulenum < rulenum;
2296 prev = rule, rule = rule->next)
2298 if (rule->rulenum != rulenum)
2299 return EINVAL;
2301 crit_enter(); /* no access to rules while removing */
2303 * flush pointers outside the loop, then delete all matching
2304 * rules. prev remains the same throughout the cycle.
2306 flush_rule_ptrs();
2307 while (rule && rule->rulenum == rulenum)
2308 rule = delete_rule(chain, prev, rule);
2309 crit_exit();
2310 break;
2312 case 1: /* delete all rules with given set number */
2313 crit_enter();
2314 flush_rule_ptrs();
2315 for (prev = NULL, rule = *chain; rule ; )
2316 if (rule->set == rulenum)
2317 rule = delete_rule(chain, prev, rule);
2318 else {
2319 prev = rule;
2320 rule = rule->next;
2322 crit_exit();
2323 break;
2325 case 2: /* move rules with given number to new set */
2326 crit_enter();
2327 for (rule = *chain; rule ; rule = rule->next)
2328 if (rule->rulenum == rulenum)
2329 rule->set = new_set;
2330 crit_exit();
2331 break;
2333 case 3: /* move rules with given set number to new set */
2334 crit_enter();
2335 for (rule = *chain; rule ; rule = rule->next)
2336 if (rule->set == rulenum)
2337 rule->set = new_set;
2338 crit_exit();
2339 break;
2341 case 4: /* swap two sets */
2342 crit_enter();
2343 for (rule = *chain; rule ; rule = rule->next)
2344 if (rule->set == rulenum)
2345 rule->set = new_set;
2346 else if (rule->set == new_set)
2347 rule->set = rulenum;
2348 crit_exit();
2349 break;
2351 return 0;
2355 * Clear counters for a specific rule.
2357 static void
2358 clear_counters(struct ip_fw *rule, int log_only)
2360 ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
2362 if (log_only == 0) {
2363 rule->bcnt = rule->pcnt = 0;
2364 rule->timestamp = 0;
2366 if (l->o.opcode == O_LOG)
2367 l->log_left = l->max_log;
2371 * Reset some or all counters on firewall rules.
2372 * @arg frwl is null to clear all entries, or contains a specific
2373 * rule number.
2374 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
2376 static int
2377 zero_entry(int rulenum, int log_only)
2379 struct ip_fw *rule;
2380 char *msg;
2382 if (rulenum == 0) {
2383 crit_enter();
2384 norule_counter = 0;
2385 for (rule = layer3_chain; rule; rule = rule->next)
2386 clear_counters(rule, log_only);
2387 crit_exit();
2388 msg = log_only ? "ipfw: All logging counts reset.\n" :
2389 "ipfw: Accounting cleared.\n";
2390 } else {
2391 int cleared = 0;
2393 * We can have multiple rules with the same number, so we
2394 * need to clear them all.
2396 for (rule = layer3_chain; rule; rule = rule->next)
2397 if (rule->rulenum == rulenum) {
2398 crit_enter();
2399 while (rule && rule->rulenum == rulenum) {
2400 clear_counters(rule, log_only);
2401 rule = rule->next;
2403 crit_exit();
2404 cleared = 1;
2405 break;
2407 if (!cleared) /* we did not find any matching rules */
2408 return (EINVAL);
2409 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
2410 "ipfw: Entry %d cleared.\n";
2412 if (fw_verbose)
2413 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
2414 return (0);
2418 * Check validity of the structure before insert.
2419 * Fortunately rules are simple, so this mostly need to check rule sizes.
2421 static int
2422 ipfw_ctl_check_rule(struct ipfw_ioc_rule *rule, int size)
2424 int l, cmdlen = 0;
2425 int have_action = 0;
2426 ipfw_insn *cmd;
2428 /* Check for valid size */
2429 if (size < sizeof(*rule)) {
2430 kprintf("ipfw: rule too short\n");
2431 return EINVAL;
2433 l = IOC_RULESIZE(rule);
2434 if (l != size) {
2435 kprintf("ipfw: size mismatch (have %d want %d)\n", size, l);
2436 return EINVAL;
2440 * Now go for the individual checks. Very simple ones, basically only
2441 * instruction sizes.
2443 for (l = rule->cmd_len, cmd = rule->cmd; l > 0;
2444 l -= cmdlen, cmd += cmdlen) {
2445 cmdlen = F_LEN(cmd);
2446 if (cmdlen > l) {
2447 kprintf("ipfw: opcode %d size truncated\n",
2448 cmd->opcode);
2449 return EINVAL;
2451 DEB(kprintf("ipfw: opcode %d\n", cmd->opcode);)
2452 switch (cmd->opcode) {
2453 case O_NOP:
2454 case O_PROBE_STATE:
2455 case O_KEEP_STATE:
2456 case O_PROTO:
2457 case O_IP_SRC_ME:
2458 case O_IP_DST_ME:
2459 case O_LAYER2:
2460 case O_IN:
2461 case O_FRAG:
2462 case O_IPOPT:
2463 case O_IPLEN:
2464 case O_IPID:
2465 case O_IPTOS:
2466 case O_IPPRECEDENCE:
2467 case O_IPTTL:
2468 case O_IPVER:
2469 case O_TCPWIN:
2470 case O_TCPFLAGS:
2471 case O_TCPOPTS:
2472 case O_ESTAB:
2473 if (cmdlen != F_INSN_SIZE(ipfw_insn))
2474 goto bad_size;
2475 break;
2477 case O_UID:
2478 case O_GID:
2479 case O_IP_SRC:
2480 case O_IP_DST:
2481 case O_TCPSEQ:
2482 case O_TCPACK:
2483 case O_PROB:
2484 case O_ICMPTYPE:
2485 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
2486 goto bad_size;
2487 break;
2489 case O_LIMIT:
2490 if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
2491 goto bad_size;
2492 break;
2494 case O_LOG:
2495 if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
2496 goto bad_size;
2498 ((ipfw_insn_log *)cmd)->log_left =
2499 ((ipfw_insn_log *)cmd)->max_log;
2501 break;
2503 case O_IP_SRC_MASK:
2504 case O_IP_DST_MASK:
2505 if (cmdlen != F_INSN_SIZE(ipfw_insn_ip))
2506 goto bad_size;
2507 if (((ipfw_insn_ip *)cmd)->mask.s_addr == 0) {
2508 kprintf("ipfw: opcode %d, useless rule\n",
2509 cmd->opcode);
2510 return EINVAL;
2512 break;
2514 case O_IP_SRC_SET:
2515 case O_IP_DST_SET:
2516 if (cmd->arg1 == 0 || cmd->arg1 > 256) {
2517 kprintf("ipfw: invalid set size %d\n",
2518 cmd->arg1);
2519 return EINVAL;
2521 if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
2522 (cmd->arg1+31)/32 )
2523 goto bad_size;
2524 break;
2526 case O_MACADDR2:
2527 if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
2528 goto bad_size;
2529 break;
2531 case O_MAC_TYPE:
2532 case O_IP_SRCPORT:
2533 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
2534 if (cmdlen < 2 || cmdlen > 31)
2535 goto bad_size;
2536 break;
2538 case O_RECV:
2539 case O_XMIT:
2540 case O_VIA:
2541 if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
2542 goto bad_size;
2543 break;
2545 case O_PIPE:
2546 case O_QUEUE:
2547 if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
2548 goto bad_size;
2549 goto check_action;
2551 case O_FORWARD_IP:
2552 if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
2553 goto bad_size;
2554 goto check_action;
2556 case O_FORWARD_MAC: /* XXX not implemented yet */
2557 case O_CHECK_STATE:
2558 case O_COUNT:
2559 case O_ACCEPT:
2560 case O_DENY:
2561 case O_REJECT:
2562 case O_SKIPTO:
2563 case O_DIVERT:
2564 case O_TEE:
2565 if (cmdlen != F_INSN_SIZE(ipfw_insn))
2566 goto bad_size;
2567 check_action:
2568 if (have_action) {
2569 kprintf("ipfw: opcode %d, multiple actions"
2570 " not allowed\n",
2571 cmd->opcode);
2572 return EINVAL;
2574 have_action = 1;
2575 if (l != cmdlen) {
2576 kprintf("ipfw: opcode %d, action must be"
2577 " last opcode\n",
2578 cmd->opcode);
2579 return EINVAL;
2581 break;
2582 default:
2583 kprintf("ipfw: opcode %d, unknown opcode\n",
2584 cmd->opcode);
2585 return EINVAL;
2588 if (have_action == 0) {
2589 kprintf("ipfw: missing action\n");
2590 return EINVAL;
2592 return 0;
2594 bad_size:
2595 kprintf("ipfw: opcode %d size %d wrong\n",
2596 cmd->opcode, cmdlen);
2597 return EINVAL;
2600 static int
2601 ipfw_ctl_add_rule(struct sockopt *sopt)
2603 struct ipfw_ioc_rule *ioc_rule;
2604 uint32_t rule_buf[IPFW_RULE_SIZE_MAX];
2605 size_t size;
2606 int error;
2608 ioc_rule = (struct ipfw_ioc_rule *)rule_buf;
2609 error = sooptcopyin(sopt, ioc_rule, sizeof(rule_buf),
2610 sizeof(*ioc_rule));
2611 if (error)
2612 return error;
2614 size = sopt->sopt_valsize;
2615 error = ipfw_ctl_check_rule(ioc_rule, size);
2616 if (error)
2617 return error;
2619 error = ipfw_add_rule(&layer3_chain, ioc_rule);
2620 if (error)
2621 return error;
2623 if (sopt->sopt_dir == SOPT_GET)
2624 error = sooptcopyout(sopt, ioc_rule, IOC_RULESIZE(ioc_rule));
2625 return error;
2628 static void *
2629 ipfw_copy_rule(const struct ip_fw *rule, struct ipfw_ioc_rule *ioc_rule)
2631 ioc_rule->act_ofs = rule->act_ofs;
2632 ioc_rule->cmd_len = rule->cmd_len;
2633 ioc_rule->rulenum = rule->rulenum;
2634 ioc_rule->set = rule->set;
2635 ioc_rule->usr_flags = rule->usr_flags;
2637 ioc_rule->set_disable = set_disable;
2638 ioc_rule->static_count = static_count;
2639 ioc_rule->static_len = static_ioc_len;
2641 ioc_rule->pcnt = rule->pcnt;
2642 ioc_rule->bcnt = rule->bcnt;
2643 ioc_rule->timestamp = rule->timestamp;
2645 bcopy(rule->cmd, ioc_rule->cmd, ioc_rule->cmd_len * 4 /* XXX */);
2647 return ((uint8_t *)ioc_rule + IOC_RULESIZE(ioc_rule));
2650 static void
2651 ipfw_copy_state(const ipfw_dyn_rule *dyn_rule,
2652 struct ipfw_ioc_state *ioc_state)
2654 const struct ipfw_flow_id *id;
2655 struct ipfw_ioc_flowid *ioc_id;
2657 ioc_state->expire = TIME_LEQ(dyn_rule->expire, time_second) ?
2658 0 : dyn_rule->expire - time_second;
2659 ioc_state->pcnt = dyn_rule->pcnt;
2660 ioc_state->bcnt = dyn_rule->bcnt;
2662 ioc_state->dyn_type = dyn_rule->dyn_type;
2663 ioc_state->count = dyn_rule->count;
2665 ioc_state->rulenum = dyn_rule->rule->rulenum;
2667 id = &dyn_rule->id;
2668 ioc_id = &ioc_state->id;
2670 ioc_id->type = ETHERTYPE_IP;
2671 ioc_id->u.ip.dst_ip = id->dst_ip;
2672 ioc_id->u.ip.src_ip = id->src_ip;
2673 ioc_id->u.ip.dst_port = id->dst_port;
2674 ioc_id->u.ip.src_port = id->src_port;
2675 ioc_id->u.ip.proto = id->proto;
2678 static int
2679 ipfw_ctl_get_rules(struct sockopt *sopt)
2681 struct ip_fw *rule;
2682 void *buf, *bp;
2683 size_t size;
2684 int error;
2687 * pass up a copy of the current rules. Static rules
2688 * come first (the last of which has number IPFW_DEFAULT_RULE),
2689 * followed by a possibly empty list of dynamic rule.
2691 crit_enter();
2693 size = static_ioc_len; /* size of static rules */
2694 if (ipfw_dyn_v) /* add size of dyn.rules */
2695 size += (dyn_count * sizeof(struct ipfw_ioc_state));
2698 * XXX todo: if the user passes a short length just to know
2699 * how much room is needed, do not bother filling up the
2700 * buffer, just jump to the sooptcopyout.
2702 bp = buf = kmalloc(size, M_TEMP, M_WAITOK | M_ZERO);
2704 for (rule = layer3_chain; rule; rule = rule->next)
2705 bp = ipfw_copy_rule(rule, bp);
2707 if (ipfw_dyn_v) {
2708 struct ipfw_ioc_state *ioc_state;
2709 int i;
2711 ioc_state = bp;
2712 for (i = 0; i < curr_dyn_buckets; i++) {
2713 ipfw_dyn_rule *p;
2715 for (p = ipfw_dyn_v[i]; p != NULL;
2716 p = p->next, ioc_state++)
2717 ipfw_copy_state(p, ioc_state);
2721 crit_exit();
2723 error = sooptcopyout(sopt, buf, size);
2724 kfree(buf, M_TEMP);
2725 return error;
2729 * {set|get}sockopt parser.
2731 static int
2732 ipfw_ctl(struct sockopt *sopt)
2734 int error, rulenum;
2735 uint32_t masks[2];
2736 size_t size;
2739 * Disallow modifications in really-really secure mode, but still allow
2740 * the logging counters to be reset.
2742 if (sopt->sopt_name == IP_FW_ADD ||
2743 (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
2744 if (securelevel >= 3)
2745 return EPERM;
2748 error = 0;
2750 switch (sopt->sopt_name) {
2751 case IP_FW_GET:
2752 error = ipfw_ctl_get_rules(sopt);
2753 break;
2755 case IP_FW_FLUSH:
2757 * Normally we cannot release the lock on each iteration.
2758 * We could do it here only because we start from the head all
2759 * the times so there is no risk of missing some entries.
2760 * On the other hand, the risk is that we end up with
2761 * a very inconsistent ruleset, so better keep the lock
2762 * around the whole cycle.
2764 * XXX this code can be improved by resetting the head of
2765 * the list to point to the default rule, and then freeing
2766 * the old list without the need for a lock.
2769 crit_enter();
2770 free_chain(&layer3_chain, 0 /* keep default rule */);
2771 crit_exit();
2772 break;
2774 case IP_FW_ADD:
2775 error = ipfw_ctl_add_rule(sopt);
2776 break;
2778 case IP_FW_DEL:
2780 * IP_FW_DEL is used for deleting single rules or sets,
2781 * and (ab)used to atomically manipulate sets. Argument size
2782 * is used to distinguish between the two:
2783 * sizeof(uint32_t)
2784 * delete single rule or set of rules,
2785 * or reassign rules (or sets) to a different set.
2786 * 2*sizeof(uint32_t)
2787 * atomic disable/enable sets.
2788 * first uint32_t contains sets to be disabled,
2789 * second uint32_t contains sets to be enabled.
2791 error = sooptcopyin(sopt, masks,
2792 sizeof(masks), sizeof(masks[0]));
2793 if (error)
2794 break;
2796 size = sopt->sopt_valsize;
2797 if (size == sizeof(masks[0])) {
2799 * Delete or reassign static rule
2801 error = del_entry(&layer3_chain, masks[0]);
2802 } else if (size == sizeof(masks)) {
2804 * Set enable/disable
2806 crit_enter();
2808 set_disable =
2809 (set_disable | masks[0]) & ~masks[1] &
2810 ~(1 << 31); /* set 31 always enabled */
2812 crit_exit();
2813 } else {
2814 error = EINVAL;
2816 break;
2818 case IP_FW_ZERO:
2819 case IP_FW_RESETLOG: /* argument is an int, the rule number */
2820 rulenum=0;
2822 if (sopt->sopt_val != 0) {
2823 error = sooptcopyin(sopt, &rulenum,
2824 sizeof(int), sizeof(int));
2825 if (error)
2826 break;
2828 error = zero_entry(rulenum, sopt->sopt_name == IP_FW_RESETLOG);
2829 break;
2831 default:
2832 kprintf("ipfw_ctl invalid option %d\n", sopt->sopt_name);
2833 error = EINVAL;
2836 return error;
2840 * This procedure is only used to handle keepalives. It is invoked
2841 * every dyn_keepalive_period
2843 static void
2844 ipfw_tick(void * __unused unused)
2846 int i;
2847 ipfw_dyn_rule *q;
2849 if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
2850 goto done;
2852 crit_enter();
2853 for (i = 0 ; i < curr_dyn_buckets ; i++) {
2854 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
2855 if (q->dyn_type == O_LIMIT_PARENT)
2856 continue;
2857 if (q->id.proto != IPPROTO_TCP)
2858 continue;
2859 if ( (q->state & BOTH_SYN) != BOTH_SYN)
2860 continue;
2861 if (TIME_LEQ( time_second+dyn_keepalive_interval,
2862 q->expire))
2863 continue; /* too early */
2864 if (TIME_LEQ(q->expire, time_second))
2865 continue; /* too late, rule expired */
2867 send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
2868 send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
2871 crit_exit();
2872 done:
2873 callout_reset(&ipfw_timeout_h, dyn_keepalive_period * hz,
2874 ipfw_tick, NULL);
2877 static void
2878 ipfw_init_default_rule(struct ip_fw **head)
2880 struct ip_fw *def_rule;
2882 KKASSERT(*head == NULL);
2884 def_rule = kmalloc(sizeof(*def_rule), M_IPFW, M_WAITOK | M_ZERO);
2886 def_rule->act_ofs = 0;
2887 def_rule->rulenum = IPFW_DEFAULT_RULE;
2888 def_rule->cmd_len = 1;
2889 def_rule->set = 31;
2891 def_rule->cmd[0].len = 1;
2892 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
2893 def_rule->cmd[0].opcode = O_ACCEPT;
2894 #else
2895 def_rule->cmd[0].opcode = O_DENY;
2896 #endif
2898 def_rule->refcnt = 1;
2900 *head = def_rule;
2901 ipfw_inc_static_count(def_rule);
2903 /* Install the default rule */
2904 ip_fw_default_rule = def_rule;
2907 static void
2908 ipfw_init(void)
2910 ip_fw_chk_ptr = ipfw_chk;
2911 ip_fw_ctl_ptr = ipfw_ctl;
2912 ip_fw_dn_io_ptr = ipfw_dummynet_io;
2914 layer3_chain = NULL;
2915 ipfw_init_default_rule(&layer3_chain);
2917 kprintf("ipfw2 initialized, divert %s, "
2918 "rule-based forwarding enabled, default to %s, logging ",
2919 #ifdef IPDIVERT
2920 "enabled",
2921 #else
2922 "disabled",
2923 #endif
2924 ip_fw_default_rule->cmd[0].opcode == O_ACCEPT ?
2925 "accept" : "deny");
2927 #ifdef IPFIREWALL_VERBOSE
2928 fw_verbose = 1;
2929 #endif
2930 #ifdef IPFIREWALL_VERBOSE_LIMIT
2931 verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2932 #endif
2933 if (fw_verbose == 0)
2934 kprintf("disabled\n");
2935 else if (verbose_limit == 0)
2936 kprintf("unlimited\n");
2937 else
2938 kprintf("limited to %d packets/entry by default\n",
2939 verbose_limit);
2940 callout_init(&ipfw_timeout_h);
2941 callout_reset(&ipfw_timeout_h, hz, ipfw_tick, NULL);
2944 static int
2945 ipfw_modevent(module_t mod, int type, void *unused)
2947 int err = 0;
2949 switch (type) {
2950 case MOD_LOAD:
2951 crit_enter();
2952 if (IPFW_LOADED) {
2953 crit_exit();
2954 kprintf("IP firewall already loaded\n");
2955 err = EEXIST;
2956 } else {
2957 ipfw_init();
2958 crit_exit();
2960 break;
2962 case MOD_UNLOAD:
2963 #ifndef KLD_MODULE
2964 kprintf("ipfw statically compiled, cannot unload\n");
2965 err = EBUSY;
2966 #else
2967 if (ipfw_refcnt != 0) {
2968 err = EBUSY;
2969 break;
2972 crit_enter();
2973 callout_stop(&ipfw_timeout_h);
2974 ip_fw_chk_ptr = NULL;
2975 ip_fw_ctl_ptr = NULL;
2976 ip_fw_dn_io_ptr = NULL;
2977 free_chain(&layer3_chain, 1 /* kill default rule */);
2978 crit_exit();
2979 kprintf("IP firewall unloaded\n");
2980 #endif
2981 break;
2982 default:
2983 break;
2985 return err;
2988 static moduledata_t ipfwmod = {
2989 "ipfw",
2990 ipfw_modevent,
2993 DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PROTO_END, SI_ORDER_ANY);
2994 MODULE_VERSION(ipfw, 1);